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Introduction

This thesis presents some algebraic constructions (group rings, trivial extensions

and Dorroh extensions) treated by categorial and topological point of view, in the

�rst part, respectively, some algebraic constructions on the set of fuzzy numbers, in

the second part.

Chapter 1. Ring extensions. In this chapter we presented some algebraic and
categorial properties of some ring extensions and it is structured as follows:

1.1. Group rings. In this section we presented some basic notions and results
of the theory of group rings and some new results. Thus, here we introduced the

category RngGrp (which has as objects triples of the form (R;G; �), where R is a

ring with identity, G is a group and � : G! AutR is a group homomorphism); the

covariant functor F : RngGrp ! Rng; which associate to (R;G; �) the skew group

ring R �� G and we proved that this functor has a right adjoint (Theorem 1.1.4).

Here, we also proved that the bifunctor Hc : Rngc�Ab ! Rngc (which associate

to a commutative ring with identity R and a commutative group G, the group ring

R [G]) has a right adjoint (Theorem 1.1.7).

1.2. Commutative ring extensions. In this section, we gave a categorial

presentation of the trivial extensions. Thus, here we presented the universal property

of the trivial extension R n M (Theorem 1.2.1) and some consequences of this

theorem (Corollary 1.2.2, Proposition 1.2.4), results which facilitate the categorial

constructions presented in this section. Here, we also characterized the group of

units of the semidirect product R �M (Proposition 1.2.9).

1.3. Generalized semidirect products. As a generalization of those pre-
sented in the previous section, we introduced the ring R n�� M (called the (�; �)�

semidirect product of a ring R and an R-module M) and we studied some algebraic

properties and categorial properties of this construction. Thus, in this section, we

characterized the group of the units of the ring R n�� M; we gave the universal
property and we made some categorial constructions. Here, we also studied some
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topological properties, namely, the extensions of the norms on R and on M to the

ring Rn��M .

Chapter 2: Dorroh extensions. In this chapter of the thesis, we presented some
basic properties of the Dorroh extensions and some original contributions related to

this construction. Thus, we introduced two notions (to simplify the presentation),

namely, the Dorroh pairs and the D-homomorphism, the universal property of this
ring (Theorem 2.1.6) and its consequence (Corollary 2.1.8), concepts and results that

are useful for the following categorial constructions. We also described those rings

that can be expressed as a certain Dorroh extension (Theorem 2.1.10 and Theorem

2.1.11), we characterized the group of units of the ring R on M (Theorem 2.3.2)

and we constructed the "Dorroh extension" functor (D : D! Rng) and we showed

that it has a right adjoint (Theorem 2.2.1) and commutes with direct products and

inverse limits (Proposition 2.2.2 and Proposition 2.2.3).

Chapter 3: Fuzzy numbers. Generalities. In this chapter we presented the

de�nition, some basic properties, and some representations of fuzzy numbers. Thus,

besides the well-known LU representation, we introduced some new representations

of fuzzy numbers: the multivalued representation, the CE representation (core ecart)

and the MCE representation (middle-core ecart). The CE and the MCE representa-

tions facilitates the construction of new operations with fuzzy numbers, operations

presented in the following chapters.

Chapter 4: Dorroh-type products on the set of fuzzy numbers. As an

application of the Dorroh extensions, we introduced a new algebraic structure on

the set of fuzzy numbers and we studied some of its properties. By using the CE

representation of the fuzzy numbers, we introduced a new product (denoted by "~")
on the set of fuzzy numbers, product which is based on the Dorroh extension of a

semiring by a semimodule. Thus, (F+;+;~) is a semiring (Theorem 4.2.1), where

F+ is the set of all fuzzy numbers with positive core. As a particularization of this

general construction, there we obtained a new product, called "Dorroh-product ".

We also constructed an equivalence relation compatible with the addition and the

Dorroh product (Proposition 4.3.2 and Theorem 4.3.7).

Chapter 5: Completely distributive products on the set of fuzzy numbers.
In this chapter, by using the MCE representation of the fuzzy numbers, we intro-

duced two new products on the set of fuzzy numbers, products that are completely
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distributive over addition. Thus, Theorem 5.1.1, shown that (Fc;+;�) is a commu-
tative semiring with identity and (Fc;+;�) is a commutative semiring. Here we also
introduced a new scalar multiplication (which, for a positive scalar coincides with

the usual scalar multiplication) and which, in addition to the common properties,

has a new property (Proposition 5.1.8.5). To de�ne the topological structure of the

set Fc, we introduced four types of norms and a new metric on the set Fc. Their

properties are given in Proposition 5.2.1, Theorem 5.2.2 and Proposition 5.2.3. In

the last paragraph of this chapter we presented some elementary functions, de�ned

on the set of fuzzy numbers, their construction it being possible (in this form) due

to using the MCE representation and the product �.

Chapter 6: Topological group structures on quotient sets of fuzzy num-
bers. A.M. Bica has constructed in [11] two isomorphic Abelian groups, de�ned on
quotient set of the set of those unimodal fuzzy numbers which has strictly monotone

and continuous sides. In this chapter, we extended the results of [11] to a larger class

of fuzzy numbers and adding to it a topological structure. Here, we also character-

ized the constructed quotient groups, by using the set BVC [0; 1] of the continuous

functions with bounded variation, de�ned on [0; 1] :

Finally, I would like to thank my scienti�c advisor, Professor Ioan Purdea, for

his support, advice and supervision, while elaborating this thesis. I also want to

thank to the members of the Chair of Algebra of "Babeş�Bolyai" University of Cluj

Napoca.
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Chapter 1

Ring extensions

1.1 Group rings

Throughout this section, by a ring we mean an associative ring with identity and

by a ring homomorphism we mean an unitary ring homomorphism.

1.1.1 Skew group rings

Let R be a ring, G a group and � : G! AutR be a group homomorphism. Denote

� (g) (r) by rg for all g 2 G and r 2 R:
The skew group ring R �� G (see, e.g. [75],[67]) is de�ned to be the free left

R-module with G as a free generating set. The multiplication on R �� G is de�ned
distributively by using the following rule:

(r1g1) � (r2g2) = r1rg12 g1g2 ;

for all r1; r2 2 R and g1; g2 2 G:

Theorem 1.1.1 ([75], [67]) Let R be a ring, G be a group and � : G ! AutR be

a group homomorphism. For any ring A; any ring homomorphism ' : R ! A and

any group homomorphism f : G!U(A) ; for which

' (rg) = f (g) � ' (r) � (f (g))�1 ;

for all r 2 R and g 2 G; there exists a unique ring homomorphism � : R �� G! A;

such that � (r) = ' (r) ; for all r 2 R and � (g) = f (g) for all g 2 G:

2
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Corollary 1.1.2 [38] Let f : G ! G0 be a group homomorphism and ' : R ! R0

be a ring homomorphism. If � : G ! AutR and �0 : G0 ! AutR0 are two group

homomorphisms, such that the following diagram

R
' - R0

R

�(g)

?
' - R0

(�0�f)(g)

?

R
'�! R0

�(g) # #(�0�f)(g)

R
'�! R0

(1.1)

is commutative (i.e., (�0 � f) (g) � ' = ' � � (g)) ; for all g 2 G; then the mapping

� = ('; f) : R �� G �! R0 ��0 G0
nP
i=1

ri gi 7�!
nP
i=1

' (ri) f (gi)

is a ring homomorphism, which extends f and ':

Corollary 1.1.3 (1) [38] If R is a ring, G and G0 are two groups and f : G! G0,

� : G! AutR and �0 : G0 ! AutR are group homomorphisms, such that

G
f - G0

AutR

�0
�

� - �0 � f = �;

�
or equivalently, rf(g) = rg; for all g 2 G and r 2 R

�
, then the mapping

f : R �� G �! R ��0 G0
nP
i=1

ri gi 7�!
nP
i=1

ri f (gi)

is a ring homomorphism, which extends f .

(2) [38] If G is a group R and R0 are two rings, ' : R ! R0 is a ring homomor-

phism and � : G! AutR and �0 : G! AutR0 are two group homomorphisms

such that

R
' - R0

R

�(g)

?
' - R0

�0(g)

?

�0 (g) � ' = ' � � (g) ; for all g 2 G
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(or equivalently, ' (rg) = ' (r)g ; for all g 2 G and r 2 R) ; then the mapping

' : R �� G �! R0 ��0 G
nP
i=1

ri gi 7�!
nP
i=1

' (ri) gi

is a ring homomorphism, which extends ':

We can consider now, the following categories:.

1. If R is a �xed ring, consider the category GrpR for which the objects are pairs

(G; �) ; where G is a group and � : G! AutR is a group homomorphism and

HomGrpR ((G; �) ; (G
0; �0)) = ff 2 HomGrp (G;G

0) : �0 � f = �g :

2. If G is a �xed group, consider the category RngG; whose objects are pairs

(R; �) ; where R is a ring and � : G ! AutR is a group homomorphism and

the set of morphisms from (R; �) to (R0; �0) ; HomRngG ((R; �) ; (R
0; �0)) is

f' 2 HomRng (R;R
0) : �0 (g) � ' = ' � � (g) ; 8 g 2 Gg :

3. We also consider the category RngGrp constructed as follows:

� the class of objects are the triplets (R;G; �) ; where R is a ring, G is a

group and � : G! AutR is a group homomorphism;

� the set of morphismsHomRngGrp((R;G; �) ; (R
0; G0; �0)); consist of all pairs

('; f) ; where ' : R ! R0 is a ring homomorphism and f : G ! G0 is a

group homomorphism, for which (�0 � f) (g)�' = '�� (g) ; for all g 2 G:
� if

('; f) 2 HomRngGrp ((R;G; �) ; (R
0; G0; �0))

('0; f 0) 2 HomRngGrp ((R
0; G0; �0) ; (R00; G00; �00))

then ('0; f 0)�('; f) = ('0 � '; f 0 � f) 2 HomRngGrp ((R;G; �) ; (R
00; G00; �00)) :

Consider also, the following covariant functors:

1. If R is a �xed ring, we de�ne the functor IR : GrpR ! RngGrp by

(G; �) - IR (G; �) = (R;G; �)

(G0; �)

f

?
- IR (G

0; �) = (R;G0; �)

IR(f)=(idR;f)

?
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2. If G is a �xed group, we de�ne the functor IG : RngG ! RngGrp by

(R; �) - IG (R; �) = (R;G; �)

(R0; �)

'

?
- IG (R

0; �) = (R0; G; �)

IG(')=(';idG)

?

3. By Corollary 1:1:2, we can consider the functor F : RngGrp ! Rng de�ned

by
(R;G; �) - F(R;G; �) = R �� G

(R0; G0; �0)

(';f)

?
- F(R0; G0; �0) = R0 ��0 G0

F(';f)

?

= �

4. If R is a ring, then the mapping �R : U (R)! AutR, r0 7! �r0 ;where �r0 (x) =

r0 x r
�1
0 ; for all x 2 R; is a group homomorphism. So, we can de�ne the functoreU : Rng! RngGrp by

A - eU(A) = (A;U(A); �A)

B

'

?
- eU(B) = (B;U(B); �B)

eU(')=(';U('))
?

where U(R) denotes the group of units of the ring R and U(') : U (A) !
U(B) is the group homomorphism induced by the ring homomorphism ' :

A! B:

Theorem 1.1.4 [38] The functor F is left adjoint to eU:
1.1.2 Group rings

If � (g) = idR; for all g 2 G; then the skew group ring R �� G coincides with the

group ring R [G] :

If in Theorem 1:1:1; consider that � (g) = idR; for all g 2 G; we obtain:

Theorem 1.1.5 Let R be a ring and G be a group. For any ring A; any ring

homomorphism ' : R! A and any group homomorphism f : G!U(A) ; for which

' (r) � f (g) = f (g) � ' (r) ;

for all r 2 R and g 2 G; there exists a unique ring homomorphism � : R [G] ! A;

such that � (r) = ' (r) ; for all r 2 R and � (g) = f (g) ; for all g 2 G:
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Corollary 1.1.6 For any ring A; any ring homomorphism ' : R ! R0 and any

group homomorphism f : G ! G0; there exists a unique ring homomorphism � :

R [G] ! R0 [G0] ; such that � (r) = ' (r) ; for all r 2 R and � (g) = f (g) ; for all

g 2 G:

So, by Corollary 1:1:6, we can consider the covariant functor H : Rng�Grp !
Rng; de�ned by:

(R;G) - H(R;G) = R[G]

(R0; G0)

(';f)

?
- H(R0; G0) = R0[G0]

H(';f)=�

?

Analogously, for the commutative case, consider the functor Hc : Rngc�Ab !
Rngc.

We also consider the functor bU : Rngc ! Rngc�Ab; de�ned by:

A - bU(A) = (A;U(A))

B

'

?
- bU(B) = (B;U(B))

bU(')=(';U('))
?

Theorem 1.1.7 The functor Hc is left adjoint to bU:
1.2 Commutative ring extensions

Throughout this section, by a ring we mean an associative ring.

We consider the ring of endomorphisms (EndM;+; �) of an Abelian group (M;+) ;
a commutative ring with identity (R;+; �) and � : (R;+; �) ! (EndM;+; �) a uni-
tary ring homomorphism. If for all a 2 R and x 2 G we denote � (a) (x) = ax; we

obtain that M is a left R-module. Conversely, if M is a left R-module, then the

mapping a 7! �a; where

�a : G! G; x 7! ax

is a unitary ring homomorphism of (R;+; �) in (EndG;+; �) :
We also consider a multiplicative isomorphic copy M of the group G; i.e., M =

fx : x 2Mg ; and
x � y = x+ y; for all x; y 2M:
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1.2.1 Trivial extensions

Let (R;+; �) be a commutative ring with identity and M a left R-module. On the

direct product (R�M;+) of the Abelian groups (R;+) and (M;+) ; we consider
the multiplication

(a; x) � (b; y) = (ab; bx+ ay) :

(R�M;+; �) becomes a commutative ring with identity, called the trivial extension
of R by M (or the idealization of M) and it is denoted by R n M ([44]; [54]).

Moreover, RnM is an R�algebra with the operation

R� (RnM) �! RnM; (�; (a; x)) 7�! (�a; �x) :

We consider the following mappings:

iM : M ! R�M; x 7! (1; x) ;

iR : R! R�M; a 7! (a; 0) ;

iM : M ! R�M; x 7! (0; x)

�R : R�M ! R; (a; x) 7! a;

�M : U (RnM)!M; (a; x) 7! a�1x:

These applications veri�es the following properties:

1. iM is an embedding of the group M in the group U (RnM) ;

2. iR is an embedding of the ring R in the ring R n M and so its restriction

iR
��
U(R) = iU(R) is an embedding of the group U (R) in the group U (RnM) ;

3. iM is an embedding of the group (M;+) in the additive group of RnM: If we
identify the element x 2M with (0; x) 2 R�M; we can consider that M is a

subring of R�M with the multiplication x1 � x2 = 0:

4. �R is a surjective homomorphism of the ring R nM onto the ring R and so

its restriction �R
��
U(R) = �U(R) is a group homomorphism of U (RnM) onto

U (R) ;

5. �M is a surjective group homomorphism;
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6. the following sequences

1

U(R)
?

1 - M
iM- U (RnM)

iU(R) ?
�U(R)- U(R) - 1

M

�M ?

1
?

are exacts and �M�iM = idM and �U(R)�iU(R) = idU(R) : Therefore, U (RnM) �=
U (R)�M �= U (R)�M: The isomorphism is given by

U (R)�M �! U (RnM)
(a; x) 7�! (a; ax)

Theorem 1.2.1 [39] Let (R;+; �) a commutative ring with identity and M a R-

module. Then for every R-algebra � and every R-linear map f : M ! �; with the

property

f (x) � f (y) = 0; for all x; y 2M;

there exists an unique R-algebras homomorphism f : RnM ! �; such that

M
iM- RnM �iR

R

�

f

? i

�
f -

f � iM = f and f � iR = i:

Corollary 1.2.2 [39] If M and M 0 are two R-modules and f :M !M 0 is a linear

map, then there exists a unique R�algebras homomorphism f : R nM ! R nM 0

extending f; i.e., the following diagram

M
iM- RnM �iR

R

M 0

f

?
iM0- RnM 0

f

?
�iR R

idR

?

is commutative.
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Remark 1.2.3 By Corollary 1:2:2, we can construct a covariant functor F : ModR !
AlgR; as follows:

M - F(M) = RnM

M 0

f

?
- F(M 0) = RnM 0

F(f)=f

?

Proposition 1.2.4 [39] Let R1 and R2 two unitary commutative rings, (M;+)
an Abelian group, �1 : R1 ! EndM and �2 : R2 ! EndM two unitary ring

homomorphisms. If f : R1 ! R2 is a unitary ring homomorphism, such that

R1
f - R2

EndM

�2�
�1 -

�1 = �2 � f;

then the mapping
f : R1 nM �! R2 nM

(r1; x) 7�! (f (r1) ; x)

is a unitary ring homomorphism which extend f:

Remark 1.2.5 If (M;+) is an Abelian group, we can consider the category RngM ;
whose objects are pairs of the form (R; �) ; where R is a unitary commutative ring

and � : (R;+; �)! (EndM;+; �) is a unitary ring homomorphism and

HomRngM ((R1; �1) ; (R2; �2)) = ff 2 HomRng (R1; R2) : �1 = �2 � fg :

By Proposition 1.2.4, we can construct the covariant functor H : RngM ! Rng ,

de�ned by
(R1; �1) - H(R1; �1) = R1 nM

(R2; �2)

f

?
- H(R2; �2) = R2 nM

H(f)=f

?

1.2.2 The semidirect product of a ring R with an R-module

Near-rings are generalized rings. They might generally be described as rings (A;+; �)
where the addition is not necessarily abelian and only one distributive law holds:

De�nition 1.2.6 [76] A right (left) near-ring is a non-empty set A; together with
two binary operations " + " and " � "; which satisfy the following conditions:
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1. (A;+) is a group (not necessarily abelian);

2. (A; �) is a semigroup;

3. the right (left) distributivity law is satis�ed:

Further, by a near-ring we mean a right near-ring.

On the direct product (R�M;+) of the Abelian groups (R;+) and (M;+) we
also consider the multiplication

(a; x) � (b; y) = (ab; x+ ay)

Proposition 1.2.7 (R�M;+; �) is a right near-ring with identity.

De�nition 1.2.8 The near-ring (R�M;+; �) is called the semidirect product of the
ring R with M and it is denoted by R �M .

We consider the mappings:

iM : M ! R�M; x 7! (1; x) ;

iR : R! R�M; a 7! (a; 0) ;

�R : R�M ! R; (a; x) 7! a:

Then:

1. iM is an embedding of the group M in the group U (R �M) ;

2. iR is an embedding of the ring R in the near-ring R �M and so, its restriction

iR
��
U(R) = iU(R); is an embedding of the group U (R) in the group U (R �M) ;

3. �R is a surjective homomorphism of the near-ring R �M onto the ring R and

so, its restriction �R
��
U(R) = �U(R) is a group homomorphism of U (R �M)

onto U (R) :

Proposition 1.2.9 [39] The group of units U (R �M) of the near-ring R �M is

isomorphic to the semidirect product M �U(�) U (R) of the groups M and U (R) ;

where U (�) : U (R) ! AutM is the group homomorphism induced by the ring

homomorphism � : R! EndM:
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1.3 Generalized semidirect products

1.3.1 The construction of the generalized semidirect prod-
uct

We consider an Abelian group (M;+) ; a commutative ring with identity (R;+; �) ;
an unitary ring homomorphism � : (R;+; �) ! (EndM;+; �) and two functions
�; � : R! R: If a 2 R and x 2 G; we denote � (a) (x) = a � x:
On the direct product (R�G;+) of the additive groups (R;+) and (G;+) ; we

consider the multiplication

(a; x) � (b; y) := (ab; � (b) � x+ � (a) � y) : (1.2)

Proposition 1.3.1 [37] As above, we have that:

1: If � (a) � � (b) = � (b) � � (a), for all a; b 2 R; � 2 End� (R; �) 1 and � 2
End (R; �) ; then (R�M; �) is a semigroup;

2: if R is a ring with identity and � (1) = 1; then (1; 0) is a right unit of the

multiplication de�ned by (1:2);

3: if R is a ring with identity and � (1) = 1; then (1; 0) is a left unit of the

multiplication de�ned by (1:2);

4: if � 2 End (R;+) ; then the multiplication (1:2) distributes over addition on
the left;

5: if � 2 End (R;+) ; then the multiplication (1:2) distributes over addition on
the right.

We consider an Abelian group (M;+) ; a commutative ring with identity (R;+; �) ;
an unitary ring homomorphism � : (R;+; �) ! (EndM;+; �) and two functions
�; � : R! R: If a 2 R and x 2 G; we denote � (a) (x) = a � x:

Corollary 1.3.2 [37] Let R be a ring, (M;+) an Abelian group and � : (R;+; �)!
(EndM;+; �) a ring homomorphism. If � 2 End� (R;+; �) and � 2 End (R;+; �)
veri�es the property that

� (a) � � (b) = � (b) � � (a) ; for all a; b 2 R; (1.3)

1 i.e., � is an anti-endomorphism
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then (R�M;+; �) is a ring. If in addition, R is with identity and �; �; � are unitary
homomorphisms, then (R�M;+; �) is a ring with identity.

De�nition 1.3.3 [37] The ring (R�M;+; �) (see, Corollary 1:3:2) is called the
(�; �)-the semidirect product of R with M and it is denoted by Rn��M:
If R is commutative and � = �; this ring is denoted by Rn�M:

Denote by:

� 
 the class of all systems (R;M; �; �; �) ; where (R;+; �) is a ring, (M;+) is
an Abelian group, � : (R;+; �) ! (EndM;+; �) is a ring homomorphism and

� 2 End� (R;+; �) ; � 2 End (R;+; �) which satis�es the condition (1:3) :

� 
c the class of all systems (R;M; �; �; �) 2 
; where (R;+; �) is a commutative
ring;

� 
1 the class of all systems (R;M; �; �; �) 2 
; where (R;+; �) is a ring with
identity, � is a unitary ring homomorphism and � 2 End� (R;+; �; 1) ; � 2
End (R;+; �; 1) ;

� 
c;1 = 
c \ 
1:

Remark 1.3.4 Thus:

1. (R;M; �; �; �) 2 
 =) Rn��M is a ring;

2. (R;M; �; �; �) 2 
1 =) Rn��M is a ring with identity;

3. (R;M; �; �; �) 2 
c;1 =) Rn�M is a commutative ring with identity.

1.3.2 The group of units of the ring Rn��M

We consider that (R;M; �; �; �) 2 
1: We also consider a multiplicative isomorphic
copy M of the group G; i.e., M = fx : x 2Mg ; and

x � y = x+ y; for all x; y 2M:

Proposition 1.3.5 If (a; x) 2 R n��M; then (a; x) 2 U
�
Rn��M;+; �

�
if and only

if a 2 U(R;+; �) : In this case,

(a; x)�1 =
�
a�1;��

�
a�1
�
� �
�
a�1
�
� x
�
:
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We consider the following functions:

iM : M ! Rn��M; x 7! (1; x) ;

iR : R! Rn��M; a 7! (a; 0) ;

�R : Rn��M ! R; (a; x) 7! a;

�M : U (Rn��M)!M; (a; x) 7! � (a�1) � x:

It is easy to see that:

1. iM is an embedding of the group M in the group U
�
Rn��M

�
;

2. iR is an embedding of the ring R in the ring R n�� M , and so its restriction
to U (R) ; iR

��
U(R) = iU(R); is an embedding of the group U (R) in the group

U
�
Rn��M

�
;

3. �R is a surjective ring homomorphism and its restriction to U (R) ; �R
��
U(R) =

�U(R); is a surjective group homomorphism of U
�
Rn��M

�
onto U (R) ;

4. �M is a surjective group homomorphism.

Since the following sequences

1

U(R)
?

1 - M
iM- U(Rn��M)

iU(R)
?

�U(R)- U(R) - 1

are exacts and �U(R) � iU(R) = idU(R); we have that

U
�
Rn��M

� �= U (R)��M;
where � : (U (R) ; �)! Aut

��
M; �

�
; �
�
is de�ned by

� (a) (x) = � (a�1) � � (a) � x; 8 a 2 U (R) ; 8x 2M:

The multiplication of the (group) semidirect product U (R)��M is de�ned by

(a; x) � (b; y) = (ab; x � � (a) (y)) =
�
ab; x+ � (a�1) � � (a) � y

�
;

and the isomorphism between U (R)��M and U
�
Rn��M

�
is given by

U (R)��M �! U
�
Rn��M

�
(a; x) 7�! (a; � (a) � x)
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Proposition 1.3.6 The groups U (R)��M and U
�
Rn��M

�
are isomorphic.

Remark 1.3.7 If (R;M; �; �; �) 2 
c;1; then U (Rn�M) �= U (R)�M:

1.3.3 Categorial aspects

If (R;M; �; �; �) 2 
; then the function

�
M
:M ! Rn��M; x 7! (0; x)

is an embedding of the group (M;+) in the additive group
�
Rn��M;+

�
: If we

identify the elements x 2 M with (0; x) 2 R n�� M , we can consider that M is a

subring of the ring Rn��M; the product of M being the null multiplication, i.e.,

x1 � x2 = 0; 8x1; x2 2M:

Moreover, M is an ideal of Rn��M:

Theorem 1.3.8 (The universal property) Let (R;M; �; �; �) 2 
. For every

ring �; for every ring homomorphism ' : R! � and for every group homomorphism

f : (M;+)! (�;+) ; which satis�es the properties:

1. f (� (r) � x) = f (x) � ' (r) ; 8 r 2 R; 8x 2M ;

2. f (� (r) � x) = ' (r) � f (x) ; 8 r 2 R; 8x 2M ;

3. f (x) � f (y) = 0; 8x; y 2M ;

there exists an unique ring homomorphism � : R n�� M ! �; which extend f and

'; i.e.,

R
iR- Rn��M ��M M

�

�

? f
�

' -
� � �

M
= f and � � iR = ':

If (R;M; �; �; �) 2 
1, � is a ring with identity and ' is an unitary homomorphism,
then � is an unitary homomorphism.

Corollary 1.3.9 If (R;M; �; �; �) ; (R;M 0; �0; �; �) 2 
 and f : (M;+)! (M 0;+)

is a group homomorphism such that:
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1. f (� (r) � x) = � (r) � f (x) ; 8 r 2 R; 8x 2M ;

2. f (� (r) � x) = � (r) � f (x) ; 8 r 2 R; 8x 2M ;

then there exists an unique ring homomorphism f : R n�� M ! R n�� M 0 which
extend f; i.e., the diagram

M
f - M 0

Rn��M

�M

?
f - Rn��M 0

�M0

?

is commutative and f
��
R
= idR :

Corollary 1.3.10 If (R;M; �; �; �) ; (R0;M; �0; �0; �0) 2 
 and ' : R! R0 is a ring

homomorphism such that:

1. � (r) � x = �0 (' (r)) � x; 8 r 2 R; 8x 2M ;

2. � (r) � x = �0 (' (r)) � x; 8 r 2 R; 8x 2M ;

then there exists an unique ring homomorphism ' : R n�� M ! R0 n�
0

�0 M which

extend '; i.e., the diagram

R
' - R0

Rn��M

iR

?
'- R0 n�

0

�0 M

iR0

?

is commutative and f
��
M
= idM :

Corollary 1.3.11 If (R;M; �; �; �) ; (R0;M 0; �0; �0; �0) 2 
; ' : R ! R0 is a ring

homomorphism and f :M !M 0 is a group homomorphism such that:

1. f (� (r) � x) = �0 (' (r)) � f (x) ; 8 r 2 R; 8x 2M ;

2. f (� (r) � x) = �0 (' (r)) � f (x) ; 8 r 2 R; 8x 2M ;
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then there exists an unique ring homomorphism � : R n�� M ! R0 n�
0

�0 M
0; which

extend ' and f; i.e.,

R
iR- Rn��M ��

M M

R0

'

?
iR0- R0 n�

0

�0 M
0

�

?
�
�
M0

M 0

f

?

� � iR = iR0 � ' and � � �M = �M0 � f:

Now, we consider the category C de�ned by:

1. ObC = 
;

2. If (R;M; �; �; �) ; (R0;M 0; �0; �0; �0) 2 
; thenHomC ((R;M; �; �; �) ; (R
0;M 0; �0; �0; �0))

is the set of all pairs ('; f) ; where ' : R ! R0 is a ring homomorphism and

f :M !M 0 is a group homomorphism which veri�es the conditions of Corol-

lary 1:3:11.

3. If

('; f) 2 HomC ((R;M; �; �; �) ; (R
0;M 0; �0; �0; �0))

('0; f 0) 2 HomC ((R
0;M 0; �0; �0; �0) ; (R00;M 00; �00; �00; �00)) ;

then, we de�ne ('0; f 0) � ('; f) = ('0 � '; f 0 � f).

We can consider now, the covariant functor F : C! Rng de�ned by:

(R;M; �; �; �) - F(R;M; �; �; �) = Rn��M

(R0; G0; �0; �0; �0)

(';f)

?
- F(R0;M 0; �0; �0; �0) = R0 n�

0

�0 M
0

F(';f)=�

?

1.3.4 Norm extensions

De�nition 1.3.12 The function k�k : A ! R+ is called a norm on the Abelian

group (A;+) ; if:

1. kak = 0 if and only if a = 0;

2. ka� bk � kak+ kbk ; 8 a; b 2 A;
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If ka+ bk � max (kak ; kbk) ; for all a; b 2 A; the norm is called non-Archimedean.

De�nition 1.3.13 The function k�k : R ! R+ is called a pseudo-norm (norm) on

the ring R; if:

1. kak = 0 if and only if a = 0;

2. ka� bk � kak+ kbk ; 8 a; b 2 R;

3. ka � bk � kak � kbk (ka � bk = kak � kbk) ; 8 a; b 2 R:

4. k1k = 1 (if R is with identity):

De�nition 1.3.14 Let R be a pseudo-normed (normed) ring with identity and M

be a left R-module. The function k�k :M ! R+ is called a pseudo-norm (norm) on

M; if:

1. kxk = 0 if and only if x = 0;

2. kx� yk � kxk+ kyk ; 8x; y 2M ;

3. ka � xk � kak � kxk (ka � xk = kak � kxk) ; 8 a 2 R; 8x 2M:

We consider now (R;M; �; �; �) 2 
1; such thatM is a pseudo-normed R-module

and we assume that

k� (r)k � krk and k� (r)k � krk ;

for all r 2 R:
For each natural numbers k; we de�ne the applications k�kk : R n��M ! R+ as

follows:

k(a; x)k0 = max (kak ; kxk)
k(a; x)k1 = kak+ kxk

k(a; x)kk =
k

q
kakk + kxkk; if k � 2:

Theorem 1.3.15 [37] k�k1 is a pseudo-norm on the ring Rn��M and if the pseudo-

norm of M is non-Archimedean, then k�k0 and k�kk ( for k > 1) are pseudo-norms

on the ring Rn��M: Moreover, the pseudo-norms k�kk extends the pseudo-norms of
R and M; for all k.



Chapter 2

Dorroh extensions

Throughout this chapter, by a ring we mean an associative ring.

2.1 Dorroh extensions

To simplify the presentation, we give the following de�nition:

De�nition 2.1.1 A pair (R;M) of (associative) rings; is called a Dorroh-pair if
M is also an (R;R)-bimodule and for all a 2 R and x; y 2 M; are satis�ed the
following compatibility conditions:

(ax) y = a (xy) ; (xy) a = x (ya) ; (xa) y = x (ay) :

We denote further with D, the class of all Dorroh-pairs.
If (R;M) 2 D; on the (Abelian groups) direct sum R �M; we introduce the

multiplication

(a; x) � (b; y) = (ab; xb+ ay + xy) :

(R�M;+; �) is a ring, it is denoted by R on M and it is called the Dorroh ex-
tension. Moreover, R on M is an (R;R)-bimodule under the scalar multiplications

de�ned by

� (a; x) = (�a; �x) ; (a; x)� = (a�; x�) ;

and (R;R onM) is also a Dorroh-pair.
If R has the unit 1; then (1; 0) is an unit of the ring R onM:

Remark 2.1.2 Dorroh �rst used this construction (see [28]), with R = Z, as a
means of embedding a ring without identity into a ring with identity.

18
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Remark 2.1.3 If M is a zero ring, the Dorroh extension R on M coincides with

the trivial extension RnM:

Example 2.1.4 If R is a ring, then (R;R) ; (R;Mn (R)) 2 D:

Since the applications

iR : R ,! R onM; a 7! (a; 0)

i
M

: M ,! R onM; x 7! (0; x)

are injective and both ring homomorphisms and (R;R) linear maps, we can identify

further the element a 2 R with (a; 0) 2 R on M and x 2 M with (0; x) 2 R on M:
The application

�R : R onM ! R; (a; x) 7! a

is a surjective ring homomorphism, which is also (R;R) linear.

Consequently, R is a subring of R on M and M is an ideal of the ring R on M;
with (R onM) =M ' R:

De�nition 2.1.5 Let (R;M) and (R0;M 0) two Dorroh-pairs. By a D-homomorphism
of (R;M) to (R0;M 0) we mean a pair ('; f) ; where ' : R ! R0 and f : M ! M 0

are ring homomorphisms for which, for all � 2 R and x 2M we have that

f (� � x) = ' (�) � f (x) and f (x � �) = f (x) � ' (�) :

Theorem 2.1.6 [35] If (R;M) is a Dorroh-pair, then for any ring � and any D-
homomorphism ('; f) : (R;M)! (�;�) ; there exists an unique ring homomorphism

' on f : R onM ! � such that

R
iR- R onM �iM M

�

'onf
? f
�

' -

(' on f) � i
M
= f and (' on f) � iR = ':

Remark 2.1.7 1: ' on f is injective if and only if ' and f are injective and Im'\
Im f = f0g :
2: ' on f is surjective if and only if Im'+ Im f = �:
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Corollary 2.1.8 [35] If (R;M) and (R0;M 0) are two Dorroh-pairs, and ('; f) :
(R;M) ! (R0;M 0) is a D-homomorphism, there exists an unique ring homomor-
phism ' on f : R onM ! � such that

R
iR - R onM � iM

M

R0

'

?
iR0- R0 onM 0

'onf

?
�iM0�
iM
0�f

i
R 0 �'

-

M 0

f

?

(' on f) � iR = iR0 � ' and (' on f) � iM = iM 0 � f:

Remark 2.1.9 If (R;M) is a Dorroh-pair, the sequences

0

R
?

0 - M
iM- R onM

iR

?
�R - R -

idR

-
0

(as Abelian groups sequences) are exacts and �R � iR = idR : Moreover, all homo-
morphisms are ring homomorphisms, iR and �R are unitary (if R is with identity)

but iM is not unitary (if M is with identity):

Theorem 2.1.10 Let T a ring with identity, M an ideal of T and R a subring of

T: If R \M = f0g and T = R +M; then the rings T and R onM are isomorphic.

Theorem 2.1.11 Let M a ring, R and T two rings with identity, � : M ! T a

ring homomorphism and � : T ! R an unitary ring homomorphism. If the sequence

0 - M
� - T

� - R - 0

(as Abelian groups sequence) is exact and s : R ! T is an unitary ring homomor-

phism such that � � s = idR; then:

(i) M is a (R;R)�bimodule with the scalar multiplications de�ned by:

a � x : = ��10 (s (a) � �0 (x))
x � a : = ��10 (�0 (x) � s (a))

(a 2 R; x 2 M; and �0 : M ! Im� is the isomorphism induced by the

injective homomorphism �) and (R;M) is a Dorroh-pair;
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(ii) the rings T and R onM are isomorphic.

2.2 Categorial aspects

We consider now, the category D whose objects are the class D of the Dorroh-pairs
and the homomorphisms between two objects are the Dorroh-pairs homomorphisms,

respectively, the category Rng of the associative rings.

By Corollary 2.1.8, we can consider the covariant functor D : D! Rng; de�ned

as follows: if (R;M) 2 D; then D (R;M) = R on M; and if ('; f) : (R;M) !
(R0;M 0) is a D-homomorphism, then D ('; f) = ' on f:
We also consider the functor B : Rng ! D; de�ned as follows: if A is a ring,

then B (A) = (A;A) and if h : A! B is a ring homomorphism, B (h) = (h; h) :

Theorem 2.2.1 [35] The functor D is left adjoint of B:

Proposition 2.2.2 [35] We consider f(Ri;Mi) : i 2 Ig a family of Dorroh-pairs
and the direct products

Q
i2I
Ri and

Q
i2I
Mi (with the canonical projections pi and �i;

respectively, the canonical embeddings qi and �i): Then
�Q
i2I
Ri;
Q
i2I
Mi

�
is also a

Dorroh-pair, for all i 2 I; (pi; �i) and (qi; �i) are D-homomorphisms and Y
i2I
Ri

!
on

 Y
i2I
Mi

!
�=
Y
i2I
(Ri onMi) :

Proposition 2.2.3 [35] Let I a directed set and
n
(Ri;Mi)i2I ;

�
'ij; fij

�
i;j2I

o
an

inverse system of Dorroh-pairs. Then
n
(Ri onMi)i2I ;

�
'ij on fij

�
i;j2I

o
is an inverse

system of rings and

lim
 �
(Ri onMi) �=

�
lim
 �
Ri

�
on
�
lim
 �
Mi

�
:

2.3 The group of units of the ring R onM

Let (R;M) a Dorroh-pair, where R is a ring with identity and we consider the

Dorroh extension R onM:
In this section we will describe the group of units of the ring R onM: Firstly, we

observe that, if (a; x) 2 U (R onM) ; then a 2 U (R) :
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The set of all elements of M forms a monoid under the circle composition onM;

x � y = x+ y + xy; 0 being the neutral element. The group of units of this monoid
we will denoted by M�:

Remark 2.3.1 It is easy to see that the function � : U (R) ! AutM�; a 7�! �a

where,

�a :M
� !M�; x 7! axa�1:

is a group homomorphism.

Theorem 2.3.2 [35] The group of units U (R onM) of the Dorroh extension R on
M is isomorphic with the semidirect product U (R)�� M� of the groups U (R) and
M�:

Remark 2.3.3 If M is a ring with identity, the correspondence x 7! x � 1 estab-
lishes an isomorphism between the groups U (M) and M�; and therefore the group

U (R onM) is isomorphic with a semidirect product of the groups U (R) and U (M) :



Part II

Algebraic structures on the set of
fuzzy numbers
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Chapter 3

Fuzzy numbers. Generalities

3.1 The de�nition of a fuzzy number

De�nition 3.1.1 [5] A fuzzy number is a function A : R ! [0; 1] which satis�es

the following properties:

1. A is normal (i.e., there exists x0 2 R, such that A (x0) = 1);

2. A is convex (i.e., A (�x+ (1� �) y) � min fA (x) ; A (y)g ; for all x; y 2 R
and � 2 [0; 1]);

3. A is upper semicontinuous on R (i.e., for all x0 2 R and for all " > 0 there
exists a neighborhood V0 of x0 such that A (x)� A (x0) � "; for all x 2 V0);

4. A has compact support (i.e., the closure of the set fx 2 R : A (x) > 0g is a
compact interval of R):

Denote the set of fuzzy numbers by F.

As usual, if A : R! [0; 1] is a fuzzy number, then

suppA = fx 2 R : A (x) > 0g

is called the support of A; respectively,

coreA = fx 2 R : A (x) = 1g

is called the core of A:

Remark 3.1.2 By De�nition 3.1.1, suppA and coreA are compact intervals.

24
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De�nition 3.1.3 [5] In the case that coreA is an one point set, we say that A is
unimodal, respectively, if coreA is a nontrivial compact interval, we say that the

fuzzy number A is �at.

Remark 3.1.4 [5] By De�nition 3.1.1, we conclude that the function A : R! [0; 1]

is a fuzzy number if and only if there exists �1; a1; a2; �2 2 R; with �1 � a1 � a2 � �2
such that:

1. the restriction A1 = Aj[�1;a1] : [�1; a1] ! [0; 1] (called the left side of A) is

upper semicontinuous and increasing function;

2. the restriction A2 = Aj[a2;�2] : [a2; �2] ! [0; 1] (called the right side of A) is

upper semicontinuous and decreasing function;

3. A (x) = 1; for all x 2 [a1; a2] ;

4. A (x) = 0; if x =2 [�1; �2] :

With these notations, suppA = [�1; �2] and coreA = [a1; a2] :

3.2 Representations of fuzzy numbers

3.2.1 The LU representation of a fuzzy number

If A : R! [0; 1] is a fuzzy number, the t�level sets [A]t of A; de�ned by

[A]t =

8<: fx 2 R : A (x) > 0g; if t = 0

fx 2 R : A (x) � tg ; if 0 < t � 1

are compact intervals for each t 2 [0; 1] :

Remark 3.2.1 ([45],[5]) If [A]t =
�
x�A (t) ; x

+
A (t)

�
; for each t 2 [0; 1] ; then the

functions x�A; x
+
A : [0; 1]! R (de�ning the endpoints of the t�level sets) satis�es the

following properties:

1. x�A and x
+
A are bounded;

2. x�A and x
+
A are left-continuous in (0; 1] and continuous at 0;

3. x�A is increasing and x
+
A is decreasing;
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4. x�A (t) � x+A (t) ; for all t 2 [0; 1] :

Moreover, Goetschel and Woxmann proves that, a fuzzy number A is completely

determined by a pair xA =
�
x�A; x

+
A

�
of functions x�A; x

+
A : [0; 1] ! R satisfying the

above conditions.

This representation of a fuzzy number as a pair of functions that satisfy these con-

ditions, is called the LU representation.

3.2.2 The CE-representation of a fuzzy number

If the fuzzy number A : R ! [0; 1] has the t�level sets [A]t =
�
x�A (t) ; x

+
A (t)

�
; the

functions ��A; �
+
A : [0; 1] ! R+ (where R+ = [0;+1)), called the left, respectively,

the right deviation of the fuzzy number A; de�ned by(
��A (t) = a1 � x�A (t)
�+A (t) = x

+
A (t)� a2

; for each t 2 [0; 1]

are bounded, decreasing, left-continuous in (0; 1] ; continuous at 0 and ��A (1) =

�+A (1) = 0:

In consequence, a fuzzy number A 2 F can be also represented as a system

A =
��
a1; �

�
A

�
;
�
a2; �

+
A

��
where

1. a1; a2 2 R; with a1 � a2;

2. ��A; �
+
A : [0; 1]! [0;+1) are two bounded, decreasing, left-continuous in (0; 1]

and continuous at 0 functions, with the property that ��A (1) = �
+
A (1) = 0.

Pointwise, we can represent the fuzzy numberA; byA =
��
a1; �

�
A (t)

�
;
�
a2; �

+
A (t)

��
t2[0;1]
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Remark 3.2.2 [36] If 
 is the set of all functions f of [0; 1] in R+ which are

bounded, decreasing, left-continuous in (0; 1] and continuous at 0; with the property

that f (1) = 0; then for every fuzzy number A =
��
a1; �

�
A

�
;
�
a2; �

+
A

��
2 F; the pairs�

a1; �
�
A

�
and

�
a2; �

+
A

�
are elements of the Cartesian product R � 
; and so, we can

identify the set F of all fuzzy numbers with a subset of (R� 
)2 i.e.,

F =
�
A =

��
a1; �

�
A

�
;
�
a2; �

+
A

��
:
�
a1; �

�
A

�
;
�
a2; �

+
A

�
2 R� 
; a1 � a2

	
:

De�nition 3.2.3 This representation of a fuzzy number is called the CE-representation
(core-ecart representation):

Remark 3.2.4 If � 2 
 is the null function, then every real number (crisp number)
a 2 R can be represented as ((a; �) ; (a; �)) 2 F; respectively, every compact interval
(crisp interval) [a1; a2] � R can be represented as ((a1; �) ; (a2; �)) 2 F:

De�nition 3.2.5 The fuzzy number A =
��
a1; �

�
A

�
;
�
a2; �

+
A

��
2 F is said to be with:

1. positive core (coreA � 0), if a1 � 0;

2. negative core (coreA � 0), if a2 � 0;

3. strictly positive core (coreA > 0), if a1 > 0;

4. strictly negative core (coreA < 0), if a2 < 0:

Notations: F+ = fA 2 F : coreA � 0g
F� = fA 2 F : coreA � 0g
F�+ = fA 2 F : coreA > 0g
F�� = fA 2 F : coreA < 0g

3.2.3 The MCE-representation of a fuzzy number

For a fuzzy number A : R ! [0; 1] having the t�level sets [A]t =
�
x�A (t) ; x

+
A (t)

�
;

the following functions ��A;�
+
A;�A : [0; 1]! R+ (where R+ = [0;+1)), de�ned by(

��A (t) = a� x�A (t)
�+A (t) = x

+
A (t)� a

; for each t 2 [0; 1]

respectively,

�A = x
+
A � x�A = ��A +�+A
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where

a =
1

2

�
x�A (1) + x

+
A (1)

�
is the middle point of the coreA; are bounded, decreasing, left-continuous on (0; 1]

and continuous in 0 and ��A (1) = �
+
A (1) :

De�nition 3.2.6 We call ��A;�
+
A by the left and the right deviation, relatively to

the middle point of the core of A; and �A by the width of the fuzzy number A:

In consequence, a fuzzy number A 2 F can be also represented as a system

A =
�
a; ��A;�

+
A

�
where a 2 R; and ��A;�+A : [0; 1]! [0;+1) are bounded, decreas-

ing, left-continuous on (0; 1] and continuous in 0; functions with the property that

��A (1) = �
+
A (1).

De�nition 3.2.7 [33]We call this representation the middle core ecart-representation
of a fuzzy number (MCE-representation).

Pointwise, we can represent a fuzzy number A; by A =
�
a; ��A (t) ;�

+
A (t)

�
t2[0;1]

Figure 1:

We consider the sets

Fc =
�
A 2 F : x�A; x+A 2 C [0; 1]

	
and

� = f(f1; f2) 2 CDP [0; 1]� CDP [0; 1] : f1 (1) = f2 (1)g

where CDP [0; 1] is the set of all positive valued, continuous and decreasing functions.
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With these notations, we can identify the set Fc with the Cartesian product

R� �:
Obviously, (CDP [0; 1] ;+; �) and (�;+; �) are commutative semi-rings with iden-

tity.

De�nition 3.2.8 [33] If A =
�
a; ��A;�

+
A

�
and B =

�
a; ��B;�

+
B

�
are two fuzzy

numbers, we de�ne the order " 4 " on F by

A 4 B ()

8><>:
a � b
��A (t) � ��B (t) ; 8 t 2 [0; 1]
�+A (t) � �+B (t) ; 8 t 2 [0; 1]

It is obvious that, it is a partial order on the set F of all fuzzy numbers.

3.2.4 The multivalued representation of a fuzzy number

Further, in order to simplify the presentation, we will introduce the following nota-

tions

Pc [0; 1] = f[�; �] : 0 � � � � � 1g
P�c [0; 1] = f[�; �] : 0 � � < � � 1g

for the set of all compact subintervals of [0; 1] ; respectively, for the set of all compact

and nontrivial subintervals of [0; 1] : More generally, we can consider the sets

Pc (I) = f[�; �] � I : � � �g
P�c (I) = f[�; �] � I : � < �g

of all compact subintervals of a real interval I:We will identify the "interval" [�; �] 2
Pc (I) with � 2 I:
We also consider , the functions

L : Pc (R)! R; [�; �] 7! �

U : Pc (R)! R; [�; �] 7! �

which gives the lower and upper endpoints of a compact interval.

Also, if f : I ! R is a function, where I � R is an interval, denote by D(f) the
set of all discontinuity points of the function f:
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Remark 3.2.9 It is known that, if f : I ! R is a monotone function, then all the
points of discontinuity of f are either removable or jump discontinuities and hence,

of the �rst kind (see, [83]). Moreover, by Froda�s theorem (see, [41]), the set D(f) of

all discontinuities of the function f is at most countable. In the case that D(f) is a

�nite set, obviously, the elements of the set D(f) are isolated points of R; but, when
the set D(f) is an in�nite set, the elements of D(f) are not necessarily isolated.

Remark 3.2.10 Let f : [a; b] ! [0; 1] be an upper semicontinuous and monotone

function. If the set D(f) ; consists just of isolated points and the set fx 2 [a; b] :
f (x) = 1g; has only one element; we can consider the multivalued function bf :
[a; b]! Pc [0; 1] ; de�ned as follows:

bf (x) = ( [f (x� 0) ; f (x)] ; if a < x � b
[0; f (a)] ; if x = a

if f is increasing, respectively,

bf (x) = ( [f (x+ 0) ; f (x)] ; if a � x < b
[0; f (b)] ; if x = b

if f is decreasing (f (x� 0) and f (x+ 0) denotes the left, respectively the right limit
of the function f in x).

Proposition 3.2.11 The multivalued function bf introduced in Remark 3.2.10 has
the following properties:

1. bf (x) = f (x) ; for all x 2 (a; b)rD(f) ;
2.
n
x 2 [a; b] : bf (x) 2 P�c [0; 1]o is a discrete set;

3. �
� bf� = n(x; y) 2 [a; b]� [0; 1] : y 2 bf (x)o is a continuous plane curve;

4. if f is increasing, then (a; 0) ; (b; 1) 2 �
� bf� ; respectively, if f is decreasing,

then (a; 1) ; (b; 0) 2 �
� bf� ;

5. if f is increasing (decreasing) ; then bf is increasing (decreasing) ; that is for all
x1; x2 2 [a; b] with a � x1 < x2 � b we have that

t1 � t2 (t2 � t1) ; whenever t1 2 f (x1) and t2 2 f (x2) ;
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6. the image of bf is [0; 1] ; i.e., Im bf = S
x2[a;b]

bf (x) = [0; 1] :
Remark 3.2.12 We consider now, a fuzzy number A : R ! [0; 1] ; represented as

in Remark 3.1.4. If A has only isolated discontinuities, then D(A1) and D(A2) are

discrete sets. Therefore, we can construct the multivalued functions

bA1 : [�1; a1]! Pc [0; 1] and bA2 : [a2; �2]! Pc [0; 1]

by bA1 (x) = ( [A1 (x� 0) ; A1 (x)] ; if �1 < x � a1
[0; A1 (�1)] ; if x = �1

and bA2 (x) = ( [A2 (x+ 0) ; A2 (x)] ; if a2 � x < �2
[0; A2 (�2)] ; if x = �2

:

Proposition 3.2.13 If A : R ! [0; 1] is a fuzzy number, then the multivalued

functions bA1 : [�1; a1]! Pc [0; 1] and bA2 : [a2; �2]! Pc [0; 1] constructed in Remark
3.2.12 have the following properties:

1.
n
x 2 [�1; a1] : bA1 (x) 2 P�c [0; 1]o and nx 2 [a2; �2] : bA2 (x) 2 P�c [0; 1]o are dis-
crete sets;

2. (�1; 0) ; (a1; 1) 2 �
� bA1� and (a2; 1) ; (�2; 0) 2 �� bA2� ;

3. Im bA1 = Im bA2 = [0; 1] ;
4. bA1 is increasing and bA2 is decreasing;
5. �

� bA1� and �� bA2� are continuous plane curve.
Conversely, if �1 � a1 � a2 � �2 and

bA1 : [�1; a1]! Pc [0; 1] and bA2 : [a2; �2]! Pc [0; 1]

are two multivalued functions, which satisfy the above properties (1)� (5), then the
functions

A1 : [�1; a1]! [0; 1] and A2 : [a2; �2]! [0; 1] ;

de�ned by

Ai (x) = U
� bAi (x)� ; i 2 f1; 2g ;

can be considered as a left and right parts of a fuzzy number A:
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Therefore, if A is a fuzzy number with discrete set of discontinuities, A is uniquely

determined by a pair
� bA1; bA2� of multivalued functions (constructed as in Remark

3.2.12):

De�nition 3.2.14 The above representation of a fuzzy number A; as a pair of mul-
tivalued functions, is called the multivalued representation of this fuzzy number:

Remark 3.2.15 If a1 6= a2 or if a1 = a2 = a and A1 (a� 0) = A2 (a+ 0) ; then the
multivalued function

bA : R! Pc [0; 1] ; bA (x) =
8>>><>>>:
bA1 (x) ; if x 2 [�1; a1]

1; if x 2 (a1; a2)bA2 (x) ; if x 2 [a2; �2]
0; otherwise

has the following properties:

1.
n
x 2 R : bA (x) 2 P�c [0; 1]o is a discrete set;

2. there exists x0 2 R, such that 1 2 bA (x0) ;
3. U

� bA (�x+ (1� �) y)� � minnU� bA (x)� ;U� bA (y)�o ; for all x; y 2 R and

� 2 [0; 1] ;

4. for all x0 2 R and for all " > 0; there exists a neighborhood V0 of x0; such that
U
� bA (x)�� U� bA (x0)� � "; for all x 2 V0;

5. the closure of the set
n
x 2 R : 0 =2 bA (x)o ; is a compact interval of R;

Conversely, if bA : R ! Pc [0; 1] is a multivalued function, which satisfy the above
properties (1)� (5), then the function A : R! [0; 1] ; de�ned by

A (x) =

8<:
bA (x) ; if bA (x) 2 [0; 1]

U
� bA (x)� ; if bA (x) 2 P�c [0; 1]

is a fuzzy number and D(A) =
n
x 2 R : bA (x) 2 P�c [0; 1]o : �
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Example 3.2.16 In Figure 2, in the left side is given a fuzzy number A and in the
right side is its multivalued representation.

Figura 2.

We observe that D(A) = f4; 7; 16g and

bA1 (4) = [0:3; 0:4] ; bA1 (7) = [0:7; 0:8] ; bA2 (16) = [0; 0:2]



Chapter 4

Dorroh-type products on the set
of fuzzy numbers

4.1 Algebraic preliminaries

De�nition 4.1.1 A (commutative) semiring is an algebraic structure (S;+; �; 0)
such that:

1. (S;+; 0) is a commutative monoid;

2. (S; �) is a (commutative) semigroup;

3. the distributivity law is ful�lled;

4. 0 � a = 0 = a � 0; for all a 2 S.

If (S; �; 1) is a monoid, the semiring is said to be with identity.

De�nition 4.1.2 Let S be a commutative semiring with identity. A (left) S-semimodule
is a commutative monoid (M;+; 0) with an external operation with coe¢ cients in

S, (a; x) 7! a �x; called scalar multiplication, such that the following conditions hold
for all a; b 2 S and x; y 2M :

1. (ab) � x = a � (b � x);

2. a � (x+ y) = (a � x) + (a � y);

3. (a+ b) � x = (a � x) + (b � x);

34
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4. 0S � x = 0M = a � 0M ;

5. 1 � x = x;

Remark 4.1.3 If in the de�nition of the trivial extension and the Dorroh - exten-
sion, we replace all rings with semirings and the module structure, with a semimodule

structure, then we obtain that RnM and R onM are commutative semirings.

4.2 The Dorroh-product

Recall that 
; denote the set of all functions f : [0; 1] ! R+; which are bounded,
decreasing, left-continuous in (0; 1] and continuous at 0; with the property that

f (1) = 0 and we consider the subset 
0 of 
; which contain all the continuous

functions of 
.

Obviously, the set R+ of the positive real numbers together with the usual ad-
dition and multiplication is a commutative semiring with identity and 
 is a R+-
semimodule together with the pointwise addition (f; g) 7�! f + g and the pointwise

scalar multiplication (a; f) 7�! a�f . We consider now, a semiring structure (
;+; �) ;
such that

(a � f) � g = a � (f � g); for all a 2 R+ and f; g 2 


and the Dorroh extension (R+ on 
;+; �) :
If A =

��
a1; �

�
A

�
;
�
a2; �

+
A

��
2 F and B =

��
b1; �

�
B

�
;
�
b2; �

+
B

��
2 F are two fuzzy

numbers, we de�ne their sum by

A+B =
��
a1 + b1; �

�
A + �

�
B

�
;
�
a2 + b2; �

+
A + �

+
B

��
2 F

respectively, if A;B 2 F+; we de�ne their product by

A~B =
� �
a1; �

�
A

�
�
�
b1; �

�
B

�
;
�
a2; �

+
A

�
�
�
b2; �

+
B

� �
=
� �
a1b1; �

�
A~B

�
;
�
a2b2; �

+
A~B

� �
;

where, (
��A~B = a1�

�
B + b1�

�
A + �

�
A � ��B

�+A~B = a2�
+
B + b2�

+
A + �

+
A � �+B

:

It is obvious that, if A;B 2 F+; then A+B;A~B 2 F+:

Theorem 4.2.1 [36] (F+;+;~) is a commutative semiring with identity.
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If we consider that the product of the semiring (
;+; �) is the usual pointwise
product of 
; i.e.

(f � g) (t) = (f � g) (t) = f (t) � g (t) ; for all t 2 [0; 1]

for all f; g 2 
; we denote the above de�ned multiplication of F+ by "�". Therefore,
in this case, A�B =

��
a1b1; �

�
A�B

�
;
�
a2b2; �

+
A�B

��
; where(

��A�B (t) = a1�
�
B (t) + b1�

�
A (t) + �

�
A (t) � ��B (t)

�+A�B (t) = a2�
+
B (t) + b2�

+
A (t) + �

+
A (t) � �+B (t)

; for all t 2 [0; 1] :

De�nition 4.2.2 [36] The multiplication "� " of F+ (de�ned above), is called the
Dorroh-product.

Remark 4.2.3 In [3], A.I. Ban and B. Bede have introduced and studied the main
properties of the cross product of fuzzy numbers. If A =

�
x�A (t) ; x

+
A (t)

�
t2[0;1] and

B =
�
x�B (t) ; x

+
B (t)

�
t2[0;1] are two fuzzy numbers with positive core, the cross product

is de�ned by

A �B =
�
x�A�B (t) ; x

+
A�B (t)

�
t2[0;1]

where, (
x�A�B (t) = x

�
A (t) � x�B (1) + x�A (1) � x�B (t)� x�A (1) � x�B (1)

x+A�B (t) = x
+
A (t) � x+B (1) + x+A (1) � x+B (t)� x+A (1) � x+B (1)

for each t 2 [0; 1] :
If we consider now, that A =

��
a1; �

�
A

�
;
�
a2; �

+
A

��
and B =

��
b1; �

�
B

�
;
�
b2; �

+
B

��
;

then

A �B =
��
a1 � b1; ��A�B

�
;
�
a2 � b2; �+A�B

��
where, (

��A�B (t) = a1 � b1 � x�A�B (t) = ��A (t) � b1 + a1 � ��B (t)
�+A�B (t) = x

+
A�B (t)� a2 � b2 = �+A (t) � b2 + a2 � �+B (t)

and so, the cross product de�ned on the set of fuzzy numbers is a particular case of

the product introduced above on F+; which is obtained for the null product of 
:

IfA =
��
a1; �

�
A

�
;
�
a2; �

+
A

��
2 F; de�ne its opposite�A; by�A =

��
�a2; �+A

�
;
�
�a1; ��A

��
:
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Proposition 4.2.4 [36] The Dorroh-product de�ned on F+ can be extended to F+[
F�; as follows:

A�B =

8><>:
� ((�A)�B) ; if A 2 F� and B 2 F+
� (A� (�B)) ; if A 2 F+ and B 2 F�
(�A)� (�B) ; if A 2 F� and B 2 F�

and this has the following properties:

1: A�B = B � A; for all A;B 2 F+ [ F�;

2: (A�B)� C = A� (B � C) ; for all A;B;C 2 F+ [ F�;

3: A� (B + C) = A�B + A� C; if (B;C 2 F+) or (B;C 2 F�) or (A 2 R) ;

Example 4.2.5 [36] If A;B 2 F+ where

A = [t+ 2; 5� t]t2[0;1] = ((3; 1� t) ; (4; 1� t))t2[0;1]
B = [2t+ 3; 7� t]t2[0;1] = ((5; 2 (1� t)) ; (6; 1� t))t2[0;1]

then their products are:

1. the usual product:

A�B = [(t+ 2) (2t+ 3) ; (5� t) (7� t)] =
��
15;�2t2 � 7t+ 9

�
;
�
24; t2 � 12t+ 11

��
2. the cross product:

A �B = [11t+ 4; 34� 10t] = ((15; 11 (1� t)) ; (24; 10 (1� t)))

3. the Dorroh-product:

A�B =
�
�2t2 + 15t+ 2; t2 � 12t+ 35

�
=
��
15; 2t2 � 15t+ 13

�
;
�
24; t2 � 12t+ 11

��
These are represented in Figure 4:

Figure 4:
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4.3 A congruence relation on the set of fuzzy num-

bers

If A 2 F is a fuzzy number, then its left and right parts are strictly monotone (i.e.,
A1 is strictly increasing and A2 is strictly decreasing) if and only if the functions �

�
A

and �+A are continuous.

We consider now F0; the set of all fuzzy numbers with discrete set of discontinu-

ities and with strictly monotone left and right parts. If 
0 is the set of continuous

and decreasing functions f of [0; 1] in R+ with the property that f (1) = 0; then

F0 =
�
A =

��
a1; �

�
A

�
;
�
a2; �

+
A

��
2 F : ��A; �+A 2 
0

	
:

Obviously, (F0;+) is a submonoid of the monoid (F;+) and (F0 \ F+;+;�) is a
subsemiring of the semiring (F+;+;�) :

Remark 4.3.1 If f 2 
0 and f�1 (x) is the inverse image of an element x 2 R+
under the function f (i.e.; f�1 (x) = ft 2 [0; 1] : f (t) = xg), then f�1 (x) is either a
set consisting of a single element, or is the empty set, or it is in P�c [0; 1]. Moreover,
for each x; x0 2 R+ with x 6= x0; we have that f�1 (x) \ f�1 (x0) = ;:

If f 2 
0; we de�ne

V (f) =
[
x�0

�
f�1 (x) : f�1 (x) 2 P�c [0; 1]

	
;

respectively, if A =
��
a1; �

�
A

�
;
�
a2; �

+
A

��
2 F0; we de�ne V1 (A) = V

�
��A
�
and

V2 (A) = V
�
�+A
�
: Equivalently, if

� bA1; bA2� is the multivalued representation of
the fuzzy number A 2 F, where bA1 : [�1; a1]! Pc [0; 1] and bA2 : [a2; �2]! Pc [0; 1] ;
then

V1 (A) =
[

�1�x�a1

n bA1 (x) : bA1 (x) 2 P�c [0; 1]o
V2 (A) =

[
a2�x��2

n bA2 (x) : bA2 (x) 2 P�c [0; 1]o :
and so, V1 (A) and V2 (A) are the left, respectively, the right vertical parts of the

multivalued representation of A: This vertical parts appears only in the discontinuity

points of A; and so, the fuzzy number A is continuous if and only if V1 (A) = V2 (A) =

;:
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Proposition 4.3.2 [36] If A =
��
a1; �

�
A

�
;
�
a2; �

+
A

��
2 F0 and B =

��
b1; �

�
B

�
;
�
b2; �

+
B

��
2

F0 are two fuzzy numbers, then the relation

A s B () V1 (A) = V1 (B) and V2 (A) = V2 (B) ;

is an equivalence relation on F0:

Remark 4.3.3 An equivalence class [A]s relatively to the relation " s " consists of
all fuzzy numbers with the same (left and right) "vertical" parts.

Lemma 4.3.4 [36] Let f1; f2 2 
0 and let x 2 R+: Then (f1 + f2)�1 (x) 2 P�c [0; 1] ;
if and only if there exists x1; x2 2 R+; uniquely determined, such that x = x1 + x2
and f�11 (x1) \ f�12 (x2) 2 P�c [0; 1] :
Moreover, in this case, we have that

(f1 + f2)
�1 (x) = f�11 (x1) \ f�12 (x2) :

Lemma 4.3.5 [36] Let f1; f2 2 
0 and let y 2 R+: Then (f1 � f2)�1 (y) 2 P�c [0; 1] ;
if and only if there exists y1; y2 2 R+; uniquely determined, such that y = y1 � y2 and
f�11 (y1) \ f�12 (y2) 2 P�c [0; 1] :
Moreover, in this case, we have that

(f1 � f2)�1 (y) = f�11 (y1) \ f�12 (y2) :

LetC = [fCi : i 2 Ig andC 0 = [
�
C 0j : j 2 J

	
where fCi : i 2 Ig and

�
C 0j : j 2 J

	
are two families of pairwise disjoint elements of P�c [0; 1] ( i.e., Ci1 \ Ci2 = ; and
C 0j1 \ C 0j2 = ;; whenever i1 6= i2 and j1 6= j2 ): We de�ne C u C 0 by

C u C 0 = [
�
Ci \ C 0j : i 2 I; j 2 J; Ci \ C 0j 2 P�c [0; 1]

	
:

Proposition 4.3.6 [36] If A;B 2 F0; then

Vi (A+B) = Vi (A) u Vi (B) ; for each i 2 f1; 2g

and if A and B are with strictly positive core, then

Vi (A�B) = Vi (A) u Vi (B) ; for each i 2 f1; 2g :

Theorem 4.3.7 [36] The relation " s " is a congruence of the monoid (F0;+)

and the restriction of the relation " s " to F0 \ F�+ is a congruence of the monoid�
F0 \ F�+;�

�
:
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Remark 4.3.8 The subset Fc of the set F0 which contain the continuous fuzzy num-
bers, respectively, the set I of crisp numbers together with crisp intervals, are two

important equivalence classes of the factor set F0=s: Their importance lies in:

1: I is the neutral element of the factor monoids (F0=s;+) and
��
F0 \ F�+

�
=s;�

�
;

2: Fc is an ideal of the monoid (F0;+) ; respectively, Fc \ F�+ is an ideal of the
monoid

�
F0 \ F�+;�

�
; that is, if A 2 Fc and B 2 F0; then A + B 2 Fc;

respectively, if A and B are with strictly positive core, then A�B 2 Fc:

Proposition 4.3.9 [36] If A 2 Fc and B 2 F0; then A+B 2 Fc; respectively, if A
and B are with strictly positive core, then A�B 2 Fc:



Chapter 5

Completely distributive products
on the set of fuzzy numbers

In this chapter, consider the set

Fc =
�
A 2 F : x�A; x+A 2 C [0; 1]

	
:

By using the MCE-representation, the set Fc is identi�ed with the Cartesian product

R� �; where

� = f(f1; f2) 2 CDP [0; 1]� CDP [0; 1] : f1 (1) = f2 (1)g :

5.1 Semiring structures on the set Fc

We consider now, two fuzzy numbers A =
�
a; ��A;�

+
A

�
and B =

�
b; ��B;�

+
B

�
and we

de�ne the following operations:

A+B =
�
a+ b; ��A +�

�
B; �

+
A +�

+
B

�
A�B =

�
a � b; ��A ���B; �+A ��+B

�
A�B =

�
a � b; ��A ���B +�+A ��+B; ��A ��+B +�+A ���B

�
Since ��A;�

+
A;�

�
B and �

+
B are positive valued decreasing functions, then so are

the functions ��A�B;�
+
A�B; �

�
A�B and �+A�B. Also, since ��A (1) = �+A (1) and

��B (1) = �
+
B (1) ; then �

�
A�B (1) = �

+
A�B (1) and �

�
A�B (1) = �

+
A�B (1) : Therefore

the above introduced products are well de�ned.

Theorem 5.1.1 [33] (Fc;+;�) is a commutative semiring with identity and (Fc;+;�)
is a commutative semiring.

41
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Remark 5.1.2 [33] If A;B 2 Fc; then �A+B = �A +�B and �A�B = �A ��B:

Remark 5.1.3 If a 2 R; the crisp number ea has the ecart-representation (a; �; �) :
Since ea + eb = ]a+ b and ea � eb = ea � eb = ]a+ b; for each a; b 2 R; we conclude that
the �eld of real numbers is embedded in both semirings (Fc;+;�) and (Fc;+;�) as
a subsemiring, but the unit of R di¤ers from the unit of the semiring (Fc;+;�).
Also, the group of units of the semiring (Fc;+;�) consist of the non-trivial in-

tervals of the form [a� x; a+ x] = (a;x; x) ; with a 2 R�f0g and x > 0: Obviously,

the inverse of (a;x; x) is
�
1

a
;
1

x
;
1

x

�
=

�
1

a
� 1

x
;
1

a
+
1

x

�
.

Example 5.1.4 If

A = [t+ 2; 7� 2t] = (4; 2� t; 3� 2t)
B = [3t+ 3; 9� t] = (7; 4� 3t; 2� t)

are two fuzzy numbers, then

A �B = [(t+ 2) (3t+ 3) ; (7� 2t) (9� t)] =
�
29; � 3t2 � 9t+ 23; 2t2 � 25t+ 34

�
A�B = (28; (2� t) (4� 3t) ; (3� 2t) (2� t)) =

�
�3t2 + 10t+ 20; 2t2 � 7t+ 34

�
A�B =

�
28; (2� t) (4� 3t) + (3� 2t) (2� t) ; (2� t)2 + (3� 2t) (4� 3t)

�
=

�
�5t2 + 17t+ 14; 7t2 � 21t+ 44

�
where A � B is the usual product (based on the Zadeh�s extension principle, de�ned

by A � B =
�
x�A � x�B; x+A � x+B

�
) and A� B and A� B are the two above introduced

products. These are represented in Figure 7:

:

Figure 7:
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Remark 5.1.5 If A =
�
x�A; x

+
A

�
and B =

�
x�B; x

+
B

�
, then

1:

(
x�A+B = x

�
A + x

�
B

x+A+B = x
+
A + x

+
B

;

2:

(
x�A�B = ab��

�
A�B = a � x

�
B + b � x�A � x�A � x�B

x+A�B = ab+�
+
A�B = 2ab� a � x

+
B � b � x+A + x+A � x+B

;

3:

(
x�A�B = ab��

�
A�B = a

�
x�B + x

+
B

�
+ b
�
x�A + x

+
A

�
� x�A � x�B � x+A � x+B � ab

x+A�B = ab+�
+
A�B = a

�
x�B + x

+
B

�
+ b
�
x�A + x

+
A

�
� x�A � x+B � x+A � x�B � ab

:

De�nition 5.1.6 [33] If � 2 R and A 2 Fc; we de�ne the scalar multiplication by

�A =
�
� � a; j�j ���A; j�j ��+A

�
Remark 5.1.7 Since(

x��A = �a� j�j ���A = (�� j�j) a+ j�j � x�A
x+�A = �a+ j�j ��+A = (�� j�j) a+ j�j � x+A

we infer that in the case that � � 0; the above scalar multiplication coincides with
the classic scalar multiplication, i.e.

� �
�
x�A; x

+
A

�
=
�
� � x�A; � � x+A

�
:

Proposition 5.1.8 [33] The scalar multiplication has the following properties:
1: � (A+B) = �A+ �B; for all � 2 R and A;B 2 Fc;
2: � (A�B) = (�A)�B = A� (�B) ; for all � 2 R and A;B 2 Fc;
3: � (A�B) = (�A)�B = A� (�B) ; for all � 2 R and A;B 2 Fc;
4: 1 � A = A; 0 � A = 0;
5: (�+ �)A 4 �A+ �A; for all �; � 2 R and A 2 Fc;
6: (�+ �)A = �A+ �A, � � � � 0:

5.2 The topological structure of the set Fc

For each fuzzy number A =
�
a; ��A;�

+
A

�
2 Fc de�ne hAi by

hAi = sup
t2[0;1]

max
�
��A (t) ;�

+
A (t)

�
Since ��A and �

+
A are positive valued and decreasing functions, it follows that hAi =

max
�
��A (0) ;�

+
A (0)

�
� 0:
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We also de�ne, for each n 2 f1; 2; 3; 4g ; the functions k�kn : Fc ! [0;+1) by:

kAk1 = max (jaj ; hAi)
kAk2 = jaj+ hAi
kAk3 = max (jaj ; 2 hAi)
kAk4 = jaj+ 2 hAi

Proposition 5.2.1 [33] For each A;B 2 Fc and � 2 R; the functions k�kn satisfy
the following properties:

1: kAkn = 0, A = 0 for n 2 f1; 2; 3; 4g ;

2: kA+Bkn � kAkn + kBkn for n 2 f1; 2; 3; 4g ;

3: kA�Bkn � kAkn � kBkn for n 2 f1; 2g ;

4: kA�Bkn � kAkn � kBkn for n 2 f3; 4g ;

5: k�Akn = j�j � kAkn for n 2 f1; 2; 3; 4g ;

Theorem 5.2.2 [33] The function d : Fc � Fc ! [0;+1) ; de�ned by

d (A;B) = ja� bj+ sup
t2[0;1]

max
�����A (t)���B (t)�� ; ���+A (t)��+B (t)���

is a (complete) metric on Fc:

Proposition 5.2.3 [33] The metric d on Fc satis�es the following properties:

1: d (A+ C;B + C) = d (A;B) ;

2: d (A+ C;B +D) � d (A;B) + d (C;D) ;
3: d (A� C;B � C) � kCk1 � d (A;B) � kCk2 � d (A;B) ;
4: d (A� C;B � C) � kCk3 � d (A;B) � kCk4 � d (A;B) ;
5: d (�A; �B) = j�j � d (A;B) ;

for all A;B;C;D 2 Fc and � 2 R:

De�nition 5.2.4 We say that the sequence (An)n�1 � Fc converges to A 2 Fc if
lim
n!1

d (An; A) = 0 and we will use, in this case, the notation lim
n!1

An = A:

Remark 5.2.5 If An =
�
an; �

�
An
;�+An

�
and A =

�
a; ��A;�

+
A

�
; then lim

n!1
An = A; if

and only if 8>><>>:
lim
n!1

an = a

lim
n!1

��An (t) = �
�
A (t) ; for all t 2 [0; 1]

lim
n!1

�+An (t) = �
+
A (t) ; for all t 2 [0; 1]

:
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5.3 Some elementary functions de�ned on Fc

Let us denote by F�c the set�
A =

�
a; ��A;�

+
A

�
2 Fc : a > 0; and ��A (t) ;�+A (t) � 1; 8 t 2 [0; 1]

	
:

Since A;B 2 F�c implies that A� B 2 F�c; it follows that (F�c;�) is a submonoid of
(Fc;�) :
We de�ne the exponential function exp : Fc !F�c; by

A 7�! eA =
�
ea; e�

�
A ; e�

+
A

�
and the logarithmic function ln : F�c ! Fc; by

A 7�! lnA =
�
ln a; ln ���A; ln ��+A

�
where A =

�
a; ��A;�

+
A

�
and " � " denotes the composition of functions:

Proposition 5.3.1 [33] The functions exp and ln, de�ned above establish the iso-
morphism between the monoids (Fc;+) and (F�c; �), and ln = exp�1 :

Remark 5.3.2 [33] If Ak denotes A� :::� A (k� times), then

lim
n!1

�
1 +

A

1!
+
A2

2!
+ :::+

An

n!

�
= eA:

De�nition 5.3.3 [33] If A =
�
a; ��A;�

+
A

�
and B =

�
b; ��B;�

+
B

�
are two fuzzy

numbers such that:

1. ab is de�ned (in R) ;

2.
�
��A (t)

���B(t) and ��+A (t)��+B(t) are de�ned for each t 2 [0; 1] ;
3. the functions

�
��A
���B and ��+A��+B are decreasing;

then we de�ne the B�power of A by AB =
�
ab;
�
��A
���B ; ��+A��+B� ::

Remark 5.3.4 For instance, if A 2 F�c; then AB can be constructed for any B 2 Fc:

Proposition 5.3.5 [33] If A 2 F�c and B 2 Fc ; then:

1: A0 = 1 and A1 = A;
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2: AB+C = AB � AC and AB�C =
�
AB
�C
:

If A =
�
a; ��A;�

+
A

�
2 Fc , we can de�ne, for a positive integer n,

An = A� :::� A| {z }
n�times

=
�
an;
�
��A
�n
;
�
�+A
�n�

;

and,
n
p
A =

�
n
p
a; n

q
��A;

n

q
�+A

�
(where for even n it is supposed that a � 0).

Remark 5.3.6 [33] If for A 2 Fc we have suppA � (0; 1) ; that is
�
x�A (t) ; x

+
A (t)

�
�

(0; 1) ; 8t 2 [0; 1]; then it is easy to see that supp (A� A) � (0; 1) and consequently,
supp (An) � (0; 1) for all n 2 N�: So, for A 2 Fc with suppA � (0; 1) we have

lim
n!1

�
1 + A+ :::+ An

�
= lim

n!1

 
1� an+1
1� a ;

1�
�
��A
�n+1

1���A
;
1�

�
�+A
�n+1

1��+A

!

=

�
1

1� a;
1

1���A
;

1

1��+A

�
not:
=

1

1� A

Similarly, for A 2 Fc with suppA � (0; 1) we obtain

lim
n!1

�
A+

1

2
� A2 + :::+ 1

n
� An

�
= ln

�
1

1� A

�
:

We mention that
1

1� A
is just a notation and it not represent the inverse of 1�A;

respectively 1� A is not a "subtraction".



Chapter 6

Topological group structures on
quotient sets of fuzzy numbers

6.1 Preliminaries

In this chapter we consider only those fuzzy numbers for which the functions x�A and

x+A are continuous and we denote by F; the set of all these fuzzy numbers.

Thus, the set F can be represented as the set of elements of the type A =
�
x�A; x

+
A

�
where x�A; x

+
A 2 C [0; 1] ; x�A is increasing, x+A is decreasing and x�A (t) � x+A (t) ; for

all t 2 [0; 1] :
We also consider the set F+ of all positive fuzzy numbers A 2 F (i.e., x�A (t) > 0;

for t 2 [0; 1]):
We consider the sets:

� C [a; b]� the set of real-valued and continuous functions on [a; b] ;

� C+ [a; b]� the subset of C [a; b] of strictly positive-valued functions

� BV [a; b]� the set of real-valued functions with bounded variation on [a; b] :

� BVC [a; b] = C [a; b] \ BV [a; b] ;

� BVC+ [a; b] = C+ [a; b] \ BV [a; b] :

In the theory of the functions with bounded variation it is well known that:

Theorem 6.1.1 [69] If f; g 2 BV [a; b] and � 2 R; then f�g; �f; f �g 2 BV [a; b] ;
and if

1

g
is bounded, then

f

g
2 BV [a; b] :

47
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Theorem 6.1.2 [69] A function f 2 C [a; b] is with bounded variation on [a; b] if
and only if there exist two increasing functions f1 and f2; such that f = f1 � f2:

Theorem 6.1.3 [53] If [a; b]
f! [c; d]

g! R where f 2 BV [a; b] ; then g�f 2 BV [a; b]
if and only if g satis�es the Lipschitz condition on [c; d].

Proposition 6.1.4 A continuous function f 2 C+ [a; b] is of bounded variation on
[a; b] if and only if there exist two increasing functions �; � 2 C+ [a; b], such that
f =

�

�
:

Remark 6.1.5 If f 2 BVC [a; b] ; then we can choose an increasing function u 2
C [a; b] and a decreasing function v 2 C [a; b] such that f = u+ v

2
and u (t) < v (t) ;

for all t 2 [a; b] : Also, if f 2 BVC+ [a; b] then we can choose an increasing function
u 2 C+ [a; b] and a decreasing function v 2 C+ [a; b] such that f =

p
u � v and

u (t) < v (t) ; for all t 2 [a; b] :

It is known that (BVC [a; b] ;+) and (BVC+ [a; b] ; �) are topological groups with
the topology induced by the distance de�ned by

D(f; g) = sup
t2[a;b]

jf (t)� g (t)j :

Moreover, the correspondence f 7! ef establishes a topological isomorphism

between the topological groups BVC [a; b] and BVC+ [a; b] :

6.2 Monoids with involution - algebraic and topo-

logical overviews

Let (M; �) be a semigroup. An involution in M is a unary operation x 7! x� on M;

such that (x � y)� = y� �x� and x�� = x; for all x; y 2M: An element x 2M is called

Hermitian if and only if x� = x.

We consider now, the class M of all systems (M; �; e;� ) ; where (M; �; e) is a
cancelative and commutative monoid and � is an involution in M: If (M1; �; e1;� )
and (M2; �; e2;? ) are inM, a function f :M1 !M2 is called aM -homomorphism,

if f is a monoid homomorphism and f (x�) = (f (x))? ; for all x 2M1:

Remark 6.2.1 If (G; �) is an Abelian group, then (G; �; 1; ��1) 2M and every group

homomorphism between two Abelian groups is a M-homomorphism.
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Remark 6.2.2 If (M; �; e;� ) 2M, then the set

S (M) = fx 2M : x� = xg

of all Hermitian elements of M; is a submonoid of M and its elements have the

following properties:

1. x 2 S (M), x� 2 S (M) ;

2. x � x� 2 S (M) ; 8 x 2M ;

3. if x; x � y 2 S (M) then y 2 S (M) ;

4. if x; y 2M; then x � y� 2 S (M), x � y� = x� � y:

Proposition 6.2.3 If (M; �; e;� ) 2M; the relation " s� " on M; de�ned by

x s� y () x � y� 2 S (M)

is a congruence relation on (M; �; e;� ) :

We consider now the quotient set

M=s� = cM = f[x] : x 2Mg ;

where

[x] = fy 2M : x � y� = x� � yg

is the equivalence class of x 2M and we consider the induced operation on cM;
[x]� [y] = [x � y]

and the canonical homomorphism p :M ! cM; de�ned by x 7! [x] :

Proposition 6.2.4 If (M; �; e;� ) 2 M; then
�cM;�� is an abelian group, where

[e] = S (M) is the neutral element and the inverse of [x] 2 cM is [x�] 2 cM:
Remark 6.2.5 We consider (M; �; e;� ) 2M: If there exist an Abelian group (G; �)
and a surjective M�homomorphism f : (M; �; e;� )! (G; �; 1; ��1) ; such that

x s� y , f (x) = f (y) (6.1)
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for all x; y 2 M; then (by the �rst isomorphism theorem); the function f : cM ! G;

[x] 7! f (x) is a group isomorphism and

M
f - G

cM
p
? f

-

f � p = f:

Remark 6.2.6 As above, if

ker f = f(x; y) 2M �M : f (x) = f (y)g

is the kernel of f as a function, the condition (6:1) is equivalent with s�= ker f:

Also, if

Ker f = fx 2M : f (x) = 1g

is the kernel of f as a monoid homomorphism, the condition (6:1) is equivalent with

Ker f = S (M), too.

Theorem 6.2.7 [34] If (M; d1) and (G; d2) are metric spaces such that

1. (M; �; e;� ; �d1) is a topological monoid with continuous involution;

2. (G; �; �d2) is a topological Abelian group;

3. f :M ! G is a continuous M - homomorphism,

then
�cM;bd� is a metric space, where bd : cM � cM ! R is de�ned by

bd ([x] ; [y]) = d2 (f (x) ; f (y)) ; for all [x] ; [y] 2 cM:
Moreover, the canonical homomorphism p : M ! cM is continuous and

�cM;�; �bd�
is a topological Abelian group (with the induced topology) which is topologically iso-

morphic with (G; �; �d2).

6.3 Topological group structures on quotient sets

of F

Recall that, if A =
�
x�A; x

+
A

�
2 F and B =

�
x�B; x

+
B

�
2 F; then their (usual) sum is

de�ned by

A+B =
�
x�A + x

�
B; x

+
A + x

+
B

�
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and �A is de�ned by �A =
�
�x+A;�x�A

�
: Also, if A;B 2 F+; then their (usual)

product is de�ned by

A �B =
�
x�A � x�B; x+A � x+B

�
and A�1 =

1

A
is de�ned by

1

A
=

�
1

x+A
;
1

x�A

�
: Denote 0 = [0; 0] and 1 = [1; 1] :

The Hausdor¤ distance d : F � F ! [0;+1) on the set of fuzzy numbers is
de�ned by

d (A;B) = sup
t2[0;1]

���x�A (t)� x�B (t)��+ ��x+A (t)� x+B (t)��� :
Proposition 6.3.1 [34]

�
F;+; 0;�

�
and

�
F+; �; 1;�1

�
are elements of M and they

are topological monoids with continuous involutions, relatively to the distance d:

If S0 = S
�
F;+; 0;�

�
and S1 = S

�
F+; �; 1;�1

�
; then

S0 = fA 2 F : A = �Ag =
�
A 2 F : x�A + x+A = 0

	
S1 =

�
A 2 F+ : A = A�1

	
=
�
A 2 F : x�A � x+A = 1

	
and the induced congruence relations on

�
F;+; 0;�

�
and

�
F+; �; 1;�1

�
are de�ned

by

A s B , A+ (�B) 2 S0 , x�A + x
+
A = x

�
B + x

+
B

if A;B 2 F; respectively,

A � B , A �B�1 2 S1 , x�A � x+A = x�B � x+B

if A;B 2 F+:
The corresponding equivalence classes are

[A] = fB 2 F : A s Bg

if A 2 F; respectively
hAi = fB 2 F+ : A � Bg

if A 2 F+:
We denote by bF and by eF+ the corresponding quotient sets F=s and F+=� re-

spectively, and so bF = f[A] : A 2 Fg and eF+ = fhAi : A 2 F+g :
By Proposition 6.2.4, we have that:

�
�bF;�� is an Abelian group with the operation de�ned by [A]� [B] = [A+B] :
The neutral element is

�
0
�
= S0 and the additive inverse of [A] 2 bF is � [A] =

[�A] ;
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�
�eF+;�� is an Abelian group with the operation de�ned by hAi � hBi =
hA �Bi : The neutral element is



1
�
= S1 and the multiplicative inverse of

hAi 2 eF+ is hAi�1 = hA�1i :
Theorem 6.3.2 [34]

�bF;�� is a metrizable topological group which is topologically
isomorphic with (BVC [0; 1] ;+).

Theorem 6.3.3 [34]
�eF+;�� is a metrizable topological group which is topologi-

cally isomorphic with (BVC+ [0; 1] ; �).

Theorem 6.3.4 [34]
�bF;�� �=top �eF+;�� :

Remark 6.3.5 The equivalence class [A] 2 bF of a fuzzy number A 2 F is de�ned
by the arithmetic mean of A; respectively the equivalence class hAi 2 eF+ of a fuzzy
number A 2 F+ is de�ned by the the geometric mean of A: These are illustrated (for
a positive fuzzy number) in Figure 8:

Figure 8:
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