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1 Introduction

The process of nuclear fission has been a topic of interest for experi-
mentalists and theoreticians alike since the discovery of the process in 1938.
The process is not yet fully explained. There is plenty of experimental data
which covers the process but the theoretical models need to improve steadily
to provide a clear picture of the process. The Liquid Drop Model (LDM)
is a model that was greatly used, though it presents some limitations in
regard to explaining the permanent deformations of nuclei in ground state
or the asymmetric mass distributions in the fission of actinides. Such lim-
itations can be overcome by considering single particle models. As such, a
macroscopic-microscopic method stands out. In such cases, a demand ap-
pears for a refined calculation of potential energy surfaces as all observables
of interest are sensitive to them.

This current work aims to describe and predict the characteristics of the
binary decay products resulting from the process of induced fission, particu-
larly. To this end, the dinuclear system model (DNS) has been implemented
and used, which is an improved version of a scission point model. The critical
component of the model is the calculation of the potential energy surfaces
which are dependent on the mass and charge of the fragments as well as
deformations. Other features of interest of the model are the handling of
energy in the system between some inter-fragment interaction potentials and
in the case of each fragment, the description of its macroscopic energy as
well as microscopic shell corrections. The model will determine excitation
energies which provide the system temperature, both being of import in the
calculation of various distributions.

The thesis is structured in the following manner, after the introduction
will come the first chapter which will cover the theory of the model in detail
and different components are introduced and explained. The second chapter
will cover the charge distribution and total kinetic energy results obtained
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in the case of the radon and radium nuclei studied. Here are presented also
other distributions that help interpret the obtained results. The third chapter
covers the neutron multiplicities and discussion related to peculiarities in
some isotopes.
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2 Model Description

2.1 Dinuclear system
On the fission path, there are two particular points of interest, the saddle

point and the scission point. The ”saddle point” is defined as the point
where the rate of change for the Coulomb energy is equal to the rate of
change of surface energy. The ”scission point” is the point where the nascent
fragments are individualized, having no overlap in their nuclear densities, but
still remain within the effective range of their mutual nuclear forces. With
the appearance of the two-center model, we can calculate a single particle
structure. The spectra for a scission configuration corresponding to a single
particle is similar enough to the single particle levels of the newly created
individual fragments that we make a powerful observation. This observation
suggests that a fragment is mostly indifferent of the way in which it was
formed and its properties are irrespective of the fission event.

The dinuclear system (DNS) is built upon this result and it depicts the
scission configuration as two individualized fragment nuclei interacting with
one another via a repulsive Coulomb interaction and an attractive nuclear
one. The DNS system features some interesting properties. One of these
properties is that the fission fragments are individualized having no overlap
in their nuclear densities. Another property is that the system is relatively
unstable and can evolve in a couple ways: the fragments might exchange
nucleons that are weakly bound, the fragments might drift away from one
another, due to the nature of the potentials affecting them, the fragments
might deform under the attractive and repulsive potentials and finally, the
system might start to rotate if it suffers a collision with a heavy ion. The
potential energy would drive the system to evolve in all of these dimensions.
The last property of interest would be that the evolution of the system in
regards to mass and charge numbers is of a statistical nature as we are
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considered to be in thermal equilibrium.

2.2 Potential energy

The total energy of the system can be split into three parts: the binding
energies of each fragment, the interaction potential and the rotational energy.
The last part is not covered in this work.

2.2.1 Geometrical aspects
We consider the system as two axially symmetric prolate deformed el-

lipsoids situated at a distance d between one and the other measured from
their surfaces. Each ellipsoid can be described by its mass number Ai, charge
number Zi and deformation parameter, βi.

Fig. 2.1: Schematic drawing of the DNS.

Within this model, the deformation parameter is defined as a ratio βi =
ci/ai between the major ci, and minor ai semi-axes respectively. This defi-
nition holds up to a limit of βi ∼ 2.1 which is enough for this current work.
This deformation parameter can be linked to the quadrupole deformation by
β = β2+1.025 [1, 2] where β2 is the quadrupole moment. We also can define
the semi-axes in respect to the deformation parameter by making use of the
volume conservation and the nuclear radius R0 = r0A

1/3 (r0 = 1.16fm) as:
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ci =r0iA
1/3β

2/3
i

ai =r0iA
1/3β

−1/3
i (2.1)

2.2.2 Interaction energy
The interaction energy is composed of the Coulomb potential, nuclear po-

tential and rotational energy and in the most general sense has the following
form:

V int(Ai, Zi, βi, θi, R) =V C(Ai, Zi, βL, βH , θL, θH , R)+

V N(Ai, Zi, βL, βH , θL, θH , R)+

V Rot(Ai, Zi, βL, βH , θL, θH , R, l) (2.2)

As mentioned previously, the rotational aspect will be ignored in this
work. The azimuthal angle can be safely discarded as well, limiting the
description of the orientation to be handled by the polar angle θi only. Ini-
tially a cumbersome function of many variables, some of these variables will
disappear in the following sections.

Nuclear interaction

The nuclear potential will be considered as a double folding potential
with density dependent nucleon forces of Skyrme-type [3]:

VN =

∫
ρL(rL)ρH(R− rH)F (rL − rH)drLdrH. (2.3)

With ρL,H being the nuclear densities of the light and heavy fragments
respectively taken as ρ = ρ00

1
1+e(r−R)/a where a = 0.54fm is a diffuseness

parameter and ρ00 = 0.17fm−3 is the saturation density. F (rL − rH) is the
effective nucleon-nucleon interaction which is density dependent as well:

F (rL − rH) = C0

[
Fin

ρL(rL)

ρ00
+ Fex

(
1− ρL(rL)

ρ00

)]
δ(rL − rH). (2.4)
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Considering we work with highly individualized fragment nuclei that have
small density overlap we have ρ0(r) = ρL(r)+ρH(r) and it allows us to obtain:

Fin,ex = fin,ex + f ′
in,ex

(NL − ZH)(NH − ZH)

(NL + ZH)(NH + ZH)
, (2.5)

where we have C0 = 300MeV fm3, fin = 0.09, f ′
in = 0.42, fex = −2.59,

f ′
ex = −0.54.

Coulomb interaction

For the Coulomb part, we start from the approximate formula for the
case of two deformed nuclei of arbitrarily orientation given by Ref. [4] but
we reach a problem quickly, it become computationally expensive to consider
arbitrary orientations between the two fragments. In order to manage this,
we consider a slightly different geometry of the system.

Fig. 2.2: Schematic drawing similar with 2.1 with a different orientation, the
fragments share the orientation angle θL = θH = θ

In this arrangement, having θL = θH = θ we can write the Coulomb
interaction in a simplified form:

V C =
e2ZLZH

R
[s(λL, θL) + s(λH , θH)− 1 + S(λL, λH , θ)], (2.6)

where we consider:
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λ2
i =

c2i − a2i
R2

s(λi, θi) = 3
∞∑
n=0

P2n(cosθi)

(2n+ 1)(2n+ 3)
λ2n
i

S(λL, λH , θ) = 9
∞∑

j,k=1

(2j + 2k)!P2j+2k(cosθ)

(2j + 1)(2j + 3)(2k + 1)(2k + 3)(2j!)(2k!)
λ2j
L λ2k

H .

(2.7)

Reduction in the degrees of freedom

We return to the interaction potential and look at the disintegration
coordinate which is the internuclear distance R. A link between R and d
is given by the relation R = cL + cH + d. We will consider the interaction
potential as function of d in the case of 106Mo + 146Ba fragment pair that
have no deformation:

VN +VC  (MeV
)

239

240

241

242

243

244

245

246

d (fm)0 0.5 1 1.5 2

106Mo +146Ba
β1 = β2 = 1.0

Fig. 2.3: The interaction potential as function of distance between fragments
for 106Mo + 146Ba

In Fig. 2.3, we observe two extreme points of interest, a local minimum
at dm ∼ 0.7 fm which is called the ”potential pocket” and a local maximum
at dB ∼ 1.6 fm. The position of these points is dependent on mass and
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Fig. 2.4: The interaction potential V int as a function of orientation of both
fragments θL = θH = θ for 106Mo + 146Ba. The angle is taken as relative to
the vertical Oz axis instead.

charge of the fragments. We can define the ”quasi-fission barrier” as the
difference between the potential evaluated at dB and dm in the following
manner Bqf = V int(dB) − V int(dm). The barrier prevents the system to
evolve along the disintegration coordinate and the system gets to remain in
the potential pocket long enough that statistical equilibrium is achieved. The
statistical equilibrium suggest that the configuration of the system at that
position determines the statistical properties of the DNS which is important
because all the desired observables of interest can be determined from these
properties. As such, and to reduce the number of variables, all calculations
will be performed at dm (Rm).

We turn our attention to the orientation angle now and consider the
interaction potential as a function of the orientation of the nuclei in the case
of 106Mo + 146Ba fragment pair with βL = 1.7, βH = 1.55. Both nuclei will
turn by the same angle θL = θH = θ as per the illustration in Fig. 2.2

We observe that a minimum appears at θ = 90 corresponding to a geom-
etry where the fragments are oriented ”tip-to-tip”. As this orientation seems
favorable for minimizing the potential energy, we will consider the system to
be in such a geometry in all the following calculations. Also, the number of
variables can be reduced from the description of the interaction potential.
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2.2.3 Liquid Drop energies
The Liquid Drop Model (LDM) is an attractive model due to its resem-

blance with the classical liquid drop and its simplicity and is successful at
providing a good description for some nuclear properties, of particular inter-
est for us, the binding energies.

This thesis is written with the intent to study and interpret the results
for the calculations of some observables of interest: charge distribution, total
kinetic energy and neutron multiplicity in the case of radon and radium. This
study is done within the context of the di-nuclear system model, an improved
scission-point model. There are four Liquid Drop (LD) terms to consider:
volume, surface, Coulomb, and symmetry. We will ignore the volume term
as it is conserved in our calculations where we will always take the compound
nucleus (CN) as a reference point.

Surface energy

We start in a simple manner by considering the energy as being propor-
tional to the surface area USurf = σiSi with σi being the surface tension
coefficient. We will tackle these two factors one at a time. The surface of
a deformed ellipsoid is rather difficult to describe in a neat manner so we
will consider it as variation of a spherical nuclei in the following manner
Si = BsS

0
i with S0

i being the surface of a sphere S0
i = 4πr20A

2
3
i and, if we

restrict to axially symmetric nuclei, Bs is a dimensionless parameter taken
as:

BS =
1

2
η

2
3

(
1 +

arcsin(ϵ)

ηϵ

)
, (2.8)

where η = a
c

is defined as the inverse of the deformation parameter β
introduced earlier and ϵ = (1− η2)1/2 is the eccentricity [5].

Returning to the surface tension coefficient, we will introduce a depen-
dence of deformation as a constant σ create a problem where the moments
of inertia for the fissioning nuclei get larger than the experimental data [2].
This dependence can be taken:

σi(βi) = σ0,i(1 + ki(βi − βg.s
i )2) (2.9)
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where βg.s
i are ground state deformations taken from Ref. [6–8] and

σ0,i = 0.9517(1 − 1.7826((Ni − Zi)
2/A2

i )) [9]. For ki we can introduce a
parametrization with dependence of the stiffness of the nucleus Cvib given in
MeV [10] as:

ki =
1

1 + exp[−0.063(Cvib(Zi, Ai)− 67)]
. (2.10)

Liquid-Drop Coulomb energy and Symmetry energy

We begin with the uniformly charged sphere with radius R0 where we
consider the Coulomb energy from electrostatics [5] as UCoul,0

i = 3e2

5r0

Z2
i

A
1/3
i

. We
follow the logic used for the surface energy and multiply it by a dimensionless
parameter to obtain the energy for a spheroid instead. This parameter takes
the following form where η is the inverse of the deformation parameter and
ϵ is the eccentricity:

BC = 0.5
η

2
3

ϵ
ln

(
1 + ϵ

1− ϵ

)
. (2.11)

The symmetry energy is taken simply as U sym
i = 27.612 (Ni−Zi)

2

Ai

Shell Correction

Per Strutinsky’s prescription, we can view the influence of the nucleon
shells as a just a small deviation from an otherwise uniform nucleon distri-
bution; the shell correction are given [11] as:

δU =
∑
ν

Eν − Ũ . (2.12)

with nucleon energies Eν and Ũ expressed by the integral Ũ =
∫ λ̃

−∞ Eg̃(E)dE.
Here we have the uniform distribution function with g̃ and λ̃ is a chemical
potential taken as [5]

∫ λ̃

−∞
g̃(E)dE = A. (2.13)
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2.3 Potential energy surface (PES)
We are ready now to calculate the total potential energy of the system

as we have prepared all the necessary ingredients in the following form:

U(Ai, Zi, βi, R) = ULD
L (AL, ZL, βL, E

∗) + δU shell
L (AL, ZL, βL, E

∗)

+ ULD
H (AH , ZH , βH , E

∗) + δU shell
H (AH , ZH , βH , E

∗)

+ V C(Ai, Zi, βi, dm) + V N(Ai, Zi, βi, dm), (2.14)

with the binding energies consisting of the LDM components:

ULD
i (Ai, Zi, βi) = U surf

i (Ai, Zi, βi) + UC
i (Ai, Zi, βi) + U sym

i (Ai, Zi), (2.15)

where δU shell
i is the shell correction for the fragment i. Using Eq. (2.14),

we can construct the PES by taking the variation of the deformation pa-
rameters β1 and β2 for combinations of mass and charge numbers of both
fragments in order to obtain a helpful visual depiction of the system’s con-
figuration at the scission moment.

Fig. 2.5: Potential energy surfaces for the DNS 108Ru+108Ru with shell
correction. The values are in MeV and are normalized to the energy of the
CN
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In the PES shown in Fig. 2.5, we see the total energy as decreasing as the
system becomes more deformed due to the interaction potential decreasing
with deformation while the surface energy increases until a point where an
increase in the surface energy part of the LDM compensates the decrease of
the interaction potential. This effect is the reason for the minima shown.
The minimum’s position indicate the most favorable deformations of the
fragments at the moment of scission.

2.3.1 Excitation energy and damping
On its way toward fission, the system accumulates a considerable amount

of excitation energy due to conservation of energy. This energy impacts the
system in a number of ways (e.g neutron emission). Within this model,
we have the means to calculate the excitation energy and temperature self-
consistently.

We consider the initial excitation energy E∗
0 = En,γ +Qn that the system

starts along the fission path with. En,γ is the energy of the incident photon
or neutron and Qn is the reaction heat in case of neutron induced fission.
E0 is zero in case of spontaneous fission and is equal to the γ quanta in
the case of electromagnetic induced fission. In order to obtain the entire
excitation energy, we must add the difference in potential energies of the
initial compound nucleus and the DNS at scission point [12, 13]:

E∗(Ai, Zi, βi, dm) = E∗
0 +Q− V int({Ai, Zi, β

g.s
i }, dm)

− [U({Ai, Zi, βi}, dm, E∗)− U({Ai, Zi, β
g.s
i }, dm, E∗)] . (2.16)

The excitation energy can achieve such high values (∼ 20 MeV) that the
shell structure is disrupted and we introduced a dependence for excitation
energy to the shell correction to account for this.

δU shell
i (Ai, Zi, βi, E

∗
i ) = δU shell

i (Ai, Zi, βi, E
∗
i = 0) exp(−E∗

i /ED), (2.17)

where ED = 18.5 MeV is a damping constant. According to a study [14],
the LDM components were found to have a dependency on temperature and
so depend on excitation energy as well. We can link the temperature to the
excitation energy by using:
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T =
√
E∗/a. (2.18)

where a = A/12 is the density parameter in the Fermi-gas model.

2.4 Statistical model
If we consider the binary decay as a two step process then we can write

the total emission probability as a combination of formation probability that
would represent the evolution of the system under U({Ai, Zi, βi}, dm) until
the potential pocket and the decay probability which would represent the
system traversing the quasi-fission barrier by having enough excitation en-
ergy:

ω(Ai, Zi, βi, E
∗) = exp

[
−U({Ai, Zi, βi}, dm) + Bqf ({Ai, Zi, βi})

T

]
. (2.19)

2.4.1 Charge and Mass distributions
In order to obtain the charge or mass distributions, we would need to

integrate Eq. 2.19 over the PES then perform a summation over mass for
charge distribution or over charge for mass distribution:

Y (Ai) = N0

∑
Zi

∫ ∫
dβLdβHω(Ai, Zi, βi, E

∗)

Y (Zi) = N0

∑
Ai

∫ ∫
dβLdβHω(Ai, Zi, βi, E

∗) (2.20)

2.4.2 Neutron multiplicity
Shortly post-fission, the nuclear fragments retain excitation energy par-

titioned to each other in proportion to their masses. In addition to this,
these fragments are deformed and, as they relax, they will accumulate defor-
mation energy as well. These energies will determine the fragments to emit
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neutrons to reduce their energies. We consider the following description for
the emission of both fragments:

⟨ν⟩(Zi) =
∑
Ai,ν

∫
dβ1β2νPν(Ai, Zi, βi, E

∗)ω(Ai, Zi, βi),

⟨ν⟩(Ai) =
∑
Zi,ν

∫
dβ1β2νPν(Ai, Zi, βi, E

∗)ω(Ai, Zi, βi), (2.21)

and this in the case of emission from a single fragment:

⟨νi⟩(Zi) =
∑
Ai,νi

∫
dβ1β2νiP̃νi(Ai, Zi, βi, E

∗)ω(Ai, Zi, βi),

⟨νi⟩(Ai) =
∑
Zi,νi

∫
dβ1β2νiP̃νi(Ai, Zi, βi, E

∗)ω(Ai, Zi, βi),

P̃νi =

∫ E∗

0

dϵ∗iPC(ϵ
∗
i )Pνi(U

def
i + ϵ∗i ). (2.22)

Here, Pν is the probability that exactly ν neutrons are emitted taken from
Jackson formula [15, 16] and PC is the micro-canonical distribution of the
energy partitioned between the two fragments.

2.4.3 Total kinetic energy (TKE)
The total kinetic energy is the entire interaction energy of the system

after scission occurs converted into kinetic energy for the fragments. We
consider it thus as TKE = V C + V N and we can find its distribution with
regards to charge as:

⟨TKE⟩(Zi) =
∑
Ai

TKE(Ai, Zi)Y (Ai, Zi, E
∗)

Y (Ai, Zi, E∗)
(2.23)
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3 Charge distributions and TKE

Having all the necessary tools prepared, we can look into the study of
204,206,208Rn and 214,216,218Ra in the case of electromagnetic-induced fission
with E∗

0 = 11 MeV and the results will be compared with experimental data
from Ref. [17]. Some calculations were performed on 232,234U as well to test
the reliability of the model.

3.1 Charge distribution
For Rn and Ra, we have obtained symmetric charge distributions ascribed

to strong liquid drop effects while U presents asymmetry charge distribution
corresponding to a strong shell effect.

Y
(Z

1
)

0

0.05

0.1

0.15

0.2

Z1
28 32 36 40 44 48 52 56 60

Theory
Experiment

218Ra

Fig. 3.1: Charge distribution in the case of CN 218Ra
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3.2 TKE and supporting distributions
For Rn and Ra, we have obtained mean TKE that feature a plateau at

symmetry flanked by two small peaks while U features two asymmetric peaks
with a deep valley in between.

<
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e
V

)

130

140

150
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28 32 36 40 44 48 52 56 60

Theory
Experiment

218Ra

Fig. 3.2: Mean TKE distribution in the case of CN 218Ra

In this chapter, other distributions were calculated and included in other
to provide insight as to how other observables change with the increase in
charge. We considered in this manner a mean deformation parameter ⟨βi⟩,
average liquid drop energies ⟨ULD⟩, mean shell corrections ⟨δU⟩ and average
excitation energies ⟨E∗⟩. All were obtained in a similar manner to ⟨TKE⟩

3.3 Discussion
We notice that our calculations reproduce the experimental data very

well across the board where experimental data was available. In this section
we have correlated all distributions obtained thus far and analyzed particular
points, mostly relating to magic numbers such as proton charge number Z =
50 but the neutron one appears as well in some configurations that contribute
much for some noteworthy points (the pair 86Kr +118Sn has, for example,
both nuclei as magic nuclei and 86Kr has a magic number of neutrons N =

16



50). Other correlations performed are the peaks in TKE corresponding to
minima in deformation and shell correction distributions suggesting that the
most stable fragment nuclei have higher interaction potentials [18].
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4 Neutron multiplicities

The neutron emission is a process that requires study as the properties of
these neutrons give insight in regard to the formation of the fission fragments
and partition of the excitation energy between fragments. As such we have
studied the number of emitted neutrons from both fragments as well as from
a single one.

We have observed that for the isotopes studied we have symmetric neu-
tron multiplicities in the case of considering both fragments. It is considered
that this follows the behavior of the excitation energy distribution profile
which makes sense on the basis that the fragments with the most energy
can emit the largest number of neutrons. We observe that Rn distributions
present a plateau like structure at symmetry that is not observed in Ra. Ra
distributions have higher peaks than Rn due to having higher excitation en-
ergies while having lower neutron separation energies. In the case of single
fragment neutron multiplicities we observe a slow increase in the number of
emitted neutrons as the nucleus gets heavier as it receives a larger amount
of the total excitation energy, followed by an abrupt sawtooth-like drop at
Z1 = 50 as for magic nuclei, the neutron separation energies are very large
by comparison [19] and thus have lower neutron multiplicities.
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Fig. 4.1: Neutron multiplicities for both fragments (a-top) as well as a single
fragment (b-bottom) performed for 218Ra.
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5 Conclusions

The model employed was able to provide good description for the charge
distributions, total kinetic energy and neutron multiplicity of the fission frag-
ments in the case of electromagnetic induced fission of Rn and Ra isotopes.
We have managed to obtain results for these observables of interest and de-
scribe very well the experimental data available. We managed to explain
the positions of the peaks in charge distributions and the asymmetric peaks
in TKE on the basis of magic numbers and in correlation with deformation
distribution and shell correction distributions. We explained the neutron
multiplicities in a similar manner in relation to the excitation energy dis-
tribution and identified the cause for the sawtooth-like drop as the stable
magic nuclei that hinder neutron emission. We compared the neutron emis-
sion distributions from Rn and Ra and observed slightly different behaviors,
for Rn the peaks are roughly at the same value for all isotopes while for Ra,
the peaks increase from 214Ra to 218Ra on the basis of increasing excitation
energy.
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Published articles
1. Andrei Butuza. “Charge distribution and total kinetic energy in the
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2. Andrei Butuza. ”Neutron multiplicity distribution in the fission of Rn
and Ra”. accepted for publication In: International Journal of Modern
Physics E (2025)
Impact factor: 1
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Workshops
1. Andrei Butuza. ”Charge, mass and energy distribution of neutron-

induced fission of light actinides”. At: 6th Grandmaster Early Career
Workshop in Physics GEWP (3-8 September 2023), Cluj Napoca, Ro-
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