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Abstract

Cyber threats are a constantly growing concern for both organizations and individ-

uals. According to recent statistics, this number is around three new potentially

malicious files arising each second, globally. This amount of data is impossible to

process manually by cyber security companies, therefore, automated tools are used

to help in the identification and classification of these threats. A security tool’s threat

intelligence report contains tags such as verdict (malicious or not), detection labels,

and also the attribution, regarding the file’s family or the group of attackers that

created it.

This thesis presents a comparison between two industry-leading disassembler tools,

IDA and Radare2, focusing on the static call graph generation mechanism. Then, we

present new feature extraction methods and algorithms with the aim of attributing

a malware sample to a certain family. Two main directions are explored, malware

clustering and classification, both leveraging the static call graph of the samples.

First, we propose a new signature extraction method from the static call graph,

which is used to group the malicious samples in a graph based on common fingerprints.

After clustering the files with community detection algorithms, we show that the

resulting clusters are highly homogeneous with regard to the samples’ families.

Second, two new classification methods are presented: one of these is based on

graph convolutional neural networks, trained on static call graphs, while the other of-

fers an encoding method to convert the static call graph into RGB images, thus, trans-

forming the malware classification problem into an image classification one. These

experiments also show insight into the relation of families and packers, demonstrating

the effect of packers in the classification process.

We also publish a new malware dataset on Kaggle, together with various analysis

information of two other state-of-the-art datasets in the field, MalImg and BODMAS.
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Chapter 1

Introduction

Digitalization has increased the number of online threats we face each day. Although

the majority of cyber attacks target larger corporations, businesses, and government

organizations, where the potential benefit of compromising a system is significantly

larger, individuals are also at risk. The common term to describe these threats is

malware, which stands for malicious software, meaning a type of computer program

or file which aims to do harmful actions on a computer. According to AV-TEST1, the

number of new threats appearing on a daily basis is approximately 3/sec, or 300k/day.

1.1 Objectives

We aim to develop new methods for malware analysis, clustering and classification

based on static call graphs of malicious files. Our focus is on fast, scalable processing

of these entities, to enable the integration of our methods into real-world systems.

We focus on methods that can grasp the structure of the graph in a scalable way,

either by extracting locality-sensitive signatures from the graph, or by feeding the

graph into neural networks that can learn useful patterns of its topology.

Furthermore, since the malware research domain lacks the abundance of publicly

available datasets, we aim to enrich the community by publishing our datasets, the

source code of our methods, and a comprehensive analysis of already existing datasets.

1https://www.av-test.com
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1.2 Contributions

The contributions of this thesis are the followings (summarized on our GitHub Page2).

(i) Three novel methods are presented in the field of malware classification. We in-

troduce a novel signature extraction method based on the static call graph of an

executable. These signatures are then used to cluster the files by applying Lou-

vain community detection algorithm on the malware graph. We demonstrate

that our method can cluster malicious files into homogeneous groups accord-

ing to their ground truth family label, by comparing them to industrially used

patented signatures.Furthermore, we present two novel approaches for classi-

fying malware code into families. The first method uses graph convolutional

neural networks to learn the patterns of the static call graphs of malicious files.

The second method transforms the static call graph into an image, and uses

well-known CNN architectures to classify the malware samples.

(ii) We publish a GitHub project, malflow 3, that contains the source code of our

static call graph generation algorithm. The project also contains the source

code of our proposed image generation algorithms and the instruction encoding

schemes.

(iii) We analyze existing state-of-the-art public malware datasets, considered bench-

marks in the field, namely BODMAS and MalImg, and also introduce a new

dataset, Internal Bitdefender Dataset (IBD), under the public GitHub project

malflow. The information we publish contains the following:

• Radare2 disassembled objects, containing the full static call graph, with

function names, calls, and also complete instruction information, such as

the mnemonic, prefixes, operands, and the address of the instruction;

• various statistics regarding the instructions extracted from these malicious

files, such as their distribution, and order of appearance according to the

simulated execution of the file;

• packer information and entropy, obtained by scripted use of DIE tool;

• three types of RGB images for each sample, based on our different encoding

schemes which assigns a pixel to an instruction. These images are used in

2https://attilamester.github.io/call-graph
3https://github.com/attilamester/malflow
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our second classification approach, where we transform the static call graph

into an image, and use state-of-the-art CNN architectures to classify the

malware samples.

(iv) We reveal high correlation between APT families and the packer used to ob-

fuscate the executable file. These observations are published for three different

datasets spanning over nearly 15 years, MalImg, BODMAS and IBD, and are

published in the context of the project malflow.

1.3 List of publications

The evaluation standards used are those valid as of October 1st, 2018. The list

of conferences, as well as their categorization, is based on the international CORE

conference rankings4. The journal list is the one used by UEFISCDI 5 for awarding

articles published in international scientific journals.

• A. Mester, A. Pop, B. Mursa, H. Grebla, L. Diosan, C. Chira (2021). Net-

work Analysis Based on Important Node Selection and Community Detection.

Mathematics, 9.18, 2294

• A. Mester, Z. Bodó, P. Vinod, M. Conti (2025). Towards a malware family

classification model using static call graph instruction visualization. 18th In-

ternational Conference on Network and System Security, Network and System

Security, 167–186, Springer Nature Singapore

• A. Mester, Z. Bodó (2021). Validating static call graph-based malware sig-

natures using community detection methods. 29th European Symposium on

Artificial Neural Networks, Computational Intelligence and Machine Learning,

ESANN 2021, 429–434

• A. Mester, Z. Bodó (2022). Malware classification based on graph convolu-

tional neural networks and static call graph features. Advances and Trends in

Artificial Intelligence. Theory and Practices in Artificial Intelligence: 35th In-

ternational Conference on Industrial, Engineering and Other Applications of

Applied Intelligent Systems, IEA/AIE 2022, 528–539, Springer

• A. Mester (2023). Malware analysis and static call graph generation with

Radare2. In Studia Universitatis Babes, -Bolyai Informatica, 68.1, 5–20

4https://portal.core.edu.au/conf-ranks
5https://uefiscdi.gov.ro/scientometrie-reviste
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Chapter 2

Malware analysis

The aim of this thesis is the static analysis of malware in the form of portable exe-

cutable (PE) files. PE files can carry a vast amount of different attack techniques,

hence they can also contribute enormously to the process of gathering threat in-

telligence about the origin of the attack. One such exceedingly valuable piece of

information is called attribution in literature [Steffens, 2020].

Attributing APT information to cyberattacks is a high priority of threat intelli-

gence organizations. The attribution covers information about the attack’s authors

and the deployed malware families. This information can be leveraged to identify the

attackers, to reason their intentions, and to prioritize certain security measures. At-

tribution of attacks boils down to attribution of individual files and events. Manual

analysts cannot process the vast amount of files and events that trigger alarms in

real-time cybersecurity solutions. Therefore, automated analysis of malware samples

is essential for antivirus products.

There are fundamentally two options regarding the analysis of an executable file:

static and dynamic analysis. These methods assume the use of either a sandbox

environment – which is often expensive and time-consuming, or a disassembler tool

such as IDA, Radare2, Ghidra, etc., as detailed in Chapter 3. Both methods may

be carried out manually by analysts, or automatically, using automated scripts and

various tools.

Static analysis is limited to the inspection of the file content on the disk, without

executing it. This method is faster and less resource-intensive than dynamic analysis,

providing simple binary file properties (e.g. file size, section information, import and

export table, flags) and also more complex features like byte distribution, disassem-

4



Figure 2.1: The most commonly used algorithms are applied on features selected from
API/system calls. This plot aggregates the results of a survey paper [Ucci et al., 2019]
categorizing approximately one hundred research papers in the field of malware anal-
ysis according to the extracted features and applied algorithms.

bled instructions, and their more complex representations such as control flow graph

(CFG), or call graph. However, it may not be able to detect all the malicious behavior

of the file, especially if the malware is encrypted or obfuscated.

Dynamic analysis necessitates a sandbox technology, which offers an isolated envi-

ronment for the malware to be executed in, simulating a real-life scenario of infection.

The sandbox will track the events triggered the this malware file, such as file system

events, API calls, registry changes, network activity, disk operations. This type of

analysis has the advantage of offering real events related to the activity of the mal-

ware, which will form its natural traits. However, its practicality may be considered

limited due to the longer analysis time which depends on the malicious payload code,

which may of may not be activated [Quertier et al., 2022].

The visualization in Figure 2.1 shows us the frequency of algorithm–feature pairs

in the vast literature overview of [Ucci et al., 2019]. This shows us the possible new

research directions, but most importantly the fact that the most popular methods

involved applying some kind of graph matching algorithm, SVM method or any kind

of clustering on data extracted from API/sys calls. This determined the direction

of our research, aiming to explore the possibilities of leveraging the static call graph

feature of an executable file.

5



Chapter 3

Disassembler tools

Analyzing malware often means the inspection of behavior of the PE file. Dynamic

analysis can offer the inspection of the actual behavior of the file when executed, but

it is time-consuming and might not be feasible for large datasets (see Chapter 2).

When focusing on behavioral analysis, a static approach can be more efficient, as

it can offer a quick insight into the file’s behavior without the need to execute it,

by analyzing the assembly code of the file. For this purpose, one can use various

disassembler tools to reverse engineer the binary file and obtain its assembly code.

In this chapter, we describe two of the most popular disassembler tools, IDA and

Radare2, and compare them in terms of their functionality and usability regarding

the generation of static call graphs of executable files. These findings are published

in our paper [Mester, 2023].

3.1 Overview of disassembler tools

IDA is an interactive disassembler1, and one of the leading disassembler tools in

the industry [Nar et al., 2019, Yin et al., 2018]. It has a rich GUI and offers a wide

range of scripted functionalities as well, available through the IDA scripting language.

Although its use is questionably versatile and offers a powerful analysis tool for reverse

engineering, it has its limitations as well. One of the major drawbacks is that IDA

is a commercial software, and the scripted functionality is available only in the paid

version, IDA Pro.

There is a multitude of alternative disassembler tools: Binary Ninja

1https://www.hex-rays.com/products/ida
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[Priyanga et al., 2022], Hopper [Andriesse et al., 2016], Relyze [Wenzl et al., 2019],

x64dbg2, ODA3, etc. One of the most popular alternatives is Ghidra4, available

on Windows/Linux, developed by NSA’s Research Directorate under Apache Li-

cense (FOSS). According to various researches, it is a leading alternative to IDA

Pro [Shaila et al., 2021, Koo et al., 2021]. The downside of this tool which made our

choice of another alternative is the difficulty in using its scripted API call/graph

generation.

Radare25 is also available on Windows/Linux (FOSS), and offers a lightweight

alternative to Ghidra, while being able to integrate Ghidra decompiler r2ghidra6. It

can be used from CLI and also GUI, offered by Cutter7. A major power of this

tool is the Python binding r2pipe8, which offers extensive APIs for static analysis,

including call graph inspection. Radare2 (also referred to as r2 ) has also great pop-

ularity in the cyber tech domain [Massarelli et al., 2019, Cunningham et al., 2019,

Gibert et al., 2020, Cohen, 2019, Kilgallon et al., 2017].

3.2 Generating the call graph with IDA Pro 6 and

Radare2

IDA Pro 6

With its functionality of scripting in IDA Pro 6, we use two APIs to generate text files

in GDL format. GenCallGdl generates the call graph structure (i.e. a node represents

a function, an edge marks a function call), while GenFuncGdl generates the execution

flow chart (i.e. a node contains an instruction list and the directed edges represent a

jump of execution between these blocks). The final call graph is a processed version

of both of these files, as detailed in our previous works [Mester, 2020, Mester, 2023].

2https://x64dbg.com
3https://github.com/syscall7/oda
4https://ghidra-sre.org
5https://www.radare.org
6https://github.com/radareorg/r2ghidra
7https://cutter.re
8https://r2wiki.readthedocs.io
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Radare2

Radare25 offers a clear description of its installation on their Github page9 and has

plenty of documentation and community support on their Wiki page10 and their

official e-book [Radare, 2009]. After installation, Radare2 can be invoked using the

radare2 or r2 commands, specifying a path to a PE file. In this CLI, we are offered

a variety of commands and tools for analyzing sections, imports, exports, entry point

information, blocks, function calls, for seeking certain parts of the binary, and much

more – also, each command has a helper interface invocable by appending “?” after

the respective command. Radare2 works with the concept of flags, i.e. a bookmark at

an offset like “fcn.” or “sym.imp”, meaning that every offset considered interesting by

Radare2 will be assigned a corresponding flag to it, e.g. strings, functions, imports,

and much more. Analysis of a binary PE file can be started by the command “aaa”,

which analyzes all the flags in the file. Since in this work we were focused on the

analysis of the static call graph, we will detail commands which are related to the

analysis of the call sequences, function blocks, and entry points.

The majority of these r2 commands have multiple output formats, available by

specifying a formatter at the end of the command – such as the default ASCII art,

or “j” for json, “d” for dot, “b” for “Braile art” i.e. short overview/bird’s eye plot,

or “w” for an interactive plot – highly useful for debugging purposes, similar to a

matplotlib plot.

When generating the static call graph of a PE binary using Radare2, we lever-

age multiple r2 commands to obtain the final graph object. Radare2 offers Python

bindings via the r2pipe package, which simply enables the pipeline of multiple r2

commands without the need to open and load the file each and every time. We start

the analysis by calling “aaa” command. Then, we collect entry point nodes, i.e. func-

tion blocks by calling “ie”. The r2 commands that we use for call graph analysis are

part of the “ag” command group.

The structure of the call graph is provided by the “agC” command, where we

also specify the desired DOT format using the “d” flag. The full reference graph

(e.g. imports) is offered by “agR” command. It is important to mention that none of

these two commands include node-level information regarding to the instruction list.

In order to obtain the assembly code of each subroutine, we call “agf” command on

9https://github.com/radareorg/radare2
10https://r2wiki.readthedocs.io
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each node of the call graph. In a similar manner to generating the call graph using

IDA Pro 6, merging the output of “GenCallGdl” and “GenFuncGdl” [Mester, 2020,

Mester and Bodó, 2021, Mester and Bodó, 2022], the same logic applies in Radare2

as well. We need to gather information from both the global function graph (“agC”)

and global reference graph (“agR”), and also need to analyze separately each function

block (“agf”) in order to obtain the final, complete call graph.

3.3 Comparing the call graphs obtained by IDA

Pro 6 and Radare2

One key difference between IDA Pro 6 and Radare2 is that in the former, we needed

to call only 2 APIs, while in the latter, we need to call a multitude of r2 commands

– O(n) where n is the number of function blocks. The unexpected revelation is that

despite all these aspects mentioned, Radare2 scans the binaries much faster than IDA,

and the call graphs generated by these two tools are almost identical [Mester, 2023].

3.4 Conclusions

This chapter presented the comparison of two disassembler tools, IDA Pro and

Radare2, in terms of their static call graph generation capabilities. While IDA offers

two API calls via its scripted language to simply generate the call graph, Radare2

requires a more complex approach, using the r2pipe library, i.e. its Python binding.

In both of these cases, several steps need to be taken in order to construct a final,

global call graph of the sample – naturally, this may be changed according to specific

requirements and personal needs. During the experiments, a public dataset was used

in order to offer full transparency of the results. The call graphs were compared from

various perspectives, both topological aspects, i.e. the function calls, and also node-

level criteria, i.e. the instruction list of each subroutine. The results claim that there

is no significant change in the output of IDA and Radare2 disassemblers, however,

the latter offers a faster, more stable way of scripted analysis which is suitable for

a production environment where performance is a key aspect. These results were

published in Studia Universitatis Babes, -Bolyai Informatica journal [Mester, 2023].

9



Chapter 4

Application of community

detection in malware analysis

This chapter presents the application of community detection as a method to cluster

malicious files according to their similarity [Mester and Bodó, 2021].

A community means a set of nodes, with the following properties: (i) they form

a connected subgraph; (ii) nodes in community A have common properties (topical

and topological features); (iii) nodes in community A have more common properties

with other nodes in A than with those found in community B.

A detailed analysis of various concepts and metrics applicable in network science

and community detection can be found in our previous work [Mester et al., 2021].

In this work, we conclude that among various existing hierarchical clustering algo-

rithms, modularity optimizations, etc., the Louvain algorithm [Blondel et al., 2008]

is a preferable option for large networks, due to its O(ℓ) complexity.

In this chapter, we present a method where the aim is to build a network of

malware samples, each node representing a virus, and links are drawn if there are

common fingerprints – the fingerprint selection method is the crucial part, our core

contribution to the domain. We propose a method to extract signatures from the

executable binary of a malware, in order to query the local neighborhood in real-time.

The signatures are obtained via static code analysis, using function call n-grams and

applying locality-sensitive hashing techniques to enable the match between functions

with highly similar instruction lists.

10



4.1 Related work

Based on a recent survey [Ucci et al., 2019], one can conclude that the most frequently

used features are API/system calls, byte sequences and API call graphs. Using the

API graph features, it is common to apply graph matching algorithms or calculate

graph edit distances (GED) [Park et al., 2010]. Another approach is to build a feature

vector of the graph based on n-grams [Dahl et al., 2013].

Convolutional neural networks are also successfully applied to detect patterns

in (static) opcode and (dynamic) system call sequences for identifying malicious

code [McLaughlin et al., 2017, Martinelli et al., 2017]. Malware clustering based

on locality-sensitive hashing was already experimented in [Oprisa et al., 2014]. In

[Hassen and Chan, 2017], LSH is applied on local subroutines, using minhash signa-

tures to approximate similarity between the instruction sets of two subprograms.

Our method extracts multiple fingerprints from the call graph, enabling the contin-

uous processing and clustering of new incoming samples, without the need to retrain

the underlying model.Another key aspect of our approach is the validation of the

industrially used features of [Topan et al., 2013] as well.

4.2 N-grams for malware clustering

The fingerprints are extracted from the static call graph, obtained by IDA Pro 6

disassembler1 – see Section 3.2. A fingerprint is an n-gram in the resulting call graph:

unigram meaning a codeword for a subroutine, while bigram standing for a caller–

callee codeword pair.

In order to measure the usefulness of the generated signatures, community detec-

tion methods are applied on the common fingerprint-based malware graph – the nodes

represent the malware and an edge indicates common fingerprints – as explained in

Figure 4.1. One such malware graph can be seen in Figure 4.2, where the nodes are

colored according to the Louvain communities obtained by Gephi2.

We consider the following requirements: (i) the malware graph should consist of

dense components (i.e. communities), with as few edges between them as possible

– this means the separation of the malware groups from each other; (ii) ideally, the

nodes of a component should share the same family label.

1https://www.hex-rays.com/products/ida
2https://gephi.org
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sub_4023D2:
push    ebp
mov     [ebp+arg_C], 0E03h
and     [ebp+var_8], 0
jmp     short loc_4024C1

mov     eax, [ebp+var_8]
xor     eax, [ebp+arg_C]
jz      loc_40255C

push    [ebp+arg_8]
movzx   eax, byte ptr [ebp+var_12]
push    eax
push    dword_418870
call    sub_4023A0
add   esp, 0Ch
retn

mov     eax, [ebp+arg_0]
add     eax, [ebp+var_8]
mov     al, [eax]

truefalse

GenCallGdl

GenFuncGdl

IDA Pro 6 sub_4023D2 sub_402457

EnableWindow

ActivateActCtx

DFS
call graph

merge

n-grams, LSH

fingerprintscommunity detection

Figure 4.1: Pipeline of generating the fingerprints and validating these by applying
community detection methods on the malware graph.

Figure 4.2: Louvain communities of the malware graph according to common finger-
prints (internal Bitdefender dataset of 7977 samples from 254 families, having high
family label confidence). Layout: Gephi’s Force Atlas 2. The method proved to be
well suited for family clustering, measured by the partition homogeneity score.
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Homogeneity Completeness Majority label

(a) 0.833 0.765 85%

(b) 0.632 0.704 89%

Table 4.1: Family-based numeric evaluation of the malware graphs.

4.3 Evaluation methodology

The most successful and frequently used community detection algorithms are Clauset–

Newman–Moore (CNM), label propagation algorithm (LPA), Louvain and Infomap

[Fortunato, 2010] – therefore, we chose these for validating our approach. In order to

evaluate the topological properties of the obtained malware graph, we calculate mod-

ularity, coverage and performance scores [Fortunato, 2010]. Since the family distri-

bution of the clusters is similarly important, we also measure the majority percentage

of the labels within each cluster.

4.4 Hyperparameters

In the experiments, we used Python 3.6 (networkX library), IDA Pro 6, Graphviz,

Gephi 0.9.2. We carried out experiments considering the following hyperparameter

combinations: subroutine instruction n-grams (1–3-grams, 2–3-grams or trigrams);

number of random hyperplanes (8 or 16); projection partition (by projecting a vec-

tor onto a hyperplane and taking the sign of the projection to generate the hash

codewords, the distance information is lost – enabling this parameter sets distance

intervals of [0, 10], (10, 100], (100, 1000] and > 1000, and symmetrically with negative

signs, to use a finer partition of the space); call graph n-grams (unigrams or bigrams).

On the final graph, the following filters are applied: frequency of fingerprints ([2, 80],

[2, 100], [3, 100], [10, 100] or [10, 400]); edge weight (minimum 5, 10, 100, 200 or 1000).

These parametrizations resulted in a total of 260 runs.

4.5 Dataset

The private Bitdefender dataset consists of 7977 samples from 254 families, a family

having 30.3 ± 41.96 samples on average. The number of subroutines per sample is

on average 1163 (median of 354 and maximum of 65 060) – summing up to a total
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Sample s1 Sample s2

Figure 4.3: Comparison of two call graphs from the same family within the same
community (the extra function group on the left graph shows a winsock2 package).

number of 9 284 242 subroutines with 650 225 unique mnemonic sequences.

4.6 Conclusions

We calculated the above-mentioned evaluation metrics for different malware graphs,

based on the following fingerprints:

(a) industrially used fingerprints [Topan et al., 2013] (4745 nodes, 55.9k links)

(b) fingerprints described in this work: instruction 2–3-grams, 8 hyperplanes, pro-

jection partition, call graph bigrams, [2, 100] frequency filtering and min. weight

of 100 (4502 nodes, 114k links).

Results metrics are compared in Table 4.1. Based on the experiments, the fol-

lowing conclusions can be drawn: (i) the industrially used fingerprints can cluster

families with high modularity and majority label percentage scores; (ii) configuration

(b) provides similarly good results as (a); (iii) instruction n-grams, sequences yield

better representation than simple unigrams; not only the code of the subroutines, but

also the sequentiality of these subroutines can characterize malware families.

To summarize, we have presented a novel method to extract fingerprints from

static analysis of a malicious sample, by applying LSH on its subroutines.We have

shown that our method can be used to cluster malware families with high modularity

and majority label percentage scores [Mester and Bodó, 2021].
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Chapter 5

Malware classification: attribution

This chapter presents the problem of malware classification, i.e. family attribution

[Steffens, 2020]. We present two novel methods, one based on graph convolutional

networks and the other on image classification, both of these leveraging the static call

graph of the malicious file.

5.1 Introduction

One of the most relevant and valuable label a malicious sample can be assigned is the

family and author information [Ucci et al., 2019, Tahir, 2018, Steffens, 2020].

Our first method leverages the topology and also node-level informa-

tion of the static call graph by training a GCN model to classify families

[Mester and Bodó, 2022]. This model was trained on a real dataset consisting of

thousands of malicious samples from 223 families – a number significantly larger than

the families used in the literature.

The other method converts the malicious sample into an image, and executes

the family classification based on an image classification task. The novelty of this

method lies in the way the images are created, based on a specific traversal of the

instructions from the static call graph, which simulates the theoretical execution flow

of the program [Mester et al., 2025].
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Figure 5.1: Project outline for the attribution of malware samples using GCN on the
static call graph [Mester and Bodó, 2022].

5.2 Attribution using GCN on the static call graph

5.2.1 Related work

API calls (dynamic as well as static) are by far one of the most extensively used

features in the literature for malware classification [Ucci et al., 2019]. Graph con-

volutional neural networks (GCN), deep GCN models (DGCNN) show an increas-

ing popularity in cyber threat intelligence, likely due to the novelty as well as the

benefits of these approaches. Furthermore, we can also conclude that malware de-

tection methods are in general validated using only around 10 classes. API calls

and functions obtained from static analysis are used for malware detection and

family classification in [Dam and Touili, 2017, Hong et al., 2018, Phan et al., 2018,

Hong et al., 2019]. Similarly, these features are used in node and graph embedding

techniques [Jiang et al., 2018, Hong et al., 2019, Yan et al., 2019] and GCN methods

[Li et al., 2021]. It is important to mention the size of the datasets and the number of

classes used in the classification process. Simple binary classification (malicious/be-

nign) is applied in [Dam and Touili, 2017, Jiang et al., 2018, Phan et al., 2018,

de Oliveira and Sassi, 2021]. [Hong et al., 2018] mentions 7 classes of authors,

[Hong et al., 2019] classifies samples into 6 families, while [Tang and Qian, 2019] into

9 families, and [Yan et al., 2019] mentions 12 families.
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5.2.2 Theory of graph convolutional networks

Convolutional neural networks (CNNs) are shift-invariant neural networks extract-

ing local features from signals using the convolution operation. Graph convolu-

tional networks (GCN) generalize CNNs to graph structures using convolutions from

spectral graph theory [Kipf and Welling, 2016, Wu et al., 2019, Bruna et al., 2014,

Henaff et al., 2015, Chung, 1997].

In this research we use the GCN model introduced in [Kipf and Welling, 2016]

based on Laplacian smoothing, i.e. averaging every point over its neighbors in the

graph. The propagation rule of this spatial GCN is the following,

H(i+1) = σ
(
ÃH(i)W(i)

)
(5.1)

where H denotes the (embedded) data representation, which initially contains the

input features, i.e. H(0) = X, Ã is the symmetrically normalized adjacency matrix,

D−1/2AD−1/2, containing self-loops, and D = diag(A · 1) is the diagonal degree ma-

trix. The matrix W denotes the weights of the neural network, and σ is a non-linear

activation function, usually ReLU [Goodfellow et al., 2016]. The above GCN model

produces an embedding vector for each node, therefore these have to be summarized

for the entire graph, for which a common choice is to use average pooling.

Graph learning contains the following three types of tasks [Zhou et al., 2020]: (i)

node-level tasks, e.g. node classification, (ii) edge-level tasks such as link prediction,

and (iii) graph-level tasks, like graph classification.

5.2.3 Family classification using GCN

The call graph is in fact the combination of the sample’s control flow graph and

function call graph – details in [Mester and Bodó, 2021, Mester, 2020]. Node-level

features are the LSH codewords used in [Mester and Bodó, 2021] – each node will have

a 8-dimensional vector, representing its 600-thousand-long instruction distribution

vector’s projection onto 8 random hyperplanes [Charikar, 2002].

We built a GCN using the PyTorch library, specifically, the geometric package1.

The model resulting the best F1-scores while keeping low variance is as follows (using

the official torch layer names): three GCNConv layers, each followed by ReLU, then

Dropout, then a GCNConv followed by Dropout and a global mean pool layer, finally,

1https://www.pyg.org
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Figure 5.2: Distribution of family sizes within the dataset of 15k samples.

a fully connected layer, serving the output probabilities. For model optimization, we

use the CrossEntropyLoss loss, and the Adam optimizer, with a learning rate of 0.01.

5.2.4 Comparison: node-level features vs. topological fea-

tures

Experiments were conducted on the GCN model with and without node-level features,

multilayer perceptron (MLP) model on the node-level features, and also on other

features described in [Yan et al., 2019].

By training the same GCN model without node-level features (i.e. based only on

the call graphs’ adjacency matrix), we may answer the question whether the LSH

codewords are truly useful when classifying families.

Eliminating the GCN model, and training instead an MLP on the node-level

features, we could examine whether the LSH codewords can classify malware families

with the same success (i.e. F1-score) as the full GCN model – in other words, whether

the topological features bring valuable information for the model to learn on. Similarly

to the previously mentioned GCN model, for this MLP we used CrossEntropyLoss

loss function, and Adam optimizer with a learning rate of 0.01.

Furthermore, we trained the same GCN/MLP models as before, but using other

set of node-level features, the ones suggested in [Yan et al., 2019]. In this paper,

the authors train a GCN model on the CFG of the samples, using as node-level

features a 11-long vector, representing the instruction distribution (e.g. transfer, call,

arithmetic, etc.). In our experiments we simulate this method by assigning each

function a vector containing 14 numbers, according to the mnemonic distribution2.

2x86 Assembly Language Reference: data transfer, mov, control transfer, call, arithmetic, com-
pare, flag, bit and byte, shift and rotate, logical, string, I/O instructions; and in- and out-degree.
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Model Micro-F1 Macro-F1

GCN model with LSH codes 0.381 0.189
GCN model with features of [Yan et al., 2019] 0.614 0.392
GCN model without node-level features 0.204 0.003
MLP model with LSH codes 0.313 0.050
MLP model with features of [Yan et al., 2019] 0.242 0.020

Table 5.1: F1-scores of each model on the test dataset.

5.2.5 Dataset

The private Bitdefender dataset contains 15 375 samples from 967 families. Filtering

out the families with less than 10 samples, we obtained a dataset of 8620 samples

from 223 families. This selection is illustrated in Figure 5.2.

5.2.6 Results

We used Python3, IDA Pro 6, GraphViz, PyTorch 1.10.0, Pytorch Geometric (pyg)

2.0.2, Tensorboard, on a system with Intel Xeon E5-2697A v4, 64 GB RAM, and a

GeForce RTX 2080 Ti video card. Different combinations of hyperparameters were

tested: 1 − 4 hidden GCN layers with sizes of 64, 128 or 256, dropout probability:

0.2, 0.4 or 0.5. The best GCN model is as follows: 4 GCN layers of size 128, dropout

of 0.5. From Table 5.1 we can conclude that GCN models with node-level features

have the best F1-scores, meaning that using both topological features of the static

call graph and the feature vectors of the local functions yields the best results.

5.3 Attribution using CNN on the encoded static

call graph

For accurate malware family classification, we propose mapping families to their com-

mon behavioral features based on patterns in their instruction images. We traverse

the call graph’s functions to compile a list of instructions, encoding each instruction

into a pixel to generate the final RGB image. The pipeline of our work can be seen

in Figure 5.3.
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CNN

sub_4023D2:
push    ebp
mov     [ebp+arg_C], 0E03h
and     [ebp+var_8], 0
jmp     short loc_4024C1

mov     eax, [ebp+var_8]
xor     eax, [ebp+arg_C]
jz      loc_40255C

push    [ebp+arg_8]
movzx   eax, byte ptr [ebp+var_12]
push    eax
push    dword_418870
call    sub_4023A0
add   esp, 0Ch
retn

mov     eax, [ebp+arg_0]
add     eax, [ebp+var_8]
mov     al, [eax]

truefalse

agC, agR, pdf

Radare2
parsing

call graph

mov REG, REG
bnd call FUNC
jmp ADDR_FAR
...

instr.
encoding

family X

bnd call FUNC

DFS

Figure 5.3: Our proposed method processes Radare2 output into a call graph, extracts
instructions via DFS, encodes them as an RGB image, and uses it to train CNNs.

5.3.1 Related work

The first model using image-like representation was described in [Nataraj et al., 2011],

the paper introducing also the widely used MalImg dataset. Here a grayscale

2D image is constructed from the binary file, each pixel representing one byte

of the sample’s binary. The works [Cui et al., 2018, Kalash et al., 2018] also

carry out experiments using grayscale image representations of malware. Var-

ious other research papers build on the idea of representing the malware code

by an image [Fu et al., 2018, Xiao et al., 2021, Yuan et al., 2020, Deng et al., 2023,

Ni et al., 2018]. The images are usually fed to Convolutional Neural Networks (CNNs)

as inputs, the most popular architectures being AlexNet [Krizhevsky et al., 2012],

VGG [Simonyan and Zisserman, 2015] and ResNet [He et al., 2016].

5.3.2 Creating the static call graph

The static call graph generation necessitates a disassembler tool. We chose Radare2

(5.8.8 release) because of reasons detailed in [Mester, 2023]. Hereby we list the
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key steps of generating the static call graph of a PE file using Radare2 (details on

GitHub3). By using the r2pipe4 Python package, we apply the agCd and agRd com-

mands to yield the global call and reference graph. After traversing these graphs, we

call for each function the pdfj command to obtain its instruction list. An instruction

holds information about its bnd flag [Guide, 2011] and prefix (if any), its mnemonic

and a list of parameters. We considered 11 prefixes (according to the Radare2 5.8.8

release), and 7 parameter types. The structure of an instruction is as follows:

[bnd?] [prefix?] mnemonic [param1 [param2, ...]]. (5.2)

5.3.3 Converting the call graph into image

We intended to grasp the static behavioral features and patterns in the call graph

of an executable, by creating an image based on the instructions in the call graph.

This way, the image does not reflect all bytes from each section, only the relevant

instructions, thus, eliminating the noise, compared to grayscale images based on hex

dumps. We apply a depth-first search traversal (DFS) of the call graph to obtain the

list of nodes, i.e. functions – this list reflects the execution order of these functions.

We apply another DFS, now on the instruction level: in the order of these nodes e.g.

A-B-C, we gather the instructions from A, but once we meet a CALL-like instruction,

we jump to that address.After the recursive context finishes, we continue parsing the

instructions in block A. Then, we move on to block B – if it was not visited already.

To encode one instruction into a pixel (i.e. a three-byte value, accord-

ing to RGB images), we examined three distinct encoding schemes (details in

[Mester et al., 2025]): (i) (FE) Full Encoding: mnemonic, prefix, bnd, two param-

eters; (ii) (PE1) Partial Encoding: mnemonic, prefix, bnd; (iii) (PE2) Partial Encod-

ing: only mnemonic.

5.3.4 Training CNN models

We perform experiments on ResNet18, ResNet50 [He et al., 2016],

ResNet1D [Hong et al., 2020], MobileNetV3 [Howard et al., 2019], GoogleNet

[Szegedy et al., 2015], EfficientNet [Tan and Le, 2021], and DenseNet

[Huang et al., 2017]. Experiments were carried out on four different types of

3https://github.com/attilamester/malflow
4https://pypi.org/project/r2pipe
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Simple hex dump Encoding FE Encoding PE1 Encoding PE2

Family: ainslot

BODMAS sample 53c4c900e03eb6e94c0fe18091591904

Family: allaple

BODMAS sample 20d4cf4cb9b3a2be9194b749b8de5bab

Figure 5.4: Comparing different instruction encodings (Section 5.3.3) and the simple
hex dump image on different malware families.

images: hex dump-based grayscale images (similarly to [Nataraj et al., 2011]), and

the three different types of instruction encoding schemes presented in Section 5.3.3.

In Table 5.3 we show results according to FE scheme, as it performed best across

all models. We applied a random search on the hyperparameter space: (i) CNN

architecture; (ii) Pre-trained (bool) (on ImageNet); (iii) Min. samples per class (int)

– set to 100 in Table 5.3; (iv) Batch size (int). More than 200 models were trained,

with runtimes ranging from 30 minutes up to 26 hours for the larger images.

5.3.5 Public datasets: MalImg, BIG, EMBER, BODMAS

Table 5.2 summarizes the properties of the publicly available malware datasets

offering family labels. MalImg [Nataraj et al., 2011] contains 9.5k malicious sam-

ples’ grayscale image based on their hex dump – categorized into 25 families

[Zhan et al., 2023, Hai et al., 2023, Kim et al., 2023, Moussas and Andreatos, 2021,

Gibert et al., 2019]. The EMBER dataset (detailed in Section 5.3.8) was first released

in 2017 [Anderson and Roth, 2018], and later updated in 2018. It is a significantly

larger database than the former, having 800k malicious samples’ SHA256 and fea-
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Dataset Published Binaries Families Samples(mal.) EMBER Disasm. Image

MalImg 2011 ❍ 25 9458 ❍ ✪ ❍ ✪ ● ✪

MS BIG 2015 ❍ 9 10 868 ❍ ● ❍

EMBER 2018 ❍ ◗ 800 000 ● ❍ ❍

UCSB-packed 2020 ● ❍ 232 415 ❍ ❍ ❍

SOREL-20m 2020 ● ❍ 9 962 820 ● ❍ ❍

BODMAS 2021 ● 581 57 293 ● ❍ ✪ ❍ ✪

IBD 2024 ❍ 47 18 756 ● ✪ ● ✪ ● ✪

Table 5.2: Public malware datasets: MalImg [Nataraj et al., 2011], MS
BIG [Ronen et al., 2018], EMBER [Anderson and Roth, 2018], UCSB-packed
[Aghakhani et al., 2020], SOREL-20m [Harang and Rudd, 2020], BODMAS
[Yang et al., 2021] and IBD – our contribution, whithin malflow. ❍ = “not
available”, ● = “available”, ◗ = “partially available”, ✪ = “published by this work”.

Model Batch Img. Acc. F1 micro F1 macro

BODMAS, 57 families
ResNet18 20 100× 100 0.887 0.887 0.859

BODMAS, 57 families, hex dump images
ResNet18 20 100× 100 0.881 0.881 0.873

MalImg, 23 families
ResNet18 20 100× 100 0.722 0.744 0.737

IBD, 47 families
ResNet18 20 100× 100 0.872 0.872 0.784

Table 5.3: Performance of various models on BODMAS, MalImg and IBD.

ture vector [Maillet and Marais, 2023, Jia et al., 2023, Dener and Gulburun, 2023,

Sandor et al., 2023, Quertier et al., 2022, Gao et al., 2022, Hussain et al., 2022,

Yan et al., 2022, Yang et al., 2021, Feng et al., 2014]. BODMAS [Yang et al., 2021]

represents the core of our experiments, with 57 923 malware binaries, each having a

family label and the EMBER feature vector.

5.3.6 Dataset

The CNN models were trained on three different datasets: BODMAS, MalImg, and

an internal Bitdefender dataset (IBD5). Figure 5.5 shows the distribution of fami-

lies in the three datasets, demonstrating their high imbalance – we also tried data

augmentation by invoking a metamorphic engine6 to generate variations for small

5https://kaggle.com/datasets/amester/malflow
6https://hub.docker.com/repository/docker/attilamester/pymetangine
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Figure 5.5: Family distribution in the datasets, and top families making up 80% of
the data, used for training CNNs on instruction images.

families, yielding no significant improvement.

5.3.7 Results

We used Python3.8 with Radare2 5.8.8, and a GPU server with two RTX 2080 Ti

graphics cards. Table 5.3 shows the result of the best models, with ResNet18 achiev-

ing the highest F1 score. One can observe that larger images perform better than

the smaller 30 × 30 ones, due to the amount of information they contain. We can

formulate, that the best F1 score achieved by these models is 0.887, performed by a

ResNet18 on 100 × 100 images, using a batch size of 20 images, on the BODMAS

dataset, and similarly on the IBD dataset as well. On the MalImg dataset, the winner

was still a ResNet18 model, now with 0.744 F1 score. Similar results have been ob-

tained on the BODMAS with hex dump images – concluding that the files’ structure,
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data section and such other “noise” is still useful for family classification. Similarly,

the information encapsulated in this “noise” coupled with its correlation with actual

family labels (Chapter 6) is probably the reason why hex dump image-based classi-

fication on MalImg yields 0.98 accuracy [Nataraj et al., 2011] compared to the much

lower score of only 0.72 with the instruction-based images.

5.3.8 Comparison with the EMBER baseline

The EMBER [Anderson and Roth, 2018] contains the aggregation of virtually all the

static features from a PE file, such as header, section, import and export information7.

Since our experiments first targeted the BODMAS [Yang et al., 2021] which also

contains the EMBER features, a good comparison metric of our call graph instruction-

based image classification model was to transform the images into vectors, by mea-

suring the instruction mnemonic distribution, regarding 2019 mnemonics.

Based on various linear models (decision tree, random forest and SVM classifier),

trained both on full datasets and filtered ones (containing only non-packed files),

we conclude that packed files distort the classification performance in the case of

mnemonic histogram model, but not in the case of EMBER features, which contains

other binary file-based features as well. Hence, we formulated our hypothesis that

packers may be correlated with malware families – confirmed in Chapter 6.

5.4 Conclusions

This chapter presented the role of supervised machine learning in the context of

malware family classification. We presented a GCN-based approach to classify

malware, using static features based on the call graph of a PE [Mester, 2020,

Mester and Bodó, 2021]. The other method presented is about transforming the

static call graph of a PE into an image and utilizing a CNN for classification

[Mester et al., 2025] – presented at NSS 20248. Another contribution is the IBD

dataset9, published on Kaggle10 – containing Radare2 disassembled call graphs of

the samples from IBD, MalImg and BODMAS, as well as other information such as

packer, family, instruction distribution, and the encoded RGB images.

7https://github.com/elastic/ember
8https://nsclab.org/nss-socialsec2024/papers.html
9https://github.com/attilamester/malflow

10https://www.kaggle.com/datasets/amester/malflow
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Chapter 6

Packers and malware families

This chapter explores the impact of using packers on executable files, in the context of

static malware analysis. We discover an interesting correlation between packer tools

and malware families within the analyzed datasets.

Packing executable files has no malicious intent per-se – originally, it was aimed

at reducing disk space usage of executables. It achieves this by compressing the file’s

content, and decompressing it during runtime – thus, limiting static analysis meth-

ods. As mentioned in [Aghakhani et al., 2020, Mantovani et al., 2020], a significant

percentage of samples are packed – also confirmed by our experiments, see Table 6.1.

6.1 Analyzing packed samples

Packed samples may have a negative effect on a classifier based on static features,

since its binary code does not reflect the payload’s code [Aghakhani et al., 2020,

Mantovani et al., 2020] – as we suspected in Section 5.3.8. Therefore, we examined

whether correlation exists between packed samples and their family. The correlation

was measured using the Cramér’s V [Sheskin, 2000] association score between three

nominal variables: samples’ family, packed status and packer, as shown in Table 6.2.

6.2 Conclusions

This chapter investigated the impact of packers on the classification performance

of our proposed model in Section 5.3, and the EMBER vector. We have shown

that there is a high correlation between families and packers in three datasets, Mal-
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Total Packed UPX Petite ASPack DxPack MPRESS PEComp

BODMAS 57 293 18 688 (33%) 9 676 3 795 1 771 1 654 1 174 580
MalImg 9 458 1 703 (18%) 1 686 – – – – 4
IBD 18 756 2 195 (12%) 424 159 111 19 214 909

Table 6.1: Packer statistics obtained by DIE.

BODMAS MalImg IBD

Family – Packed 0.755 0.981 0.736
Family – Packer 0.547 0.590 0.525

Table 6.2: Cramér’s V association between malware family, packed status, and packer.
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Figure 6.1: Distribution of families for each packer used in BODMAS.

Img, BODMAS and IBD, which span across nearly 15 years and demonstrate match-

ing family-packer distribution in numerous cases – e.g. family agent tends to be

found non-packed in both BODMAS and IBD, while upatre samples are generally

not packed, but if packed, then mostly by mpress or petite. Figure 6.1 shows some

interesting cases – aspack is predominantly used to pack benjamin and ircbot families,

while petite is used to pack ganelp and wacatac families – in both cases, in ≈ 75% of

the samples.

These relevation and can be used as a starting point for further research in this

area – since packers can be determined in a relatively programmatic manner, this can

be help in narrowing down the potential pool of families to be assigned to the sample.

27



Chapter 7

Conclusions and future directions

This thesis contributed to the field of malware analysis and attribution (i.e. classifi-

cation) by exploring various approaches in the literature, providing a comprehensive

examination of the techniques and features used to classify malware into families.

Each chapter addresses a different method applicable in malware family classifica-

tion, each of them building on the idea of extracting information from the static call

graph of an executable, obtained either with IDA or Radare2 disassembly tools.

Chapter 2 introduces key domain-specific concepts, including types of malware,

methods for analysis, and important tools and features essential for investigating ma-

licious files. Chapter 3 focuses on the prominent disassembler tools IDA and Radare2,

revealing their scripted functionalities for generating static call graphs. The detailed

comparison of call graphs generated by these tools provided valuable insights into

their relative strengths and applicability for malware analysis tasks. We also moti-

vate the use of Radare2 in our research due to its fast and reliable python bindings,

which facilitate the automation of complex analysis tasks.

Chapter 4 and Chapter 5 present several methodologies for malware family classi-

fication – the former uses unsupervised learning techniques, while the latter employs

supervised learning. We present a method to cluster malware samples based on

locality-sensitive signatures extracted from their call graph. These signatures will

generalize the behavior of the sample, being based on the graphs’ instructions as well

as structure. The clustering is done using community detection algorithms, which are

able to group similar samples together. The second approach uses supervised learn-

ing to classify malware samples into families. We use graph convolutional networks

to learn the topology of the call graph, and then classify the samples using a fully
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connected neural network. We also transform the call graphs into images, and apply

several state-of-the-art convolutional neural network models to classify the samples.

Both approaches have shown high accuracy in classifying malware samples. Future

directions for these approaches include the extension of the locality-sensitive hashing

method to include more features from the call graph. Another direction is to analyze

the robustness of the graph convolutional network model built on the call graph to

adversarial attacks, and compare it with other benchmark models, such as the EM-

BER feature vector. For this analysis however, generating the adversarial samples

will be the most challenging part.

Chapter 6 addressed the impact of packers on malware analysis, revealing a strong

correlation between the packer used to obfuscate a malicious file and its associated

malware family. By analyzing three extensive datasets spanning nearly two decades,

we provided a longitudinal perspective on the enduring relationship between packers

and malware families, offering valuable insights into this area. Future work is needed

to determine reliable methods for detecting packers, as well as to explore the potential

for using packer information to enhance malware classification models.

This thesis advances the field of malware analysis by presenting innovative ap-

proaches to malware classification, specifically on the level of feature extraction. The

methods presented in this thesis have shown high accuracy in classifying malware

samples, and can be used to be integrated into malware analysis frameworks. Ex-

isting state-of-the-art datasets, BODMAS and MalImg are analyzed by the methods

presented in this thesis, and the processed data is published on Kaggle1 to enhance

the transparency of our work and facilitate further research in the field. Our code

processing the static call graph of an executable – a core feature used in this thesis –

is also publicly available on Github2.

1https://www.kaggle.com/datasets/amester/malflow
2https://github.com/attilamester/malflow
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