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Introduction

The optimization theory (alternatively called optimization or mathematical programming) is one

of the most important branches of mathematics. It encompasses many areas of research with a wide range

of applications in domains such as statistics, empirical sciences, computer science, engineering, economics,

finance and even risk management. The origin of optimization theory may be traced in time around the

1940s, when Leonid Kantorovich developed the linear programming. Later, together with the apparition

of the simplex method of George Dantzig, and the development of the duality theory [54], mathematics

started to know a rapid progress. The ideas coming from linear programming inspired the development

of the theory of convex functions, therefore, the works of Fenchel [48], Moreau [69] and Rockafeller [79]

can be considered the cornerstones of convex analysis.

The study of classical optimization problems made as a result another step forward through the

development of convex duality. Duality under all its three shapes, Lagrance, Fechel and Fechel-Lagrange,

is an extensively studied method in all the areas of applied mathematics. As we shall see during this work

we will also often employ this method in order to provide answers for the study of mathematical models

in economy, insurance and risk management.

Economics is closely enough linked to optimization. In recent years there has been a growing

attempt to use mathematical methods borrowed form economics and engineering for providing interpre-

tations of the diversity of life. Conversely, different economical processes involving risk management can

not be solved without employing different mathematical technics. Lately, significant progress has been

made in developing the concept of a risk measure from both a theoretical and a numerical point of view.

The first axiomatic way of defining risk measures has been given by Artzner, Delbaen, Eber and Heath in

[2] and refers to coherent risk measures. Nevertheless, from the pioneer paper of Artzner et all., the litera-

ture on risk measures has known a rapid growth so it has become a standard in modern risk management

to assess the riskiness of a portfolio by means of convex risk measures. The latter have been introduced by

Föllmer and Schied in [52]. Rockafellar et.all. [81, 83, 84], being stipulated as an alternative class of risk

functions, called deviation measures or general deviation measures, which are not translation invariant

due to the fact that they are based on the difference X−E(X). The reader can find examples of coherent

and convex risk measures or deviation measures in [31, 40, 41, 49, 50, 52, 75, 81, 82, 83, 84, 88, 93], some

of them being objects of the investigations we make in the present thesis.

The present thesis is developed towards two main areas of research. In the first part we provide

dual representation for monotone and invariant hulls of convex risk functions as well as subdifferential,
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2 Introduction

and conjugate formulas for the most common risk measures presented in literature by means of two

distinct techniques: the duality approach and by means of an utility model. The results provided in this

direction have a wide range of applications in the risk management, portfolio optimization and in the

financial field.

The other direction in this work is dedicated to a an area of research situated at the confluence of

set-valued and nonsmooth analysis. Working with set-valued maps instead of functions became a necessity

in modern analysis. Starting from the pioneering papers of Hahn and Banach [13],[57] which entirely

revolutionized the functional analysis, there has been a good amount of interest in providing extension

results not only for functionals and vector-valued functions but also for set-valued maps. Therefore

through chapter 4, we aim to fill in this gap in the field and we provide some extension results for linear

continuous operators dominated by convex set-valued maps under generalized interiority type conditions.

We present also some applications under the form of existent results for weak and strong subgradients of

set-valued maps.

One of the most widely used set of subgradients (subdifferential), appropriate for applications

to optimization, is the one that first appeared in the context of convex analysis. From this model on,

several types of subdifferentials appeared. Apart from the classical concept of Frèchet subdifferentiability,

we mention also Mordukhovich, Iofee, Clark and the so called Dini Hadamard subdifferential. For the

Dini-Hadamard-like ε-subdifferential we have recently provided in [10] calculus rules for the difference

of important classes of nonsmooth functions. For more details on subgradients (subdifferential) of vector

functions see the recent books of Mordukhovich [67, 68].

This thesis consists of four chapters, which are briefly presented in the following, underlining our

most important results.

The first Chapter, as the title suggests, is dedicated to preliminary notions, conventional no-

tations and a brief overview of the most important definitions and results from convex and functional

analysis. The background for those notions is due to the monographs [24, 80] for finite dimensional spaces,

while for the infinite dimensional case we mention [1, 27, 46, 86, 97].

In Chapter 2, we provide dual representations for monotone and cash invariant hulls of risk

functions. In order to make this manuscript self contained in the first two subsections we simply draw the

outlines for Lagrange duality and we fix the terminology for risk functions. Therefore in Section 2.1 we

remind the most important generalized interiority notions which interfere in the expression of regularity

conditions, QC1 − QC4. We use the above mentioned regularity conditions in order to ensure strong

duality between the couple of problems (P ) and (D). The Section 2.2 entitled, ”Risk functions. Definitions

and economic interpretations”, consists of two subsections: the first one is dedicated to definitions and

properties of Lp spaces (for 1 ≤ p ≤ +∞) while the last one is developed around the definition of

risk function. The cornerstone of the investigations made in Chapter 2 and Chapter 3 is embodied in

the notion of risk function. Definition 2.2.6 is an improved, refined adaptation of what the literature

proposed in the field of risk analysis. Risk functions do not only have a crucial role in optimization under

uncertainty but also a wide range of applications especially when dealing with the losses that may occure

in finance and insurance industry. This is the reason why we analyze here the properties of risk functions

from both a mathematical and an economical point of view.
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The results of Section 2.3 are motivated by the paper of Filipović and Kupper [49], where for a

convex risk function the so-called monotone cash-invariant hull has been introduced which is actually

the greatest monotone and cash-invariant function majorized by the risk function in discussion. This

function has been formulated in Definition 3, by making use of the infimal convolution. In other words,

the monotone cash-invariant hull at a given point is nothing else than the optimal objective value of a

convex optimization problem. Having as a starting point this observation, we give a dual representation

of the monotone and cash-invariant hull by employing the Lagrange duality theory along with a quali-

fication condition, under the hypothesis that the risk function is lower semicontinuous. This guarantees

the vanishing of the duality gap and, implicitly, the validity of the dual representation. The examples

considered in [49] are discussed from this new point of view. Furthermore, different to the approach in

[49, Subsection 5.3], the use of the strong duality theory allows us to guarantee the attainment of the

supremum in all the Examples 2.3.9 - 2.3.14.

In the last section of this chapter we deal with the same problem as in Section 2.3, but by

considering this time a convex risk function which does not fulfill the lower semicontinuity assumption.

For this function we can easily establish the monotone hull and we can also give a dual representation

for it by making use of the quasi-relative interiority-type qualification condition (QC4). We also refer to

the limitations of this approach in the context of the determination of the monotone cash-invariant hull

for the function in discussion.

The author’s achievements within this chapter were published in [34] and are embodied in The-

orems: 2.3.4, 2.3.7, Corollaries: 2.3.5, 2.3.6, Remarks: 2.3.8, 2.3.15, 2.4.1 and Examples: 2.3.9, 2.3.10,

2.3.11, 2.3.12, 2.3.13, 2.3.14. Also Section 2.4 consists entirely of original results but since this part fur-

nished a limitation of the approach in the context of the determination of the monotone cash-invariant

hull of a risk function, which is no longer lower semicontinuous, we can not punctually indicate a simple

mathematical result which embodies the whole rationality. Nevertheless, the discussion provided during

this section is based on viable mathematical results and remarks.

The third Chapter starts also with an introductory section. This time we aim to provide the

reader with all the necessary tools to follow the conjugate and the subdifferential calculus developed

further, under the context of risk measures. Therefore, subsection 3.1.1 collects the most important

properties of conjugate functions since the conjugates play a central role in the development of the

dual representations of risk functions. Section 3.1.2 is dedicated to the (convex)subdifferentia notion,

since in economical applications having manageable subdifferential formulae for risk functions is vital for

solving some classes of portfolio optimization problems. Finally, the last part of Section 3.1 joins both

the conjugate and the subdifferential properties for sublinear functions, since the positively homogeneous

property of convex functions often makes the difference between the most important classes of risk

function, that is the convex and the coherent ones.

One of the most challenging topics in convex analysis is the formulation of optimality conditions

for portfolio optimization problems with a convex risk measure as objective function. Since for this class

of functions differentiability is not necessarily guaranteed, one will be forced to make use of the convex

subdifferential when characterizing optimality (see for instance [32]). This is why being in the possession

of easily handleable formulae for the subdifferential of the risk measures, is important to be taken in
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consideration in this context. Among the most relevant literature on this topic one has to mention

[75, 81, 83, 84, 88].

We propose further two distinct ways of providing subdifferential formulae for convex risk function,

by means of an utility function on one hand and combining classical results of convex analysis and duality

theory on the other hand. We discuss and determine during this chapter the conjugate and subdifferential

formulae for the case of usual risk functions and also for their natural extensions, which can easily interfere

in some standard optimization problems.

In Section 3.2 we consider a generalized convex risk measure defined via a so-called utility function

and associated with the Optimized Certainty Equivalent (OCE), a notion introduced and explored in

[15, 16]. This convex risk measure is expressed as an infimal value function, thus we provide first of all a

weak sufficient condition for the attainment of the infimum in its definition. Further, we give formulae for

its conjugate function (Theorem 3.2.6) and its subdifferential (Theorem 3.2.8). The generalized convex

risk measure we consider has the advantage that, for some particular choices of the utility function, it

leads to some well-known convex risk measures. Consequently, we are able to derive, the conjugate and

subdifferential formulae for the entropic risk measure, in Subsection 3.2.1 and the worst-case risk measure

in Subsection 3.2.2.

Unfortunately a lot of risk functions, widely spread in practical applications, can be neither

described by means of utility functions, nor inscribed in the general background of coherent or expectation

bounded risk measures. For all those classes of functions the only hope for providing conjugate and

subdifferential formulae lies in classical computation, using methods based on standard results of convex

analysis, and this is what we do during our third section. What we present there is in fact a pattern

which can be successfully applied even for risk functions which are not characterized by very good

mathematical properties like positive homogeneity, monotonicity and cash invariance. We provide under

this context dual representations and handleable formulas for the subdifferential of important generalized

risk functions:

- the generalized mean deviation

ρ(X) = ‖X − E(X)‖ap − E(X), ∀X ∈ Lp, p ∈ [1,∞] and a ≥ 1,

as introduced in [31] and

- the generalized mean upper/lower deviations of order p from a target,

ρτ±(X) = ‖(X − τ)±‖ap − E(X), ∀X ∈ Lp, p ∈ [1,∞], a ≥ 1 and τ ∈ R.

Moreover in order to exemplify the developments made during this Chapter we discuss in Section 3.4,

the case of the Conditional Value at Risk (CVaR) from both of the perspectives presented above, namely

by means of an utility model, on one hand and by means of the duality approach, on the other hand. In

Section 3.4.2 we first derive the conjugate of CV aR, starting from the conjugate of a more general risk

function -the so called Generalized Conditional Value at Risk (GCVaR) (see [65]). Having this conjugate,

one can easily obtain, in terms of relation (3.2), the corresponding subdifferential formula. In the last
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section we use the method developed in Section 3.2, and we deliver, by means of an appropriate utility

function, both the conjugate and the subdifferential formulae of the Conditional Value-at-risk.

The author’s achievements within this area of research are synthesized as follows: Theorems: 3.2.6,

3.2.7, 3.2.8, 3.3.3, 3.3.5, 3.3.18, 3.3.19, 3.3.21, 3.3.22, 3.3.23, 3.3.24, 3.4.4, 3.4.7, Corollaries: 3.4.5, 3.4.6,

Remarks: 3.2.1, 3.2.3, 3.3.4, 3.3.6, 3.3.7, 3.3.13, Propositions: 3.2.2, 3.2.5, Lemma 3.3.1 and the examples

provided in the Subsections 3.2.1, 3.2.2 and 3.4.3 respectively. The results of this chapter are partially

included into 5 papers, see [6], [7], [9], [11], [34].

In Chapter 4 we aim on one hand to give new extension theorems for convex set-valued maps

and on the other hand we intend to emphasize their applicability in the field of nonsmooth analysis. The

Sections 4.1, 4.2 and 4.3 are introductory ones. We provide here our motivation for choosing this subject

as well as the general background for the study. Section 4.3 briefly summarizes the most important

definitions, notions and properties for set-valued maps. For a comprehensive study of set-valued analysis

we refer to the books of Aubin and Frankowska [3] and Aubin and Ekeland [4].

Section 4.4 consists entirely of original results. This part of the work is motivated by a series

of mistakes done in the pioneering papers concerning extension results for set-valued maps see [38, 70,

71]) which were recently underlined by Zălinescu in [96]. The Hahn-Banach theorem, in its geometrical

(separation theorems) or analytical form, is a powerful tool which resonates through important fields of

mathematics such as: functional analysis, convex analysis and optimization theory. Generalizations and

variants of the extension theorems of dominated maps and implicitly generalized Hahn-Banach theorem,

were developed in different directions in the past. Unfortunately most of those extensions were made only

in the context of linear spaces, the case of topological spaces being superficially discussed. During this

section we give new extension theorems for convex set-valued maps in partially ordered topological spaces,

Lagrange multiplier theorems and sandwich theorems under weaker topological interiority assumptions,

namely the strong quasi relative interior (sqri) ones .

Section 4.5 is devoted to applications, namely existence results for strong subgradients of set-

valued maps. After a brief summary concerning the different notions of subgradients appeared in the

field, we give existence results for two different approaches of the concept of subgradients of set-valued

maps the one imposed by Borwein in [19] on one hand, and the recent ones introduces by E. Hernadez

and L.R Marin in [58] on the other hand. We also discuss the connections between them.

And finally, the last section provides some norm preserving extension results for real valued

closed convex processes. More precisely, Theorem 61 and Theorem 62 extend Hahn’s extension theorems

for continuous linear functionals to the general framework of set-valued analysis. As a direct consequence

of those results, we characterize in Theorem 63 the elements of best approximation in normed linear

spaces by elements of closed convex cones using closed convex processes.

The author’s original contributions within this area of research are included in Theorems: 4.4.3,

4.4.8, 4.4.11, 4.5.7, 4.5.8, 4.5.9, 4.6.1, 4.6.2, 4.6.3, Corollaries: 4.4.10, 4.5.10, Remarks: 4.4.4, 4.4.5, 4.4.9,

4.5.3, 4.5.6, 4.5.11 and Examples: 4.4.6, 4.4.7, 4.4.12. The above results can be partially found in [8], [10]

and [12].
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Cluj- Napoca, to the Institute for Doctoral Studies and to the Sectoral Operational Programme Human

Resources Development, Contract POSDRU 6/1.5/S/3 - “Doctoral studies: through science towards so-

ciety” for the pleasant research environment they have provided me and for the financial support.

Last but not least, I wish to thank to my parents for unconditional help, encouragements and

understanding. Above all, I don’t have enough words to thank to my husband Cristian and to my son
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Chapter 1

Preliminary results and notational

conventions

In this chapter we collect some standard definitions, results and notational conventions from

convex and functional analysis, which will be frequently used throughout this work. For the background on

functional analysis we refer to [1, 47, 85, 86] while for convex analysis we consider [24, 25, 27, 45, 46, 80, 97].

1.1 Preliminaries on sets

In this section we recall the definitions and main properties of set. We reminde the notions of

convex and conical hulls and we present briefly the main classes of cones which interfere in convex analysis

(the normal cone, Bouligand tangent cone and the asymptotic cone).

1.2 Preliminaries on functions

Let X be a separated locally convex space and X ∗ its topological dual space then 〈x∗, x〉 denotes

the value of the linear continuous functional x∗ ∈ X ∗ at x ∈ X . For a given set C ⊆ X , we consider its

indicator function

δC : X → R := R ∪ {±∞}, and its support function σC : X ∗ → R.

For a given function f : X → R we denote by dom f its effective domain and by epi f its

epigraph, respectively. We recall further the definitions and main properties of proper, convex (concave),

positively homogeneous, lower semicontinuous (upper semicontinuous) and asymptotic functions. Having

fi : X → R, i = 1, . . . , n, given proper functions we denote by f1�...�fn : X → R, f1�...�fn(x) :=

inf {
∑n

i=1 fi(xi) :
∑n

i=1 xi = x} , forall x ∈ X , their infimal convolution. The main properties of infimal

convolution are also stated.

7



Chapter 2

Dual representations for monotone and

cash invariant hulls of risk functions

2.1 Short summary on Lagrange duality

First we turn our attention to the Lagrange duality for an optimization problem with geometric

and cone constraints, as this is the key element for our development during the last two sections of this

chapter.

The intention for this section is to create, as the title suggests, a short summary on Lagrange

duality, starting with classical results of convex analysis (see [26, 27, 46, 80, 86, 97]) and ending with the

most recent results regarding regularity conditions (see [30, 28, 29, 37, 55]).

We present in this section the definitions of the main generalized interiority notions, i.e. algebraic

interior, strong quasi-relative interior, quasi-relative interior and quasi interior. We give also some gener-

alized interiority type qualification conditions, which will be used several times in this work in order to

guarantee strong duality between different classes of problems.

2.2 Risk Functions. Definitions and economic interpretations.

Risk functions have not only a crucial role in optimization under uncertainty but they also have

a wide range of applications especially when dealing with the losses that my be incurred in finance and

insurance industry. Since the entire theory of risk and uncertainty is developed in probability spaces, and

lately it become a standard to work whit Lp spaces, 1 ≤ p ≤ +∞, we start this section with a small

overview on Lp spaces for p > 0. We use for this background the books of Folland [51] and Aliprantis [1].

2.2.1 LP spaces-short overview

Throughout this work, we assume that the probability space (Ω,F,P), is atomless (i.e. is rich

enough to support a random variable with a continuous distribution). Here Ω denotes the space of future

8



Dual representations for monotone and cash invariant hulls of risk functions 9

states ω, F is a σ-algebra on Ω and P is a probability measure on (Ω,F).

For a measurable random variable X : Ω→ R ∪ {+∞} the expectation value with respect to P is

defined by E(X) :=
∫

ΩX(ω) dP(ω). Whenever X takes the value +∞ on a subset of positive measure we

have E(X) = +∞. The essential supremum of X, which represents the smallest essential upper bound

of the random variable, is denoted essupX. Similarly the essential infimum is defined by esinf X :=

− essup(−X). The characteristic function of a set G ∈ F is 1G : Ω→ R.
For a measurable random variable X : Ω → R we consider for 0 < p < +∞, the norm ‖X‖p =(∫

Ω |X(ω)|pdP
) 1

p = (E(|X|p))
1
p and we define the spaces

Lp(Ω,F,P,R) :=

{
X : Ω→ R : X is measurable,

∫
Ω
|X(ω)|pdP(ω) < +∞

}
.

To complete the picture of Lp spaces, we introduce the space of essentially bounded random

variables, corresponding to the limiting value p =∞, namely

L∞(Ω,F,P,R) := {X : Ω→ R : X is measurable, essup |X| < +∞} ,

which is being equipped with the norm ‖X‖∞ = essup |X|.

Theorem 2.2.2 [1, 51] For 1 ≤ p ≤ ∞, the space Lp equipped with the norm ‖ · ‖p is a Banach space.

We denote the topological dual space of Lp by (Lp)∗ and for p ∈ [1,∞) one has that (Lp)∗ = Lq,

where q ∈ (1,∞] fulfills q = p/(p − 1) (with the convention 1/0 = ∞). In what concerns (L∞)∗, the

topological dual space of L∞, can be identified with ba, the space of all bounded finitely additive measures

on (Ω,F) which are absolutely continuous with respect to P. This is usually much bigger than L1, i.e.

L1 ⊂ (L∞)∗. But endowing L∞ with the weak topology σ∞(L∞, L1) and L1 with the weak topology

σ1(L1, L∞) one obtains the dual pairing (L∞, σ∞)∗ = (L1, σ1). In the present thesis we will use this

identification whenever we develop duality reasonings.

Each random variable X : Ω→ R can be represented as X = X+ −X−, where X+, X− : Ω→ R
are the random variables defined by

X+(ω) = max{0, X(ω)} and X−(ω) = max{0,−X(ω)}, ∀ω ∈ Ω.

The equalities and inequalities between random variables are to be seen in an almost everywhere

way (a.e.).

2.2.2 Definitions and economic interpretations

In this section we give a formal definition of risk functions and we discuss their properties from

both the mathematical and the economical viewpoints.

The notion we introduce next is in fact an improved, refined definition of what the literature

proposed in the field of risk analysis.
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Definition 2.2.6 We call risk function a proper function ρ : Lp → R, p ∈ [1,∞]. The risk function ρ is

said to be

(i) convex, if: ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ),∀λ ∈ [0, 1],∀X,Y ∈ Lp;

(ii) positively homogeneous, if: ρ(0) = 0 and ρ(λX) = λρ(X),∀λ > 0, ∀X ∈ Lp;

(iii) monotone, if: X ≥ Y ⇒ ρ(X) ≤ ρ(Y ), ∀X,Y ∈ Lp;

(iv) expectation-bounded, if: ρ(X) ≥ −E(X), ∀X ∈ Lp;

(v) cash-invariant, if: ρ(X + a) = ρ(X)− a, ∀X ∈ Lp, ∀a ∈ R;

(vi) a convex risk measure (cf. [52]), if: ρ is convex, monotone and cash-invariant;

(vii) a coherent risk measure (cf. [2]), if: ρ is a positively homogeneous convex risk measure;

(viii) expectation-bounded risk measure (cf. [83, 84]), if: ρ is a positively homogeneous, convex, cash-

invariant and expectation bounded risk function.

In order to avoid confusions we will call convex risk function each risk function which additionally satisfies

only the hypothesis of convexity, as Ruszczynski and Shapiro proposed in [88, 89].

Judging from an economical point of view the elements of Lp, p ∈ [1,∞] can be seen as describ-

ing future net worths, while the value ρ(X) can be understood as a capital requirement for X. Since

the applicability of risk functions in risk management for insurance companies and financial markets is

crucial, we present briefly, the economical significance of all the mathematical properties mentioned in

Definition 2.2.6. Consequently, a convex risk measures guarantees that the capital requirement of the

convex combination of two positions does not exceed the convex combination of the capital requirements

of the positions taken separately. The monotonicity property says that if one has the certitude that Y

will be smaller than X in (almost) every state of the world, than the capital requirement for Y should

be greater than for X. Cash-invariance means that adding a constant amount of money a to X should

reduce the capital requirement for X by a. For the economic interpretation of the other notions given in

Definition 2.2.6 we refer to [2, 43, 52, 53, 65, 75, 77].

Strictly connected with expectation bounded risk measures are Rockafeller’s deviation measures,

which are also defined in this section.

2.3 Dual representations of monotone and cash invariant hulls

Throughout the economical literature one finds a vast variety of risk functions, along the coherent

and convex ones some very irregular ones, which are neither monotone nor cash-invariant, being also

present. In order to overcome the lack of monotonicity or cash-invariance and to provide better tools for

quantifying risk, Filipović and Kupper have proposed in [49] the notions of monotone and cash-invariant

hulls, which are the greatest monotone and, respectively, cash-invariant functions majorized by the risk



Dual representations for monotone and cash invariant hulls of risk functions 11

function in discussion. For the majority of the examples treated in [49] these hulls are not given in their

initial formulation, but tacitly some dual representations of them are used.

In this section we show that these dual representations are nothing else than the dual problems of

the primal optimization problems hidden in the definition of the monotone and cash-invariant hulls and

we also formulate sufficient qualification conditions for the existence of strong duality. This is the premise

for making the dual representations viable. Finally, we discuss the examples from [49] and show that for

those particular situations the qualification conditions are automatically fulfilled, fact which permits the

formulation of refined dual representations.

For the beginning we work in the general setting of a separated locally convex vector space X
with X ∗ its topological dual space. Further, let P be a nonempty convex closed cone in X , Π ∈ X \ {0}
and f : X → R a proper function. The following notions have been introduced in [49] having as a starting

point the corresponding ones in the definition of a convex risk measure.

Definition 2.3.1 The function f is called:

(i) P-monotone, if: x ≥P y ⇒ f(x) ≤ f(y), ∀x, y ∈ X ;

(ii) Π-invariant, if: f(x+ aΠ) = f(x)− a, ∀x ∈ X , ∀a ∈ R.

If X = Lp, P = Lp+ and Π = 1, then one rediscovers in the definition above the monotonicity and

cash-invariance, respectively, as introduced in Definition 2.

Before introducing the following notions we consider the set D := {x∗ ∈ X ∗ : 〈x∗,Π〉 = −1} and

the conjugate of its indicator function, δ∗D.

Definition 2.3.3 For the given function f we call

(i) P-monotone hull of f the function fP : X → R defined as

fP(x) := f�δP(x) = inf{f(y) : y ∈ X , x ≥P y};

(ii) Π-invariant hull of f the function fΠ : X → R defined as

fΠ(x) := f�δ∗D(x) = inf
a∈R
{f(x− aΠ)− a};

(iii) P-monotone Π-invariant hull of f the function fP,Π : X → R defined as

fP,Π(x) := f�δP�δ
∗
D(x) = inf{f(y)− a : y ∈ X , a ∈ R, x ≥P y + aΠ}.

Obviously,

dom fP = dom f + P, dom fΠ = dom f + RΠ

and

dom fP,Π = dom f + P + RΠ.
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Moreover, f is P-monotone if and only if f = fP , while f is Π-invariant if and only if f = fΠ.

In the following we assume that f is a proper and convex function and we provide a dual repre-

sentation for fP,Π, by making use of the convex duality theory. This approach is based on the observation

that the value of the P-monotone Π-invariant hull at a given point is nothing else than the optimal

objective value of a convex optimization problem.

Theorem 2.3.4 (R.I. Boţ, A.R. Frătean (Baias), [34]) Let f : X → R be a proper and convex function

and x ∈ dom f + P + RΠ. If one of the following qualification conditions

∃ (y′, a′) ∈ dom f × R such that y′ + a′Π− x ∈ − intP (2.1)

and

X is a Fréchet space, f is lower semicontinuous and x ∈ sqri(dom f + RΠ + P) (2.2)

is fulfilled, then one has

fP,Π(x) = max
x∗∈−P∗
〈x∗,Π〉=−1

{〈x∗, x〉 − f∗(x∗)}, (2.3)

where by the use of max instead of sup we signalize the fact that the supremum is attained.

The case when the objective functions, f is either P-monotone or Π-invariant is discussed in the

following corollaries.

Corollary 2.3.5 (R.I. Boţ, A.R. Frătean (Baias), [34]) Let f : X → R be a proper, convex and

P-monotone function and x ∈ dom f + P + RΠ. If one of the qualification conditions (2.1) or (2.2) is

fulfilled then one has

fP,Π(x) = fΠ(x) = max
〈x∗,Π〉=−1

{〈x∗, x〉 − f∗(x∗)}. (2.4)

Corollary 2.3.6 (R.I. Boţ, A.R. Frătean (Baias), [34]) Let f : X → R be a proper, convex and f

Π-invariant function and x ∈ dom f + P + RΠ. If one of the qualification conditions (2.1) or (2.2) is

fulfilled then one has

fP,Π(x) = fP(x) = max
x∗∈−P∗

{〈x∗, x〉 − f∗(x∗)}. (2.5)

In the following we investigate the verifiability of the qualification conditions in the context of

risk measure theory, namely by assuming that X = Lp and P = Lp+ for p ∈ [1,∞]. To this end we assume

that f is lower semicontinuous. A situation when f fails to have this topological property will be adressed

during the next section.

Theorem 2.3.7 (R.I. Boţ, A.R. Frătean (Baias), [34]) For p ∈ [1,∞] let f : Lp → R be a convex risk

function. If one of the following conditions

• when p ∈ [1,∞]

f is lower semicontinuous and − Lp+ ⊆ dom f ; (2.6)
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• when p =∞
esinf Π · essup Π > 0; (2.7)

is fulfilled, then one has for all X ∈ Lp that

fP,Π(X) = max
X∗∈−(Lp

+)∗

E(X∗Π)=−1

{E(X∗X)− f∗(X∗)},

where by the use of max instead of sup we signalize the fact that the supremum is attained.

Remark 2.3.8 (R.I. Boţ, A.R. Frătean (Baias), [34]) One can notice that for p = ∞ the condition

(2.7) in the theorem above is fulfilled when Π ∈ L∞ is a constant numeraire.

In the last part of this section we discuss the examples treated in [49] from the new perspective

given by the duality theory. We investigate the fulfillment of the conditions (2.6) and (2.7) and we also

provide some refined dual representations for the risk functions in discussion. The notions of monotone

and cash-invariant will be used instead of Lp+-monotone and 1-invariant, respectively. The same applies

when we speak about the corresponding hulls. For this summary we mention only a few examples.

Example 2.3.9 (R.I. Boţ, A.R. Frătean (Baias), [34]) For p ∈ [1,∞) and c > 0 consider the Lp

deviation risk measure f : Lp → R defined by

f(X) = c‖X − E(X)‖p − E(X).

This is a convex, continuous and cash-invariant (Π = 1) risk function, but not monotone in general. For

the conjugate formula of the Lp deviation risk measure we refer to [31]. This is for X∗ ∈ Lq given by

f∗(X∗) =

{
0, if ∃Y ∗ ∈ Lq such that c(Y ∗ − E(Y ∗))− 1 = X∗, ‖Y ∗‖q ≤ 1,

+∞, otherwise.

As dom f = Lp, (2.6) is valid and thus the monotone hull of f looks for all X ∈ Lp like (see also Remark

6)

fLp
+,1

(X) = fLp
+

(X) = max
‖Y ∗‖q≤1

c(Y ∗−E(Y ∗))≤1

c[E(Y ∗)E(X)− E(Y ∗X)]− E(X).

In this way we rediscover the formula given in [49, Subsection 5.1].

Example 2.3.11 (R.I. Boţ, A.R. Frătean (Baias), [34]) For p ∈ [1,∞) and c > 0 consider the mean-Lp

risk measure f : Lp → R defined as

f(X) = c/pE(|X|p)− E(X) = c/p‖X‖pp − E(X),

which is a convex and continuous risk function but neither monotone nor cash-invariant (Π = 1). Its
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conjugate function can be easily derived from [31] and for X∗ ∈ Lq it looks like

f∗(X∗) =
p− 1

pc
1

p−1

E(|X∗ + 1|q).

Again, dom f = Lp, which means that the monotone cash-invariant hull of f has for all X ∈ Lp the

following formulation

fLp
+,1

(X) = max
X∗∈−Lq

+

E(X∗)=−1

E
[
X∗X − 1

cq−1q
|X∗ + 1|q

]
.

Different to the approach in [49, Subsection 5.3], the use of the strong duality theory allows us to guarantee

the attainment of the supremum in the formula above.

Example 2.3.14 (R.I. Boţ, A.R. Frătean (Baias), [34]) For p = ∞ the so-called logarithmic risk

measure f : L∞ → R,

f(X) =

{
E(− ln(X))− 1, if X > 0,

+∞, otherwise,

is a convex, lower semicontinuous and monotone risk function which fails to be cash-invariant (Π = 1).

Its conjugate function is given for X∗ ∈ (L∞)∗ by

f∗(X∗) = sup
X>0
{〈X∗, X〉+ E(ln(X) + 1)}

and can be further calculated by using [85, Theorem 14.60]. Indeed, one has

f∗(X∗) = E
{

sup
x>0
{X∗x+ ln(x) + 1}

}
=

{
−E(ln(−X∗)), if X∗ < 0,

+∞, otherwise.

Before giving a dual representation for the cash-invariant hull of the logarithmic risk measure, one should

notice that we are now in a situation where (2.6) fails, but (2.7) is valid. Consequently, the cash-invariant

hull of f can be for all X ∈ L∞ given by

fL∞+ ,1(X) = f1(X) = max
X∗∈(L∞)∗,X∗>0

E(X∗)=1

E[−X∗X + ln(X∗)].

The next section points out also an interesting situation where no qualification condition of

generalized interiority type can be applied.

2.4 The situation of missing lower semicontinuity

In the following we deal with the same problem of furnishing dual representations for the monotone

and cash-invariant hull of a convex risk function by using the duality approach developed in Section 2.3,
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treating the particular case of a risk function which fails to be lower semicontinuous. We also discuss the

difficulties which can arise when this topological assumption is missing. The section consists entirely in

original results embodied in [34].

For p ∈ [1,∞] consider f : Lp → R defined by

f(X) =

{
‖X − E(X)‖p, if X− ∈ L∞,
+∞, otherwise.

This risk function is convex and fails to be lower semicontinuous for p ∈ [1,∞). One can easily verify

that dom f = L∞ + Lp+.

Like in the previous section we take as ordering cone Lp+, but work with a not necessarily constant

numeraire Π ∈ Lp \ {0}. Our goal is to furnish a dual representation for the monotone Π-invariant hull

of f . To this end we will make use of the conjugate formula of Y 7→ ‖Y −E(Y )‖p, p ∈ [1,∞], which looks

for X∗ ∈ (Lp)∗ like (see [31, Fact 4.3])

(‖ · −E(·)‖p)∗(X∗) =

{
0, if ∃Y ∗ ∈ (Lp)∗,‖Y ∗‖(Lp)∗ ≤ 1, s.t.X∗ = Y ∗ − E(Y ∗)

+∞, otherwise.
(2.8)

The case p = ∞. In this situation dom f = L∞, f is a convex and continuous function and one

can, consequently, use the qualification condition (2.6), which is obviously fulfilled. Thus for the monotone

Π-invariant hull of f one can employ again formula (2.3). This means that, by taking into consideration

(2.8), the monotone Π-invariant hull of f looks for all X ∈ L∞ like

fL∞+ ,Π(X) = max
‖Y ∗‖(L∞)∗≤1,E(Y ∗)−Y ∗∈(L∞+ )∗

E(Y ∗Π)−E(Y ∗)E(Π)+1=0

E(Y ∗X)− E(Y ∗)E(X). (2.9)

One can easily notice that if Π is a constant numeraire, then fL∞+ ,Π ≡ −∞.

The case p ∈ [1,∞). In this second case we proceed as follows: we first establish the monotone

hull of f , along with a dual representation for it, then we discuss which are the difficulties that appear

when trying to determine the dual representation of fLp
+,Π

. Recall that fLp
+,Π

(X) = (fLp
+

)Π(X) for all

X ∈ Lp.
As dom fLp

+
= dom f + Lp+ = L∞ + Lp+, for every X outside this set one has fLp

+
(X) = +∞. For

X ∈ L∞ + Lp+ we have

fLp
+

(X) = inf
Y ∈L∞+Lp

+

Y−X∈−Lp
+

‖Y − E(Y )‖p (2.10)

and, obviously, fLp
+

(X) ≥ 0. On the other hand, since X = Z + Y for Z ∈ L∞ and Y ∈ LP+, it holds

X ≥ esinf Z, thus esinf Z is feasible for the optimization problem in the right-hand side of (2.10), which

means that fLp
+

(X) = 0. Consequently, fLp
+

= δL∞+Lp
+

.

Before furnishing the monotone Π-invariant hull of f , let us shortly investigate how one could

give dual representation for fLp
+

. For X ∈ L∞ + Lp+ fixed one has to consider the convex optimization
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problem

inf
Y ∈L∞+Lp

+

Y−X∈−Lp
+

‖Y − E(Y )‖p (2.11)

and its Lagrange dual problem (notice that L∞ is dense in Lp)

sup
X∗∈−Lq

+

{〈X∗, X〉 − (‖ · −E(·)‖p)∗(X∗)} = sup
‖Y ∗‖q≤1,

E(Y ∗)−Y ∗∈Lq
+

E(Y ∗X)− E(Y ∗)E(X). (2.12)

In order to show that for the primal-dual pair (2.11)-(2.12) strong duality holds, we verify a quasi-relative

interior-type condition. Consequently, it follows that

fLp
+

(X) = max
‖Y ∗‖q≤1,

E(Y ∗)−Y ∗∈Lq
+

E(Y ∗X)− E(Y ∗)E(X)

and so one obtains for the monotone hull of f for all X ∈ Lp the following dual representation

fLp
+

(X) =


max
‖Y ∗‖q≤1,

E(Y ∗)−Y ∗∈Lq
+

E(Y ∗X)− E(Y ∗)E(X), if X ∈ L∞ + Lp+,

+∞, otherwise.

The monotone Π-invariant hull of f is the Π-invariant hull of fLp
+

and for its derivation we use

the direct formulation of the latter, fLp
+

= δL∞+Lp
+

, as it is easier to handle with. For all X ∈ LP the

monotone Π-invariant hull of f is

fLp
+,Π

(X) = inf
a∈R
{fLp

+
(X − aΠ)− a} = inf

(Y,a)∈(L∞+Lp
+)×R

Y+aΠ−X=0

−a.

Since fLp
+,Π

is the optimal objective value of a convex optimization problem, it is natural to ask if a dual

formulation for it, via the duality theory, can be provided. Unfortunately, we are not always able to answer

this question. What we can say is, that for X ∈ L∞ + Lp+ + RΠ = dom fLp
+,Π

it holds fLp
+,Π

(X) = +∞.

For X /∈ L∞ + Lp+ + RΠ one get as Lagrange dual problem to

inf
(Y,a)∈(L∞+Lp

+)×R
Y+aΠ−X=0

−a (2.13)

the following optimization problem

sup
X∗∈Lq

inf
(Y,a)∈(L∞+Lp

+)×R
[−a+ 〈X∗, Y + aΠ−X〉],



Dual representations for monotone and cash invariant hulls of risk functions 17

which, since L∞ is dense in Lp, is nothing else than

sup
X∗∈Lq

[
−〈X∗, X〉+ inf

a∈R
a(〈X∗,Π〉 − 1) + inf

Y ∈Lp
〈X∗, Y 〉

]
= −∞ (2.14)

Nevertheless, we cannot be sure that this is the value which fLp
+,Π

(X) takes, since no known qualification

condition can be verified for (2.13)-(2.14). This applies as well as for the classical generalized interior

ones (L∞ +Lp+ is not closed) as for the one of quasi-relative interior-type. This emphasizes the fact that

one can have exceptional situations for which the approach we use is, unfortunately, not suitable.

Let us also mention that whenever Π ∈ L∞ (which includes the situation when Π is a constant

numeraire), then for all a ∈ R there exists Y ∈ L∞+Lp+ such that X = aΠ +Y and so fLp
+,Π

(X) = −∞.

In this case we have for all X ∈ Lp

fLp
+,Π

(X) =

{
−∞, if X ∈ L∞ + Lp+ + RΠ,

+∞, otherwise.

Remark 2.4.1 (R.I. Boţ, A.R. Frătean (Baias), [34]) The fact that L∞ + Lp+ is not closed does not

make the applicability of the other main class of qualification conditions, the closedness-type ones, for

the convex optimization problem in (2.13) possible, too.



Chapter 3

Conjugate and subdifferential formulae

for convex risk functions

3.1 Conjugate functions and subdifferentiability-general approach

In order to make the chapter self sufficient we dedicate this first section to the notion of conjugate

function and (convex) subdifferential. The general approach is due to the books [27, 46, 97].

3.1.1 Conjugate functions

Let X be a Hausdorff locally convex space and X ∗ its topological dual space endowed with weak∗

topology and let f : X → R be a given function.

Definition 3.1.1 The function f∗ : X ∗ → R,

f∗(x∗) = sup
x∈X
{〈x∗, x〉 − f(x)} (3.1)

is said to be the (Fenchel) conjugate function of f .

To the function f : X → R we can attach the so-called biconjugate function of f, which is defined

as the conjugate function of the conjugate f∗, i.e.

f∗∗ : X → R, f∗∗(x) = (f∗)∗(x) = sup
x∗∈X ∗

{〈x∗, x〉 − f∗(x∗)}.

The main properties and results concerning conjugate functions are collected and proved in this

section. For this summery we mention only the Fenchel-Moreau theorem.

Theorem 3.1.10 3.3.1 Let f : X → R be a proper function. Then f = f∗∗ if and only if f is convex

and lower semicontinuous.

18
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3.1.2 Subdifferentiability

Subdifferentiability is also an important notion in analysis and optimization. It allows, for instance

to describe mathematical objects and models for practical problems and is of a tremendous importance

in practical applications like game theory, economy and risk management. In economics and insurance for

instance having handleable subdifferential formulae for risk functions it is vital for solving some classes

of portfolio optimization problems. All these things will be emphasized in the general framework of risk

analysis during our further developments.

Definition 3.1.16 Let f : X → R be a given function and take an arbitrary x ∈ X such that f(x) ∈ R.
The set

∂f(x) = {x∗ ∈ X ∗ : f(y)− f(x) ≥ 〈x∗, y − x〉,∀y ∈ X}

is said to be the (convex) subdifferential of f at x. Its elements are called subgradients of f at x. We

say that the function f is subdifferentiable at x if ∂f(x) 6= ∅. If f(x) /∈ R we consider by convention

∂f(x) = ∅.

Definition 3.1.17 Let f : X → R be an arbitrary function and ε ≥ 0 then if f(x) ∈ R the ε-

subdifferential of f at x is the set

∂εf(x) = {x∗ ∈ X∗ : f(y)− f(x) ≥ 〈x∗, y − x〉 − ε,∀y ∈ X},

while if f(x) = ±∞ we take by convention, ∂εf(x) = ∅.

Remark 3.1.18 For ε = 0 the ε-subdifferential coincides with the classical convex subdifferential, i.e.

∂f(x) = ∂0f(x).

The connection between the conjugate function of f and its convex subdifferential will be used

several times in the sequel.

Theorem 3.1.19 Let the function f : X → R be given and x ∈ X . Then

x∗ ∈ ∂f(x)⇐⇒ f(x) + f∗(x∗) = 〈x∗, x〉,∀x ∈ X . (3.2)

Next we have collected, some standard properties of the convex subdifferential as well as results

concerning exact formulae for computing the subdifferential of the sum of two convex functions and the

subdifferential of the composite convex function.

3.1.3 Conjugate and subdifferentiability of sublinear functions

Theorem 3.1.27 [17] Let f : X → R be a positively homogeneous convex function such that f(0) = 0.

Then the following holds.
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(a) The following properties are equivalent:

(i) f is subdifferentiable at 0,

(ii) f is bounded from below on a neighborhood of 0 ∈ X ,
(iii) f is lower semicontinuous at 0.

(b) If one of the above conditions (i), (ii) or (iii) is satisfied then

σ∂f(0)(·) = f(·).

(c) Let x ∈ X be such that f(x) is finite. Then

∂f(x) = {x∗ ∈ ∂f(0) : 〈x∗, x〉 = f(x)} (3.3)

The above relations for the sublinear functions are in fact the staring key for computing the sub-

differential formulae of the coherent risk measures. Therefore this result is meaningful for the approaches

presented in most of the recent papers [74, 88, 83, 84, 89].

3.2 Conjugate and subdifferential formulae for convex risk functions

via an utility model

One of the most challenging topics in convex analysis is the formulation of optimality conditions

for portfolio optimization problems with a convex risk measure as objective function. Since for this class

of functions differentiability is not necessarily guaranteed, one will be forced to make use of the convex

subdifferential when characterizing optimality (see for instance [32]). This is why it is important to be

in the possession of easily handleable formulae for the subdifferential of the risk measures which could

come into consideration with this respect. Among the most relevant literature on this topic one has to

mention [75, 81, 83, 84, 88].

We propose further two distinct ways of providing subdifferential formulae for convex risk function,

by means of an utility function on one hand and combining classical results of convex analysis and duality

theory on the other hand.

In this section we furnish first formulae for both the conjugate and the subdifferential of a gener-

alized convex risk measure, associated with the Optimized Certainty Equivalent (OCE). The Optimized

Certainty Equivalent was introduced by Ben-Tal and Teboulle in [15] by making use of a concave utility

function. For the investigations made in this section we adapt the definition of the Optimized Certainty

Equivalent and the setting in which this has been introduced, by considering a convex utility function, as

this better suits in the general framework of convex duality. We close the section by particularizing the

general results to some convex risk measures widely used in the literature.

Assumption 21 Let u : R → R be a proper, convex, lower semicontinuous and nonincreasing function

such that u(0) = 0 and −1 ∈ ∂u(0).
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Consequently, we define for p ∈ [1,∞] the following generalized convex risk function ρu : Lp →
R ∪ {+∞}

ρu(X) = inf
λ∈R
{λ+ E(u(X + λ))}. (3.4)

The main properties of the above risk function are synthesized in the following proposition.

Proposition 3.2.2 (A.R. Baias, D. Duca, [9]) The generalized risk function ρu described by relation

(3.4) is a convex risk measure (i.e it is convex, monotone and cash invariant risk function) bounded by

the expectancy.

Proposition 3.2.5 (A.R. Baias, D. Duca, [9]) The generalized risk function ρu described by relation

(3.4) is monotonic with respect to the second order stochastic dominance.

In the sequel we obtain the conjugate and the subdifferential formulae of ρu.

Theorem 3.2.6 (R.I. Boţ, A.R. Frătean (Baias), [34]) The conjugate function of ρu is the function

ρ∗u : (Lp)∗ → R, given by

ρ∗u(X∗) =

{
E(u∗(X∗)), if E(X∗) = −1,

+∞, otherwise.
(3.5)

Before providing a subdifferential formula for ρu, we deliver via Lagrange duality a sufficient

condition the utility function u has to fulfill in order to guarantee the attainment of the infimum in the

definition of ρu(X) for all X ∈ Lp. According to [15, 16], for those X ∈ Lp having as support a bounded

and closed interval, the infimum in (3.4) is attained. But what we provide here, is a condition which

ensures this fact independently from the choice of the random variable.

Let X ∈ Lp be fixed. Consider the following primal optimization problem

inf
Ξ∈Lq

E(Ξ)=−1

[
E(u∗(Ξ))− 〈X,Ξ〉

]
, (3.6)

where q := p
p−1 , if p ∈ [1,∞), and q := 1, if p =∞. The Lagrange dual optimization problem to (3.6) is

given by

sup
λ∈R

[
− λ− E(u(X + λ))

]
. (3.7)

Let us notice that the optimal objective value of the dual problem (3.7) is equal to −ρu(X).

Theorem 3.2.7 (R.I. Boţ, A.R. Frătean (Baias), [34]) Assume that the recession function of the

utility function u fulfills the following condition

{d ∈ R : u∞(d) = −d} = {0}. (3.8)
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Then for all X ∈ Lp there exists λ̄(X) ∈ R such that

ρu(X) = λ̄(X) + E(u(X + λ̄(X))).

Next we provide a formula for the subdifferential of the general convex risk measure ρu.

Theorem 3.2.8 (R.I. Boţ, A.R. Frătean (Baias), [34]) Assume that condition (3.8) is fulfilled. Let

X ∈ Lp and λ̄(X) ∈ R be the element where the infimum in the definition of ρu(X) is attained. Then it

holds

∂ρu(X) = {X∗ ∈ (Lp)∗ : X∗(ω) ∈ ∂u(X(ω) + λ̄(X)) for a.e. ω ∈ Ω,E(X∗) = −1}. (3.9)

The above theorem can be proved in an alternative manner, by means of the infimal value function,

which is meaningful for the duality approach. Due to the beauty of the method we have presented here

also its alternative proof.

In the sequel we rediscover for particular choices of the utility function u several well-known

convex risk measures and we provide formulae for their conjugates and subdifferentials.

3.2.1 Entropic risk measure

Consider the utility function u1 : R → R, u1(t) = exp(−t) − 1, which obviously fulfills the

hypotheses in the Assumption. The convex risk measure we define via u1 is ρu1 : Lp → R,

ρu1(X) = inf
λ∈R
{λ+ E(exp(−X − λ)− 1)}.

With the convention 0 ln(0) = 0 we have for all t∗ ∈ R that

u∗1(t∗) =

{
−t∗ ln(−t∗) + t∗ + 1, if t∗ ≤ 0,

+∞, if t∗ > 0,

and, so, from Theorem 3.2.6 it follows that for all X∗ ∈ (Lp)∗ one has

ρ∗u1(X∗) =

{
−E(X∗ ln(−X∗)), if X∗ < 0, E(X∗) = −1,

+∞, otherwise.

Since (u1)∞ = δ[0,+∞), condition (3.8) is fulfilled and for all X ∈ Lp there exists λ̄(X) ∈ R such

that the infimum in the definition of ρu1(X) is attained at this point. But in this special case one can

easily see that λ̄(X) = ln(E(exp(−X)) and therefore the risk measure can be equivalently written as

ρu1(X) = ln(E(exp(−X))). This is the so-called entropic risk measure introduced and investigated in

[14].

Noticing that ∂u1(t) = {∇u1(t)} = {− exp(−t)} for all t ∈ R, the subdifferential of the entropic
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risk measure at X ∈ Lp is

∂ρu1(X) = {∇ρu1(X)} =

{
−1

E(exp(−X))
exp(−X)

}
.

3.2.2 The worst-case risk measure

By taking as utility function u2 = δ[0,+∞), one rediscovers under

ρu2 : Lp → R ∪ {+∞},
ρu2(X) = inf

λ∈R
X+λ≥0

λ = − esinf X, (3.10)

the so-called worst-case risk measure. As u∗2 = δ(−∞,0], we have for all X∗ ∈ (Lp)∗ that

ρ∗u2(X∗) =

{
0, if X∗ ≤ 0, E(X∗) = −1,

+∞, otherwise.

Noticing that (u2)∞ = δ[0,+∞), one can easily see that (3.8) is fulfilled, which means that for all X ∈ Lp

there exists λ̄(X) ∈ R at which the infimum in (3.10) is attained. If esinf X = −∞, then one can take

λ̄(X) arbitrarily in R, while, when esinf X ∈ R, λ̄(X) = − esinf X. Since

∂u2(t) =


∅, if t < 0,

(−∞, 0], if t = 0,

{0}, if t > 0,

we can provide via Theorem 3.2.8 the formula for the subdifferential of the worst-case risk measure.

Indeed, for X ∈ Lp with esinf X = −∞ one has ∂ρu2(X) = ∅, while, if esinf X ∈ R, it holds

∂ρu2(X) =

{
X∗ ∈ (Lp)∗ : E(X∗) = −1,

X∗(ω) ∈ (−∞, 0], if X(ω) = esinf X

X∗(ω) = 0, if X(ω) > esinf X

}
.

3.3 Conjugate and subdifferential formulae for convex risk functions

via duality theory

Throughout the economical and financial literature one finds a vast variety of risk functions, along

the coherent (see [2]), the convex (see [52]) and the expectation bounded (see [83]) ones some very irregular

ones, which are neither positively homogeneous nor monotone or cash invariant, being also present. Of

course that because of the remarkable mathematical properties it is easier to work with expectation-

bounded or coherent risk measures, but what shall we do with the irregular ones? A first answer, at

least in what concerns the subdifferentiability and the conjugates of risk functions has been given in the

previous section, where conjugate and subdifferential formulae were obtained for risk functions which can

be successfully described by utilities.
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In this section we present the conjugate and subdifferential approach from a classical point of

view, that of convex analysis, and we will provide conjugate and subdifferential formulae in the general

context of Lp, p ∈ [1,∞] (with the convention (L∞, σ∞)∗ = (L1, σ1)) for the most common risk mea-

sures, the mean absolute deviation, the lower and the upper semideviation, and the generalized mean

deviation of order p from a target. What we present here is in fact a pattern which can be successfully

applied for risk functions which are not characterized by very good mathematical properties like: positive

homogeneity, monotonicity and cash invariance. Furthermore a lot of risk functions, widely spread in

practical applications, can not be neither described by means of utility functions, nor inscribed in the

general background of coherent or expectation bounded risk measures. For all those classes of functions

the only hope for providing subdifferential formulae stays in classical computation, using methods based

on standard results of convex analysis and duality theory.

The following lemma is of great importance for our further results.

Lemma 3.3.1 (A.R. Baias, D.M. Nechita, [11]) Consider the functions g : Lp → R, g(X) = X− and

h : Lp → R, h(X) = X+ respectively. The following assertions hold:

(a) h(X) = g(−X) and g(X) = h(−X), ∀X ∈ Lp;

(b) h∗(X∗) = g∗(−X∗) ∀X ∈ (Lp)∗;

(c) ∂h(X) = −∂g(−X) ∀X ∈ Lp.

Since the most important risk measures and risk deviations used lately in the literature can

not be described by utility functions we dedicate further a special attention to the subdifferentiability

of Lp norm and lower and upper deviations of Lp norm respectively. We will show during this section

that those norms dominate mainly the field of irregular risk functions and consequently we will provide

subdifferential formulae for several risk function using the following proposition.

Proposition 3.3.2 Let f−, f+ : Lp → R be the functions defined by f− = ‖X−‖p, and f+ = ‖X+‖p,
p ∈ [1,∞]. The following formulae for the conjugate and the subdifferential of f− and f+ hold:

(a) f∗+(X∗) =

{
0, if ‖X∗‖q ≤ 1, X∗ ≥ 0,

+∞, otherwise;

(b) f∗−(X∗) =

{
0, if ‖X∗‖q ≤ 1, X∗ ≤ 0,

+∞, otherwise;

(c) ∂f+(x) =

{
{X∗ ∈ Lq : ‖X∗‖q ≤ 1, X∗ ≥ 0}, if X = 0,

{X∗ ∈ Lq : ‖X∗‖q ≤ 1, X∗ ≥ 0, 〈X∗, X〉 = ‖X+‖p}, if X 6= 0;

(d) ∂f−(x) =

{
{X∗ ∈ Lq : ‖X∗‖q ≤ 1, X∗ ≤ 0}, if X = 0,

{X∗ ∈ Lq : ‖X∗‖q ≤ 1, X∗ ≤ 0, 〈X∗, X〉 = ‖X−‖p}, if X 6= 0.
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3.3.1 The generalized mean deviation of order p

To start with we consider the generalized convex risk function ρ : Lp → R, as introduced in [31],

ρ(X) = ‖X − E(X)‖ap − E(X), ∀X ∈ Lp, (3.11)

where p ∈ [1,∞] and a ≥ 1.

This convex risk function is one of the most famous risk measures in economical and insurance

literature. Different particular cases have been subject of analysis in books and papers like [31, 77, 83,

84, 88, 89]. Due to its importance in practical and computational applications we dedicate to this risk

function a special attention.

Taking into account the lower and upper semideviations we obtain similarly the following two

risk measures ρ− : Lp → R described by

ρ−(X) = ‖(X − E(X))−‖ap − E(X), ∀X ∈ Lp, a ≥ 1 and p ∈ [1,∞] (3.12)

and ρ+ : Lp → R defined as

ρ+(X) = ‖(X − E(X))+‖ap − E(X), ∀X ∈ Lp, a ≥ 1 and p ∈ [1,∞], (3.13)

respectively.

For the case a = p = 1 one rediscovers in the above formulae the so called lower and upper

semideviations, while for the case p = 2 and a = 1 one gets the standard lower and standard upper

semideviations, respectively.

ρ− takes into account only the negative deviations from the mean and it may be considered as a

measure of investors risk in a portfolio return. Consequently, downside risk has more attraction and its

study become a problem of major interest for both of the mathematical and the economical approaches.

However, the downside risk pays no attention to the right-hand side of the distribution of portfolio return.

Responsible of this part is in fact, the risk measure described by ρ+. Since from a mathematical point

of view it is important to have a general picture of the whole distribution we will discuss here both of

the situations. For the sake of generality and due to the particular importance of the case a = 1 for the

above mentioned risk functions we treat distinctly the cases a = 1 and a > 1.

For this subsection our main results are the following:

Theorem 3.3.3 (A.R. Baias, D.M. Nechita, [11]) Let ρ1 : Lp → R be defined by

ρ1(X) = ‖X − E(X)‖p − E(X), ∀X ∈ Lp where p ∈ [1,∞]. (3.14)

The subdifferential of ρ1 is

∂ρ1(X) =


{−1 +X∗−E(X∗) : X∗ ∈ Lq, ‖X∗‖q ≤ 1)} , if X−E(X) = 0,{
−1+ 1

‖X−E(X)‖
p
q
p

[
(X−E(X))

p
q −E((X− E(X))

p
q )
]}
,otherwise.

(3.15)
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Remark 3.3.4 (A.R. Baias, D.M. Nechita, [11]) Those formulae were also obtained by Rockafellar et

all. in [83] but only for the case of the Hilbert space L2. Also the form of the subdifferential in the origin

is given by A. Ruszczynski and A. Shapiro, by means of different approaches in [88, 89].

For positively homogeneous risk functions Rockafellar et all. [83, 84] have shown the existence of

dual representation and characterized the subgradients set calling it risk envelope. This will be denoted

further as in [83], by Q. Anyway Rockafellar’s risk envelope is linked with the subdifferential of the risk

function ρ1, by the relation Q = −∂ρ1(0).

Theorem 3.3.5 (A.R. Baias, D.M. Nechita, [11]) Let ρ1− , ρ1+ : Lp → R be the risk functions defined

by

ρ1+(X) = ‖(X − E(X))+‖p − E(X), ∀X ∈ Lp, p ∈ [1,∞] (3.16)

and

ρ1−(X) = ‖(X − E(X))−‖p − E(X), ∀X ∈ Lp, p ∈ [1,∞], (3.17)

respectively. Then:

(i) the subdifferential of ρ1+ is

∂ρ1+(X)=


{−1+X∗−E(X∗) :X∗∈Lq, ‖X∗‖q ≤ 1, X∗ ≥ 0}, ifX−E(X)=0,{
−1+ 1

‖(X−E(X))+‖
p
q
p

[
[(X−E(X))+]

p
q −E[(X−E(X))+]

p
q

]}
, otherwise.

(3.18)

(ii) the subdifferential of ρ1− is

∂ρ1−(X)=


{−1 +X∗−E(X∗) :X∗∈Lq, ‖X∗‖q ≤ 1, X∗ ≤ 0}, if X−E(X)=0,{
−1+ 1

‖(X−E(X))−‖
p
q
p

[
E[(X−E(X))−]

p
q −[(X−E(X))−]

p
q

]}
, otherwise.

(3.19)

Remark 3.3.7 (A.R. Baias, D.M. Nechita, [11]) Notice that the relations between our subdifferential

formulas and the risk envelopes for the negative and the positive semideviations (proposed by Rockafellar

in [83]) are given by Q+ = −∂ρ+(0) and Q− = −∂ρ−(0), respectively. Therefore with Theorem 31, we

extend in fact the characterization of the subdifferential of lower and upper mean semideviation to the

context of Lp, p ≥ 1. The results proposed by Rockafellar in [83, 84] are just particular cases of our results

for p = q = 2.

For the case a > 1 we mention only the following observation.

Remark 3.3.13 (A.R. Baias, D.M. Nechita, [11]) The risk envelope for the risk functions ρ, ρ− and ρ+

consists only in the set {0}, which is uninteresting. Also the subdifferentiall of ‖X‖ap in the case X 6= 0

can be represented as
{
X∗ ∈ Lq : 〈X∗, X〉 = ‖X‖ap + (a− 1)‖ 1

aX
∗‖

a
a−1
q

}
, for all X ∈ Lp.
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3.3.2 The generalized mean upper/lower semideviations of order p from a target

To start with we define a generalized risk measure with a wide range of applications in the

management or risk and portfolio optimization, the so called generalized mean upper semideviation of

order p from a target.

Let then ρτ+ : Lp → R defined by

ρτ+(X) = ‖(X − τ)+‖ap − E(X), (3.20)

where τ ∈ R is a fixed target and a ≥ 1. The mean lower semideviation,

ρτ− : Lp → R can be symmetrically defines as

ρτ−(X) = ‖(X − τ)−‖ap − E(X), ∀a ≥ 1. (3.21)

For the particular situation of a = 1 we rediscover the classical mean upper/lower semideviations of

order p for a target, as introduced in [88, 89]. As we have already argued in the case of classical mean

semideviations we consider that is in important to treat both the negative and the positive outcomes.

In order to do this Lemma 27 will be used several times in the sequel, since it gives the connection

between both the conjugates and the subdifferentials of the positive and the negative outcomes. Since the

generalized mean semideviation can not be inscribed in the general framework or coherent risk measure,

because of the lack of positive homogeneity we can not characterize its conjugate and subdifferentials by

means of Theorem 3.1.27. Furthermore the generalized mean semideviations can not be described by any

utility function therefore the approach presented in Section 3.2 fails too. Consequently the only possible

approach stays in deriving the formulae by means of the duality theory. Also here, we treat distinctly the

cases a = 1 an a > 1 respectively.

Theorem 3.3.18 (A.R. Baias, [7]) Let ρτ1+ : Lp → R be the risk function defined by

ρτ1+(X) = ‖(X − τ)+‖p − E(X), ∀X ∈ Lp,

where p ∈ [1,∞]. Then the conjugate function of ρτ1+ is the function ρ∗τ1+
: Lq → R given by

ρ∗τ1+
(X∗) =

{
τE(X∗ + 1), if ‖X∗ + 1‖q ≤ 1, X∗ ≥ −1,

+∞, otherwise.
(3.22)

Theorem 3.3.19 (A.R. Baias, [7]) Let ρτ1− : Lp → R be the risk function defined by

ρτ1−(X) = ‖(X − τ)−‖p − E(X), ∀X ∈ Lp,
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where p ∈ [1,∞]. Then the conjugate function of ρτ1− is the function ρ∗τ1−
: Lq → R is given by

ρ∗τ1−
(X∗) =

{
−τE(X∗ + 1), if ‖X∗ + 1‖q ≤ 1, X∗ ≤ −1,

+∞, otherwise.
(3.23)

The conjugate functions of the generalized mean upper/lower deviation of order p from a target

τ to the case a > 1 is given by the following results.

Theorem 3.3.21 (A.R. Baias, [7]) Let ρτa+ : Lp → R be defined by

ρτa+(X) = ‖(X − τ)+‖ap − E(X), ∀X ∈ Lp

where p ∈ [1,∞] and a > 1. Then the conjugate function of ρτa+ is the function ρ∗τa+ : Lq → R given by

ρ∗τa+ (X∗) =

{
(a− 1)‖ 1

a(X∗ + 1)‖
a

a−1
q + τE(X∗ + 1), if X∗ ≥ −1,

+∞, otherwise.
(3.24)

Theorem 3.3.22 (A.R. Baias, [7]) Let ρτa− : Lp → R be defined by

ρτa−(X) = ‖(X − τ)−‖ap − E(X), ∀X ∈ Lp

where p ∈ [1,∞] and a > 1. Then the conjugate function of ρτa− is the function ρ∗τa− : Lq → R given by

ρ∗τa− (X∗) =

{
(a− 1)‖ 1

a(X∗ + 1)‖
a

a−1
q − τE(X∗ + 1), if X∗ ≤ −1,

+∞, otherwise.
(3.25)

Since the recent literature gives an important place to the dual characterizations of risk measures,

we have presented also in this section the dual representations for the mean upper/lower deviations of

order p from the target τ. Our development goes naturally since both the mean upper deviation ρτ+
and the lower deviation ρτ− are convex, proper and lower semicontinuous functions and therefore the

Fenchel-Moreau Theorem 3.1.10 applies.

For the subdifferential of mean lower/upper semideviations of order p form a target τ we have

the following result.

Theorem 3.3.23 (A.R. Baias, [7]) Let ρτ1+ , ρτ1− : Lp → R be the risk functions defined by

ρτ1+(X) = ‖(X − τ)+‖p − E(X), ∀X ∈ Lp, p ∈ [1,∞], (3.26)

and

ρτ1−(X) = ‖(X − τ)−‖p − E(X), ∀X ∈ Lp, p ∈ [1,∞], (3.27)

respectively. Then:
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(i) the subdifferential of ρτ1+ is

∂ρτ1+(X) =


{X∗ − 1 : X∗ ∈ Lq, ‖X∗‖q ≤ 1, X∗ ≥ 0}, if X = τ,{

((X−τ)+)
p
q

‖(X−τ)+‖
p
q
p

− 1

}
, if X 6= τ ;

(3.28)

(ii) the subdifferential of ρτ1− is

∂ρτ1−(X) =


{X∗ − 1 : X∗ ∈ Lq, ‖X∗‖q ≤ 1, X∗ ≤ 0}, if X = τ,{

((X−τ)−)
p
q

‖(X−τ)−‖
p
q
p

− 1

}
, if X 6= τ.

(3.29)

3.4 An application - Conditional Value at Risk (CVaR)

3.4.1 Definition and economical signification

Two of the most popular risk measures presented in the literature are the Value-at-Risk (VaR)

and the Conditional Value-at-Risk (also known as expected shortfall, tail-VaR or Average Value-at-Risk).

Definition 3.4.1 [84] The Value-at-Risk of the loss associated with a decision X at the level β ∈ (0, 1)

is the value

VaRβ(X) = − inf{α : P(X ≤ α) > β}.

In other words VaR is defined as the minimum level of loss, at a given, sufficiently high, confidence level

for a predefined time horizon. A very serious shortcoming of VaR is the lack of convexity which actually

makes it undesirable from the mathematical point of view.

An alternative risk measure which quantifies also the losses which are situated in the tail of the

loss distribution is the Conditional Value-at-Risk.

Definition 3.4.2 [84] For any β ∈ (0, 1) the functional

CVaRβ(X)=− [expectation of the lower tail distribution of the variableXat levelβ].

Apart for its remarkable mathematical properties CVaR presents an amazing computational ad-

vantage, due to its minimization formula (see [81]).

CVaRβ(X) = inf
η∈R

{
η +

1

β
E[(X + η)−]

}
, (3.30)

which can be successfully incorporated into optimization problems with respect to the random variable

X. The CVaR has very good mathematical properties, being coherent in the way of Artzner et all. [2].

Of course that in time, CVaR it was extended and studied in various directions, but Lüthi and

Doege [65] generalized the CVaR to a convex risk measure called Generalized Conditional Value-at-Risk
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(GCVaR) which keeps both the computational advantage and faces the extreme risky outcomes, i.e.

GCVaRβ,l(X) = inf
η∈R

E[(X+η)−]≤l

{
η +

1

β
E[(X + η)−]

}
,

where l ≥ 0 is a fixed parameter and β ∈ (0, 1) is as usually the confidence level.

Remark 3.4.3 It is obviously that for l ≥ E[(X + ηV aR)−] the Generalized Conditional Value-at-Risk

collapses into the classical notion of Conditional Value-at-Risk while for l = 0 one actually gets the

worst-case risk measure, i.e. GCVaRβ,0 = − esinf X = Max Loss.

In order to exemplify our recent developments we deduce further, the conjugate and the subd-

ifferential formulae of the Conditional value-at-risk from both of the perspectives presented during this

chapter, namely by means of an utility model, one one hand and by means of the duality approach, on

the other hand.

3.4.2 Conjugate and subdifferentiability of CVaR via duality theory

In this section we aim to provide conjugate and subdifferential formulae for the conditional value-

at-risk by means of the duality theory.

For the sake of generality, we first calculate the Lüthi and Doege’s Generalized Conditional value-

at-risk. As a consequence, we derive afterwards, the conjugates of the worst-case risk measure, denoted

by Max Loss, and of the conditional value-at-risk (CVaR). Having this conjugates, in view of relation

(3.2), one can easily obtain the subdifferential formula of CVaR.

Theorem 3.4.4 (A.R. Baias, [6]) Let l ≥ 0 be a fixed parameter, β ∈ (0, 1), and let GCV aRβ,l : Lp →
R, p ≥ 1 be the risk function defined by

GCVaRβ,l(X) = inf
η∈R

E[(X+η)−]≤l

{
η +

1

β
E[(X + η)−]

}
. (3.31)

Then the conjugate function of GCVaR, is the function GCVaR∗β,l : Lq → R, given by

GCVaR∗β,l(X
∗) =

{
−lmin{0, esinf(X∗ + 1

β )}, if E(X∗) = −1, X∗ ≤ 0,

+∞, otherwise.
(3.32)

In view of Remark 41 for l = 0 we rediscover in the above theorem the conjugate of the worst-

case risk measure, while for (X∗ + 1
β ) ≥ 0 we actually get the conjugate of the classical Conditional

Value-at-Risk, as the below corollaries shows.

Corollary 3.4.5 (A.R. Baias, [6]) Let Max Loss : Lp → R, p ≥ 1 be the risk function defined by

Max Loss := − esinf X.
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Then the conjugate function of Max Loss is the function Max Loss∗ : Lq → R, given by

Max Loss∗(X∗) =

{
0, if E(X∗) = −1, X∗ ≤ 0,

+∞, otherwise,
(3.33)

Corollary 3.4.6 (A.R. Baias, [6]) Let β ∈ (0, 1) and let CVaRβ : Lp → R, p ≥ 1 be the risk function

defined by relation (3.30). Then the conjugate function of CVaR is the function CVaR∗β : Lq → R, given

by

CVaR∗β(X∗) =

{
0, if E(X∗) = −1, X∗ ≤ 0, (X∗ + 1

β ) ≥ 0,

+∞, otherwise .
(3.34)

Theorem 3.4.7 (A.R. Baias, [6]) Let β ∈ (0, 1) and let CVaRβ : Lp → R, p ≥ 1 be the risk function

defined by relation (3.30). Then it holds

∂CVaRβ(X) =

X∗∈Lq :E(X∗) = −1,

X∗(ω)= −1/β, ifX(ω) <−VaRβ(X)

X∗(ω)∈ [−1/β, 0], ifX(ω) =−VaRβ(X)

X∗(ω) = 0, ifX(ω) >−VaRβ(X)

 . (3.35)

3.4.3 Conjugate and subdifferentiability of CVaR via an utility function

In the following we deal with the same problem of furnishing the conjugate and the subdifferential

formula of the Conditional Value-at-risk, but this time by using the utility approach developed in Section

3.2.

Let therefore γ2 < −1 < γ1 ≤ 0 and let u : R→ R be the utility function defined by

u(t) =

{
γ2t, if t ≤ 0,

γ1t, if t > 0,

Notice that it satisfies all the requirements in the Assumption 21, i.e. it is a proper, convex, lower

semicontinuous and nonincreasing function, which additionally fulfills the normalization conditions. This

gives rise to the following convex risk measure ρu : Lp → R,

ρu(X) = inf
λ∈R
{λ+ γ1E(X + λ)+ − γ2E(X + λ)−}.

For γ1 = 0 and γ2 = −1/β, where β ∈ (0, 1) is the confidence level, we rediscover in the above formula

the classical conditional value-at-risk (see 3.30).

Since u∗ = δ[γ2,γ1], via Theorem 3.2.6 one gets for ρ∗u : Lq → R the following expression

ρ∗u(X∗) =

{
0, if γ2 ≤ X∗ ≤ γ1,E(X∗) = −1,

+∞, otherwise.
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Thus, for all X∗ ∈ Lq the conjugate of CVaR is the function CVaR∗β : Lq → R which looks like

CVaR∗β(X∗) =

{
0, if − 1

β ≤ X
∗ ≤ 0,E(X∗) = −1,

+∞, otherwise.

Noticing that for all d ∈ R,

(u)∞(d) =


γ2d, if d < 0,

0, if d = 0,

γ1d, if d > 0,

one can easily see that condition (3.8) is satisfied. Thus for all X ∈ Lp there exists λ̄(X) ∈ R such that

ρu(X) = λ̄(X) +γ1E(X+ λ̄(X))+−γ2E(X+ λ̄(X))−. Further, according to Theorem 3.2.8, we will make

use of λ̄(X) when giving the formula for the subdifferential of ρu at X. Since

∂u(t) =


{γ2}, if t < 0,

[γ2, γ1], if t = 0,

{γ1}, if t > 0,

we obtain for all X ∈ Lp the following formula

∂ρu(X) =

X∗ ∈ (Lp)∗ : E(X∗) = −1,

X∗(ω) = γ2, if X(ω) < −λ̄(X)

X∗(ω) ∈ [γ2, γ1], if X(ω) = −λ̄(X)

X∗(ω) = γ1, if X(ω) > −λ̄(X)

 .

As we have already seen, in the previous section, for all X ∈ Lp the element where the infimum

in the definition of CVaRβ(X) is attained, is the so-called value-at-risk of X at level β. Therefore we get

for the subdifferential of CVaR the expression given by relation (3.35).



Chapter 4

Extension theorems for convex

set-valued maps

4.1 Motivation

In this chapter we aim on one hand to give new extension theorems for convex set-valued maps

under rather weak topological assumptions and, on the other hand, we intend to emphasize their appli-

cability in the field of nonsmooth analysis.

The famous Hahn-Banach theorem, first stated in [57] and [13] is a powerful tool which resonates

through important fields of mathematics such as: functional analysis, convex analysis and optimization

theory. Among the numerous consequences of this result, we merely mention here Hahn’s extension

theorems for continuous linear functionals. Generalizations and variants of those theorems were developed

in different directions in the past. We remind here only a few remarkable results for vector functions,

in partially ordered spaces with least upper bound property, the so called Hahn Banach Kantorovich

theorem, [38, 42, 63, 91, 100, 101], while for set-valued maps we recall [70, 71, 94, 99].

Although most of those results are mistaken, as Zălinescu showed in [98], they open the gates for

further research in the domain. Most of those generalizations refer only to the case of linear spaces, where

no topology is involved. As far as we know, only a few topological versions were developed, see for instance

[19], [44] and the references therein. In all the above results the conditions for the existence of a linear

extension are expressed by means of the classical topological interior or by means of the algebraic interior

(core). The only exception is the paper of Zălinescu [98] in which a weaker version of algebraic interior

was used (the intrinsic core), but only for the extension of pure algebraic Hahn-Banach-Kantorovich

theorems.

Our goal for this chapter is to provide extension theorems for both linear continuous operators

dominated by convex set-valued maps, and real valued closed convex processes. With this work we aim

to fill in the gaps in the domain and to emphasize a new way of proving continuity for linear extensions

in topological spaces. In order to justify the efficiency of our results we provide suggestive examples and

a wide range of applications under the form of existence results for subgradients of set-valued maps.
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4.2 Background in notation and definitions for partially ordered

spaces

Lately, has become a standard to work in partially ordered spaces with the least upper bound

property, when dealing with set-valued extension theorems. This is the reason why this section is dedicated

to a short summary on the partially ordered spaces.

The general framework we work under in the present chapter is described below. All the assump-

tions made on the spaces X and Y and on the cone K will be valid for all the forthcoming sections if not

otherwise specified.

Let X and Y be Fréchet spaces and let K ⊂ Y be a pointed, closed, convex cone. The cone K

induces a partial ordering on Y, called the strong ordering and defined by

y2 ≥ y1 if y2 − y1 ∈ K, ∀y1, y2 ∈ Y.

If the cone K is solid (i.e. intK 6= ∅) we may also talk about the weak ordering on Y, defined as

y2 > y1 if y2 − y1 ∈ intK, ∀y1, y2 ∈ Y.

Further, we consider the cone K, solid, so that the whole theory developed in this chapter will suit

both the weak and the strong ordering. For simplicity we assume also that K is normal for the topology

on Y. This is to say that there exists a basis of neighbourhoods V of zero in Y with

(V −K) ∩ (K − V ) = V.

Definition 4.2.1 (cf. [42]) A topological vector space Y, partially ordered by a convex cone K, has

the least upper bound property if every nonempty subset C which has an upper bound c in terms of the

ordering (i.e. ∀y ∈ C, c− y ∈ K) has a least upper bound, called supremum of C (i.e. there exists c̃ ∈ Y
such that c̃ is an upper bound to C, and each upper bound c to C satisfies c− c̃ ∈ K).

This section also contains examples and counter examples of infinite dimensional spaces whit least

upper bound property.

4.3 Preliminaries on set-valued analysis

Our goal for this section is to draw the background of notations and definitions for set-valued

maps. For prerequisite material on set-valued maps the reader is referred to [3, 21, 76, 78, 92]

For set-valued maps Λ : X ⇒ Y we denote by Gr(Λ) its graph, by Dom Λ the domain of the

set-valued map Λ, by Epi(Λ), its epigraph and by Im Λ the image or the range of the set-valued map.

We shall say that the set-valued map Λ : X ⇒ Y is:

− strict if the images Λ(x) are nonempty for all x ∈ X ;
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− convex (or convex relation) if its graph is convex;

− closed if its graph is closed in X × Y.

− K-convex if its epigraph is convex;

− a process (or positively homogeneous) if its graph is a cone;

− lower semicontinuous if for every x0 ∈ Dom(Λ) and any open set U ⊆ Y, with Λ(x0)∩U 6= ∅ there

exist a neighbourhood V of x0 such that Λ(x) ∩ U 6= ∅ for all x ∈ V .

Similarly to the norm of a continuous linear functional we can define the norm of a closed convex

process Λ as

‖Λ‖ := sup
x∈Dom Λ

d(0,Λ(x))

‖x‖
= sup

x∈Dom Λ
inf

u∈Λ(x)

‖u‖
‖x‖

.

4.4 Extension theorems for linear continuous operators dominated by

convex set-valued maps

As we have already mentioned one of our goals for this section is to provide extension theorems

for linear continuous operators dominated by convex set-valued maps under rather weak interiority con-

ditions. For all the results of the forthcoming section X and Y are Fréchet spaces, the latter with the

least upper bound property, partially ordered by the closed, convex, pointed cone K. Furthermore K is

normal and solid. Our main result for this section is the following.

Theorem 4.4.3 (A.R. Baias, [8]) Let Λ : X ⇒ Y be a convex set-valued map. Suppose that

0 ∈ sqri(Dom(Λ)) and (4.1)

Λ(0) ≥ 0 ( i.e. ∀y ∈ Λ(0) we have y ≥ 0). (4.2)

Then there exist a continuous, linear operator T : X → Y such that

T (x) ≤ Λ(x), ∀x ∈ Dom Λ. (4.3)

Remark 4.4.5 (A.R. Baias, [8]) If X is endowed with the finest convex topology for a convex set-valued

map Λ : X ⇒ Y, the following conditions are equivalent:

(a) Λ is lower semicontinuous at 0;

(b) 0 ∈ core(Dom(Λ));

(c) 0 ∈ sqri(Dom(Λ)) ∩ qi(Dom(Λ)).
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The equivalence between condition (a) and (b) is due to [19, Proposition 2.1, (d)] while the equivalence

between (b) and (c) is a simple consequence of the definitions of quasi relative interior and strong quasi

relative interior respectively. Note that under this context all the above conditions imply condition (47).

The equivalence between (b) and (c) states for convex set-valued maps, under a more general

framework, namely in topological vector spaces without any further assumptions.

In order to illustrate the applicability of our result we consider the following example.

Example 4.4.7 (A.R. Baias, [8])

Consider now the Fréchet space `2(N) and its closed linear subspace

X̄ = {(xn)n ∈ N ∈ `2 : x2n−1 + x2n = 0,∀n ∈ N}.

Define the map Λ : `2(N ⇒ R̄ by

Λ(x) =

{
{0}, if x ∈ X̄ ,
∅, otherwise.

One can see that Λ is convex and Dom Λ = X̄ . Now since cone(Dom Λ) = X̄ 6= `2 we conclude that

0 ∈ sqri(Dom Λ) and our result applies. Furthermore 0 /∈ core(Dom Λ) thus other similar results expressed

by means of algebraic interior are not suitable for this problem.

Theorem 4.4.8 (Sandwich Theorem)(A.R. Baias, [8]) Let Λ1,Λ2 : X ⇒ Y be convex set-valued maps,

such that

0 ∈ sqri(Dom Λ1 −Dom Λ2).

Suppose that

Λ2(x) ≤ Λ1(x), ∀x ∈ X . (4.4)

Then there exists a continuous linear operator T : X → Y and y0 ∈ Y with

Λ2(x) ≤ T (x)− y0 ≤ Λ1(x), ∀x ∈ X .

Remark 4.4.9 (A.R. Baias, [8]) Theorem 50 contains Theorem 47 as a special case, for Gr(Λ1) = Gr(Λ)

and Gr(Λ2) = 0.

We consider further the case of vector-valued maps and we provide the following sandwich result.

Corollary 4.4.10 (A.R. Baias, [8]) Let λ1, λ2 : X → Y be a K-convex and respectively a K-concave

vector function, such that

0 ∈ sqri(domλ1 − domλ2).

Suppose that

λ2(x) ≤ λ1(x), ∀x ∈ domλ1 ∩ domλ2. (4.5)
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Then there exists a continuous linear operator T : X → Y and y0 ∈ Y with

λ2(x) ≤ T (x)− y0 ≤ λ1(x), ∀x ∈ X .

In the following we shall establish a new generalized Lagrange Multiplier Theorem.

Assumption 53 Let X ,Y,Z be Fréchet spaces. Y has the least upper bound property with respect to the

ordering induced by the normal, closed, convex, pointed cone K. Let Λ : X ⇒ Y and Γ : X ⇒ Z be

set-valued maps.

We consider the following minimization problem

(PΛ) inf
0∈Γ(x)

Λ(x).

If µ is a solution of problem (PΛ), then we call µ a minimizer of (PΛ).

Theorem 4.4.11 (Lagrange Multipliers)(A.R. Baias, [8]) Let the problem (PΛ) be defined as above.

Suppose that the set-valued map Φ : Z ⇒ Y, defined as

Φ(z) = (Λ ◦ Γ−1)(z) = {Λ(x) : z ∈ Γ(x)}

is convex and 0 ∈ sqri(Dom(Φ)). Then for any µ, minimum of (PΛ), there exist a linear, continuous

operator T : Z → Y such that

µ ≤ Λ(x) + (T ◦ Γ)(x), ∀x ∈ X . (4.6)

Problem (PΛ) plays a central role in vector theory and optimization since the whole perturbation

duality theory can be viewed as a particular case of the problem (PΛ).

4.5 Subgradients of Set-valued maps

One of the most important research directions in nonsmooth analysis is represented by the exis-

tence results for subgradients of vector-valued or set-valued map. We refer in this section to the latter

direction, which had grown amazingly, in the last few years. For more references and discussions on

subgradients (subdifferentials) of vector-valued functions see the recent books of Mordukhovich [67, 68],

which may be considered the cornerstone of this domain.

4.5.1 General notions, definitions and remarks

To start with we recall first the approaches regarding strong subgradients of set-valued maps.

Definition 4.5.1 [19] Let Λ : X ⇒ Y be a set-valued map and let x0 ∈ Dom(Λ) and y0 ∈ Y such that

y0 ≤ Λ(x0). A linear and continuous operator T : X → Y is called Borwein-strong subgradient of Λ at

(x0, y0) if

T (x− x0) ≤ Λ(x)− y0, ∀x ∈ Dom(Λ).
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The set of Borwein-strong subgradients at (x0, y0) is denoted by ∂B−Sy0 Λ(x0).

Definition 4.5.2 [58] Let Λ : X ⇒ Y be a set-valued map and let x0 ∈ Dom(Λ). A linear and continuous

operator T : X → Y is called then strong subgradient of Λ at x0 if

T (x− x0) ≤ Λ(x)− Λ(x0), ∀x ∈ Dom(Λ) \ {x0}.

We denote by ∂SΛ(x0) the set of strong subgradients of Λ at x0.

Further the chapter present the ”weak” concepts associated with the above. We compare and

we discuss the connections between the above notions and other similar notions of weak and strong

subgradients of set-valued maps. Although most of them have been introduced in the context of linear

spaces where no topology is involved, we adapt the initial definition to the case of linear topological

spaces .

4.5.2 Existence results

Due to the rapidly growth of the field of nonsmooth analysis, a lot of recent papers discussed and

proved the existence of subgradients for set-valued or vector-valued maps under separation arguments.

We mention here only a few of them as [19, 38, 39, 58, 71, 94].

Using our extension Theorem 4.4.3 we emphasize the existence of both strong and Borwein-strong

subgradients.

Theorem 4.5.7 (A.R. Baias, [8]) Let Λ : X ⇒ Y be a convex set-valued map and consider x0 ∈
sqri(Dom(Λ)). If there exists y0 ∈ Y such that y0 ≤ Λ(x0) then ∂B−Sy0 Λ(x0) is non-empty.

Theorem 4.5.8 (A.R. Baias, [8]) Let Λ : X ⇒ Y be a convex set-valued map and let x0 ∈ X such that

x0 ∈ sqri(Dom(Λ)). Then ∂SΛ(x0) is non-empty.

The convexity assumption of the above theorem can be easily relaxed if we assume it on an

additional set-valued map, instead of the initial function Λ, as we shall see below.

Theorem 4.5.9 (A.R. Baias, [8]) Let Λ : X ⇒ Y be a set-valued map and x0 ∈ Dom(Λ). Suppose that

there exists a convex map Γ : X ⇒ Y such that

0 ∈ sqri(Dom(Γ)) with Γ(0) ≥ 0 and (4.7)

Λ(x)− Λ(x0) ⊂ Γ(x− x0) for all x ∈ X \ {x0} (4.8)

Then ∂SΛ(x0) is non-empty.

In the above theorem the result still holds if we use instead of a convex arbitrary set-valued map

Γ the contingent derivative of Λ.
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Remark 4.5.11 (A.R. Baias, [8]) In [58, Theorem 4.2] existence theorems for strong subgradients

were established by using a similar approach but under different assumptions. Since under the context

of Remark 48 the condition (4.7) is weaker then the lower semicontinuity of Γ in the origin, Theorem 59

improves [58, Theorem 4.2].

When dealing with subdifferentials another direction intensively studied lately, was the one involving

calculus rules for different classes of functions. With this respect we refer to the reader to [67, 68, 60, 33,

10].

4.6 Extension theorems for closed convex processes

In this section we work under a more general framework, namely in normed linear spaces, and we

provide some norm preserving extension results for real valued closed convex processes. As a consequence,

we characterize, the elements of best approximation in normed linear spaces by elements of closed convex

cones using closed convex processes.

Hahn’s extension theorems for continuous linear functionals, are extended to the general frame-

work of set-valued analysis through the following two results.

Theorem 4.6.1 (A.R. Baias, T. Trif, [12]) Let X be a real normed linear space, let X0 be a linear

subspace of X , and let Γ0 : X0 ⇒ R be a closed convex process such that

Dom Γ0 = X0 and ‖Γ0‖ <∞. (4.9)

Then there exists a closed convex process Γ : X ⇒ R such that

(i) Dom Γ = X and ‖Γ‖ = 1;

(ii) Γ(x) = Γ0(x) for all x ∈ X0;

(iii) ‖Γ‖ = ‖Γ0‖.

Theorem 4.6.2 (A.R. Baias, T. Trif, [12]) Let X be a real normed linear space, let K0 be a closed

convex cone in X , let x0 ∈ X \K0, and let d0 := d(x0,K0) = infx∈K0 ‖x−x0‖. Then there exists a closed

convex process Γ : X ⇒ R, satisfying the following conditions:

(i) Dom Γ = X and ‖Γ‖ = 1;

(ii) min Γ(x) = 0 for all x ∈ K0;

(iii) min Γ(x0) = d0.

As a direct consequence of Theorem 62 we obtain the characterization of elements of best ap-

proximation in normed linear spaces by elements of closed convex cones using closed convex processes.
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Theorem 4.6.3 (A.R. Baias, T. Trif, [12]) Let X be a real normed linear space, let K0 be a closed

convex cone in X , let x0 ∈ X \ K0, and let y0 ∈ K0. Then y0 ∈ prK0
(x0) if and only if there exists a

closed convex process Γ : X ⇒ R, with the following properties:

(i) Dom Γ = X and ‖Γ‖ = 1;

(ii) min Γ(x) = 0 for all x ∈ K0;

(iii) min Γ(x0) = ‖x0 − y0‖.
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[29] R.I. Boţ, E.R. Csetnek, A. Moldovan: Revisiting some duality theorems via the quasirelative

interior in convex optimization, Journal of Optimization Theory and Applications 139(1), 67–84,

2008.
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[34] R.I. Boţ, A.R. Frătean (Baias): Looking for appropriate qualification conditions for subdif-

ferential formulae and dual representations for convex risk measures, Mathematical Methods of

Operations Research, 74(2), 191–215, 2011.
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[36] Ş. Cobzaş, C. Mustăţa: Extension of Lipschitz functions and best approximation, Research on the

Theory of Allure, Approximation, Convexity and Optimization (E. Popoviciu ed.), Srima Publishers,

Cluj-Napoca, 3–21, 1999.

[37] E.R. Csetnek: Overcoming the failure of the classical generalized interior-point regularity conditions

in convex optimization. Applications of the duality theory to enlargements of maximal monotone

operators, Logos Verlag Berlin, 2010.

[38] G.Y. Chen, B.D. Craven: A vector variational inequality and optimization over an efficient set,

Methods and Models of Operation Research 34, 1–12, 1990.

[39] G.Y. Chen, J. Jahn: Optimality conditions for set-valued optimization problems, Mathemathical

Methods of Operation Research 48, 187–200, 1990.

[40] P. Cheridito, T. Li: Dual characterizations of properties of risk measures on Orlicz hearts, Math-

ematics and Financial Economics 2, 29–55, 2008.

[41] P. Cheridito, T. Li: Risk measures on Orlicz hearts, Mathematical Finance 19, 189–214, 2009.

[42] M.M. Day: Normed Linear Space, Springer-Verlag, Berlin, 1962.



44

[43] F. Delbaen: Coherent risk measures on general probability spaces, Advances in Finance and Stochas-

tics 19, 1–37, 2002.

[44] W-S. Du: A vector variational inequality and optimization over an efficient set, Nonlinear Analysis

71, 3176–3184, 2009.

[45] D. Duca: Multicriteria optimization in complex spaces, Casa cărţii de ştiinţă, Cluj-Napoca, 2005.
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Mathématiques, Université de Montpellier, Montpellier, 1962.

[70] J.W. Peng, H.W.J. Lee, W.D. Rong, X.M. Yang: A generalization of Hahn-Banach extension

theorem, Journal of Mathematical Analysis and Applications 302, 441–449, 2005.

[71] J.W. Peng, H.W.J. Lee, W.D. Rong, X.M. Yang: Hahn-Banach theorems and subgradients of

set-valued maps, Mathemathical Methods of Operation Research 61, 281–297, 2005.

[72] J.P. Penot, M. Thera: Semi-continuous mappings in general topology, Archiv der Mathematik

38, 158–166, 1982.

[73] G.Ch. Pflug: Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk. Probabilistic

Constrained Optimization: Methodology and Applications, Kluwer Academic Publishers, 2000.



46

[74] G.Ch. Pflug: Subdifferential representation of risk measures, Mathematical Programming 108(2-

3), 339–354, 2007.

[75] G.Ch. Pflug, W. Römisch: Modeling, Measuring, and Managing Risk, World Scientific Publishing,

Singapore, 2007.

[76] A.L. Peressini: Ordered topological vector spaces, Harper and Row, New-York-London, 1967.

[77] S. Rachev, S.Stoyanov and F. Fabozzi: Advanced Stochastic Models, Risk Assessment, and

Portfolio Optimization, John Wiley and Sons, Inc., Hoboken, New Jersey, 2008.

[78] S. Robinson: Normed convex processes, Transactions of the American Mathematical Society 174,

127–140, 1972.

[79] R.T. Rockafellar: Duality theorems for convex functions, Bulletin of the American Mathematical

Society 70, 189–192, 1964.

[80] R. T. Rockafellar: Convex Analysis, Priceton University Press, Priceton 1970.

[81] R.T. Rockafellar, S. Uryasev: Optimization of conditional value-at-risk, Journal of Risk 2(3),

21–42, 2000.

[82] R.T. Rockafellar, S. Uryasev: Conditional value-at-risk for general loss distributions, Journal

of Banking and Finance 26(7), 1443–1471, 2002.

[83] R.T. Rockafellar, S. Uryasev, M. Zabarankin: Optimality conditions in portofolio analysis

with general deviation measures, Mathematical Programming 108(2-3), Ser.B, 515–540, 2006.

[84] R.T. Rockafellar, S. Uryasev, M. Zabarankin: Generalized deviations in risk analysis, Fi-

nance and Stochastics 10(1), 51–74, 2006.

[85] R.T. Rockafellar, R.J-B. Wets: Variational Analysis, Fundamental Principles in Mathematical

Sciences Vol. 317, Springer-Verlag, Berlin, 1998.

[86] W. Rudin: Functional Analysis, McGraw-Hill, New-York, 1973.

[87] W. Ruess: Ein Dualkegel für p-konvexe topologische lineare Räume, Geselschaft für Mathematik
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