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Introduction

At the beginning of the last century (in 1925), Marston Morse [51], [52], [53] has
initiated the study of critical points, a starting point for the Morse theory, a fundamental
technique for investigating the topology of a smooth manifold, ([35], [44]). The development
of the Morse theory over the years has led to circle-valued Morse functions, that is, C∞

functions with values in S1 having only non-degenerate critical points ([45], [56]).
The study of such functions was initiated by S.P. Novikov in 1980 ([54], [55]). Many

other have developed the circle-valued Morse theory, a new branch of the Morse theory;
we refer to M. Farber [32], [33], A. Ranicki [61], A. Pajitnov [56].

This paper is naturally divided into five chapters which will be described in the lines
to come.

First chapter contains four sections and has a monographic character. The main pur-
pose of this chapter is to introduce the basic notions and results that will be used in the
paper. We follow here the excellent books of Y. Matsumoto [48], G. Cicortaş [27], J. Milnor
[49], D. Andrica [3], R. Bott [23], [24], M. Agoston [1], J. Lee [44].

Chapter 2 is divided into four sections and is devoted to a brief presentation of circle-
valued Morse theory. This chapter is based on the following papers of A. Pajitnov [56],
M. Farber [32], M. Hutchings [40], S. Maksymenko [45], D. Andrica [3], R. Miron [50], M.
Hirsch [39].

Chapter 3 aims to present our results regarding the circular ϕ-category of a manifold,
[15]. Also, we present some results concerning the Morse-Smale characteristic for real Morse
functions, following the papers of D. Andrica [3], [4], G. Rassias [62], B. Doubrovine [30],
D. Andrica, D. Mangra, C. Pintea [15].

In Chapter 4 we present our results in the study of the Morse-Smale characteristic for
circle-valued Morse functions, following the papers of D. Andrica, D. Mangra [12], [13]
and D. Andrica, D. Mangra, C. Pintea [14].

Chapter 5 has a monographic character and it is devoted to the presentation of the
Morse-Novikov inequalities for circle-valued functions, following papers [32], [56], [61].

I am grateful to my scientific advisor, Prof. Dr. Dorin Andrica for his valuable advice,
for significant support during the preparation of this paper, for guidance, for patience.

I am indebted to Associate Professor Dr. Cornel Pintea for constant support and for
discussions which were helpful in writing this paper.

I would also like to thank to all members of Babeş-Bolyai University Department of
Geometry for their useful remarks and helpful suggestions.
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Chapter 1

Basic Aspects of Morse Theory

This first chapter aims to present the basic notions that are useful throughout the
paper and it is naturally divided into four sections. First section presents Morse theory
elements on finite-dimensional manifolds; we refer only at smooth manifolds ([49]). In this
context, we define the notion of critical point, critical value, degenerate critical point, non-
degenerate critical point, Morse function, ([23], [24]). Moreover, we present some examples
of Morse functions and their properties, ([2], [27]). Section 1.2 is an introduction to Morse
theory on surfaces and handle decomposition of a manifold. The last two sections are
devoted to a brief presentation of a few results concerning the existence of Morse functions
and Morse inequalities.

1.1 Morse theory for finite-dimensional manifolds

Let M and N be two smooth manifolds of dimension m respectively n and let f : M →
N be a smooth function. Recall that for a point x ∈M the rank of f at x is

rankxf = rank d(ψ ◦ f ◦ ϕ−1)(ϕ(x)) = rankJ(ψ ◦ f ◦ ϕ−1)(ϕ(x)) ≤ min{m,n},

where (U,ϕ) is a local chart at x on M and (V,ψ) is a local chart at f(x) on N .
If (U,ϕ) = (U, x1, . . . , xm) and f = (f1, . . . , fn) we can write

rankxf = rank

(
∂f i

∂xj
(ϕ(x))

)

i=1,n,j=1,m

= dim Im(df)x.

Definition 1.1.1 A point x ∈M with the property that rankxf = min{m,n} is called a
regular point of f . Otherwise, the point x is a critical point of f .

If M is an m-dimensional manifold without boundary and f : M → R is a smooth
function, a point p0 ∈M is called a critical point of f if

∂f

∂x1
(p0) = 0,

∂f

∂x2
(p0) = 0, . . . ,

∂f

∂xm
(p0) = 0

where (x1, x2, . . . , xm) is a local coordinate system about p0.
A real number c, such that f(p0) = c, is called a critical value of f for a critical point

p0 of f .
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We denote by C(f) = {p ∈ M : p is a critical point} the set of all critical points of f
and by B(f) = f(C(f)), the bifurcation set of the smooth function f .

If p /∈ C(f) then p is a regular point of f . A number c ∈ B(f) is called critical value
of f . If c /∈ B(f), then c is called regular value of f .

Remark 1.1.1 1. The critical set C(f) is closed in M .
2. The bifurcation set B(f) is closed in R.

Theorem 1.1.1 (Sard’s theorem) The set of critical values B(f) of a smooth function
f : M → Rm has measure zero in Rm.

Proof. See [27] or [48].

Proposition 1.1.1 ([48]) The definition of a critical point does not depend on the choice
of the local coordinate system.

The degenerate and non-degenerate critical points of a function defined on an m-
dimensional manifold are defined using the Hessian matrix.

If detHf (p0) 6= 0, then p0 is called a non-degenerate critical point.
If detHf (p0) = 0, then p0 is a degenerate critical point.

Definition 1.1.2 A smooth function f : M → R is a Morse function if all its critical
points are non-degenerate.

Proposition 1.1.2 Let M and N be two closed manifolds and let f : M → R and g :
N → R be Morse functions. Define a function F : M ×N → R by F = (A + f)(B + g),
where A and B are positive real numbers. The function F is a Morse function on M ×N .

Proof. See [48].

Theorem 1.1.2 (The Morse lemma for finite-dimensional manifolds) Let p0 be a
non-degenerate critical point of a function f : M → R. Then there exists a local coordinate
system (X1, . . . ,Xm) about p0 such that the local representation of f has the following form:

f = −X2
1 −X2

2 − . . .−X2
λ +X2

λ+1 + . . .+X2
m + f(p0).

Proof. See [48].

Definition 1.1.3 The number λ which appears in the above theorem is called the Morse
index of the non-degenerate critical point p0.

The Morse index verifies the inequality 0 ≤ λ ≤ m.
The non-degenerate critical points with index 0 are local minimum points and the

non-degenerate critical points with index m are local maximum points.
Some important results are obtained from Morse lemma.

Proposition 1.1.3 There exists a Morse function on any compact manifold.

Proposition 1.1.4 A non-degenerate critical point of a function f : M → R is isolated
in the critical set C(f).
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Proposition 1.1.5 Let M be a compact manifold and let f : M → R be a Morse function.
Then the critical set C(f) is finite.

Example 1.1.1 Let T2 ⊂ R3 be the 2-dimensional torus and let f : T2 → R, f(x, y, z) = z
be a smooth function (the height function on T2).

Then f is a Morse function with 4 critical points, all non-degenerate.

1.2 Morse functions on surfaces and handle decomposition

Theorem 1.2.1 If M is a closed surface and f : M → R is a Morse function with exactly
two non-degenerate critical points then M and the sphere S2 are diffeomorphic.

For the proof of this result we refer to the excellent book of J. Milnor [49].
The Morse function f : M → R takes a maximum value at the non-degenerate critical

point p0 in M and a minimum value at the non-degenerate critical point q0 in M . The
index of p0 is 2 and the index of q0 is 0.

Taking into account the Morse lemma, we can express the function f in a standard
form with a suitable coordinate system (x, y) about p0 and (X,Y ) about q0:

f =

{
−x2 − y2 + C (near p0)

X2 + Y 2 + c (near q0)

where C and c are the maximum and minimum values of f .
For a small enough real number ε, we denote by D(p0) the set of points in a neighbor-

hood of p0 such that C − ε ≤ f(p) ≤ C and by D(q0) the set of point in a neighborhood
of q0 such that c ≤ f(p) ≤ c+ ε.

Removing the interior of the setsD(p0) andD(q0) fromM one obtains a smooth surface
with boundary denoted by M0. The boundary of M0 is denoted by ∂M0. We obtain:

∂M0 = C(p0) ∪ C(q0) and int(M0) = M0 − ∂M0,

where C(p0) and C(q0) are the boundary circles of D(p0) and D(q0).

Proposition 1.2.1 ([48]) The surface M0 is diffeomorphic to the direct product of one
of the boundary circles and the unit interval [0, 1], thus we have M0

∼= C(q0) × [0, 1].
Since the boundary circle C(q0) and the unit circle S1 are diffeomorphic, one obtains that
M0

∼= S1 × [0, 1].

Proposition 1.2.2 ([48]) Consider two disks D0 and D1. If k : ∂D0 → ∂D1 is a diffeo-
morphism then k can be extended to a diffeomorphism K : D0 → D1.

Proposition 1.2.3 ([48]) Consider two disks D1 and D2 and a diffeomophism h : ∂D1 →
∂D2. Then, by pasting D1 and D2 along their boundaries by the diffeomorphism h, we
obtain a closed surface diffeomorphic to the two-dimensional sphere S2.

Lemma 1.2.1 ([48]) A Morse function f : M → R on a closed surface M has only a
finite number of critical points.
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Let M be a closed surface and let f : M → R be a Morse function.
We denote by Mt = {p ∈ M | f(p) ≤ t}, t ∈ R, the set of level t of M , consisting in

all points at which f takes values less or equal than t.

Lemma 1.2.2 Let f : M → [a, b] be a Morse function, where a, b ∈ R and a < b. If there
is no critical value of f in the interval [a, b] then Ma and Mb are diffeomorphic.

Proof. See [3], [23].
Let f : M → R be a Morse function such that C(f) is finite

f(pi) = ci.

Assume that f(p1) < f(p2) < . . . < f(pn) ⇒ c1 < c2 < . . . < cn.
Consider t an arbitrary parameter such that if t < c1 then Mt = ∅.
If t > c1, the index of p0 is 0, c1 is the minimum value of f , thus Mt = D2. This disk

which corresponds to the critical point of index 0 is called 0-handle. The process continues
and every time t passes a critical value ci, a new 0, 1 or 2-handle is attached, depending
on the index of the corresponding critical point. The last critical value cn corresponds to
a 2-handle.

Theorem 1.2.2 Let M be a closed surface and let f : M → R be a Morse function. The
surface M can be described as a finite union of 0, 1 or 2-handles.

Proof. See [48].

1.3 The existence of Morse functions

We use the notion of closed manifold, meaning a compact manifold without boundary.

Lemma 1.3.1 If Rm = {(x1, . . . , xm)} is the Euclidean space of dimension m, U is an
open subset of Rm and f : U → Rm is a smooth function on U then

g(x1, . . . , xm) = f(x1, . . . xm) − (a1x1 + . . .+ amxm)

is a Morse function, for a1, . . . , am ∈ R.

The proof of this result can be found in paper [48].
For ε > 0 we say that f is a (C2, ε)-approximation of g on K ⊆ Rm if for any point

p in K, the following relations hold:

1. |f(p) − g(p)| < ε

2.

∣∣∣∣
∂f

∂xi
(p) − ∂g

∂xi
(p)

∣∣∣∣ < ε, i = 1, 2, . . . ,m

3.

∣∣∣∣
∂2f

∂xi∂xj
(p) − ∂2g

∂xi∂xj
(p)

∣∣∣∣ < ε, i, j = 1, 2, . . . ,m.

We cover the manifoldM with a finite number of coordinate neighboorhoods U1, . . . , Uk

and for every i = 1, . . . , s, we choose a compact set Ki in Ui such that

M = K1 ∪ . . . ∪Ks.

The compact sets Ki cover M .
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Definition 1.3.1 We say that a function f : M → R is a (C2, ε)-approximation of a
function g : M → R if f is a (C2, ε)-approximation of g on Ki, for i = 1, . . . , s.

The next results were proved by Y. Matsumoto ı̂n [48].

Lemma 1.3.2 If K is a compact subset of an m-dimensional manifold M and g : M → R

is a function with no degenerate critical point in K, then for a small enough number ε > 0,
any (C2, ε)-approximation f of g has no degenerate critical point in K.

Theorem 1.3.1 (The existence of Morse functions) Let M be a closed m-
dimensional manifold and let g : M → R be a smooth real function defined on M . Then
there exists a Morse function f : M → R which is an approximation of g.

1.4 Morse inequalities

We will follow paper [27].

Theorem 1.4.1 Let f : M → R be a Morse function such that the compactness conditions
are satisfied. Consider B[f ]∩ (a, b) = {c} and Cc[f ] = {p1, p2, . . . , pr}, the critical point pi

having the index ki and the coindex li, i = 1, r. Then Mb is obtained from Ma by disjoint
attaching of handles of the type (k1, l1), . . . , (kr, lr).

There is a very important connection between the topology of a manifold M and the
critical points of a function f : M → R. This connection can be described in terms of
some inequalities (Morse inequalities).

Denote by H∗(X,A) = H∗(X,A;F ) the relative homology with coefficients in F .

Definition 1.4.1 Let Y be a closed subspace of a space X and let G : Dk → X be a
continuous function, G(Dk) = ek. We denote X = Y ∪g e

k and we say that X is obtained
from Y by attaching a k-cell with the attaching map g = G|Sk−1 , if:

i. X = Y ∪ ek
ii. G|intDk is an homeomorphism on ek \ Y
iii. g applies Sk−1 on ∂ek = ek ∩ Y .

G is called the characteristic map of the attaching.

Proposition 1.4.1 If X is obtained from Y by attaching a k-cell then

Hl(X,Y ) = Hl(e
k, ∂ek) = Hl(D

k, Sk−1) =

{
F, if l = k

0, otherwise.

Proof. See [27].
Let K be a convex subset of Rn and let A be a closed subset of K. If r is a retract of

K on A, then ρ(x, t) = (1 − t)x+ tr(x) is a strong deformation retract of k on A.
It is obvious that the set (0 × Dk) ∪ (Dl × Sk−1) is a strong deformation retract of

Dl ×Dk. Indeed, Dl ×Dk being a convex of Rl × RK , it is a sufficient to define a retract
r : Dl×Dk → (0×Dk)∪ (Dl ×Sk−1). We define r(0, y) = (0, y), and for x 6= 0 we consider

r(x, y) =





(
0, 2‖y‖

2−‖x‖

)
, if ‖ y ‖≤ 1 − ‖x‖

2(
(‖ x ‖ +2 ‖ y ‖ −2) x

‖x‖ ,
y

‖y‖

)
, otherwise.
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Theorem 1.4.2 Let N and P be two smooth manifolds with boundary. If N is obtained
from P by attaching a handle of the form (k, l), then P ∪g e

k is a strong deformation
retract of N .

In particular,

Hl(N,P ) =

{
F, if l = k

0, otherwise.

Proof. See [27].
In the case of the disjoint attaching of (k1, l1), . . . , (kr, lr) handles one obtains the

disjoint attaching of ek1 , . . . , ekr cells.
Consider a family Xi, i = 0, n of closed subspaces of X such that

A = X0 ⊆ X1 ⊆ . . . ⊆ Xn ⊆ X

and Xi+1 is homeomorphic toXi∪gi
eki . The pair (X,A) is called a relative spheric complex

and the family of the attaching maps is called a cell decomposition of the pair (X,A).
If Xi+1 is homotopic equivalent with Xi ∪gi

eki , then the pair (X,A) is called an
homotopic spheric complex (homotopic cell decomposition).

We denote by νi the number of ek0 , . . . , ekn−1 cells, with kj = i. Thus νi is the number
of the cells of dimension i that is attached to A in order to obtain X.

Let f : M → R be a Morse function. For 0 ≤ k ≤ m we define the Morse numbers

µk(f) = the number of critical points of index k.

For a < b we define

µk(f, a, b) = the number of critical points of index k in f−1(a, b).

Theorem 1.4.3 Let M be a complete riemannian manifold, let f : M → R be a Morse
function which satisfies the Palais-Smale condition on M and let a < b be regular values
of f .

Then (Mb,Ma) is a homotopic spheric complex. Actually, (Mb,Ma) admits an homo-
topic cell decomposition for which the number νk of the cells of dimension k is µk(f, a, b).

Corollary 1.4.1 Any smooth compact manifold M is an homotopic spheric complex. For
any Morse function f : M → R there exists a homotopic cell decomposition of M such
that νk = µk(f).

Consider admissible pairs of topological spaces (X,A), in other words a homotopic
spheric complex (X,A).

For a pair (X,A) and a commutative field F we define the Betti numbers

bk(X,A) = dim Hk(X,A;F )

and the Euler-Poincaré characteristic of the pair (X,A),

χ(X,A) =
∑

k

(−1)kbk(X,A).
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Let

Sk(X,A) =
k∑

m=0

(−1)k−mbm(X,A).

The following equalities hold:

S0 = b0

S1 = b1 − b0 = b1 − S0

. . .

Sk = bk − bk−1 + . . . ± b0 = bk − Sk−1

χ = b0 − b1 + b2 − . . .

Proposition 1.4.2 The Euler-Poincaré characteristic is additive and Sk is subadditive.
If X0 ⊆ X1 ⊆ . . . ⊆ Xn and any pair (Xi,Xi−1) is admissible, then we have

Sk(Xn,X0) ≤
n∑

i=1

Sk(Xi,Xi−1)

χ(Xn,X0) =

n∑

i=1

χ(Xi,Xi−1).

Proof. See [27].

Theorem 1.4.4 Let (X,A) be an homotopic spheric complex which admits a homotopic
cell decomposition with νk cells of dimension k. Then the following inequalities hold:

b0 ≤ ν0

b1 − b0 ≤ ν1 − ν0

. . .

bk − bk−1 + . . .± b0 ≤ νk − νk−1 + . . .± ν0.

Moreover, we have

χ(X,A) =
∑

k

(−1)kbk =
∑

k

(−1)kνk.

Proof. See [27].

Corollary 1.4.2 Let M be a complete riemannian manifold, let f : M → R be a Morse
function which satisfies the Palais-Smale condition on M and let a < b be regular values
of f . Let µk = µk(f, a, b) and bk = bk(Mb,Ma). Then the following relations hold:

1. More inequalities:

b0 ≤ µ0

b1 − b0 ≤ µ1 − µ0

. . .

bk − bk−1 + . . .± b0 ≤ µk − µk−1 + . . .± µ0
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2. Euler formula:

χ(X,A) =
∑

k

(−1)kbk =
∑

k

(−1)kνk

3. Weak Morse inequalities: bk ≤ µk.
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Chapter 2

Circle-valued Morse Theory

This chapter contains basic notions of circle-valued Morse theory. Most of the notions
that were introduced in Chapter 1 are kept for circle-valued functions, ([40], [56]).

2.1 Circle-valued Morse functions

Let Mm be a manifold without boundary and let f : M → S1 be a smooth function.
The circle

S1 = {(x, y) ∈ R2 : x2 + y2 = 1}
is a 1-dimensional submanifold of R2 and it is endowed with the corresponding smooth
structure.

For a point x ∈M we choose a neighborhood V of f(x) in S1 diffeomorphic to an open
interval of R. Denote U = f−1(V ). The function f |U identifies with a smooth function
from U to R.

Definition 2.1.1 A smooth circle-valued function f : M → S1 is a Morse function if
every critical point of f is non-degenerate.

Denote by C(f) the set of all critical points of f and by Ck(f) the set of all critical
points of index k of f , k = 0, . . . ,m.

Consider M a compact manifold. Then the critical set C(f) is finite and we denote
by µ(f) the cardinality of C(f) and by µk(f) the cardinality of Ck(f), k = 0, . . . ,m. It is
obvious that

µ(f) = µ0(f) + ...+ µm(f).

It is well-known that the quotient space R/Z is homeomorphic to S1 by the homeo-
morphism f : R/Z → S1, where f(x̂) = e2πix. Thus we can identify the circle S1 with
the quotient R/Z and so circle-valued functions can be considered as multivalued real
functions, ([40], [56]).

We will consider a covering space of the domain of definition such that the function
becomes single-valued on the covering.

Consider the universal covering of the cirle

exp : R → S1, exp(t) = e2πit.

14



The exponential map exp : R → S1, defined by exp(t) = e2πit is a covering projection,
thus a local homeomorphism, ([50]).

The space R together with the exponential map exp is the covering space of the circle
S1.

The structure group of the covering is the subgroup Z ⊂ R acting on R by translations.
We use the multiplicative notation for Z and denote by t the generator which corre-

sponds to −1 in the additive notation.
For a circle-valued Morse function f : M → S1 and M a covering space of M , let

π : M → M be the infinite cyclic covering induced from the universal covering of the
circle exp : R → S1, by function f .

By the definition of the induced covering we have a function f : M → R, such that the
next diagram commutes.

M
f

- R

M

π

? f
- S1 = R/Z

exp

?

In some cases M can be considered as a subset of M × R. Function f lifts to a Z-
equivariant Morse function f : M = f∗R → R on the infinite cyclic covering, ([40]).

The function f is a Morse function if and only if f is a Morse function. The function
f is equivariant with respect to the action of Z on M and R, thus we have the relation
f(tx) = f(x) − 1.

The classical Morse theory can not be applied here because the domain of definition
of f is not compact and generally the number of critical points of f is not finite.

The solution to correct this is to consider the restriction of f to the fundamental
domain of M with respect to the action of the group Z.

For a regular value a ∈ R of f we denote the set W = f
−1

([a − 1, a]) a compact
cobordism, such that

∂1W = f
−1

(a) and ∂0W = f
−1

(a− 1).

The set W is called the fundamental cobordism.
For the Morse function f |W : W → [a − 1, a], the cobordism W can be described as

follows: consider α = exp(a) ∈ S1, thus α is a regular value of f and V = f−1(α) is a
smooth submanifold of M . If M is cut along V , one obtains the cobordism W with both
components of its boundary diffeomorphic to V .

For more details regarding circle-valued functions we refer to paper [56].

2.2 Morse forms

Definition 2.2.1 If M is a closed smooth manifold, then a 1-form ω on M

ω : M → T ∗(M),

is a smooth section of the cotangent bundle π∗ : T ∗(M) →M such that

ω ◦ π∗ = 1M .
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Denote by Ω1(M) the set of 1-forms on M . In local coordinates x1, x2, . . . , xm, in an
open subset U ⊂M , any 1-form ω is given by

ω = a1dx1 + a2dx2 + . . . + amdxm,

where a1, . . . , am ∈ C∞(U).
The exterior derivative d is given by

d : Ω0(M) → Ω1(M), f → df,

where Ω0(M) = C∞(M) and

dω =

m∑

i=1

dai ∧ dxi =

m∑

i,j=1

∂ai

∂xj
dxj ∧ dxi

=
∑

i<j

(
∂aj

∂xi
− ∂ai

∂xj

)
· dxi ∧ dxj.

A 1-form ω is called closed if dω = 0.

Remark 2.2.1 The condition that ω is a closed form can be written as

∂aj

∂xi

=
∂ai

∂xj

, for any i, j = 1, . . . ,m.

Definition 2.2.2 A point p ∈M such that ωp = 0 is called a zero of the 1-form ω.
We define the set of zeros of ω by

Z(ω) = {p ∈M : ωp = 0}.

Remark 2.2.2 If ω is a closed 1-form (dω = 0), then there exists a smooth function
fU : U → R such that ω|U is an exact 1-form, ω|U = dfU , for any simply connected
domain U ⊂M . The zeros of ω in U are the critical points of fU , ([32]).

Definition 2.2.3 A point p ∈ Z(ω) ∩ U is a non-degenerate zero of the form ω if p is
a non-degenerate critical point of any function fU : U → R, which satisfies the relation
dfU = ωU ([39]).

Definition 2.2.4 Let ω ∈ Ω1(M):

1. The closed 1-form ω is called Morse form if every zero of ω is non-degenerate.

2. If ω is a Morse form, p ∈ Z(ω), we say that p has the Morse index k, (0 ≤ k ≤ n)
if p is a critical point of index k of fU .

Example 2.2.1 Consider M = R2 \ {(0, 0)}, ω ∈ Ω1(M), where ω is the angular 1-form
described by

ω =
−y

x2 + y2
dx+

x

x2 + y2
dy.

Denote by ω|S1 = dθ ∈ Ω1(S1). Note that dθ is local exact on M but is not exact, thus
we have

Z(dθ) = ∅.
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Let f : M → S1 be a circle-valued function. Then f induces the function f∗ : Ω1(S1) →
Ω1(M), where η = f∗(dθ) is a closed 1-form in Ω1(M).

We present now some general notions and results regarding closed 1-forms.
The de Rham cohomology group, denoted byH1

deRham(M), is by definition the quotient
of the space of all 1-forms by the subspace of the exact forms.

One obtains the isomorphism:

H1(M,R) ≈ H1
deRham(M)

between the de Rham cohomology group and the singular cohomology group with real
coefficients. An important characteristic of closed 1-forms is the de Rham cohomology
class.

For a closed 1-form, its image in the group H1(M,R) =
Kerd1

Imd0
,

Ω0(M)
d0

- Ω1(M)
d1

- Ω2(M)

is called the de Rham cohomology class of ω and it is denoted by [ω].
It vanishes, [ω] = 0, if and only if ω is exact (ω ∈ Imd0).
Circle-valued functions provides a lot of examples of closed 1-forms.
The 1-form dx on R1 is invariant with respect to the action of Z on R and defined a 1-

form on S1 = R/Z, denoted also by dx. The de Rham cohomology class of dx is the image
of the generator t ∈ H1(S1,Z) with respect to the inclusion map H1(S1,Z) →֒ H1(S1,R).

If f : M → S1 is a circle-valued smooth function, denote df = f∗(dx).
Then df is a closed 1-form on M , called the differential of f .
The form df is a Morse form if and only if f is a circle-valued Morse function.

Proposition 2.2.1 ([56]) The homology class of a C∞ circle-valued Morse function f :
M → S1 is determined by the de Rham cohomology class [df ] of its differential.

Lemma 2.2.1 ([56]) If ω ∈ Ω1(M) is a closed 1-form, then the following relations are
equivalent:

i. ω = df where f : M → S1 is a C∞ function;
ii. [ω] is integral.

Let M be a manifold and ξ ∈ H1(M,R). Denote by Lξ the set of all closed 1-forms ω
such that [ω] = ξ. A closed 1-form ω on M is regular on U ⊂ M (or U -regular) if every
zero p ∈ U of ω is non-degenerate.

Theorem 2.2.1 ([56]) If M is a manifold, ξ ∈ H1(M,R) and U ⊂M is a compact subset
of M then the set of all regular 1-forms on U is open and dense in Lξ.

Theorem 2.2.2 ([56]) If M is a closed manifold then the set of all Morse functions
f : M → R is open and dense in the set of all C∞ functions.

2.3 Gradients of Morse functions

Let M be a smooth manifold and let v be a vector field on M . Any C1 function
γ : I →M defined on an open interval I ⊂ R such that

γ′(t) = v(γ(t)) for any t ∈ I
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is called an integral curve of v.
Let M be a manifold without boundary and let f : M → R be a Morse function.

Consider v a C∞ vector field on M such that

(2.3.1) f ′(x)(v(x)) > 0, for any x /∈ C(f).

The function φ(x) = f ′(x)(v(x)) vanishes on C(f) and it is strictly positive onM\C(f).
Every point p ∈ C(f) is a point of local minimum of φ and φ′(p) = 0.

Definition 2.3.1 A vector field v is called f -gradient if the condition (2.3.1) holds and
every point p ∈ C(f) is a non-degenerate minimum of

φ(x) = f ′(x)(v(x)),

thus the second derivative φ′′(p) is a non-degenerate bilinear form on Tp(M).

Denote by G(f) the set of all f -gradients.

Lemma 2.3.1 ([56]) If v is an f -gradient and p ∈ C(f) then v(p) = 0.

Definition 2.3.2 Let M be a manifold without boundary and let f : M → R be a Morse
function. A C∞ vector field v is called a gradient-like vector field for f if the following
conditions are satisfied:

1. for every critical point p of f we have the relation f ′(x)(v(x)) > 0;

2. for every critical point p of f , with index k, there exists a Morse chart ψ : U → V ⊂
Rm for f at p such that

ψ∗(v)(x1, . . . , xm) = (−x1, . . . ,−xk, xk+1, . . . , xm).

Lemma 2.3.2 ([56]) A gradient-like vector field for f is an f -gradient.

Definition 2.3.3 The riemannian gradient of a function f with respect to a rieman-
nian metric 〈·, ·〉 on M is defined by

〈grad f(x), h〉 = f ′(x)(h),

where x ∈M and h ∈ Tx(M).

The following results were proved by A. Pajitnov in [56].

Proposition 2.3.1 Any riemannian gradient is an f -gradient.

Lemma 2.3.3 If p is a critical point of f and v is a riemannian gradient of f with respect
to a riemannian metric on M , then

〈v′(p)h, k〉 = f ′′(p)(h, k)

where h, k ∈ Tp(M).

Definition 2.3.4 We say that a vector field v is a weak gradient for f if for any x /∈
C(f), we have f ′(x)(v(x)) > 0.

Lemma 2.3.4 If v is a weak gradient for f and p ∈ C(f) then v(p) = 0.
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2.4 Gradients of Morse forms

In this section we present some properties for gradients associated with closed 1-forms,
([32], [56]).

Let M be a closed smooth manifold and let 〈·, ·〉 be a riemannian metric on M . Any
1-form ω on M determines the gradient vector field grad(ω) on M , defined by

〈grad(ω)p, h〉 = ω(h),

for any vector h ∈ Tp(M), called the riemannian gradient of ω.
In local coordinates we have:

ω =

n∑

i=1

ai(x)dxi

and the riemannian metric is given by the coefficients

gij(x) =

〈
∂

∂xi

,
∂

∂xj

〉
.

We can write:

grad(ω) =

n∑

j=1

bj(x)
∂

∂xj
, where bj(x) =

n∑

i=1

ai(x)g
ij(x).

Thus grad(ω) is a smooth vector field and the zeros of grad(ω) coincide with the zeros
of the form ω.

Definition 2.4.1 A smooth vector field X on M is called a gradient-like vector field
for a closed 1-form ω if the following conditions hold:

1. the function ω(X) > 0 outside the set of zeros of ω;

2. for any zero p ∈ M of ω, there exists a neigborhood U ⊂ M that contains p such
that ω|U = df , where f : U → R is a smooth function and the field X|U coincides
with the gradient field grad(f) with respect to some riemannian metric on U .

Let ω be a Morse form. Using the Morse lemma, one can construct a gradient-like
vector field X for ω such that for any zero p ∈ M of ω, there exists the local coordinate
x1, . . . , xn in a neighborhood U of p such that xj(p) = 0 and for any j = 1, n, the form
ω|U is equal with

ω = −
r∑

i=1

xidxi +

n∑

i=r+1

xidxi.

The field X|U can be written as:

X = −
r∑

i=1

xi
∂

∂xi

+
n∑

i=r+1

xi
∂

∂xi

.

Note that r is the Morse index for the zero p, ([32], [49]).
A systematic presentation of closed 1-forms can be found in paper [32].
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Chapter 3

The ϕF-category of a pair of

differentiable manifolds. Some

important examples of

ϕF-category

We present in this chapter the ϕF -category of a pair of differentiable manifolds, our
own results regarding the circular ϕ-category of a differentiable manifold and the Morse-
Smale characteristic of a differentiable manifold, following the papers of D. Andrica [3],
[4], G. Rassias [62], B. Doubrovine [30], D. Andrica, D. Mangra, C. Pintea [15].

3.1 The ϕF-category of a pair of manifolds

Let M be a smooth manifold without boundary.
For a smooth real function f ∈ C∞(M), we denote by µ(f) the number of critical

point of f . Clearly, we have 0 ≤ µ(f) ≤ +∞.

Definition 3.1.1 The number ϕ(M) defined by

(3.1.1) ϕ(M) = min{µ(f) : f ∈ C∞(M)}

is called the ϕ-category of the manifold M .

This number was intensively studied by F. Takens [66] for the classes of closed manifolds
(compact and without boundary).

In this case the following inequalities hold

(3.1.2) cat(M) ≤ ϕ(M) ≤ m+ 1,

where cat(M) is the Lusternik-Schnirelmann category of M .
For two diffeomorphic manifolds M and N , ϕ(M) = ϕ(N), thus ϕ(M) is a differential

invariant of the manifold.
If M and N are two smooth manifolds without boundary then we have the relation

(3.1.3) ϕ(M ×N) ≤ min{dim(M) + dim(N) + 1, ϕ(M)ϕ(N)}.
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In [4] (see also [3], page 144), D. Andrica presents a generalization of this notion.
Let Mm, Nn be two smooth manifolds without boundary. If f ∈ C∞(M,N), we denote

by µ(f) = |C(f)| the cardinal number of the critical set of f .
Let F ⊆ C∞(M,N) be a family of smooth functions M → N .

Definition 3.1.2 The ϕF -category of the pair of manifolds (M,N) is

ϕF (M,N) = min{µ(f) : f ∈ F}.

It is obvious that 0 ≤ ϕF (M,N) ≤ +∞ and ϕF (M,N) = 0 if and only if the family F
contains immersions, submersions or local diffeomorphisms, according to m < n, m > n
or m = n, respectively.

If F = C∞(M,N), then ϕF (M,N) represents the ϕ-category of pair (M,N), simply
denoted by ϕ(M,N), and it was studied by D. Andrica and L. Funar in [10] and [11], C.
Pintea in [57], [58], and D. Andrica and C. Pintea in [16], [17].

Definition 3.1.3 Let (M,N) and (M ′, N ′) be two diffeomorphic pairs of manifolds. The
families F ⊆ C∞(M,N) and F ′ ⊆ C∞(M ′, N ′) are related (by diffeomorphisms) if

Dif f(N,N ′) F Dif f(M ′,M) = F ′,

where Dif f(N,N ′) and Dif f(M ′,M) represents the sets of all diffeomorphisms from N to
N ′ and from M ′ to M respectively.

More precisely, this definition shows that if λ ∈ Dif f(M,M ′), ψ ∈ Dif, f(N,N ′),
f ∈ C∞(M,N), f ′ ∈ C∞(M ′, N ′), satisfy f ′ = ψ ◦ f ◦ λ−1, in other words the following
diagram is commutative

M
f

- N

M ′

λ

? f ′
- N ′

ψ

?

then f ∈ F if and only if f ′ ∈ F ′.

Proposition 3.1.1 If the pairs (M,N) and (M ′, N ′) are diffeomorphic and families F ⊆
C∞(M,N) and F ′ ⊆ C∞(M ′, N ′) are related, then

ϕF (M,N) = ϕF ′(M ′, N ′).

Proof. See [3].
The above result shows that if the hypothesis of the Proposition are satisfied, then

ϕF (M,N) is a differential invariant of pair (M,N).
We present now some important particular cases for the family F .
1. Consider the case when N = R, the real line, and the family F is given by

F(M) = C∞(M,R), the algebra of all smooth real functions defined on M . In this situ-
ation ϕF (M,R) represents the ϕ-category of M and it is denoted by ϕ(M). As we have
mentioned before, the invariant ϕ(M) was first investigated by F. Takens. The effective
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computation of ϕ(M) is a difficult problem, ([4]). It is interesting to remark that we have
not an example of closed manifold Mm such that cat(M) < ϕ(M) and also the equality
cat(M) = ϕ(M) is proved only for some isolated classes of manifolds. To understand the
difficulty of the problem if cat(M) = ϕ(M) for every closed manifold let us look only to
the following particular situation: cat(M) = ϕ(M) = 2. From cat(M) = 2 one obtains
that M is a homotopic sphere. Taking into account the well-known Reeb’s result, from the
equality ϕ(M) = 2 is follows that M is a topological m-sphere. Therefore, the equality
cat(M) = ϕ(M) = 2 is equivalent to the Poincaré conjecture. According to the fact that
Poincaré conjecture was proved to be true, it follows that for any closed manifold with
cat(M) = 2 he have ϕ(M) = 2.

2. Let G be a compact Lie group which acts freely on the manifoldsMm and Nn. Recall
that the function f : M → N is invariant (G-equivariant) if for any g ∈ G and p ∈ M
we have f(gp) = f(p)(f(gp) = gf(p)). Consider F = C∞

G,I(M,N) the family of all smooth
G-invariant functions, and we obtain ϕF (M,N) = ϕG,I(M,N) the G-invariant ϕ-category
of pair (M,N). In an analogous way we can define the G-equivariant ϕ-category of the
pair (M,N), denoted by ϕG,E(M,N).

3.2 The circular ϕ-category of a differentiable manifold

We define, following paper D. Andrica, D. Mangra, C. Pintea [15], the circular ϕ-
category of a manifold M by

(3.2.1) ϕS1(M) = min{µ(f) : f ∈ C∞(M,S1)},

where S1 is the unity circle. Notice that we have the inequality ϕS1(M) ≤ ϕ(M).
Indeed, considering a function f ∈ C∞(M) with µ(f) = ϕ(M), then the function

f̃ = exp ◦f , where exp : R → S1 is the universal covering of the circle S1, satisfies
C(f̃) = C(f). Therefore, we obtain

ϕS1(M) ≤ µ(f̃) = µ(f) = ϕ(M).

According to this inequality and using the relation (3.1.2), it follows

(3.2.2) ϕS1(M) ≤ ϕ(M) ≤ m+ 1.

The main purpose of this section is to point out some classes of closed manifolds such
that ϕS1(M) ≤ ϕ(M).

3.2.1 Circle-valued functions and their converings

In this section we relay on the lifting properties of the covering maps to obtain infor-
mation on the size of critical sets of circular functions. The properties of covering maps
p : E →M , we have in mind, are:

1. The homomorhism p∗ : π(E) → π(M), induced by p at the level of fundamental
groups, is one-to-one.

2 The cardinality of the inverse images p−1(y) is independent of y ∈ M whenever E
is connected and it is equal to the index [π(M) : Im(p∗)], where p∗ is the group homo-
morphism p∗ : π(E) → π(M) induced by the projection p at the level of fundamental
groups.
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3. For every subgroup H of π(M), there exists a covering map q : EH →M such that
q∗(π(EH)) = H.

4. A necessary and sufficient condition for a continuous map f : X → M to be lifted
to a map f : X → E is the inclusion f∗(π(X)) ⊆ f∗(π(X)). In other words, there
exists a map f : X → E such that p ◦ f = f if and only if the following relation holds
f∗(π(X)) ⊆ f∗(π(X)).

Recall that the circular functions on a compact manifold whose fundamental group
is a torsion group are rather real valued functions as they all can be lifted to the
real line through the exponential covering map exp : R → S1, due to the triviality of
Hom(π(M),Z) = 0.

More precisely, we have:

Remark 3.2.1 Let M be a connected differential manifold. If Hom(π(M),Z) = 0, then
every circular map f : M → S1 can be lifted to a map f̃ : M → R through the exponential
covering map exp : R → S1. Indeed, since f∗ = 0 and exp∗ = 0, the existence of a lifting
f̃ : M → R which factors as f = exp ◦f̃ follows from property (4) in the above list. A class
of manifolds for which Hom(π1(M),Z) = 0 consists in those manifolds whose fundamental
group is a torsion group.

The following results were proved in paper D. Andrica, D. Mangra, C. Pintea [15].

Corollary 3.2.1 If m,n ≥ 2 are natural numbers, then

ϕS1(Sn) = ϕ(Sn) = 2 and ϕS1(RPn) = ϕ(RPn) = n+ 1.

Besides the manifolds having torsion fundamental groups, the group homomorphisms
of connected sums of such manifolds are still trivial whenever the terms of connected sums,
alongside the connected sums themselves, have dimension three or higher.

Proposition 3.2.1 If (G1, ·), . . . , (Gr, ·), (H, ·) are group and

f : G1 ∗ . . . ∗Gr → H

is a given group homomorphism, then

Im(f) ⊆ 〈Im(f ◦ i1) ∪ . . . ∪ Im(f ◦ ir)〉,

where ik : Gk → G1 ∗ . . . ∗Gr, k = 1, . . . , r are natural embeddings.
In particular, Hom(G1 ∗ . . . ∗Gr,H) = 0 whenever G1, . . . , Gr are torsion groups and

H is torsion free.

Corollary 3.2.2 If (G1, ·), . . . , (Gr , ·) are groups and f : G1 ∗ . . . ∗ Gr → Z is a given
group homomorphism, then Im(f) = gcd(mi1 , . . . ,mis)Z, where Im(f ◦ ij) = mjZ, for
j = 1, . . . , r and mi1 , . . . ,is 6= 0.

If m1 = . . . = mr = 0, f ◦ i1 = . . . = f ◦ ir = 0, then Im(f) = 0.
In particular, Hom(G1 ∗ . . . ∗Gr,Z) = 0 whenever G1, . . . , Gr are torsion groups.

Corollary 3.2.3 If Mn
1 , . . . ,M

n
r , n ≥ 3 are connected manifolds such that

π(M1), . . . , π(Mr) are torsion groups, then Hom(π(M1# . . .#Mr),Z) = 0.
In particular, if each of Mn

1 , . . . ,M
n
r , n ≥ 3 is either a real projective space or a lens

space, then Hom(π(M1# . . .#Mr),Z) = 0.
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Remark 3.2.2 The requirement n ≥ 3 in Corollary 3.2.3 is essential as the fundamental
groups of the compact orientable surfaces Σg = T 2# . . .#T 2 admit, in contrast with the
situation of torsion fundamental groups for the terms of the connected sums in Proposition
3.2.1, circular functions inducing onto group homomorphisms at the level of fundamental
groups.

Theorem 3.2.1 Let M be a compact differential manifold with abelian fundamental
group. Every continuous circular function f : M → S1 which cannot be lifted to any real
valued function via the exponential covering exp : R → S1, can be covered by a circular
function f : M → S1 such that π(M ) is torsion free and the induced group homomorphism
f∗ : π(M) → π(S1) = Z is onto.

More precisely, there are some covering maps p : M → M and q : S1 → S1 which
make the following diagrams commutative.

M
f

- S1

M

p

? f
- S1

q

?

π(M )
f∗
- π(S1) = Z

π(M)

p∗

? f∗
- π(S1) = Z

q∗

?

3.2.2 Manifolds satisfying ϕS1(M) = ϕ(M)

From relations (3.2.2) we have the relation ϕS1(M) ≤ ϕ(M), and from the following
example we can see that the inequality could be strict.

Consider the m-dimensional torus Tm = S1 × . . .× S1
︸ ︷︷ ︸

m times

and according to [3] (Example

3.6.16) we have ϕ(Tm) = m+ 1. On the other hand, the projection Tm → S1 is a trivial
differentiable fibration, hence it has no critical points, implying ϕS1(Tm) = 0.

This example can be incorporated in the following general observation.

Remark 3.2.3 For a closed manifold M we have ϕS1(M) = 0 if and only if there is a
differentiable fibrationM → S1. The existence of a differentiable fibrationM → S1 ensures
the equality ϕS1(M) = 0, as the fibration itself has no critical points at all. Conversely,
the equality ϕS1(M) = 0 ensures the existence of a submersion M → S1, which is also
proper, as its inverse images of the compact sets in S1 are obviously compact. Thus, by the
Ehresmann’s fibration theorem ([31] or [29] page 15) one can conclude that our submersion
is actually a locally trivial fibration.

Proposition 3.2.2 ([15]) Let M be a connected differential manifold. If Hom(π(M),Z) =
0, then ϕS1(M) = ϕ(M). In particular ϕS1(M) = ϕ(M) whenever M is connected and
simply-connected.

Corollary 3.2.4 ([15]) If m ≥ 2, then ϕS1(Sm) = ϕ(Sm) = 2 and ϕS1(RPm) =
ϕ(RPm) = m+1, where Sm denotes the m-dimensional sphere and RPm the m-dimensional
real projective space.
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Corollary 3.2.5 ([15]) If Mn
1 , . . . ,M

n
r , m ≥ 3, are connected manifolds such that

π(M1), . . . , π(Mr) are torsion groups, then

ϕS1(M1# . . .#Mr) = ϕ(M1# . . .#Mr).

In particular ϕS1(rRPn) = ϕ(rRPn), where rRPn stands for the connected sum
RPn# . . .#RPn of r copies of RPn.

Corollary 3.2.6 ([15]) If k, l,m1, . . . ,mk ≥ 2 are integers, then the following relations
hold:

1. ϕS1(Sm1 × . . .× Smk) = ϕ(Sm1 × . . .× Smk) = k + 1.
2. ϕS1(RPm1 × . . .× RPmk) = ϕ(RPm1 × . . .× RPmk) ≤ m1 +m2 + . . .+mk + 1.
3. ϕS1(L(7, 1) × S4) = ϕ(L(7, 1) × S4) = 5, where L(r, s) stands for the lens space of

dimensions 3 of type (r, s).
4. ϕS1(RPk × Sl) = ϕ(RPk × Sl) ≤ k + 2.

The following result is mentioned in the monograph [28] at page 221.

Lemma 3.2.1 If M and N are closed manifolds, then the following inequality holds

ϕ(M#N) ≤ max{ϕ(M), ϕ(N)}.

In particular ϕ(X#X) ≤ ϕ(X) for every manifold X.

Corollary 3.2.7 ([15]) Let Σg = T 2#T 2# . . .#T 2

︸ ︷︷ ︸
g times

be the closed orientable surface of

genus g and let Pg = RP2# . . .#RP2

︸ ︷︷ ︸
g+1 times

the closed non-orientable surface of genus g. Then

1. ϕS1(Σg) ≤ ϕ(Σg) = 3, g ≥ 1.
2. ϕS1(Pg) ≤ ϕ(Pg) = 3, g ≥ 0.

Corollary 3.2.8 ([15]) If k, l ≥ 2 are integers, then

ϕS1((Sk × Sl)# . . .#(Sk × Sl)) = ϕ((Sk × Sl)# . . .#(Sk × Sl)) = 3.

Open problem. Characterize all closed manifolds Mm with the property ϕS1(M) = 1.

3.3 The real Morse-Smale characteristic of a differentiable

manifold

Consider N = R and F = Fm(M) ⊂ C∞(M,R) the set of all Morse functions defined
on M . In this case one obtains ϕF (M,R) = γ(M), the Morse-Smale characteristic of
manifold M , an important invariant of M , intensively studied by many authors [62], [4].

An important case when the Morse-Smale characteristic can be computed in terms of
the topology of M is given by the situation when the manifold M is simply-connected
of dimension greater than five. This property was proved in the celebrated paper of S.
Smale ([65]). Efforts have been made to generalize Smale’s result to the case when M is
not simply-connected. For example, V.V. Sharko proved that still it is possible to compute
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the Morse-Smale characteristic of manifold M when π1(M) = Z, ([64]). But a complete
answer for general M is not known.

We define the numbers γi(M), i = 0, . . . ,m, by

γi(M) = min{µi(f) : f ∈ Fm(M)}.

Taking into account the monograph of B. Doubrovine [30] it follws

γ0(M) = γm(M) = 1.

It is easy to see that

γ(M) ≥
m∑

i=0

γi(M)

The numbers γ(M) and γi(M) are differential invariants of M .
Let N be a smooth manifold, let ψ : M → N be a diffeormorphism and let f : M → R,

g : N → R be two smooth functions such that the following diagram is commutative

N
ψ

- M

R
�

fg

-

thus g = f ◦ ψ.

Lemma 3.3.1 The following relation holds: C(f) = ψ(C(g)).

Lemma 3.3.2 With the above notations, if f ∈ Fm(M), then g ∈ Fm(N) and the corre-
sponding critical points via the diffeomorphism ψ have the same Morse index.

Theorem 3.3.1 If the manifolds M and N are diffeomorphic, then

γ(M) = γ(N), γi(M) = γi(N), i = 0, . . . ,m,

in other words the numbers γ(M) and γi(M) are differential invariants of the manifold.

Proof. See [3].

Theorem 3.3.2 Let Mm and Nn be two differentiable manifolds without boundary. The
following relations hold:

(i) γi(M) = γm−i(M), i = 0, . . . ,m (symmetry);
(ii) γ(M ×N) ≤ γ(M)γ(N) (submultiplicity);

(iii) γi(M ×N) ≤
∑

j+k=i

γj(M)γk(N), i = 0, . . . ,m+ n.

Proof. See [3].
In the paper of G. Rassias [63] one shows that γ(M) = 0 for any open smooth manifold.
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3.4 The computation of the real Morse-Smale characteristic

Let Mm be a smooth compact m-dimensional manifold without boundary, ∂M = 0. It
is well-known that Fm(M) 6= ∅, that is there exists a Morse function defined on M .

Let Hk(M ;F ), k = 0,m, be the singular homology groups with the coefficients in the
field F and βk(M ;F ) = rankHk(M ;F ) = dimF Hk(M ;F ), k = 0,m, the Betti numbers
with respect to F . If f ∈ Fm(M), then the following relations hold µk(f) ≥ βk(M ;F ),
k = 0,m (weak Morse inequalities).

Definition 3.4.1 The Morse function f ∈ Fm(M) is exact (or minimal) if

µk(f) = γk(M), k = 0,m.

Definition 3.4.2 The Morse function f ∈ Fm(M) is F -perfect if

µk(f) = βk(M ;F ), k = 0,m.

Taking into account the weak Morse inequalities and the definition of the Morse-Smale
characteristic, one obtains that for any Morse function f on M and for any field F the
following relations hold:

µk(f) ≥ γk(M) ≥ βk(M ;F ), k = 0,m.

It follows that any F -perfect Morse function on M is exact.

Theorem 3.4.1 ([3]) The manifold M has F -perfect Morse functions if and only if

γ(M) = β(M ;F ),

where β(M ;F ) =

m∑

k=0

βk(M ;F ) is the total Betti number of the manifold M with respect

to F .

Because the manifold Mm is compact it follows that M has the topology type of a
finite CW -complex ([25]), thus the singular homology groups Hk(M ; Z), k = 0,m, are
finitely generated ([34]). For k ∈ Z, one obtains the relation:

Hk(M ; Z) ≃ (Z ⊕ . . .⊕ Z︸ ︷︷ ︸
βk times

) ⊕ (Znk1
⊕ . . .⊕ Znkb(k)

)

where βk = βk(M ; Z), k = 0,m, are the Betti numbers of the manifold M with respect to
the group (Z,+), thus βk(M ; Z) = rankHk(M ; Z). It is well-known that H0(M ; Z) ≃ Z

and

Hm(M ; Z) ≃
{

Z if M is orientable

{0} otherwise

thus b(0) = b(m) = 0.
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Theorem 3.4.2 ([3]) If Mm is a simply-connected compact manifold without boundary
(∂M = ∅) and m ≥ 6, then the following relations hold:

(i) γk(M) = βk(M ; Z) + b(k) + b(k − 1), k ∈ Z;

(ii) γ(M) = β(M ; Z) + 2

m−1∑

k=1

b(k),

where β(M ; Z) =

m∑

k=0

βk(M ; Z) is the total Betti number of the manifold M with respect

to the group (Z,+).

Corollary 3.4.1 Let Mm be a compact simply-connected manifold, without boundary with
m ≥ 6. Then M has Q-perfect Morse functions if and only if Hk(M ; Z) has no torsion,
k = 0,m.

Example 3.4.1 1) The sphere Sm is a simply-connected compact manifold for m ≥ 2.
The singular homology of Sm is given by

Hk(S
m; Z) ≃

{
Z if k = 0,m

{0} otherwise

Taking into account Theorem 3.4.2, it follows that

γ0(S
m) = γm(Sm) = 1, γk(S

m) = 0, 1 ≤ k ≤ m− 1 and γ(Sm) = 2 for m ≥ 6.

In fact these results are true for m ≥ 1, since it is easy to see that the function
(x1, . . . , xm+1) 7−→ xm+1 is a Q-perfect Morse function on Sm.

2) The complex projective space PCm is a simply-connected compact manifold. The
singular homology of PCm is given by

Hk(PCm; Z) ≃
{

Z if k = 0, 2, 4, . . . , 2m

{0} otherwise

For m ≥ 6 we have the relations γ2i(PCm) = 1, i = 0,m, γ2j−1(PCm) = 0, j =
1,m and γ(PCm) = m + 1. Moreover, using a direct method, N.H. Kuiper showed that
γ(PCm) = m + 1 for m ≥ 1. In G.M. Rassias [62] it is mentioned that for m even the
number γ(PCm) is odd but it is given the value of γ(PCm).

3) The singular homology of the quaternionic projective space PHm is given by

Hk(PH
m; Z) ≃

{
Z if k = 0, 4, 8, . . . , 4m

{0} otherwise

For m ≥ 6 one obtains γ4i(PH
m) = 1, i = 0,m, γj(PH

m) = 0 if j 6≡ 0 (mod 4) and
γ(PHm) = m+ 1.

An important problem which appears naturally is to get the manifolds M and N that
satisfy the equalities in Theorem 3.3.2 (i), (ii) ([41], [62]). A sufficient condition is given
by D. Andrica in [7].
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Theorem 3.4.3 If Mm and Nn are two compact manifolds without boundary (∂M =
∂N = ∅), which have F -perfect Morse functions then

γ(M ×N) = γ(M)γ(N) and γi(M ×N) =
∑

j+k=i

γj(M)γk(N), i = 0,m+ n.

Corollary 3.4.2 Let Mm and Nn be two simply-connected compact manifolds without
boundary (∂M = ∂N = ∅), m,n ≥ 6. If the singular homology groups Hk(M ; Z), Hj(N ; Z),
k = 0,m, j = 0, n are torsion-free then

γ(M ×N) = γ(M)γ(N) and γi(M ×N) =
∑

j+k=i

γj(M)γk(N), i = 0,m+ n.

Example 3.4.2 Taking into account the equality γ(Sm) = 2, we have

γ(Sm1 × . . .× Smk) = 2k.

If T k = S1 × . . . × S1
︸ ︷︷ ︸

k times

is the k-dimensional, then γ(T k) = 2k.

Using the second equality from Corollary 3.4.2 we have

γi(T
k) =

(
k

i

)
, i = 0,m.

We can obtain an extension of Theorem 3.4.2 for compact manifolds, not necessary
simply-connected.

Let Mm be a compact manifold without boundary, m ≥ 6 and let p : M̃ → M be an
universal covering manifold of M . V.V. Sharko ([64]), showed that if π1(M) ≃ Z⊕ . . .⊕Z

(s times), s ≥ 0, then there exists an exact Morse function f , defined on M such that

µk(f) =

s∑

j=0

(
s

j

)
βk+j−s(M̃ ; Z) +

s+1∑

i=0

(
s+ 1

i

)
b(bi − s− 1)

for k ∈ Z.
Using these relations, one obtains the following result of D. Andrica, ([5], [6]).

Theorem 3.4.4 If Mm is a compact manifold without boundary with m ≥ 6 and

π1(M) ≃ Z ⊕ . . .⊕ Z (s times), s ≥ 0,

then:

(i) γk(M) =

s∑

j=0

(
s

j

)
βk+j−s(M̃ ; Z) +

s+1∑

i=0

(
s+ 1

i

)
b(k + i− s− 1), k = 0,m

(ii) γ(M) =

m∑

k=0




s∑

j=0

(
s

j

)
βk+j−s(M̃ ; Z)


 +

m∑

k=0

(
s+1∑

i=0

(
s+ 1

i

)
b(ki − s− 1)

)

where p : M̃ →M is any universal covering of M .

We will present another result obtained by D. Andrica ([5], [6]), an upper bound of

the Lusternik-Schnirelmann category of M in terms of βk(M̃ ; Z), b(k), k = 0,m.
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Corollary 3.4.3 Let Mm be a compact manifold without boundary with m ≥ 6 and

π1(M) ≃ Z ⊕ . . .⊕ Z (s times), s ≥ 0.

Then

cat(M) ≤
m∑

k=0




s∑

j=0

(
s

j

)
βk+j−s(M̃ ; Z)


+

m∑

k=0

(
s+1∑

i=0

(
s+ 1

i

)
b(k + i− s− 1)

)
,

where p : M̃ →M is any universal covering of M .

Let p ≥ 2 be a prime number. Taking into account the relation

Hk(M ; Z) ≃ (Z ⊕ . . . ⊕ Z︸ ︷︷ ︸
βk times

) ⊕ (Znk1
⊕ . . .⊕ Znkb(k)

),

we denote
d(M ; p) = card{nkj, j = 1, b(k), k = 0,m : p|nkj

}.

It is obvious that d(M ; p) ≤
m−1∑

k=1

b(k).

The following result represents a necessary and sufficient condition in terms of γ(M),
β(M ; Z) and d(M ; p), for the existence of Zp-perfect Morse functions on the manifold M
and it was obtained by D. Andrica in [8], [19].

Theorem 3.4.5 The manifold M admits Zp-perfect Morse functions if and only if the
following equality holds

γ(M) = β(M ; Z) + 2d(M ; p).

Corollary 3.4.4 Let p, q ≥ 2 be prime numbers. The manifold M has simultaneously Zp

and Zp-perfect Morse functions if and only if the following relations hold

γ(M) = β(M ; Z) + 2d(M ; p) and d(M ; p) = d(M ; q).

Corollary 3.4.5 If Mm is a simply-connected compact manifold without boundary with
m ≥ 6 and the homology groups Hk(M ; Z), k = 0,m are without torsion then the manifold
M has Zp-perfect Morse functions for any prime number p ≥ 2.

Remark 3.4.1 The results of Corollary 3.4.5 and Corollary 3.4.1 can be extended. If we
replace the condition that the manifold M is simply-connected with the condition

π1(M) ≃ Z ⊕ . . .⊕ Z (s times),

where s ≥ 0 is an arbitrary integer and π1(M) represents the fundamental group of M .
In this case we use the result given in V.V. Sharko ([64]) and the explicit formula for the
Morse-Smale characteristic obtained in Theorem 3.4.4. (ii).

Theorem 3.4.6 Let Mm be a compact manifold without boundary. If the integers m and
β(M ; Z) are odd, then M has Zp-perfect Morse functions, for any prime number p ≥ 2.
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Theorem 3.4.7 (i) The m-dimensional sphere Sm admits Q-perfect Morse functions.
(ii) For any prime number p ≥ 2, the sphere Sm has Zp-perfect Morse functions.

Let PRm be the m-dimensional real projective space. It is well-known that PRm is a
compact differentiable smooth manifold without boundary and the homology of PRm is
given by

Hk(PRm; Z) ≃





Z if k = 0

Z2 if k is odd and 0 < k < m

Z if k is odd and k = m

{0} otherwise

From this relation one obtains β(PRm; Z) = 1 if m is even and β(PRm; Z) = 2 if m is
odd.

For a prime number p ≥ 2 it follows

d(PRm; p) =





m/2 if p = 2 and m is even

(m− 1)/2 if p = 2 and m is odd

0 if p ≥ 3

It is known that the Morse-Smale characteristic of PRm is γ(PRm) = m+ 1 ([41]).

Theorem 3.4.8 (i) PRm has not Q-perfect Morse functions.
(ii) PRm has Z2-perfect Morse functions.
(iii) For any prime p ≥ 3, PRm has not Zp-perfect Morse functions.

Notice that in the paper of N. H. Kuiper [41], is constructed a Z2-perfect Morse function
on PRm.

Let T 2 be the 2-dimensional torus. We define the smooth, compact, connected, ori-
entable surface of genus g ≥ 0, by

Tg = T 2# . . .#T 2

︸ ︷︷ ︸
g times

,

thus Tg is the connected sum of g copies of T 2. If g = 0 then Tg = S2, the 2-dimensional
sphere.

Consider Pg the smooth, compact, connected, non-orientable surface of genus g ≥ 0,
defined by

Pg = RP2 # RP2 # . . . # RP2

︸ ︷︷ ︸
g+1 times

,

where RP2 is the real projective plane.
It is well-known that if M is a smooth, compact, connected surface without boundary,

then M is diffeomorphic to Tg if it is orientable and M is diffeomorphic to Pg if it is
non-orientable, for some values of g, ([37]).

The following result is a consequence of the exact Mayer-Vietoris sequence in the de
Rham cohomology, ([36]):

χ(Tg) = 2 − 2g, χ(Pg) = 1 − g.
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N. H. Kuiper [42] proved the following relation between the Morse-Smale characteristic
and the Euler-Poincaré characteristic of a smooth, connected, compact surface M , without
boundary:

γ(M) = 4 − χ(M).

Using the above relations one obtains

γ(Tg) = 2 + 2g, γ(Pg) = 3 + g.

Theorem 3.4.9 (i) Tg has Q-perfect Morse functions.
(ii) For any prime number p ≥ 2, Tg has Zp-perfect Morse functions.

Theorem 3.4.10 (i) Pg has not Q-perfect Morse functions.
(ii) For any prime number p ≥ 3, Pg has not Zp-perfect Morse functions.
(iii) Pg has Z2-perfect Morse functions.

In paper [26] are presented the following inequalities:

cat(M) ≤ C(M) ≤ β(M) ≤ γ(M) ≤ m+ 1,

where cat(M) is the Lusternik-Schnirelmann category of M (the minimal number of closed
contractible sets which cover M), C(M) is the minimal number of open disks necessary
to cover M and

β(M) = β(M ; Z) =
m∑

k=0

Hk(M ; Z).

The purpose of the following result obtained by D. Andrica and M. Todea in [20], is
to show that the inequality γ(M) ≤ m + 1 from the above relation is not valid for every
closed manifold M .

Let Mm be the set of all smooth closed m-dimensional manifolds.

Theorem 3.4.11 The relation

sup{γ(M) : M ∈ Mm} = ∞

holds for m ≥ 2.

Remark 3.4.2 1) The relation sup{γ(M) : M ∈ Mm} = ∞ is not valid for m = 1.
Taking into account the classification theorem of 1-dimensional closed manifolds it follows
that a such manifold is diffeomorphic with S1, thus γ(M) = 2.

2) If for a closed m-dimensional manifold M ∈ Mm, one defines the number

ϕ(M) = min{µ(f) : f ∈ C∞(M)}

one obtain the ϕ-category of M . We have the inequality:

cat(M) ≤ ϕ(M) ≤ m+ 1,

thus the result contained in the above theorem remains not true if one replace γ(m) by
ϕ(M). In this case we have

sup{ϕ(M) : M ∈ Mm} = m+ 1,
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since for instance ϕ(PRm) = m+ 1.
3) The relation sup{γ(M) : M ∈ Mm} = ∞ shows that there is not a positive

constant cm > 0 such that γ(M) ≤ cm, for any closed manifold M ∈ Mm.
On the other hand, the result given by M. Gromov in [38], asserts the existence of

a positive constant cm > 0, such that β(M ;F ) ≤ cm, for any compact m-dimensional
manifold Mm of positive curvature, where

β(M ;F ) =

m∑

i=0

βi(M ;F )

is the sum of the Betti numbers with respect to a field F .

Let Mm be a smooth, closed, differentiable manifold. We consider π : M̃ → M a k-
covering of M , where k ≥ 2. If f ∈ Fm(M) is a Morse function on M , let h : M̃ → R, be
a function defined by h = f ◦ π. Since π is a local diffeomorphism, it follows that

h ∈ Fm(M̃ ), C(f) = π(C(h)),

thus µ(h) = kµ(f). Then for any Morse function f ∈ Fm(M) the inequality γ(M̃ ) ≤ kµ(f)
holds. Taking into account the definition of the Morse-Smale characteristic, it results that

γ(M̃) ≤ kγ(M).

Theorem 3.4.12 ([3]) Let Mm be a smooth, closed manifold and let π : M̃ → M be a
k-covering of M , k ≥ 2. Then the following inequality holds:

γ(M̃) ≤ kγ(M) − 4(k − 1).

M. Gromov posed the following question: Let M̃k, k ∈ N be a sequence of manifolds,
such that each M̃k is an ak-fold cover of M , where ak → ∞ as k → ∞. What are the
asymptotic properties of the sequence γ(M̃k) as k → ∞?

Using the relation γ(M̃ ) ≤ kγ(M) − 4(k − 1), one obtain

γ(M̃k) ≤ akγ(M) − 4(ak − 1).

It follows immediately, after a simple computation, a partial asymptotic estimation for
the above question:

lim
k→∞

sup
γ(M̃k)

ak

≤ γ(M) − 4.

Generally, the inequality proved in Theorem 3.4.12 is strict. Let m ≥ 3 and the 2-
covering π : Sm → Pm(R), where Sm is the m-dimensional sphere and Pm(R) is the real
projective space of dimension m. It is easy to show that γ(Sm) = 2 and γ(Pm(R)) = m+1.
The inequality from Theorem 3.4.12 becomes strict, 2 < 2(m+1)−4, because we considered
m ≥ 3.

Theorem 3.4.13 ([9]) If M2 is a smooth closed surface, orientable or not, then the rela-
tion

γ(M̃ ) = kγ(M) − 4(k − 1)

holds.
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Corollary 3.4.6 Let Mm be a smooth closed manifold and let G be a finite group which
acts freely on M . Then:

(i) γ(M/G) ≥ 1

|G| (γ(M) + 4(|G| − 1))

(ii) If M2 is a closed smooth surface then

γ(M/G) =
1

|G|(γ(M) + 4(|G| − 1)).
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Chapter 4

The circular Morse-Smale

characteristic of a differentiable

manifold

4.1 Definition and some general properties

We present in this section our results regarding the Morse-Smale characteristic for
circle-valued Morse functions, notion that was first introduced and studied by D. Andrica
and D. Mangra in papers [12], [13].

Our goal was to investigate in which conditions some properties of the Morse-Smale
characteristic are kept for circle-valued functions.

We define the Morse-Smale characteristic of a manifold M for circle-valued Morse
functions.

Consider N = S1 and the family of circle-valued Morse functions defined on M , F =
Fm(M,S1) ⊆ C∞(M,S1), ([18]).

In this case we denote ϕF (M,S1) by γS1(M) and we call it the circular Morse-
Smale characteristic of the manifold M .

This notion was introduced by D. Andrica and D. Mangra in paper [12].
From the definition it follows that

γS1(M) = min{µ(f) : f ∈ Fm(M,S1)}.

We can define, in an analogous way the numbers γ
(i)
S1 (M), for i = 0, . . . ,m, by

γ
(i)
S1 (M) = min{µi(f) : f ∈ Fm(M,S1)}.

From the relation µ(f) = µ0(f) + . . . + µm(f), it follows that for any f ∈ Fm(M,S1)
we have

µ(f) ≥ γ
(0)
S1 (M) + . . . + γ

(m)
S1 (M),

thus the following inequality holds:

γS1(M) ≥
m∑

i=0

γ
(i)
S1(M).

35



We will show next that the numbers γS1(M) and γ
(i)
S1(M) are differential invariants of

the manifold M , i = 0, . . . ,m.
Let N be a smooth manifold, let ϕ : M → N be a diffeomorphism and let f : M → S1,

g : N → S1 be two circle-valued smooth functions such that g = f ◦ ϕ.
Clearly, we have the relation C(f) = ϕ(C(g)).

Proposition 4.1.1 If f ∈ Fm(M,S1), ϕ : M → N is a diffeomorphism, then

g ∈ Fm(N,S1)

and the critical points p ∈ C(g) and ϕ(p) ∈ C(f) have the same Morse index.

The following results were proved in our paper [12].

Theorem 4.1.1 If the manifolds M and N are diffeomorphic, then

γS1(M) = γS1(N) and γ
(i)
S1(M) = γ

(i)
S1(N),

for i = 1, . . . ,m. That is, these numbers are differential invariants of the manifolds.

Theorem 4.1.2 The following relations hold:
(i) (Symmetry) For any i = 0, . . . ,m, we have:

γ
(i)
S1(M) = γ

(m−i)
S1 (M)

(ii) (Submultiplicity) For any two manifolds M and N we have

γS1(M ×N) ≤ γS1(M) × γS1(N)

(iii) For any i = 0, . . . ,m+ n, we have:

γ
(i)
S1(M ×N) ≤

∑

j+k=i

γ
(j)
S1 (M) · γ(k)

S1 (N).

We present next a general result from our paper [13].

Theorem 4.1.3 (1) The following relation holds: γS1(M) ≤ γ(M), where γ(M) is the
Morse-Smale characteristic of the manifold M .

(2) If M is a simply-connected manifold, π1(M) = {0}, where π1(M) is the fundamen-
tal group of M , then γS1(M) = γ(M).

As an example, consider the m-dimensional sphere Sm, where m ≥ 2.
It is well-known that in this case the sphere Sm is simply-connected. Taking into

account the second result of the above theorem we get γS1(Sm) ≥ γ(Sm).
On the other hand, it is known that γ(Sm) = 2, hence γS1(Sm) = 2.
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4.2 The generalization of Theorem 4.1.3 and some

applications

In this section, following paper [19], we will generalize the result from Theorem 4.1.3(2)
for a class of manifolds that are not simply-connected.

Theorem 4.2.1 If Hom(π1(M),Z) = 0 for some differential connected manifold M , then
γS1(M) = γ(M). In particular, γS1(M) = γ(M) whenever M is connected and simply-
connected.

Corollary 4.2.1 If n ≥ 2 is a natural number, then

γS1(Sn) = γ(Sn) = 2 and γS1(RPn) = γ(RPn) = n+ 1.

Corollary 4.2.2 If m1, . . . ,mk ≥ 2 are natural numbers, then

γS1(Sm1 × . . .× Smk) = γ(Sm1 × . . .× Smk) = 2k,

γS1(RPm1 × . . . × RPmk) = γ(RPm1 × . . .× RPmk) = (m1 + 1) . . . (mk + 1).

Another property relating the circular Morse-Smale characteristic of the total and base
spaces of a finite-fold covering map is provided by the following result.

Proposition 4.2.1 If M̃ is a k-fold cover of M , then

γS1(M̃) ≤ k · γS1(M).

4.3 The circular Morse-Smale characteristic of the compact

surfaces

The minimum number of critical points of all Morse functions on a manifold M , equally
called the Morse-Smale characteristic of M is a lower bound for the total curvature of M
with respect to its embeddings in Euclidean spaces.

In this section, following paper D. Andrica, D. Mangra, C. Pintea [14], we first com-
pute the circular Morse-Smale characteristic of all closed surfaces. We also observe that
the critical points of the real valued height functions alongside those of some S1 valued
functions on a surface Σg ⊂ R3, are the tangency points with respect to some involutive
distributions.

We finally study the size of the tangency set of the compact orientable surface of
genus g embedded in a certain way in the first Heisenberg group with respect to its highly
noninvolutive horizontal distribution.

It is an interesting and challenging problem to compute the circular Morse-Smale
characteristic for closed manifolds M for which Hom(π1(M),Z) 6= 0. The main purpose of
this section is to do this computation for smooth, compact, connected, orientable surfaces
of genus g ≥ 1.

Recall that such a surface Σg is defined by

Σg = T 2#T 2# . . .#T 2,
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where the number of copies of the 2-dimensional torus T 2 = S1 × S1 in the connected
sum is equal to g. We can extend the definition for g = 0 by considering Σ0 = S2, the
2-dimensional sphere. From the classification theorem of surfaces, it follows that every
smooth, compact, orientable, connected surface, without boundary, is diffeomorphic to
Σg, for some value of g ≥ 0.

Recall that the Morse-Smale characteristic was completely determined by N.H. Kuiper
in [43], who proved the formula γ(S) + χ(S) = 4 for every compact connected surface S.
In this section, following paper D. Andrica, D. Mangra, C. Pintea [14], we will prove that
for every closed surface S, except for the sphere S2 and the projective plane RP2, one has
γS1(S) + χ(S) = 0.

Producing a suitable embedding of the surface Σg in R3 \Oz, where Oz stands for the
z-axis {(x, 0, 0) : x ∈ R}, and a submersion f : R3 \ Oz → S1, whose restriction f |Σg is
a circular Morse function with exactly 2(g − 1) critical points, is a part of the strategy
to compute the circular Morse-Smale characteristic of the surface Σg. In this respect we
need to characterize somehow the critical points of such a restriction. In fact, the suitable
submersion we are looking for is

(4.3.1) f(x, y, z) =
1√

x2 + y2
(x, y, 0).

Proposition 4.3.1 Let Σ ⊆ R3 be a regular surface and f : R3 → N , be a submersion,
where N is either the real line or the circle S1. The point p = (x0, y0, z0) ∈ Σ is critical
for the restriction f |Σg if and only if the tangent plane of Σ at p is the tangent plane at p
to the fiber Fp := f−1(f(p)) of the submersion (4.3.1) through p.

Proposition 4.3.1 follows from the following more general statement:

Theorem 4.3.1 Let Mm, Nn, P p, m ≥ n > p, be differential manifolds, let f : M → N
be a differential map and g : N → P be a submersion. Then x ∈ M is a regular point of
g ◦ f is and only if f ⋔x Fx, where Fx stands for the fiber g−1(g(x)) of g through x.

The above result was mentioned in [2] and [59].

4.3.1 The case of orientable surface of genus g

According to the results of the previous section, we have

γS1(Σ0) = γS1(S2) = γ(S2) = 2,

since the 2-dimensional sphere S2 is simply-connected.
Also,

γS1(Σ1) = γS1(T 2) = 0,

as the projection T 2 = S1 × S1 → S1 is a submersion and it has no critical points.
More generally, we shall prove the following:

Theorem 4.3.2 The Morse-Smale characteristic of closed surfaces is given by

(4.3.2) γS1(Σ) =

{
|χ(Σ)| if Σ 6= RP2

3 if Σ = RP2
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We only need to prove Theorem 4.3.2 for Σg - the compact orientable surface of genus
g ≥ 1, as it has been already done for Σ = S2 within Corollary 4.2.1. In this respect we
need:

1. to show that

µ(F ) := µ0(F ) + µ1(F ) + µ2(F ) ≥ 2(g − 1),

for every circular Morse function F : Σg → S1, where µj(F ) is the number of critical
points of index j of F and µ(F ) is the total number card (C(F )) of critical points of F ;

2. to produce a circular Morse function on Σg with exact 2(g − 1) critical points.
In order to do so, we first observe that

(4.3.3) 2 − 2g = µ0(F ) − µ1(F ) + µ2(F ).

Indeed, by using the Poincaré-Hopf Theorem, one obtains

2 − 2g = χ(Σg) =
∑

p∈C(F )

indp(∇F ),

where ∇F is the gradient vector field of F with respect to some riemannian metric on
Σg. To finish the proof of relation (4.3.3.), we just need to observe that the index of ∇F
at a critical point of index one is −1 and the index of ∇F at the critical points of index
zero and two is 1. Indeed, the local behavior of F around the critical points of index one
is F = x2 − y2 and its gradient behaves locally around such a point like the vector field
(x,−y). The degree of its normalized restriction to the circle S1 is −1 as the normalized
restriction is a diffeomorphism which reverses the orientation. Similarly, the index of ∇F
at a critical point of index zero or two is one as the local behavior of F around such a
critical point is F = x2 +y2 or F = −x2−y2, and its gradient behaves locally around such
a point like the vector field (x, y) or (−x,−y) respectively. The normalized restrictions
of these vector fields to the circle S1 are diffeomorphisms preserving the orientation and
their degree is therefore one. Thus the relation (4.3.3) is now completely proved via the
Poincaré-Hopf Theorem.

For the second item of the above observation we prove the following.

Lemma 4.3.1 The surface Σg can be suitably embedded into the three dimensional space
R3 \Oz, such that the restriction f |Σg : Σg → S1 is a circular Morse function with exactly
2(g − 1) critical points, where f : R \Oz → S1 is the submersion given by

f(x, y, z) =
1√

x2 + y2
(x, y, 0).

4.3.2 The embedding of Σg into R3 \ Oz

Recall that Σ1 = T 2 = S1×S1 is being usually identified with the surface of revolution
in R3 obtained by rotating a circle in the plane xOz centered at a point on the x-axis around
the z-axis. The radius of the circle is supposed to be strictly smaller than the distance
from the origin to its center. A certain embedding of the surface Σg in R3, obtained from
the one of Σ1 on which we perform some surgery will be useful in our approach. However
the above mentioned embedding of Σ1 in R3 has one circle on the top and one circle on
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the bottom where the Gauss curvature vanishes. The two circles form the critical set of
the height function f−→

k
in the z-axis direction, restricted to the embedded copy of T 2 in

R3. Thus, this restricted height function is not a Morse function. In order to construct
our suitable embedding of Σg we rather need to rotate around the z-axis a closed convex
curve with a unique center of symmetry, on the x-axis, which lies in the plane xOz and has
no overlaps with the z-axis. This curve is also required to contain two segments mutually
symmetric with respect to the x-axis, one on the top and the other on its bottom. These
two segments form the critical set of the height function f−→

k
restricted to the curve itself.

Consider the embedding of Σ1 obtained by rotating such a closed convex curve, instead
a circle within the plane xOz, within the same plane. The obtained copy of Σ1 is flat on
the two annuli A and A′ which lie in two horizontal parallel planes.

Figure 4.3.1. An embedded copy of Σg constructed out of an embedded copy of Σ1

Consider the points p1, . . . , pg−1 ∈ A and q1, . . . , qg−1 ∈ A′, such that the lines piqi,
i = 1, . . . , g − 1 are vertical, so parallel to the z-axis. In order to obtain a topological
copy of the surface Σg we next remove some small open disks D1, . . . ,Dg−1 ⊆ A centered
at p1, . . . , pg−1 and D′

1, . . . ,D
′
g−1 ⊆ A′ centered at q1, . . . , qg−1, respectively. The radii

of the disks Di and D′
i are supposed to be the same. We next consider suitable planar

curves γi : [0, 1] → cl(B) ∩ πi, i = 1, . . . , g − 1 such that γi(0) ∈ ∂Di and γi(1) ∈ ∂D′
i,

where piqi∩xOy = {(xi, yi, 0)}, πi is the plane parallel to xOz through the point (xi, yi, 0)
(πi : y = yi) and B is the bounded component of the complement of the embedded copy
of Σ1. The curves γi are chosen in such a way to complete, by their rotation around the
axes piqi, the embedded copy of Σ1 \ [D1 ∪ . . . ∪Dg−1 ∪D′

1 ∪ . . . ∪D′
g−1] up to a smooth

embedded copy of Σg.

4.3.3 The nondegeneracy of the critical point of f |Σg
and the cardinality

of its critical set

Since our embedded copy of Σg is constructed out of several surfaces of revolutions,
we are going to investigate the critical set of the restriction of the submersion (4.3.1) to
such a surface, by using the geometric interpretation coming from Proposition 4.3.1.

Proposition 4.3.2 The following relation holds: card(C(f |Σg)) = 2(g − 1).

Proof. See [14].
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Proposition 4.3.3 ([14]) The restriction f |Σg is a circular Morse function (its critical
points are non-degenerate). Moreover, the critical points of f |Σg have all index 1.

Remark 4.3.1 No real valued Morse function defined on a compact manifold Mm (m ≥
2) can have just critical points of index one, as the global minimum of such a function
has index zero and its global maximum has index n = dim(M). Thus the restriction
f |Σg cannot be lifted to any map f̃ : Σg → R, exp ◦f̃ = f , and the induced group
homomorphism f∗ : π(Σg) → Z = π(S1) is nontrivial therefore.

4.4 The case of non-orientable surfaces

Consider the compact orientable surfaces of genus 2g+1 embedded in R3 as described
before. Since the genus is odd, we may impose the extra-requirement on the embedded
image of Σ2g+1 to be symmetric with respect to the origin, thus invariant with respect to
the antipodal action of Z2 on R3 \ {0}. Because the restriction of this action to Σ2g+1 is
orientation reversing, it follows that the quotient Σ2g+1/Z2 is a compact non-orientable
surface. Obviously the projection

π : Σ2g+1 → Σ2g+1/Z2

is the orientable double cover of Σ2g+1/Z2. The reversing orientation property of the
antipodal involution a follows from the reversing orientation property of the reflections
σxy, σxz and σyz with respect to the coordinate planes xOy, xOz, yOz, respectively and
the decomposition a = σxy ◦ σxz ◦ σyz.

Note that the three reflections commute with each other. The reversing orientation
property of the reflection σxy, for example, follows by looking at the orientation behavior
at a fixed point p ∈ Fix(σxy) = xOy∩Σ2g+1. Since the tangent map of σxy at p reverses the
orientation of the tangent space Tp(Σ2g+1), it follows that σxy, and by similar arguments
each of the reflections σxz and σyz, reverses the orientation of Σ2g+1. Consequently, the
antipodal map a = σxy ◦ σxz ◦ σyz reverses, indeed, the orientation as well.

One can easily check that the non-orientable genus of Σ2g+1/Z2 is 2g + 2, so
Σ2g+1/Z2 is diffeomorphic to (2g + 2)RP2, where kRP2 stands for the connected sum
RP2#RP2# . . .#RP2 of k copies of the projective plane.

Proof of Theorem 4.3.2 in the non-orientable case. We first observe that

f : RP2 → R, f([x1, x2, x3]) =
x2

1 + 2x2
2 + 3x2

3

x2
1 + x2

2 + x2
3

is a perfect Morse function with three critical points of indices 0, 1, 2: a minimum point p,
a maximum point q and a saddle point s. If ε > 0 is small enough, then the inverse images
D := f−1(−∞, f2(p)+ε) and D′ := f−1(f(q)−ε,∞) are open disks and the inverse image

f−1[f(p) + ε, f(q) − ε] = RP2 \ (D1 ∪D2)

is a compact surface with two circular boundary components f−1(f(p)+ε) and f−1(f(q)−
ε) and observe that the restriction

f |RP2\(D∪D′) : RP2 \ (D1 ∪D2) → [f(p) + ε, f(q) − ε]
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has one critical point of index one, so is the saddle point s. We next glue successively g
copies of RP2 \ (D ∪D′), say

M1 := RP2 \ (D1 ∪D′
1), . . . ,Mg := RP2 \ (Dg ∪D′

g),

along the circular boundaries

∂D′
i = f−1

i (fi(q) − ε) ⊂Mi and ∂Di+1 := f−1
i+1(fi+1(p) + ε) ⊂Mi+1

of D′
i := f−1

i (fi(q) − ε,∞) and Di+1 := f−1
i+1(−∞, fi+1(p) + ε) for i = 1, . . . , g − 1, where

fi := f + iL : RP2 → R and L := length([f(p) + ε, f(q) − ε]) = f(q) − f(p) − 2ε. The
obtained surface is gRP2 \ (D1 ∪D′

g).
Note that fi is a Morse function with one saddle point which is constant on each of

the circular boundaries ∂Di = f−1
i (fi(p) + ε) and ∂D′

i = f−1
i (fi(q) − ε) of Mi.

Moreover the equalities fi|∂D′

i
= fi+1|∂Di+1

hold for every i = 1, . . . , g−1, which shows
that the function

F : gRP2 \ (D1 ∪D′
g) → R, F |Mi

:= fi

is well defined. In fact, F is a Morse function with g saddle points which is constant on
the circle boundaries

∂D1 = f−1
1 (f1(p) + ε) ⊂M1 and ∂D′

g = f−1
g (fg(q) − ε) ⊂Mg.

Identifying the circle boundaries ∂D1 and ∂D′
g of gRP2 \ (D1 ∪ D′

g), via a suitable
diffeomorphism ϕ : ∂D1 → ∂D′

g, we get the non-orientable surface (g + 2)RP2.
Identifying minF with maxF in Im(F ) we get the circle S1. Also the Morse function

gRP2 \ (D1 ∪D′
g) → Im(F ), x 7→ F (x)

descends to a circular Morse function

f0 : (g + 2)RP2 = gRP2 \ (D1 ∪D′
g)/{x = ϕ(x)} → S1 = Im(F )/{minF = maxF},

with g saddle points. This shows that γS1((g + 2)RP2) ≤ g for all g ≥ 1.
For the opposite inequality we split the proof into two cases:
We first treat the case of closed non-orientable surfaces of even non-orientable genus,

(2g + 2)RP2, g ≥ 0.
According to Proposition 4.2.1 one obtains

γS1((2g + 2)RP2) = γS1(Σ2g+1/Z2) ≥
1

2
γS1(Σ2g+1) = 2g = −χ((2g + 2)RP2).

For the case of closed non-orientable surfaces of odd non-orientable genus 2g+3, g ≥ 0,
consider the oriented double cover of (2g + 3)RP2

Σ2g+2 → (2g + 3)RP2.

According to Proposition 4.2.1 and the case of closed non-orientable surfaces of even
non-orientable genus one obtains

γS1(Σ2g+2) ≤ 2γS1((2g + 3)RP2) ⇔ 2γS1((2g + 3)RP2) ≥ 2(2g + 2 − 1)

⇔ γS1((2g + 3)RP2) ≥ 2g + 1

⇔ RP2((2g + 3)RP2) ≥ −χ((2g + 3)RP2).
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We therefore proved Theorem 4.3.2 in the non-orientable cases gRP2 with g ≥ 3.
On the other hand γS1(RP2) = 3 and 2RP2 is the Klein Bottle which is a fibration

over S1 with fiber S1, namely γS1(2RP2) = 0 = −χ(2RP2). �

Remark 4.4.1 For the inequality γS1((2g + 2)RP2) ≤ 2g we can produce a particular
circle-valued Morse function

f0 : (2g + 2)RP2 = Σ2g+1/Z2 → S1

with exactly 2g critical points in the following different way. Pick the function g0 :=
f |Σ2g+1 : Σ2g+1 → S1 considered for the proof of Theorem 4.3.2 and recall that g0 has
precisely 4g critical points and 4g critical values, card(g0(C(g0))) is also 4g. Indeed, the
restriction g0|c(g0) is obviously one-to-one. Due to the way we embedded Σ2g+1, the critical
values of g0, alongside its critical points, are pairwise antipodal in S1 and in Σ2g+1, respec-
tively. By considering now the covering projection p : S1 → P 1(R), p(x) = [x] := {−x, x}
one actually obtain a cyclic covering of order two 2p : S1 → S1, as P 1(R) is diffeomorphic
to S1. The composed function p ◦ g0 is a circular Morse function with 2g critical values,
each of whose inverse image consists of two critical points. Thus card(C(p ◦ g0)) = 4g.

In fact π−1(π(x)) = {−x, x} ⊆ (p ◦ g0)−1(x), for every x ∈ Σ2g+1.
This shows that the restriction g0 factors to a Morse function f0 : Σ2g+1/Z2 → S1 such

that p ◦ g0 = f0 ◦ π.
Let us now observe that π−1(C(f0)) = C(p ◦ g0) and therefore card(C(p ◦ g0)) =

2card(C(f0)), thus card(C(f0)) =
1

2
card(C(p ◦ g0)) = 2g.

4.5 On the number of tangency points of embedded surfaces

into the first Heisenberg group

If Σ ⊂ R3 is a surface and f : R3 → N is a submersion, where N is either the real line
or the circle S1, then the critical points of the restriction f |Σ are the tangency points, as
defined by Balogh [21], of the surface Σ with respect to the involutive distribution of the
tangent planes to the fibers of f .

This observation bring us to study the minimal number of tangency points of a surface
with respect to a highly noninvolutive distributions, for all embeddings of the surface in
the support of the distribution. In fact this section is devoted to this subject.

For instance, the critical points of a height function are the tangency points of the
embedded manifold in the environmental Euclidean space with respect to the involutive
distribution of parallel hyperplanes which are perpendicular to the direction of the height
function.

Indeed, this is in fact the distribution of fibers of the height function and the regu-
lar points of its restriction to the embedded manifold are, according to Theorem 4.3.1,
precisely those points of the embedded manifold at which the tangent plane intersects
transversally the fiber of the height function through that point, so the two planes are
different.

Thus, the critical points of the restriction to the embedded manifold of the height
function are precisely those at which the two planes are equal, the tangency points. Also
the critical points of the restriction f |Σg are the tangency points of Σg with respect to the
involutive distribution of half planes f−1(q), as q runs over the circle S1. In other words
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the tangency point looks like an extended concept for critical point of real or S1 valued
functions to a more general context. This is the reason for us to evaluate, following paper
D. Andrica, D. Mangra, C. Pintea [14], the size of a tangency set with respect to a highly
non-involutive distribution, namely the horizontal distribution

Hn = Span{X1, . . . ,Xn, Y1, . . . , Yn}

of the Heisenberg group Hn = (R2n+1, ∗), where

Xi = ∂xi
+ 2yi∂t and Yi = ∂yi

− 2xi∂t

for i = 1, . . . , n.
Some special attention will be payed to the minimum tangency number of the compact

orientable surface of genus g, embedded into the first Heisenberg group H1.
Recall that a Cr, r ∈ N, smooth distribution D of rank n on an open set U ⊆ Rn+m is

a Cr smooth assignment to each point z ∈ U of a linear n-dimensional subspace D(z) �
Tz(R

n+m). D is usually described either by n pointwise linearly independent Cr smooth
vector fields

(4.5.1) {X1, . . . ,Xn}

such that {X1(z), . . . ,Xn(z)} forms a basis of D(z) for all z ∈ U or as the intersection of
the kernels of m linearly independent one-forms {ϑ1, . . . , ϑm} with Cr smooth coefficients
on U , thus

(4.5.2) D = ker(ϑ1) ∩ . . . ∩ ker(ϑm).

Definition 4.5.1 Let D be a C1 smooth distribution of rank n on an open set U ⊆ Rn+m

and S ⊆ U a C1 smooth n-dimensional manifold. We call a point z ∈ S a tangency point
of S with respect to D if and only if Tz(S) = D(z). The set of such points is called the
tangency set, or, in short, the tangency, of S with respect to D and denoted by

(4.5.3) τ(S,D) := {z ∈ S : Tz(S) = D(z)}.

Definition 4.5.2 If Mm is a differential manifold, then the minimum tangency num-
ber of M relative to the distribution D on Rn+m is defined by

µτν(M,D) := min{card(τ(f(M),D)) : f ∈ Embed(M,Rn+m)},

where Embed(M,Rn+m) is the set of all embeddings of M into Rn+m.

Remark 4.5.1 IfM is a compact orientable 2n-manifold of non-zero Euler-Poincaré char-
acteristic, then according to [22, Example 8.9],

µτν(M,Hn) ≥ 2.

In fact µτν(S2n,Hn) = 2, as the Euler-Poincaré characteristic of the sphere S2n is
two and it admits an embedding into Hn with exactly two tangency points. The image of
this embedding is the well-known Korányi sphere. On the other hand the standard torus
T 2n ⊂ Hn has no tangency points at all [67], thus

µτν(T 2n,Hn) = 0.
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Theorem 4.5.1 If g ≥ 2, then

2 ≤ µτν(Σg,H1) ≤ 4g − 4.

The inequality µτν(Σg,H1) ≥ 2 is obvious, as

χ(Σg) = 2 − 2g < 0.

For the opposite inequality we need to construct an embedding of Σg with 4g − 4,
H1-tangency points. In this respect we use the possibility of Σ1 to be embedded in H1 as
a revolution surface and construct a suitable embedding of Σg out of Σ1 by performing
some suitable surgery on Σ1. The handles we plan to glue will be surfaces of revolution as
well. Therefore we are going to pay some special attention to the size of the tangency sets
of revolution surfaces which lie inside H1 with respect to its horizontal distribution H1.

Problem 4.5.1 Is the upper estimate given by Theorem 4.5.1 on the number of horizontal
points with respect to embeddings of the compact orientable surface of genus g in the first
Heisenberg group sharp?

Note that the upper estimate µτν(Σg,H1) ≤ 4g − 4 can be written in terms of the
Euler-Poincaré characteristic of Σg, a strong invariant of the surface which determine its
topological type, as µτν(Σg,H1) + 2χ(Σg) ≤ 0.

Problem 4.5.2 Who are the relevant invariants of a compact 2n-dimensional manifold
which can be embedded into the nth Heisenberg group Hn for sharp estimates on the
number of horizontal points of such embedded hypersurfaces with respect to all of its
embeddings in the Heisenberg group Hn?

4.5.1 Revolution surfaces in H1 with low number of horizontal points

Every revolution surface S obtained by rotating a plane curve

x = f(v), z = v,

with f > 0, around the vertical line

x = x0, y = y0,

admits a local parametrization of type

x = x0 + f(v) cos u
y = y0 + f(v) sin u
z = g(v)

, u ∈ I, v ∈ J,

where I is an open interval of length 2π and J will be symmetric with respect to the
origin, so J = (−a, a). The function f is subject to the following requirements:

(4.5.4) f is bounded , f ′′ > 0 and lim
v→±a

f ′(v) = ±∞.

The vector equation of our revolution surface is

−→r = (x0 + f(v) cos u)∂x + (x0 + f(v) sin u)∂y + v∂t
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and

−→r u = −(f(v) sin u)∂x + (f(v) cos u)∂y

−→r v = (f ′(v) cos u)∂x + (f ′(v) sin u)∂y + ∂t

−→r u ∧ −→r v = (f(v) cos u)∂x + (f(v) sinu)∂y − f(v)f ′(v)∂t.

On the other hand, the horizontal vector fields of the distribution H1 are

X = ∂x + 2y∂t, Y = ∂y − 2x∂t

and their vector product is

X ∧ Y = −2y∂x + 2x∂y + ∂t.

Thus, the point r(u, v) := (x(u, v), y(u, v), z(u, v)) ∈ S is a horizontal point if and only
if the vectors −→r u ∧ −→r v, X ∧ Y are linearly dependent at r(u, v), thus we have

sinu+ f(v)f ′(v) cos u = −x0f
′(v)

f(v)f ′(v) sin u− cosu = −y0f
′(v).

Thus

(4.5.5)

sinu = −f ′(v) x0 + y0f(v)f ′(v)

1 + f2(v)(f ′(v))2

cos u = −f ′(v) x0f(v)f ′(v) − y0

1 + f2(v)(f ′(v))2
.

Remark 4.5.2 No revolution surface around the z-axis has H1-tangency points, as the
equations (4.5.5) have no solutions at all for x0 = y0 = 0.

The identity sin2 u+ cos2 u = 1 leads us to the equation

(4.5.6)
(
f ′(v)

)2
=

1

‖(x0, y0)‖2 − f2(v)
,

which has at least two solutions on the interval J = (−a, a), as the right hand side of
(4.5.6) is bounded and (f ′)2 covers the positive real half line [0,∞) twice, once on the
interval (−a, 0] and once on the interval [0, a). For suitable choices of the function f , the
equation (4.5.6) has precisely two solutions. Such a choice is

(4.5.7) f(v) = 2 −
√

2 − v2

2

for a =
√

2 and ‖(x0, y0)‖ = 3. Indeed, the equation (4.5.6), for the choice (4.5.7) of the
function f , becomes:

2v2
√

2(2 − v2) = −2v4 − 3v2 + 4,

which has, indeed, precisely two solutions, as can be easily checked.
Proof of Theorem 4.5.1. The closed convex curve in the plane xOz described after the
statement of Theorem 4.5.1 is supposed to have its unique center at the point (3, 0, 0). The
coordinates of the points pi and qi have the forms (xi, yi, zi) and (xi, yi,−zi), respectively,
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for i = 1, . . . , g−1. Moreover ‖(xi, yi)‖2 := x2
i +y2

i = 3, for all i = 1, . . . , g−1. The handles
we use within our surgery process are revolution surfaces around the vertical lines x = xi

and y = yi of parametrized equations





x = xi + f(v) cos u
y = yi + f(v) sinu
z = v

u ∈ I, v ∈ J.

We denote by vi and v′i the roots of the equations

(4.5.8) (f ′(v))2 =
1

‖(xi, yi)‖2 − f2(v)
,

with the choice (4.5.7) for the function f . The equations which corresponds to (4.5.5) are

(4.5.9)





sinu = −f ′(vi)
xi + yif(vi)f

′(vi)

1 + f2(vi)(f ′(vi))2

cos u = −f ′(vi)
xif(vi)f

′(vi) − yi

1 + f2(vi)(f ′(vi))2
,

(4.5.10)





sinu = −f ′(v′i)
xi + yif(v′i)f

′(v′i)

1 + f2(v′i)(f
′(v′i))

2

cos u = −f ′(v′i)
xif(v′i)f

′(v′i) − yi

1 + f2(v′i)(f
′(v′i))

2
.

Since the graphs of the sine and cosine functions on each interval of length 2π are
intersected at most twice by any straight line parallel to the u-axis, it follows the equations
(4.5.9) and (4.5.10) have at most two roots for each i = 1, . . . , g − 1. On the other hand
the surface Σg embedded in H1, the way described right after Theorem 4.5.1 has no other
H1-tangency points since on the two annuli A and A′ its tangent planes are parallel to
the xOy plane, a parallelism relation which happens for the planes of distribution H1 just
along the z-axis and the two annuli have no common points with the z-axis. The remaining
part of our embedded Σg is completely contained in Σ1 which is, in its turn, a revolution
surface around the z-axis which has no H1-tangency points, as we saw in Remark 4.5.2.
Thus, our embedded surface Σg has at most 4(g − 1) H1-tangency points.

A minimum tangency number, relative to a certain distribution D on Rn+m, can be
defined for a manifold Mn which is just immersible into Rn+m by

mtn(M,D) := min{card (τ(f,D)) : f ∈ Imm(M,Rn+m)},

where Imm(M,Rn+m) stands for the set of all immersions of M into Rn+m and τ(f,D) :=
{p ∈ M : Im(df)p = D(f(p))}. If M can be embedded into Rn+m, then obviously
mtn(M,D) ≤ µτν(M,D).

Problem 4.5.3 We wonder whether mtn(M,D) = µτν(M,D).
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Chapter 5

The Morse-Novikov inequalities

for circle-valued functions

In this chapter we present the Morse-Novikov inequalities for circle-valued functions
and some results regarding this subject, ([60], [61]).

The last section contains our results for the estimation of the number of critical points
for circle-valued functions, following papers D. Andrica [4] and D. Mangra [46], [47].

5.1 The Morse-Smale complex

Definition 5.1.1 ([61]) The Morse-Smale complex CMS(M,f, v), defined on a Morse

function f : M → R, a gradient like vector field v ∈ G(f), and a regular cover M̃ of M
with group of covering translations π, is a free Z[π]-module chain complex with

di : CMS(M,f, v)i = Z[π]ci(f) → CMS(M,f, v)i−1 = Z[π]ci−1(f)

p̃→
∑

q̃

n(p̃, q̃)q̃,

where n(p̃, q̃) ∈ Z is the finite signed number of ṽ-gradient flow lines γ̃ : R → M̃ which

start at a critical point p̃ ∈ M̃ of f̃ : M̃ → R, with index i and terminate at a critical
point q̃ ∈ M̃ of index i− 1.

If we chose an arbitrary lift of each critical point p ∈ M to a critical point p̃ ∈ M̃ of
f̃ , one obtains a basis for CMS(M,f, v).

The Morse-Smale complex is the cellular chain complex

CMS(M,f, v) = C(M̃)

of the CW structure of M̃ in which the i-cells are the lifts of the i-handles hi.
The homology of the Morse-Smale complex is isomorphic to the ordinary homology of

M :
H∗(C

MS(M,f, v)) ∼= H∗(M).

If M̃ = M then CMS(M,f, v) = C(M). This relation holds when the manifold M is
simply-connected.
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Proposition 5.1.1 The Morse inequalities are:

ci(f) ≥ bi(M) + qi(M) + qi−1(M),

where bi(M) are the Betti numbers of the manifold M ,

bi(M) = dimZ(Hi(M)/Ti(M)),

and qi(M) are defined by the minimum number of generators of Ti(M), i = 0, 1, . . . ,m.
Here Ti(M) = {x ∈ Hi(M) : nx = 0 for any n 6= 0 ∈ Z} is the torsion subgroup of

Hi(M).

In Morse theory, the Betti numbers represent lower bounds of the number of critical
points of a Morse function.

If the manifold M is simply-connected, π1(M) = {0}, and m ≥ 6, then there exists a
Morse function such that

ci(f) = bi(M) + qi(M) + qi−1(M),

for i = 0, 1, . . . ,m.
This result was proved by S. Smale and implies Poincaré conjecture for dimension

m ≥ 6 ([32]).

5.2 The Novikov complex

The construction of the Novikov complex is similar with the construction of the Morse-
Smale complex and is presented by A. Ranicki in paper [61].

Definition 5.2.1 Let f : M → S1 be a circle-valued Morse function and let v ∈ G(f) be
a gradient like vector field of f .

The Novikov complex CNov(M,f, v) is a free Ẑ[Π]-module chain complex with

di : CNov(M,f, v)i = Z[π]λ((z))ci(f) → CNov(M,f, v)i−1 = Z[π]λ((z))ci−1(f).

p̃→
∞∑

i=−∞

∑

q̃

n(p̃, ziq̃)ziq̃,

where n(p̃, q̃) ∈ Z is the finite signed number of ṽ-gradient flow lines γ̃ : R → M̃ which

start at a critical point p̃ ∈ M̃ of f̃ : M̃ → R with index i and terminate at a critical point
q̃ ∈ M̃ of index i− 1.

5.3 The Morse-Novikov inequalities

Definition 5.3.1 ([61]) The Novikov numbers of any CW -complex M and f ∈ H1(M)
are bNov

i (M,f) and qNov
i (M,f), where

bNov
i (M,f) = dimZ((z))(H

Nov
i (M,f)/TNov

i (M,f))

are the Betti numbers of the Novikov homology and qNov
i (M,f) is the minimum number

of generators of TNov
i (M,f), with

TNov
i (M,f) = {x ∈ HNov

i (M,f) : ax = 0, a 6= 0 ∈ Z((z))}
the torsion Z((z))-submodule of HNov

i (M,f).
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Theorem 5.3.1 (Morse-Novikov inequalities) For an m-dimensional compact man-
ifold M and a circle-valued Morse function f : M → S1, the Morse-Novikov inequalities
are, ([54]):

ci(f) ≥ bNov
i (M,f) + qNov

i (M,f) + qNov
i−1 (M,f), i = 0, 1, . . . ,m.

The following result was proved by M. Farber in [33].

Theorem 5.3.2 ([33]) Consider π1(M) = Z and m ≥ 6 and let f : M → S1 be a circle-
valued Morse function, 1 ∈ [M,S1] = H1(M) with a minimum number of critical points.

Then, for any i = 0, 1, . . . ,m the following relation holds:

ci(f) = bNov
i (M,f) + qNov

i (M,f) + qNov
i−1 (M,f).

5.4 Estimation of the number of critical points of

circle-valued functions

We will use the Morse-Novikov inequalities to determine lower bounds for γS1(M),
following papers D. Mangra [46], [47].

Let f : M → S1 be a circle-valued Morse function and let f∗ : H1(S1) → H1(M) be
the induced homomorphism in cohomology. Denote

F 1(M) = {f∗(1) : f ∈ F(M,S1)} ⊆ H1(M).

Theorem 5.4.1 The following relation holds:

γS1(M) ≥ min{bNov(ξ) + qNov
m (ξ) + 2

m−1∑

i=0

qNov
i (ξ) : ξ ∈ F 1(M)},

where bNov(ξ) =

m∑

i=0

bNov
i (ξ) is the total Betti number of the manifold M with respect to

the cohomology class ξ ∈ H1(M).

Theorem 5.4.2 If π1(M) = Z and m ≥ 6, the following relation holds:

γS1(M) = min{bNov(ξ) + qNov
m (ξ) + 2

m−1∑

i=0

qNov
i (ξ) : ξ ∈ F 1(M)}.

Regarding the set F 1(M) which appears in Theorem 5.4.1 and 5.4.2, we formulate the
following problem:
Conjecture 4.4.1 For any compact manifold M , the equality

F 1(M) = H1(M)

holds.
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