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Chapter 1

Introduction

Supervising social media platforms becomes an effective way of surveillance as the number
of their users has skyrocketed around the world: by February 2025, it is estimated by
Statista1 that around 5.56 billion people have access to the internet and use it on a
regular basis, which represents ≈ 67.9% of the global population. Of this total, 5.24
billion, or ≈ 63.9% are social media users.

Romania has a population of slightly over 19 million but reached a staggering 18 million
internet users by the start of 2024, with approximately 17.3 million of them being active
on social media. This number represents around 90% of the country’s population and is
considerably higher than the world average2. By analyzing data created and consumed in
the Romanian online space, valuable insights about public opinions, trends, and personal
interest can be identified and used for scientific or commercial purposes.

Natural language processing (NLP) is a subfield of artificial intelligence concerned
with providing computers the ability to process data encoded in natural language using
either rule-based, statistical, or machine learning (ML) approaches in order to tackle
a wide array of tasks like [34]: speech recognition, text classification, natural language
understanding and generation, etc.

Microblogging platforms such as Twitter (rebrabded as ”X”), Instagram, Facebook,
or TikTok inspire provocative questions as they feature linguistic challenges rarely found
in literary texts. Eisenstein [23] refers to these as bad language, encompassing emoticons,
phrasal abbreviations like lol, smh, and ikr, expressive word lengthening (e.g., cooool), or
terms written in non-standard forms, including typos, irregular vocabulary, or informal
grammar. Various reasons not in the scope of our research cause the presence of bad
language in social media content and it dramatically influences the performance of a
standard NLP model applied here [51].

Sentiment Analysis (SA) is an established category of NLP, with a lot of research
efforts being focused on discovering the ML methods that produce the best models given
a particular problem under study. Although textbooks such as [39] or reviews such as
[25, 76] present in detail the recommended steps to be adopted specifically for SA or with
respect to a given technology applied to NLP in general, a lot of research space is still
open in the area of SA, if certain problem-specific conditions occur, such as those induced
within microblogging platforms, or handling user input from mobile devices, etc.

Specifically targeting Twitter, performing SA on non-English tweets is seen as chal-
lenging, mostly because of the difficulty to gather enough labeled data in the target

1https://www.statista.com/statistics/617136/digital-population-worldwide/
2https://www.statista.com/topics/7134/social-media-usage-in-romania/
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language [10]. Annotated datasets can be found much easily for popular languages in
the world. For example, for English, we can mention BERTweet [51], a large-scale lan-
guage model trained over a corpus of 850M Tweets, which could be used together with
fairseq [56] or transformers [75] for text categorization tasks, including SA. In France,
DEFT challenges conducted between 2014 to 2018 focused on opinion mining and SA
from Twitter posts [54] by offering the participating teams access to labeled datasets. In
Spain, the TASS3 workshop, held every year since 2012 at the SEPLN4 congress supplied
a dataset with annotated tweets [19], including Spanish crosslingual variations.

However, little could be found for the less popular languages of the world, such as
Romanian. Ciobotaru and Dinu [16] performed emotion detection over a dataset of about
4,000 tweets in Romanian. The texts were manually labeled by them, but the dataset
was not made public. Istrati and Ciobotaru [29] collected and manually labeled a dataset
with Romanian tweets about brands and created a SA model for usage in brand moni-
toring. Unfortunately, their manually labeled dataset is also not publicly available. To
our knowledge, the recently proposed LaRoSeDa dataset [70] is the first and only public
dataset dedicated to SA in Romanian.

Part of our personal motivation includes a 3-class sentiment prediction capability
(”negative”, ”neutral”, ”positive”), tailored for social media-specific content. This makes
LaRoSeDa an unsuitable candidate for our work because the sentiment is labeled in a
binary fashion (”negative” and ”positive”) and the texts refer to product reviews collected
from online shopping sites, not from social media platforms.

Discovering abstract topics that occur in a collection of texts or documents could be
done with either Topic Classification (TC) or Topic Modeling (TM). TM is an unsuper-
vised technique [72] that doesn’t require labeled data, while TC is a supervised one, where
labeled data is needed for model training.

For this study we chose TC over TM for several reasons. Firstly, TM poses some
challenges due to its unsupervised nature and the lack of predefined topics. Unlike TC,
where the number of topics is determined by the training data, TM may generate an
indefinite number of latent topics, making it harder to interpret, evaluate, and apply in
real-life scenarios. Secondly, TM requires human intervention to understand and label
the newly generated latent topics which adds complexity and subjectivity. On the other
hand, TC is a straight forward approach that associates the documents to already known
classes which allows for more concrete insights to be drawn.

When it comes to TC for Romanian we mention Vasile et al. [71] who conducted a
study in which a number of traditional models were used to categorize 219 blog posts into
9 distinct topic classes. Sequential Minimal Optimization (SMO) and Complement Naive
Bayes (CNB) had the best results with an accuracy rate of 77.8%, k Nearest Neighbors
(k-NN) achieved a slightly lower score of 73.3%, and the classic Naive Bayes (NB) model
had the worse performance with an accuracy of 68.9%.

Other research on Romanian microblogging content is missing despite the potential
social and economic benefits that can be obtained from the use of TC systems. This
might be due to the problematic characteristics of social media texts, but with the recent
advancements in the ML field more complex models, like Transformers, can be used to
address these challenges. Another process that could encourage research in this direction
would be the collection and annotation of new large-scale datasets.

By integrating both SA and TC we want to develop a NLP system capable of processing

3http://tass.sepln.org/
4http://www.sepln.org/workshops/neges2019/
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data extracted from Romanian social media platforms from 2 points of view. The SA
component will have the role of predicting the global sentiment polarity of the texts,
while the TC component will focus on categorizing the texts into a number of predefined
discussion themes. With these functionalities at hand, researchers or private entities can
obtain in near real time a better understanding of public opinions and trending topics.

Our primary goal is to address the issue of limited linguistic resources which can be
used to train reliable SA or TC models for Romanian social media texts. Automated
translation of popular datasets into different languages has been presented in studies such
as [7, 6] and suggest that certain models have similar performances regardless of the
dataset used for their creation.

As our secondary objective, we want to address the need for a comprehensive compari-
son between different ML approaches. By training and testing a wide range of ML models
we hope to answer some important research questions. Is automatic translation from En-
glish to Romanian feasible for sentiment or topic classification? What encoding methods
and models to choose? Does hyperparameter optimization improve performance? How
do models compare in terms of accuracy and execution speed?

Our third objective refers to the creation of Transformer models designed for Romanian
social media texts. In order to do this we first need to find, collect, and curate a dataset
containing a substantial number of unlabeled Romanian tweets. To be more specific, we
want to create several variants of RoBERTa models from scratch using our custom corpus,
and these variants will be referred to as BERTweetRO. After the pre-training process, we’ll
fine-tune the BERTweetRO variants for SA and TC using translated data and compare
the performance of the best variant(s) with Multilingual BERT, classic learners, and the
deep learners.

Our final objective is to assess the SA performance of our best models against Sen-
timetric5, a commercial solution for Romanian SA. In order to have a fair comparison
with practical implication, we want to manually collect a small dataset of real life Roma-
nian tweets and, with the help of human volunteers, label each tweet as either negative,
neutral, or positive. We’ll instruct each volunteer how the labeling processes should be
carried out to ensure that this new dataset can serve as a reliable evaluation benchmark.

By comparing the models in each language separately we’ll be able to rank them by
performance and by comparing the English models against the Romanian ones, we’ll be
able to see which models adapt best to translated texts. For TC, we want to highlight the
benefits of using this supervised approach as opposed to the more common TM approach.
Furthermore, our new BERTweetRO model can advance the field of Romanian language
processing by allowing other researchers to fine-tune it on other NLP tasks, or to provide
a guide on how to pre-train custom BERT models with limited data.

5sentimetric.ro
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Chapter 2

Literature Review

SA involves applying NLP techniques to measure emotions and subjective content in
text, being extensively used in areas such as product reviews, survey analysis, social
media monitoring, and healthcare. Its applications range from business intelligence and
customer feedback analysis to advancements in medical research [27].

Conceptually, there are 2 main approaches which can be used for classifying texts
according to their sentiments. In the knowledge-based approach, words such as ”happy”,
”sad”, ”afraid”, or ”bored” are considered to denote affect categories [55]. The positive
opinion words are used to express a desired state while the negative ones are used to
express an undesired state. Some knowledge bases not only list obvious words, but also
assign arbitrary words a probable ”affinity” to particular emotions [68]. Opinion word
lists are usually manually created but can be extended in a automated fashion with the
help of dictionaries by finding synonyms and antonyms [45].

Statistical SA incorporates ML methods, including Bag-of-Words (BoW), Latent Se-
mantic Analysis (LSA), Pointwise Mutual Information for Semantic Orientation, word
encoding algorithms, etc. These methods offer superior results as they can handle more
complex textual data when compared to knowledge-based approaches but labeled datasets
are needed to create the models. Among classical ML algorithms, popular choices [43]
are Bernoulli Naive Bayes (NB) [42], Support Vector Machines (SVM) [32], Random
Forest (RF) [13] or the Logistic Regression (LR) [50]. For DL, all important variants
like the standard Deep Neural Network (DNN) [53], the Convolutional Neural Network
(CNN) [31], or the Long Short-Term Memory (LSTM) [59] are reported to perform well
for text classification.

Classic ML methods and standard neural networks are usually applied on document-
level embeddings like TF-IDF [66] or the modern Doc2Vec [37]. DL networks with CNN or
LSTM cells are in general applied on word embeddings such as Word2Vec [44]. TF-IDF
leads to high-dimensionality problems, so dimensionality reduction schemes are recom-
mended to improve efficiency. In our work, we’ll experiment with these methods, in the
search for a suitable combination that fits our needs.

Google proposed Bidirectional Encoder Representations from Transformers BERT [18]
as a state-of-the-art pre-trained model for many NLP tasks. Multilingual BERT, also pre-
trained for Romanian, is reported to work well in cross-lingual knowledge transfer [62].
However, as practice indicates [40], BERT comes with significant time costs for model
training and fine-tuning, even on powerful computers.

Performing SA on social media content is seen as a difficult task [10] because one has
to deal with bad language [23]. However, for popular languages like English, Spanish, or

4



French, plenty of linguistic resources that can be applied to enhance SA for microblogging
content exit. For English, we mention BERTweet [51], which was fine-tuned for SA and
scored an accuracy of 72% on the SemEval2017-Task4A [65] test set, outperforming its
competitors RoBERT and XLM-R. Barbieri et al. [9] reports BERTweet as being the
state-of-the-art on the TweetEval1 benchmark, with a 73% average recall. Pota et al. [63]
applied BERT-based models for SA on English and Italian Twitter data, highlighting the
value of individualized text preprocessing to uncover hidden information, a point we’ll
consider in our work.

For Romanian, the SA state-of-the-art for microblogging content is less advanced. In
the private sector, Technobium2 created Sentimetric, a web service dedicated to the SA
of Romanian texts, with a free demo available online3. To our knowledge, a Romanian
microblogging content dataset similar to BERTweet is not yet available.

LaRoSeDa (Large Romanian Sentiment Dataset) appears to be the only publicly avail-
able Romanian dataset labeled for SA; containing 15,000 product reviews of which 7,500
are labeled positive and 7,500 negative. Due to its nature, all works using this resource
report the performances achieved for SA in a binary fashion. For instance, [22] achieved
an F1 score of 54%, while in the work which introduced LaRoSeDa an accuracy of ≈91%
is reported as the benchmark [70]. More recently, we acknowledge the Romanian Dis-
tilBERT corpus4 which could be employed for binary SA over standard texts. They [5]
reported a state-of-the-art binary classification accuracy of 98% for SA performed on
LaRoSeDa. Regarding the multinomial SA of social media texts in Romanian, we could
not find any published work in order to set a benchmark with which we can compare.

However, Banea et al. [8] responded positively to the question whether we can ”reliably
predict sentence-level subjectivity in languages other than English by leveraging on a
manually annotated English dataset” by training Naive Bayes classifiers on 6 languages
starting from an original English dataset with news articles translated with automatic
engines. Thus, this motivates our efforts to use machine translation for obtaining learning
datasets for Romanian NLP.

Nowadays, discovering abstract topics that occur in a collection of documents could
be done with either Topic Classification (TC) or Topic Modeling (TM). TM is a widely
used statistical tool for extracting latent variables from large datasets, being well suited
for textual data [72]. Among the most used methods for TM we can mention Probabilistic
Latent Semantic Analysis (PSLA) and Latent Dirichlet Allocation (LDA) which state that
a document is a mixture of topics, where a topic is considered to convey some semantic
meaning by a set of correlated words, typically represented as a distribution of words over
the vocabulary. In essence, these conventional topic models reveal topics within a text
corpus by implicitly capturing the document-level word co-occurrence patterns [74, 12].

Nevertheless, directly applying these models on short texts will suffer from the severe
data sparsity problem, i.e. the sparse word co-occurrence patterns found in individual
documents [28]. Some workarounds try to alleviate sparsity by aggregating short texts
into longer pseudo-documents, though results vary by dataset [4]. The Biterm Topic
Model [15], which models the topic components using unordered word pairs (biterms),
often outperforms other approaches on short texts.

The main advantage of TM methods is that they do not require labeled data, thus data

1https://huggingface.co/datasets/tweet_eval
2https://technobium.com/
3http://sentimetric.ro/
4https://github.com/racai-ai/Romanian-DistilBERT
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collection becomes more accessible and could be done in a fully or partially automated
manner. Despite its popularity, TM is prone to issues with optimization, noise sensitivity,
and instability, which can lead to unreliable results [2]. Some techniques also fail to
reflect real-world data relationships [11], often due to strong assumptions regarding key
parameters. For example, determining the optimal number of topics is non-trivial, and
human intervention is needed to assign relevant labels to the identified topics.

When labeled training data is available, TC can be used for topic identification to
address many of TM’s limitations. Here, popular ML algorithms treat topic identification
as a standard classification task using syntactic and linguistic features. Given a training
set D = X1, X2, . . . , XN , where each record Xi (document, paragraph, sentence, or word)
is labeled with one of k topic classes, the goal is to train models that generalize from these
patterns to predict the topics of unseen texts accurately. TC is more transparent and
easier to evaluate, making performance assessment and comparison more straightforward.

Zeng et al. [77] proposed a hybrid approach that combines TM with TC. They first
extracted the most relevant latent features with TM and then fed them into supervised
ML model like SVM, CNN, and LSTM. For the experiments they used the Twitter dataset
released by TREC20115, which contains around 15,000 tweets, semi-automatically labeled
into 50 topic classes. The highest accuracy of ≈ 9.5% was achieved by CNN and can be
considered modest at best. Furthermore, they conclude that the TM component did not
improve the learning capabilities of the classifiers in any significant way.

Unlike SA, which focuses on text polarity, TC often involves a large and sometimes
overlapping number of classes [25, 39]. To overcome this, some authors [26, 52] use Top-K
accuracy instead of the standard one. Rather than classifying a text to just one class, the
model will produce the K most probable classes and if the actual label is among them,
the text is considered to be correctly classified. In our work, we’ll take this into account
and report the standard accuracy (i.e. Top-1), as well as the Top-2 and Top-3.

Regarding TC for Romanian texts we can only mention the work of Vasile et al. [71]
who evaluated the capabilities of some classic ML models when applied to blog content.
The data used in their study was extracted from 219 blogs, each instance being labeled
with 1 topic class from a total of 9: ”Activism”, ”Business and Finance”, ”Art”, ”Travel”,
”Gastronomy”, ”Literature”, ”Fashion”, ”Politics”, and ”Religion and Spirituality”. The
SMO and Complement NB obtained the best results, both reaching an accuracy of around
77.8%. A slightly lower score of 73.3% was achieved by k-NN while the standard NB model
had the worse performance of 68.9%. Important to note that the authors used a very small
dataset in their experiments which is problematic because it’s unlikely that these results
can be reproduced on larger evaluation sets.

We couldn’t find any other relevant research works that target Romanian social media
content and labeled datasets are also missing, meaning that we’ll have to translate a suit-
able English dataset in order to create the training data needed for our TC experiments.

5http://trec.nist.gov/data/tweets
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Chapter 3

Sentiment Analysis for Romanian
Social Media Texts

We searched in a number of online platforms including academic databases and NLP repos-
itories (like Kaggle) but couldn’t find a dataset that could match our requirements [49].
Thus, we decided to employ an open-source English dataset, translate it to Romanian
using Google Translate1, and use it as a ”surrogate” resource in our experiments.

For this research, we selected the Twitter US Airline Sentiment Tweets dataset2. The
data was collected in 2015 and each tweet was manually labeled by external contributors
with its global sentiment polarity (positive, negative and neutral). It contains around
15,000 tweets, with class distribution as follows: 63% negative, 21% neutral, and 16%
positive. Each tweet is also accompanied by the contributor’s confidence about the anno-
tated sentiment and each negative tweet includes a reason for the assessment.

The structural, grammatical, and syntactical integrity of any text translated with
automated processes is affected. The main metric used in the literature to measure
the quality of an automated translator is the Bilingual Evaluation Understudy (BLEU)
score [58]. This score ranges from 0 to 100 with higher numbers representing a better
translation (100 denoting perfect translation). In [3], general English texts were translated
to 50 different languages, using Google Translate, and the BLEU score was used as the
evaluation metric. The mean score over all the compared translations was approximately
76. English to Romanian achieved a score of 84, which is considerably above average. The
maximum BLEU score of 91 was achieved by English to Portuguese while the minimum
of 55 was achieved by English to Hindi. Similar results are also reported in [67], where
English to Romanian obtained better than average results. These findings indicate that
our translation approach for creating a dataset that can be used to train ML models has
high chances of success.

For our experiments, the dataset was split into training and test sets using a standard
75–25% split: ≈11,000 instances for training and ≈3,700 for testing, with similar class
distributions in both. Moreover, the English and Romanian train and test data are
identical in the sense that they contain the same set of instances.

Next we developed a custom preprocessing module, containing the following steps,
applied in this specific order:

1. Extra white space removal (language-independent).

1https://translate.google.com/
2https://www.kaggle.com/crowdflower/twitter-airline-sentiment
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2. Custom word lemmatization and tokenization (language-dependent).

3. URL identification and removal (language-independent).

4. Emoji identification and replacement (language-independent).

5. Social media mention identification and removal (language-independent).

6. Extra consecutive character removal (language-independent).

7. Abbreviation replacement (language-dependent).

8. Stop-word removal (language-dependent).

9. Lower case capitalization (language-independent).

10. Punctuation mark removal (language-independent).

Language-independent steps can be applied in the same manner in both English and
Romanian. In contrast, language-dependent steps implies that specific knowledge of Ro-
manian or English is required.

In step 1, all consecutive white spaces which appear more than two times are removed
from the tweets, i.e. ”Hello world!” becomes ”Hello world!”.

In step 2, we used SpaCy3 for word tokenization and lemmatization due to its high
accuracy in both English and Romanian. The input for this step are strings and the
generated output is a list of tokens, where each token is either a number, a lemmatised
word, or a symbol. We chose lemmatisation over stemming because lemmatisation can
correctly identify the intended part of speech and meaning of a words.

We modified the default functionality of the tokenization and lemmatisation offered
by SpaCy in order to deal with social media specific text, such as:

� We instructed SpaCy not to lemmatise social media specific tagged words (hashtags
and mentions) and not to split the tagged words in the tokenization step. By default,
SpaCy would transform an input like ”#working” into the following list of tokens
[”#”, ”work”]. Therefore, we ensure that social media specific words are kept intact
and hashtag tokens are dealt with properly.

� Negated words are crucial for sentiment analysis [25], thus, we implemented a mech-
anism that can identify negated words within a sentence and appended them with
a special prefix and suffix. For example, the string ”not happy” is transformed into
the following tokens [”not”, ”|!|happy|!|”]. Having this functionality, we ensure that
the negation elements are not lost after the stop-word removal step, as the stop-word
lists usually contain negation words like ”no”, ”not”.

In step 3, we identify which tokens are URLs (Uniform Resource Locator) using a com-
plex regular expression pattern with over 400 characters and remove them from the data
because URLs are usually non human-readable and do not provide any useful information
or insights for text classification.

Step 4 is critical for our microblogging context, as we deal with emojis, a sort of ”bad
language” which have become extremely popular worldwide in informal text sources. For

3https://spacy.io/
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example, Instagram reported in 2015 that nearly half of the text on their platform con-
tained emojis 4. Kralj Novak et al. [36] reported that around 4% of tweets contain emojis
and their sentiment polarity does not depend on the language. With this respect, they
constructed the Emoji Sentiment Ranking lexicon5 containing the 751 most frequently
used emojis, each annotated with its sentiment polarity (negative, neutral, or positive).

Therefore, in this step we verify if a token is found in the Unicode’s Full Emoji List6

and whether it has an associated sentiment in the Emoji Sentiment Ranking lexicon, men-
tioned above. If it does, the token will be replaced with its polarity together with a special
prefix and suffix. For example, ”U0001F642” represents the unicode for ”slightly smiling
face” and has a ”positive” polarity. Thus, it will be transformed into ”|ˆ|positive|ˆ|”.
If a token is a emoji but it wasn’t labeled with any associated sentiment in the lexicon
or the unicode is not an emoji, then another prefix and suffix will be added to it, for
example ”U00001D19” is the Unicode for ”capital reversed R” and will be transformed
into ”|*|U00001D19|*|”.

In step 5, social media mention tags, referencing other social media entities within the
network are identified and removed. In the case of Twitter, we search for the ”@” symbol
which is used to create external links in tweets. Most of the mentions refer to American
airlines companies and we noticed a strong correlation between them and the general
expressed sentiment of the tweet. Thus, we decided to remove the mentions because their
existence might artificially increase the accuracy of our classifiers (we want to assess the
polarity based on the language and not based on a specific named entity).

Step 6 deals with excessive consecutive characters. In microblogging texts, regardless
of the language, it is common to emphasize a word by adding additional characters. For
example the word ”cool” might be written with various numbers of ”o”s. To solve this
issue the extra consecutive characters which appear more than 3 times for a given token
are removed. Therefore, we restrict the appearance of a given word to either its standard
form or a single instance of emphasized writing: e.g. ”cool” can only appear as ”cool” or
”coool”, the second being the emphasized instance.

In step 7, we replace some abbreviations from the text with their corresponding full
description with the help of two lexicons we constructed specifically for this purpose. The
English version contains around 400 abbreviations, while the Romanian version contains
around 100 abbreviations and was built using the Wikipedia page for Romanian abbre-
viations7. After this process each abbreviation is replaced with the tokens derived from
its full description. For example, ”brb” will be replaced with a list of 3 tokens: [”be”,
”right”, ”back”].

In step 8, stop-words are identified and removed using the stop-word dictionaries
offered by SpaCy, for both English and Romanian. Removing stop-words is a common
task in text processing, as indicated by [39].

In step 9, all tokens are transformed to a lower case capitalization, thus reducing the
number of tokens identified for a given concept.

In step 10, we remove all extra punctuation marks within tokens, with the exception
of the tokens tagged with our special prefixes and suffixes.

Table 3.1 presents two sample tweets and their representation after applying all 10

4https://instagram-engineering.com/emojineering-part-1-machine-learning-for-emoji-trendsmachine-
learning-for-emoji-trends-7f5f9cb979ad

5https://kt.ijs.si/data/Emoji_sentiment_ranking/
6https://unicode.org/emoji/charts/full-emoji-list.html
7https://ro.wiktionary.org/wiki/Wik%C8%9Bionar:Abrevieri
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steps of our preprocessing pipeline. The first tweet is in English and the second one is its
automated translation in Romanian. ”U00001F620” is the Unicode placeholder for the
”angry face” emoji.

Language Raw tweet Preprocessed tweet
EN ”@united and don’t hope for me hav-

ing a nicer flight next time. RE-
ALY getting on my nerves U00001F620
#nothappy....”

[”|!|hope|!|”, ”i”, ”nice”, ”flight”,
”next”, ”time”, ”really”, ”nerve”,
”|ˆ|negative|ˆ|”, ”|#|nothappy|#|”]

RO ”@unitate s, i sa nu sperat, i să am un
zbor mai frumos data viitoare. Devine
ı̂ntr-adevăr pe nervii mei U00001F620
#nothappy....”

[”|!|sperat|!|”, ”zbura”, ”fru-
mos”, ”data”, ”viitor”, ”deveni”,
”adevăr”, ”nerv”, ”|ˆ|negative|ˆ|”,
”|#|nothappy|#|”]

Table 3.1: Tweet preprocessing example

Key to any NLP task is the document internal representation, i.e., properly selecting
the features from the raw text and encoding them as numeric values, so as to keep the
representation tractable or to enrich it with some language semantics. This process is
mandatory because text analysis algorithms require numerical inputs on which to per-
form mathematical computations. Textual data in its raw form is also filled with many
irrelevant or redundant features which should be handled in this stage because the ML
models are not so good at processing them on their own [69].

For our study we selected the most popular approaches as suggested by the NLP
literature [25, 39]: TF-IDF, Word2Vec, and Doc2Vec.

We trained one TF-IDF vectorizer on the English training set and another one on its
Romanian translation. TF-IDF was applied on the preprocessed tweets and the vocabu-
lary was set to contain the tokens which appear at least 3 times. Therefore, we removed
a large number of infrequent tokens or those which may have been erroneously built in
the preprocessing step. The trained TF-IDF vectorizers were then applied on the testing
sets, after which we noticed that the English vocabulary contained around 3,100 tokens
while the Romanian one contained around 4,000 tokens, due to the fact that Romanian
is generally more verbose than English.

We used the Gensim library [64] to learn the Word2Vec and Doc2vec embeddings for
our data. As in the case of TF-IDF, it was necessary to train 2 separate models, one
on the English training set and another on the Romanian training set. For Word2Vec
we selected the CBOW architectural model because it works better on short texts. For
Doc2Vec we used DBOW with a hierarchical softmax architecture. This combination
allows for the prediction of words in their context and improves the training time which
is ideal in our case. The vocabulary was also set to contain only the tokens that appear
at least 3 times.

For both Word2Vec and Doc2vec we set the embedding size to be 200 to ensure that
the models can capture enough contextual information and at the same time to maintain
an efficient computational performance. We trained each model with a learning rate (α)
of 0.025, a window size of 5, over 5 epochs.

Dimensionality reduction in data science and ML refers to the process by which the
number of features or their size is reduced such that the available information retains
some meaningful properties of the original data [1]. This approach is helpful for some
NLP tasks where the initial features are extremely high dimensional like in the case of
TF-IDF which is known to generate large sparse matrices.
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With dimensionality reduction in place we want to reduce the size of our data then
check how much the predictive and computational performance of the ML models is
affected. We selected the following algorithms to test: Principal Component Analysis
(PCA) [33], Non-negative Matrix Factorization (NMF) [60], and Latent Semantic Analysis
(LSA) [20].

We applied all 3 algorithms on the TF-IDF datasets and reduced the number of fea-
tures to 500. This means that the reduced representation for English is around 6.2 times
smaller and for Romanian about 8 times smaller than the original. We didn’t apply di-
mensionality reduction on the Word2Vec and Doc2Vec data because the desired vector
size of 200 was set before extracting the features. Also, by reducing the size of these
embeddings there’s a high chance of compromising their quality altogether.

As indicated by the literature [25, 35, 39], classic machine learning (ML) algorithms,
deep learning (DL) approaches, or novel language models approaches could be applied
for inferring SA models. For our experiments we decided to apply the following learning
methods:

� Classic ML:

– Bernoulli Naive Bayes (Bernoulli
NB)

– Support Vector Machine with a
linear kernel (Linear SVM)

– Random Forest (RF)

– Logistic Regression (LR)

� Deep Learning:

– Deep Neural Network (DNN)

– Long Short-Term Memory
(LSTM)

– Convolutional Neural Network
(CNN)

� Advanced Language Model:

– Multilingual BERT

Bernoulli NB, SVM, RF, LR, and DNN will be paired with TF-IDF, TF-IDF with
reduced dimension, and Doc2Vec. LSTM and CNN will be applied on the Word2Vec
encoding because they can process and are specialized on multidimensional sequential
data. In this case we incorporate an extra embedding layer under the input layer in order
to map each token from the text with its corresponding Word2Vec representation. Because
for Romanian we do not possess a global word embeddings resource like GloVe [61] for
English, we opted to learn the Word2Vec representations from scratch for both languages
using only the training sets.

We implemented the classic learning algorithms with the help of Scikit-Learn library8,
while for the deep learning algorithms we used Keras9.

For BERT, we used the model available on the Hugging Face transformers10, called
with the base multilingual uncased variant. What is different about this model compared
to the other classifiers is the fact that it has its own encoding mechanism called Multi-
lingual Tokenizer and doesn’t support features in TF-IDF, Word2Vec, or Doc2Vec form.
On top of M-BERT we added a hidden dense layer with 75 nodes and ReLU activation
function, followed by the standard classification layer with 3 nodes which produces the
sentiment class. Adam was the selected optimizer, with a learning rate of 2 × 10−5 and
ϵ = 10−8. The loss function was set to Categorical CrossEntropy.

8https://scikit-learn.org/stable/
9https://keras.io/

10https://huggingface.co/docs/transformers/en/model_doc/bert
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Evolutionary Algorithms (EAs) are a family of optimization methods inspired by nat-
ural selection. They work by iteratively improving a set of candidate solutions using a
fitness function as the evaluation metric. Selection, crossover, mutation, and reproduction
processes are applied on the candidates (also called ”individuals”) to evolve them over a
number of generations with the final goal of finding the best individuals as measured by
the selected fitness function [73]. The Genetic Algorithm (GA) is the most popular and
basic type of EA.

We selected this population-based probabilistic method because it can drastically
speed up the hyperparameter optimization while producing a good-enough combination of
parameter values. There are more complex variations for the GA algorithm, like Thermo-
dynamical GA, but we decided to stick with a standard GA as it’s been shown to outper-
form Bayesian optimization anyway [46]. One more benefit of evolutionary optimization
is that it works in all 3 types of search spaces (continuous, discrete, and categorical)
regardless of the classifier on which the optimization is performed.

We used Sklearn-Genetic-Opt library11 for implementing the GA optimization in re-
lation with our selected classifiers. Sklearn-Genetic-Opt makes use of the DEAP frame-
work12, which supplies many EA variants needed for solving optimization problems.

The GA was designed as following. Given a number N of parameters to optimize, an
individual/chromosome is denoted as a vector (p1, p2, . . . , pi, . . . , pN). In this vector, each
pi represents the value selected for the corresponding hyperparameter Ni. A population
consisting of 20 individuals is evolved over 40 generations with a crossover probability
of 80% in order to combine the characteristics of the individuals and a mutation prob-
ability of 10% to introduce variation in the population. Individuals are selected for the
next generation using a standard elitist tournament of size 3. Internally, each individ-
ual is evaluated using the accuracy metric as the fitness function, computed with 3-fold
cross-validation. In general, convergence is seen after 15-20 generations, thus evolving
the population over 40 generations is more than enough to guarantee a good parameter
selection.

In the case of the classic ML algorithms all the parameters described in the official
Sklearn documentation were optimized. In the case of DNN, we considered among the
parameters the following: the network capacity (the number of hidden layers and the
number of units per layer), the activation function, the regularization function, and drop-
out rate. For CNN and LSTM, we wanted to use the logic but an unexpected issue
occurred. For text classification, these two models need the embedding weight parameter
to be in the form of a 2D tensor but Sklearn-genetic-opt doesn’t support this. As a result
we had to modify the source code of the library in order to transmit the multidimensional
parameters directly to DEAP.

For the BERT-based classifier, as learning just one model is very time consuming, we
omitted to perform the evolutionary optimization procedure. Instead of cross-validation,
we reserved 10% of the training set for validation and we let the learning to optimize
the loss function for several epochs. We noticed that the model rapidly overfits, thus, we
stopped the training process after 2 epochs for both English and Romanian.

We next present the high-level architecture of our Sentiment Analysis system, sum-
marized in Figure 3.1.

At the top of the diagram, the automatic translation of Twitter US Airline Sentiment
Tweets from English to Romanian is highlighted as the first and most important step

11https://sklearn-genetic-opt.readthedocs.io/en/stable/api/gasearchcv.html
12https://deap.readthedocs.io/en/master/
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Figure 3.1: Architecture of the Sentiment Analysis system

13



required to run SA in different languages using a single uni-lingual dataset as the source
of information.

The preprocessing step consists of various procedures and are grouped in two different
abstract pipelines. The one on the left will generate texts which are fit for the TF-IDF
variants, Doc2vec and Word2Vec techniques. In the one on the right only steps 3 and 5
from our preprocessing module are applied, plus a sentence level tokenization in order to
generate texts as expected by the pretrained BERT encoder.

The TF-IDF variants and Doc2Vec are grouped together to highlight that the output
of all these methods are in the same form. To be more specific, a preprocessed text is
transformed into a vector of length N while Word2Vec will transform a preprocessed text
into a NxM matrix where the number of rows will be equal to the number of words
within the text, and the number of columns will be equal to the word embedding size.
BERT contextual encoding will represent texts using multiple vectors with the help of
Multilingual Tokenizer.

In model training and tuning, we can see that for all the selected ML approaches, with
the exception of M-BERT, evolutionary hyperparameter optimization is used to identify
the best set of parameters. We selected genetic algorithms over grid search to avoid the
pitfall of finding local minima and because GAs are able to explore the search space of
parameters with continuous values. Due to the high training times of BERT, we opted
for a classic training process using the recommended parameters.

Bernoulli NB, Linear SVM, LR, RF and DNN are grouped together to highlight the
many-to-many relation of this group with the TF-IDF variants and Doc2Vec features.
This means that any feature from this group can be used by any model mentioned previ-
ously. LSTM and CNN are grouped together in order to highlight that both of them use
the Word2Vec features, while the BERT classifier uses the specific encodings generated
by its own Multilingual Tokenizer.

At the bottom of the diagram, the main goal of our work is highlighted, namely the
classification of input texts in 3 categories: negative, neutral, or positive.

Next, we present our experiments and discuss the results. The classifiers will be
evaluated strictly on the test sets using 3 metrics often used in the literature: Macro F1,
Weighted F1, and Accuracy. In addition to this, we will present and analyze the execution
speeds of each ML model. With our findings at hand, other researchers can more easily
select the model that suits their needs based on the expected predictive performance in
relation to hardware usage.

All the experiments, with the exception of fine tuning Multilingual BERT, were con-
ducted on a high performance computer with the following specifications: 2 × Intel Xeon
Gold 6230 CPUs, 128 GB of DDR4 RAM, and 8 × NVIDIA Tesla V100 GPUs with 32GB
of VRAM each. For BERT we used a development environment equipped with Tensor
Processing Units (TPUs) provided to us by Google. We did not run BERT on our pow-
erful computer because after some investigations we discovered that we can actually get
faster execution times on the TPUs. The source code was implemented in Python 3.9.

We applied the processing pipeline described in Figure 3.1 on the original and trans-
lated Twitter US Airline Sentiment Tweets dataset. We used the same exact methodology
for both languages for consistency but most importantly to isolate the impact of machine
translation from other variables.

Table 3.2 shows the learning performances of the classifiers and for the algorithms that
were paired with the TF-IDF encoding the results with dimensionality reduction are also
provided.
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Encoding Classifier
English original dataset Romanian translated dataset

Acc. Weighted
F1

Macro F1 Acc. Weighted
F1

Macro F1

TFIDF Bernoulli NB 77.37 77.25 70.7 78.2 78.2 71.91
Linear SVM 77.41 76.67 69.77 78.36 77.47 70.54
RF 77.45 75.9 68.47 77.81 76.45 69.04
LR 66.7 55.21 39.2 65.2 54.71 38.17
DNN 78.18 77.15 70.14 77.2 76.23 69.19

TFIDF+PCA Bernoulli NB 68.01 62.82 50.74 67.78 62.49 50.4
Linear SVM 75.89 75.94 69.52 76.2 74.71 66.94
RF 75.78 74.79 67.28 75.73 73.47 65.05
LR 67.52 58.95 45.39 63.66 57.16 42.17
DNN 76.34 75.34 68.43 76.58 75.75 68.59

TFIDF+NMF Bernoulli NB 72.44 71.7 63.43 72.93 72.22 64.43
Linear SVM 74.14 74.13 67.1 73.16 69.88 60.5
RF 74.77 73.27 65.89 74.99 73.88 66.05
LR 62.55 48.01 25.62 65.41 55.17 39
DNN 74.67 74.28 66.66 75.02 73.07 64.7

TFIDF+LSA Bernoulli NB 68.26 63.97 52.23 67.01 60.77 47.43
Linear SVM 76.3 75.05 67.31 76.9 75.65 68.18
RF 76.12 74.29 66.33 76 74.3 66.23
LR 67.81 68.72 61.72 64.1 57.87 43.15
DNN 76.67 75.89 69.06 76.36 75.07 67.67

Word2Vec CNN 78.21 76.66 70.33 77.69 76 68.67
LSTM 77.5 76.35 69.4 78.17 77.98 71.39

Doc2Vec Bernoulli NB 62.44 48.01 25.62 62.42 47.98 25.62
Linear SVM 63.05 48.01 25.62 62.67 47.97 25.62
RF 62.75 48 25.22 62.52 47.97 25.62
LR 62.44 47.9 25.02 62.42 47.79 25.62
DNN 62.9 48.01 25.62 62.44 47.98 25.62

Multilingual
BERT Tokenizer

Multilingual
BERT

83.02 82.57 77.48 80.99 80.5 74.81

Table 3.2: Classifier predictive performance

One of the most important insights from Table 3.2 is that the classification perfor-
mance between languages is surprisingly consistent. For example, Bernoulli NB with plain
TF-IDF shows a slight improvement in accuracy from 77.37% in English to 78.2% in Ro-
manian. Linear SVM and DNN also show only a minor variation between languages,
suggesting that the translation learning approach is viable for Romanian. The varia-
tion among all combinations of models and encoding schemes is around ±2% in terms of
accuracy, and this insignificant difference is also maintained for Weighted and Macro F1.

Multilingual BERT sets the state of the art accuracy at 83% on the English dataset
and 81% on the Romanian dataset. In the case of classic ML, Bernoulli NB and Linear
SVM had the best results across all 3 evaluation metrics, reaching an accuracy of approx-
imately 78% for both languages. RF has a comparable accuracy but a greater decrease in
performance when we consider the Weighted and Macro F1 scores. The LR was consid-
erably worse than the rest in this group, denoting its inability to capture the necessary
information for correct classification.

DNN, CNN, and LSTM performed similarly to Bernoulli NB and Linear SVM with
accuracies of around 78% in English and 77–78% in Romanian. DNN with TF-IDF and
CNN with Word2Vec have slightly better results on the English set while LSTM with
Word2Vec is a little better on the Romanian one, but the differences are negligible.
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Another important finding we want to highlight here is the impact of dimensionality
reduction on TF-IDF vectors: PCA, NMF, and LSA decreased the classification perfor-
mance of the models when compared to the same models that used the original vectors.
For example, Linear SVM’s accuracy in Romanian dropped from 78.36% with TF-IDF to
76.2% with TF-IDF+PCA, 73.16% with TF-IDF+NMF, and 76.9% with TF-IDF+LSA.
A similar trend can be seen in English. This suggests that although DR algorithms may
improve execution speed, they also negatively impact accuracy rates due to information
loss. However, we note that the impact is not so drastic, which means that a trade-off
like this could be considered acceptable depending on the context of the application.

By far the worst performances are those of the models using Doc2Vec as the encoding
mechanism. Compared to TF-IDF which is based on word frequency and Word2Vec which
builds a dedicated vector for each individual word depending on its context, Doc2Vec
attempts to generate a single dense vector to represent each instance from the dataset.
This technique might work well with longer texts but it’s problematic in our case because
the shorter the texts are, the greater the risk of injecting errors in the generated vectors
becomes. This most likely explains Doc2Vec’s poor performance. Regardless, no model
using Doc2Vec achieved predictive results acceptable for real-world applications.

With this analysis we note that although the translation from English to Romanian
comes with certain variations, the performances of all selected classifiers remained stable
between languages. This confirms that an automated translation approach can be used
to create resources for SA in Romanian.

In Table 3.3 we list the execution times for hyperparameter optimization, training
of the final models, and testing them. With the help of evolutionary optimization we
managed to increase the weighted F1-measure of the models by 1–3%, with slightly greater
gains for accuracy.

As a first observation, we want to point out the higher optimization and training times
that were needed on the Romanian dataset. This is not surprising because the Romanian
language tends to be more verbose than English, which means that a greater number of
words are used to express the same ideas. For this reason, the Romanian models end up
with a larger vocabulary than the models trained on the English dataset. However, this
increase in learning times for the Romanian language is not big enough to be considered
a real obstacle in practice.

Another aspect that can be observed is related to the great variations in the optimiza-
tion and training speeds across classifiers and encodings. Obviously, training classic ML
models is faster than DL models because the latter are more complex by nature. Even so,
the times to train the final models are pretty insignificant around the board with the ex-
ception of Multilingual BERT which took 7 minutes for each language. Second worse but
considerably faster is LSTM, with 17 seconds for English and 21 seconds for Romanian.
The fastest was Bernoulli NB, needing less than 1 second for all language and encoding
combinations.

The problem arises when searching for optimal model parameters, as this is very time-
consuming: model complexity leads to more parameters, a larger search space, and longer
training times; factors that together cause optimization times to grow exponentially. For
Bernoulli NB without dimensionality reduction this took about 27 minutes in Romanian
and 22 minutes in English. Linear SVM had similar times between languages, slightly
over 16 minutes. Searching for the best parameters and network capacity of the DNN
took about 3 hours and 45 minutes on the Romanian data and 3 hours and 11 minutes
on the English data. For LSTM this process took more than 17 hours for Romanian and
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Encoding Classifier
English original dataset Romanian translated dataset

Opt. (s) Train (s) Test (s) Opt. (s) Train (s) Test (s)
TFIDF Bernoulli NB 1337 0.285 0.128 1645 0.368 0.147

Linear SVM 920 0.36 0.02 1048 0.238 0.022
RF 89603 8.502 0.024 3588 7.855 0.026
LR 5735 1.59 0.085 6158 0.568 0.122
DNN 11513 2.176 0.274 13551 2.23 0.44

TFIDF+PCA Bernoulli NB 395 0.051 0.03 387 0.064 0.031
Linear SVM 2450 2.089 0.016 2038 2.418 0.01
RF 2113 14.044 0.02 2245 4.792 0.022
LR 795 1.587 0.134 375 0.295 0.05
DNN 10195 1.561 0.19 3558 1.015 0.166

TFIDF+NMF Bernoulli NB 384 0.058 0.044 362 0.051 0.017
Linear SVM 482 0.276 0.015 412 0.149 0.013
RF 226 1.885 0.014 5125 16.644 0.019
LR 567 0.479 0.077 449 0.404 0.03
DNN 17842 5.109 0.207 9236 5.28 0.176

TFIDF+LSA Bernoulli NB 389 0.064 0.016 385 0.062 0.032
Linear SVM 8417 6.53 0.003 2724 2.353 0.009
RF 2245 0.743 0.028 204 0.693 0.022
LR 943 1.546 0.14 659 0.905 0.154
DNN 10195 1.782 0.214 6585 2.567 0.261

Word2Vec CNN 9143 1.46 0.281 16127 4.209 0.25
LSTM 17172 16.865 1.32 62364 20.926 1.292

Doc2Vec Bernoulli NB 271 0.028 0.01 274 0.021 0.015
Linear SVM 654 0.19 0.013 580 0.152 0.014
RF 484 1.595 0.015 428 0.936 0.01
LR 712 1.171 0.14 263 0.523 0.111
DNN 17842 0.912 0.144 11529 4.594 0.279

Multilingual
BERT Tokenizer

Multilingual
BERT

N/A 416.13 16.64 N/A 444.02 16.73

Table 3.3: Classifier hyperparameter optimization, training, and evaluation times

almost 5 hours for English, despite the vector embedding size being only 200. Among the
classical ML models, RF and LR were the slowest.

Testing times are relatively low for all models and encodings pairs which shows that
once trained the classifiers are able to quickly deliver a large number of predictions regard-
less of language. Multilingual BERT, despite its long training, achieved good evaluation
times of 16.64 and 16.73 seconds for the English and Romanian datasets. The second
slowest was LSTM but it only needed around 1.3 seconds to finish. The other models
(including CNN) have even better results, with test times of under 0.5 seconds in both
languages.

Overall, these execution times provide helpful insights about how demanding our se-
lected ML algorithms are. A complex model like BERT has higher predictive capabilities
but it’s slower to run, while simpler models like Bernoulli NB or Linear SVM offer a rea-
sonable compromise between speed and accuracy which makes them ideal in cases where
hardware resources are limited.
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Chapter 4

Topic Classification for Romanian
Social Media Texts

For our work we require a large dataset with social media specific texts. The number of
available topics within the dataset should cover the general but noteworthy topics and the
topic label of each instance should be correctly assigned, preferably manually annotated.
Unfortunately, we couldn’t find a single publicly available dataset that could satisfy all
of our research necessities and we don’t have the available resources to collect and label
a new one from scratch. Thus, we decided to translate an open source English dataset to
Romanian with automated translation and use it as ”surrogate” in our experiments [48].

We selected the News Category Dataset1 which contains 202,372 news headlines col-
lected between 2012 up to 2018 from HuffPost2. This site offers news, satire, blogs,
original content, and covers a variety of topics. Each record of the dataset contains the
following attributes: category (41 categories), headline, short description, authors, date
(of the publication), and link (URL link of the article).

There are a number of reasons why we selected this dataset as the benchmark for our
experiments: (i) It contains short texts similar to those found on social media platforms
(ii) The topics are fairly general and the number of topics is large enough (iii) The category
of each article was manually labeled (iv) The dataset is large enough to effectively train
the ML models (v) It was relatively recently collected.

For our classification problem we’ll focus only on the headline and short description
attributes of the dataset, ignoring the authors and date of publication. Therefore, we
merged the headline and the short description attributes and created a novel attribute
called text merged. The vast majority of merged texts contain between 94 and 254 char-
acters, with the mean being ≈174 and the standard deviation almost 80 characters. This
proves that the generated texts have the characteristics of short texts similar to those
present in social media platforms (i.e. a Twitter tweet is limited to 280 characters, a
TikTok comment is limited to 150 characters).

Next, we did an initial investigation of the data and encountered some problems with
the distribution and granularity of the original 41 class labels, as depicted in Figure 4.1.
The top-3 most popular classes are: ”POLITICS” with ≈ 16% of the records, ”WELL-
NESS” with ≈ 9% of the records, and ”ENTERTAINMENT” with ≈ 8% of the records.
The least most popular 4 classes are: ”COLLEGE”, ”LATINO VOICES”, ”CULTURE
& ARTS”, and ”EDUCATION” each making up only 0.5% of the records, meaning that

1https://www.kaggle.com/datasets/rmisra/news-category-dataset
2https://www.huffpost.com/

18

https://www.kaggle.com/datasets/rmisra/news-category-dataset
https://www.huffpost.com/


there is a significant class imbalance in the data.

Figure 4.1: Original topic category distribution, 41 classes

We also noticed that there are 2 more issues with the existing topics: a subset of them
are overlapping and others are way too granular. For example the categories ”SCIENCE”
and ”TECH” are too specific but can be naturally grouped together in a common class
like ”SCIENCE & TECH”, while other classes have different labels but denote the same
thing, for example ”ARTS & CULTURE” and ”CULTURE & ARTS”.

So, in order to improve the quality of the data, we decided to cluster together the
overly granular and synonymous categories. Therefore, we transformed the next classes as
follows: ”HEALTHY LIVING” was relabeled as the existing ”WELLNESS” class; ”PAR-
ENTS” was relabeled as the existing ”PARENTING” class; ”STYLE” was relabeled as
the existing ”STYLE & BEAUTY” class; ”GREEN” was relabeled as the existing ”EN-
VIRONMENT” class; ”TASTE” was relabeled as the existing ”FOOD & DRINK” class;
”COLLEGE” was relabeled as the existing ”EDUCATION” class; ”THE WORLDPOST”
and ”WORDPOST” were relabeled as the existing ”WORLD NEWS” class; ”ARTS” and
”CULTURE & ARTS” were relabeled as the existing ”ARTS & CULTURE” class; ”BUSI-
NESS” and ”MONEY” were relabeled as a new class named ”BUSINESS & FINANCES”;
”SCIENCE” and ”TECH” were relabeled as a new class named ”SCIENCE & TECH”;
”QUEER VOICES”, ”BLACK VOICES”, and ”LATINO VOICES” were relabeled as a
new class named ”GROUPS VOICES”; ”FIFTY” and ”GOOD NEWS” were relabeled
as a new class named ”MISCELLANEOUS”.

At the end of this process the adjusted dataset contains 26 topics that are truly
distinct and no class has less than 1% of record labels, meaning that the least popular
class has more than 2,000 records. This should increase the performance of the models
that will be trained later but at the same time it ensures consistency and coherence in
our topic classification task. This new class feature was named category merged and its
full distribution is shown in Figure 4.2.
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Figure 4.2: Merged topic category distribution, 26 classes

For our experiments, the dataset was split into training and test sets using a standard
75–25% split: ≈151,500 instances for training and ≈50,500 for testing, with similar class
distributions in both. Moreover, the English and Romanian train and test data are
identical in the sense that they contain the same set of instances.

In order to remove the natural noise which is existent in our dataset we used the
following 5 preprocessing steps, applied in this specific order:

1. Extra white space removal (language-independent).

2. Word lemmatization and tokenization (language-dependent).

3. Stop-word removal (language-dependent).

4. Lower case capitalization (language-independent).

5. Punctuation mark removal (language-independent).

If the predictions are made on real life social media texts, then a number of additional
preprocessing steps are required in order to bring them to a closer format similar to that
existent in the training set. Because the texts of the News Category dataset do not
manifest these characteristics we’ll not go into any further details, but more information
about these processing steps can be found in Chapter 3.

For this study, we selected two of the most popular approaches as suggested by the
NLP literature [25, 39]: TF-IDF and Word2Vec.

We won’t include Doc2Vec as a feature extraction method for two reasons. First, the
classifiers that used this type of embedding had by far the worst predictive performances
in the SA experiments, as shown in Chapter 3. Secondly, the topic classification dataset
is considerably larger than the one we used for SA, containing around 202,000 instances
compared to 15,000. This is equivalent to a 13.5 fold increase in the volume of data
which would lead to much higher execution times for hyperparameter optimization, model
training, and testing.

We trained one TF-IDF vectorizer on the original English training set and another one
on the Romanian translation. TFIDF was applied on the preprocessed token lists and the
vocabulary was set to contain the tokens which appear at least 5 times. This was done
in order to remove a large number of tokens which are very rarely used or tokens which
may have been erroneously generated in the preprocessing step. Next, the newly created
TF-IDF models were executed on the test sets, after which we noticed that the English
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vocabulary contains around 25,000 tokens whereas the Romanian vocabulary contains
27,500 tokens but we expected this slight difference because Romanian is more verbose
than English.

Due to the sparse nature of TF-IDF, the large number of training instances, and the
vocabulary sizes, the trained vectors are stored and used in the Compressed Sparse Row
(CSR) format. CSR is advantageous for handling sparse matrices because it efficiently
compresses the storage of non-zero elements, significantly reducing memory usage and
improving performance when performing matrix/vector multiplications [24].

To learn the Word2Vec embeddings we used Gensim library [64] and, as in the case
of TF-IDF, we had to create two dedicated models, one for each language. We selected
the Continuous Bag-Of-Word (CBOW) architecture as it works better for short texts
and set the vocabulary to include only tokens that appear at least 5 times. The token
embedding size was set to 300 to balance contextual understanding and runtime efficiency.
The Word2Vec models were trained with the following parameters: learning rate (α) of
0.025, a window size of 5, over 5 epochs.

We decided against reducing the TF-IDF vector dimensions because we experimented
with this process for SA and found that algorithms like LSA, NMF or PCA are indeed
able to improve execution speeds but they also decrease the predictive capability of the
models. Given the importance of maintaining a high accuracy in our topic classification
task this performance trade-off isn’t justifiable, especially since we have a much larger
number of classes here.

For our experiments we selected the following learning methods:

� Classic ML:

– Bernoulli Naive Bayes (Bernoulli
NB)

– Support Vector Machine with a
linear kernel (Linear SVM)

– Random Forest (RF)

� Deep Learning:

– Long Short-Term Memory
(LSTM)

– Convolutional Neural Network
(CNN)

� Advanced Language Model:

– Multilingual BERT

We decided not to include LR and DNN here because these models were used in the SA
study and didn’t achieve any outstanding results. LSTM and CNN will be applied on the
Word2Vec features due to their ability to process sequential data, while the classic learning
algorithms will be applied on TFIDF. In order to run LSTM and CNN on sequenced data,
we had to introduce an extra embedding layer right after the input layer. This embedding
layer maps each token from an instance to its corresponding Word2Vec representation,
being equipped with the word embeddings generated during feature extraction.

For BERT, we used the base multilingual uncased variant available on the Hugging
Face transformers3. On top of M-BERT we added a hidden dense layer with 128 nodes
and ReLU activation function, followed by a standard classification layer with 26 nodes
which produces the topic class. Adam was the selected optimizer, with a learning rate of
2× 10−5 and ϵ = 10−8. The loss function was set to Categorical CrossEntropy.

Our evolutionary optimization algorithm for TC was designed as follows. Having a
number N of parameters to optimize, an individual/chromosome is denoted as a vector

3https://huggingface.co/docs/transformers/en/model_doc/bert
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(p1, p2, . . . , pi, . . . , pN). Within this vector, each pi represents the value selected for the
corresponding hyperparameter Ni. The population consists of 10 individuals, each repre-
senting a potential parameter combination solution. This population is evolved over 20
generations with a crossover probability of 80% in order to combine the characteristics of
the individuals and a mutation probability of 10% to introduce variation in the popula-
tion. Individuals are selected for the next generation using a standard elitist tournament
of size 3. Internally, each individual is evaluated using the accuracy metric as the fit-
ness function, computed with 3-fold cross-validation. In general, convergence can be seen
after 10-15 generations, thus evolving the populations over 20 generations is enough to
guarantee a good parameter selection.

In the case of classic ML all the parameters described in the official Sklearn docu-
mentation were optimized. In the case of the LSTM and CNN, we considered among the
parameters the following: the network capacity (the number and size of hidden layers),
the activation function, the regularization function, drop-out rate. For M-BERT, as learn-
ing just one model is very time consuming, we omitted to perform the hyperparameter
optimization procedure. Instead of cross-validation, we reserved 10% of the training set
for validation and we let the model to optimize the loss function for several epochs. We
noticed that for both languages the maximum accuracy on the validation set is reached
at 5 epochs, so we stopped the training process at this point.

Next, we present the high level architecture design of our Topic Classification system.
Figure 4.3 summarizes all the procedures and steps involved.

At the top of the diagram, the automatic translation of the News Category dataset
from English to Romanian is shown as the first key step for enabling TC in different
languages using a single uni-lingual dataset as the source of information.

The preprocessing step consists of various procedures and are grouped in two different
abstract pipelines. The one on the left will generate texts which are fit for the TF-IDF
and Word2Vec techniques. In the one on the right only a sentence level tokenization is
applied in order to generate texts as expected by the pretrained BERT encoder.

The feature extraction step highlights the transformation of the preprocessed text
into numeric features which can be later used to train the ML models. With TF-IDF, a
preprocessed text is transformed into a vector of length N while Word2Vec will convert
the same preprocessed text into a NxM matrix, where the number of rows will be equal to
the number of words within the text and the number of columns will be equal to the word
embedding size. BERT contextual encoding will represent texts using multiple vectors
with the help of Multilingual Tokenizer.

In model training and tuning, we can see that for all the selected ML models, except
BERT, the evolutionary hyperparameter optimization methodology is used to find the
best set of parameters. We selected genetic algorithms over grid search to avoid getting
stuck in local minima and because GAs are able to explore the search space of parameters
with continuous values. Due to the high training times of BERT, we opted for a classic
training process using the recommended parameters.

Bernoulli NB, Linear SVM, and RF are grouped together to highlight the many-to-one
relation of this group with the TF-IDF features. LSTM and CNN are grouped together in
order to highlight that both of them use the Word2Vec features, while the BERT classifier
uses the specific encodings generated by its own Multilingual Tokenizer.

At the bottom of the diagram, the primary goal of our study is highlighted, namely
the classification of input texts into 26 discussion topics. The complete list of all topics,
ordered from most common to least common is: ”politics”, ”wellness”, ”entertainment”,
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Figure 4.3: Architecture of the Topic Classification system

”parenting”, ”groups voices”, ”style & beauty”, ”travel”, ”world news”, ”food & drinks”,
”business & finances”, ”comedy”, ”sports”, ”science & tech”, ”home & living”, ”environ-
ment”, ”arts & culture”, ”weddings”, ”women”, ”impact”, ”divorce”, ”crime”, ”media”,
”miscellaneous”, ”weird news”, ”religion”, ”education”.

Next, we showcase the experiments and discuss their implications. The models will
be evaluated strictly on the test sets using the standard accuracy (Top-1), as well as
Top-2 and Top-3. The Top-K accuracy measure is very useful given the large count of
topic classes and the potential for topic overlap within texts [26, 52]. Additionally, we’ll
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present and analyze the execution speeds of each ML model. All the experiments were
conducted on the same hardware as described in Chapter 3.

We applied the processing pipeline described in Figure 4.3 on the News Category
datasets, using the same exact methodology for both languages for consistency but most
importantly to isolate the impact of automated translation from other variables.

One of the most important insights from Table 4.1 is that the predictive performance
of Multilingual BERT, Bernoulli NB, and Linear SVM between the two languages is
surprisingly consistent, the variations being only around 2–3% for all considered Top-K
values. CNN showed a more noticeable drop on the Romanian dataset, with decreases of
around 4% for Top-1 and Top-2, and 5% for Top-3, which denotes a moderate sensitivity
to language translation. On the other hand, LSTM had the biggest drop, with decreases
of 14% in Top-1, 15% in Top-2, and 13% in Top-3, which shows that its effectiveness was
seriously hampered by the translation process. RF experienced a similar drop of around
13–14% across all metrics, indicating its limited adaptability on the translated data.

Encoding Classifier
English original dataset Romanian translated dataset

Top-1 Top-2 Top-3 Top-1 Top-2 Top-3
TFIDF Bernoulli NB 64.17 78.93 85.27 62.80 77.70 84.11

Linear SVM 67.97 81.75 87.10 66.73 80.05 85.30
RF 30.0 40.74 50.21 16.56 28.89 37.0

Word2Vec CNN 66.15 80.07 85.24 61.66 74.05 79.28
LSTM 67.64 80.41 85.55 53.50 65.59 72.39

Multilingual
BERT
Tokenizer

Multilingual
BERT

74.85 87.29 91.73 72.63 85.56 90.25

Table 4.1: Classifier predictive performance

Multilingual BERT has state of the art results with an accuracy of 74.85% Top-1,
87.29% Top-2, and 91.73% Top-3 on the English dataset, and 72.63% Top-1, 85.56%
Top-2, and 90.25% Top-3 on the Romanian dataset.

In the case of classic ML, Linear SVM had the best results and is the second-best
overall after Multilingual BERT. It maintained a high predictive consistency between
English and Romanian by achieving approximately 68%, 82%, and 87% on the English
dataset and 67%, 80%, and 85% on the Romanian one. Bernoulli NB is the second-best
model in this category, and third place overall, with Top-K scores between 2–3% lower than
Linear SVM on the English dataset. On the Romanian dataset, the same 2–3% difference
holds true for Top-2 and Top-3, but for Top-1 a greater decrease of approximately 4% is
seen, meaning that Linear SVM is preferable when the main topic matters most for the
analysis.

RF had by far the worse performance with only 30%, 40%, and 50% accuracy in
English, and 17%, 29%, and 37% in Romanian. To put this into perspective, this means
that even the Top-3 accuracy is considerably lower than the Top-1 accuracy of Bernoulli
NB which is very surprising because RFs have been employed with success in NLP for
many classification tasks. Even in our SA experiments, the RF worked well for both
languages, being on par with the best performing classic learners, but the results obtained
here clearly show that something went wrong. The biggest difference compared to SA is
that in this case we have a much larger number of target classes (26 compared to 3). RF
splits data using decision trees to maximize information gain, but having many classes can
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lower split ”purity” as it’s harder to find enough linguistic features to clearly distinguish
between abstract topics of discussion.

CNN initially outperformed Bernoulli NB in English with accuracies of 66% Top-
1, 80% Top-2, and 85% Top-3 but experienced a more significant drop in Romanian,
performing 2–4% worse than Bernoulli NB, reducing its score to 62%, 74%, and 79%
respectively. LSTM had results similar to CNN on the English texts, even surpassing
CNN in Top-1 prediction by almost 2%, but as stated previously it had the biggest drop
on the Romanian texts, achieving only 54% Top-1, 66% Top-2, and 72% Top-3.

With this analysis we can note that although the translation from English to Romanian
comes with certain variations and changes, the performances of most of the classifiers
subjected to this kind of experiment remain stable. This confirms that an automated
translation approach can be used to create the necessary resources for TC in Romanian.

In Table 4.2 we list the execution times for hyperparameter optimization, training
of the final models, and testing them. With the help of evolutionary optimization we
managed to increase the Top-1 accuracy of the models by 2–5%.

Encoding Classifier
English original dataset Romanian translated dataset

Opt. (s) Train (s) Test (s) Opt. (s) Train (s) Test (s)
TFIDF Bernoulli NB 443 0.567 0.035 389 0.59 0.04

Linear SVM 8005 25.798 0.034 11803 45.91 0.042
RF 2992 14.593 0.1 845 0.6 0.183

Word2Vec CNN 37317 46.493 1.58 36797 56.98 1.65
LSTM 286062 130.19 9.5 63605 119.1 6.16

Multilingual
BERT
Tokenizer

Multilingual
BERT

N/A 7420 157 N/A 7498 157

Table 4.2: Classifier hyperparameter optimization, training, and evaluation times

First of all, we can note that the times for hyperparameter optimization vary a lot
depending on the language and classifier. Compared to the SA experiments where most
models had slower training and optimization times for Romanian, here we can see that
things are more balanced. The reason why 4 out of the 5 models have better optimization
times on the Romanian texts is most likely due to a faster convergence of the algorithms
in the hyperparameter optimization stage. This makes sense if we check the training times
because in this case only 2 models, namely LSTM and RF, were faster in Romanian.

The optimization of Linear SVM was substantially slower than the rest of classical
ML approaches: on the English dataset it took ≈2.2 hours and on the Romanian dataset
it took ≈3.3 hours. These extended periods of time can be attributed to the high number
of parameters in the SVM model family, which means that more evolutionary iterations
were needed to reach optimal performances. Another factor that could have increased the
times even more for Romanian is the increased count of tokens in the vocabulary.

RF exhibited a much shorter optimization time for Romanian, taking only≈14 minutes
compared to ≈50 minutes for English. These low times paired with the poor predictive
performance in both languages suggests that the hyperparameter optimization process
wasn’t able to find a good set of parameters, missing both global and local optima. In
contrast, Bernoulli NB was by far the fastest to optimize: ≈7.4 minutes for English and
≈6.5 minutes for Romanian.

Similar to hyperparameter optimization, the training times differ from model to model
with Bernoulli NB being extremely fast (0.567 seconds for English and 0.59 seconds for
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Romanian) due to its simple probabilistic implementation. Linear SVM is considerably
more computationally demanding but it managed to finish training in a reasonable time
frame, needing 25.79 seconds for English and 45.91 seconds for Romanian. RF again has a
mixed performance, with training times of 14.593 seconds in English and only 0.7 seconds
in Romanian.

As expected, the DL models had much higher run times when compared with the
classic learners, both in the case of their optimization and their training. CNN required
≈10.4 hours for optimization on the English dataset and ≈10.2 hours on the Romanian
dataset, with training times of 46.49 seconds and 56.98 seconds, respectively. LSTM was
even slower, its optimization taking an incredible ≈79.5 hours for English and a more
realistic ≈17.7 hours for Romanian. The significantly shorter time on the Romanian
dataset paired with a big drop in predictive performance for this language suggests that
the hyperparameter optimization process may have found a local optimum rather than a
global one. The training times of 130.19 seconds for English and 119.1 for Romanian on
the other hand can be considered acceptable.

Although higher than the other models, Multilingual BERT’s execution times are very
similar between the two languages, training taking ≈2.1 hours and testing 157 seconds
for each language. This consistency aligns with BERT’s architecture which is designed
to handle multilingual data but at a higher computational cost. The absence of hyperpa-
rameter tuning is offset by BERT’s pretraining on large volumes of diverse data, allowing
us to achieve superior predictive results with standard parameters.

The test times are relatively low for all models and encodings pairs, considering the
generous size of the test set which consists of around 51,000 instances. This indicates
that once trained, the classifiers can quickly deliver a significant number of predictions
regardless of language. Multilingual BERT, despite its slow training, has much more
acceptable evaluation times. The second slowest was LSTM, with 9.5 seconds for English
and 6.16 seconds for Romanian. CNN achieved better times of under 1.7 seconds for both
datasets while the classic ML models were the fastest by a considerable margin, all of
them finishing in less than 0.2 seconds.

Overall, these execution times provide helpful insights about how demanding our se-
lected algorithms are. A complex model like BERT has higher predictive capabilities but
it’s slower to run while simpler models like Linear SVM or Bernoulli NB offer a reasonable
compromise between speed and accuracy, which makes them ideal in environments that
lack sufficient computational resources.
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Chapter 5

BERTweetRO: Language Models for
Romanian Social Media Texts

In this chapter we present our efforts in pre-training from scratch 8 BERTweetRO models,
based on RoBERTa architecture, with the help of a Romanian corpus containing public
tweets. To evaluate our models we fine-tune them for Sentiment Analysis (with 3 polarity
classes) and Topic Classification (with 26 classes), and compare them against Multilingual
BERT plus a number of other popular classic and deep learning models [47].

Twitter Stream1, collected by Archive Team, is a valuable public corpus that offers
a huge volume of texts that were scrapped from Twitter and stored in JSON format. It
covers all the years starting from 2012 until the middle of 2021, split into 2,900 files that
amount to ≈6.8 TB of data. The exact number of tweets in this dataset is not specified,
but by considering the long time frame that it covers plus the size of the documents we
can say, with a high degree of certainty, that Twitter Stream should satisfy a large range
of objectives. Researchers, private or public institutions could use this data to analyze
trending topics, public sentiments, cultural or social events, and more in real time or in
retrospect to answer questions about the dynamics of modern societies.

As opposed to other resources this one is not limited to include only tweets in inter-
nationally popular languages because, in the web-scraping process, the majority of public
posts were collected, regardless of their language. Thus, we’ll use the Twitter Stream to
pretrain our custom BERT models as it captures the evolution of Romanian language,
and the way it’s used, in a microblogging context. Given the size of the entire tweet
archive, our limited hardware dictates a need for data selection in order to train multiple
versions of RoBERTa models in a reasonable timeframe. With respect to this, we decided
to only use a subset of Twitter Stream that encompasses approximately 800 GB of data
spanning over the course of one year: July 2020 through June 2021.

Another factor that led to this decision relates to the fine-tuning tasks that are going
to be made on the newly created RoBERTa models, namely SA and TC, and by ac-
knowledging this constraint we aim to establish a Proof of Concept (POC) demonstrating
the feasibility of training BERT based models on Romanian social media texts using a
relatively small dataset. This will likely result in lower performance compared to using
the whole archive, but our ultimate goal is to show that it’s possible for researchers to
create decent models in cases where there are strong hardware or time limitations. In
future iterations, if more computational resources become available, we hope to include
the remaining data in the pretraining pipeline to develop even stronger models.

1https://archive.org/details/twitterstream
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As a first step, we downloaded the data from the target period mentioned earlier after
which we performed a manual inspection to familiarize with the structure and nature of
it. The JSON documents contain 2 different types of instances, one denoting the removal
of content from the platform and includes the ID of the deletion plus some other metadata
but without useful textual information. The other type, referred to as ”post”, contains a
lot of information but of interest to our study are the ”text” field, which represents the
tweet message, and the ”lang” field, which indicates the language of the message.

Next, we selected and examined in more detail 200 random posts from a 2 month
period and discovered a major problem with ”lang”: a number of tweets were labeled as
Romanian when in reality they weren’t. Many were simply misclassified, in some extreme
cases as a very different language like Malay, and others were pure ”noise” posts that
only contained a mix of Twitter mentions, hashtags, URLs, and emojis. This highlights
the problems that can appear when dealing with online user generated content where the
informal tone of communication, errors in grammar, and other irregularities are degrading
the accuracy of automated language identification tools.

Following this initial investigation we decided to use Python2 together with langid3 to
correctly identify the language of the posts. We selected langid because it’s been trained
on a wide number of languages (currently supporting 97 in total), which makes it a good
choice for our multilingual dataset, and it offers very fast processing times paired with
state of the art results. Another advantage of lanid is that it offers a ”confidence level”
score for each prediction that acts as a measure of reliability. We ran langid on the same
subset of 200 tweets using a high threshold approach in which we consider the texts to be
Romanian only if the confidence level exceeds 95% to avoid incorporating false positives.
We made a second review of the language classification and saw that most of the texts
were labeled correctly this time around but some outliers still persisted.

The performance on raw texts was satisfactory, but to improve results we implemented
a preprocessing pipeline that includes the automatic identification and removal of Twitter
mentions, Twitter hashtags, URL links, and emoticons. With this mechanism in place we
want to deliver cleaner and more standardized texts to langid in the hope of improving
the accuracy. We ran langid once again but this time on the cleaned data and performed
another round of investigations. The results were clearly better which means that the
proportion of tweets correctly labeled as Romanian has increased, thus validating our
custom language identification framework.

Table 5.1 shows that over a period of 12 months we identified and extracted around
51,000 tweets posted in Romanian which means that we have ≈4,250 tweets for each
month on average. While this dataset may seem small at first glance, we argue that it’s
sufficient to provide a relevant snapshot of the activity of Romanian speakers on Twitter.
Because of preprocessing and language identification the total execution time for this
extraction process was very high, totaling to over 72 hours.

This relatively modest number of extracted tweets also aligns with the low number of
Romanian Twitter users. According to Statista4, the number of Twitter users in Romania
was around 600,000 during the time period targeted by us. It is also important to note that
not all users make their posts public and additionally some accounts might have privacy
settings in place. These aspects, along with certain geographical or other restrictions,
mean that part of the user generated content may have been skipped during the scraping

2https://www.python.org/
3https://pypi.org/project/langid/
4https://www.statista.com/forecasts/1143811/twitter-users-in-romania
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Year-Month Number of texts labeled
as Romanian in Twitter
Stream

Number of texts labeled
as Romanian with our ap-
proach

Percent
Romanian

Execution
Time
(Hours)

2020-07 48415 4256 8.8 6.4
2020-08 56292 5100 9.06 7.7
2020-09 59346 4729 7.97 7.3
2020-10 57778 4788 8.27 7.5
2020-11 48867 4406 9.02 5.5
2020-12 52896 4935 9.33 6.1
2021-01 22621 1771 7.83 2.5
2021-02 56163 4621 8.23 6.21
2021-03 57993 5210 8.98 6.7
2021-04 24149 2095 8.68 2.7
2021-05 58576 4702 8.03 7.2
2021-06 52475 4330 8.25 6.3

Table 5.1: Comparison of Romanian labeled tweets

of Twitter Stream.
For Romanian, several studies have tackled the task of creating language models by

leveraging the transformer architecture together with large scale datasets to increase the
level of automated language understanding and generation. Here we can mention the
works of Dumitrescu et al. [21] who introduced the first purely Romanian transformer-
based language model which outperformed Multilingual BERT in the NER task, and
Masala et al.[41] who created RoBERT using random texts crawled from the internet and
formal texts from Romanian Wikipedia pages.

We want to develop 8 distinct RoBERTa variants in total and the motivation behind
this is based on the linguistic diversity and complexity of Romanian as well as the varying
preprocessing steps that might be needed in some NLP applications.

BERTweetRO model variants:

� Raw Cased

� Raw Uncased

� PreProcessed (PP) Cased

� PreProcessed (PP) Uncased

� Min Tokens Raw Cased

� Min Tokens Raw Uncased

� Min Tokens PP Cased

� Min Tokens PP Uncased

The first 4 variants (Raw Cased, Raw Uncased, PP Cased, and PP Uncased) differ
from one another in the preprocessing steps and text case handling. Raw Cased preserves
the original casing, Raw Uncased converts all characters to lowercase while the PP Cased
and PP Uncased variants transform the data by removing all the URLs, Twitter mentions
and hashtags, emoticons, and platform reserved keywords. These are the main contenders
for our experiments that will allow us to see what impact (if any) case sensitivity and
preprocessing has on the models. The next 4 variants (Min Tokens Raw Cased, Min
Tokens Raw Uncased, Min Tokens PP Cased, and Min Tokens PP Uncased) are similar
to the first ones, the difference being that in these cases we exclude the tweets that have
less than 5 tokens from the dataset. With this filtration we want to remove as many noisy
instances as possible from the training set in the hope of increasing the predictive power
of the models.
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Tokenization can be seen as the bridge that connects the natural representation of the
texts used as inputs and the numerical values that encode the information such that it
can be used by ML algorithms, and many different strategies to achieve this exist.

The Byte Pair Encoding (BPE) algorithm transforms texts into a tabular form and
it’s commonly used in various modeling tasks. A modification to the original algorithm
was made allowing it to combine tokens that encode both single characters and full words
[14]. In this case, all unique characters are considered to be an initial set of 1-character
long n-grams. Next, the most common adjacent pairs of characters are merged to generate
new 2-character long n-grams and all instances of previous pairs are replaced by this new
token. This process repeats until a vocabulary of a predetermined size is reached. This
version of BPE is very often set as the encoding method of LLMs and transformers. In
contrast, the standard BPE doesn’t merge the most frequent pair of bytes of data but
instead replaces them with a new byte that was not seen in the initial dataset [57].

Due to the popularity and effectiveness of BPE we decided to apply it in our work
with the help of the ByteLevelBPETokenizer implementation from Hugging Face5 library.
To train each variant of BERTweetRO Tokenizer we selected the following parameter
configuration: (i) Vocabulary size of 16,000 tokens (ii) Minimum frequency threshold of 2
(iii) A set of special tokens containing < s >, < pad >, < /s >, < unk >, and < mask >.

The creation of the tokenizers consists in training them to transform the corpus of
Romanian tweets in a number of ways that matches our target data variants. During this
process the BPE algorithm discovers and learns statistical patterns based on the input
texts and iteratively updates its vocabulary to capture as much information as possible
for each subword unit. The resulting 8 tokenizers models were then saved for future usage.

To successfully learn our BERTweetRO models for Romanian NLP we selected an
internal configuration that can yield good performances in relation to the training times
and we integrated the previously trained tokenizers with each BERTweetRO variant in a
consistent way to ensure that the hyperparameters and the end-to-end system allows for
a fair comparison of performances in the downstream tasks.

We decided to employ the approach called Masked Language Modeling (MLM), im-
plemented with the help of Hugging’s RobertaForMaskedLM, which is a pretraining tech-
nique that enables transformers to predict masked tokens from input sequences. This
is done without the need for labeled data making it an unsupervised learning method
and unlike other traditional algorithms, that can only predict the next token in a given
sequence, MLM can use both the previous and following tokens to predict a masked one.
The architectural specifications of our BERTweetRO models are as follows: (i) Hidden
size of 768 (ii) 12 attention heads (iii) 12 hidden layer (iv) MLM probability of 15%.

The BERTweetRO variants were trained over 5 epochs as we observed that it’s suffi-
cient to lead to an acceptable level of convergence without costing too much in terms of
execution time. The choice of a MLM probability of 15% aligns with literature recom-
mendations [38, 30], based on the reasoning that models can’t learn good representations
when too much or too little text is masked. Pretraining was done on our GPU with a
batch size of 16 and the total execution time for all 8 variants was a little under 4 hours,
which is decent if we consider the high computational overhead that is expected when
creating transformers from scratch.

To fine tune for SA new layers need to be added on top of a pretrained BERT or
RoBERTa model after which the entire architecture is trained in a supervised fashion on
a annotated dataset. This allows the model to find and learn sentiment related features

5https://huggingface.co/
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from the data such that it can make predictions on never seen before texts based. The
quality of the model depends, among others, on the volume of data, the optimization
process, and the number of iterations.

When talking about underrepresented languages, such as Romanian, we mention the
work of Ciobotaru et al. [17] in which the authors trained a fastText-based model and fine-
tuned a standard BERT-based model then compared their performances. They selected a
public dataset containing COVID-19 related Twitter posts split in 2 categories (negative
and positive). Next, they built upon this dataset by adding the ”neutral” sentiment
class and by adding more text samples to all classes. This new dataset was used as the
benchmark in their experiments and the reported results on the test set showed that
BERT achieved a F1 macro score of 0.84 while fastText had a worse score of only 0.73.

As stated in Chapter 3, we couldn’t find a Romanian dataset fit for SA of microblogging
content so we translated the Twitter US Airline Sentiment Tweets dataset to Romanian.
Next we organized a series of experiments using the newly translated Romanian dataset
together with all of our 8 BERTweetRO MLM variants. With Hugging Face’s BertClas-
sifier we fine-tuned each variant for the SA task using the correct tokenizer. Depending
on each model variant, the associated preprocessing pipeline was executed in the same
manner it was used during pre-training in order to ensure that a valid comparison between
the models can be carried out in the future.

We’ll evaluate the performance of our 8 sentiment-tuned BERTweetRO variants in
a comparative study in which we include the best classifiers from Chapter 3. We note
here that all the traditional sentiment classifiers from the comparative study underwent a
rigorous hyperparameter optimization process. Thus, it is important to highlight that the
fine tuned models will be compared against classifiers that have achieved peak performance
given the selected dataset.

For our BERTweetRO variants we added an extra sequential layer for classification
that can handle the output of the pretrained layers and the expected sentiment labels. As
in the case of Multilingual BERT, our variants were not subjected to the hyperparameter
optimization process due to time constraints. Instead, the fine-tuning parameters were
chosen based on standard industry recommendations but also by considering the initial
parameters that were used to pretrain the models: batch size of 32, BERT hidden size
of 768, classification hidden size of 75, a max token length of 80, ReLU as the activation
function, and categorical cross-entropy as the loss function. The number of epochs, rang-
ing from 2 to 10, that offers a decent level of accuracy was investigated and identified
individually for each BERTweetRO variant as well as for Multilingual BERT.

The results of our comparative analysis are listed in Table 5.2 in which the models
are evaluated strictly on the test set. Given the unbalanced nature of our data we set
Macro F1 as the main measure of predictive performance. By doing this we want to make
sure that our evaluation treats each class in an equal manner in order to offer a correct
interpretation of model effectiveness across all sentiments. Therefore we filtered the table
based on the Macro-F1 scores in descending order which means that the best results are
presented at the top.

We can see that Multilingual BERT outperformed all the other classifiers by having
higher scores across all considered metrics but it’s important to note that our best per-
forming variants, namely BERTweetRO Raw Cased and BERTweetRO Raw Uncased,
achieved a similar performance. The differences between them and M-BERT are fairly
small with Macro F1 around 3% lower and the other 2 metrics around 2% lower. This
outcome was somewhat expected if we take into account the difference in the size of data
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Classifier Encoding Macro
F1

Weighted
F1

Accuracy

Multilingual BERT Multilingual Tokenizer 74.81 80.50 80.99
BERTweetRO Raw Cased BERTweetRO Tokenizer Raw

Cased
72.11 78.40 78.74

BERTweetRO Raw Uncased BERTweetRO Tokenizer Raw
Uncased

72.07 78.33 78.66

Bernoulli NB TFIDF 71.91 78.20 78.20
BERTweetRO Raw Min Tokens
Cased

BERTweetRO Tokenizer Raw
Min Tokens Cased

71.67 78.14 78.61

BERTweetRO RawMin Tokens Un-
cased

BERTweetRO Tokenizer Raw
Min Tokens Uncased

71.58 78.00 78.47

LSTM Word2Vec 71.39 77.98 78.17
Linear SVM TFIDF 70.54 77.47 78.36
DNN Word2Vec 69.19 76.23 77.20
Logistic Regression TFIDF 69.04 76.45 77.81
CNN Word2Vec 68.67 76.00 77.69
BERTweetRO PP Min Tokens
Cased

BERTweetRO Tokenizer PP
Min Tokens Cased

64.21 73.10 72.86

BERTweetRO PP Cased BERTweetRO Tokenizer PP
Cased

43.84 59.40 64.50

BERTweetRO PP Uncased BERTweetRO Tokenizer PP
Uncased

42.35 58.73 64.01

Random Forest TFIDF 38.17 54.71 65.20
BERTweetRO PP Min Tokens Un-
cased

BERTweetRO Tokenizer PP
Min Tokens Uncased

25.62 47.98 62.42

Table 5.2: Sentiment Analysis performance

used for pre-training, as M-BERT benefited from a much larger volume and diverse data
whereas our variants were trained on a considerable smaller dataset (≈51,000 tweets).

Surprisingly, the BERTweetRO variants that were trained on texts with a minimum
token constraint (BERTweetRO Raw Min Tokens Cased and Uncased) also had compet-
itive results. This means that by limiting the data used to train the models, i.e. keeping
only the texts with more than 5 tokens, the predictive performance that can be achieved
is not reduced in a significant manner and additionally this can improve to some degree
the execution speeds. Bernoulli NB, despite its simplicity, obtained good results placing
it in between these 4 variants. With this exception the BERTWeetRO models that did
not use the text preprocessing pipeline performed better than all the classic and deep
learning models.

Another point worth highlighting is that regardless of the BERTweetRO variant, those
trained on original text casing (the Cased variants) have marginally better results than
their counterparts trained on lowercased data (the Uncased variants). In the middle of the
ranking we have LSTM, Linear SVM, DNN, Logistic Regression, and CNN with decent
performances which makes them suitable for usage in real scenarios.

At the bottom of the table, where the models with the worst results are placed, we have
all the BERTweetRO variants that were paired with our custom text preprocessing module
which clearly shows that this process negatively affected their predictive performances.
This means that better BERT-based models can be developed by simply pretraining and
fine tuning them on raw social media data without the need for additional text cleaning
or feature engineering. These models together with Random Forest had by far the lowest
predictive performance meaning that they cannot be considered for SA.
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Fine tuning for TC involves the use of an existing pre-trained model and adapting
it to classify the inputed texts based on the discussion topics that they convey. This
is achieved by incorporating task specific layers in the BERT or RoBERTa model after
which the entire architecture is trained in a supervised fashion on a annotated dataset.
This allows the model to find and learn topic related features from the data and to make
predictions on never seen texts with the help of these learned representations.

Next, similar to SA fine-tuning, we ran a number of experiments using the translated
News Category dataset together with all 8 variants of our pretrained BERTweetRO MLM
models. We’ll evaluate the performance of our 8 topic-tuned BERTweetRO variants in
another comparative study in which we include the best classifiers from Chapter 4.

For our BERTweetRO variants we added an extra sequential layer for classification on
top of the existing architecture that can handle the output of the pre-trained layers and
the expected topic labels. As in the case of Multilingual BERT, our variants were not
subjected to the hyperparameter optimization process due to time constraints. Instead,
the parameters used for fine-tuning were chosen based on standard industry recommenda-
tions but also by considering the initial parameters that were set to pretrain the models:
batch size of 32, BERT hidden size of 768, classification hidden size of 128, a max token
length of 120, ReLU as the activation function, and categorical cross-entropy as the loss
function. The number of epochs, ranging from 2 to 10, which leads to an acceptable level
of accuracy was investigated and identified individually for each BERTweetRO variant as
well as for M-BERT.

Unlike SA, where the goal is to detect a text’s global polarity, the difficulty of TC
resides also in the big number of target classes which often overlap [25, 39]. To overcome
this, some authors [26, 52] use the Top-K accuracy instead of the standard one. Rather
than classifying a text into a single class and comparing it to the a-priori label, the model
will predict the K most likely classes and if the correct label is among them, we consider
the text as being correctly classified. We take this into account and report the standard
accuracy (i.e. Top-1), as well as Top-2 and Top-3, measured strictly on the test set.

In Table 5.3 we list the results of our comparative study, filtered using the Top-1
accuracy in descending order meaning that the best models appear at the beginning.
Here we can see Multilingual BERT in the first place with impressive Top-1, Top-2, and
Top-3 accuracies of 72.63%, 85.56%, and 90.25%. This result was expected if we consider
the huge volume of data on which this transformer model was pretrained, allowing it to
generate robust initial representations, even in the Romanian language, which are then
easily adjusted for TC with the help of our translated dataset.

In the race for the runner up position we have several models with similar scores across
all 3 evaluation metrics, namely Linear SVM and the 4 Raw BERTweetRO variants. These
classifiers reached Top-1 accuracies between ≈ 65% and ≈ 66%, which are good enough
for real life applications. As in the case of SA fine-tuning, the BERTweetRO variants
that didn’t use the custom text preprocessing pipeline obtained better results than the
other variants that did use it. The difference between our best variants and Multilingual
BERT is around 6% but can be considered decent if we take into account the relative
small size of the data we used for pretraining (around 51,000 texts). This means that
by employing a richer dataset and by applying hyperparameter optimization we could
potentially enhance the performance of the BERTweetRO variants in future iterations.

BERTweetRO Raw Min Tokens Uncased/Cased also have competitive performances,
as they did for SA, which reconfirms that by restricting the data used for fine tuning the
predictive performance that can be achieved is not downgraded while training times are
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Classifier Encoding Top-1
Acc.

Top-2
Acc.

Top-3
Acc.

opt
(s)

train
(s)

test
(s)

Multilingual BERT Multilingual Tok-
enizer

72.63 85.56 90.25 N/A 7498 157

Linear SVM TFIDF 66.73 80.05 85.30 11803 45.91 0.042
BERTweetRO Raw
Uncased

BERTweetRO Tok-
enizer Raw Uncased

66.14 79.21 84.93 N/A 8436 135

BERTweetRO Raw
Min Tokens Uncased

BERTweetRO Tok-
enizer Raw Min To-
kens Uncased

66.07 79.10 84.80 N/A 6899 157

BERTweetRO Raw
Min Tokens Cased

BERTweetRO Tok-
enizer Raw Min To-
kens Cased

65.78 79.02 84.79 N/A 6923 157

BERTweetRO Raw
Cased

BERTweetRO Tok-
enizer Raw Cased

65.63 78.75 84.48 8442 132

Bernoulli NB TFIDF 62.80 77.70 84.11 398 0.59 0.04
CNN Word2Vec 61.66 74.05 79.28 36797 56.98 1.65
BERTweetRO PP Min
Tokens Cased

BERTweetRO Tok-
enizer PP Min To-
kens Cased

54.55 66.60 72.94 N/A 6046 137

LSTM Word2Vec 53.50 65.59 72.39 63605 119.1 6.16
Random Forest TFIDF 16.56 28.89 37 845 0.6 0.183
BERTweetRO PP Min
Tokens Uncased

BERTweetRO Tok-
enizer PP Min To-
kens Uncased

16.56 28.89 37 N/A 6019 135

BERTweetRO PP
Cased

BERTweetRO Tok-
enizer PP Cased

16.56 28.89 37 N/A 6027 135

BERTweetRO PP Un-
cased

BERTweetRO Tok-
enizer PP Uncased

16.56 28.89 37 N/A 6022 135

Table 5.3: Topic Classification performance

improved. This is evident when we compare the training times between the Raw and Min
Tokens variants and see that the Min Tokens variants were around 22% faster.

Bernoulli NB and CNN are next, with slightly lower scores, both having a similar
performance when talking about Top-1 but in the case of Top-2 and Top-3 CNN lags
behind by a pretty noticeable margin. These models should behave more or less the same
when predicting the main topic of a text, but Bernoulli NB should be preferred if one
considers the second and third most probable topics as being important to their use case.

BERTweetRO PP Min Tokens Cased and LSTM share fourth place in our ranking
with modest results across all the considered metrics. At the bottom of the table we have
RF and the 4 BERTweetRO variants that incorporated the text preprocessing module,
all of them having by far the worst predictive performance, achieving a Top-1 accuracy of
only 16.5%. This once again underscores the effectiveness of simply pretraining and fine
tuning BERT models on raw social media texts without the need for any text cleaning
or feature engineering. Hence, this group of models are not viable for TC in real life
applications.
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Chapter 6

Assessing Sentiment Analysis
Performance on Real Cases

Given that the final purpose of our work is to apply the learned models for inferring
the polarity of any Romanian tweet, we manually labeled two small test sets, each one
containing 120 distinct tweets. The first one includes tweets specific to the airline industry,
comparable with the ones used for training our models, and the second one includes general
tweets. We will evaluate on these test sets the best performing models as reported in
Chapter 5: Multilingual BERT, BERTweetRO Raw Uncased, Bernoulli NB, LSTM, and
DNN [47]. Additionally, we’ll compare these models against a public third-party sentiment
analysis tool for Romanian called Sentimetric1 to see where we stand in relation to a
commercially available solution.

The tweets were manually labeled by 5 human volunteers who were instructed in
advance on how this process should be carried out. Each volunteer expressed an opinion
about the polarity of the tweet and the final sentiment was set as the one selected by
the majority. Labeling statistics regarding how they assessed the polarity is presented in
Table 6.1. We shall note that the labeling task seemed to be a difficult one even for the
volunteers, as for only 43 tweets (35.8%) in the case of airline industry specific dataset
and 47 tweets (39.2%) in the case of general tweets all of the 5 contributors reached a
unanimous decision. Furthermore, the class distribution of these tweets is significantly
different from that of the Twitter US Airline Sentiment Tweets.

Dataset Negative Neutral Positive Unanimous
Annotation

Airline industry-specific tweets 51 (46.5%) 36 (30%) 33 (27.5%) 43 (35.8%)
General tweets 45 (37.5%) 32 (26.66%) 43 (35.8%) 47 (39.2%)
Twitter US Airline Sentiment
Tweets

63% 21% 16% N/A

Table 6.1: Manual sentiment labeling statistics (tweet number and percentage)

As in the case of the fine tuning experiments we report Macro F1, Weighted F1,
and Accuracy as the evaluation metrics for each classifier but seeing the imbalanced
distribution of labels of both dateset we again have to set Macro F1 as the main measure
of model performance.

Table 6.2 contains the predictive performance of our target models on the 120 real

1http://sentimetric.ro/
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life Romanian tweets that relate to the aviation industry. In this case we can see that
Bernoulli Naive Bayes (NB) achieved the highest Macro F1 score of 61.18% and in second
place, with a marginally lower score, we have Multilingual BERT. This result is a little
surprising considering that Multilingual BERT had better results on the evaluation set
used in the fine tuning experiments of Chapter 5 but the success of NB could be attributed
to the hyperparameter optimization process that it went through.

Classifier Encoding Macro F1 Weighted F1 Accuracy
Bernoulli NB TFIDF 61.18 63.11 65
Multilingual BERT Multilingual Tokenizer 60.45 63.38 65.83
BERTweetRO Raw
Uncased

BERTweetRO Tokenizer
Raw Uncased

54.57 56.68 60

LSTM Word2Vec 52.71 55.18 58.33
DNN Word2Vec 52.22 54.9 59.17
Sentimetric N/A 45.72 46.99 47.5

Table 6.2: Model performances on Romanian aviation industry-specific tweets

The dataset has a small number of samples but despite this our BERTweetRO Raw
Uncased variant managed to secure an honorable third place across all evaluation metrics.
Even though that it failed to surpass Bernoulli NB and Multilingual BERT, BERTweetRO’s
performance is better than the deep learning LSTM and DNN models. The Macro F1 of
54.5%, which is around 6% lower than the best score, can be considered acceptable given
that the human volunteers also had difficulties when labeling the texts.

The most important thing that we want to highlight here is that all of our models
outperformed Sentimetric. This shows the positive impact of using a custom methodology
for training and validating ML models when compared to off-the-shelf solutions. This also
confirms the value of domain specific knowledge for getting better results in such contexts,
as we created our models with tweets from the same domain.

In Table 6.3 we present model performances on the Romanian general tweets dataset.
In this case things are a little different as Multilingual BERT achieved the best result
with a Macro F1 of 55.22%, followed closely by BERTweetRO Raw Uncased with a
negligible difference in score of only 1%. In both this assessment and the previous one,
the Transformer-based models placed at the top which means that they’re more reliable
for sentiment prediction in practice.

Classifier Encoding Macro F1 Weighted F1 Accuracy
Multilingual BERT Multilingual Tokenizer 52.22 54.17 55.85
BERTweetRO Raw
Uncased

BERTweetRO Tokenizer
Raw Uncased

51.35 52.39 54.17

Bernoulli NB TFIDF 48.48 49.42 48.33
DNN Word2Vec 48.16 49.29 50.83
Sentimetric 46.16 47.3 49.17
LSTM Word2Vec 43.17 44.29 45.83

Table 6.3: Model performances on Romanian general tweets

On the other hand, Bernoulli NB and DNN have more modest results that place them
in the middle of the ranking but more surprising is that LSTM delivered a significantly
worse performance in this case, being behind all other models including Sentimetric. The
reasons for why this happened requires future investigations but it’s possible that the
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complexity of LSTM together with its sensitivity to the shape of input data could have
affected its ability to correctly recognize the sentiment patterns from these samples.

An interesting detail we want to point out is that the overall performance of the models
on these general tweets is lower than the performance on aviation industry tweets. This
decline, which is more obvious for the classic and deep learning models, is a direct result
of domain differences between the texts used for training and the ones used for evaluation.
For Multilingual BERT and BERTweetRO the decline is less serious due to the fact that
they were pretrained on varied texts, and thus managed to better adapt in this scenario.

Nonetheless, as in the case of the first evaluation, we note that all our models (with
the exception of LSTM) have significantly outperformed the commercial solution selected
as the benchmark for comparison. This once again validates the importance of custom
fine tuning and model optimization in achieving superior results for Romanian SA.

For both domains, our models’ results are lower than those obtained on the translated
test set used in Chapter 5, because now the tweets are real ones, not translated, and their
inherent characteristics differ, i.e. from a statistical point of view the sets are extracted
from different statistical populations.
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Chapter 7

Conclusion

With this chapter we finalize our doctoral thesis by going over and summarizing the
most important elements presented in this research. At the heart of our motivation for
undertaking this study we have social media platforms. These evolved from the ”social
networks” that appeared in the late 90’s and became popular by mid 2000s. Initially, social
networks were nothing more than basic websites offering limited functionalities, mainly
related to the distribution of photos and messaging between explicitly connected users.
Even so, their user base increased exponentially very fast and over time the modern social
media platforms emerged. These platforms now offer an incredible amount of complex and
interconnected features, among which we mention: posting content to global audiences,
sharing and consuming any type of content (texts, images, videos, advertisements, etc.),
and easy access at all times from mobile or desktop devices.

Thus, it comes as no surprise that 68% of the global population is currently active
on social media platforms and for Romania this percentange is even higher, with 90% of
the country’s total population being active on such platforms by the start of 2025. These
numbers were another motivating factor for us because the users generate large volumes of
textual data, rich in variety, with high velocity (i.e. big data characteristics). Therefore,
it’s obvious that both researchers and public or private entities can benefit greatly from
the information hidden in this sort of data.

However, extracting useful information from social media texts is problematic. As op-
posed to more literary texts, microblogging texts are filled with ”bad language” elements,
such as: mistakes in grammar, typos, non-standard abbreviations, the use of emojis. In
addition to this, they are also informal by nature and short due to the size limitations im-
posed by the platform, for example a Twitter tweet has a limit of 280 characters, a TikTok
comment has a limit of 150. For these reasons, the rule or dictionary based approaches
for NLP fail most of the time and the literature strongly recommends the usage of ML
to overcome these issues. For popular languages like English, French, or Spanish there
are plenty resources and tools that can deal with social media content, but for Romanian
(and other under-represented languages) the situation is more challenging because they’re
are much harder to find and employ in production environments. So, contributing to the
existing body of Romanian NLP resources is another motivating factor for us.

At the beginning of this thesis we set a number of objectives, the first one being
the study of Sentiment Analysis for Romanian social media texts. After reviewing the
literature, we discovered that most research works treat SA as a binary classification
task (negative vs. positive). This approach is good enough if we know beforehand that
the texts to be analyzed are very polarizing but in most scenarios this is not the case.
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Additionally, a lot of works focus on other types of text, i.e. online product reviews.
We searched in many online repositories for a labeled datased that could satisfy our

research needs but unfortunately we couldn’t find one. Research works for other languages
suggest that translation can be used as a means of creating new and usable learning
resources so we decided to test this hypothesis for Romanian. Hence, we selected the
Twitter US Airline Sentiment Tweets dataset for our experiments because it contains
many tweets, manually labeled with 3 sentiment classes (negative, neutral, positive). We
then translated this English dataset to Romanian using an automated translation service
in order to create our training set. Using this data we trained and evaluated a wide
selection of ML algorithms from the area of classic and deep learning, plus the popular
Multilingual BERT as an example of Transformer model.

The results of SA experiments show that the Romanian models are on par with
the equivalent English counterparts, the variation in accuracy between them being only
around ±2%. In this context we set the state-of-the-art performance for multinomial
sentiment classification with M-BERT at 83% for English and 81% for Romanian. Two
of the classic learners, Bernoulli NB and Linear SVM, showed competitive performances
with M-BERT by achieving 78% accuracy in both languages.

Our second objective is dedicated to identifying discussion topics from short form
texts. To achieve this goal we decided to employ supervised Topic Classification instead
of Topic Modeling, due to the drawbacks that come with the unsupervised nature of TM
methods: data instability, finding the optimal number of topics to extract is not trivial,
and the extracted sets of topic keywords require human intervention to be annotated with
relevant topic labels. Compared to SA, the current research efforts in the area of TC for
Romanian microblogging content is even more limited. We could only find 1 study which
utilized the TC approach but their dataset is small and not publicly available.

Seeing the encouraging results of our SA experiments, we decided again to find a
reliable English dataset and translate it to Romanian. For this we selected the News Cat-
egory Dataset which contains over 200,000 blog news headlines and descriptions, grouped
in 41 topic classes. We discovered that some of the original topics were highly specific
while others were overlapping so, as a next step, we improved this dataset by clustering
together granular and synonymous categories in order to create 26 truly distinct topic
labels. Next we trained and tested a number of ML models on both sets of data. Our
findings here show that the Romanian models tend to have slightly lower scores than the
English models, but for the best performing classifiers this difference in negligible (with
decreases of 2–3%). Due to potential topic overlap in single text instances we report Top-
1, Top-2, and Top-3 accuracy as the evaluation metric. As such, M-BERT once again sets
the state-of-the-art with 74.85% Top-1, 87.29% Top-2, and 91.73% Top-3 on the English
data, and 72.63% Top-1, 85.56% Top-2, and 90.25% Top-3 on the Romanian data. Linear
SVM is second with 68% Top-1, 82% Top-2, and 87% Top-3 for English and 67% Top-1,
80% Top-2, and 85% Top-3 for Romanian.

All our SA and TC models, except BERT, were subjected to a hyperparameter op-
timization process, implemented with evolutionary algorithms, in order to achieve the
highest predictive performance possible. It is worth mentioning that we also compared
the execution times of the models during optimization, training, and inference. Thus,
with our experimental findings at hand, others can more easily select the model that suits
their needs based on the expected predictive performance in relation to hardware usage.

Our third objective refers to the creation of Transformer models designed for Roma-
nian social media texts. Using the Twitter Stream Archive, which contains public tweets
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scrapped over a long period of time, we selected a 12 month interval for our study. After
investigating a random sample of instances from this interval, we found that most of the
language field metadata for the posts pre-labeled as Romanian were in fact misclassifica-
tions. With respect to this we implemented a preprocessing module to clean the texts,
ran our own language identification process on them, and in the end managed to extract
around 51,000 true Romanian posts. Using this corpus we pre-trained from scratch 8
variants of BERTweetRO models, based on the RoBERTa architecture with MLM. These
variants differ between each other in the text case sensitivity (cased vs. uncased), text
format (raw vs. preprocessed), and minimum number of tokens in the texts used for
pre-training (no min vs. 5 min tokens).

Next, we fine-tuned our variants on the Romanian translated SA and TC datasets,
and conducted a new series of experiments. Here we discovered that the variants using the
raw texts are the best, but the ones with min token constraints have only a slightly lower
predictive performance while being faster to run. Text preprocessing had a major negative
impact on predictive capability and we don’t recommend pairing it with transformers. For
SA, the best BERTweetRO variants placed second after M-BERT, with a Macro F1 of ≈
2.5% points lower than M-BERT’s score of 74.8%. For TC, the best BERTweetRO variants
placed third after Linear SVM but their accuracies are almost identical to Linear SVM’s.
These results are quite impressive if we consider the extreme difference in size between
the data we used to fine-tune BERTweetRO against Multilingual BERT’s extensive data.

Our final objective was set on comparing our best performing classifiers which include
BERTweetRO, M-BERT, Linear SVM, Bernoulli NB, and DNN against a Romanian
commercial SA classifier called Sentimetric. In order to truly validate our translation
methodology we collected and manually labeled with sentiment 2 sample sets of real-
life Romanian tweets: one containing tweets related to the airline industry, the other
containing general tweets. In both domains, all of our classifiers surpassed Sentimetric,
therefore validating our end-to-end modeling framework.

With the scenarios and experiments covered in this thesis we prove, without a doubt,
that automated translation from English to Romanian is a viable alternative for creating
useful NLP resources. Moreover, we show that it’s possible to create BERT-based models
from scratch using a relatively small pretraining dataset of native Romanian texts, fine-
tune these models for other downstream tasks using texts translated to Romanian, and
achieve good results in this process. Thus, we consider that our work brings valuable
contributions to the development of linguistic resources for processing short Romanian
texts. Also, these finding should be considered by other researchers that work with under-
represented languages and face similar struggles due to limited open-source materials.
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[19] Manuel Carlos Dı́az-Galiano, Manuel Garćıa Vega, Edgar Casasola, Luis Chiruzzo, Miguel
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Ráez, Marco Antonio Sobrevilla Cabezudo, Eric Sadit Tellez, et al. Overview of tass 2019:
One more further for the global spanish sentiment analysis corpus. In IberLEF@ SEPLN,
pages 550–560, 2019.

[20] Susan T Dumais. Latent semantic analysis. Annual review of information science and
technology, 38(1):188–230, 2004.

[21] Stefan Daniel Dumitrescu, Andrei-Marius Avram, and Sampo Pyysalo. The birth of roma-
nian bert. arXiv preprint arXiv:2009.08712, 2020.

[22] Stefan Daniel Dumitrescu, Petru Rebeja, Beáta Lorincz, Mihaela Gaman, Andrei-Marius
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relevant features. In Claire Nédellec and Céline Rouveirol, editors, Proceedings of ECML-98,
10th European Conference on Machine Learning, volume 1398 of Lecture Notes in Computer
Science, pages 137–142. Springer Verlag, 1998.

[33] Ian Jolliffe and Jorge Cadima. Principal component analysis: A review and recent devel-
opments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 374:20150202, 04 2016.

[34] Daniel Jurafsky and James H Martin. Vector semantics and embeddings. Speech and Lan-
guage Processing: An Introduction to Natural Language Processing, Computational Lin-
guistics, and Speech Recognition, pages 270–85, 2019.

[35] Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Heidarysafa, Sanjana Mendu, Laura
Barnes, and Donald Brown. Text classification algorithms: A survey. Information,
10(4):150, 2019.
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