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Chapter 1. Introduction

Chapter 1

Introduction

Strategic decision-making is essential for understanding complex multi-agent in-
teractions, and game theory is a powerful tool for analysing the complex structure
of these behaviors. Among various analytical approaches, repeated games stand
out for their ability to explain the evolution of cooperation, conflict, and adaptation,
offering deeper insights than traditional static, one-shot models. A significant com-
ponent of this thesis focuses on the Iterated Prisoner’s Dilemma (IPD), which has
been extensively explored through Robert Axelrod’s computational tournaments.
Axelrod’s work revealed how agents’ strategic choices depend not only on immediate
payoffs but also significantly on historical experiences, expectations about future
interactions, and adaptive learning over time. An important theoretical question
arises within this framework: Are the agents developed within the framework of Axelrod
tournaments, endowed with sophisticated reasoning, capable of distinguishing between the
implications of finite versus infinite horizons? Although we cannot directly test behavior
in an infinite horizon, we can introduce uncertainty regarding the number of stages
in a supergame. This allows us to observe whether successive generations of agents
in Axelrod tournaments behave purely mechanically from a time-span perspective
or if they internalize the certainty or uncertainty of the number of stages in the
supergames they play. Such an approach allows us to explore whether agents across
generations act mechanically, driven purely by immediate incentives, or whether
they internalize the uncertainty about game length, thus adapting their strategies in
more sophisticated, forward-looking ways. This thesis aims to address these nuanced
questions, enriching our understanding of inter-temporal strategic decision-making
and providing valuable insights for economic theory, political modelling, behavioral
science, and the development of intelligent artificial agents.

This thesis offers a new framework for understanding strategic interaction, em-
phasizing uncertainty as a fundamental structural feature of repeated games. Through a
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fundamental transition from fixed-horizon to uncertain-horizon modeling, this work intro-
duces significant theoretical and operational enhancements applicable to simulation-
based experimental contexts. A key contribution is the design and implementation of an
innovative Monte Carlo simulation system, specifically created for this research, offering
a strong methodological and experimentally tested approach to evaluating strate-
gic behavior under unknown game durations. By integrating formal game-theoretic
reasoning with computational simulations, this research advances a scalable theory of
decision-making for dynamic multi-agent systems. It offers new insights into the
mechanisms behind cooperation, its vulnerabilities, and the influence of adaptability
and environmental volatility. By moving beyond fixed-horizon assumptions and
validating a flexible framework for behavioral modeling, the thesis significantly
contributes to understanding strategic intelligence under uncertainty.

Chapter 2 offers a solid theoretical and methodological framework for analyzing
strategic behavior in repeated games, using the Iterated Prisoner’s Dilemma (IPD) as
a central model. It begins with core concepts from classical game theory—normal-
form representations, dominance relations, and Nash equilibria in pure and mixed
strategies—essential for characterizing strategic interactions.

The chapter then explores how repetition changes incentives: while one-shot
games predict defection, repeated interactions—especially with uncertain or infinite
horizons—can foster cooperation via reciprocity, punishment, and reputation. The
Folk Theorem and equilibrium refinements illustrate how patient agents can sustain
cooperation even without external enforcement. Belief formation and monitoring
structures are also examined for their role in strategy credibility.

An original Monte Carlo simulation approach is introduced to assess strategy ro-
bustness under uncertainty. The environment uses stochastic halting criteria based
on normal distributions, enabling repeated evaluation of agent performance across
probabilistic scenarios. Agents are modeled using deterministic logic and stochas-
tic finite-state machines, supporting systematic comparisons of a wide range of
strategies within a unified experimental setup.

Chapter 3 investigates how the structure of repeated games—particularly the
(un)certainty of their duration—influences strategic decision-making in multi-agent
systems. It contrasts finite-horizon games, where backward induction leads to defec-
tion, with infinite or uncertain horizons that allow cooperation through discounting,
belief formation, and reciprocity.

The chapter integrates recent advances in infinite-horizon dynamic games, includ-
ing anticipative feedback and information-updating models, to depict agents with
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adaptive, foresight-driven behavior shaped by memory and environmental signals.
This research extends Axelrod’s tournaments within a simulation framework that

incorporates uncertain game duration via stochastic halting criteria based on nor-
mal distributions, better mirroring real-world scenarios without known interaction
endpoints. This approach broadens the analytical scope of standard IPD studies.

To support this, a custom Monte Carlo simulation system was developed. A
key contribution is the experimental platform itself, enabling variable-length matches,
automated outcome tracking, and rich data exports. Visual tools—like pie charts,
cooperation matrices, and heatmaps—highlight emergent patterns and strategy
mismatches.

The simulation also reconstructed Axelrod’s Second Tournament under prob-
abilistic horizons. Strategies were evaluated through repeated trials using new
performance metrics. A methodological innovation is the use of discrepancy-based indi-
cators, such as rank shifts and payoff volatility, allowing empirical classification of
strategies as robust, adaptive, or volatile.

Chapter 4 offers an in-depth analysis of the Allison Mixture model as a method-
ological innovation for studying strategic behavior in repeated games under un-
certainty. The model is contextualized within stochastic processes and Parrondo’s
paradox, showing how probabilistic switching between neutral or suboptimal strate-
gies can generate favorable emergent outcomes. This illustrates how simple structural
rules can lead to complex adaptive behavior in ambiguous environments.

A major contribution is the translation of the Allison Mixture into a strategic frame-
work for repeated interactions, via a mathematically grounded model of transition
dynamics and autocovariance. This captures how memory, signal variability, and
asymmetry interact in uncertain strategic settings.

The chapter also presents the design of a custom simulation infrastructure for exten-
sive Monte Carlo experiments across varying transition probabilities and interaction
lengths. This system enables precise testing of convergence, estimator variance,
and reward consistency under dynamic conditions, addressing limitations of earlier
low-scale or purely analytical approaches.

The model is further applied in both symmetric and asymmetric game scenarios,
showing its value not only as a statistical construct but as a conceptual tool for modeling
adaptive strategies. Its ability to reproduce autocorrelation and structural depen-
dence where classical strategies fail marks it as a promising instrument for future
work in AI and decision theory. Finally, the research provides a reproducible and
extensible simulation architecture, opening the path for hybrid models that combine
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probabilistic transitions with strategic heuristics. This framework serves not only
as a validation engine for the Allison Mixture but also as a foundation for future
experimental designs in the broader field of dynamic strategic interaction. In this
broader context, the present research contributes to a reconfiguration of how re-
peated games are theoretically modeled and empirically evaluated by shifting the
analytical focus from fixed-horizon assumptions to probabilistic representations of
interaction duration. Through the construction of an integrated Monte Carlo simula-
tion framework and its dual application to both classical strategy tournaments and
stochastic processes like the Allison Mixture, the thesis not only tests the structural
robustness of known strategies but also introduces new methodological avenues for
capturing volatility, adaptability, and emergent cooperation in uncertain environments.

This orientation toward uncertainty as a structural element—rather than a bound-
ary condition—allows the research to better reflect the realities of decentralized
decision-making and temporally ambiguous settings. The tools and insights de-
veloped here hold relevance for future studies in multi-agent systems, behavioral
modeling, and the computational foundations of adaptive intelligence. By combin-
ing classical game-theoretic insight with scalable experimentation, the thesis lays a
conceptual and technical groundwork for more realistic and predictive models of
strategic behavior under dynamic and uncertain conditions.
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Chapter 2. Summary of Chapter 2 : Theoretical, formal, and methodological
foundations of Strategic Decision-Making in Repeated Games and the Iterated
Prisoner's Dilemma

Chapter 2

Summary of Chapter 2 : Theoretical,
formal, and methodological
foundations of Strategic
Decision-Making in Repeated Games
and the Iterated Prisoner's Dilemma

Chapter 2 establishes the conceptual, formal, and computational framework required
for analyzing strategic behavior in repeated games, using the Iterated Prisoner’s
Dilemma (IPD) as a central model. This structure is vital for understanding the
dynamics of cooperation and conflict in multi-agent systems, both in theoretical and
applied contexts. The chapter is structured into six major sections, each contribut-
ing uniquely to the development of a rigorous methodology for studying strategic
robustness under temporal uncertainty.

Theoretical Concepts and Notations

This opening section lays the groundwork for game-theoretic reasoning by intro-
ducing the formal structure of normal-form games, including the mathematical
representation of players, strategies, and payoffs. Nash equilibrium is rigorously
defined and discussed both in pure and mixed strategies, highlighting the strategic
stability it offers across a wide range of environments (Nash, 1950). The discussion
moves beyond classical settings by incorporating insights from evolutionary game
theory and models with incomplete information. These perspectives allow for the
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analysis of strategic behavior under bounded rationality and ambiguous signals,
enabling a more nuanced understanding of agent dynamics in complex systems.

Strategic Games and the Iterated Prisoner's Dilemma

This section deepens the theoretical and conceptual groundwork for analyzing strate-
gic interactions in environments characterized by interdependent decision-making.
The discussion begins by distinguishing between strategic and non-strategic deci-
sions, emphasizing that strategic behavior arises when the outcome of an agent’s
choice is contingent not only on their own preferences, but also on the concurrent
or anticipated actions of others.(Malook, 2024) This interdependence introduces a
layer of complexity that necessitates rational expectation formation and adaptive
reasoning.

Strategic games provide a formal framework to model such scenarios, wherein
agents—whether individuals, institutions, or artificial systems—must account for the
strategies and likely responses of co-players. Drawing on both classical sources and
contemporary contributions, this section explores how strategic reasoning applies
across diverse agent typologies: natural (human), corporate, and artificial intelligence
(AI).(Floridi, 2023) Each category is shown to interact with its environment based
on distinct epistemic limitations and structural affordances, yet all are subject to the
same formal strategic constraints derived from game-theoretic principles.

This foundation is used to objectively assess static, one-shot strategic interac-
tion models. Such models are analytically tractable and essential for understanding
equilibrium concepts like dominance and Nash equilibria, but they fail to capture
real-world decision-making dynamics, which are often embedded in ongoing rela-
tionships, institutional structures, or evolving strategic landscapes. A classic strategic
problem, the Prisoner’s problem, illustrates the conflict between individual ratio-
nality and collective optimality. Without external enforcement or structure, rational
agents will defy each other, even though mutual cooperation gives the largest joint
benefit.

The transition from one-shot to repeated interaction marks a pivotal theoretical
shift. The Iterated Prisoner’s Dilemma (IPD) introduces a temporal dimension that
fundamentally alters the strategic landscape.(Myerson, 1991) Repetition creates the
possibility for history-dependent behavior, allowing strategies to condition their
actions on past outcomes. This in turn enables mechanisms such as reciprocity,
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punishment, forgiveness, and signaling, which can sustain cooperation even in envi-
ronments governed by self-interest.(Axelrod, 1984) Strategies like Tit-for-Tat, Grim
Trigger, and Win-Stay Lose-Shift illustrate how simplicity, memory, and conditional-
ity interact to produce robust cooperative equilibria.

Finally, this section highlights the role of uncertainty and imperfect monitoring
in shaping strategic conduct. Reputational concerns, belief formation, and the avail-
ability of public or private signals all influence the credibility and enforceability
of strategies. The theoretical implications of these factors are discussed in light of
real-world analogues, from social norms and institutional design to AI-based agents
in digital environments.

Repeated Games: Finite Horizon vs. Infinite Horizon

This section provides a comprehensive analysis of the strategic consequences arising
from the temporal structure of repeated games, specifically contrasting games with
a finite horizon—where the number of iterations is known and fixed—with those
that feature infinite or uncertain horizons. The distinction is not merely technical; it
reshapes the strategic landscape by altering how agents assess future payoffs, weigh
cooperation versus defection, and anticipate the behavior of their counterparts.

In finitely repeated games, the principle of backward induction imposes a strong
theoretical constraint. Since rational players are assumed to anticipate the future and
reason recursively, defection becomes the dominant strategy in the final round, which
then triggers a cascade of defection in all preceding stages. This logic, grounded in
classical game-theoretic rationality, predicts the collapse of cooperation even in games
where mutual cooperation would yield higher cumulative payoffs.(Cressman, 1996)
While this result is formally robust, it hinges on strict assumptions such as perfect
information, common knowledge of rationality, and deterministic expectations about
game termination.

Infinite-horizon repeated games, or those with probabilistic continuation (i.e.,
players are uncertain whether the game continues after each round), offer a more
favorable environment for the emergence and stability of cooperation. (Fudenberg &
Maskin, 1986) The absence of a known final round removes the backward induction
argument, allowing future consequences to influence present behavior. The concept
of the “shadow of the future” becomes central: when agents sufficiently value long-
term payoffs—typically modeled via a high discount factor—they are incentivized to
maintain cooperation to avoid triggering future punishment.
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Beyond theoretical conditions, recent refinements incorporate more realistic fea-
tures such as imperfect monitoring, limited memory, and asymmetric information.
For example, models with public signals (observable by all players) allow for punish-
ment mechanisms to be enforced credibly, while private or noisy signals introduce
complexity in belief formation and make cooperative equilibria more fragile. Re-
searchers such as Hörner and Olszewski (2009) have shown that cooperation remains
possible even under imperfect observability, as long as agents possess sufficient
memory and discount future payoffs appropriately.

To capture the full implications of time structure, the section also contrasts the
metrics used for payoff evaluation in finite and infinite games. While finite games
typically sum stage payoffs or use cumulative utility, infinite-horizon models em-
ploy average payoffs or discounted utilities. These evaluation models influence the
incentives for cooperation and defection, shaping strategic design and equilibrium
behavior.

In summary, this section underscores that the temporal horizon of repeated games
is a first-order determinant of strategic possibilities. Whereas finite games constrain
cooperation through backward reasoning, infinite or uncertain horizons enable long-
term strategies that reward cooperation and punish defection. This distinction is not
only theoretically significant but also critical for designing robust agents in real-world
multi-agent environments, where the duration and structure of interaction are rarely
fixed or known in advance.

Strategies from Axelrod’s Tournaments

This section offers a detailed examination of the empirical and theoretical contribu-
tions arising from Robert Axelrod’s influential tournaments on the Iterated Prisoner’s
Dilemma (IPD).(Axelrod, 1984) These experiments marked a turning point in the
study of cooperation by demonstrating that strategic behavior conducive to mutual
benefit can emerge even in environments governed by individual rationality and
self-interest. More than a methodological innovation, Axelrod’s tournaments served
as a bridge between theoretical game models and agent-based simulations, providing
a robust empirical framework for testing hypotheses about strategy resilience and
adaptability in repeated interactions.

Axelrod’s first tournament (1980), which invited researchers from diverse fields
to submit algorithmic strategies for the IPD, was conducted as a round-robin com-
petition: each strategy played against all others—including itself—across a series of
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200-round matches. The results were striking. Despite the wide variety in strategic
complexity, memory usage, and behavior rules, the simplest strategy submitted—Tit
for Tat (TFT), proposed by Anatol Rapoport—emerged as the overall winner. TFT’s
rule was elegant: begin with cooperation and then mimic the opponent’s previous
move. This strategy was not only effective in generating high payoffs but also robust
against exploitation and retaliation.

The first tournament revealed several important principles. Strategies that com-
bined niceness (never defecting first), retaliatory capacity (responding to defection),
forgiveness (returning to cooperation), and clarity (being easily interpretable by
opponents) performed better in repeated settings.(Axelrod & Hamilton, 1981) The
emergent success of TFT led Axelrod to organize a second, more complex tournament
involving 63 strategies, submitted by researchers from six countries. This second
iteration introduced an evolutionary dimension: poorly performing strategies were
removed and replaced by copies of better-performing ones, simulating population
dynamics over generations.

Interestingly, the second tournament also revealed the limits of TFT and opened
the field to more nuanced strategy design. While TFT remained highly competitive,
it was occasionally outperformed in specific contexts by variations such as Generous
Tit for Tat (GTFT), which occasionally forgives defection, or more complex strate-
gies like Tester and Tranquilizer, which used probing moves to detect exploitable
opponents. Moreover, the tournament structure provided fertile ground for the emer-
gence of extortionate behaviors later formalized as Zero-Determinant (ZD) strategies.
These strategies, although not explicitly included at the time, anticipated the idea of
unilaterally enforcing linear payoff relationships.

From a theoretical standpoint, Axelrod’s tournaments demonstrated that cooper-
ation could be an evolutionarily viable outcome, even without centralized enforce-
ment or communication between agents. The results challenged the dominance of
strictly self-interested strategies (like Always Defect) and showed that behavior rules
grounded in reciprocity and proportionality can sustain mutual benefit over long
horizons.

In summary, this section illustrates how Axelrod’s tournaments provided both
a methodological blueprint and a theoretical paradigm for studying cooperation
in repeated games. The insights derived from the success and failure of differ-
ent strategies informed the subsequent development of evolutionary game theory,
agent-based modeling, and reinforcement learning systems. As such, the Axelrod
framework remains a cornerstone in the analysis of strategic behavior in multi-agent
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systems, bridging normative theory and empirical dynamics in a way that few other
experiments in game theory have achieved.

Monte Carlo Simulation Methodology

This section introduces the computational simulation framework employed to evalu-
ate strategic behavior in the Iterated Prisoner’s Dilemma (IPD) under uncertainty.The
simulation methodology presented here builds upon the framework and experi-
mental approach proposed on our article: Axelrod First Tournament: examining
certainty versus uncertainty about the end stage in repeated games.(Milencianu
& Pop, 2023) Building on both classical insights and recent empirical approaches,
the methodology leverages Monte Carlo simulation to overcome analytical limita-
tions and systematically explore how strategies perform across stochastic interaction
structures.

At its core, Monte Carlo simulation involves the generation of a large number of
repeated random samples to estimate expected outcomes. In the context of repeated
games, it enables the approximation of average payoffs, behavioral stability, and con-
vergence tendencies under variable interaction lengths and opponent combinations.
Unlike deterministic modeling, which assumes fixed game duration, this framework
employs probabilistic termination rules, capturing more realistic conditions where
agents do not know in advance when an interaction will end.(Metropolis & Ulam,
1949)

Each simulation trial involves pairing strategies in a round-robin format, where
each strategy plays a probabilistically terminated IPD game against every other
strategy in the pool. For robustness, each pairwise interaction is repeated multiple
times (e.g., 1000 iterations) to ensure reliable convergence of average performance
metrics. For every match, the sequence of decisions is determined by the internal
logic of each agent—be it deterministic or stochastic—based on historical moves and
the structure of the strategy (e.g., finite state machine, memory-one rule, probabilistic
transition function).

The simulation environment is implemented in Python, leveraging efficient vec-
torized operations via NumPy. It supports both sequential simulations (for agent
learning or adaptation tracking) and non-sequential sampling (for statistical sum-
maries). Two schemes are employed:

• Sequential Simulation: Generates full play histories across rounds, enabling
dynamic analysis of behavioral evolution within matches.
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• Non-Sequential Sampling: Focuses on outcome distributions without record-
ing step-wise transitions, thus reducing computational overhead.

Additionally, agents are modeled using either deterministic rules or stochastic
finite-state automata, allowing for the comparison of strategies that differ in mem-
ory, randomness, and responsiveness. Memory-1 strategies, for example, base their
actions solely on the outcome of the previous round, leading to a compact strategy
space of 16 possible configurations. More complex strategies, such as those imple-
mented as finite-state machines with multiple internal states and transitions, exhibit
richer behavioral diversity but may also incur higher volatility.

To evaluate performance, each simulation produces both payoff-based and behavior-
based metrics. These include:

• Average payoff per agent per match

• Frequency vectors of wins, losses, and ties

• Sensitivity to uncertainty (via payoff deviation across deterministic vs. stochas-
tic horizons)

(Milencianu & Pop, 2023)
In methodological terms, the simulation framework developed here represents an

extension of Axelrod’s original experimental design. While Axelrod’s tournaments
used a fixed number of rounds (e.g., 200), the current approach generalizes the
interaction length to be drawn from probability distributions (e.g., geometric, normal,
uniform). This enables the comparison of identical strategies under conditions of
certainty and uncertainty, facilitating controlled experimental investigation into
temporal robustness. The simulation procedure follows a structured sequence of
steps, as outlined below. For each ordered strategy pair (si, sj), the simulation
executes K independent trials. In each trial, the number of rounds T is sampled
from a geometric distribution with continuation probability ω, and both strategies
interact over T rounds of the Prisoner’s Dilemma. Agent decisions are determined
by their internal logic (e.g., deterministic rule, memory-based response, probabilistic
transition), and the resulting payoffs are recorded and aggregated.

In conclusion, the Monte Carlo simulation methodology detailed in this section
forms the empirical backbone of the thesis. It supports systematic testing of a wide
array of strategies across probabilistic time structures and offers a rigorous platform
for investigating how uncertainty affects strategic conduct. Beyond its utility for
the Iterated Prisoner’s Dilemma, the approach is broadly applicable to multi-agent
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decision environments where temporal unpredictability and decentralized adaptation
play key roles.

Performance Metrics and Strategic Evaluation

This section presents the evaluative framework used to analyze and compare strate-
gies in repeated games under both deterministic and uncertain time horizons. Rather
than relying solely on average payoff—an often insufficient indicator of strategic
robustness—the evaluation incorporates a multidimensional metric system designed
to capture not only outcome performance, but also behavioral stability, volatil-
ity, and context sensitivity. This framework was applied systematically across all
strategy match-ups in the simulation environment described in the previous sec-
tion.(Milencianu & Pop, 2023)

For each strategy pair, the simulation produces two key empirical vectors: the
frequency vector of wins, losses, and ties; and the mean payoff vector, averaged
across all simulation runs. These are computed separately under both fixed and
uncertain game lengths, allowing for direct comparison. Behavioral differences
are captured using discrepancy metrics, which compute the absolute differences in
observed outcomes (e.g., changes in win rate or payoff) between the two temporal
conditions. A large discrepancy suggests that the strategy is structurally sensitive
to the horizon condition, while small discrepancies may indicate robustness or
mechanical consistency.

Another key aspect of the evaluative system is the classification of strategies
based on discrepancy-driven typologies. Empirical results show that strategies tend
to fall into three broad categories:

• Robust strategies, such as Tit-for-Tat and Grudger, which perform consistently
across both deterministic and probabilistic horizons.

• Adaptive strategies, which exhibit moderate discrepancies but maintain rank
and relative advantage across conditions, suggesting strategic plasticity.

• Volatile strategies, which display large shifts in payoff, win/loss patterns, or
relative rankings between the two environments, often due to overfitting or
structural rigidity.

To identify such patterns, rank-based indicators were used in addition to payoff
measures. For instance, the Rank Shift Index tracks changes in a strategy’s position
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within the global performance ranking between the fixed and uncertain conditions.
Combined with payoff-based discrepancy values, this allows for the detection of
strategies that are not just low-performing, but structurally unstable—potentially
useful in adversarial settings, but unreliable in dynamic systems.

All performance metrics were encoded in matrix structures (payoff matrices,
discrepancy matrices, volatility matrices), enabling both quantitative aggregation
and qualitative visualization. Heatmaps, pie charts, and cooperation matrices were
used to display global and local behavioral patterns, providing visual confirmation
of the statistical findings.

In conclusion, the performance evaluation system presented in this section moves
beyond traditional measures of success and introduces a multi-dimensional, discrepancy-
sensitive approach tailored to environments with temporal uncertainty. It supports
the thesis’s broader goal of understanding strategic resilience, identifying emergent
behaviors, and informing the development of adaptive agents capable of robust
decision-making in stochastic multi-agent systems.

Conclusion

Chapter 2 synthesizes classical game-theoretic models with modern simulation tech-
niques to offer a unified approach for analyzing strategic decision-making under
temporal uncertainty. Through theoretical formalism, empirical validation, and
methodological innovation, the chapter lays a rigorous foundation for the analysis
of strategic robustness. The Monte Carlo-based simulation framework and multidi-
mensional evaluation metrics provide the necessary tools for investigating emergent
dynamics, evaluating strategic complexity, and identifying reliable behaviors in
multi-agent systems.
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Chapter 3. Summary of Chapter 3 : Experimental analysis of strategy behaviour in
Determined vs. Uncertain Conditions

Chapter 3

Summary of Chapter 3 : Experimental
analysis of strategy behaviour in
Determined vs. Uncertain Conditions

The content of this chapter has been partially published in: The Second Axelrod Tour-
nament: A Monte Carlo Exploration of Uncertainty About the Number of Rounds in
Iterated Prisoner’s Dilemma. Studia Universitatis Babes,-Bolyai Oeconomica, 70(1),
67–82 (G. Pop et al., 2025)

Theoretical Insights into Determined and Uncertain En-

vironments

This section explores how the strategic landscape shifts depending on whether the
game is governed by a fixed horizon or by conditions of temporal ambiguity.

In determined, finite-horizon environments, players are fully aware of the number
of rounds the game will last. This shared knowledge enables backward reasoning,
a cornerstone of classical game theory.(Fudenberg & Tirole, 1991) Rational agents,
anticipating that cooperation cannot be enforced in the final round, deduce that
defection is the optimal final move. Knowing this, they project defection backward
through each prior stage, ultimately concluding that mutual defection is the only
rational path from the outset. This logic, while elegant and mathematically precise,
often fails to align with observed behavior in real-world scenarios, where cooperation
frequently emerges and persists even in finite settings. The backward induction
solution presumes idealized conditions: perfect information, common knowledge of
rationality, and the absence of noise or ambiguity.(Myerson, 1991)
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Uncertain environments challenge these assumptions. In many real-world strate-
gic contexts, agents do not know precisely when interaction will cease. Instead, each
stage is followed by a continuation whose probability is unknown or defined proba-
bilistically. This creates what is often referred to as the “shadow of the future”—the
idea that future consequences shape present decisions, even in the absence of strict
enforcement mechanisms.(Bó, 2002) Under uncertainty, agents have reason to invest
in reciprocity, build reputations, and adopt strategies that condition current behavior
on anticipated future interaction. Unlike the finite-horizon setting, where the last
round defines strategic expectations, uncertainty allows cooperation to be enforced
through implicit expectations, relational contracts, and informal norms.

From a systemic point of view, the uncertain environment better reflects how
many socio-economic systems are set up. Agents don’t often know how many times
they will interact in marketplaces, negotiations, alliances, or online platforms. But
over time, patterns of cooperation and punishment do start to show up and stay the
same. This means that uncertainty is not just a problem to be fixed; it is a part of the
structure that allows for more flexible and socially beneficial outcomes. The uncertain
horizon promotes more complex interactions, such as the formation of norms, the
growth of cooperation, and the establishment of stable behavioral equilibria, by
removing the artificial limit of a definite endpoint.(Leyton-Brown & Shoham, 2008)

In light of these theoretical considerations, any empirical investigation into strat-
egy robustness must take seriously the implications of temporal uncertainty. Evalu-
ating strategies solely under fixed-horizon conditions would miss the crucial mech-
anisms by which cooperation emerges and endures. It would also underestimate
the strategic capacities of agents who adapt behavior based not only on historical
moves but also on projected futures and evolving expectations. This chapter builds
on the conceptual foundations outlined here to develop a simulation-based method-
ology capable of testing strategic performance across both determined and uncertain
settings.

Infinite-Horizon Dynamic Games and the Iterated Pris-

oner’s Dilemma

This section integrates developments from infinite-horizon dynamic games into the
study of IPD, with particular attention to anticipative control, robustness under
uncertainty, and adaptive learning. These theoretical enhancements extend the
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explanatory power of the IPD framework by formalizing how agents can plan over
uncertain futures, update beliefs dynamically, and design strategies that are resilient
to variation in horizon length or opponent behavior.

One significant contribution in this regard is the introduction of anticipative feed-
back mechanisms, as proposed in the context of infinite-horizon Stackelberg games.(Chen
& Zadrozny, 2002) Unlike the backward-induction logic of finite settings or the time-
invariant strategies of classical equilibria, anticipative feedback structures enable
players—particularly leaders in hierarchical games—to incorporate expectations
about the future responses of opponents directly into their current decisions. When
adapted to the IPD, this anticipatory reasoning can model generous leadership strate-
gies: a player may initiate cooperation not because of immediate gain but because
they foresee that such a signal alters the opponent’s best response in future interac-
tions. This aligns with phenomena observed in decentralized systems, where early
cooperative gestures can shape long-term norms and expectations.

In parallel, research on guaranteed-cost strategies, developed by Gyurkovics and
Takács (2005), introduces a structured framework for analyzing bounded-risk play
in uncertain, adversarial settings.(Gyurkovics & Takács, 2005) These strategies en-
sure that players incur no more than a specified maximum cost, regardless of their
opponent’s actions or systemic noise. In the IPD context, such strategies embody
cautious cooperation: agents are willing to cooperate, but only if the long-run risk
of exploitation is provably constrained. This perspective adds a robustness layer to
traditional retaliatory strategies like Grim Trigger or Tit for Tat, reframing them as
instances of bounded-regret behavior in stochastic dynamic systems.

Another theoretical innovation, from D. Yeung and Petrosian stems from informa-
tion updating frameworks, which model how players revise their expectations over time
based on observed outcomes.(D. W. K. Yeung & Petrosyan, 2017) This breaks with
the assumption of fixed beliefs or static payoff structures and instead models IPD
interactions as evolving games with endogenous strategy revision. In environments
characterized by ambiguous horizons or noisy signals, this mechanism allows players
to gradually refine their strategic posture. In particular, belief-based triggers—where
cooperation is sustained as long as the inferred probability of the opponent’s cooper-
ation exceeds a threshold—offer a rational foundation for trust-building even in the
absence of full observability or deterministic horizons.

With the inclusion of these theoretical frameworks, the Iterated Prisoner’s Dilemma
(IPD) moves beyond its traditional role as a static benchmark, becoming instead
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a valuable framework for exploring dynamic strategic intelligence. The anticipa-
tive feedback approach demonstrates how forward-looking strategies can sustain
long-term cooperation; guaranteed-cost strategies ensure robustness in the face of
unpredictable adversaries; and information-updating mechanisms address adap-
tive behavior, bounded rationality, and evolutionary plausibility. Collectively, these
contributions provide a comprehensive view of how strategic agents navigate un-
certainty, offering insights into the practical application of theoretical models to
real-world strategic interactions.

Experimental Setup and Results from Axelrod’s First

Tournament

This section builds directly on methodological foundations and findings of :Axelrod
first tournament: Examining certainty versus uncertainty about the end stage in
repeated games (Milencianu & Pop, 2023), providing a detailed presentation of the
experimental architecture, evaluation procedures, and performance results.

The empirical investigation of cooperation in repeated games gained unprece-
dented momentum with the organization of Axelrod’s First Tournament, a landmark
experiment designed to test how different strategies perform in the Iterated Pris-
oner’s Dilemma (IPD) under controlled simulation conditions. This section presents
a structured overview of the experimental setup, key methodological choices, and
emergent results from this foundational study, highlighting its influence on both the
theoretical and computational modeling of strategic behavior.

The game configuration featured a deterministic horizon of 200 rounds per match,
a choice that was both pragmatic—facilitating bounded simulations—and theoret-
ically significant. With the number of rounds fixed and known to all agents, the
tournament embedded a structural incentive for defection as the final stage ap-
proached. This setting placed cooperative strategies under strong pressure, offering
an empirical test of whether and how cooperation could emerge despite the logic of
backward induction.

Strategies varied widely in complexity and design philosophy. Some employed
simple rule-based heuristics, such as Always Defect, Always Cooperate, or Tit for Tat
(TFT). Others adopted more intricate logics incorporating memory, randomization,
or probing behavior. Despite this heterogeneity, the tournament revealed robust
empirical regularities that reshaped the understanding of cooperation.
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The most striking outcome was the success of TFT, a minimalistic yet powerful
strategy that began by cooperating and then mimicked the opponent’s last move.
TFT’s performance was remarkable not only in terms of raw payoff but also in its
ability to promote cooperation without being vulnerable to exploitation.

Beyond the success of TFT, the tournament offered valuable data on how different
strategy types fared under repeated interaction. Strategies that were “nice”—never
initiating defection—tended to perform better overall, particularly when paired with
similar opponents. Aggressive or deceptive strategies, while potentially successful in
specific matchups, often incurred losses when facing equally retaliatory counterparts.
This result provided empirical support for the hypothesis that cooperation can be
evolutionarily stable in environments characterized by repeated interaction and
bounded rationality.

Methodologically, Axelrod’s First Tournament introduced the use of simulations
as a rigorous tool for comparative strategy evaluation. Rather than relying solely on
analytical equilibria, the tournament format facilitated the observation of emergent
phenomena such as cycles of cooperation and defection, lock-in effects, and strategic
miscoordination. It also highlighted the role of initial conditions and early interaction
patterns in determining long-term outcomes—a feature particularly salient in long-
horizon games.

In sum, Axelrod’s First Tournament demonstrated that cooperative behavior
can emerge and persist even in environments where defection is the equilibrium
prediction under classical assumptions. Through a transparent and replicable exper-
imental design, it challenged the dominance of strictly self-interested models and
introduced empirical metrics—such as average payoff, robustness to noise, and re-
sponse to provocation—that remain central to the evaluation of strategies in repeated
games. The insights generated continue to inform the design of strategic agents in
decentralized systems, from economics to artificial intelligence.

Experimental Setup

This section presents the customized experimental infrastructure developed to eval-
uate strategic behavior in Iterated Prisoner’s Dilemma tournaments under both
deterministic and uncertain temporal conditions. While the Axelrod-Python library
provided a robust foundation for simulating repeated interactions among agents, its
original implementation lacked key features required for the analytical goals of this
study—most notably, the ability to extract detailed match-level statistics such as the
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explicit identification of winners and the dynamic control of match durations via
stochastic processes.

To address these limitations, a modular extension of the Axelrod tournament
engine was implemented in Python. The core of this extended system enabled
randomized control over both the number of matches played (mean_m, dev_m)
and the number of turns per match (mean_t, dev_t), simulating infinite-horizon
interaction structures using probabilistic time distributions. Furthermore, the number
of independent simulation runs was parameterized to ensure statistical robustness
across repeated tournament executions.

The implementation included key modules for defining agent behavior, orchestrat-
ing match sequences, and aggregating outcomes across stochastic trials. Each strategy
played against every other, including itself, with match lengths sampled from a nor-
mal distribution, ensuring that players faced varying interaction spans without prior
knowledge of termination. Results were stored as cumulative win/loss/draw statis-
tics and normalized through automated aggregation routines. Dedicated CSV export
functionality ensured structured data handling, and versioned output files facilitated
reproducibility and long-term experiment tracking.

Visualization was an integral component of the experimental pipeline. Using
matplotlib and pandas, the simulation outputs were transformed into intuitive
visual summaries. Each strategy’s performance profile was represented using pie
charts—displaying win-loss-draw ratios across opponents—and cooperation matri-
ces, which revealed deeper behavioral tendencies and symmetry or asymmetry in
decision-making.

This custom tournament system not only enhanced flexibility in configuring game
environments but also enabled the integration of stochastic match lengths, visual di-
agnostics, and expanded metrics. It allowed for fine-grained control over simulation
parameters and supported rigorous comparative analyses between deterministic and
uncertain scenarios. In doing so, the experimental setup provided a solid empirical
foundation for subsequent sections, which analyze the strategic stability, volatility,
and adaptive capacities of participating agents under varying informational and
structural constraints.
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Graphical Analysis of Strategy Sensitivity in the First

Axelrod Tournament

This section presents a graphical and statistical examination of how strategies in the
First Axelrod Tournament respond to structural changes in game duration—specifically,
the contrast between determined (fixed-length) and uncertain (stochastically termi-
nated) interaction environments. The aim is to provide empirical insight into the
extent to which strategies are sensitive to temporal uncertainty, beyond what average
payoffs or win rates alone can reveal. One of the core diagnostic tools is the Discrep-
ancy Matrix, which captures the absolute payoff differences between the deterministic
and stochastic tournament outcomes. This matrix provides a compact representation
of how the strategic environment—defined solely by the certainty or uncertainty of
match termination—affects bilateral interactions. Strategies exhibiting consistently
low discrepancies across all match-ups are considered temporally robust, whereas
those with large deviations are flagged as sensitive or potentially overfitted to specific
game structures.

In addition to payoff variance, the Cooperation Matrix visualizes the frequency
and symmetry of cooperative actions between all strategy pairs. This allows the
identification of stable cooperation patterns, asymmetrical exploitation, or mutual
defection regimes. Notably, certain strategies that perform well in the deterministic
setting display marked decreases in cooperative engagement when match durations
become uncertain, signaling a shift in strategic behavior prompted by ambiguity over
the game horizon.

Taken together, the graphical analysis reveals that strategies vary not only in
absolute performance but also in structural sensitivity. Some exhibit robust cross-
context consistency (e.g., Tit for Tat, Grudger), while others show instability or
performance degradation under uncertainty (e.g., more aggressive or probe-based
strategies). These observations contribute to a deeper classification framework that
accounts for volatility, adaptability, and strategic responsiveness to environmental
ambiguity.
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Experimental Setup and Results from Axelrod’s Second

Tournament

Axelrod’s Second Tournament introduced several critical modifications to the initial
experimental design, making it a landmark in the empirical study of strategic behav-
ior under uncertainty. Building on the success and limitations of the first round-robin
competition, this second iteration aimed to test the evolutionary viability and tempo-
ral resilience of strategies when exposed to a more dynamic and uncertain interaction
structure.(Axelrod, 1984)

A substantial part of the data and comparative analysis presented in this section
has been formally disseminated in our article The Second Axelrod Tournament: A
Monte Carlo Exploration of Uncertainty About the Number of Rounds in Iterated Prisoner’s
Dilemma (G. Pop et al., 2025)

A major innovation was the implementation of an uncertain game horizon. Rather
than fixing the number of rounds in advance, each interaction in the second tourna-
ment continued with a fixed probability ω, introducing stochastic termination and
effectively simulating an indefinite game with probabilistic continuation. This adjust-
ment neutralized backward induction and more closely approximated real-world
strategic settings where agents cannot predict the exact endpoint of interactions.

The tournament featured 63 strategies, including both refinements of earlier
submissions and entirely new entrants. Participants ranged from simple deterministic
rules (e.g., Always Cooperate, Tit-for-Tat) to more complex designs featuring probing,
randomization, or finite state machine logic. Strategies were blind to the identity or
source code of their opponents and could only base their decisions on prior moves,
thereby preserving the integrity of the interaction histories.

Results from the second tournament confirmed the competitive strength of recip-
rocal and forgiving strategies, particularly Tit-for-Tat and Generous Tit-for-Tat. These
strategies demonstrated robustness across uncertain time structures, high payoff con-
sistency, and minimal sensitivity to random termination. In contrast, more aggressive
or exploitative strategies often suffered from early retaliation and failed to establish
mutually beneficial equilibria.

It is important to note that the uncertain horizon revealed new aspects of strategic
resilience. Some strategies that did really well in the first tournament had a lot of
ups and downs when the lengths of interactions were unpredictable. On the other
hand, other people were better able to adjust to the changing environment by using
forgiveness, stochastic probing, or mixed-memory heuristics to stay competitive.
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The rise of this kind of behavior shows how important it is to judge tactics not just
by their overall return, but also by how well they can adapt to the environment’s
structure.

From a methodological perspective, the second tournament validated the use of
probabilistic termination as a mechanism for eliminating artificial endgame behavior
and generating richer patterns of cooperation and competition. It also served as a
prototype for subsequent simulation-based research in repeated games, including
the Monte Carlo framework developed in this thesis.

Results and Discussion

The empirical results derived from the extended tournament simulations provide a
multifaceted view of how strategy performance is influenced by temporal uncertainty
and evolutionary pressures. By systematically comparing outcomes from determinis-
tic and stochastic settings, this section offers a comprehensive evaluation of strategy
robustness, volatility, and adaptability.

One of the central findings is that strategies which perform well under fixed-
horizon conditions do not necessarily maintain their advantage when the interaction
length becomes uncertain. For example, while simple reciprocal strategies such
as Tit-for-Tat remain competitive in both environments, their payoff rankings and
behavioral patterns exhibit measurable deviations. This suggests that temporal
uncertainty introduces a distinct structural shift in the strategic landscape—one that
rewards flexibility and penalizes overly rigid or exploitative behavior.

The data also support the emergence of a typology of strategic profiles:

• Robust strategies, characterized by high average payoffs and low variance
across both deterministic and stochastic conditions.

• Adaptive strategies, which adjust their behavior to temporal shifts, maintaining
performance via probabilistic decision-making or forgiveness mechanisms.

• Volatile strategies, which are highly sensitive to game horizon changes and
often exhibit overfitting to one specific context.

Key behavioral metrics—including win/loss ratios, cooperation frequencies, and
payoff discrepancies—were synthesized into matrix-based visualizations. These tools
revealed emergent behavioral asymmetries not apparent in aggregate payoff data.
For instance, certain strategies showed cooperative tendencies under fixed settings
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but shifted to defect-heavy behavior under uncertainty, suggesting a reliance on
endgame predictability for enforcing discipline or extracting gains.

From an evolutionary standpoint, strategies that incorporated stochastic elements
or simple adaptive rules tended to persist longer in simulations with evolutionary
feedback mechanisms. This indicates a fitness advantage for behavioral plasticity,
especially in environments lacking precise temporal boundaries. Importantly, the
probabilistic horizon model neutralized backward induction effects, creating room
for trust-building and contingent cooperation to emerge organically.

The discussion additionally examines the methodological contributions of the
simulation framework. The adaptation of Axelrod’s model to include random match
lengths, automated repetition, and extensive data tracking facilitated a more detailed
analysis compared to the original studies. These innovations enhanced the under-
standing of how structural uncertainty influences strategic success, considering both
immediate outcomes and long-term evolutionary sustainability.

The results highlight the necessity of incorporating uncertainty in the design
and assessment of strategies for repeated games. Successful agents in temporally
ambiguous environments typically integrate reciprocity, adaptability, and noise
tolerance. This has significant implications for game theory, behavioral economics,
and the development of resilient multi-agent systems in artificial intelligence and
decentralized coordination contexts.
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Chapter 4

Summary of Chapter 4: Autocovariance
in the Allison Mixture – A Monte Carlo
analysis of strategic decision-making in
Repeated Games

Introduction to the Allison Mixture and Parrondo’s Para-

dox

The results presented in this section build upon the empirical foundations introduced
in our article Autocovariance in the Allison Mixture: A Monte Carlo Analysis of Strate-
gic Decision-Making in Repeated Games(G. M. Pop et al., 2025), which outlined the
theoretical motivations and demonstrated the applicability of the Allison Mixture
formulation through selected simulation outcomes.

This section presents the Allison Mixture as a probabilistic framework for ana-
lyzing emergent strategic behavior in repeated games characterized by uncertainty.
The model is situated at the convergence of stochastic process theory and behavioral
game dynamics, drawing conceptual inspiration from Parrondo’s paradox, which
illustrates how alternating between losing strategies may result in a winning out-
come. The Allison Mixture applies this paradoxical intuition to decision-making in
strategic contexts, suggesting that adaptive combinations of individually neutral or
suboptimal strategies may result in enhanced overall performance.

From a theoretical standpoint, the Allison Mixture challenges the conventional
emphasis on static optimization and equilibrium-based rationality. Instead, it high-
lights how probabilistic transitions between behavioral modes—each suboptimal in
isolation—can collectively produce robust and context-sensitive behaviors.(Harmer

24



& Abbott, 2002) This dynamic switching mechanism is modeled via a mixture of
finite-state processes, governed by transition probabilities that encode the degree of
structural uncertainty and memory dependence within the system.

Parrondo’s paradox provides the foundational logic for this mechanism. Orig-
inally derived from physical systems exhibiting Brownian ratchet behavior, the
paradox has been applied across various domains, from evolutionary biology to eco-
nomics and statistical mechanics. Within game-theoretic contexts, it suggests that the
strategic alternation between deterministic and stochastic rules can yield outcomes
that are not achievable through any pure strategy alone.(Parrondo et al., 2000) The
Allison Mixture captures this logic by embedding stochastic switching directly into
the strategic fabric of repeated interactions, thereby generating behaviors that adapt
dynamically to local conditions, opponent responses, and informational noise.

The significance of this approach lies in its capacity to model bounded rationality,
signal-driven adaptation, and autocorrelated behavior without requiring complete
information or infinite memory. By combining the probabilistic logic specific to
Parrondo-type systems with formal representations of strategic interactions, the
Allison Mixture offers a novel framework for investigating how cooperation, coor-
dination, and competition can emerge within environments marked by ambiguity,
asymmetry, and stochastic transitions. This theoretical foundation serves as a ba-
sis for developing simulation-based methods designed to empirically evaluate the
mixture model in complex repeated games.

Allison Mixture

This section defines the Allison Mixture as a formal modeling construct that fa-
cilitates behavioral alternation between two complementary strategic structures.
This section highlights that the alternation is not simply mechanical; rather, it is
intended to produce autocorrelation in behavioral output, indicating a statistical
dependence between successive decisions that adds temporal structure to the agent’s
behavior.(Gunn et al., 2014)

The Allison Mixture is defined by two fundamental properties. This approach
integrates two baseline strategies into an integrated behavioral sequence via a proba-
bilistic mechanism that determines the switching between them. (Harmer & Abbott,
1999) Secondly, it generates structured behavioral sequences whose characteristics
cannot be simplified to those of either component independently. The alternation
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produces emergent patterns that represent the internal regularities of the mixture
rule.

The section further clarifies that this construction does not require a learning
algorithm, adaptation based on feedback, or memory of past plays. Instead, the
behavioral correlation emerges from the structure of the alternation itself. This
design makes the Allison Mixture especially suitable for simulation environments
that aim to isolate the role of internal structural asymmetries in repeated games.

Application of Allison Mixture in Entry-Deterrence Game

This section discusses the application of the Allison Mixture in the context of an Entry-
Deterrence game, in order to examine the impact of probabilistic alternation between
base strategies on equilibrium behavior in an asymmetric strategic environment. The
experimental setup examines the interaction between an Incumbent and a Potential
Entrant, with payoffs structured to create strategic tension between deterrence and
entry responses.(G. M. Pop et al., 2025)

Simulation results focus on how variations in the switching parameter of the
mixture influence the deterrent effectiveness of the Incumbent. The analysis docu-
ments fluctuations in payoff structure, entry frequency, and conditional responses,
confirming that Allison-type alternation introduces systematic behavioral patterns.
These patterns differ substantially from those generated by purely random or deter-
ministic strategies, suggesting that the mixture embeds structural dependencies that
propagate over the course of interaction.

Furthermore, the section highlights that the Entry-Deterrence context serves as
a testbed for evaluating the strategic expressiveness of the Allison Mixture beyond
symmetric games. By incorporating the mixture mechanism into an asymmetric pay-
off environment, the analysis offers insight into how internally structured alternation
may influence beliefs, provoke strategic miscoordination, or generate reputation-like
effects, even in the absence of explicit signaling mechanisms.

Experimental Methodology for Monte Carlo Simulations

Applied to the Allison Mixture

This section outlines the simulation methodology used to assess the strategic behavior
of agents influenced by the Allison Mixture in repeated games. The analysis uses a
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Monte Carlo simulation protocol designed to evaluate the statistical and behavioral
characteristics of mixture-based strategies under varying interaction conditions. The
simulation system facilitates the repeated execution of situations between agents,
with their behavior governed by structured alternation rules.

The simulation framework is implemented in Python and configured to run large-
scale experiments, allowing robust statistical conclusions through repeated sampling.
Agent behavior is encoded via transition systems that reflect the alternation dynamics
specified by the Allison Mixture. Results from these simulations are aggregated into
summary statistics, including average payoffs, decision sequences, and structural
descriptors of correlation patterns.

Experimental Methodology for Monte Carlo Simulations

Applied to Allison Mixture

This part explains the official experimental protocol used to run Monte Carlo simula-
tions to test how agents made with the Allison Mixture act. The method is meant
to look at how structural mixing rules affect how agents act in different simulated
game scenarios. This part is all about how to find emergent statistical characteristics
in decision sequences and the payoff distributions that go with them.

The experimental design employs a repeated random sampling scheme, wherein
each simulation trial consists of a large number of iterations involving repeated
games governed by the same structural alternation rules. Each agent using the
Allison Mixture alternates between two base strategies, and the simulation records
the outputs over varying match lengths. These simulations are intended to produce
robust distributions from which average tendencies, variance, and autocorrelation
properties can be inferred.

Agent behavior is implemented through programmable logic capable of enforcing
the switching mechanism specified in the Allison Mixture. The internal state of each
agent transitions based on probabilistic switching rules, and their resulting moves
are recorded round by round. The simulation data is then analyzed for regularities
such as phase patterns, periodicity, and fluctuation ranges.
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Experimental Results Obtained through Monte Carlo

Simulations

This section offers empirical findings derived from Monte Carlo simulations utilizing
agents driven by the Allison Mixture model. The analysis examines essential statisti-
cal metrics obtained from comprehensive repeated-game experiments, intending to
evaluate how probabilistic switching structurally affects agent behavior and payout
stability.

The analysis highlights that, under a wide range of parameter configurations,
Allison-type agents produce sequences with visible regularities and internal struc-
ture, departing from purely stochastic behavior. Notably, the simulations reveal
emergent autocorrelation within action patterns, suggesting that the alternation
mechanism embedded in the mixture introduces memory-like effects even when the
base strategies are individually memoryless.(G. M. Pop et al., 2025)

The section also documents heatmaps and summary statistics, which illustrate
that mixture-induced behavior diverges systematically from purely random or de-
terministic strategies. These patterns underscore the model’s capacity to embed
functional unpredictability while retaining coherence over time.

The experimental results confirm that the Allison Mixture generates distinc-
tive behavioral characteristics, such as autocorrelation, payout consistency, and
environment-sensitive adaptability—attributes that differentiate it from traditional
strategies in repeated game scenarios.

Conclusions on Autocovariance Analysis in Allison Mix-

ture through Monte Carlo Simulations for Strategic Decision-

Making

Building on the simulation data, this section highlights the main results of the
autocovariance analysis, evaluating whether the probabilistic alternation of strategies
leads to temporal patterns in behavior and what that means for the stability of
strategic responses.

The Monte Carlo simulations demonstrated a persistent non-zero autocovariance
in decision series produced by Allison-type agents, especially under conditions of
balanced switching probability. This indicates that while individual strategies may
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not directly encode memory, their systematic alternation generates temporal regular-
ity that can be utilized in repeated games. Autocovariance indicates an underlying
structure in the decision-making process, permitting agents to demonstrate behavior
that is not entirely random or completely deterministic.

In conclusion, our research suggests substantial opportunities for applying the
Allison Mixture concept beyond game theory, extending into interdisciplinary fields
such as biology, finance, and computer science, where the analysis and interpretation
of complex data sequences exhibiting relevant autocovariance are critical. Future
studies should further explore these directions, deepening empirical and theoretical
analyses to maximize the utility and robustness of the Allison Mixture model in
advanced strategic decision-making contexts.
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Chapter 5. General Conclusions and Future Research Directions

Chapter 5

General Conclusions and Future
Research Directions

This thesis provides a thorough framework for examining strategic behavior in
repeated games with various degrees of uncertainty about game duration. This
work seeks to connect classical game-theoretic principles with modern agent-based
decision-making and evolutionary robustness through the combination of formal
theoretical foundations, algorithmic modeling, and Monte Carlo simulation.

The first chapter has given the formal and conceptual framework needed to
replicate strategic interaction in repeated settings. Drawing on fundamental work in
non-cooperative game theory, the chapter has underlined the significance of Nash
equilibrium, mixed strategies, and expected utility as main instruments for projecting
rational conduct. Applying these ideas to dynamic environments, such the Iterated
Prisoner’s Dilemma (IPD), demonstrated that considering future outcomes alters the
reasoning of strategic interaction significantly. Analysis of infinite-horizon models
and the consequences of the folk theorem showed that, given agents value future
payoffs sufficiently, cooperation can result as an equilibrium outcome.

The investigation of discrepancy metrics provides a principled foundation for the
identification of structurally strong strategies, therefore facilitating not only perfor-
mance comparison in stable conditions but also strategic flexibility evaluation under
temporal unpredictability. The transition from fixed-horizon to uncertain-horizon
game environments demonstrates that behavioral resilience is not an absolute supe-
rior but rather depends on the capacity of a strategy to sustain constant performance
throughout changing conditions. This realization helps to reinforce the general
conclusion that evaluating the long-term adaptation and sustainability of decision
rules in repeated games depends critically on sensitivity to the temporal structure of
interaction.

Deeper understanding of agent adaptation under uncertainty is made possible by
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including structural performance measurements into the study of recurrent interac-
tions. This approach does not merely interpret simulation outcomes but establishes a
principled framework for the design of adaptive agents capable of reconfiguring their
strategies in response to volatility, asymmetry, and dynamic game conditions. There-
fore, it creates fresh directions for investigation in resilient policy design, evolutionary
game theory, and reinforcement learning.

These theoretical models were empirically investigated in the second chapter
under experimental baselines developed from the famous Axelrod competitions.
Comparative simulation of strategy performance in contexts with known and un-
predictable number of rounds revealed essential behavioral differences. Sometimes
more adaptive or forgiving variations outperformed strategies like Tit for Tat, which
performed consistently in deterministic environments under uncertainty. On the
other hand, strict plans devoid of probabilistic elements often did not work in set-
tings marked by horizon uncertainty. Using discrepancy measures—such as payback
volatility and variance in win-loss ratios—the statistical research indicated which
agents were particularly sensitive to structural changes and which were strong under
all situations.

Importantly, the analysis demonstrated that agents with deterministic behavior
often exhibited emergent sensitivity to game duration, even without explicit tem-
poral reasoning. This finding supports the idea that structural features of repeated
interaction can induce complex outcomes in agent behavior, particularly when agents
rely on conditional cooperation or memory-based responses.

Furthermore, this study highlights the importance of constructing evaluation
frameworks that capture the stochastic nature of real-world decision-making. The
contrast between fixed-horizon and uncertain-horizon simulations underscores how
rigid experimental assumptions can obscure or distort the understanding of what
constitutes optimal strategic behavior.

An further significant insight is the potential role of hybrid methodologies that
integrate adaptive learning systems competent in handling signal noise, not known
intentions, or unexpected environmental alterations with the resilience of reactive
heuristics, such as Grudger or Tit for Tat. These hybrid designs may combine the
trust-enhancing advantages of collaboration with the defensive strategies necessary
for hostile contexts, so functioning as more precise representations of actual decision-
making entities.

This study reaffirms the educational and methodological value of simulated tour-
naments as instruments for evaluating strategic interaction. Inspired by Axelrod’s
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original design, such competitions remain relevant as controlled experimental en-
vironments in which hypotheses regarding agent behavior—whether artificial or
human—can be tested, refined, and generalized.

Furthermore, the findings highlight that addressing uncertainty in strategic con-
texts requires more than algorithmic sophistication. It demands a clear concep-
tual understanding of which behavioral traits—such as adaptability, forgiveness,
or learning capacity—truly underpin strategic success, laying the groundwork for
agents that are not only performant, but also interpretable, resilient, and ethically
aligned.Moreover, the results emphasize the evolving role of uncertainty as a selective
force in strategic environments. Predictability, while beneficial under deterministic
assumptions, becomes a liability in volatile contexts, where adaptability constitutes
a critical asset. Agents that rigidly follow predefined rules may perform well in
idealized settings, yet they often fail when exposed to the complexity and variability
inherent in real-world interactions.

The results suggest that future design of strategies should consider the dynamic
interaction between memory depth and response variance. While shallow-memory
agents may react fast to local changes, they generally ignore cumulative dynamics;
conversely, agents with deeper recall and evaluative systems are more suited to
identify recurrent behavioral patterns. Real-time calibration of this trade-off might
open interesting directions for building more intelligent and responsive decision-
making systems.

In Chapter 3, the research focused on investigating the Allison Mixture formula,
starting from the theoretical premise that, while elegant in its probabilistic structure,
it necessitates systematic empirical validation within complex and dynamically evolv-
ing environments. Particular attention was given to contexts involving stochastic
transitions, where the inherent uncertainty challenges traditional modeling assump-
tions. The principal objective was to evaluate the formula’s viability in practical
Monte Carlo simulation settings and to explore its potential for informing the design
of advanced artificial intelligence agents capable of anticipating and responding to
opponents’ strategic behavior in repeated interactions.

To accomplish this, we built a strong experimental design in which repeated sim-
ulations were carried out throughout a wide spectrum of parameters and interaction
distances. To guarantee the statistical dependability of the outcomes, every game
configuration was run hundreds of times, thereby reducing the impact of random
fluctuations and improving the correctness of computed performance measurements.
This configuration made it possible to estimate important indicators including the
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mean and standard deviation of autocovariance and autocorrelation throughout
several regimes consistently.

Beyond validating the theoretical formulation, the analysis revealed that the Al-
lison Mixture holds considerable promise for designing adaptive strategic agents.
In environments where conventional techniques often fail to capture subtle inter-
dependencies and evolving behavioral signals, the Allison Mixture facilitates the
emergence of higher-order structures by leveraging controlled randomness. Its ability
to synthesize patterns through probabilistic alternation positions it as a valuable
tool for modeling and navigating uncertainty in multi-agent systems. As such, this
study provides both a methodological and conceptual contribution to the strategic
modeling literature, offering a data-driven foundation for future applications in
artificial intelligence and computational game theory.

The application of Monte Carlo methods throughout the thesis has proven es-
sential for managing the high-dimensional, stochastic nature of repeated games.
This computational approach enabled the approximation of expected outcomes and
the measurement of strategic volatility across thousands of simulated interactions.
The findings suggest that simulation is not merely a tool for empirical illustration,
but a fundamental component in the study of strategic dynamics where analytical
solutions are intractable.

The methodological rigor underlying the Allison Mixture simulations—anchored
in large-scale iteration and high-performance computation—ensures that the ob-
served outcomes are not artifacts of noise, but statistically sound reflections of the
modeled dynamics, thereby reinforcing the empirical validity of the approach.

Despite the encouraging outcomes, the investigation revealed limitations re-
garding the generalizability of the Allison Mixture framework. In particular, the
performance of the formula was shown to be sensitive to the structural characteristics
of the underlying game, limiting its immediate applicability across diverse strategic
settings. While many scenarios aligned with theoretical predictions, the absence
of consistent results across all conditions indicates the need for further exploration.
Future research should expand the scope of analysis by systematically varying initial
parameters and testing the Allison Mixture in a broader array of game structures to
better delineate the boundaries of its effectiveness.

These results suggest that the Allison Mixture framework holds promise for
enhancing adaptive decision-making in dynamic environments, offering a pathway
toward strategies that can better anticipate and respond to complex patterns of
interaction.
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All taken together, the thesis advances three main aspects of the body of knowl-
edge on repeated games. First, it underlines how cooperation and strategic com-
plexity develop under relaxed assumptions about rationality and information, there-
fore confirming the validity of classical strategic thinking. Second, it develops a
simulation-based approach for assessing agent performance under both determinis-
tic and stochastic horizons. At last, it presents a methodology using measures derived
from real interaction data for evaluating structural robustness and adaptation.

A key contribution of this research lies in the formal integration of uncertainty
into the strategic evaluation of repeated games, an element often overlooked in clas-
sical analyses. By developing and applying a robust Monte Carlo framework to both
the Axelrod tournaments and the Allison Mixture model, the research demonstrates
how probabilistic horizon structures reshape agent behavior, expose vulnerabilities,
and reveal emergent adaptive capacities. This dual exploration not only bridges
experimental game theory with stochastic modeling, but also provides a replicable
methodology for testing strategy resilience under real-world-like unpredictability.
The proposed framework introduces a flexible simulation protocol that can accom-
modate both deterministic and stochastic structures, enabling more nuanced and
context-sensitive assessments of agent performance. Ultimately, the research opens
new directions for designing intelligent agents capable of learning, adapting, and
sustaining cooperation in dynamic and uncertain environments.

This study introduces a unified experimental framework capable of systematically
contrasting agent behavior under fixed and uncertain interaction lengths, offering
new insights into strategic adaptability and volatility. By extending this framework
to cover both classical behavioral models from the Axelrod tournaments and the
statistical dynamics of the Allison Mixture, the research provides a methodological
blueprint for analyzing how uncertainty alters incentive structures and coordination
outcomes. This dual application underscores the originality of the approach, which
goes beyond static equilibrium analysis to uncover how structural features of interac-
tion—such as round unpredictability—drive long-term cooperation, strategic drift,
or convergence to robust norms.
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Pop, G. M., Tătar, F.-A., Vlădărean, M.-M., & Marian, C. G. (2025). Autocovariance
in the allison mixture: A monte carlo analysis of strategic decision-making in

37

https://doi.org/10.1017/S0960129512000783
https://doi.org/10.1017/S0960129512000783
https://doi.org/10.56976/jsom.v3i3.21
https://doi.org/10.24193/RVM.2023.16.99
https://doi.org/10.24193/RVM.2023.16.99
https://arxiv.org/abs/2407.16558
https://arxiv.org/abs/2407.16558
https://doi.org/10.1111/j.1468-0262.2005.00578.x
https://doi.org/10.1038/364056a0
https://doi.org/10.1038/364056a0
https://doi.org/10.2478/subboec-2025-0004


repeated games. Virgil Madgearu Review of Economic Studies and Research, 18(1),
143–164. https://doi.org/10.24193/RVM.2025.18.130

Rubinstein, A. (1998). Modeling bounded rationality. MIT Press. https://mitpress.mit.
edu/9780262681001/modeling-bounded-rationality/

Schelling, T. C. (1980). The strategy of conflict. Harvard University Press. https://www.
hup.harvard.edu/books/9780674840317

Stewart, A. J., & Plotkin, J. B. (2012). Extortion and cooperation in the prisoner’s
dilemma. Proceedings of the National Academy of Sciences, 109(26), 10134–10135.
https://doi.org/10.1073/pnas.1208087109

Stewart, A. J., & Plotkin, J. B. (2013). From extortion to generosity, evolution in the
iterated prisoner’s dilemma. Proceedings of the National Academy of Sciences,
110(38), 15348–15353.

von Neumann, J., & Morgenstern, O. (1974). Theory of games and economic behavior
(3rd). Princeton University Press.

Weinstein, J., & Yildiz, M. (2016). Reputation without commitment in finit ely repeated
games. Theoretical Economics, 11(1), 157–185.

Yeung, D., & Petrosian, O. (2017). Infinite horizon dynamic games: A new approach
via information updating. International Game Theory Review, 19(4), 1750026.
https://doi.org/10.1142/S0219198917500268

Yeung, D. W. K., & Petrosyan, L. A. (2017). Infinite horizon dynamic games: A new
approach via information updating. Dynamic Games and Applications, 7(4), 581–
608. https://doi.org/10.1007/s13235-017-0212-7

38

https://doi.org/10.24193/RVM.2025.18.130
https://mitpress.mit.edu/9780262681001/modeling-bounded-rationality/
https://mitpress.mit.edu/9780262681001/modeling-bounded-rationality/
https://www.hup.harvard.edu/books/9780674840317
https://www.hup.harvard.edu/books/9780674840317
https://doi.org/10.1073/pnas.1208087109
https://doi.org/10.1142/S0219198917500268
https://doi.org/10.1007/s13235-017-0212-7

	Table of Contents of the Doctoral Thesis
	Introduction
	Summary of Chapter 2 : Theoretical, formal, and methodological foundations of Strategic Decision-Making in Repeated Games and the Iterated Prisoner's Dilemma
	Summary of Chapter 3 : Experimental analysis of strategy behaviour in Determined vs. Uncertain Conditions
	Summary of Chapter 4: Autocovariance in the Allison Mixture – A Monte Carlo analysis of strategic decision-making in Repeated Games
	General Conclusions and Future Research Directions

