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3) O. M. Pârva, D. Breaz, Univalence conditions for analytic functions on the
exterior unit disk, Journal of Advanced Mathematical Studies, Vol. 16, no. 2
(2023), pp. 125 -133 - ZMath journal, ISC journal, EBSCO journal.
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Index of notations

ℜ(α) - the real part of the complex number α
Im(α) - the imaginary part of the complex number α

Sets:
C - the complex plane
C∞ = C ∪ {∞} - the extended complex plane
C∗ - the set of non-zero complex numbers
R - the set of real numbers
N∗

1 - the set of non-zero natural numbers except 1
Cr - the image of the circle {z ∈ C : |z| = r, 0 < r < 1} under an holomorphic
function f
U - the interior of the unit disk where U := {z ∈ C : |z| < 1}
UR - the disk of radius R
U∗ - the interior of the unit disk with a hole where U∗ = U − {0}
U̇(z0;R) = U(z0, R)− {z0} - the punctured disk centered at z0 with radius R > 0
H(U) - the set of holomorphic functions in the unit disk
Hu(U) - the set of univalent (holomorphic and injective) functions in the unit disk
E(q) - the exceptional set, E(q) = {ζ ∈ ∂U : limz→ζ q(z) = ∞, q′(ζ) ̸= 0, ζ ∈ ∂U \ E(q)}
U - the closed unit disk
U(a, r) = {z ∈ C : |z−a| ≤ r, r > 0} - the closed unit disk centered at a with radius
r
Q - the set of functions that are holomorphic and injective on U \ E(q)
W - the exterior of the unit disk, W = {z ∈ C : 1 < |z| <∞}
U− - the exterior of the open unit disk, U− = {z ∈ C∞ : |z| > 1}
WR - the exterior of the unit disk of radius R, WR = {z ∈ C : |z| > R}
Simple pole - an isolated singularity z0 of a function f ∈ H(U) where ∃ limx→z0 f(z) =
∞ and f can be extended at z0 by defining f(z0) = ∞

Classes and subclasses:
A - the class of analytic functions defined on U, normalized with the conditions:
f(0) = 0 = f ′(0)− 1 - p. 12
S - subclass of class A, containing univalent functions from U∗ - p. 12
O - the class of analytic functions defined on the exterior of the unit disk - p. 12
Σ - subclass of O containing univalent functions - p. 12
O1 - subclass of O containing meromorphic and injective functions - p. 12
Oj - subclass of O - p. 12
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Ψn[Ω, q] - the class of admissible functions - p. 19
T - subclass of class S - p. 22
T2 - subclass of class T - p. 22
T2,µ - subclass of class T2 - p. 22
S(p) - subclass of class A - p. 22
V - subclass of univalent functions of O - p. 22
Vj - subclass of V - p. 22
Σj(p) - subclass of O - p. 22
S∗ - the class of holomorphic star-like functions in U - p. 25
Sc - the class of holomorphic and convex functions in U - p. 27
S∗(α) - the class of meromorphic star-like functions of order α - p. 28
Sc(α) - the class of meromorphic convex functions of order α - p. 28
Σu - the class of meromorphic functions φ with a single pole (simple) ζ = ∞ and
univalent in U− - p. 31
Σ0 - the class of functions that do not vanish in the exterior of the unit disk - p. 31
Σ∗ - the class of star-like functions in the exterior of the unit disk - p. 33
Σc - the class of convex functions in W that do not vanish in U− - p. 33
Sk(α) - the class of meromorphic convex functions of order α - p. 33
Ok(γ) - the class of meromorphic convex functions of order γ - p. 50
O∗

1(γ) - the class of meromorphic and injective functions of order γ - p. 51
O∗

k(µ) - the class of meromorphic, injective, convex and star-like functions of order
µ - p. 60

Operators:
IA - Alexander integral operator - p. 34
L - Libera integral operator - p. 34
Ia - Bernardi integral operator - p. 34
J4 - Integral operator introduced by W. M. Causey - p. 34
La - Libera-Pascu integral operator - p. 35
In(z) - Integral operator introduced by P. Dicu - p. 35
Fαi,β - Integral operator introduced by N. Seenivasagan and D. Breaz - p. 35
Operator Fβ(f, g)(z) - p. 42
Operator Fn,β(z) - p. 44
Operator Gβ,γ(f, g)(z) - p. 46
Operator Gn,β(z) - p. 47
Operator Gβ(z) - p. 52
Operator Kα,β)(z) - p. 52
Operator Gαi,β(z) - p. 52
Operator Gαi,1(z) - p. 59
Operator E(z) - p. 61
Operator Tαi,β(z) - p. 64
Operator Tαi,1(z) - p. 65

Theorems, Corollaries, Lemmas:
Theorem of analyticity of holomorphic functions - p. 13
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Area theorem - p. 14
Coefficient bounding theorem for functions in Σ - p. 14
Bieberbach’s theorem on the coefficient a2 - p. 14
Schwarz’s general lemma - p. 14
Schwarz’s lemma - p. 15
Lindelöf’s subordination principle - p. 16
Differential subordination method - p. 17
Deformation theorem - p. 25
Alexander’s duality theorem - p. 27
A. Marx and E. Strohhäcker’s theorem - p. 27
Duality theorem between the classes S∗(α) and S∗ - p. 29
Deformation theorem for the class Sc(α) - p. 29
Deformation theorem for the class S∗(α) - p. 30
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Analytic characterization of convexity of meromorphic functions - p. 33



Introduction

Complex analysis, also known as the analysis of functions of complex variables,
has a history spanning several centuries and is closely related to the development of
mathematics.

The concept of complex numbers began to emerge in the 16th century, primarily
due to the works of G. Cardano, who addressed the solutions to cubic equations,
where he encountered square roots of negative numbers.

Between the 16th and 17th centuries, mathematicians such as R. Bombelli began
to accept imaginary numbers (i, where i² = -1) and use them in calculations. The
definition of complex numbers as ordered pairs of real numbers was introduced in
1836 by W. Hamilton. As stated by academician S. Marcus, ”Complex numbers
were not introduced simply out of a desire to extend the concept of numbers, but
because mathematics, mechanics, and physics needed these numbers.”

In the 18th and 19th centuries, complex analysis started to take shape as an
essential part of mathematics, with significant contributions from L. Euler and A.
L. Cauchy.

Cauchy formulated the fundamental theorem of complex analysis, which estab-
lished connections between analytic functions and their integrals.

Complex analysis is one of the disciplines where the Romanian school of mathe-
matics made important contributions, and it is also one of the classical branches of
mathematics with wide applications in various fields of science and technology. Two
important directions of complex analysis are the theory of conformal representations
and the geometric theory of analytic functions.

The theory of functions of complex variables evolved in the 19th century, with the
development of concepts such as holomorphic functions and the theory of residues.
These notions are essential for evaluating complex integrals and applying complex
analysis in other fields such as physics.

At the beginning of the 20th century, mathematicians such as H. Poincaré and K.
Weierstrass extended the theories of complex analysis, and their applications spread
into theoretical physics, engineering, and even communication theory.

The geometric theory of functions of a complex variable took shape as a distinct
branch of complex analysis in the 20th century, thanks to important works in this
field by mathematicians such as P. Köebe (1907), T. H. Gronwall (1914), J. W.
Alexander (1915), and L. Bieberbach (1916).

Today, numerous treatises and monographs are dedicated to the study of univa-
lent functions, including works by P. Montel, Z. Nehari, L. V. Ahlfors, Ch. Pom-
merenke, A. W. Goodman, P. L. Duren, D. J. Hallenbeck, T. H. Mac Gregor, S. S.
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Miller, and P. T. Mocanu.
The problem of extending results from the geometric theory of functions of one

complex variable to multiple complex variables was first formulated by H. Cartan
in the appendix of P. Montel’s book published in 1933. The extension of geometric
properties for biolomorphic applications was initiated between 1960 and 1980 by
Japanese mathematicians I. Ono, T. Higuchi, K. Kikuchi, and was revisited in the
last two decades by J. A. Pfaltzgraff, T. J. Suridge, C. FitzGerald, S. Gong, I.
Graham, G. Kohr, H. Hamada, P. Liczberski, P. Curt, T. Bulboacă, D. Breaz, M.
Acu, Gr. St. Sălăgean, R. Szasz, L. I. Cot̂ırlă, D. Răducanu, B. Arpad, N. N. Pascu,
and others.

In the work [8] (1916), L. Bieberbach formulated his famous conjecture, which
bears his name, in which he demonstrated the exact estimate of the coefficient a2
for functions in the class S, normalized and univalent functions in the unit disk U
of the complex plane, that is, |a2| ≤ 2.

Bieberbach’s conjecture, namely: if f(z) = z + a2z
2 + a3z

3 + · · · ∈ S, z ∈ U,
then |an| ≤ n, with equality if and only if f is a rotation of Köebe’s function, was
proven only in 1984 by Louis de Branges [11], during which research in the field of
univalent functions was significantly propelled, one of the directions being the exact
estimation of the coefficients for various subclasses of univalent functions.

At the same time, new research methods appeared and were developed, such as:
L. Lowner’s parametric method, the variational methods initiated by M. Schiffer [70],
G. M. Goluzin [25], K. Sakaguchi [69], methods based on H. Grunsky’s inequalities
[29] and G. M. Goluzin’s [26], the extreme functions method by L. Brickman [18],
[19] and T. H. MacGregor [37], etc.

Romanian mathematicians also played an important role in the development of
this field of mathematics.

G. Călugăreanu is the creator of the Romanian school of univalent function
theory, which obtained the first necessary and sufficient conditions for univalence
expressed with the help of coefficients, and P. T. Mocanu introduced the concept
of α-convexity, addressed the problem of injectivity for non-analytic functions, and
developed, together with S. S. Miller, the well-known method of studying certain
classes of univalent functions, called the ”method of admissible functions,” ”the
method of differential subordinations,” and more recently, ”the theory of superdif-
ferential subordinations.”

The theory of univalent functions is important due to its numerous applications
in various branches of natural sciences, such as theoretical physics (especially fluid
mechanics, electricity, and heat theory) and engineering, as well as in many branches
of mathematics, such as algebra, analytic number theory, differential equations, etc.

Integral operators were studied starting with the 20th century by several mathe-
maticians, including J. W. Alexander, R. Libera, S. Bernardi, S. S. Miller, and more
recently, P. T. Mocanu, M. O. Reade, R. Singh, R. Sijuk, E. Deniz, M. Caglar, H.
Orhan, G. Murugusundaramoorthy, L. I. Cot̂ırlă, A. K. Wanas, and others.

The study of integral operators has seen continuous development, yielding many
remarkable results over time.

In the work ”Geometric Theory of Univalent Functions” [45], the authors T.



Integral transformations for certain classes of univalent functions 9

Bulboacă, P. T. Mocanu, and Gr. St. Sălăgean mention important results obtained
from the class of univalent functions outside the unit disk, such as: ”Area Theorem,”
”Coefficient Delimitation Theorem for Functions in the Class Σ,” and the definitions
of the classes of star-like and convex functions outside the unit disk.

These represented the starting point for the present work ”Integral Transforma-
tions for Certain Classes of Univalent Functions,” in which two chapters entirely
cover the results related to the study of properties of univalent functions inside the
unit disk and properties of meromorphic functions defined outside the unit disk.

In this work, new results were obtained regarding some subclasses of analytic
functions. Properties of univalence, stellarity, and convexity are studied, both for
known integral operators and for new integral operators.

The work includes an index of notations, an introduction, three chapters, con-
clusions, and a bibliography.

The first chapter, entitled ”Basic Concepts and Preliminary Results,” contains
6 paragraphs where basic concepts regarding functions of a complex variable and
integral operators are introduced. These concepts will later be used in the proofs of
the results in this work.

Thus, the notions of: holomorphic function, analytic function, univalent func-
tion, as well as the General Schwarz Lemma, which plays a key role in proving the
main results, are defined. Furthermore, the main notions related to subordinations,
the method of differential subordinations, and the class of admissible functions are
described.

Next, several special classes of univalent functions are presented, including the
class of star-like functions, the class of convex functions, the class of star-like func-
tions of a certain order, and the class of convex functions of a certain order.

In the last two paragraphs of this chapter, some criteria for univalence and
known integral operators in the literature are presented, concepts that will be used
in proving the results of the following chapters.

Chapters two and three are dedicated to the contributions brought by the author
in the field of Geometric Theory of Functions, some of the results being published,
while others have been submitted or accepted for publication.

Chapter titled ”Properties of Certain Univalent Integral Operators” contains, in
the first subsection, the study of certain particular cases of the integral operator
Fβ(f, g)(z) obtained in the paper ”Properties of a New Integral Operator” by R.
Bucur, L. Andrei, and D. Breaz. The author of this thesis also contributes by
improving the conditions for univalence and membership of the operator Fβ(f, g)(z)
in the class S.

In section 2.2, the univalence conditions of the integral operator Fn,β(z) are
discussed.

By applying N. N. Pascu’s Criterion and Schwarz’s General Lemma, new prop-
erties of this operator were found, which was introduced in the paper Mapping
properties of a new Integral Operator by P. Dicu, R. Bucur, and D. Breaz.

Several univalence conditions of a new integral operator Gβ,γ(f, g)(z) are pre-
sented in section 2.3, the proofs of which were carried out with the help of N. N.
Pascu’s Criterion and Schwarz’s Lemma.
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A univalence criterion for the operator Gn,β(z) is given in section 2.4, where it
is defined as a generalization of the function of the given operator from section 2.2
of this work.

The following chapter, titled ”Properties of certain classes of meromorphic func-
tions defined on the exterior unit disk”, contains seven sections, in which properties
and univalence conditions of meromorphic functions, respectively integral operators
defined on the exterior unit disk, are described. The author has found sufficient
conditions for univalence, convexity, and stellarity, conditions on the coefficients of
certain classes of univalent meromorphic functions defined on the exterior of the
unit disk, and for various subclasses of analytic functions, with examples provided.

In section 3.1, the properties of functions from the class of injective meromorphic
functions of order γ, O∗

1(γ), and functions from the class of convex meromorphic
functions of order γ, Ok(γ), are studied. Univalence conditions of certain integral
operators formed from functions defined on the exterior unit disk are presented in
sections 3.2, 3.3, and 3.6. The operators mentioned in the previous sections were
formed starting from the operator Fαi,β(z) introduced by N. Seenivasagan and D.
Breaz in the paper [71], and the obtained results were published in journals such
as Afrika Matematika [55], Journal of Advanced Mathematical Studies [57], Studia
Universitatis Babeş-Bolyai Mathematica [58].

In section 3.5, certain values of the coefficients of the integral operator E(z)
were obtained, which represent a particular case of the operator Gαi,β(z), proving
the membership of the operator E(z) in the class of meromorphic star-like functions
of order 0, O∗

1(0). These results were published in the journal General Mathematics
[56].

The thesis concludes with a bibliography containing 77 titles, of which ten works
are authored by the author, four of them being published, and six submitted or
accepted for publication in prestigious journals in the field of Geometric Function
Theory, both in the country and abroad, with results also presented at conferences.
The paper ”Univalence properties of an integral operator” was presented at the
scientific event: ”13th Joint Conference on Mathematics and Informatics, ELTE,
Hungary, 1-3 October, 2020.”

In conclusion, I would like to thank Prof. Univ. Dr. Valer Daniel Breaz for his
guidance, support, and encouragement throughout the development and writing of
this thesis.

I would also like to thank my colleagues with whom I collaborated in the study
and development of the subject discussed.



Chapter 1

Notions and preliminary results

In this chapter, basic notions and results used in the development and proof of
the found results are presented.

1.1 Definitions and notations

Let C be the set of complex numbers. The interior of the unit disk is denoted
by U = z ∈ C : |z| < 1, and the punctured interior of the unit disk is denoted by
U∗ = z ∈ C : 0 < |z| < 1 = U − 0. The punctured disk centered at z0 with radius
R > 0 is denoted by U̇(z0;R) = U(z0, R)− z0.

The set of holomorphic functions in the unit disk U is denoted by H(U), and the
set of univalent (holomorphic and injective) functions in the unit disk U is denoted
by Hu(U).

Definition 1.1.1. [45] Let D ⊂ C be an open set. A complex function f : D → C
is called holomorphic on D if f is differentiable at every point z0 in D.

The set of all holomorphic functions on D is denoted by H(D).

Definition 1.1.2. [45] Let M ⊂ C be any set. A function f : M → C is called
holomorphic on the set M ⊂ C if there exists an open set D that contains M such
that f is holomorphic on D.

A holomorphic function on C is called an entire function.

Definition 1.1.3. [30] Let f be a holomorphic function on the open set G ⊂ C. A
point a ∈ G is called a zero of f if f(a) = 0. If there exists an n ∈ N∗ such that
f(a) = f ′(a) = · · · = f (n−1)(a) = 0 and f (n)(a) ̸= 0, then a is called a zero of order
n of the function f . If n = 1, a is called a simple zero.

Definition 1.1.4. [30] Let f be a holomorphic function on the open set G ⊂ C. A
point z0 ∈ C is called an isolated singular point of the function f if z0 /∈ G, but there
exists a punctured neighborhood of z0 included in G, i.e., there exists an R > 0 such
that U̇(z0;R) ⊂ G.

Definition 1.1.5. [30] An isolated singular point z0 of the function f ∈ H(G) is
called a pole if limz→z0 f(z) = ∞; it is called an essential singular point if f does
not have a limit at z0.

11
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If z0 is a pole of the function, then f can be extended to z0 by defining f(z0) = ∞.
In this way, the function becomes continuous at z0 in the topology of C∞.

Theorem 1.1.1. [30] If z0 is an isolated singular point of the function f ∈ H(G),
then the following statements are equivalent:

a) z0 is a pole.

b) z0 is a regular point and specifically a zero of 1
f
.

c) There exists a unique n ∈ N∗ such that in a punctured disk centered at z0, the
expansion

f(z) =
a−n

(z − z0)n
+ · · ·+ a−1

z − z0
+

∞∑
n=0

an(z − z0)
n, a−n ̸= 0, (1.1)

holds.

d) There exists a unique n ∈ N∗ and a unique function g ∈ H(G ∪ z0) such that
g(z0) ̸= 0 and

f(z) = (z − z0)
−ng(z),∀z ∈ G. (1.2)

Let A be the class of analytic functions defined on the interior of the unit disk,
normalized with the conditions: f(0) = 0 and f ′(0) = 1.

The exterior of the unit disk is denoted by W = z ∈ C∞ : |z| > 1.
Let O be the class of analytic functions g defined on the exterior of the unit disk.
The subclass of O that contains univalent functions in W is denoted by Σ.
Let O1 be the subclass of O containing meromorphic, normalized, and injective

functions with a unique simple pole at z = ∞ in W , which have a Laurent series
expansion of the form

g(z) = z +
∞∑
k=3

bk
zk
, 1 < |z| <∞, (1.3)

with g(∞) = ∞ and g′(∞) = 1.
The subclass of O that contains functions of the form

g(z) = z +
∞∑

k=j+1

bk
zk
, j ∈ N1∗ = N− 0, 1, (1.4)

is denoted by Oj.
Let S be the subclass of class A, which contains univalent functions on the unit

disk satisfying the conditions: f(0) = 0 and f ′(0) = 1.
We will denote by S = f ∈ A : f is univalent in U .

Property 1.1.1. [45] Every function f ∈ A admits a power series expansion of the
form

f(z) = z +
∞∑
k=2

akz
k, z ∈ U. (1.5)
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Definition 1.1.6. [45] A holomorphic and injective function on a domain D in C
is called a univalent function on D.

The set of univalent functions on D is denoted by Hu(D).

Definition 1.1.7. [45] Let f : D → C, z0 ∈ D. We say that the function f is
analytic at the point z0 or can be expanded in a Taylor series at z0 if there exists a
disk,

U(z0, r) = {z ∈ C : |z − z0| < r} ⊂ D such that f is the sum of a Taylor series,
i.e.:

f(z) =
∞∑
n=0

an(z − z0)
n, z ∈ U(z0, r).

We say that f is analytic on the domain D if it is analytic at every point in D.

Theorem 1.1.2. [45] (Theorem of the analyticity of holomorphic functions) A func-
tion f : D → C is holomorphic on D if and only if f is analytic on D.

Theorem 1.1.3. [45] If f ∈ Hu(D), then f ′(z) ̸= 0,∀z ∈ D.

The converse of this theorem is not generally valid, as can be seen from the
example of the function z 7→ ez, which is not univalent on C although its derivative
does not vanish at any point in C.

Note that for real differentiable functions, the non-vanishing of the derivative on
an interval is a sufficient but not necessary condition for injectivity, as shown by the
example x 7→ x3(x ∈ R).

This essential difference between the complex case and the real case is explained
by the fact that for complex functions, the mean value theorem of Lagrange does
not hold.

Theorem 1.1.4. [45] If the function f is holomorphic in U and |f(z)| < 1 in U ,
then for any ξ ∈ U and z ∈ U the following inequalities hold:∣∣∣∣∣ f(ξ)− f(z)

1− f(z)f(ξ)

∣∣∣∣∣ ≤
∣∣∣∣ ξ − z

1− zξ

∣∣∣∣ , (1.6)

and:

|f ′(z)| ≤ 1− |f(z)|2

1− |z|2
. (1.7)

Equality holds in the case where the function is:

f(z) =
ε(z + t)

1 + tz
,

where |ε| = 1 and |t| < 1.

Observation 1.1.1. [45] For z = 0, the inequalities from Theorem 1.1.4 become:∣∣∣∣∣ f(ξ)− f(0)

1− f(0)f(ξ)

∣∣∣∣∣ ≤ |ξ|, (1.8)
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and:

|f(ξ)| ≤ |ξ|+ |f(0)|
1 + |f(0)| · |ξ|

. (1.9)

Considering f(0) = a and ξ = z, we get:

|f(z)| ≤ |z|+ |a|
1 + |a| · |z|

,∀z ∈ U. (1.10)

An essential result from the theory of univalent functions is the Area Theorem,
obtained by L. Bieberbach [9], [8], and later by T. Gronwall [27].

Theorem 1.1.5. [45] (Area Theorem) If g(z) = z+
∑∞

k=0
bk
zk

is a function from the
class O1, then the area is:

E(g) = π

(
1−

∞∑
k=1

k|bk|2
)

≥ 0, (1.11)

where U− = {z ∈ C∞ : |z| > 1} and E(g) = C− g(U−).
Therefore,

∑∞
k=1

k|bk|2 ≤ 1, and the area is understood in the sense of the two-
dimensional Lebesgue measure.

Using the area theorem, the following bound on the coefficients of functions from
the class Σ is deduced.

Corollary 1.1.1. [45] (Theorem of the coefficient bounds for functions in Σ) If
g(z) = z + b0 +

b1
z
+ · · · ∈ Σ, then |b1| ≤ 1, and equality |b1| = 1 holds if and only if

g(z) = z + b0 +
eiτ

z
, for z ∈ U−, τ ∈ R.

Theorem 1.1.6. [45] (Bieberbach’s Theorem on the coefficient a2) If f ∈ S, f(z) =
z + a2z

2 + . . . , then |a2| ≤ 2.
Equality |a2| = 2 holds if and only if f is of the form

Kτ (z) =
z

(1 + eiτz)2
, (1.12)

where Kτ is the Koebe function.

Lemma 1.1.1. [45] ([49]) (General Schwarz Lemma) Let f be a holomorphic func-
tion in the disk:

UR = {z ∈ C : |z| < R},
with the property that:

|f(z)| < M, for fixed M. (1.13)

If f has a zero of multiplicity greater than m at z = 0, then:

|f(z)| ≤ M

Rm
|z|m, z ∈ UR. (1.14)

Equality in relation 1.14 holds for z ̸= 0 if and only if:

f(z) = eiτ
M

Rm
zm, z ∈ UR, (1.15)

where τ is a constant.
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Lemma 1.1.2. (Schwarz’s Lemma) ([48], [49], [13]) If f is a holomorphic function
on the unit disk U = U(0, 1) that satisfies the conditions f(0) = 0 and |f(z)| < 1
for all z ∈ U , then:

|f(z)| ≤ |z|, ∀z ∈ U,

and:
|f ′(0)| ≤ 1.

If |f(z0)| = |z0|, for z0 ∈ U , or if |f ′(0)| = 1, then there exists c ∈ C with |c| = 1
such that f(z) = cz for all z ∈ U .

It is known that there are the following relations between the class S and the
class Σ:

Proposition 1.1.1. [33]

i) Let f ∈ S and g(ζ) = 1

f( 1
ζ )
, then g ∈ Σ and g(ζ) ̸= 0, for ζ ∈ W .

ii) If g ∈ Σ and g(ζ) ̸= 0, for ζ ∈ W , then f ∈ S, with f(z) = 1

g( 1
z )
, for z ∈ U .

1.2 Method of differential subordination

The method of differential subordination represents a synthesis between func-
tional analysis and complex geometry, serving as a powerful tool for investigating
analytic functions. This method has significant applications in the study of univalent
functions, conformal mappings, and the geometric theory of functions, allowing for
the characterization and constraint of analytic functions through differential rela-
tions and the concept of subordination, which emerged initially in the 20th century.

In 1923, K. Loewner introduced a differential equation, the Loewner equation,
to study univalent functions. This opened the path for the application of differential
methods in the analysis of subordinations.

Loewner demonstrated that univalent functions can be characterized as solutions
to a differential equation depending on a real parameter.

In the second half of the 20th century, the method was extended and formalized
by mathematicians such as J. D. Miller, W. T. Scott, and B. Pommerenke. They
combined the concept of subordination with differential equations to characterize
large classes of analytic and univalent functions.

The method has become an essential tool in the study of classes of analytic func-
tions, such as star-like and convex-univalent functions and other associated classes.

In modern theory, the method is used in complex geometry, holomorphic dynam-
ics, and the analysis of flow models. Its historical development from the concepts
of subordination and Loewner’s equations to modern applications has demonstrated
the versatility of this method in understanding and classifying complex functions.

Definition 1.2.1. [45] Let f, g ∈ H(U). We say that function f is subordinated to
function g (or g is superordinated to function f) and we denote:

f ≺ g or f(z) ≺ g(z),
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if there exists a function w ∈ H(U), with w(0) = 0 and |w(z)| < 1, z ∈ U, such that:

f(z) = g[w(z)], z ∈ U.

Proposition 1.2.1. [45]
1) If f ≺ g, then f(0) = g(0) and f(U) ⊆ g(U).

2) If f ≺ g, then f(Ur) ⊆ g(Ur), r < 1, equality holds if and only if f(z) =
g(λz), |λ| = 1.

3) If f ≺ g, then max{|f(z)| : |z| ≤ r} ≤ max{|g(z)| : |z| ≤ r}, r < 1, equality
holds if and only if f(z) = g(λz), |λ| = 1.

4) If f ≺ g, then |f ′(0)| ≤ |g′(0)|, equality holds if and only if f(z) = g(λz), |λ| =
1.

If the function g is univalent, we have the following theorem that characterizes
the subordination relation.

Theorem 1.2.1. [45] [66] Let f, g ∈ H(U) and assume that g is univalent in U .
Then f ≺ g if and only if f(0) = g(0) and f(U) ⊆ g(U).

Corollary 1.2.1. [35] [66] (Lindelöf ’s Subordination Principle)
Let the functions f, g ∈ H(U) be such that g is univalent in U and f(0) = g(0).

1) If f(U) ⊆ g(U), then f(Ur) ⊆ g(Ur), 0 < r < 1.

2) The equality f(Ur) = g(Ur) for some r < 1 holds if and only if f(U) = g(U),
or f(z) = g(λz), |λ| = 1.

This corollary is a consequence of the previous theorem and the properties above,
and represents a generalization of Schwarz’s Lemma, with multiple applications in
the geometric theory of analytic functions.

Proposition 1.2.2. [45]
Let f, g ∈ Hu(U). If f ≺ g, we have:

1) |g−1(w)| ≤ |f−1(w)|, for any w ∈ f(U).

Equality holds if and only if f(z) = g(λz), |λ| = 1.

2) If in addition, there exists a z0 ∈ U with |z0| = r such that f(z0) ∈ ∂g(Ur),
then f(U) = g(U), or f(z) = g(λz), |λ| = 1.

In the works [43], [42], S.S. Miller and P.T. Mocanu inaugurated the theory of
differential subordination, which was later developed in many other works.

The method of differential subordinations (or themethod of admissible functions)
is one of the newest methods used in the geometric theory of analytic functions,
having a significant merit both in simplifying the demonstration of already known
results and in obtaining many new results. This method is a technique used in
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complex analysis and the theory of analytic functions to approximate solutions to
various problems, based on the selection of a class of analytic functions that satisfy
certain conditions imposed by the problem, and using these functions to construct
approximate solutions.

The method of admissible functions has three stages:
- Defining a class of functions – a set of analytic functions is chosen that are

compatible with the restrictions imposed by the problem (e.g., boundary conditions,
regularity restrictions).

- Constraints – the functions must satisfy certain conditions, such as being ana-
lytic in a given domain and meeting the specific requirements of the problem.

- Optimization – a function from this class is sought that minimizes or maximizes
a certain functional associated with the problem.

The method of differential subordinations is presented in general form below.
Let Ω,∆ ⊂ C, p ∈ H(U) with p(0) = a, a ∈ C, and ψ : C3 × U → C. The

problem is to study implications of the form:

{ψ(p(z), zp′(z), z2p′′(z); z) : z ∈ U} ⊂ Ω ⇒ p(U) ⊂ ∆. (1.16)

We note that the function ψ can also be considered with values in C∞, i.e.,
ψ : C3 × U → C∞, and the theory presented here remains valid for such a function
ψ.

In relation to the implication (1.16), three types of problems can be formulated:
Problem 1) Given the sets Ω and ∆, find conditions on the function ψ such

that the implication (1.16) holds. Such a function ψ is called an admissible function.

Problem 2) Given the function ψ and the set Ω, find the set ∆ such that the
implication (1.16) holds. Additionally, find the ”smallest” set ∆ with this property.

Problem 3) Given the function ψ and the set ∆, find the set Ω such that the
relation (1.16) holds. Additionally, find the ”largest” set Ω with this property.

If Ω and ∆ are simply connected domains in C, different from C, the implication
(1.16) can be rewritten in terms of subordination.

It is known that if Ω and ∆ are simply connected domains in C, different from
C, and a ∈ ∆, then there exist conformal transformations:

q : U → ∆, q(U) = ∆, q(0) = a,

and
h : U → Ω, h(U) = Ω, h(0) = ψ(a, 0, 0; 0).

If, additionally, ψ is holomorphic in U , then (1.16) becomes:

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z) ⇒ p(z) ≺ q(z). (1.17)
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Definition 1.2.2. [45]

1) Let ψ : C3 × U → C, and the function h be univalent in U . If the function
p ∈ H[a, n] satisfies the differential subordination:

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z), z ∈ U, (1.18)

then the function p is called an (a, n) solution of the differential subordination
(1.18), or simply a solution of the differential subordination (1.18).

2) The subordination (1.18) is called a second-order differential subordination,
and the univalent function q in U is called the (a, n) dominant of the solutions
of the differential subordination (1.18), or more simply, the dominant of the
differential subordination (1.18), if p(z) ≺ q(z) for any function p satisfying
the relation (1.18).

3) A dominant q̃ such that q̃(z) ≺ q(z) for any dominant q of (1.18) is called the
best (a, n) dominant, or simply the best dominant of the differential subordi-
nation (1.18).

Remark 1.2.1. [45]

1) The best dominant is unique, abstracting from a rotation in U , since if q1 ≺ q2
and q2 ≺ q1, then q1(z) = q2(e

iθz), θ ∈ R.

2) Let Ω be a set in C, and assume that (1.18) is replaced with the relation:

ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω, z ∈ U.

Although this is a ”differential inclusion” and ψ(p(z), zp′(z), z2p′′(z); z) may
not be analytic in U , it is still called a second-order differential subordination.

If Ω and ∆ in the relation (1.16) are simply connected domains different from
C, Problems 1), 2), 3) can be reformulated as follows:

Problem 1’) Given the univalent functions h and q, determine a class of admis-
sible functions Ψ[h, q] such that (1.17) holds.

Problem 2’) Given the differential subordination (1.18), find a dominant q of
it. Additionally, find the best dominant of it.

Problem 3’) Given ψ and a dominant q, determine the largest class of univalent
functions h such that (1.17) holds.

In 1962, K. Sakaguchi proved in the work [68] that if the function p ∈ H(U),
ℜ(p(0)) > 0 and α ∈ R, then:

ℜ
(
p(z) + α

zp′(z)

p(z)

)
> 0, z ∈ U ⇒ ℜ(p(z)) > 0, z ∈ U.

Next, we present an example mentioned in the work [45], where the choice of the
function ψ with values in C∞ is justified.
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Example 1.2.1. Let Ω = ∆ = {w ∈ C : ℜ(w) > 0} and consider ψ(r, s, t; z) =
r + α s

r
, then the implication becomes:{

p(z) + α
zp′(z)

p(z)
: z ∈ U

}
⊂ Ω ⇒ p(U) ⊂ ∆,

and this implication is of the form (1.16).
Thus, we observe that ψ : C3 × U → C∞.

1.3 Fundamental theorems of certain classes of

admissible functions

The fundamental theorems associated with the class of admissible functions rep-
resent a cornerstone of complex analysis. They allow for the precise characterization
of analytic functions and provide powerful tools for understanding their geometric
and analytic properties.

Their importance extends from fundamental theoretical problems to practical
applications, such as conformal mapping and optimization of complex functions.

Definition 1.3.1. [45] We denote by Q the set of functions q that are holomorphic
and injective on U \ E(q), where:

E(q) =

{
ζ ∈ ∂U : lim

z→ζ
q(z) = ∞

}
, q′(ζ) ̸= 0, ζ ∈ ∂U \ E(q). (1.19)

The set E(q) is called the exceptional set.

Remark 1.3.1. [45] If q ∈ Q, then the domain ∆ = q(U) is simply connected, and
its boundary consists either of a single closed analytic curve or a union, possibly
infinite, of disjoint simple analytic curves tending to infinity in both directions.

Definition 1.3.2. [42], [41], [45] Let Ω ⊂ C, and let the function q ∈ Q, n ∈ N, n ≥
1. We say that Ψn[Ω, q] is the class of functions ψ : C3 × U → C that satisfy the
condition:

ψ(r, s, t; z) ̸∈ Ω, (1.20)

when:

r = q(ζ), s = mζq′(ζ),ℜ
[
t

s
+ 1

]
≥ mℜ

[
ζq′′(ζ)

q′(ζ)
+ 1

]
, (1.21)

where z ∈ U , ζ ∈ ∂U \ E(q),m ≥ n.

The set Ψn[Ω, q] is called the class of admissible functions, and the condition in
equation (1.20) is called the admissibility condition.

Remark 1.3.2. [45] Let ψ : C3 × U → C∞

1) If Ω ⊂ Ω̃, then Ψn[Ω̃, q] ⊂ Ψn[Ω, q].
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2) Ψn[Ω, q] ⊂ Ψn+1[Ω, q].

3) In the particular case Ψ : C2 × U → C, the admissibility condition becomes:

(A′) ψ(r, s; z) ̸∈ Ω,

when:
r = q(ζ), s = mζq′(ζ),

where z ∈ U, ζ ∈ ∂U \ E(q), m ≥ n.

4) In the particular case ψ : C× U → C, the admissibility condition becomes:

(A′′) ψ(r; z) ̸∈ Ω,

when:
r = q(ζ),

where z ∈ U, ζ ∈ ∂U \ E(q).

5) We denote Ψ1[Ω, q] by Ψ[Ω, q].

Theorem 1.3.1. [44], [45] Let ψ ∈ Ψn[Ω, q] where q(0) = a. If the function p ∈
H[a, n] satisfies the condition:

ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω, z ∈ U,

then p(z) ≺ q(z).

In the special case when Ω ⊂ C,Ω ̸= C is a simply connected domain, and
h ∈ Hu(U), h(U) = Ω, denoting Ψn[h(U), q] by Ψn[h, q] we obtain:

Theorem 1.3.2. [44], [45] Let h ∈ Hu(U), ψ ∈ Ψn[h, q] where q(0) = a. If the
function p ∈ H[a, n] and the function ψ(p(z), zp′(z), z2p′′(z); z) ∈ H(U), then

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z) ⇒ p(z) ≺ q(z).

Theorem 1.3.1 is used to show that the solutions of certain second-order differ-
ential equations take values in a specific domain, as we can observe in the following
corollary:

Corollary 1.3.1. [45] Let the function ψ ∈ Ψn[Ω, q] with q(0) = a. If the function
f ∈ H(U) satisfies f(U) ⊂ Ω and if the differential equation

ψ(p(z), zp′(z), z2p′′(z); z) = f(z),

has a solution p ∈ H[a, n], then p(z) ≺ q(z).

From Theorem 1.3.1 we obtain the following result:

Theorem 1.3.3. [45] Let the function p ∈ H[a, n],ℜ(a) > 0.
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(i) If ψ ∈ Ψn{Ω, a}, then:
ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω, z ∈ U ⇒ ℜ(p(z)) > 0, z ∈ U.

(ii) If ψ ∈ Ψn{a}, then:
ℜ(ψ(p(z), zp′(z), z2p′′(z); z)) > 0, z ∈ U ⇒ ℜ(p(z)) > 0, z ∈ U.

Next, we consider a particular case of Theorem 1.3.3.
Suppose that the function ψ is defined as ψ : C2 × U → C∞. From Observation
1.3.2 we have the admissibility condition (A′) and, furthermore, assuming that ψ ∈
Ψn{Ω, 1}, we obtain from (A′′

0) the following admissibility condition:

(A′′′
0 ) ψ(ρi, σ; z) ̸∈ Ω,

when
ρ, σ ∈ R, σ ≤ −n

2
(1 + ρ2), z ∈ U, n ≥ 1.

From Theorem 1.3.3 (point (i)) we obtain the following result:

Theorem 1.3.4. [45] Let n ∈ N∗, Ω ⊂ C, p ∈ H[1, n] and ψ : C2×U → C∞. If the
admissibility condition (A′′′

0 ) is satisfied, then:

ψ(p(z), zp′(z); z) ∈ Ω, z ∈ U ⇒ ℜ(p(z)) > 0, z ∈ U.

Next, we will present some immediate applications of the admissible function
method.

Theorem 1.3.5. [45] Let p ∈ H[a, n] with ℜ(a) > 0 and let P : U → C be a function
with ℜ(P (z)) > 0, z ∈ U . If:

ℜ[p(z) + P (z)zp′(z)] > 0, z ∈ U,

then ℜ(p(z)) > 0, z ∈ U .

The next theorem is a generalization of the previous result.

Theorem 1.3.6. [45] Let h be a convex function in U and let the function P : U →
C with ℜ(P (z)) > 0, z ∈ U. If p ∈ H[h(0), 1], then:

p(z) + P (z)zp′(z) ≺ h(z) ⇒ p(z) ≺ h(z).

Lemma 1.3.1. [45] Let p ∈ H[a, n] with ℜ(a) > 0 and let α : U → R. If:

ℜ
[
p(z) + α(z)

zp′(z)

p(z)

]
> 0, z ∈ U,

then ℜ(p(z)) > 0, z ∈ U .

Lemma 1.3.2. [42] Suppose the function Ψ : C2 −→ C satisfies the condition:

ℜ{Ψ(is, t)} ≤ 0, s, t ∈ R; t ≤ 1 + s2

2
.

If the function p(z) = p(1) + p1
z
+ ... is analytic in W and

ℜ{Ψ(z2p(z) + 2, z2 (zp′(z) + 1))} > 0, z ∈ W

then,
ℜ(p(z)) > 0, z ∈ W.
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1.4 Classes of functions

Let T denote the subclass of univalent functions that satisfy the condition:∣∣∣∣z2f ′(z)

(f(z))2
− 1

∣∣∣∣ < 1, z ∈ U ;

T2 is the subclass of univalent functions from the class T for which f ′′(0) = 0.
Let T2,µ be the subclass of univalent functions in the class T2 that satisfy the

condition: ∣∣∣∣z2f ′(z)

(f(z))2
− 1

∣∣∣∣ ≤ µ, z ∈ U,

for 0 < µ ≤ 1, and we have that T2,1 ≡ T2;
For a real number p with 0 < p ≤ 2, the subclass S(p) of class A is defined,

containing all functions that satisfy the condition:∣∣∣∣( z

f(z)

)′′∣∣∣∣ ≤ p, z ∈ U.

In the work [73], S. Singh proved that if f(z) ∈ S(p), then f(z) satisfies the
condition: ∣∣∣∣∣

(
z

f(z)

)′′∣∣∣∣∣ ≤ p, z ∈ U. (1.22)

Let V denote the subclass of univalent functions of O for which∣∣∣∣g′(z)z2
+ 1

∣∣∣∣ > 1, z ∈ W, g(z) ∈ V.

Vj is the subclass of V for which g(k)(∞) = 0, k = 2, 3, . . . , j;
Vj,µ is the subclass of Vj containing functions of the form (1.3) that satisfy the

relation: ∣∣∣∣g′(z)z2
+ 1

∣∣∣∣ > µ, z ∈ W,µ > 1. (1.23)

We denote Vj,1 ≡ Vj.
Let p ∈ R with 1 < p ≤ 2, and

∑
j(p) be the subclass of O containing all

functions g ∈ Oj for which ∣∣∣∣(g(z)z
)′′∣∣∣∣ > p, z ∈ W, (1.24)

∣∣∣∣g′(z)z2
+ 1

∣∣∣∣ ≥ p

|z|j
, j ∈ N∗

1. (1.25)

We denote
∑

2(p) ≡
∑

(p).
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1.4.1 The class of star-like functions

The class of stellar functions is one of the most studied subclasses of univalent
functions. They represent a starting point for exploring other classes of analytic
functions and provide a solid foundation for the development of the theory of extreme
coefficients, used in Bieberbach theory. This class was first studied by Alexander in
the work [4].

At the beginning of the 20th century, through the works of L. Bieberbach and
P. Koebe, stellar functions were identified as an important subclass of univalent
functions. Bieberbach demonstrated significant connections between the properties
of stellar functions and their coefficients, laying the groundwork for the Bieberbach
conjecture, one of the most important conjectures in complex analysis.

In the second half of the 20th century, mathematicians like B. Pommerenke ex-
panded the theory of stellar functions, exploring the connections with other classes
of analytic functions, such as convex-univalent and spiral-like functions. Their re-
search solidified the position of stellar functions in modern complex analysis, with
applications in complex geometry and functional analysis.

Let f be a holomorphic function in U , satisfying the conditions f(0) = 0 and
f(z) ̸= 0, for z ̸= 0. We denote by Cr the image of the circle {z ∈ C : |z| = r, 0 <
r < 1} under the function f .

Definition 1.4.1. [45] We say that Cr is a stellar curve with respect to the origin,
or simply stellar, if the angle φ = φ(r, τ) = arg f(reiτ ), which the radius vector of
the point f(z), z = reiτ , makes with the positive real axis, is an increasing function
of τ , as τ increases from 0 to 2π, i.e.:

∂φ

∂τ
=

∂

∂τ
arg f(z) > 0, z = reiτ , τ ∈ (0, 2π). (1.26)

We will say that f is stellar on the circle {z ∈ C : |z| = r} if Cr is a stellar curve.

Since f(z) ̸= 0, for z ̸= 0, we can write:

Logf(z) = log |f(z)|+ i arg f(z), z = reiτ .

Differentiating with respect to τ , and noting that:

∂z

∂τ
=
∂reiτ

∂τ
= rieiτ = iz,

we obtain:
izf ′(z)

f(z)
=

∂

∂τ
log |f(z)|+ i

∂

∂τ
arg f(z).

From this equality, we deduce that:

∂

∂τ
arg f(z) = Re

(
zf ′(z)

f(z)
, z = reiτ

)
. (1.27)
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Thus, condition (1.26) can be rewritten as:

Re

(
zf ′(z)

f(z)

)
> 0, |z| = r, (1.28)

which expresses the necessary and sufficient condition for f to be stellar on the circle
{z ∈ C : |z| = r}.

Since the function zf ′(z)
f(z)

is harmonic, it follows that if this inequality holds for

|z| = r, it will also hold for |z| ≤ r. From this, we deduce that if f is stellar on the
circle {z ∈ C : |z| = r}, it will also be stellar on any circle {z ∈ C : |z| = r′}, where
0 < r′ < r.

Definition 1.4.2. [45] The radius of stellarity of the function f is the number r∗(f)
defined by:

r∗(f) = sup

{
r; Re

(
zf ′(z)

f(z)

)
> 0, |z| ≤ r

}
. (1.29)

If r∗(f) ≥ 1, we say that the function f is stellar in the unit disk U , or simply
stellar.

Observation 1.4.1. [45]

1) The equality Re
(

zf ′(z)
f(z)

)
= 0 for a point z ∈ U cannot hold, because in this

case, the function f would reduce to a constant, which would contradict the
conditions imposed on the function f .

2) If f satisfies Re
(

zf ′(z)
f(z)

)
> 0, |z| < 1, then necessarily f(z) ̸= 0 for 0 < |z| < 1.

3) From the definition, it follows that f is stellar in U if and only if it is stellar
on every circle {z ∈ C : |z| = r, 0 < r < 1}.

4) The condition of stellarity Re
(

zf ′(z)
f(z)

)
> 0, z ∈ U , does not ensure the univa-

lence of the function f in the unit disk, so the problem arises of finding an
additional condition that will guarantee the univalence of the function.

If we additionally assume the condition f ′(0) ̸= 0, then the condition Re
(

zf ′(z)
f(z)

)
>

0 implies the univalence of the function f , as well as the fact that f(U) is a
domain stellar with respect to the origin, i.e., the segment joining any point
in f(U) with the origin is contained in f(U).

Theorem 1.4.1. [45] Let f be a holomorphic function in U with f(0) = 0. Then
f is univalent and f(U) is a domain stellar with respect to the origin if and only if
f ′(0) ̸= 0 and

ℜ
(
zf ′(z)

f(z)

)
> 0, ∀z ∈ U. (1.30)

We denote by S∗ the class of holomorphic functions in U with f(0) = 0, f ′(0) = 1
and which are stellar with respect to the origin in U .

Thus, S∗ =
{
f ∈ A, Re

(
zf ′(z)
f(z)

)
> 0, z ∈ U

}
.
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Observation 1.4.2. [45] Using the definition of subordination, the class S∗ can be
defined as follows:
If

f(z) = z + a2z
2 + . . . , z ∈ U, (1.31)

then f ∈ S∗ if and only if

zf ′(z)

f(z)
≺ 1 + z

1− z
, z ∈ U. (1.32)

The name of deformation theorems relative to univalent functions comes from
the fact that a conformal transformation can be viewed as a ”deformation” of one
domain into another.

Since the Koebe function Kτ (z) =
z

(1+eiτ z)2
, τ ∈ R for a suitable choice of τ , is

stellar, it follows that the deformation theorem for the class S also holds for the
class S∗.

Theorem 1.4.2. [45] (Deformation Theorem) If f ∈ S∗, then the following exact
bounds hold:

r

(1 + r)2
≤ |f(z)| ≤ r

(1− r)2
, (1.33)

1− r

(1 + r)3
≤ |f ′(z)| ≤ 1 + r

(1− r)3
, (1.34)

1− r

1 + r
≤
∣∣∣∣zf ′(z)

f(z)

∣∣∣∣ ≤ 1 + r

1− r
, (1.35)

where z ∈ U, |z| = r, and the extremal function is the function of Köebe f = Kτ ,
for a convenient choice of τ .

Note:

M [a, b] =

µ : [a, b] → R+, µ increasing on [a, b],

b∫
a

dµ(t) = µ(b)− µ(a) = 1

 .

(1.36)

Theorem 1.4.3. [45] The function f(z) = z+ a2z
2+ ..., z ∈ U belongs to the class

S∗ if and only if there exists a function µ ∈M [0, 2π] such that:

f(z) = z exp

−2

2π∫
0

log(1− ze−it)dµ(t)

 , z ∈ U. (1.37)

1.4.2 The class of convex functions

Convex functions were first studied by E. Study in the paper [75], followed by
significant results in the Geometric Theory of Functions obtained by K. Löwner [36],
T. H. Gronwall [27], and J. W. Alexander [4] in 1915.



Integral transformations for certain classes of univalent functions 26

Definition 1.4.3. [45] The curve Cr is called convex if the angle

ψ(r, τ) =
π

2
+ arg zf ′(z), z = reiτ ,

formed by the tangent to the curve Cr at the point f(z) with the positive real axis is
an increasing function of τ on [0, 2π].

Definition 1.4.4. [45] The function f is said to be convex on the circle {z ∈ C :
|z| = r} if Cr is a convex curve.

It is shown that f is convex on the circle {z ∈ C : |z| = r} if and only if:

ℜ
(
1 +

zf ′′(z )

f ′(z )

)
> 0, |z | = r . (1.38)

From this definition, we deduce that if f is convex on the circle {z ∈ C : |z| = r},
then it will be convex on any circle {z ∈ C : |z| = r′}, where 0 < r′ < r.

Definition 1.4.5. [45] The radius of convexity of the function f is defined as the
number:

rc(f) = sup

{
r;ℜ

(
zf ′′(z )

f ′(z )
+ 1

)
> 0, |z | ≤ r

}
. (1.39)

Observation 1.4.3. [45] If rc(f) ≥ 1, we will say that the function f is convex in
the unit disk U or, more simply, convex.

This means that f satisfies the condition:

ℜ
(
1 +

zf ′′(z )

f ′(z )

)
> 0, |z | < 1. (1.40)

Observation 1.4.4. [45] The relation (1.40) implies that f ′(z) ̸= 0, for any 0 <
|z| < 1.

Observation 1.4.5. [45] The condition:

ℜ
(
1 +

zf ′′(z )

f ′(z )

)
> 0, z ∈ U ,

does not ensure the univalence of the function f in the unit disk as shown by the
example:

f(z) = z2.

Next, we will present a sufficient condition for univalence:

Theorem 1.4.4. [45] A function f holomorphic in U is univalent and f(U) is a
convex domain if and only if f ′(0) ̸= 0 and

ℜ
(
1 +

zf ′′(z )

f ′(z )

)
> 0, z ∈ U . (1.41)
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Definition 1.4.6. [45] We say that Sc is the class of holomorphic functions f in
U , with the property that f(0) = 0, f ′(0) = 1 and are convex in U .

We will denote

Sc =

{
f ∈ A,ℜ

(
1 +

zf ′′(z )

f ′(z )

)
> 0, z ∈ U

}
and Sc ⊂ S.

The relationship between the classes S∗ and Sc is given by the following theorem.

Theorem 1.4.5. [45] (Alexander’s Duality Theorem)

Let f ∈ A and g(z) = zf ′(z). Then f ∈ Sc if and only if g ∈ S∗.

The integral operator IA : A→ A, f = IA(g), g ∈ A, where:

f(z) =

z∫
0

g(t)

t
dt, z ∈ U,

is called the Alexander operator.
Using this operator, we can reformulate Theorem 3.7.3 as Sc = IA(S

∗), and IA
establishes a bijection between S∗ and Sc.

Other relationships between the classes S∗ and Sc can also be established, such
as the one in the following theorem.

Theorem 1.4.6. [38], [45], [74] (Theorem of A. Marx and E. Strohhäcker)
If f ∈ A, then the following implications hold:

ℜ
(
zf

′′
(z)

f ′(z)
+ 1

)
> 0, z ∈ U ⇒ ℜ

(
zf ′(z)

f(z)

)
>

1

2
, z ∈ U ⇒ ℜ

(
f(z)

z

)
>

1

2
, z ∈ U,

ℜ
(
zf ′′(z)

f ′(z)
+ 1

)
> 0, z ∈ U ⇒ ℜ

(√
f ′(z)

)
>

1

2
, z ∈ U ⇒ ℜ

(
f(z)

z

)
>

1

2
, z ∈ U.

Observation 1.4.6. [45] The function f(z) = z
1−z

shows that all these implications
are exact.

Therefore, we have Sc ⊂ S∗(1/2).
Regarding the coefficients of functions in the class Sc, the following theorem

holds.

Theorem 1.4.7. [45] If f(z) = z + a2z
2 + a3z

3 + ... belongs to the class Sc, then
|an| ≤ n, for any n ≥ 2. Equality holds if and only if the function f has the form:

f(z) =
z

1 + eiτz
, τ ∈ R, z ∈ U.

The following deformation theorem holds.
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Theorem 1.4.8. [45] If f ∈ Sc, then the following exact bounds hold:

r

1 + r
≤ |f(z)| ≤ r

1− r
, (1.42)

1

(1 + r)2
≤ |f ′(z)| ≤ 1

(1− r)2
, z ∈ U, |z| = r < 1. (1.43)

Equality holds for the function f(z) = z
1+eiτ z

, τ ∈ R, z ∈ U , for a convenient choice
of τ .

From relation (1.42) it follows that Sc is compact.

Observation 1.4.7. [45] Applying r → 1 in (1.42), we deduce the constant of Köebe
for the class Sc, which is 1/2.

1.4.3 The class of star-like functions and the class of convex
functions of a certain order

Among the subfamilies of the class S∗, we mention the class of star-shaped functions
of order α, 0 ≤ α < 1, denoted by S∗(α), and the class of strongly star-shaped
functions of order α, 0 < α ≤ 1, denoted by S∗(α).

Definition 1.4.7. [45] A function f ∈ A is called star-shaped of order α, 0 ≤ α < 1,
if it satisfies the inequality:

ℜ
(
zf ′(z)

f(z)

)
> α, z ∈ U . (1.44)

We denote by S∗(α) the class of these functions.

Definition 1.4.8. [45] A function f ∈ A is called strongly star-shaped of order
α, 0 < α ≤ 1, if it satisfies the inequality:∣∣∣∣arg zf ′(z)

f(z)

∣∣∣∣ < α
π

2
, z ∈ U. (1.45)

It is observed that S∗(0) = S∗ and S∗(1) = S∗.

Definition 1.4.9. [45] A function f ∈ A is convex of order α, 0 ≤ α < 1, if it
satisfies the inequality:

ℜ
(
1 +

zf ′′(z)

f ′(z)

)
> α, z ∈ U. (1.46)

We denote by Sc(α) the class of convex functions of order α, 0 ≤ α < 1, where

Sc(α) =

{
f ∈ A : ℜ

(
1 +

zf ′′(z)

f ′(z)

)
> α, z ∈ U

}
. (1.47)

It is observed that for α = 0, we have Sc(0) = Sc.
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Theorem 1.4.9. [45] (Duality Theorem Between the Classes S∗(α) and S∗)
Let α be a real number with 0 ≤ α < 1.
1) We have the inclusions S∗(α) ⊂ S∗, Sc(α) ⊂ Sc.
2) A function f ∈ S∗(α) if and only if the function g ∈ S∗, where

g(z) = z

[
f(z)

z

] 1
1−α

,

where by
[
f(z)
z

] 1
1−α

we understand the holomorphic branch for which
[
f(z)
z

] 1
1−α

∣∣∣∣∣
z=0

=

1.

Observation 1.4.8. [45] For 0 ≤ α < 1, it is easily verified that a function f ∈
Sc(α) if and only if the function g(z) = zf ′(z) ∈ S∗(α), and applying the above
theorem, we deduce the following duality result between the classes Sc(α) and S∗.

Corollary 1.4.1. [45] If 0 ≤ α < 1, then a function f ∈ Sc(α) if and only if the
function g ∈ S∗, where

g(z) = z [f ′(z)]
1

1−α , z ∈ U.

Theorem 1.4.10. [45] (Deformation theorem for the class Sc(α))
If the function f ∈ Sc(α), 0 ≤ α < 1, and |z| = r < 1, then the following exact

bounds hold:
1

(1 + r)2(1−α)
≤ |f ′(z)| ≤ 1

(1− r)2(1−α)
,

α ̸= 1
2
, (1+r)2α−1−1

2α−1

α = 1
2
, log(1 + r)

 ≤ |f(z)| ≤


1−(1−r)2α−1

2α−1
, α ̸= 1

2

− log(1− r), α = 1
2
.

The extremal function is:

fα(z) =

{
1−(1−z)2α−1

2α−1
, α ̸= 1

2

− log(1− z), α = 1
2
.

Theorem 1.4.11. [45] (Deformation theorem for the class S∗(α)) If the function
f ∈ S∗(α), 0 ≤ α < 1 and |z| = r < 1, then the following exact bounds hold:

r

(1 + r)2(1−α)
≤ |f(z)| ≤ r

(1− r)2(1−α)
.

The extremal function is fα(z) =
z

(1−z)2(1−α) .
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1.4.4 Star-like and convexity conditions for several classes
of meromorphic functions

This paragraph includes concepts from the specialized literature that I used to
obtain new foundational results related to meromorphic functions.

In various complex analysis problems, it is necessary to extend the set C of
complex numbers by adding an improper number denoted by∞, where by definition,
C∞ = C ∪ {∞},∞ /∈ C.

The relationship between the numbers in C and the element ∞ is established by
extending the operations with complex numbers to this element, such that a+∞ =
∞+ a = ∞ and a · ∞ = ∞ · a = ∞ for a ∈ C∞ \ {0}.

By special convention regarding division, we write a/0 = ∞ for a ∈ C∞ \ {0}
and a/∞ = 0 for a ∈ C.

The operations ∞−∞, 0 · ∞, 0/0,∞/∞ are not defined.
Thus, regarding the algebraic structure of C∞, the algebraic operations from C

can be extended without being defined everywhere.
By convention, |∞| = +∞ extends the modulus from C to C∞.
To study a function f in a neighborhood of the point ∞, we will consider the

function g = f ◦ k, where k(z) = 1
z
. Since k transforms a neighborhood of 0 into

a neighborhood of ∞, by examining the behavior of f at ∞, we understand the
behavior of g at 0.

Definition 1.4.10. [30] Let G̃ be an open set in C or C∞. We say that f is a
meromorphic function on G̃ if there exists a set E ⊂ G̃ such that f ∈ H(G̃ \ E),
and E consists of removable singularities or poles for the function f .

Denoting by G the set of regular points and by B the set of poles in G̃, we have
G̃ = G ∪B.

Remark 1.4.1. [17] A meromorphic function is a uniformly analytic function in
the complex plane C that has no singularities other than poles.

Entire functions, on the one hand, and rational functions, on the other hand,
are particular cases of meromorphic functions.

The point ∞ for a meromorphic function can be ordinary, a pole, or essential,
isolated or an accumulation point of poles.

Since poles are isolated singular points, it follows that a meromorphic function
cannot have more than countably many poles in C, which must accumulate at infinity.

Remark 1.4.2. [17] A meromorphic function in a domain is a uniformly analytic
branch corresponding to that domain, which admits only poles as singularities within
the domain. These can be a finite number or countably infinite, but in the latter case,
they must accumulate on the boundary of the domain.

We will denote by M(G̃) the set of meromorphic functions on G̃.
If f ∈M(G̃), then f can be extended to any point z0 ∈ G̃ by f̃(z0) = limz→z0 f(z).
The function f̃ : G̃ → C∞ is C∞-continuous and f̃ ∈ H(G). Sometimes, the

extended function is still denoted by f .
Several examples are presented below.
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Example 1.4.1. [30] Any holomorphic function on G̃ is also meromorphic, i.e.,
H(G̃) ⊂M(G̃).

In this case, B = ∅ and G̃ = G.

Example 1.4.2. [30] Any rational function is meromorphic on C∞.

Example 1.4.3. [30] The function ctg is meromorphic on C, with poles at zk = kπ,
k ∈ Z;

The point ∞ is an accumulation point of poles, so the function ctg cannot be
meromorphic on C∞.

Example 1.4.4. [30] The function tg 1
z
is meromorphic on C∞ \ {0}, since ∞ is a

regular point, and the points zk =
2

(2k+1)π
are poles, which accumulate at the origin.

The study of meromorphic and univalent functions can be done in parallel with
class S, considering the class Σu of meromorphic functions φ with the unique pole
(simple) z = ∞ and univalent in U− = {z ∈ C∞ : |z| > 1}, which have Laurent
series expansion of the form:

g(z) = z + α0 +
α1

z
+ · · ·+ αn

zn
+ . . . , |z| > 1. (1.48)

Thus, functions g ∈ Σu are normalized with the conditions g(∞) = ∞, g′(∞) = 1.
Denoting

E(g) = C \ g(U−),

this will be a continuum in C, i.e., a compact and connected set containing more
than one point.

The subclass of functions g ∈ Σu that do not vanish outside the unit disk is
denoted as Σ0, i.e.,

Σ0 = {g ∈ Σu : g(z) ̸= 0, z ∈ U−},

and thus the following property easily follows.

Property 1.4.1. [45] There is a bijection between the classes S and Σ0, so the class
Σ0 is ”larger” than the class S.

It is observed that if g ∈ Σu and c ∈ E(g), then the function:

f(z) =
1

g
(
1
z

)
− c

= z + (c− α0)z
2 + . . . , z ∈ U, (1.49)

has the property that f ∈ S.

Definition 1.4.11. [45] We say that a function g of the form (1.48) is stellar in
U− if g is univalent in U− and the set E(g) is stellar with respect to the origin.
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We denote by Σ∗ the class of stellar functions outside the unit disk, i.e.,

Σ∗ = {g ∈ Σ0 : g is stellar in U−}.

The transformation T is a bijection, T (S) = Σ0 and T−1(Σ0) = S.
It follows that

zg′(z)

g(z)
=
zf ′(z)

f(z)
, z =

1

z
, z ∈ U−,

from which it will result that the function g ∈ Σ∗ if and only if f ∈ S∗.
Thus, we deduce that g ∈ Σ∗ if and only if:

ℜ
(
zg′(z)

g(z)

)
> 0, z ∈ U−.

In conclusion, we have:

Σ∗ = {g ∈ Σ0 : ℜ
(
zg′(z)

g(z)

)
> 0, z ∈ U−}, Σ∗ = T (S∗).

From Definition 1.4.11, it follows that if g is stellar, then E(g) is a stellar set
with respect to the origin, meaning 0 ∈ E(g), i.e., g ∈ Σ0 (the set of meromorphic
functions normalized, univalent that do not vanish in U−).

Definition 1.4.12. [46] We say that a function f ∈ S is meromorphic stellar of
order α, with 0 ≤ α < 1, and belongs to the class S∗(α), if it satisfies the inequality:

−ℜ
(
zf ′(z)

f(z)

)
> α.

Definition 1.4.13. [45] Let the function g(z) = 1
z
+α0+α1z+ · · ·+αnz

n+ . . . , 0 <
|z| < 1, be a meromorphic function in U . We say that the function g is stellar in U
if the function g(z) = f

(
1
z

)
, for z ∈ U−, is stellar in U−.

Theorem 1.4.12. [45] (The Analytic Characterization Theorem of the Starlikeness
of Meromorphic Functions) Let f(z) = 1

z
+ α0 + α1z + ..., 0 < |z| < 1, be a mero-

morphic function in U with f(z) ̸= 0, z ∈ U . Then, f is starlike in U if and only if
f is univalent in U and

ℜ
(
−zf

′(z)

f(z)

)
> 0, z ∈ U.

Definition 1.4.14. [45] We say that the function g of the form (1.48) is convex in
U− if g is univalent in U− and the set E(g) is convex.

We mention that if g is convex in U−, then it is not necessarily starlike, as g
may vanish in U−, i.e., 0 /∈ E(g).

If g ∈ Σ0 and g is a convex function, then it is evidently also starlike in U−.
We denote by Σc the class of functions that are convex in the exterior of the unit

disk and do not vanish in U−, i.e.,

Σc = {g ∈ Σ0 : g is convex in U−}.

It is evident that Σc ⊂ Σ∗.
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Remark 1.4.3. [45] It is known that a function g ∈ Σ0 is convex in the exterior of
the unit disk if and only if it satisfies the condition:

ℜ
(
zg′′(z)

g′(z)
+ 1

)
> 0, z ∈ U−.

Thus,

Σc =

{
g ∈ Σ0 : ℜ

(
zg′′(z)

g′(z)
+ 1

)
> 0, z ∈ U−

}
.

Definition 1.4.15. [45] Let f be a meromorphic function in U,

f(z) =
1

z
+ α0 + α1z + ...+ αnz

n + ..., 0 < |z| < 1.

We say that f is convex in U if the function g(z) = f
(
1
z

)
, z ∈ U− is convex in U−.

Theorem 1.4.13. [45] (Analytic characterization theorem of convexity for mero-
morphic functions) Let f(z) = 1

z
+ α0 + α1z + . . . , 0 < |z| < 1, a meromorphic

function in U with f(z) ̸= 0, z ∈ U . Then f is convex in U if and only if f is
univalent in U and

ℜ
{
−
(
zf ′′(z)

f ′(z)
+ 1

)}
> 0, z ∈ U̇ .

Definition 1.4.16. [46], [31] We say that a function f ∈ S is convex, meromorphic
of order α, 0 ≤ α < 1, if it satisfies the inequality:

−ℜ
(
1 +

zf ′′(z)

f ′(z)

)
> α, z ∈ U.

We denote by Sk(α) the class of meromorphic, convex functions of order α, 0 ≤
α < 1,

Sk(α) =

{
f ∈ S : −ℜ

(
1 +

zf ′′(z)

f ′(z)

)
> α, z ∈ U

}
. (1.50)

1.5 Integral operators

Integral operators have played an essential role in the development of com-
plex analysis, providing a powerful framework for solving problems related to ana-
lytic functions, conformal transformations, and differential equations. Starting with
Cauchy’s works in the 19th century, those who initiated the study of integral oper-
ators include: J. W. Alexander, R. Libera, S. Bernardi, S. D. Miller, P.T. Mocanu,
R. Singh, M. O. Reade, and others.

The study of integral operators remains relevant, as evidenced by numerous
works in recent years [12], [15], [16], [24], [77], etc., and the numerous citations of
already existing works.

We say that an integral operator is univalent if it transforms univalent functions
into univalent functions. The star/convex integral operator is one that transforms
star functions into star functions/convex functions into convex functions.
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A central problem in the theory of complex-variable functions is the study of
integral operators defined on certain subclasses of these functions.

The first integral operator was introduced in 1915 by the mathematician J. W.
Alexander in [4]. The Alexander integral operator IA is defined in [4] as

IA : A→ A, IA(F ) = f,

where:

IA(F ) = f(z) =

z∫
0

F (t)

t
dt, (1.51)

For this integral operator, Alexander proved that IA(S
∗) ⊂ S∗.

In 1965, R. J. Libera defined in his work [34] the following integral operator:

L : A→ A,Lf (z) =
2

z

z∫
0

f(t)dt, (1.52)

called the Libera operator, and he demonstrated that LA(S
∗) ⊂ S∗.

S. D. Bernardi in [7] introduced a generalization of the Libera operator,

Ia : A→ A, Ia(F ) = f, a = 1, 2, 3, . . . , where:

f(z) =
1 + a

za

z∫
0

F (t)ta−1dt, (1.53)

and this was called the Bernardi integral operator, demonstrating that Ia(S
∗) ⊂ S∗.

A few years later, in 1963, W. M. Causey introduced the operator:

J4(f)(z) =

∫ [
f(t)

t

]α
dt. (1.54)

The operator J4 was studied by S. S. Miller, P. T. Mocanu, and M. O. Reade,
who later provided a generalization of the operator in their work [40].

Numerous generalizations of the previous operators have been studied, among
which the most general form using only one function under the integral sign is given
by the operator La.

This integral operator La is defined in [52] as

f(z) =
1 + a

za

z∫
0

F (t)ta−1dt, (1.55)

where a ∈ C,ℜ(a) ≥ 0.
It was introduced in this general form where a ∈ C,ℜ(a) ≥ 0, by N. N. Pascu

in [52], and was named the Libera-Pascu integral operator by D. Blezu in his work
[10].
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The integral operator Ic+δ : A → A, where 0 < u ≤ 1 , 1 ≤ δ < ∞ , 0 < c < ∞ ,
is defined in [2] as:

f(z) = Ic+δ(F )(z) = (c+ δ)

∫ 1

0

tc+δ−2F (tz)dt . (1.56)

Observation 1.5.1. [22] For δ = 1 and c = 1, 2, . . . from the integral operator Ic+δ,
given by the relation (1.56), we obtain the Bernardi integral operator defined by the
relation (1.53).

Observation 1.5.2. [22] Let F (z) = z +
∞∑
j=2

ajz
j. From the relation (1.56) we

obtain:

f(z) = z +
∞∑
j=2

c+ δ

c+ j + δ − 1
ajz

j.

We observe that

0 <
c+ δ

c+ j + δ − 1
< 1,

where 0 < c <∞, j ≥ 2, 1 ≤ δ <∞.

Observation 1.5.3. [22] For F ∈ T, f = Ic+δ(F ), we have f ∈ T , where Ic+δ is the
integral operator defined by the relation (1.56).

Definition 1.5.1. [22] Let F ∈ A, F (z) = z + b2z
2 + · · ·+ bnz

n + . . ., bj ≥ 0, j ≥ 2
and a ∈ R∗. We define the integral operator L : A→ A by the relation:

f(z) = L(F )(z) =
1 + a

za

∫ z

0

F (t) · ta−1 + ta+1dt. (1.57)

In the work [23], P. Dicu introduces a new integral operator:

In(z) =

∫ z

0

n∏
i=1

[
efi(t)

g′i(t)

]αi

dt, (1.58)

where the parameters αi ∈ C, ℜ(αi) > 0 and the functions fi, gi ∈ A, i ∈ {1, 2, ..., n}
are restricted (constrained by appropriate restrictions).

The integral operator In generalizes the integral operator:

I1(z) =

∫ z

0

[
ef(t)

g′(t)

]α
dt. (1.59)

Let Fα1,α2,...,αn,β(z) be the integral operator studied by N. Seenivasagan and D.
Breaz in the work [71]:

Fα1,α2,...,αn,β(z) =

{
β

∫ z

0

tβ−1

n∏
i=1

[
fi(t)

t

] 1
αi

dt

} 1
β

, (1.60)

with fi(t) ∈ T2, T2 being a subclass of T .
If αi = α, ∀i = 1, 2, ..., then Fαi,β(z) becomes the operator Fα,β(z) [14].
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1.6 Univalence criteria

Univalence criteria are a cornerstone in complex analysis, providing essential
tools for understanding and classifying analytic functions. They allow for the iden-
tification and classification of injective (univalent) functions in specific regions of the
complex plane. The univalence property is crucial because it ensures that analytic
functions preserve local geometric structure and are free of ambiguities in their rep-
resentations. These criteria evolved from the classical theorems of P. Koebe (around
1907, achieving a major breakthrough with the formulation of the univalence theo-
rem and the study of univalent functions defined on the unit disk) and Bieberbach
to modern methods based on geometry and differential equation analysis.

The first criteria were developed to analyze injectivity through derivatives and
other properties of analytic functions. Some of the most well-known univalence
criteria include:

- Schwarz’s criterion, which establishes the univalence of analytic functions using
the Schwarzian derivative,

- Nehari’s criterion (1949), which links univalence to conditions on the curvature
of the images of the analytic function.

The study of univalence criteria led to the discovery of special functional spaces
such as the Hardy space and the Bergman space. Univalent analytic functions are
used to perform conformal transformations, which preserve angles and the local
structure of the domain. These transformations are fundamental in complex geom-
etry and in practical applications such as electrical network modeling and fluid flow
analysis. In contemporary analysis, univalence criteria are applied to the study of
complex dynamics, fractals, and spectral theories associated with analytic operators.

In 1972, S. Ozaki and M. Nunokawa in the work [50] demonstrated the following
result:

Theorem 1.6.1. ([50]) If f ∈ T satisfies the following condition:∣∣∣∣∣z2 · f ′(z)

f 2(z)
− 1

∣∣∣∣∣ ≤ 1,∀z ∈ U,

then the function f is univalent in U .

The following theorem demonstrates a univalence condition given by N. Pascu
in the work [52].

Theorem 1.6.2. [52] Let α, β ∈ C and ℜ(β) ≥ ℜ(α) ≥ 3
|α| . If f ∈ T2 satisfies the

condition: ∣∣∣∣∣z2f ′(z)

f 2(z)
− 1

∣∣∣∣∣ < 1, |f(z)| ≤ 1;∀z ∈ U,
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then the integral operator Hα,β(z) defined by

Hα,β(z) =

[
β

∫ z

0

tβ−1

(
f(t)

t

) 1
α

dt

] 1
β

belongs to the class S.

Regarding the class of analytic functions, Becker in [5] demonstrated in 1972,
using the Löwner chain method, the following univalence criterion.

Theorem 1.6.3. [5] If the function f is regular in the unit disk U , with the prop-
erties:

f(z) = z + a2z
2 + ...,

and

(1− |z|2)

∣∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣∣ ≤ 1,∀z ∈ U,

then f is univalent in U .

A year later, Ahlfors in [3] and J. Becker in [6] generalized Becker’s criterion,
given by the following theorem.

Theorem 1.6.4. [3] [6] Let c be a complex number, |c| ≤ 1, c ̸= −1. If f(z) =
z + a2z

2 + ... is a function regular in U and∣∣∣∣c|z|2 + (1− |z|2)zf
′′(z)

f ′(z)

∣∣∣∣ ≤ 1,∀z ∈ U,

then the function f is regular and univalent in U .

V. Pescar in [64] found a new univalence criterion (a generalization of Ahlfors
and Becker’s univalence criterion given in Theorem 1.6.4), given by the following
theorem.

Theorem 1.6.5. [64] Let α and c be two complex numbers, ℜ(α) > 0, |c| ≤ 1,
c ̸= −1. If f(z) = z + a2z

2 + ... is a function regular in U and∣∣∣∣c|z|2α + (1− |z|2α)zf
′′(z)

αf ′(z)

∣∣∣∣ ≤ 1,∀z ∈ U,

then the function

Fα(z) =

[
α

∫ z

0

tα−1f ′(t)dt

] 1
α

= z + a2z
2 + ...,

is regular and univalent in U .

In [53] N. N. Pascu and I. Radomir obtained the following result.
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Theorem 1.6.6. [53] Let β and c be two complex numbers, ℜ(β) > 0, |c| ≤ 1,
c ̸= −1 and f(z) = z + a2z

2 + ... be a function regular in U . If:∣∣∣∣ce−2tβ + (1− e−2tβ)
e−tzf ′′(e−tz)

βf ′(e−tz)

∣∣∣∣ ≤ 1,

is preserved for z ∈ U and t ≥ 0, then the function

Fβ(z) =

[
β

∫ z

0

tβ−1f ′(t)dt

] 1
β

= z + a2z
2 + ...

is regular and univalent in U .

Theorem 1.6.7. [51] Let α ∈ C with ℜ(α) > 0. If f is an analytic function in U
with the property that∣∣∣∣1− e−2tα

α
· e

−tzf ′′(e−tz)

f ′(e−tz)

∣∣∣∣ ≤ 1,∀z ∈ U, t ≥ 0,

then the function

Fα(z) =

[
α

∫ z

0

uα−1f ′(u)du

] 1
α

,

is regular and univalent in U .

In [52] [51], Pascu demonstrated the following theorem.

Theorem 1.6.8. [52] [51] Let β ∈ C, ℜ(β) ≥ γ > 0. If f ∈ A satisfies the
condition:

1− |z|2γ

γ

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1, z ∈ U,

then the integral operator

Fβ(z) =

[
β

∫ z

0

tβ−1f ′(t)dt

] 1
β

∈ S.

Using Theorem 1.6.8 and Theorem 1.6.2, D. Breaz and N. Breaz in the paper
[14] obtained the following theorem.

Theorem 1.6.9. [14] Let α, β ∈ C and ℜ(β) ≥ ℜ(α) ≥ 3n
|α| , let fi ∈ T2 be defined

as:

fi(z) = z +
∞∑
k=3

aikz
k, z ∈ U, ∀i = 1, 2, ..., n, ∀n ∈ N∗.

If |fi(z)| ≤ 1, z ∈ U , then the integral operator

Fα,β(z) =

[
β

∫ z

0

tβ−1

n∏
i=1

(
fi(t)

t

) 1
α

dt

] 1
β

,

belongs to the class S.
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Theorem 1.6.10. ([64]) Let c and β be complex numbers such that ℜ(β) > 0, |c| ≤
1, and c ̸= −1, and let f(z) = z + a2z

2 + . . . be a regular function in U . If:∣∣∣∣c|z|2β + (1− |z|2β)zf
′′(z)

βf ′(z)

∣∣∣∣ ≤ 1, ∀z ∈ U,

then the function

Fβ(z) =

{
β

∫ z

0

tβ−1 · f ′(t)dt

} 1
β

,

is regular and univalent in U .

Theorem 1.6.11. [52] Let α be a complex number, ℜ(α) > 0, c be a complex
number, |c| ≤ 1, c ̸= 1, and f ∈ A. If:

1− |z|2ℜ(α)

ℜ(α)

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1− |c|, ∀z ∈ U, (1.61)

then for any complex number β, ℜ(β) ≥ ℜ(α), the function Fβ(z) defined by

Fβ(z) =

(
β

∫ z

0

tβ−1f ′(t)dt

) 1
β

,

is in the class S.

Theorem 1.6.12. [52] (N. N. Pascu’s Univalence Criterion) Let f ∈ A and β ∈ C.
If ℜ(β) > 0 and

1− |z|2ℜ(β)

ℜ(β)

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1, ∀z ∈ U,

then the function Fβ(z) defined by:

Fβ(z) =

(
β

∫ z

0

tβ−1f ′(t)dt

) 1
β

,

is in the class S.

For c = 0 in Theorem 1.6.11, we obtain the univalence criterion obtained by
N. N. Pascu in the paper [52].

Theorem 1.6.13. [51] Let α ∈ C, ℜ(α) > 0 and f ∈ A. If f satisfies:

1− |z|2ℜ(α)

ℜ(α)

∣∣∣∣z · f ′′(z)

f ′(z)

∣∣∣∣ ≤ 1, ∀z ∈ U,

then, for any complex number β with ℜ(β) ≥ ℜ(α), the integral operator

Fβ(z) =

{
β

∫ z

0

tβ−1 · f ′(t)dt

} 1
β

,

belongs to the class S.
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Equality holds if f(z) = eiτ · M
Rm · zm, where τ is a constant.

In 2004, D. Răducanu, I. Radomir, M. E. Gageone, and N. R. Pascu in the
paper [67] demonstrated one of the generalizations of the criterion of S. Ozaki and
M. Nunokawa.

Theorem 1.6.14. [67] Let f ∈ A and m > 0 such that:∣∣∣∣(z2f ′(z)

f 2(z)
− 1

)
− m− 1

2
|z|m+1

∣∣∣∣ ≤ m+ 1

2
|z|m+1, ∀z ∈ U,

then the function f is analytic and univalent in U .

In the next theorem, we observe sufficient conditions for the univalence of the
operator In using the univalence criterion of J. Becker.

Theorem 1.6.15. [23] Let the functions fi ∈ A and mi > 0 satisfy:∣∣∣∣(z2f ′
i(z)

[fi(z)]2
− 1

)
− mi − 1

2
|z|mi+1

∣∣∣∣ ≤ mi + 1

2
|z|mi+1, ∀z ∈ U, i ∈ {1, 2, ..., n}. (1.62)

Additionally, assume that Mi, Ni are positive real numbers and the functions gi ∈ A
are such that:

|fi(z)| < Mi,

∣∣∣∣g′′i (z)g′i(z)

∣∣∣∣ ≤ Ni, ∀z ∈ U, i ∈ {1, 2, ..., n}. (1.63)

If:

n∑
i=1

|αi|
[
(mi + 1)M2

i +Ni

]
≤ 3

√
3

2
, ∀αi ∈ C,ℜ(αi) > 0, i ∈ {1, 2, ..., n}, (1.64)

then the integral operator In from relation (1.58) belongs to the class S.

For the particular case mi = 1,Mi =M,Ni = 1, we obtain the following result.

Corollary 1.6.1. [23] Let the functions fi, gi ∈ A and M be a positive real number
such that the inequalities:∣∣∣∣z · f ′

i(z)

(fi(z))2
− 1

∣∣∣∣ ≤ |z|2, |fi(z)| < M,

∣∣∣∣g′′
i (z)

g
′
i(z)

∣∣∣∣ ≤ 1,

are satisfied for any z ∈ U, i ∈ {1, ..., n}.
If

(2M2 + 1)
n∑

i=1

|αi| ≤
3
√
3

2
,

where αi ∈ C,ℜ(αi) > 0, i ∈ {1, 2, ..., n}, then the integral operator In belongs to the
class S.

Next, setting n = 1 in Theorem 1.6.15, we obtain the following result.
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Corollary 1.6.2. [23] Let m > 0 and the function f ∈ A satisfy the hypotheses of
Theorem 1.6.14. Assume that α ∈ C,ℜ(α) > 0, and M,N are positive real numbers,
and the function g ∈ A. If

|f(z)| < M,

∣∣∣∣g′′
(z)

g′(z)

∣∣∣∣ ≤ N,

for any z ∈ U and

|α|
[
(m+ 1)M2 +N

]
≤ 3

√
3

2
,

then the integral operator I1 defined by relation (1.59) belongs to the class S.



Chapter 2

Properties of some univalent
integral operators

This chapter, structured into four sections, is dedicated to the study of sufficient
conditions for univalence, convexity, and starlikeness for analytic functions defined
in the interior of the unit disk. The original results were obtained based on the use
of univalence criteria established by J. Becker, N. N. Pascu, V. Pescar, and others,
with some of our own results being generalizations and improvements of those found
in the work [23].

In the first subsection, the author of this work presents her own contributions
regarding the conditions for the membership of the operator Fβ(f, g)(z) in the class
S. Univalence conditions for the integral operator Fn,β(z) are presented in Section
2.2, where, by applying the criterion of N. N. Pascu and the general Schwarz Lemma,
new properties of this operator, introduced by P. Dicu, R. Bucur, and D. Breaz in
[23], were discovered.

Section 2.3 contains several univalence conditions for a new integral operator
Gβ,γ(f, g)(z), whose proofs were obtained using the criterion of N. N. Pascu and the
Schwarz Lemma, while Section 2.4 illustrates a univalence criterion for the operator
Gn,β(z), which is defined as a generalization of an n-function, an operator introduced
in Section 2.2 of this work.

2.1 Univalence conditions for the integral opera-

tor Fβ(f, g)(z)

In this subsection, we will present sufficient conditions ensuring the univalence
of the integral operator Fβ(f, g), defined below.

For functions f, g ∈ A, we introduce the integral operator Fβ(f, g) defined by:

Fβ(f, g)(z) =

{
β

∫ z

0

tβ−1 e
f(t)

g′(t)
dt

} 1
β

, β ∈ C \ {0}, z ∈ U. (2.1)

42
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Remark 2.1.1. The operator Fβ(f, g) generalizes the operator

Iα(f, g)(z) =

∫ z

0

(
ef(t)

g′(t)

)α

dt,ℜ(α) ≤ 1,

which was introduced and studied in [20].

In the following theorem, a univalence condition for the integral operator Fβ(f, g)
is presented using the univalence criterion of N. N. Pascu [52].

Theorem 2.1.1. [60] Let f ∈ A satisfy the condition:∣∣∣∣z2f ′
(z)

(f(z))2
− 1

∣∣∣∣ < 1, z ∈ U. (2.2)

Assume that M,N are positive real numbers and that g ∈ A satisfies:

|f(z)| < M,

∣∣∣∣g′′(z)g′(z)

∣∣∣∣ ≤ N, z ∈ U. (2.3)

If β ∈ C,ℜ(β) = a > 0 and
c(2M2 +N) ≤ 1, (2.4)

where

c =
2

1 + 2a

(
1

2a+ 1

) 1
2a

,

then the integral operator Fβ(f, g) defined by (2.1) belongs to the class S.

For N = 1, we obtain the following result.

Corollary 2.1.1. [60] Let f ∈ A satisfy the condition:∣∣∣∣z2f ′(z)

(f(z))2
− 1

∣∣∣∣ < 1, z ∈ U. (2.5)

Assume that M is a positive real number and that g ∈ A satisfies:

|f(z)| < M,

∣∣∣∣g′′(z)g′(z)

∣∣∣∣ ≤ 1, z ∈ U. (2.6)

If β ∈ C,ℜ(β) = a > 0 and
c(2M2 + 1) ≤ 1, (2.7)

where c = 2
1+2a

·
(

1
2a+1

) 1
2a , then the integral operator Fβ(f, g) defined by (2.1) belongs

to the class S.

For M = 1 in Corollary 2.1.1, we obtain the following result.
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Corollary 2.1.2. [60] Assume that the functions f, g ∈ A satisfy the conditions∣∣∣∣z2f ′(z)

(f(z))2
− 1

∣∣∣∣ < 1, |f(z)| < 1, (2.8)

and ∣∣∣∣g′′(z)g′(z)

∣∣∣∣ ≤ 1, z ∈ U. (2.9)

If β ∈ C,ℜ(β) = a > 0 and c ≤ 1
3
, where c = 2

1+2a

(
1

2a+1

) 1
2a , then the operator

Fβ(f, g)(z) defined by (2.1) belongs to the class S.

Remark 2.1.2. [60] For β = 1 in Corollary 2.1.2, we obtain that the operator

I(f, g)(z) =

∫ z

0

ef(t)

g′(t)
dt,

belongs to the class S and the constant c is exact.

These results improve upon those obtained in [20].

2.2 Univalence conditions for the integral opera-

tor Fn,β(z)

In this subsection, we consider a generalization of the result from Theorem 2.1.1,
taking the integral operator as depending on n functions belonging to the class A.

For functions fi, gi ∈ A, i ∈ {1, 2, ..., n}, we introduce the integral operator Fn,β

defined by:

Fn,β(z) :=

{
β

∫ z

0

tβ−1

n∏
i=1

efi(t)

g′i(t)
dt

} 1
β

, z ∈ U, (2.10)

where β ∈ C \ {0}, αi ∈ C, i ∈ {1, 2, ..., n}.

Remark 2.2.1. [61] The operator Fn,β generalizes the operator Fβ(f, g) defined by
equation (2.1).

Using N. N. Pascu’s criterion, we present the following theorem, which provides
sufficient conditions for the univalence of the operator Fn,β introduced and studied
in [23].

Theorem 2.2.1. [61] Let the functions fi ∈ A, i ∈ {1, 2, ..., n}, satisfy the condi-
tion: ∣∣∣∣ z2f ′

i(z)

(fi(z))
2 − 1

∣∣∣∣ < 1, z ∈ U. (2.11)

Assume that Mi, Ni are positive real numbers and that the functions gi ∈ A satisfy:

|fi(z)| < Mi,

∣∣∣∣g′′i (z)g′i(z)

∣∣∣∣ ≤ Ni, z ∈ U. (2.12)
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If β ∈ C,ℜ(β) = a > 0 and

c
n∑

i=1

(2M2
i +Ni) ≤ 1, (2.13)

where

c =
2

1 + 2a
·
(

1

2a+ 1

) 1
2a

, (2.14)

then the operator Fn,β defined by equation (2.10) belongs to the class S.

If we take Mi = Ni = M, i ∈ {1, 2, ..., n}, positive real numbers in Theorem
2.2.1, we obtain the following result.

Corollary 2.2.1. [61] Let the functions fi ∈ A, i ∈ {1, 2, ..., n} satisfy the condi-
tion: ∣∣∣∣ z2f ′

i(z)

(fi(z))2
− 1

∣∣∣∣ < 1, z ∈ U. (2.15)

Assume that M is a positive real number and that the functions gi ∈ A, i ∈
{1, 2, ..., n} satisfy:

|fi(z)| < M,∣∣∣∣g′′i (z)g′i(z)

∣∣∣∣ ≤M, z ∈ U.
(2.16)

If β ∈ C,Re(β) = a > 0 and

cM(2M + 1)n ≤ 1, (2.17)

where c = 2
1+2a

(
1

2a+1

) 1
2a , then the operator Fn,β defined by equation (2.10) belongs

to the class S.

Taking M = 1 in Corollary 2.2.1, we obtain the following result.

Corollary 2.2.2. [61] Let the functions fi, gi ∈ A, i ∈ {1, 2, ..., n} satisfy the
conditions ∣∣∣∣ z2f ′

i(z)

(fi(z))
2 − 1

∣∣∣∣ < 1,

|fi(z)| < 1,

∣∣∣∣g′′i (z)g′i(z)

∣∣∣∣ ≤ 1, z ∈ U.

(2.18)

If β ∈ C,ℜ(β) = a > 0 and

c ≤ 1

3n
, (2.19)

where c = 2
1+2a

·
(

1
2a+1

) 1
2a , then the operator Fn,β defined by equation (2.10) belongs

to the class S.

Remark 2.2.2. [61] For n = 1 in Corollary 2.2.2, we obtain Corollary 2.1.2.
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2.3 Univalence conditions for the integral opera-

tor Gβ,γ(f, g)(z)

For the functions f, g ∈ A, we introduce a new integral operator defined by:

Gβ,γ(f, g)(z) =

{
β

∫ z

0

tβ−1

(
ef(t)

g′(t)

)γ

dt

} 1
β

, (2.20)

where β ∈ C \ {0}, γ ∈ C, z ∈ U.
This operator generalizes the operators introduced in the paper [23] by P. Dicu,

R. Bucur, and D. Breaz.
In this section, we present the univalence conditions for the operator Gβ,γ(f, g).
To demonstrate the univalence of the operator Gβ,γ(f, g), we use N. N. Pascu’s

criterion [52].

Theorem 2.3.1. [62] Let the function f ∈ A satisfy the condition:∣∣∣∣z2f ′(z)

(f(z))2
− 1

∣∣∣∣ < 1, z ∈ U. (2.21)

Let M,N be positive real numbers, and g ∈ A such that:

|f(z)| < M,∣∣∣∣g′′(z)g′(z)

∣∣∣∣ ≤ N, z ∈ U,
(2.22)

β, γ ∈ C,ℜ(β) = a > 0 and we have that

c · |γ| · (2M2 +N) ≤ 1, (2.23)

where c = 2
1+2a

(
1

2a+1

) 1
2a , then the operator Gβ,γ(f, g) defined by relation (2.20)

belongs to the class S.

If we take N = 1 in Theorem 2.3.1, we obtain the following result.

Corollary 2.3.1. [62] Let the function f ∈ A satisfy the condition:∣∣∣∣z2f ′(z)

(f(z))2
− 1

∣∣∣∣ < 1, z ∈ U. (2.24)

Let M be a positive real number, and the function g ∈ A such that:

|f(z)| < M,∣∣∣∣g′′(z)g′(z)

∣∣∣∣ ≤ 1, z ∈ U,
(2.25)

β, γ ∈ C,ℜ(β) = a > 0 and we have that

c · |γ| · (2M2 + 1) ≤ 1, (2.26)

where c = 2
1+2a

·
(

1
2a+1

) 1
2a , then the operator Gβ,γ(f, g) defined by relation (2.20)

belongs to the class S.
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By setting M = 1 in Corollary 2.3.1, we obtain the following corollary.

Corollary 2.3.2. [62] Let the function f ∈ A satisfy the condition:∣∣∣∣z2f ′(z)

(f(z))2
− 1

∣∣∣∣ < 1, z ∈ U. (2.27)

Let M be a positive real number, and g ∈ A such that:

|f(z)| < 1,∣∣∣∣g′′(z)g′(z)

∣∣∣∣ ≤ 1, z ∈ U,
(2.28)

β, γ ∈ C,ℜ(β) = a > 0 and we have that

c|γ| ≤ 1

3
, (2.29)

where c = 2
1+2a

(
1

2a+1

) 1
2a . Then the operator Gβ,γ(f, g) defined by relation (2.20)

belongs to the class S.

Remark 2.3.1. [62] For β = 1 and γ = α the univalence condition of the operator

I1(z) =
∫ z

0

(
ef(t)

g′(t)

)α
dt is obtained from relation (1.59).

2.4 Univalence conditions for the integral opera-

tor Gn,β(z)

For the functions fi, gi ∈ A, i ∈ {1, 2, ..., n}, we introduce the integral operator
Gn,β(z) defined by:

Gn,β(z) =

{
β

∫ z

0

tβ−1

n∏
i=1

(
efi(t)

g′i(t)

)γi

dt

} 1
β

, (2.30)

where β, γ ∈ C, β ̸= 0, αi ∈ C, i ∈ {1, 2, ..., n}, z ∈ U.
In this section, we present a generalization of the operator from Theorem 2.3.1,

considering the operator depending on n analytic functions.
We will demonstrate the univalence of this operator using the univalence criterion

of N. N. Pascu.

Theorem 2.4.1. [63] Let the functions fi ∈ A, i ∈ {1, 2, ..., n}, satisfy the condition:∣∣∣∣ z2f ′
i(z)

(fi(z))2
− 1

∣∣∣∣ < 1, z ∈ U. (2.31)

Assume that Mi, Ni are positive real numbers and gi ∈ A, i ∈ {1, 2, ..., n} satisfy:

|fi(z)| < Mi,

∣∣∣∣g′′i (z)g′i(z)

∣∣∣∣ ≤ Ni, z ∈ U. (2.32)
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If β ∈ C,ℜ(β) = a > 0, γi ∈ C, and:

c

n∑
i=1

|γi|(M2
i +Ni) ≤ 1, (2.33)

where c = 2
1+2a

·
(

1
2a+1

) 1
2a , then the operator Gn,β(z) defined by relation (2.30) belongs

to the class S.

For Mi = Ni =M, i ∈ {1, 2, ..., n} in Theorem 2.4.1, we obtain:

Corollary 2.4.1. [63] Let the functions fi ∈ A, i ∈ {1, 2, ..., n} satisfy:∣∣∣∣ z2f ′
i(z)

(fi(z))2
− 1

∣∣∣∣ < 1, z ∈ U. (2.34)

Assume that M is a positive real number and gi ∈ A, i ∈ {1, 2, ..., n} satisfy:

|fi(z)| < M,∣∣∣∣g′′i (z)g′i(z)

∣∣∣∣ ≤M, z ∈ U.
(2.35)

If β ∈ C,ℜ(β) = a > 0, γi ∈ C, i ∈ {1, 2, ..., n} and:

c ·M · (M + 1)
n∑

i=1

|γi| ≤ 1, (2.36)

where c = 2
1+2a

·
(

1
2a+1

) 1
2a , then the operator Gn,β(z) defined by relation (2.30) belongs

to the class S.

If we take M = 1 in Corollary 2.4.1, we obtain the following result:

Corollary 2.4.2. [63] Let the functions fi, gi ∈ A, i ∈ {1, 2, ..., n}, satisfy:∣∣∣∣ z2f ′
i(z)

(fi(z))
2 − 1

∣∣∣∣ < 1,

|fi(z)| < 1,∣∣∣∣g′′i (z)g′i(z)

∣∣∣∣ ≤ 1, z ∈ U.

(2.37)

If β ∈ C,ℜ(β) = a > 0, γi ∈ C, i ∈ {1, 2, ..., n} and

2 · c ·
n∑

i=1

|γi| ≤ 1, (2.38)

where c = 2
1+2a

·
(

1
2a+1

) 1
2a , then the operator Gn,β defined by relation (2.30) belongs

to the class S.

Remark 2.4.1. [63] For β = 1 and γi = αi, we obtain another univalence condition
for the operator

In(z) =

∫ z

0

n∏
i=1

(
efi(t)

g′i(t)

)αi

dt

defined in [23], the first condition being given in Theorem 1.6.15 of the paper [23].



Chapter 3

Properties of certain classes of
meromorphic functions defined on
the exterior unit disk and new
integral operators

In this chapter, we aim to study and find new sufficient conditions for univalence,
convexity, and star-likeness, as well as conditions on the coefficients of certain classes
of univalent functions, defined on the exterior unit disk for various subclasses of
analytic functions. These meromorphic functions have a unique simple pole at z =
∞.

The results of this chapter, which consists of seven original sections.
Section 3.1 covers properties of functions from the class of injective meromor-

phic functions, star-like of order γ, O∗
1(γ), and functions from the class of convex

meromorphic functions of order γ, Ok(γ).
In sections 3.2, 3.3, 3.4, 3.6 and 3.7, conditions for univalence of some integral

operators formed from functions defined on the exterior of the unit disk are pre-
sented. These operators were formed starting from the operator Fαi,β(z) introduced
by N. Seenivasagan and D. Breaz in the paper [71], and the original results ob-
tained by the author of this thesis have been published in journals such as Afrika
Matematika [55], Journal of Advanced Mathematical Studies [57], Studia Universi-
tatis Babeş-Bolyai Mathematica [58]. A particular case of the operator Gαi,β(z) is
represented by the integral operator E(z), for which, in section 3.5, certain values of
the coefficients were obtained, demonstrating that the operator belongs to the class
of star-like meromorphic functions of order 0, O∗

1(0), and these results are published
in the journal General Mathematics [56].

49
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3.1 Properties of some meromorphic functions from

certain special subclasses

If, in Definition 1.4.12, we apply the transformation

z → 1

z

dz → −1

z2
dz, g(z) =

1

f(1
z
)
,

(3.1)

we obtain:

−ℜ
( 1

z
f ′(1

z
)

f(1
z
)

)
=−ℜ

(
f ′(1

z
)

z · f(1
z
)

)
= −ℜ

g(z) ·
(

1
g(z)

)′
z


= −ℜ

(
−g′(z)
z · g(z)

)
= ℜ

(
g′(z)

z · g(z)

)
.

(3.2)

To illustrate the relationship (3.2), we consider b3 = 1, γ = 0 in the relationship
(1.3).

Thus, we have g(z) = z + 1
z3

and

ℜ
(

g′(z)

z · g(z)

)
= ℜ

(
(z + z−3)′

z(z + z−3)

)
= ℜ

(
1− 3

z4

z2 + 1
z2

)
= ℜ

(
z4 − 3

z6 + z2

)
.

We will consider several particular cases to see if ℜ
(

z4−3
z6+z2

)
is positive or negative.

To simplify the calculations, we will use the Symbolab application [76].

z 1 + i 2− 3i 2 + 3i 3− i 3 + 2i −4− 5i −5− 4i −5 + 4i

ℜ
(

z4−3
z6+z2

)
= 0 < 0 < 0 > 0 > 0 < 0 > 0 > 0

Table 3.1: The values of ℜ
(

z4−3
z6+z2

)
for a given z.

It is observed that it is necessary to add the condition |ℜ(z)| > |Im(z)|, in order
to formulate the following definition.

Definition 3.1.1. [54] A meromorphic function g ∈ O1, star-like of order γ, 0 ≤
γ < 1, belongs to the class O∗

1(γ) if it satisfies the inequalities:

ℜ
(
g′(z)

zg(z)

)
> γ, (3.3)

∣∣ℜ(z)∣∣ > ∣∣Im(z)
∣∣, z ∈ W.
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If, in Definition 1.4.16, we apply the transformation (3.1) and use relation (3.3),
we obtain:

−ℜ
(
1 +

1
z
f ′′( 1

z )
f ′( 1

z )

)
= −ℜ

(
1 +

( 1
g(z))

′′

z·( 1
g(z))

′

)
,

−ℜ
(
1 +

1
z
f ′′( 1

z )
f ′( 1

z )

)
= −ℜ

(
1 + g′′(z)·g2(z)−g′(z)·2g(z)·g′(z)

− z·g′(z)
g2(z)

·g4(z)

)
,

−ℜ
(
1 +

1
z
f ′′( 1

z )
f ′( 1

z )

)
= −ℜ

(
1 + g′′(z)

z·g′(z) − 2 · g′(z)
z·g(z)

)
,

−ℜ
(
1 +

1
z
f ′′( 1

z )
f ′( 1

z )

)
= −ℜ

(
1 + g′′(z)

z·g′(z)

)
+ 2 · ℜ

(
g′(z)
z·g(z)

)
−ℜ

(
1 +

1
z
f ′′( 1

z )
f ′( 1

z )

)
> 2 · γ − γ > γ.

We want to illustrate:

ℜ
(
1 +

g′′(z)

z · g′(z)

)
> γ.

Thus, we will consider b3 = 1, γ = 0 in the function defined in relation (1.3).
To simplify the calculations, I used the Symbolab application ([76]).
Thus, we have g(z) = z + 1

z3
. Then

ℜ
(
1 +

g′′(z)

z · g′(z)

)
= ℜ

(
1 +

[(z + z−3)′]′

z · (z + z−3)′

)
= ℜ

(
1 +

12

z6 − 3z2

)
.

We will consider particular cases of z to see if ℜ
(
1 + 12

z6−3z2

)
is positive or

negative.

z 1 + i 1 + 2i 2− 3i 3− i 3 + 2i −4− 5i −5− 4i

ℜ
(
1 + 12

z6−3z2

)
> 0 > 0 > 0 > 0 > 0 > 0 > 0

Table 3.2: The values of ℜ
(
1 + 12

z6−3z2

)
for a given z.

It is observed that in all the cases considered above, ℜ
(
1 + 12

z6−3z2

)
> 0.

We can thus formulate the following definition.

Definition 3.1.2. [54] A meromorphic function g ∈ O1, convex of order γ, 0 ≤ γ <
1, belongs to the class Ok(γ) if it satisfies the inequality:

ℜ
(
1 +

g′′(z)

z · g′(z)

)
> γ, z ∈ W.

Proposition 3.1.1. [54] A function g ∈ O1 is meromorphic, normalized, and in-
jective if:

ℜ
(
z · g′(z)
g(z)

)
< 1, (3.4)
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∣∣ℜ(z)∣∣ > ∣∣Im(z)
∣∣, (3.5)

and
ℜ(z4) > 0,∀z ∈ W.

3.2 A univalence condition for the operatorKα,β(z)

Starting from the operator Fαi,β defined in equation (1.60), we can define a new

operator Kα,β(z) =
{
β
∫ z

1
t−1−β+ 1

α g(t)
−1
α dt

} 1
β
, for which we will present univalence

conditions in this subsection.

Theorem 3.2.1. [55] Let α, β ∈ C, z ∈ W and ℜ(β) ≥ ℜ(α) ≥ 3
|α| . If f ∈ T2 and

g ∈ V2, and the following conditions are satisfied:∣∣∣∣g′(z)z2
+ 1

∣∣∣∣ > 1,∣∣∣∣f (1

z

)∣∣∣∣ = ∣∣∣∣ 1

g(z)

∣∣∣∣ ≥ 1, z ∈ W,

(3.6)

then the integral operator, Kα,β(z), belongs to the class Σ.

3.3 Univalence conditions for the operators Gαi,β(z)

and Gβ(z)

Starting from the integral operator Fαi,β(z), defined in equation (1.60), we can

define new operators denoted by Gαi,β(z) =

{
β
∫ z

1
t−1−β

∏n
i=1

(
t

gi(t)

) 1
αi dt

} 1
β

and

Gβ(z) =
{
β
∫ z

1
t−1−β g′(t)

g2(t)
dt
} 1

β
. For these operators, we will further provide univa-

lence conditions.
Let gi(t) =

1
fi(

1
t
)
∈ O1, with gi(t) ̸= 0, t ∈ O1, (t ̸= 0).

Since O1 is a subclass of O that contains meromorphic and injective functions g,
defined in equation (1.3), we can say that there is a bijection between T2 and O1.

We start from the operator Fαi,β(z) and apply the following transformations:

t→ 1

t
,

dt→ −1

t2
dt,

gi(t) =
1

fi(
1
t
)
∈ O1.

(3.7)

Note that we must also apply transformations to the integration limits, as follows:
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- when t = 0, we will have t = 1
0+

= +∞, - when t = z, we will have t = 1
z
=

z
z·z =

z
|z|2 > 1.

Therefore,
∫ z

0
becomes

∫ 1

∞, but since z is outside the unit disk, i.e.
∫ 1

z
= −

∫ z

1
.

The integral operator is defined as:

Gαi,β(z) =

{
β

∫ z

1

t−1−β

n∏
i=1

(
t

gi(t)

) 1
αi

dt

} 1
β

. (3.8)

If β = 1, then the integral operator Gαi,β takes the form:

Gαi,1(z) =

∫ z

1

t−2

n∏
i=1

(
t

gi(t)

) 1
αi

dt. (3.9)

Theorem 3.3.1. [55] Let β ∈ C, ℜβ ≥ γ > 0. If g ∈ O satisfies the condition

|z|2γ − 1

γ|z|2γ
·
∣∣∣∣ g′′(z)zg′(z)

∣∣∣∣ > 1,

then the operator Gβ(z) belongs to the class Σ.

Theorem 3.3.2. [55] Let αi, β ∈ C and ℜ(β) ≥ ℜ(αi) ≥ 3n
|αi| . Let gi ∈ O2, where

O2 is a subclass of O1, with:

gi(z) = z +
∞∑
k=3

bk
i

zk
, ∀i ∈ {1, 2, ..., n}, n ∈ N∗.

If |gi(z)| > 1, z ∈ W, then the integral operator Gαi,β(z) belongs to O1.

Theorem 3.3.3. [55] Let m > 1, gi ∈ V2,µi
, (V2,µi

is a subclass defined in equation
(1.23)), αi, β ∈ C, ℜ(β) ≥ γ and

γ =
n∑

i=3

(1 + µi)m− 1

|αi|
, µi > 1, i ∈ {1, 2, ..., n}, n ∈ N∗.

If
|gi(z)| > m, z ∈ W, i ∈ {1, 2, .., n},

then the integral operator

Gαi,β(z) =

{
β

∫ z

1

t−1−β

n∏
i=1

(
t

gi(t)

) 1
αi

dt

} 1
β

,

belongs to the class Σ.
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Theorem 3.3.4. [55] Let m > 1, gi ∈ S(p), (gi defined in Theorem 3.3.2 ) and

γ1 =
n∑

i=3

(1 + p)m− 1

|αi|
, i = 1, 2, ..., n, n ∈ N∗,

and p with the properties from relations (1.24) and (1.25).
If

|gi(z)| > m, z ∈ W, i = 1, 2, .., n,

then we obtain that the operator Gαi,β(z) belongs to the class Σ.

Lemma 3.3.1. [58] Let the analytic function g be regular on the exterior of the unit
disk WR = {z ∈ C : |z| > R} and let g(∞) = ∞, g′(∞) = 1.
If |g(z)| ≥ 1, then the following inequalities hold:∣∣∣∣f (1

z

)∣∣∣∣ ≤ ∣∣∣∣1z
∣∣∣∣ ,

1

|g(z)|
≤ 1

|z|
, z ∈ W.

Equality holds only if |g(z)| = K · z and K = 1.
In Lemma 1.1.1 [58], we apply the transformations from equation (3.7) and obtain

the following lemma.

Lemma 3.3.2. [57] Let the function g be regular on the exterior of the unit disk
WR = {z ∈ C : |z| > R}, with |f(z)| > M, for fixed M .
If the order of the multiplicity of the zeros is one more than m for z = ∞, then:∣∣∣∣f (1

z

)∣∣∣∣ ≤ M

Rm
·
∣∣∣∣1z
∣∣∣∣m ,∣∣∣∣ 1

g(z)

∣∣∣∣ ≤ M

Rm
· 1

|z|m
, z ∈ W.

Equality holds only if f(z) = eiτ · Rm

M
· zm, where τ is a constant.

Theorem 3.3.5. [57] Let g ∈ O1 such that:∣∣∣∣g′(z)z2
+ 1

∣∣∣∣ ≥ 1, ∀z ∈ W. (3.10)

Then g is univalent in W .

Theorem 3.3.6. [57] Let c and β be complex numbers such that ℜ{β} > 0, |c| ≥ 1,
and c ̸= −1. Let k(z) = z + b3

z3
+ b4

z4
+ ... be a regular function in W . If∣∣∣∣ c

|z|2β
+

(
1− 1

|z|2β

)
· k′′(z)

β · z · k′(z)

∣∣∣∣ ≥ 1,∀z ∈ W,

then the operator Gα,β(z), defined by

Gα,β(z) =

{
β

∫ z

1

t−β−1 · k′(t)dt
} 1

β

, z ∈ W,

is a regular and univalent function in W .
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Theorem 3.3.7. [57] Let M ≥ 1 and the functions gi ∈ O1, i ∈ {1, 2, ..., n}, which
satisfy condition (3.10), and let β be a real number, β ≤

∑n
i=1

1
M |αi| , where c and αi

are complex numbers, αi ̸= 0. If

|c| ≥ |z|2β −
(
1− |z|2β

) 1
β

n∑
i=1

1

M |αi|
,

|gi(z)| ≥M,

|z| ≥M,∀z ∈ W,

(3.11)

then the operator Gαi,β(z) defined in (3.8) belongs to the class Σ.

Theorem 3.3.8. [57] Let M ≥ 1 and the function gi ∈ O1 for i ∈ {1, 2, ..., n},
which satisfies relation (3.10), β a real number, β ≤ n

M |α| , and c, α ∈ C, α ̸= 0.
If:

|c| ≥ |z|2β −
(
1− |z|2β

) 1
β
· n

M |α|
,

|gi(z)| > M,

|z| > M, z ∈ W,

then the operator Gαi,β(z) defined in relation (3.8) belongs to the class Σ.

Corollary 3.3.1. [57] Let the function gi ∈ O1 that satisfies (3.10) and β a real
number, β ≤

∑n
i=1

1
|αi| , where c, α ∈ C, α ̸= 0. If the relation

|c| ≥ |z|2β −
(
1− |z|2β

) 1
β
·

n∑
i=1

1

|αi|
,

|gi(z)| > 1,∀z ∈ W,

then the operator Gαi,β(z) defined in relation (3.8) belongs to the class Σ.

Corollary 3.3.2. [57] Let M ≥ 1 and the function g ∈ O1 that satisfies condition
(3.10), β ∈ R, β ≤ 1

M |α| and c ∈ C. If:

|c| ≥ |z|2β −
(
1− |z|2β

) 1
β
· 1

M |α|
,

|g(z)| > M,

|z| > M,∀z ∈ W,

then the operator Gα,β(z), z ∈ W, belongs to the class Σ.

Corollary 3.3.3. [57] Let the function g ∈ O1 that satisfies condition (3.10), β ∈ R,
β ≤ 1

|α| and c, α ∈ C, α ̸= 0.
If:

|c| ≥ |z|2β −
(
1− |z|2β

) 1
β
· 1

|α|
,

|g(z)| > 1,∀z ∈ W,

then the operator Gα,β(z), z ∈ W belongs to the class Σ.
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We will next give the conditions for the membership of the integral operator
Gβ(z) in the class Σ.

Theorem 3.3.9. [58] Let α ∈ C, ℜ(α) > 0 and k ∈ O. If k satisfies the inequalities

|z|2ℜ(α) − 1

ℜ(α) · |z|2ℜ(α)
·
∣∣∣∣ k′′(z)z · k′(z)

∣∣∣∣ > 1,∀z ∈ W,∣∣∣∣ k′′(z)zk′(z)

∣∣∣∣ > ℜ(α) · |z|,∀z ∈ W, (3.12)

then, for any complex number β with ℜ(β) ≤ ℜ(α), the operator

Gβ(z) =

{
β

∫ z

1

t−β−1 · k′(t)dt
} 1

β

,

belongs to the class Σ.

Next, we will give the conditions for the univalence of the operator Gαi,β(z) in
the class Σ.

Theorem 3.3.10. [58] Let gi defined by

gi(z) = z +
∞∑

k=j+1

bik
zk
, |z| > 1, (3.13)

from the class Vj, i ∈ {1, 2, ...n}, n ∈ N∗, j ∈ N∗
1.

If |gi(z)| ≥ Mi,Mi ≥ 1, z ∈ W , then the operator Gαi,β(z) defined in relation (3.8)
is in the class Σ,

ℜ(α) ≤
n∑

i=1

1

Mi|αi|
, (3.14)

and ℜ(β) ≤ ℜ(α), α, β ∈ C.

Corollary 3.3.4. [58] Let gi defined in (3.13) from the class Vj, i ∈ {1, 2, ...n},
n ∈ N∗, j ∈ N∗

1.
If |gi(z)| ≥M,M ≥ 1, z ∈ W , then the operator Gαi,β(z) defined in relation (3.8) is
in the class Σ, and

ℜ(α) ≤ 1

M |α|
,

ℜ(α) ≤
n∑

i=1

1

M |αi|
,ℜ(β) ≤ ℜ(α), αi, β ∈ C.

Corollary 3.3.5. [58] Let gi defined in relation (3.13) from the class Vj, i ∈ {1, 2, ...n},
n ∈ N∗, j ∈ N∗

1.
If |gi(z)| ≥ M,M ≥ 1, z ∈ W , then the operator Gα,β(z) defined in relation (3.8)
belongs to class Σ, and

ℜ(α) ≤ n

M |α|
,ℜ(β) ≤ ℜ(α), α, β ∈ C.
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Corollary 3.3.6. [58] Let gi defined in (3.13) from the class V2, i ∈ {1, 2, ...n},
n ∈ N∗.
If |gi(z)| ≥ M,M ≥ 1, z ∈ W , then the operator Gα,β(z) defined in relation (3.8)
belongs to class Σ, and

ℜ(α) ≤ n

M |α|
,ℜ(β) ≤ ℜ(α), α, β ∈ C.

Corollary 3.3.7. [58] Let gi defined in (3.13) from the class V2, i ∈ {1, 2, ...n},
n ∈ N∗.
If |gi(z)| ≥ 1, z ∈ W , then the operator Gα,β(z) defined in relation (3.8) belongs to
class Σ, and

ℜ(α) ≤ n

|α|
,ℜ(β) ≤ ℜ(α), α, β ∈ C.

Theorem 3.3.11. [58] Let gi defined in (3.13) from the class Vj,µi
, i ∈ {1, 2, ...n},

n ∈ N∗, j ∈ N∗
1.

If |gi(z)| ≥ Mi,Mi ≥ 1, z ∈ W , then the operator Gαi,β(z) defined in relation (3.8)
belongs to class Σ, and

ℜ(αi) ≤
n∑

i=1

1

(1 + µi)Mi|αi|
,ℜ(β) ≤ ℜ(αi), αi, β ∈ C.

Corollary 3.3.8. [58] Let gi defined in (3.13) from the class Vj,µi
, i ∈ {1, 2, ...n},

n ∈ N∗, j ∈ N∗
1.

If |gi(z)| ≥ M,M ≥ 1, z ∈ W , then the operator Gαi,β(z) defined in relation (3.8)
belongs to class Σ, and

ℜ(αi) ≤
n∑

i=1

1

(1 + µi)M |αi|
,ℜ(β) ≤ ℜ(αi), αi, β ∈ C.

Corollary 3.3.9. [58] Let gi defined in (3.13) from the class Vj,µi
, i ∈ {1, 2, ...n},

n ∈ N∗, j ∈ N∗
1.

If |gi(z)| ≥ M,M ≥ 1, z ∈ W , then the operator Gα,β(z) defined in relation (3.8)
belongs to class Σ, and

ℜ(α) ≤
n∑

i=1

1

(1 + µi)M |α|
,ℜ(β) ≤ ℜ(α), α, β ∈ C.

Corollary 3.3.10. [58] Let gi defined in (3.13) from the class Vj,µ for n ∈ N∗,
j ∈ N∗

1.
If |gi(z)| ≥ M,M ≥ 1, z ∈ W , then the operator Gα,β(z) defined in relation (3.8)
belongs to class Σ, and

ℜ(α) ≤ n

(1 + µ)M |α|
,ℜ(β) ≤ ℜ(α), α, β ∈ C.
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Corollary 3.3.11. [58] Let gi defined in (3.13) from the class V2,µi
for i ∈ {1, 2, ...n},

n ∈ N∗.
If |gi(z)| ≥ M,M ≥ 1, z ∈ W , then the operator Gαi,β(z) defined in relation (3.8)
belongs to class Σ, and

ℜ(αi) ≤
n∑

i=1

1

(1 + µi)M |αi|
,ℜ(β) ≤ ℜ(αi), αi, β ∈ C.

Corollary 3.3.12. [58] Let gi defined in (3.13) from the class V2,µ for n ∈ N∗.
If |gi(z)| ≥ M,M ≥ 1, z ∈ W , then the operator Gα,β(z) defined in relation (3.8)
belongs to class Σ, and

ℜ(α) ≤ n

(1 + µ)M |α|
,ℜ(β) ≤ ℜ(α), α, β ∈ C.

Corollary 3.3.13. [58] Let gi defined in (3.13) from the class V2,µ for n ∈ N∗.
If |gi(z)| ≥ 1, z ∈ W , then the operator Gα,β(z) defined in relation (3.8) belongs to
class Σ, and

ℜ(α) ≤ n

(1 + µ)|α|
,ℜ(β) ≤ ℜ(α), α, β ∈ C.

Theorem 3.3.12. [58] Let gi defined in (3.13) from the class Σj(pi), i ∈ {1, 2, ...n},
n ∈ N∗, j ∈ N∗

1.
If |gi(z)| ≥ Mi,Mi ≥ 1, z ∈ W , then the operator Gαi,β(z) defined in relation (3.8)
belongs to class Σ, and

ℜ(αi) ≤
n∑

i=1

1

(1 + pi)Mi|αi|
,ℜ(β) ≤ ℜ(αi), αi, β ∈ C.

Corollary 3.3.14. [58] Let gi defined in (3.13) from the class Σj(pi), i ∈ {1, 2, ...n},
n ∈ N∗, j ∈ N∗

1.
If |gi(z)| ≥ M,M ≥ 1, z ∈ W , then the operator Gαi,β(z) defined in relation (3.8)
belongs to class Σ, and

ℜ(αi) ≤
n∑

i=1

1

(1 + pi)M |αi|
,ℜ(β) ≤ ℜ(αi), αi, β ∈ C.

Corollary 3.3.15. [58] Let gi defined in (3.13) from the class Σj(pi), i ∈ {1, 2, ...n}, n ∈
N∗, j ∈ N∗

1.
If |gi(z)| ≥ M,M ≥ 1, z ∈ W , then the operator Gα,β(z) defined in relation (3.8)
belongs to class Σ, and

ℜ(α) ≤
n∑

i=1

1

(1 + pi)M |α|
,ℜ(β) ≤ ℜ(α), α, β ∈ C.
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Corollary 3.3.16. [58] Let gi defined in (3.13) from the class Σj(pi), i ∈ {1, 2, ...n},
n ∈ N∗, j ∈ N∗

1.
If |gi(z)| ≥ M,M ≥ 1, z ∈ W , then the operator Gαi,β(z) defined in relation (3.8)
belongs to class Σ, and

ℜ(αi) ≤
n∑

i=1

1

(1 + p)M |αi|
,ℜ(β) ≤ ℜ(αi), αi, β ∈ C.

Corollary 3.3.17. [58] Let gi defined in (3.13) from the class Σj(p), i ∈ {1, 2, ...n},
n ∈ N∗, j ∈ N∗

1.
If |gi(z)| ≥ M,M ≥ 1, z ∈ W , then the operator Gα,β(z) defined in relation (3.8)
belongs to class Σ, and

ℜ(α) ≤ n

(1 + p)M |α|
,ℜ(β) ≤ ℜ(α), α, β ∈ C.

Corollary 3.3.18. [58] Let gi defined in (3.13) from the class Σ2(p), i ∈ {1, 2, ...n},
n ∈ N∗, j ∈ N∗

1.
If |gi(z)| ≥M,M ≥ 1, z ∈ W , then the integral operator Gαi,β(z) defined in relation
(3.8) belongs to class Σ, and

ℜ(αi) ≤
n∑

i=1

1

(1 + p)M |αi|
,ℜ(β) ≤ ℜ(αi), αi, β ∈ C.

Corollary 3.3.19. [58] Let gi defined in (3.13) from the class Σ2(p), i ∈ {1, 2, ...n},
n ∈ N∗.
If |gi(z)| ≥ M,M ≥ 1, z ∈ W , then the operator Gα,β(z) defined in relation (3.8)
belongs to class Σ, and

ℜ(α) ≤ n

(1 + p)M |α|
,ℜ(β) ≤ ℜ(α), α, β ∈ C.

Corollary 3.3.20. [58] Let gi defined in (3.13) from the class Σ2(p), i ∈ {1, 2, ...n},
n ∈ N∗.
If |gi(z)| ≥ 1, z ∈ W , then the operator Gα,β(z) defined in relation (3.8) belongs to
class Σ, and

ℜ(α) ≤ n

(1 + p)|α|
,ℜ(β) ≤ ℜ(α), α, β ∈ C.

3.4 Stellarity and convexity of the operator Gαi,1(z)

We will define the operator Gαi,1(z) =
∫ z

1
t−2
∏n

i=1

(
t

gi(t)

) 1
αi dt. This operator is

also a generalization of the operator Fαi,β(z), defined in [71].
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Theorem 3.4.1. [54] Let gi ∈ O1, αi ∈ C, i ∈ {1, ..., n}.
If

ℜ
(
zg′i(z)

gi(z)

)
< 1, (3.15)∣∣ℜ(z)∣∣ > ∣∣Im(z)
∣∣,

and
ℜ(z4) > 0, z ∈ W,

then Gαi,1(z) belongs to the class O∗
1(0).

To simplify the writing, we will denote G(z) in place of Gαi,1(z).

Theorem 3.4.2. [54] Let i ∈ {1, 2, ..., n}, αi ∈ C, and gi ∈ O(γi), 0 ≤ γi < 1.
If 0 <

∑n
i=1

1
αi
(1− γi) ≤ 1, z ∈ W , and:

|ℜ(z)| > |Im(z)| ,

ℜ
(
−zg

′
i(z)

gi(z)

)
> −γi, z ∈ W, (3.16)

then Gαi,1(z) defined in relation (3.9) belongs to the class O∗
1(µ), where µ =

∑n
i=1

1
αi
(1−

γi).

If we take γi = γ, i ∈ {1, 2, ..., n} in Theorem 3.7.2, we obtain the following
corollary.

Corollary 3.4.1. [54] Let gi ∈ O1(γ), 0 ≤ γ < 1, αi ∈ C, i ∈ {1, 2, ..., n}. If
0 <

∑n
i=1

1
αi

≤ 1
1−γ

, and

|ℜ(z)| > |Im(z)|

ℜ
(
−z · g′i(z)
gi(z)

)
> −γ, ∀z ∈ W,

then Gαi,1(z) defined in relation (3.9) is stellar of order µ, where µ = (1−γ)
∑n

i=1
1
αi
.

Theorem 3.4.3. [54] Let gi ∈ Ok(γi), 0 ≤ γi < 1, i ∈ {1, 2, ..., n}, αi ∈ C. If
0 <

∑n
i=1

1
αi

· 2γi ≤ 1 and
|ℜ(z)| > |Im(z)| ,

ℜ(z4) > 0,∀z ∈ W,

then Gαi,1(z) defined in relation (3.9) belongs to the class O∗
k(µ), where µ =

∑n
i=1

1
αi
·

2γi.

Letting γi = γ, i ∈ {1, 2, ..., n} in Theorem 3.7.3, we obtain the following corol-
lary.
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Corollary 3.4.2. [54] Let gi ∈ Ok(γ),−1 ≤ γ < 1, i ∈ {1, 2, ..., n}, αi ∈ C. If
0 <

∑n
i=1

1
αi

≤ 1
2·γ ,

|ℜ(z)| > |Im(z)| ,

and
ℜ(z4) > 0,∀z ∈ W,

then Gαi,1(z) given by relation (3.9) is stellar of order µ, where µ = 2γ ·
∑n

i=1
1
αi
.

3.5 Properties of the coefficients of the operator

E(z)

For the integral operator Gαi,β(z) defined in relation (3.8), we take the particular
case: β = 1, αi = 1.

For simplicity, we will write E(z) instead of G1,1(z), that is

E(z) =

∫ z

1

t−1−1

(
t

g(t)

)
dt =

∫ z

1

1

t · g(t)
dt (3.17)

Condition (3.4) can be rewritten as follows:

ℜ
(
−z · g′(z)
g(z)

)
> −1,

ℜ
(
1 +

z · g′(z)
g(z)

)
< 2,

1

ℜ
(
1 + z·g′(z)

g(z)

) > 1

2
.

Taking into account the condition from relation (1.3), that is 1 < |z| < ∞, we
obtain:

ℜ(z2) > 1.

We can easily conclude that if 0 ≤ γ < 1, then:

5− γ

2
> 2 ⇒ 1− γ

2
> 0. (3.18)

Theorem 3.5.1. [56] Let g ∈ O1(γ). If

−ℜ
{
z · E ′′′(z)

E ′′(z)

}
> 0,

then E(z) ∈ O∗
1(0), where E(z) is the integral operator given by relation (3.17).
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Corollary 3.5.1. [56] Let g ∈ O1(γ). If

ℜ
{
−z · E

′′′(z)

E ′′(z)
− 2

}
>

1− γ

2
,

then E(z) ∈ O∗
1(0), where E(z) is the operator from relation (3.17).

We will consider a few examples.

Example 3.5.1. [56]

For meromorphic, normalized, and injective functions g, from relation (1.3):

g(z) = z +
∞∑
k=3

bk
zk
, 1 < |z| <∞,

let bk = 0. Then we obtain
g(z) = z. (3.19)

We want to check if the conditions of Theorem 3.5.1 are satisfied. We will find the
new forms of E(g(z) = z), E ′(g(z) = z), E ′′(g(z) = z), and E ′′′(g(z) = z).

Applying relation (3.19) in relation (3.17), we have

E(g(z) = z) =

∫ z

1

1

t2
dt = 1− 1

z
. (3.20)

After successive differentiation of E(z) defined in relation (3.20), we obtain:

E ′(g(z) = z) =
1

z2
,

E ′′(g(z) = z) = − 2

z3
, (3.21)

E ′′′(g(z) = z) =
6

z4
. (3.22)

We will multiply relation (3.22) by z and divide the result by relation (3.21):

z · E ′′′(g(z) = z)

E ′′(g(z) = z)
= −3.

Thus we obtain

−ℜ

{
z · E ′′′(g(z) = z)

E ′′(g(z) = z)

}
= 3 > 0.

Thus, E(g(z) = z) ∈ O∗
1(0).

We check if the conditions from Corollary 3.5.1 hold. We have that

z · E ′′′(g(z) = z)

E ′′(g(z) = z)
+ 2 = −3 + 2 = −1,

−ℜ

{
z · E ′′′(g(z) = z)

E ′′(g(z) = z)
+ 2

}
= 1 > 0,

thus E(g(z) = z) ∈ O∗
1(0).
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Example 3.5.2. [56]

For meromorphic, normalized, and injective functions g, from relation (1.3):

g(z) = z +
∞∑
k=3

bk
zk
, 1 < |z| <∞,

let k = 3 and bk = 1. We thus find the function:

g(z) = z +
1

z3
. (3.23)

We want to check if Theorem 3.5.1 holds in this case, finding the new forms of
E(g(z)), E ′(g(z)), E ′′(g(z)), and E ′′′(g(z)).

We apply the function g defined above in relation (3.23) to the operator defined
in relation (3.17) and thus we obtain:

E(z) =

∫ z

1

1

t ·
(
t+ 1

t3

)dt = ∫ z

1

t2

t4 + 1
dt. (3.24)

After successive differentiation of E(z) defined in relation (3.24), we obtain:

E ′(z) =
z2

1 + z4
− 1

2
,

E ′′(z) =
2z − 2z5

(1 + z4)2
, (3.25)

E ′′′(z) =
2(1− 12z4 + 3z8)

(1 + z4)3
. (3.26)

We will multiply relation (3.26) by z and divide the result by relation (3.25), thus
obtaining:

z · E ′′′(z)

E ′′(z)
=

2z(1− 12z4 + 3z8)

(1 + z4)3
· (1 + z4)2

2z(1− z4)
,

= −3 +
12

1 + z4
− 8

1− z8
.

(3.27)

It is known that z is a complex number of the form z = a+ib, with a, b ∈ R, |z| >
1, a2 + b2 > 1.

If we take the case where z = 1 + i, we have |z| =
√
2 > 1,

z4 = −4, z8 = 16,

z · E ′′′(z)

E ′′(z)
= −3 +

12

1− 4
− 8

1− 16
= −97

15
= −6.4(6),

−ℜ
{
z · E ′′′(z)

E ′′(z)

}
= +6.4(6) > 0.
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We have obtained that: −ℜ
{

z·E′′′(z)
E′′(z)

}
> 0. Thus, E(z) ∈ O∗

1(0).

We check if Corollary 3.5.1 holds in this case.

z · E ′′′(z)

E ′′(z)
+ 2 = −6.4(6) + 2 = −4.4(6),

−ℜ
{
z · E ′′′(z)

E ′′(z)
+ 2

}
= +4.4(6) > 0.

We obtain:

−ℜ
{
z · E ′′′(z)

E ′′(z)
+ 2

}
> 0.

Therefore, we have that E(z) ∈ O∗
1(0).

3.6 Univalence conditions for the operator Tαi,β(z)

We consider the operator Tαi,β(z) defined by

Tαi,β(z) =

{
β

∫ z

1

t−1−β

n∏
i=1

(
t

gi(t) · egi(t)

) 1
αi

dt

} 1
β

.

This operator is also a generalization of the operator Fαi,β(z) as well as the
operator Gαi,β(z) defined in relation (3.8).

Theorem 3.6.1. [59] Let m > 1, gi ∈ V2,µi
,

gi(z) = z +
∞∑
k=3

bk
i

zk
,∀i = 1, 2, ..., n, n ∈ N∗

and αi, β ∈ C, ℜ(β) ≥ γ, where:

γ =
n∑

i=3

m− 2(µi − 1)

|αi| ·m
,µi > 1, i = 1, 2, ..., n;n ∈ N∗.

If:
|gi(z)| > m, z ∈ W, i = 1, 2, .., n,

then we obtain that the integral operator

Tαi,β(z) =

{
β

∫ z

1

t−1−β

n∏
i=1

(
t

gi(t) · egi(t)

) 1
αi

dt

} 1
β

,

belongs to the class Σ.



Integral transformations for certain classes of univalent functions 65

Theorem 3.6.2. [59] Let m > 1, gi ∈ S(p), (gi defined in Theorem 3.3.2) and:

γ1 =
n∑

i=3

m− 2p+ 2

m · |αi|
, i = 1, 2, ..., n;n ∈ N∗

and p with the properties from relations (1.24) and (1.25), that is∣∣∣∣∣
(
g(z)

z

)′′∣∣∣∣∣ > p, z ∈ W,

∣∣∣∣g′(z)z2
+ 1

∣∣∣∣ ≥ p

|z|j
, j ∈ N∗

1.

If:
|gi(z)| > m, z ∈ W, i = 1, 2, .., n,

then the operator

Tαi,β(z) =

β
∫ z

1

t−1−β

n∏
i=1

(
t

gi(t) · egi(t)

) 1
αi

dt


1
β

belongs to the class Σ.

3.7 Stellarity and convexity of the operator Tαi,1(z)

In this section, we will introduce the integral operator:

Tαi,β(z) =

{
β

∫ z

1

t−1−β

n∏
i=1

(
t

gi(t) · egi(t)

) 1
αi

dt

} 1
β

, (3.28)

where gi(t) ̸= 0; gi(t) ∈ O1, αi ∈ C∗,∀i ∈ 1, 2, .., n, which is a generalization of the
operator Fαi,β(z) defined in [71] and of the operator Gαi,β(z) defined in (3.8).

For β = 1, the operator Tαi,β(z) becomes

Tαi,1(z) =

∫ z

1

t−2

n∏
i=1

(
t

gi(t) · egi(t)

) 1
αi

dt. (3.29)

The following theorem provides conditions for the belonging of the introduced
operator to the class O∗

1(0).

Theorem 3.7.1. [59] Let gi ∈ O1, αi ∈ C∗, i ∈ {1, ..., n}.
If

ℜ
(
zg′i(z)

gi(z)

)
< 1,ℜ(1 + gi(z)) < 1, (3.30)∣∣ℜ(z)∣∣ > ∣∣Im(z)

∣∣,
and

ℜ(z4) > 0, z ∈ W,

then Tαi,1(z) belongs to the class O∗
1(0).
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The following theorem gives us a condition for the belonging of the operator
Tαi,1(z) to the class O∗

1(µ).

Theorem 3.7.2. [59] For i ∈ {1, 2, ..., n}, let αi ∈ C∗ and gi ∈ O(γi), 0 ≤ γi < 1.
If 0 <

∑n
i=1

1
αi
(1− γi) ≤ 1

|ℜ(z)| > |Im(z)| ,

ℜ (1 + gi(z)) > 1, (3.31)

and

ℜ
(
−zg

′
i(z)

gi(z)

)
> −γi,∀z ∈ W,

then the operator Tαi,1(z) given by relation (3.29) belongs to the class O∗
1(µ),

where µ =
∑n

i=1
1
αi
(1− γi).

If we take γi = γ, i ∈ {1, 2, ..., n} in Theorem 3.7.2, we obtain the following
corollary.

Corollary 3.7.1. [59] For i ∈ {1, 2, ..., n}, let αi ∈ C∗, gi ∈ O1(γ), 0 ≤ γ < 1. If
0 <

∑n
i=1

1
αi

≤ 1
1−γ

,

|ℜ(z)| > |Im(z)| ,

ℜ (1 + gi(z)) > 1,

ℜ
(
−z · g′i(z)
gi(z)

)
> −γ, ∀z ∈ W,

then the operator Tαi,1(z) given by relation (3.29) is starlike of order µ, where
µ = (1− γ)

∑n
i=1

1
αi
.

The following theorem gives us a condition for the belonging of the operator
Tαi,1(z) to the class O∗

k(µ).

Theorem 3.7.3. [59] For i ∈ {1, 2, ..., n}, let αi ∈ C∗ and gi ∈ Ok(γi), 0 ≤ γi < 1.
If 0 <

∑n
i=1

1
αi

· (2− γi) ≤ 1, Tαi,1(z)

|ℜ(z)| > |Im(z)| ,

ℜ(gi(z)) > 1,

ℜ(z4) > 0,∀z ∈ W,

then the operator Tαi,1(z) given by relation (3.29) belongs to the class O∗
k(µ),

where µ =
∑n

i=1
1
αi

· (2− γi).
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Taking γi = γ, i ∈ {1, 2, ..., n} in Theorem 3.7.3, we obtain the following result:

Corollary 3.7.2. [59] For i ∈ {1, 2, ..., n}, let αi ∈ C∗ and gi ∈ Ok(γ),−1 ≤ γ < 1.
If 0 <

∑n
i=1

1
αi

≤ 1
2−γ

,

|ℜ(z)| > |Im(z)| ,

ℜ(gi(z)) > 1,

and
ℜ(z4) > 0,∀z ∈ W,

then the operator Tαi,1(z) given by relation (3.29) is starlike of order µ, where
µ = (2− γ) ·

∑n
i=1

1
αi
.



References

[1] M. Acu, Operatorul integral Libera-Pascu şi proprietăţile acestuia cu privire
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[6] J. Becker, Löwnersche Differentialgleichung und Schlichtheits-Kriterion, Math.
Ann. Vol. 202, Nr. 4(1973), pp. 321-335.

[7] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math.
Soc. Vol. 135 (1969), pp. 129-446.
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sităţii Oradea, Fasc. Matematica, Tom XXII (2015), Issue No. 2, pp. 69-72.

[23] P. Dicu, R. Bucur, D. Breaz, Mapping properties of a new Integral Operator,
GFTA (2016).
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[75] E. Study, Vorlesungen über ausgewählte Gegenstande der Gerometrie, 2. Heft,
Teubner, Leipzig und Berlin, (1913).

[76] https://www.symbolab.com/solver?or=calcButton
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