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1.2 The Carathéodory family in C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 General results regarding univalent functions in C . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Families of univalent functions on the unit disc U . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Normalized univalent functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.2 Starlike functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.3 Starlike functions of order α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.4 Almost starlike functions of order α . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.5 Convex functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.6 Convex functions of order α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.7 Spirallike functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Functions whose derivative has positive real part . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5.1 General results related to the class R . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5.2 The class R(α) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5.3 The class Rp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5.4 The class Rp(α) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 The theory of Loewner chains in C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.1 General results related to Loewner chains in C . . . . . . . . . . . . . . . . . . . . . 13
1.6.2 Loewner chains and univalent functions in C . . . . . . . . . . . . . . . . . . . . . . 14
1.6.3 Parametric representation on U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 New subclasses of univalent functions on U 15
2.1 The differential operator Gk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Subclasses of univalent functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 The subclass E∗
k(α) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 The subclass Ek(α) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Connections between E∗

k and Ek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.4 The subclass EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

II Contributions in the theory of biholomorphic mappings of several complex vari-
ables 22

3 Biholomorphic mappings and Extension operators in several complex variables 23
3.1 General notions regarding holomorphy in Cn . . . . . . . . . . . . . . . . . . . . . . . . . . 24

i



3.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Holomorphic functions in Cn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 Holomorphic mappings in Cn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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Introduction

This thesis explores both classical and novel results in the theory of univalent functions of complex variable
in one and higher dimensions. The thesis follows the course of this domain over the last years, i.e. we
start with notions related to univalent functions of one complex variable, then we discuss families of
biholomorphic mappings in Cn and end our study with a part dedicated to biholomorphic mappings and
extension operators in complex Banach spaces. The theory of univalent functions is a major topic in the
geometric function theory being intensively studied by several authors who contributed to the development
of this field.

The results included in this thesis continue, on a smaller scale, the excellent work of the great professors
from Cluj-Napoca (we mention here Professor Petru T. Mocanu, Professor Grigore S. Sălăgean, Professor
Gabriela Kohr and Professor Mirela Kohr) being inspired by their innovative ideas used over the years. We
note here the special contribution of Professor Gabriela Kohr together with her collaborators, especially
Professor Ian Graham, Professor Hidetaka Hamada and Professor Mirela Kohr (see e.g. [45]).

A very important outcome in the theory of univalent functions in C is the Riemann mapping theorem
which affirms the conformally equivalence of simply connected domains in one dimensional case (see e.g.
[45], [77]). Taking into account this result, the study of univalent functions of one variable can be reduced
to the unit disc U. In higher dimensions the Riemann’s theorem does not hold (see e.g. [45]) and this is
one of the major differences between C and Cn, where n ≥ 2, proved by Poincaré (see [112]).

Starting with Bieberbach (see e.g. [4]) who proved in 1916 the sharp second coefficient estimation for
the class S of normalized univalent functions on U, the theory of univalent functions suffered important
developments (especially due to those who worked to prove the conjecture proposed by Bieberbach related
to the coefficient bounds for functions in S). One of the important tools used in this context was the
theory of Loewner chains. Based on these ideas L. de Branges proved the Bieberbach’s conjecture and
opened new directions for the study of univalent functions. Moreover, the Loewner theory was also useful
to prove univalence criteria, analytical characterizations of geometric properties (starlikeness, convexity,
spirallikeness), radii of starlikeness, convexity, univalence and other strong results related to univalent
functions in C. Another important step was made by Pommerenke (see [114]) who proved that any f ∈ S
admits parametric representation, i.e. there is a Loewner chain f(z, t) such that f = f(·, 0) is the first
element of the chain. Various aspects and applications of this theory can be found in the monographs of
Duren [19], Graham and Kohr [45], Pommerenke [114] and also in Conway [12], Goluzin [23], Mocanu,
Bulboacă and Sălăgean [102].

In higher dimensions, Cartan studied the class S(Bn) of normalized biholomorphic mappings on the
Euclidean unit ball Bn (see e.g. [7], [45], [83]). He proved that S(Bn) is not compact, since it is not locally
uniformly bounded. Taking into account this property, we obtain that S(Bn) does not admit a growth and
distortion theorem (see e.g. [45]). This problem was solved by Graham, Hamada and Kohr who introduced
the class S0(Bn) of mappings which admit parametric representation on Bn (see e.g. [32]; see also [114]).
For n = 1, we have that S0(B1) = S (see e.g. [114]). However, if n ≥ 2, then S0(Bn) is strictly included
in S(Bn). Moreover, Graham, Kohr and Kohr (see [48]) proved that S0(Bn) is compact (see e.g. [32], [45],
[48]). This result is one of the results that presents the clear distinction between one and several complex
variables cases. On the other hand, it opened new ways of studying biholomorphic mappings theory in
higher dimensions.

Another important direction in the theory of biholomorphic mappings in higher dimensions is the in-
vestigation of geometric properties of biholomorphic mappings (e.g. starlikeness, convexity, spirallikeness).
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Matsuno (see e.g. [99]) studied for the first time the notion of starlikeness on Bn in Cn, while Suffridge
(see e.g. [126]) dealt with similar results on the unit polydisc Un. In infinite dimensional case, Gurganus
[57] and Suffridge [127] obtained characterizations of starlikeness. Other important properties of starlike
mappings on Bn have been proved over the time by Curt [14], Gong [24], Graham, Hamada and Kohr
[32], Graham and Kohr [45], Kikuchi [80], Kohr [83], Kubicka and Poreda [86] and others. The idea of
starlikeness of order α ∈ [0, 1) in Cn was introduced by Kohr in [81] and the almost starlikeness of order
α ∈ [0, 1) was defined by Feng in [22] in infinite dimensional case. The family of convex mappings was stud-
ied by Suffridge [126] on Un, respectively by Kikuchi and Gong [80] on Bn. Later, Hamada and Kohr [68]
obtained generalizations of Kikuchi’s necessary and sufficient condition of convexity to the case of complex
Hilbert spaces. The same problem was studied by Suffridge [127] on the unit ball in Cn with respect to
different norms. Other important contributions in this field are due to Curt [14], Graham, Hamada and
Kohr [32], Graham and Kohr [45], Liu [91], Roper and Suffridge [121]. In [57] Gurganus proposed the idea
of spirallikeness with respect to a linear operator that is normal and has the property that its eigenvalues
have positive real part. This concept was extended by Suffridge in infinite dimensional case in [128] (see
also the generalizations considered by Liu and Liu [94]).

As in one dimensional case, the theory of Loewner chains remains an important instrument in the
analysis of biholomorphic mappings of several complex variables. Pfaltzgraff [109] is the first contributor
in this area, obtaining generalizations on the Euclidean unit ball in Cn of the results proved on the unit
disc in C. On the other hand, Poreda extended these results on Un in Cn in the context of growth and
distortion theorems (see e.g. [115], [116]). Various properties and results in the theory of Loewner chains in
Cn were obtained by Duren, Graham, Hamada and Kohr [20], Graham, Hamada and Kohr [32], Graham,
Kohr and Kohr [47], Graham, Kohr and Pfaltzgraff [49] and also by Arosio [2], Curt and Kohr [15], Cristea
[16], Poreda [117], Vodă [130]. Among the most important results, we mention that Graham, Hamada
and Kohr (see [32]) showed that in higher dimensions, there are normalized biholomorphic mappings that
cannot be embedded as the initial elements of Loewner chains. Also, there exist mappings that do not have
parametric representation on the unit ball of Cn, where n ≥ 2. Another significant distinction between one
dimensional case and higher dimensions consists in the fact that in C the Loewner differential equation has
a unique normalized univalent solution. In contrast, in higher dimensions this result does not hold (see
e.g. [32], [114]). Duren, Graham, Hamada and Kohr studied the form of general solutions of the Loewner
differential equation in [20].

A turning point in the evolution of the theory of biholomorphic mappings of several complex variables
was the proving of the compactness of the Carathéodory family M by Graham, Hamada and Kohr in 2002
(see [44], [68]). This result revived the study of biholomorphic mappings in higher dimensions and opened
new study opportunities in the geometric function theory. Other aspects and applications of the theory
of Loewner chains, respectively the Carathéodory class in several complex variables may be found in [14],
[16], [17], [32], [45], [48], [109], [117].

A problem that appeared in the study of biholomorphic mappings in higher dimensions was the con-
struction of examples of convex mappings in Cn. Those who took the first steps towards solving this problem
were K. Roper and T.J. Suffridge (see [121]). They introduced the extension operator Φn : LS → LSn(Bn)
given by

Φn(f)(z) =

Å
f(z1), z̃

»
f ′(z1)

ã
, z = (z1, z̃) ∈ Bn,

where the branch of the square root function is taken such that
√
f ′(z1)

∣∣
z1=0

= 1 as a tool that preserve
the notion of convexity from U to Bn. This property was later obtained also by Graham and Kohr
in a different manner (see [43]). Moreover, they showed that the operator preserves also the notion of
starlikeness. Different authors obtained strong extension results related to the preservation of starlikeness
of order 1/2 (Hamada, Kohr and Kohr in [73]), starlikeness of order 0 < α < 1 (Liu in [92] and Chirilă
in [11]), spirallikeness of type δ, where δ ∈ R is such that |δ| < π

2 (Graham, Kohr and Kohr in [48]).
Taking into account the method of g-Loewner chains, Chirilă (see [11]) proved that Φn preserves the
almost starlikeness of order α and type γ, where α, γ ∈ [0, 1), respectively the spirallikeness of type δ and
order α, where δ ∈ R with |δ| < π

2 and α ∈ [0, 1). The preservation of spirallikeness of type δ and order
α was obtained also by Liu and Liu (see [94]) using a different method. Other properties of the extension
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operator Φn can be found in [30], [45].
Starting with Roper and Suffridge, the theory of extension operators became an important topic in the

study of biholomorphic mappings in higher dimensions. Other extension operators with strong properties
were introduced by

� Graham and Kohr (see [43], [44]), i.e. the Graham-Kohr extension operator Ψn,α defined by

Ψn,α(f)(z) =

Å
f(z1),

Å
f(z1)

z1

ãα
z̃

ã
, z = (z1, z̃) ∈ Bn,

for any function f ∈ LS with f(z1) ̸= 0 for z1 ∈ U \ {0}. The branch of the power function is taken

such that
(f(z1)

z1

)α∣∣
z1=0

= 1.

� Graham, Hamada, Kohr and Suffridge (see [42]), i.e. the extension operator Φn,α,β defined by

Φn,α,β(f)(z) =

Å
f(z1),

Å
f(z1)

z1

ãα(
f ′(z1)

)β
z̃

ã
, z = (z1, z̃) ∈ Bn,

where α, β ≥ 0 and f ∈ LS has the property that f(z1) ̸= 0 for z1 ∈ U \ {0}. Here, the branches of

the power functions have the properties
(f(z1)

z1

)α∣∣
z1=0

= 1 and
(
f ′(z1)

)β∣∣
z1=0

= 1.

� Pfaltzgraff and Suffridge (see [111]), i.e. the Pfaltzgraff-Suffridge extension operator Γn : LSn(Bn) →
LSn+1(Bn+1) defined by

Γn(f)(z) =

Å
f(z′), zn+1

[
Jf (z

′)
] 1
n+1

ã
, z = (z′, zn+1) ∈ Bn+1,

where Jf (z
′) = detDf(z′), for z′ ∈ Bn. We take the power function such that

[
Jf (z

′)
] 1
n+1

∣∣
z′=0

= 1.

All these extension operators preserve the notion of parametric representation (in particular, starlikeness,
starlikeness of order α ∈ (0, 1), spirallikeness). An important remark is that Graham, Hamada, Kohr
and Suffridge proved that Φn,α,β preserves the convexity only if α = 0 and β = 1

2 . In particular, the
Graham-Kohr extension operator Ψn,α does not preserve convexity for n ≥ 2. The problem of preservation
of convexity under the operator Γn was partially solved by Graham, Kohr and Pfaltzgraff (see [49]), respec-
tively by Chirilă (see [10]) for a modified Pfaltzgraff-Suffridge operator. More details about generalizations
of Roper-Suffridge type extension operators and their properties can be found in [25], [27], [43], [46], [84],
[93], [103], [138].

In recent years, the study of biholomorphic mappings has focused on the infinite dimensional case.
Part of the results from one variable, respectively several complex variables, can be extended in the case
of complex Banach spaces (e.g. the theory of univalent functions, families of univalent functions with
special geometric properties, the theory of Loewner chains, the theory of extension operators and others).
However, many of the problems proposed in the infinite dimensional case are still open and of great interest
to researchers. Among those who started the study of biholomorphic mappings in infinite dimensions we
mention K. Gurganus [57], J. Mujica [106], T. Poreda [118] and T.J. Suffridge [127]. One of the important
differences in this context is that the notions of univalence and biholomorphy are not equivalent, i.e. there
exist univalent mappings which are not biholomoprhic (see e.g. [107], [119], [128]). This result is in
contrast with the finite dimensional case (see [45]). General properties of the class S(BX) of normalized
biholomorphic mappings on the unit ball BX of the complex Banach space X were obtained in the books
of Graham and Kohr [45], Hille and Phillips [79], Mujica [106].

Related to the generalization of the Carathéodory class in infinite dimnesional case, important con-
tributions have been made by Bracci, Elin, Shoikhet [6], Graham, Hamada, Honda, Kohr and Shon [31],
Graham, Hamada, Kohr and Kohr (see e.g. [36], [38]). They improved some results obtained initially
by Gurganus [57] and Pfaltzgraff [109]. Moreover, Hamada and Kohr (see [68]) obtained the final version
of the analytical characterization of starlikeness studied by Suffridge [127] and Gurganus [57]. They also
proved the analytical characterization of convexity in the case of Hilbert spaces (see e.g. [68]). Other
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families of biholomorphic mappings on BX were studied by Gong and Liu [25], Graham and Kohr [45],
Hamada, Kohr and Kohr [74], Wang and Wang [133].

Recently, the study of subordination chains in infinite dimensional spaces started by Poreda (see e.g.
[117], [118]) was continued and improved by Graham, Hamada, Kohr and Kohr (see e.g. [34], [38], [39],
[40], [41]), Hamada and Kohr (see e.g. [70], [72]), Arosio, Bracci, Hamada and Kohr (see e.g. [2], [3])
who obtained important results related to Loewner chains and Loewner PDE in infinite dimensional case.
Another strong development in the theory of Loewner chain was introduced by Arosio, Bracci, Hamada and
Kohr in [3]. They considered Loewner chains on complete hyperbolic complex manifolds and obtained a
one-to-one correspondence between Ld-Loewner chains and Ld-evolution families. Moreover, they construct
Ld-Loewner chains produced by the Roper-Suffridge extension operator. The theory of Loewner chains
and its generalizations play a key role in the study of biholomorphic mappings and extension operators in
complex Banach spaces.

Another domain that has been extended to the infinite dimensional case is that of extension operators.
Among those who study extension operators in complex Banach spaces we mention Graham, Hamada,
Kohr and Kohr (see e.g. [39], [40]), Muir Jr. (see e.g. [104], [105]), Wang and Zhang (see e.g. [131], [132],
[134]), Zhang and Thang (see e.g. [139]). Recently, they obtained important results related to generalized
Roper-Suffridge extension operator, respectively Muir-type extension operators, g-Loewner chains and
generalized parametric representation in complex Banach spaces. Note that an important recent tool to
generate extension operators is also the semigroup theory studied by Elin (see e.g. [21]).

Nowadays, the most recent approach to the Loewner theory was realized by Hamada and Kohr in
[72]. They studied a new concept, namely the inverse Loewner chain, in infinite dimensional case. Their
important work represents a new way of studying the results related to the Loewner chains and extension
operators in complex Banach spaces.

The content of this thesis is structured in three parts organized in six chapters. We present here a
brief description of each part, highlighting the main results we obtained in each chapter. The original
results included in the thesis are mainly derived from the author’s six articles presented in the bibliography
(a short presentation of these results can be consulted in the conclusions part at the end of the thesis).
Moreover, it is important to mention that throughout this thesis are addressed some conjectures and open
questions that lead to the final chapter dedicated to further research directions.

Part I contains results related to univalent functions of one complex variable. It includes the first two
chapters of the thesis that contain both classical and original results (the latter being obtained by the
author in [50], [51] and [54]). The main sources cited in this section are [19], [29], [45], [77], [85], [87], [102],
[114]

� In Chapter 1 we include general results related to univalent functions of one complex variable in
C. We begin with basic notations, notions and preliminary results that will be used during the first
part of the thesis.

In Section 1.1 we shortly discuss the theory of holomorphic functions in C including the open mapping
theorem and the minimum/maximum modulus theorem with its applications (e.g. the Schwarz’s
lemma or Schwarz-Pick’s lemma). In the final part of the first section we revisit the concepts of
normal families and locally uniformly bounded families of holomorphic functions in C. We end this
section with the equivalence of the previous two notions proved by Montel (see e.g. [77], [85], [87]),
the characterization of compactness of closed families of holomorphic functions in terms of locally
uniformly boundedness (see e.g. [85]) and one of the most important application of the Montel’s
theorem, namely Vitali’s theorem (see e.g. [85], [87]).

Section 1.2 contains some classical results regarding to the notion of subordination, respectively
the Carathéodory class P in C. The family of holomorphic functions with positive real part is an
important tool in the characterization of univalent functions and in the theory of Loewner chains on
U. We include here the growth and distortion theorem for the class P, coefficient estimations and
the Herglotz representation formula that characterize the Carathéodory family P (see e.g. [29], [45],
[102]).
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In Section 1.3 we discuss general results related to univalent functions on U. We present several
properties of univalent functions, necessary and sufficient conditions of univalence and some examples
that we will refer to during the thesis (see e.g. [19], [85]). We end this section with one of the most
important results in the theory of univalent functions in C, i.e. the Riemann mapping theorem which
establishes the conformal equivalence of every simple connected domain D ⊊ C with the unit disc U.
In Section 1.4 we consider the class S of normalized univalent functions on U and some particular
subclasses of S (starlike, respectively almost starlike of order α, convex of order α and spirallike).
For these families of univalent functions on U we present the well-known results related to growth,
distortion and coefficient bounds, as well as the analytical characterizations of the families S∗(α),
K(α) and Ŝδ.

It is important to mention here that even if this chapter is an introductory one, it also contains original
results regarding to general distortion theorems for starlike functions of order α (see Theorem 1.4.9),
respectively convex functions of order α (see Theorem 1.4.19). The original outcomes were derived
by the author in [51].

Section 1.5 of this chapter is focused on the study of the class R of normalized holomorphic functions
whose derivative has positive real part. Here, we include the most important results related to the
class R obtained in [89], [90], [96] or [129]. Together with the classical results we present also several
original results obtained by the author in [50]. In §1.5.3 and §1.5.4 we define two new subclasses
of functions, namely Rp and Rp(α), and study some of their properties (see Theorems 1.5.3, 1.5.9).
The class Rp(α) was introduced in order to generalize the class R(α) described in §1.5.2. The idea of
considering a parameter α ∈ [0, 1) is inspired from the extensions that Robertson made in [120] for
starlike, respectively convex functions of order α. The relation with the Carathéodory family is an
important tool that can be used in characterization of the new subclasses introduced by the author
in [50].

In Section 1.6 we present important results regarding Loewner theory in C. Since the Loewner
chains are strongly connected to the Loewner differential equation, we present here some of the most
important results in this theory that will be used in the study of univalent functions mentioned above.
In the second part of this section we refer to the analytical characterization of some subclasses of
S through Loewner chains and finally, we present the notion of parametric representation on U (see
e.g. [45], [114]) The characterization of the geometric properties of univalent functions in terms of
Loewner chains will play an important role in the Chapter 2, where we use the Loewner theory to
describe some new subclasses of univalent functions on U (see §2.2.2).

� The main idea of Chapter 2 consists in the study of a new differential operator and two new
subclasses of univalent functions on the unit disc U defined with this operator. This chapter is made
up entirely of original results obtained by the author in [54].

In Section 2.1 we present the differential operator Gk defined on the family H0(U) of normalized
holomorphic functions on U. Using the operator Gk we can construct some particular subclasses of
univalent functions on U that are strongly related to the families S∗, respectively K, as we can see
in §2.2. Several properties of the operator Gk are studied in this section, e.g the linearity of Gk,
convolution product and a sufficient condition of univalence for Gk (see Propositions 2.1.3 – 2.1.6). It
is important to mention here that the differential operator Gk is different from the Sălăgean differential
operator Dn (see Remark 2.2.6; see also [124]). Another important remark is that the operator Gk

can be extended in the case of several complex variables (see Chapter 4; see also [53]).

Using the differential operator Gk mentioned above, we can construct some particular subclasses of
univalent functions on U in C. These subclasses, denoted here by E∗

k(α), respectively Ek(α), where
α ∈ [0, 1), are related to the classes of starlike, respectively convex functions of order α on U. An
important remark is that for k = 0 we obtain E∗

0(α) = S∗(α) and E0(α) = K(α), so we can start
our study of these new subclasses in terms of the well-known families S∗(α) and K(α) introduced by
Robertson in [120]. On the other hand, we have that E1 is strictly included in the family K(1/2) of
convex functions of order 1/2 (see Proposition 2.2.25) and E∗

1(α) = K(α). As we already mentioned
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above, the operator Gk and the subclasses introduced in this chapter can be extended also in the
case of several complex variables (see e.g. [53]). However, in higher dimensions, some properties are
different as can be seen in the results included by the author in Chapter 4.

Section 2.2 is dedicated to the study of subclasses Ek(α) and E∗
k(α) in C, where k ∈ N and α ∈ [0, 1).

Together with general properties of these subclasses (growth and distortion theorems, coefficient es-
timations, analytical characterization, connection with Loewner chains presented in Theorems 2.2.7 –
2.2.8, 2.2.10 – 2.2.18, 2.2.31 – 2.2.32 and others), we also study particular cases (e.g. k = 1 and α = 0)
that are of interest being in close connection with the classes of univalent functions mentioned in the
first chapter (see e.g. Propositions 2.2.25 and 2.2.26 in §2.2.2). All the results in this chapter are
original and were obtained by the author in [54].

Part II contains results related to biholomorphic mappings of several complex variables. It includes
chapters 3 and 4 of the thesis that contain both classical and original results. This part is based on several
important books (e.g. [45], [83], [107], [119], [123]) and papers (e.g. [32], [37], [44], [128]) and contains also
original results obtained by the author in [52] and [53].

� In Chapter 3 we present general results related to biholomorphic mappings of several complex
variables in Cn. We begin with basic notations, notions and preliminary results that will be used
during the second part of the thesis.

In Section 3.1 we refer to the theory of holomorphic functions, respectively holomorphic mappings
in Cn, including the open mapping theorem, the minimum/maximum modulus theorem and its
applications (e.g. the Schwarz’s lemma). We recall also the definition of a set of uniqueness (see e.g.
[45], [83]) and two important results related to this notion, namely the Montel, respectively Vitali’s
theorem in Cn (see e.g. [83], [107], [119]). In the final part of this section we mention some general
results about holomorphic mappings in Cn and the main results that will be used in this chapter (e.g.
the Schwarz-Pick’s lemma).

Section 3.2 contains classical notions related to the generalization of the Carathéodory class to higher
dimensions (i.e. the class of functions with positive real part). We refer here especially to growth
and distortion theorems obtained by Graham, Hamada and Kohr (see [32]), Pfaltzgraff (see [109])
and Poreda (see [115]). One of the most important results that was proved by Graham, Hamada and
Kohr in 2002 (see [32], [68]) is the compactness of the Carathéodory family M. This result had a
strong impact on the history of the geometric function theory in higher dimensions.

Sections 3.3 and 3.4 are intended for the study of certain subclasses of biholomorphic mappings on the
Euclidean unit ball Bn, respectively on the unit polydisc Un in Cn. For n ≥ 2, we denote by S(Bn) the
family of biholomorphic and normalized mappings on Bn (see e.g. [45], [83]). It is known that the set
S(Bn) is not locally uniformly bounded and then it does not admit a growth and distortion theorem.
As an important consequence of this property due to Cartan (see e.g. [7], [45]) we obtain that S(Bn)
is not compact for n ≥ 2. Among the most important subclasses of S(Bn), we mention the family
of starlike, starlike of order α, convex and spirallike mappings on Bn. For these mappings we recall
analytical and geometric characterizations, growth and distortion results together with suggestive
examples that are used throughout this chapter.

Section 3.5 contains extensions of the notions presented in §1.6 related to Loewner chains, Loewner
differential equation and parametric representation in higher dimensions. Pfaltzgraff (see e.g. [109])
was the first who obtained generalizations of the Loewner chains and Loewner differential equation
on Bn. The study was extended by Poreda in the case of the unit polydisc in Cn (see e.g. [115],
[116]), respectively by Kubicka and Poreda (see e.g. [86]). Important results were obtained over
time by Duren, Graham, Hamada and Kohr (see e.g. [20]), Graham, Hamada and Kohr (see e.g.
[32]), Graham, Hamada, Kohr and Kohr (see e.g. [36], [37]) and others. One of the most important
difference between the one dimensional case and the higher dimension is the compactness of the
family of normalized biholomorphic mappings. It is known that S(U) is a compact set (see Theorem
1.4.4) while the set S(Bn) is not compact for n ≥ 2 (see e.g. [7], [45]). This problem was solved by
Graham, Hamada and Kohr who introduced the class S0(Bn) of mappings which admit parametric
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representation on Bn (see e.g. [32]; see also [114]). For n = 1, we have that S0(B1) = S (see e.g.
[114]). However, if n ≥ 2, then S0(Bn) is strictly included in S(Bn). Moreover, Graham, Kohr and
Kohr (see [48]) proved that S0(Bn) is compact (see e.g. [32], [45], [48]). This result is one of the
results that presents the clear distinction between one and several complex variables cases. On the
other hand, it opened new ways of studying geometric function theory in higher dimensions. Another
important problem that was solved by Graham, Hamada, Kohr and Kohr is the existence in Cn of
mappings which cannot be embedded as the first elements of a Loewner chain. Using the family
S0(Bn) they succeed to prove the analogous of Pommerenke’s theorem (see Theorem 1.6.3) in higher
dimensions (see [48]; see also [32]). Moreover, the notion of parametric representation was extended
to g-parametric representation by Graham, Hamada and Kohr (see e.g. [32]). More details about
the class S0

g (Bn) will be discussed in the last part of the thesis.

Section 3.6 is devoted to the study of convex combinations of biholomorphic mappings on Bn. We
consider mappings of the form hλ = (1−λ)f+λg, where f, g ∈ S(Bn) and λ ∈ (0, 1). It is known that,
in general, the convex combination of two normalized biholmorphic mappings is not biholomorphic on
Bn (see e.g. [45], [83]). The phenomenon also occurs in the one dimensional case and was intensively
studied by several authors (see e.g. [9], [58], [97], [100]). The main idea of this section is to obtain
biholomorphic mappings hλ on Bn (or even starlike mappings) as convex combinations of the form
hλ = (1 − λ)f + λg, where f, g ∈ S(Bn) and λ ∈ (0, 1). The results presented in this section are
original and were obtained by Grigoriciuc in [52].

A powerful tool in the study of biholomorphic mappings in higher dimensions is the theory of exten-
sion operators. In Section 3.7 we present extension operators that preserve geometric and analytic
properties on the unit ball in Cn. We start our discussion with the Roper-Suffridge extension operator
Φn (considered by K. Roper and T.J. Suffridge in [121]) and the Graham-Kohr extension operator
Ψn,α (defined by I. Graham and G. Kohr in [44]; see also [43]). Then we will look at two general-
izations of the Roper-Suffridge extension operator introduced by Graham, Hamada, Kohr, Kohr and
Suffridge (see e.g. [42], [47]) that map a locally univalent function on U into a locally biholomorphic
mapping on Bn. In the final part of this section we present the extension operator introduced by
Pfaltzgraff and Suffridge (see [111]) and a generalization of their operator (see e.g. [10]).

Section 3.8 concludes this chapter with an interesting study that combine the ideas presented above,
namely extension operators and convex combinations of biholomorphic mappings in Cn. Hence, we
discuss about convex combinations of extension operators on Bn. In particular, we consider a new
extension operator obtained as a convex combination of two Graham-Kohr type extension operators
(see e.g. [43], [44]). The results presented in this section are original.

� Chapter 4 contains extensions of the main results presented in Chapter 2 related to a new differential
operator, respectively new subclasses of biholomorphic mappings on Bn in Cn.

In Section 4.1 we discuss about the n-dimensional form of the operator Gk, denoted here by Gn,k, for
every n ∈ N with n ≥ 2 and k ∈ N. The operator Gn,k will be used to extend the subclasses Ek

and E∗
k from the unit disc U to the unit ball Bn in Cn with respect to an arbitrary norm. Even if

these classes can be defined in a very general context, the case of the Euclidean unit ball Bn will be
addressed in particular in our discussion, considering the properties that are preserved (or not) from
the one dimensional case to higher dimensions.

The main result that is highlighted in Section 4.2 shows that the family E∗
1(Bn) coincides with the

class K of convex functions for n = 1 (see Theorem 4.2.1; see also Proposition 2.2.4). However,
for n ≥ 2, we obtain that E∗

1(Bn) ∩ K(Bn) ̸= ∅, but E∗
1(Bn) ̸= K(Bn). Note that in the case of

the subclass E∗
1(Bn) we obtain a major difference between the one dimensional case and the one

of several complex variables, i.e. the family of convex mappings is not the same with the subclass
E∗

1(Bn). Another result that is proved in this section (see Theorem 4.2.3) says something about
the connection between E1(Bn) and the family K(Bn; 1/2) of convex mappings of order 1/2. The
inclusion E1 ⊂ K(1/2) that holds in the one dimensional case can be partially extended in Cn. Other
properties and relevant examples are presented in this section in order to describe the new subclasses

x



introduced by the author (e.g. a Marx-Strohhäcker type theorem for our subclasess).

In Section 4.3 we include a study of two particular cases of the Graham-Kohr extension operator Ψn,α

(presented in §3.7) applied to the family of convex functions K. Although the operator Ψn,α does not
preserve the notion of convexity (see e.g. [44]), we can prove an important property related to the
subclass E∗

1 . We know that E∗
1 = K in C and thus, in §4.3 we show that Ψn,α(K) ⊆ E∗

1(Bn) ̸= K(Bn)
for α ∈ {0, 1}. With this result, not only we managed to connect the results proved in Chapters 2
and 4 with the help of the Graham-Kohr extension operator, but we also obtained a new property
of the operator Ψn,α. Along with these results, we also propose some questions and open problems
related to the Graham-Kohr extension operator and the subclass E∗

k in higher dimensions. All the
original results presented here have been obtained by Grigoriciuc in [53].

Part III contains results related to biholomorphic mappings in complex Banach spaces. It includes the
last two chapters of the thesis which contain both known results (based on the references [39], [40], [41],
[45], [106], [117], [127]) and original results (obtained by the author in [55]).

� Chapter 5 is dedicated to a short study on biholomorphic mappings and Extension operators in
complex Banach spaces. We include here extensions of most of the results presented in previous
chapters. Among those who have made important contributions in the geometric function theory
of complex variables in the infinite dimensional case are J. Mujica, T. Poreda, T.J. Suffridge (see
e.g. [106], [117], [118], [127]) and more recently F. Bracci, I. Graham, H. Hamada, G. Kohr and M.
Kohr (see e.g. [3], [34], [38], [39], [40], [41]). We start our discussion from the very recent paper
published by Graham, Hamada, Kohr and Kohr regarding biholomorphic mappings, Loewner chains
and Extention operators in complex Banach spaces (see e.g. [39], [40], [41]). These papers constitute
the basis of our study, containing some of the fundamental ideas in obtaining all the other results in
this part.

Section 5.1 contains basic results and properties of holomorphic functions and holomorphic mappings
in infinite dimensions. We present the main notions and results that will be used during this chapter
(e.g. the maximum modulus theorem, the Schwarz’s lemma). For more details, one may consult [45],
[78], [79], [106], [127], [128]. Moreover, we recall here the generalization of the Carathéodory family
and the growth results obtained by Gurganus (see [57]), respectively by Bracci, Elin, Shoikhet (see
[6]) and Graham, Hamada, Honda, Kohr and Shon (see [31]) in infinite dimensional case.

Section 5.2 is dedicated to some particular families of biholomorphic mappings in complex Banach
spaces. We present here the classes of starlike, convex, respectively ε-starlike mappings together
with their analytical characterization. Important contributions were made by Suffridge (see [127]),
Gurganus (see [57]), Hamada and Kohr (see e.g. [68], [74]), Gong and Liu (see [25], [26]).

In Section 5.3 we discuss some general results related to the theory of Loewner chains in complex
Banach spaces that will be used in our main results. The study of subordination chains in infinite
dimensional spaces was started by Poreda (see e.g. [117], [118]). These ideas were continued and
improved by Graham, Hamada, Kohr and Kohr (see e.g. [34], [38], [39], [40], [41]), Hamada and Kohr
(see e.g. [70], [72]), Arosio, Bracci, Hamada and Kohr (see e.g. [2], [3]) who obtained important results
related to Loewner chains and Loewner PDE in infinite dimensional spaces. The second part of this
section contains results related to the notion of parametric representation in infinite dimensions. This
notion is due to Graham, Hamada, Kohr and Kohr (see [38]) and represents the generalization of
the parametric representation presented in Definition 3.5.11. Also, we discuss in this section about
g-parametric representation, g-Loewner chain and particular families of biholomorphic mappings
associated to g-Loewner chains. For details, one may consult [32], [34], [45], [60], [61], [62], [74].

� Chapter 6 contains original results obtained based on the ideas presented by Graham, Hamada,
Kohr and Kohr in [39] and [40]. Part of the original results have been obtained by Grigoriciuc in [55].

In Section 6.1 we consider the Graham-Kohr extension operator Ψα on the domain Ωp,r =
{
(z1, w) ∈

Y = C×X : |z1|p + ∥w∥rX < 1
}
, where X is a complex Banach space, α ∈ [0, 1] and p, r ≥ 1. Based
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on the results proved by Graham, Hamada, Kohr and Kohr in [39] for p = 2 (see also [40]), we try to
obtain extension properties for the general case p ∈ [1,∞).

Section 6.2 is dedicated to study of preservation of Loewner chains by the Pfaltzgraff-Suffridge exten-
sion operator from one dimension to infinite dimensional complex Banach spaces. Recently, Graham,
Hamada, Kohr and Kohr (see e.g. [40]) proved that the Pfaltzgraff-Suffridge extension operator pre-
serves the first elements of Loewner chains from the open unit ball BX of an n-dimensional JB∗-triple
X into a domain Dα ⊆ BX × BY , where Y is a complex Banach space (for the complete results
and their proofs, one may consult [33], [35] and [40]). Inspired by these ideas, we prove that the
Pfaltzgraff-Suffridge type extension operator preserves the first elements of Loewner chains from the
unit ball Bn of Cn (with respect to different norms, i.e. the Euclidean norm, the maximum norm)
to the unit ball of W = Cn × Y , where Y is a complex Banach space.

In the final part, we present a list of the main original results included in this thesis. We mention again
that Chapters 1 – 4 and 6 contains original results.

� Chapter 1: Theorem 1.4.9, Theorem 1.4.19, Theorem 1.5.3, Theorem 1.5.7, Proposition 1.5.8,
Theorem 1.5.9

� Chapter 2: Proposition 2.1.3, Proposition 2.1.4, Proposition 2.1.5, Proposition 2.1.6, Proposition
2.2.4, Theorem 2.2.7, Theorem 2.2.8, Corollary 2.2.9, Theorem 2.2.10, Theorem 2.2.16, Theorem
2.2.18, Corollary 2.2.19, Theorem 2.2.21, Proposition 2.2.25, Proposition 2.2.26, Theorem 2.2.27,
Corollary 2.2.28, Lemma 2.2.30, Theorem 2.2.31, Theorem 2.2.32

� Chapter 3: Lemma 3.6.4, Lemma 3.6.5, Proposition 3.6.6, Theorem 3.6.8, Proposition 3.8.2, Lemma
3.8.4, Proposition 3.8.5, Theorem 3.8.6, Theorem 3.8.7, Proposition 3.8.8, Theorem 3.8.9

� Chapter 4: Remark 4.1.4, Theorem 4.2.1, Theorem 4.2.3, Theorem 4.2.5, Corollary 4.2.6, Proposi-
tion 4.3.1, Lemma 4.3.2, Corollary 4.3.3, Theorem 4.3.4, Lemma 4.3.5, Corollary 4.3.6

� Chapter 6: Lemma 6.1.1, Theorem 6.1.4, Corollary 6.1.5, Corollary 6.1.6, Corollary 6.1.7, Theorem
6.1.8, Corollary 6.1.9, Theorem 6.1.11, Corollary 6.1.14, Corollary 6.1.15, Theorem 6.2.6, Corollary
6.2.7, Corollary 6.2.8, Corollary 6.2.9, Corollary 6.2.10, Theorem 6.2.11, Theorem 6.2.13, Corollary
6.2.14, Theorem 6.2.16, Corollary 6.2.17, Corollary 6.2.18

Part of the original results listed above are published (or under publication) in the following papers:

� Grigoriciuc E.S., On some classes of holomorphic functions whose derivatives have positive real
part, Stud. Univ. Babeş-Bolyai Math. 66(3) (2021), 479–490. WoS-ESCI, IF(2022): 0.400

� Grigoriciuc E.S., Some general distortion results for K(α) and S∗(α), Mathematica 64(87) (2022),
222–232. (Scopus)

� Grigoriciuc E.S., On Some Convex Combinations of Biholomorphic Mappings in Several Complex
Variables, Filomat 36(16) (2022), 5503–5519. WoS-SCIE, IF(2021): 0.988

� Grigoriciuc E.S., New Subclasses of Univalent Mappings in Several Complex Variables: Extension
Operators and Applications, Comput. Methods Funct. Theory 23(3) (2023), 533–555. WoS-SCIE,
IF(2022): 1.155

� Grigoriciuc E.S., New subclasses of univalent functions on the unit disc in C, Stud. Univ. Babeş-
Bolyai Math. 69(4) (2024), 769–787. WoS-ESCI, IF(2022): 0.400

� Grigoriciuc E.S., g-Loewner chains and the Graham-Kohr extension operator in complex Banach
spaces, Comput. Methods Funct. Theory, accepted

The original results included in this thesis were also exposed in more than thirty national or international
conferences and research seminars. We mention here the participation in the
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� International Conference of Young Mathematicians, Institute of Mathematics of National
Academy of Sciences, Kyiv, Ukraine, online, 3 – 5 June 2021;

� 8th European Congress of Mathematics, Portoroz̆, Slovenia, online, 20 – 26 June 2021 (Talk in
the Minisymposium Current topics in Complex Analysis);

� The International Conference on Complex Analysis and Related Topics (dedicated to the
90-th anniversary of Anatolii Asirovich Goldberg, 1930-2008), Ivan Franko National University of
Lviv, Ukraine, online, 28 June – 1 July 2021;

� 16th International Symposium on Geometric Function Theory and Applications (GFTA
2021) – Dedicated to the memory of Professor Gabriela Kohr, “Lucian Blaga” University of Sibiu,
Romania, online, 15 – 18 October 2021;

� The 14th Joint Conference on Mathematics and Computer Science (14th MaCS), “Babeş-
Bolyai” University of Cluj-Napoca, Romania, 24 – 27 November 2022;

� 2nd Edition of The Workshop dedicated to the memory of Professor Gabriela Kohr
– Geometric Function Theory in Several Complex Variables and Complex Banach Spaces, “Babeş-
Bolyai” University of Cluj-Napoca, Romania, 1 – 3 December 2022;

� 9th International Conference on Mathematics and Informatics, Sapientia Hungarian Uni-
versity of Transylvania, Târgu Mureş, Romania, 7 – 8 September 2023;

� 3rd Edition of The Workshop dedicated to the memory of Professor Gabriela Kohr
– Geometric Function Theory in Several Complex Variables and Complex Banach Spaces, “Babeş-
Bolyai” University of Cluj-Napoca, Romania, 1 – 3 December 2023;

� Sixth Romanian Itinerant Seminar on Mathematical Analysis and its Applications (RIS-
MAA), “Babeş-Bolyai” University of Cluj-Napoca, Romania, 30 – 31 May 2024.

� 4th Edition of The Workshop dedicated to the memory of Professor Gabriela Kohr
– Geometric Function Theory in Several Complex Variables and Complex Banach Spaces, “Babeş-
Bolyai” University of Cluj-Napoca, Romania, 29 November – 1 December 2024;

MSC 2020: 32H02 (primary), 30C45 (secondary).

Keywords: univalent function, biholomorphic mapping, Carathéodory family, starlike mapping, convex
mapping, convex combination, Loewner chain, g-Loewner chain, parametric representation, g-parametric
representation, g-starlikeness, Graham-Kohr extension operator, Pfaltzgraff-Suffridge extension operator,
Muir extension operator, complex Banach space.
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Part I

Contributions in the theory of univalent
functions of one complex variable
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Chapter 1

Univalent functions of one complex
variable

In the first chapter we include classical and well-known results related to univalent functions of one complex
variable. We begin with basic notations, notions and preliminary results that will be used during the first
part of the thesis. We refer here to the topic of holomorphic functions in C including the open mapping
theorem and the minimum/maximum modulus theorem with its applications (e.g. the Schwarz’s lemma
or Schwarz-Pick’s lemma). In the final part of the first section we recall the concepts of locally uniformly
bounded family and normal family of holomorphic functions in C. We end this section with the equivalence
of the previous two notions proved by Montel (see e.g. [77], [85], [87]), the characterization of compactness
of closed families of holomorphic functions in terms of locally uniformly boundedness (see e.g. [85]) and
one of the most important application of the Montel’s theorem, namely Vitali’s theorem (see e.g. [77], [85],
[87]).

Next, we revisit the concept of subordination and we present classical results related to the Carathéodory
class P in C. The family of holomorphic functions with positive real part is an important tool in the
characterization of univalent functions and in the theory of Loewner chains on the unit disc U. We include
here the distortion theorem for the class P, coefficient estimations and the Herglotz representation formula
that characterize the Carathéodory family P.

The third section contains general results related to univalent functions on U. We present several
properties of univalent functions, necessary and sufficient conditions of univalence and some examples that
we will refer to during the thesis. We end this section with the Riemann mapping theorem which claims
the conformal equivalence of every simple connected domain D ⊊ C with U. This result is among the most
important in the theory of univalent functions in C, but which is not valid in Cn, for n ≥ 2.

Further, we consider the class S of normalized univalent functions on U and some particular subclasses
of S (starlike, respectively almost starlike of order α, convex of order α and spirallike). For these families
of univalent functions on U we present the well-known results related to growth, distortion and coefficient
bounds. Also, we recall here the analytical characterizations of the families S∗(α), K(α) and Ŝδ. It is
important to mention here that even if this chapter is an introductory one, it also contains original results
obtained by the author in [51] regarding to general distortion theorems for starlike functions of order α
(see Theorem 1.4.9), respectively convex functions of order α (see Theorem 1.4.19).

The fifth section of this chapter is dedicated to study the class R of normalized holomorphic functions
whose derivative has positive real part. Here, we include the most important results related to the class
R obtained in [89], [90], [96] or [129]. Together with the classical results we present also several original
results obtained by the author in [50]. In §1.5.3 and §1.5.4 we define two new subclasses of functions,
namely Rp and Rp(α), and study some of their properties (see Theorems 1.5.3, 1.5.9). The class Rp(α)
was introduced in order to generalize the classR(α) described in §1.5.2. The idea of considering a parameter
α ∈ [0, 1) is inspired from the extensions that Robertson made in [120] for starlike, respectively convex
functions of order α. The connection with the Carathéodory family is an important tool that can be used
in characterization of these new subclasses.

The last section is focused on the Loewner theory in C. Given the strong relation between Loewner
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1.1. General notions regarding holomorphy in C

chains and the Loewner differential equation, we present here some key results related to both, which will
be utilized in the study of univalent functions mentioned above. In the second part of this section we refer
to the analytical characterization of special subfamilies of S via Loewner chains and finally, we present
the notion of parametric representation on U (see e.g. [45], [114]) The characterization of the geometric
properties of univalent functions in terms of Loewner chains will play an important role in the Chapter 2,
where we use the Loewner theory to describe some new subclasses of univalent functions on U (see §2.2.2).

The main bibliographic references used to compose this chapter are [19], [29], [45], [85], [77], [96], [102],
[113], [114]. For details, one may consult also [8], [12], [23], [87].

1.1 General notions regarding holomorphy in C

The first section contains basic notions, notations and well-known results about holomorphic functions of
one complex variable. We include here the main results that are of interest in the theory of holomoprhic
functions in C that will be used during this thesis. The main sources referenced here are [77], [85]. For
details, one may consult also [8], [87].

1.1.1 Preliminaries

Let C be the complex plane, C∗ = C \ {0} and C∞ = C ∪ {∞}. During this thesis we denote by

U(w, r) =
{
z ∈ C : |z − w| < r

}
the open disc of center w ∈ C and radius r > 0, respectively by

U(w, r) =
{
z ∈ C : |z − w| ≤ r

}
the closed disc of center w ∈ C and radius r > 0. In particular, we denote by U = U(0, 1) the open unit
disc in C and by ∂U the unit circle in C. Also, for simplicity, we use the notation Ur = U(0, r) for the open
disc of center zero and radius r > 0.

1.1.2 Holomorphic functions in C

Let D ⊆ C be an open set. Then we denote by

H(D) =
{
f : D → C : f is holomorphic on D

}
the family of all holomorphic functions on D. In particular, the set H(C) contains the entire functions on
C (holomorpic on the whole complex plane).

Remark 1.1.1. Let D ⊆ C be a domain such that 0 ∈ D. Then f ∈ H(D) is normalized if f(0) = 0 and
f ′(0) = 1. For the sake of brevity, let us denote by H0(D) the family of normalized holomorphic functions
on D.

Next, we introduce some classical results related to holomorphic functions that will be used in the
subsequent sections (see e.g. [77], [85]). The first result is commonly referred to in the literature as the
open mapping theorem for holomorphic functions (see e.g [85]). It is important to mention here that this
result can be generalized also in the case of holomorphic functions from domains in Cn into C, respectively
in the case of locally biholomoprhic mappings from domains in Cn into Cn for n ≥ 2 (see e.g. [119]).

Theorem 1.1.2 (Open mapping theorem). Let f ∈ H(D), where D ⊆ C is a domain and f is
nonconstant. Then f(D) ⊆ C is a domain.

Another important result related to holomorphic functions of one complex variable is the maximum
(minimum) modulus theorem (see e.g. [77], [85]).
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1.2. The Carathéodory family in C

Theorem 1.1.3 (Maximum/minimum modulus theorem). Let D ⊆ C be a domain and f ∈ H(D).
If ∃z0 ∈ D such that

|f(z0)| = max
{
|f(z)| : z ∈ D

}
or |f(z0)| = min

{
|f(z)| : z ∈ D

}
,

then f is constant on D.

The first important application of Theorem 1.1.3 is commonly referred to in the literature as the
Schwarz’s Lemma (see e.g. [85]) which says that:

Lemma 1.1.4 (Schwarz’s lemma). Let f ∈ H(U) satisfy f(0) = 0 and |f(z)| < 1, for z ∈ U. Then
|f(z)| ≤ |z|, for z ∈ U and |f ′(0)| ≤ 1. Moreover, if ∃z0 ∈ U \ {0} such that |f(z0)| = |z0| or if |f ′(0)| = 1,
then ∃a ∈ C with |a| = 1 such that f(z) = az, for z ∈ U.

1.2 The Carathéodory family in C

The second section of this chapter is devoted to the Carathéodory family in C. We describe here the
concept of subordination in C together with some well-known results related to holomorphic functions
with positive real part. The primary references used in this section are [102] and [114].

Definition 1.2.1. Let f, g ∈ H(U). Then f is subordinate to g and we write f ≺ g if ∃v ∈ H(U) with
v(0) = 0 and |v(z)| < 1, z ∈ U (i.e. Schwarz function) such that f = g ◦ v on U.

In order to describe the subordination relation between two holomorphic functions we can use the
following characterization result (see e.g. [102], [114]):

Theorem 1.2.2. Let f, g ∈ H(U) be such that g is injective on U. Then f ≺ g is equivalent to the fact
that f(0) = g(0) and f(U) ⊆ g(U).

A well-known family of holomorphic functions (that plays an important role in the characterization of
univalent functions and also in the theory of Loewner chains on U) is the Carathéodory family P (see e.g.
[45], [102], [114]). Recall that the Carathéodory class is defined by

P =
{
p ∈ H(U) : p(0) = 1,Rep(z) > 0, z ∈ U

}
and contains all holomorphic functions with positive real part on U.

Remark 1.2.3. A simple characterization of the Carathéodory class shows that p ∈ P if and only if ∃ϕ a
Schwarz function with p(z) = 1+ϕ(z)

1−ϕ(z) , for all z ∈ U (see e.g. [114]).

Another important characterization of the functions from class P is given by the Herglotz representation
formula. This result consists in an integral representation of the Carathéodory family on U. Based on this
result, we obtain the growth and distortion theorem for the Carathéodory class (see e.g. [102]).

Theorem 1.2.4 (Growth and distortion theorem). Let p ∈ P. Then

1− |z|
1 + |z|

≤ Rep(z) ≤ |p(z)| ≤ 1 + |z|
1− |z|

(1.2.1)

and

|p′(z)| ≤ 2Rep(z)

1− |z|2
≤ 2

(1− |z|)2
, z ∈ U. (1.2.2)

These estimates are sharp and the extremal function is p : U → C given by p(z) = 1+λz
1−λz , for all z ∈ U and

λ ∈ C with |λ| = 1.

The Herglotz representation formula can be used in various ways in the study of univalent functions
(see e.g. [19], [45], [102], [114]). One of these applications is to prove the sharp coefficients bounds for the
class P (see e.g. [102]).
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1.3. General results regarding univalent functions in C

Proposition 1.2.5. Let p ∈ P be such that p(z) = 1 + p1z + p2z
2 + ...+ pnz

n + ..., for z ∈ U. Then

|pn| ≤ 2, n ≥ 1. (1.2.3)

This result is sharp and the equality holds for the extremal function p(z) = 1+λz
1−λz , where z ∈ U and λ ∈ C

with |λ| = 1.

The final important property of the Carthéodory class that is presented here is related to its compactness
as a subset of H(U) (see [45], [102]).

Theorem 1.2.6. The Carathéodory family P ⊆ H(U) is compact.

1.3 General results regarding univalent functions in C

Section 1.3 is focused on the idea of univalent function in C. We include here well-known results in this area
(univalence, locally univalence, conformal equivalence and other notions). In the final part of the section
we include a very powerful result in this setting: the Riemann mapping theorem. The main references used
in this section are [19], [29], [45], [85], [77], [114].

Definition 1.3.1. Let D ⊆ C be a domain and let f : D → C. Then f is univalent on D if f is holomorphic
and injective on D. We denote by

Hu(D) =
{
f : D → C : f is univalent on D

}
the set of all univalent functions on D.

Definition 1.3.2. Let D ⊆ C be a domain and let f ∈ H(D). Then f is called locally univalent on D if
for each z ∈ D, there exists r > 0 such that f

∣∣
U(z,r)

is univalent.

For more details about the notions of univalence and locally univalence presented in the previous two
definitions, one may consult [85], [114].

A necessary condition of univalence is presented in the following result (see e.g. [77], [85], [114]).

Theorem 1.3.3. Let D ⊆ C and f ∈ Hu(D). Then f ′ ̸≡ 0 on D.

As we said above, the previous result does not ensure a sufficient condition of univalence. To solve
this problem, Alexander [1], Noshiro [108], Warschawski [135] and Wolff [136] have obtained an improved
version of the condition in Theorem 1.3.3 on particular domains (i.e. convex domains). Recall that a domain
D ⊆ C is convex if for any two points z1, z2 ∈ D, the entire segment [z1, z2] lies in D, i.e. (1−t)z1+tz2 ∈ D,
for all t ∈ [0, 1].

Theorem 1.3.4. Let f ∈ H(D), where D is a convex domain in C. If Ref ′(z) > 0, for all z ∈ D, then
f ∈ Hu(D).

Probably the most important example of univalent function on the unit disc U is the Koebe function
presented below (see e.g. [19], [45]):

Example 1.3.5. Let f : U → C be defined by f(z) = z
(1−z)2

, for all z ∈ U. Then f(U) = C \
{
w ∈ C :

Rew ≤ −1/4, Imw = 0
}
and f ∈ Hu(U). The Koebe function plays an important role in the study of the

extremal problems.

Univalent functions have also the property that they preserve the simply connected domains in C (see
e.g. [77], [85]) as we can see in the following result:

Theorem 1.3.6. Let D ⊆ C be a simply connected domain and f ∈ Hu(D). Then f(D) is a simply
connected domain in C.
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1.4. Families of univalent functions on the unit disc U

In the final part of this section we revisit the concept of conformal equivalence of domains in C and
the fundamental result in this context, the Riemann mapping theorem (see e.g. [19], [77], [85], [114]).

Definition 1.3.7. Let D1, D2 ⊆ C be two domains.

a) The domains D1 and D2 are conformally equivalent if ∃f : D1 → D2 such that f ∈ Hu(D1) and
f(D1) = D2.

b) The function f : D1 → D2 with the previous properties is called a conformal mapping between D1

and D2.

Finally, we have all the necessary notions and results to present the fundamental result of univalent
functions in C, namely the Riemann mapping theorem (see [45], [77]). It is very important to mention here
that this result is not true in Cn for n ≥ 2 (see e.g. [107], [119]).

Theorem 1.3.8 (Riemann mapping theorem). Let D ⊊ C be a simply connected domain. Then D and
U are conformlly equivalent. In addition, if z0 ∈ D is given, then ∃f : D → U unique conformal mapping
such that f(z0) = 0 and f ′(z0) > 0.

1.4 Families of univalent functions on the unit disc U

In this section we present some important families of univalent functions on the unit disc U. First, we
shortly describe the class S of normalized univalent functions on U and then we continue with subclasses
of univalent functions that have special geometric properties: the family S∗ of normalized starlike (with
respect to zero) functions, respectively the family K of normalized convex functions on U. We include also
results about the families of starlike and convex functions of order α ∈ [0, 1), the class of almost starlike
functions of order α and the class of spirallike functions of type δ ∈

(
−π/2, π/2

)
. We focus our attention on

the analytical and geometric characterizations of the previous families of functions, growth and distortion
theorems and coefficient estimations. Among the references used here, we mention [19], [45], [102], [114].
It is important to mention here that §1.4.3 and §1.4.6 contains new results obtained by the author in [51].

1.4.1 Normalized univalent functions

The first class of univalent function that is considered in this section is the class S of normalized univalent
functions on U. For this family of functions we present coefficient bounds, growth and distortion theorems.
For more details about class S, one may consult [19], [45], [29], [85], [102], [114]. Recall that the family of
all normalized univalent functions on the unit disc U is defined by

S =
{
f ∈ Hu(U) : f(0) = f ′(0)− 1 = 0

}
.

It is well-known that every function f ∈ S admits a Taylor series expansion of the form

f(z) = z + a2z
2 + a3z

3 + ...+ anz
n + ..., (1.4.1)

for all z ∈ U. It is clear that the coefficients a0 = 0 and a1 = 1 can be inserted in the previous sum without
inducing any change.

Next we present two well-known, but important examples of functions that belongs to class S (see e.g.
[19], [85]).

Example 1.4.1. The Koebe function presented in Example 1.3.5 belongs to the class S, since f ∈ Hu(U),
f(0) = 0 and f ′(0) = 1. Also, fθ ∈ S, where fθ is the generalization of the Koebe function.

It is known that if we consider f ∈ S of the form (1.4.1), then |a2| ≤ 2 and the equality is obtained if
and only if f is a rotation of the Koebe function. This result is due to L. Bieberbach (see [4]). Starting
from the above estimation, Bieberbach formulated in 1916 the following conjecture (see [4]):
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1.4. Families of univalent functions on the unit disc U

Theorem 1.4.2 (Bieberbach’s conjecture). Let f ∈ S be of the form (1.4.1). Then |an| ≤ n, for all
n ≥ 2. These estimations are exact and the equality is obtained if and only if f is a rotation of the Koebe
function.

The Bieberbach’s conjecture was solved by L. de Branges in 1985 (see [18]). Until this year a lot of
partial results were obtained by different authors (for details, one may consult [12], [19], [23], [114]).

Another important result related to the class S is the growth and distortion theorem (see e.g. [4], [45],
[85]).

Theorem 1.4.3. Let f ∈ S. Then

|z|
(1 + |z|)2

≤ |f(z)| ≤ |z|
(1− |z|)2

, (1.4.2)

1− |z|
(1 + |z|)3

≤ |f ′(z)| ≤ 1 + |z|
(1− |z|)3

(1.4.3)

and
1− |z|
1 + |z|

≤
∣∣∣∣zf ′(z)

f(z)

∣∣∣∣ ≤ 1 + |z|
1− |z|

, (1.4.4)

for all z ∈ U. These estimates are sharp and the equality is obtained if and only if f is a rotation of the
Koebe function.

We end this first part of our section with a result related to the compactness of the class S, established
through the upper bounds from the estimates (1.4.2). For details, one may consult [45], [102].

Theorem 1.4.4. The class S ⊆ H(U) is compact.

1.4.2 Starlike functions

Among the special subclasses of the class S is the family S∗ of normalized starlike functions on U. In
Subsection 1.4.2 we present results related to the analytical characterization of starlikeness, coefficient
estimates, distortion and growth results. Other properties of starlike functions on the unit disc may be
found in [19], [29], [45], [102], [114].

First, let us remember the definition of a starlike domain with respect to a given point in C, respectively
of a starlike function on U.

Definition 1.4.5. Let D ⊆ C be a domain and let z0 ∈ D. Then D is starlike with respect to z0 if the
closed line segment [z0, z] lies entirely in D, ∀z ∈ D.

Taking into account the previous definition, we recall the concept of starlike function on U. This
definition was presented by Alexander in [1].

Definition 1.4.6. Let f ∈ H(U) be such that f(0) = 0. Then f is starlike on the unit disc U if f ∈ Hu(U)
and f(U) is a starlike (with respect to 0) domain in C. We denote by S∗ the family of normalized starlike
functions on U.

The next important result in this context is the analytical characterization of starlikeness (see e.g. [19],
[45], [102]). This result plays a very important role in the geometric function theory in C.

Theorem 1.4.7. Let f ∈ H(U) satisfy f(0) = 0. Then f ∈ S∗ if and only if f ′(0) ̸= 0 and

Re

ï
zf ′(z)

f(z)

ò
> 0, z ∈ U.

It is clear that S∗ ⊆ S and fθ ∈ S∗, for all θ ∈ R. Hence, the growth and distortion result for the
class S (see Theorem 1.4.3) remains true and sharp also for the class S∗ (see e.g. [95], [102]). As a direct
consequence we obtain that the family S∗ is a compact subset of H(U) (see e.g. [45], [95]).
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1.4. Families of univalent functions on the unit disc U

1.4.3 Starlike functions of order α

The next important subclass of S that is studied in this section is the family of normalized starlike functions
of order α ∈ [0, 1) on U. The idea of starlikeness of order α was described by M.S. Robertson in [120]. For
details, one may consult also [19], [29], [45], [102].

Definition 1.4.8. Let 0 ≤ α < 1 and f ∈ H(U). The function f : U → C is starlike of order α if f(0) = 0,

f ′(0) ̸= 0 and Re
[ zf ′(z)

f(z)

]
> α, for all z ∈ U. In this thesis, we denote by

S∗(α) =

ß
f ∈ H0(U) : Re

ï
zf ′(z)

f(z)

ò
> α, z ∈ U

™
the family of normalized starlike functions of order α on U.

It is clear that S∗(α) ⊆ S for every α ∈ [0, 1) and S∗(0) = S∗.
Based on the coefficient bounds for the class S∗(α), we can obtain a generalized distortion theorem.

This result was obtained by Grigoriciuc in [51].

Theorem 1.4.9. Let α ∈ [0, 1) and f ∈ S∗(α). Then

|f (k)(z)| ≤
B(k, α)

[
k + |z| · (1− 2α)

]
(1− |z|)k+2−2α

, z ∈ U, k ≥ 1, (1.4.5)

where

B(k, α) =


1

1− 2α

k∏
m=1

(m− 2α), α ̸= 1

2

(k − 1)!, α =
1

2
.

These bounds are sharp.

1.4.4 Almost starlike functions of order α

The notion of almost starlikeness of order α was defined by Feng (see [22]) in the case of complex Banach
spaces. We present here the family of almost starlike functions of order α ∈ [0, 1) on the unit disc U in C.

Definition 1.4.10. Let α ∈ [0, 1) and let f ∈ H0(U). Then f is almost starlike of order α if

Re

ï
f(z)

zf ′(z)

ò
> α, z ∈ U. (1.4.6)

1.4.5 Convex functions

In the following subsection we briefly describe the class K of normalized convex functions on U. Starting
with E. Study who introduced this notion in 1913, many other authors contributed to the study of family
K (see e.g. T. Gronwall [56] and K. Loewner [95]). Here we present the analytical characterization of
convexity on U, coefficients bounds and growth and distortion results. Two other important results that
establish the connection between classes K and S∗ are presented here, namely the Alexander’s duality
theorem and the Marx-Strohhäcker theorem. For details an other results related to convex functions one
may consult [19], [29], [45], [102], [114].

Definition 1.4.11. Let D ⊆ C be a domain and let z0 ∈ D. Then D is convex if for all z1, z2 ∈ D, the
segment [z1, z2] ⊆ D, i.e. (1− t)z1 + tz2 ∈ D, for every t ∈ [0, 1].

Definition 1.4.12. Let f ∈ H(U). Then f is convex on the unit disc U if f ∈ Hu(U) and f(U) is a convex
domain in C. We denote by K the family of normalized convex functions on U.
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1.4. Families of univalent functions on the unit disc U

It is clear that K and S∗ are both subsets of S. Moreover, we have that K ⊂ S∗ ⊂ S (see e.g. [19],
[29], [45]).

In order to describe a function from class K we can use the following analytical characterization of
convexity (see e.g. [19], [29], [45], [102]):

Theorem 1.4.13. Let f ∈ H(U). Then f ∈ K if and only if f ′(0) ̸= 0 and Re
[
1 + zf ′′(z)

f ′(z)

]
> 0, for all

z ∈ U.

The following growth and distortion result is true for the family K (see e.g. [45], [56], [95]):

Theorem 1.4.14. Let f ∈ K. Then

|z|
1 + |z|

≤ |f(z)| ≤ |z|
1− |z|

(1.4.7)

and
1

(1 + |z|)2
≤ |f ′(z)| ≤ 1

(1− |z|)2
, z ∈ U. (1.4.8)

These estimates are sharp and the equality is obtained for f(z) = z
1−λz , where z ∈ U and λ ∈ C with

|λ| = 1.

According to the previous result we deduce that the family K is locally uniformly bounded. Hence, we
obtain that K is compact, since the class is also closed (see e.g. [45], [102]). Another important result is
given by the following coefficient estimations for the class K (see e.g. [95]).

Proposition 1.4.15. Let f ∈ K be of the form (1.4.1). Then |an| ≤ 1 for all n ≥ 2. The estimations are
sharp and the equality is obtained for f(z) = z

1−λz , where z ∈ U and λ ∈ C with |λ| = 1.

The next result is due to Alexander [1] and describes the relation between the families S∗ and K (see
e.g. [102]). Note that in the case of normalized convex mappings on the Euclidean unit ball Bn in Cn this
result is not true (see e.g. [45], [121], [128]).

Theorem 1.4.16 (Alexander’s duality theorem). Let f ∈ H(U) be a function with the property
f(0) = 0. Then f ∈ K if and only if F ∈ S∗, where F (z) = zf ′(z), for z ∈ U.

1.4.6 Convex functions of order α

Closely related to the class K is the family of normalized convex functions of order α, with α ∈ [0, 1). This
notion was also introduced by M.S. Robertson in [120]. For details, one may consult also [19], [29], [45],
[102].

Definition 1.4.17. Let 0 ≤ α < 1 and f ∈ H(U). The function f : U → C is convex of order α if f ′(0) ̸= 0

and Re
[
1 + zf ′′(z)

f ′(z)

]
> α, for all z ∈ U. In this thesis, we denote by

K(α) =

ß
f ∈ H0(U) : Re

ï
1 +

zf ′′(z)

f ′(z)

ò
> α, z ∈ U

™
the family of normalized convex functions of order α on U.

It is clear that K(α) ⊆ S, for every α ∈ [0, 1) and K(0) = K. Moreover, an Alexander type theorem
holds for the classes K(α) and S∗(α), for 0 ≤ α < 1 (see [45]).

For every function that belong to the class K(α) the following coefficient bounds were obtained (see
e.g. [29], [120]):

Proposition 1.4.18. Let α ∈ [0, 1) and f ∈ K(α). Then

|an| ≤
1

n!

n∏
m=2

(m− 2α), n ≥ 2. (1.4.9)

These estimates are sharp.
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1.5. Functions whose derivative has positive real part

In view of Proposition 1.4.18 we obtain a generalized distortion theorem for the class K(α), with
α ∈ [0, 1). This result is the analogue of Theorem 1.4.9 from the previous section and was obtained by
Grigoriciuc in [51].

Theorem 1.4.19. Let α ∈ [0, 1) and f ∈ K(α). Then

|f (k)(z)| ≤ B(k, α)

(1− |z|)k+1−2α
, z ∈ U, k ≥ 1,

where

B(k, α) =


1

1− 2α

k∏
m=1

(m− 2α), α ̸= 1

2

(k − 1)!, α =
1

2

These bounds are sharp.

1.4.7 Spirallike functions

In the last part of this section we present some general results related to spirallikeness on U. This notion
was defined by L. Špaček in 1932 (see [125]) as a generalization of starlikeness on U. For details, one may
consult also [19], [45], [102].

Definition 1.4.20. Let δ ∈ R be such that |δ| < π
2 .

a) A logarithmic δ-spiral (or δ-spiral) is a curve in C given by

s(t) = s0e
−(cos δ−i sin δ)t, t ∈ R and s0 ∈ C∗.

b) A domain D ⊆ C with 0 ∈ D is called δ-spirallike if for every point z0 ∈ D \ {0}, the arc of the
δ-spiral between z0 and the origin lies in D.

Definition 1.4.21. Let δ ∈ R be such that |δ| < π
2 and f ∈ H(U) with f(0) = 0. Then f is called

a) spirallike of type δ on the unit disc U if f ∈ Hu(U) and f(U) is a δ-spirallike domain in C;

b) spirallike if there exists δ ∈ R with |δ| < π/2 such that f is spirallike of type δ on the unit disc U.

Recall that we denote by Ŝδ the family of all normalized spirallike functions of type δ on U. It is clear that
Ŝδ ⊆ S and Ŝ0 = S∗ (see e.g. [29], [102]).

Following this, we present the analytical characterization of spirallikeness of type δ on U due to Špaček
(see [125]; see also [45], [102]):

Theorem 1.4.22. Let f ∈ H(U) satisfy f(0) = 0 and f ′(0) ̸= 0. Also let δ ∈ (−π/2, π/2). Then f ∈ Ŝδ

if and only if

Re

ï
eiδ

zf ′(z)

f(z)

ò
> 0, z ∈ U. (1.4.10)

1.5 Functions whose derivative has positive real part

Strongly related to the class S is the family R of normalized holomorphic functions whose derivative has
positive real part. In view of the result proved by Alexander, Noshiro, Warschawski and Wolff (see Theorem
1.3.4; see also [19], [77]) it follows that that every function f ∈ R is also univalent on U.

Hence, R is a subclass of the class S (see e.g. [19], [96] or [102]) and it is usually called the Noshiro-
Warschawski class. We present in this section some classical results related to the class R and extensions
of this class (see e.g. [89], [90], [96], [102]), as well as original results obtained by Grigoriciuc in [50].
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1.5.1 General results related to the class R

First, recall that we denote by

R =
{
f ∈ H0(U) : Ref ′(z) > 0, z ∈ U

}
the family of normalized holomorphic functions whose derivative has positive real part (see e.g. [29], [45]
or [102]). As we already mention above, it is known that R ⊆ S (see e.g. [19], [96] or [102]).

Taking into account the definition of class P it easy to observe that f ∈ R if and only if f ′ ∈ P (see
e.g. [102]). This is also equivalent with the property that | arg f ′(z)| < π

2 , for every z ∈ U.

Example 1.5.1. Let f : U → C be given by

f(z) = −z − 2

λ
log(1− λz), (1.5.1)

for all z ∈ U and λ ∈ C with |λ| = 1. Then f ∈ R.

The first result presented here is regarding to the growth and distortion theorem and the coefficient
estimations for the class R (see e.g. [96], [102] or [129]).

Proposition 1.5.2. Let f ∈ R. Then

|an| ≤
2

n
, n ≥ 2, (1.5.2)

1− |z|
1 + |z|

≤ Ref ′(z) ≤ |f ′(z)| ≤ 1 + |z|
1− |z|

(1.5.3)

and
−|z|+ 2 log(1 + |z|) ≤ |f(z)| ≤ −|z| − 2 log(1− |z|), (1.5.4)

for all z ∈ U. These estimates are exact and the equality is obtained for the function given by (1.5.1).

Starting from the previous result, we can prove a general distortion theorem for the class R. This result
was obtained by Grigoriciuc in [50].

Theorem 1.5.3. If f ∈ R, then

|f (k)(z)| ≤ 2(k − 1)!

(1− |z|)k
, z ∈ U, k ≥ 2.

The estimates are sharp and the equality is obtained for the function given by (1.5.1).

1.5.2 The class R(α)

A first generalization of the class R was considered by Krishna, RamReddy and Venkateswarlu in [89] and
[90]. For a real parameter α ∈ [0, 1), they denoted by

R(α) =
{
f ∈ H0(U) : Ref ′(z) > α, z ∈ U

}
the class of normalized holomorphic functions whose derivative has positive real part of order α. This
family of functions was studied also by Grigoriciuc in [50].

Remark 1.5.4. It is easy to prove that f belongs to the class R(α) if and only if g ∈ P, where g : U → C
is given by g(z) = 1

1−α

(
f ′(z)− α

)
, for all z ∈ U.

Based on the previous equivalence between R(α) and P, we can obtain the following example:

Example 1.5.5. Let α ∈ [0, 1) and let f : U → C be given by

f(z) =
1

λ

ï
(2α− 1)λz − 2(1− α) log(1− λz)

ò
, (1.5.5)

where λ ∈ C such that |λ| = 1. Then f ∈ R(α).

11



1.5. Functions whose derivative has positive real part

Next we present the coefficient bounds for the class R(α) obtained by Grigoriciuc in [50] (see e.g. [90]
for a different proof of this result).

Proposition 1.5.6. Let α ∈ [0, 1) and f ∈ R(α). Then |an| ≤ 2(1−α)
n , for all n ≥ 2. These estimates are

sharp and the equality is obtained for the function given by (1.5.5).

For the class R(α) we can obtain also a growth and distortion result. This result is original and was
obtained by Grigoriciuc in [50].

Theorem 1.5.7. Let α ∈ [0, 1) and f ∈ R(α). Then

|f(z)| ≤ (2α− 1)|z|+ 2(α− 1) log(1− |z|) (1.5.6)

and
|f(z)| ≥ −|z| − 2(α− 1) log(1 + |z|), z ∈ U. (1.5.7)

Moreover,
1− 2α− |z|

1 + |z|
≤ |f ′(z)| ≤ 1 + (1− 2α)|z|

1− |z|
, z ∈ U. (1.5.8)

These estimates are sharp and the extremal function is given by (1.5.5).

1.5.3 The class Rp

In the third part of this section we consider another extension of the class R, namely the class

Rp =
{
f ∈ H0(U) : f (p)(0) = 1,Ref (p)(z) > 0, z ∈ U

}
, p ≥ 1,

of normalized holomorphic functions whose p-th derivative has positive real part. The original results
presented in this part have been obtained in [50].

It is important to mention here that the connection with the Carathéodory class P is preserved. Indeed,
if p ∈ N∗ = {1, 2, ...} is arbitrary fixed, then f ∈ Rp if and only if f (p) ∈ P. Hence, we can study the
properties of the class Rp in terms of the Carathéodory class. It is clear that R1 = R.

The following statement due to Grigoriciuc (see [50]) presents the coefficient bounds for the class Rp

and is a generalization of Proposition 1.5.6.

Proposition 1.5.8. Let p ∈ N∗ and f ∈ Rp be of the form f(z) = z +
∑∞

n=2 anz
n, for z ∈ U. Then

|an| ≤
2(n− p)!

n!
, n ≥ p+ 1. (1.5.9)

Next, we present a general distortion theorem obtained by Grigoriciuc in [50].

Theorem 1.5.9. Let p ∈ N∗ and f ∈ Rp be of the form f(z) = z +
∑∞

n=2 anz
n, for z ∈ U. Then

|f (k)(z)| ≤ 2(k − p)!

(1− |z|)k−p+1
, z ∈ U, k ≥ p. (1.5.10)

1.5.4 The class Rp(α)

The last part of this section contains a generalization of the previous class (according to the model presented
in [89] and [90]) introduced by Grigoriciuc in [50]. For α ∈ [0, 1) and p ∈ N∗ we denote by

Rp(α) =
{
f ∈ H0(U) : f (p)(0) = 1,Ref (p)(z) > α, z ∈ U

}
.

the class of normalized holomorphic functions whose p-th derivative has positive real part of order α. The
class Rp(α) was introduced in order to generalize the class Rp described in the previous subsection. The
idea of considering a parameter α ∈ [0, 1) is taken from the extensions that Robertson made in [120] for
starlike, respectively convex functions.

In the light of the results presented previously, we have that f ∈ Rp(α) if and only if g ∈ P, where

g : U → C is given by g(z) = f (p)(z)−α
1−α , for all z ∈ U.

It is important that the general class Rp(α) can be described in terms of Carathéodory functions, i.e.
that belong the class P and hence, we can obtain coefficient bounds and a distortion result for the class
Rp(α).
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1.6. The theory of Loewner chains in C

1.6 The theory of Loewner chains in C

In the sixth section we include a short introduction in the theory of Loewner chains in C. We recall some
well-known definitions (e.g. univalent subordination chain, Loewner chain) and some important results
related to them. In the second part of this section we refer to the analytical characterization of some
subclasses of S via Loewner chains and finally, we present the notion of parametric representation on U.
The main references used in this section are [45], [102], [113], [114]. More details about the theory of
Loewner chains can be found in [12], [16], [17], [19], [23].

1.6.1 General results related to Loewner chains in C

We start this last section by presenting preliminary notions and results related to the theory of Loewner
chains in U (see e.g. [45], [102], [113], [114]).

Definition 1.6.1. Let f = f(z, t) : U× [0,∞) → C be a function.

� If the conditions f(·, t) ∈ Hu(U), f(0, t) = 0, for t ≥ 0 and f(·, s) ≺ f(·, t), for 0 ≤ s ≤ t < ∞ are
fulfilled, then f(z, t) is a univalent subordination chain on U.

� If f(z, t) satisfies also the property that f ′(0, t) = et, for all t ≥ 0, then f is called a Loewner chain
(normalized univalent subordination chain) on U.

Note that we use the notation f ′(z, t) for the partial derivative ∂f
∂z (z, t).

Remark 1.6.2. Let f(z, t) be a Loewner chain. Then ∃v = v(z, s, t) a unique Schwarz function associated
to f(z, t) such that

f(z, s) = f
(
v(z, s, t), t

)
, ∀z ∈ U, 0 ≤ s ≤ t < ∞, (1.6.1)

called transition function of f (see e.g. [45]).

Based on the normalization of f(z, t), we easily obtain that v′(0, s, t) = es−t, for all 0 ≤ s ≤ t < ∞.
From (1.6.1), it follows that v = v(z, s, t) satisfies the semigroup property

v(z, s, T ) = v
(
v(z, s, t), t, T

)
, (1.6.2)

for all z ∈ U and 0 ≤ s ≤ t ≤ T < ∞. Moreover, the function |v(z, s, t)| is decreasing with respect to
t ∈ [s,∞), for all z ∈ U and s ≥ 0.

Probably one of the key results in the theory of Loewner chains is related to the connection between
normalized univalent functions and Loewner chains. This result is due to Pommerenke (see [114]) and says
that

Theorem 1.6.3 (Pommerenke’s theorem). Let f ∈ S and let f(·, t) be a Loewner chain on U, for all
t ≥ 0. Then f(·, 0) = f .

Next we present some classical, but very significant results related to the theory of Loewner chains and
the Loewner differential equation on U (see e.g. [45], [114]). The first theorem was proved by Pommerenke
(see [114]) and shows a method that generates Loewner chains (see e.g. [45]).

Theorem 1.6.4. Assume that p = p(z, t) : U× [0,∞) → C satisfy the properties: p(·, t) belongs to the class
P, for all non-negative numbers t and for any z ∈ U, p(z, ·) belongs to the class of measurable functions
on [0,∞). Let also 

∂v

∂t
= −vp(v, t), a.e. t ≥ s

v(z, s, s) = z
(1.6.3)

be an initial value problem. Then ∀z ∈ U and s ≥ 0, the problem (1.6.3) is uniquely solvable and its
solution v(z, s, ·) is locally absolutely continuous with v′(0, s, t) = es−t. Morevoer, if s ≥ 0 and z ∈ U, then
v(z, s, ·) belongs to the class of Lipschitz continuous functions on [s,∞) locally uniformly with respect to z
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1.6. The theory of Loewner chains in C

and v(·, s, t) belongs to the class of univalent Schwarz functions for every t ≥ s. In addition, for all s ≥ 0,
the limit limt→∞ etv(z, s, t) = f(z, s) exists locally uniformly on U and f(z, s) is a Loewner chain which
satisfies the equation

∂f

∂t
(z, t) = zp(z, t)f ′(z, t), a.e. t ≥ 0, ∀z ∈ U. (1.6.4)

Recall that the differential equation (1.6.4) is known as the Loewner(-Kufarev) differential equation
(see e.g. [45], [114]).

The next result is a characterization of the Loewner chains and was obtained by Pommerenke in [113]
(see also [45], [114]).

Theorem 1.6.5. Let f : U × [0,∞) → C be such that f(0, t) = 0 and f ′(0, t) = et, for all t ≥ 0. Then
f(z, t) is a Loewner chain if and only if

a) ∃ρ ∈ (0, 1) and α > 0 such that f(·, t) belongs to the family H(Uρ) for every t ≥ 0, f(z, ·) belongs to
the class of locally absolutely continuous functions on [0,∞) locally uniformly with respect to z ∈ Uρ

and |f(z, t)| ≤ αet, for all z ∈ Uρ and t ≥ 0.

b) ∃p = p(z, t) such that p(·, t) belongs to the class P for each t ≥ 0, p(z, ·) belongs to the family of
measurable functions on [0,∞) for each z ∈ U and for almost every t ≥ 0, we have that

∂f

∂t
(z, t) = zp(z, t)f ′(z, t), z ∈ Uρ.

1.6.2 Loewner chains and univalent functions in C

We end this section by showing how the theory of Loewner chains can be used in the characterization
of the geometric properties of the univalent functions (see e.g. [45], [114], [137]). First, we present the
characterization of spirallikeness (in particular, starlikeness) via Loewner chains (see e.g. [45], [114]).

Theorem 1.6.6. Let f ∈ H0(U), δ ∈ R with |δ| < π
2 and α = tan δ. Then f ∈ Ŝδ if and only f(z, t) =

e(1−iα)tf(eiαtz) is a Loewner chain, for all z ∈ U and t ≥ 0. In particular, for δ = 0, we obtain that f ∈ S∗

if and only if f(z, t) = etf(z), for all z ∈ U and t ≥ 0.

Next, we mention the characterization of almost starlikeness of order α via Loewner chains (see e.g.
[137]).

Theorem 1.6.7. Let α ∈ [0, 1) and f ∈ H0(U). Then f is almost starlike of order α if and only if

f(z, t) = e
t

1−α f
(
e

αt
α−1 z

)
is a Loewner chain, for all z ∈ U and t ≥ 0.

Finally, we can also obtain a characterization of convexity through Loewner chains (see e.g. [45], [114]).

Theorem 1.6.8. Let f ∈ H0(U). Then f ∈ K if and only if f(z, t) = f(z) + (et − 1)zf ′(z) is a Loewner
chain, for all z ∈ U and t ≥ 0.

1.6.3 Parametric representation on U

In this subsection we present the notion of parametric representation on U (see e.g. [45], [114]). Since
every function in the class S can be seen as the first element of a Loewner chain (see Theorem 1.6.3; see
also [45], [114]), it is clear that it has parametric representation.

Definition 1.6.9. A function f ∈ H0(U) has parametric representation on U if ∃p : U× [0,∞) → C such
that p(·, t) belongs to the class P, for t ≥ 0, p(z, ·) belongs to the family of measurable functions on [0,∞),
for z ∈ U and the limit limt→∞ etv(z, t) = f(z) is locally uniformly on U, where v(z, ·) is the solution of
the problem (1.6.3) for s = 0 with the property that v is unique locally absolutely continuous on [0,∞).

If we denote by S0(U) the family of mappings which have parametric representation, then S0(U) = S
based on Theorem 1.6.3 (see e.g. [45], [114]). However, in higher dimensions, this result is not true (see
e.g. [32]) as we shall see in Chapter 3.
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Chapter 2

New subclasses of univalent functions on
U

The main idea of the second chapter consists in the study of a new differential operator and two new
subclasses of univalent functions on the unit disc U defined with this operator. This chapter is made up
entirely of original results obtained by the author in [54].

In the first section we present the differential operator Gk defined on the family H0(U) of normalized
holomorphic functions on U. Using the operator Gk we can construct some particular subclasses of univalent
functions on the unit disc U that are strongly related to the families S∗, respectively K, as we can see in
§2.2. Several properties of the operator Gk are studied in this section, e.g the linearity of Gk, convolution
product and a sufficient condition of univalence for Gk (see Propositions 2.1.3 – 2.1.6). It is important to
mention here that the differential operator Gk is different from the Sălăgean differential operator Dn (see
Remark 2.2.6; see also [124]). Another important remark is that the operator Gk can be extended in Cn

(see Chapter 4; see also [53]).
Using the differential operator Gk mentioned above, we can construct some particular families of uni-

valent functions on the unit disc U in C. These subclasses, denoted here by E∗
k(α), respectively Ek(α),

where α ∈ [0, 1), are related to the classes of starlike, respectively convex functions of order α on U. An
important remark is that for k = 0 we obtain E∗

0(α) = S∗(α) and E0(α) = K(α), so we can start our study
of these new subclasses in terms of the well-known families S∗(α) and K(α) introduced by Robertson in
[120]. On the other hand, we have that E1 is strictly included in the family K(1/2) of convex functions of
order 1/2 (see Proposition 2.2.25) and E∗

1(α) = K(α). As we already mentioned above, the operator Gk

and the subclasses introduced in this chapter can be extended also in the case of several complex variables
(see e.g. [53]). However, in higher dimensions, some properties are different as can be seen in Chapter 4.

The second section of this chapter is dedicated to the study of subclasses Ek(α) and E∗
k(α) in C, where

k ∈ N and α ∈ [0, 1). Together with general properties of these subclasses (growth and distortion theorems,
coefficient estimations, analytical characterization, connection with Loewner chains presented in Theorems
2.2.7 – 2.2.8, 2.2.10 – 2.2.18, 2.2.31 – 2.2.32 and others), we also study particular cases (e.g. k = 1 and α = 0)
that are of interest being in close connection with the classes of univalent functions mentioned in the first
chapter (see e.g. Propositions 2.2.25 and 2.2.26 in §2.2.2). All the results in this chapter are original and
were obtained by the author in [54]. Other important bibliographic sources used to prepare this chapter
are [19], [29], [45], [85].

2.1 The differential operator Gk

In this section we introduce the differential operator Gk defined on the family H0(U) of normalized holo-
morphic functions on U. Using the operator Gk we can construct some particular subclasses of univalent
functions on the unit disc U that are strongly related to the families S∗, respectively K, as we can see in
the next section.

It is important to mention here that the differential operator Gk is different from the Sălăgean differential
operator Dn (see Remark 2.2.6; see also [124]). Another interesting remark is that the operator Gk can be
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2.1. The differential operator Gk

extended in the case of several complex variables (see Chapter 4; see also [53]).
For the differential operator Gk in C we present some properties related to the linearity and univalence

on the unit disc U and we discuss about how the convolution product is preserved under the action of the
operator Gk. Note that the original results discussed in this section were derived by the author in [54].

Definition 2.1.1. Let k ∈ N = {0, 1, 2, ...} and let Gk : H0(U) → H(U) be the differential operator defined
on the class of normalized holomorphic functions on U, as follows

(Gkf)(z) =

®
zkf (k)(z) + ak−1z

k−1 + ...+ a2z
2 + a1z + a0, k ≥ 1

f(z) k = 0,
(2.1.1)

for all f ∈ H0(U) and z ∈ U. Notice that, for k ≥ 1, a0, ..., ak−1 are the first k coefficients from the Taylor
series expansion of the function f ∈ H0(U).

Remark 2.1.2. In view of the above definition, it is easy to see that the operator G0 (of order 0) is the
identity operator, i.e. G0f = f . Another particular form of the operator Gk is for k = 1 (of order 1). In
this case, (G1f)(z) = zf ′(z), for z ∈ U.

The connection between two differential operators of consecutive orders k − 1, respectively k, where
k ∈ N with k ≥ 1, is given in the following result (see [54])

Proposition 2.1.3. Let f ∈ H0(U). Then for any k ∈ N∗ = {1, 2, ...} the following relation holds

(Gkf)(z) = z(Gk−1f)
′(z)− (k − 1)(Gk−1f)(z) +

k−1∑
n=0

(k − n)anz
n, z ∈ U. (2.1.2)

Proposition 2.1.4. Let k ∈ N, α, β ∈ R and f, g ∈ H0(U). Then

Gk(αf + βg) = αGkf + βGkg. (2.1.3)

Another property of the operator Gk is related to the Hadamard (convolution) product (for details, one
may consult [19], [29], [45]). Let f, g ∈ H0(U) be given by f(z) =

∑∞
n=0 anz

n and g(z) =
∑∞

n=0 bnz
n. We

denote by

(f ∗ g)(z) =
∞∑
n=0

anbnz
n, z ∈ U (2.1.4)

the Hadamard (convolution) product of the functions f and g on U (see e.g. [19], [29], [45]). There is a
nice connection between the convolution product of two different operators and the operator applied on a
convolution product, as follows in the next result (see [54]).

Proposition 2.1.5. Let k ∈ N and f, g ∈ H0(U). Then

1. Gk(f ∗ g) = (Gkf) ∗ g = f ∗ (Gkg);

2. (Gkf) ∗ (Gkg) = Gk(Gk(f ∗ g)).

It is important that we can prove a sufficient condition of univalence for Gk (in terms of modulus of
coefficients an), as follows

Proposition 2.1.6. Let k ∈ N and f ∈ H0(U). Also, let σk be defined by

σk =



∞∑
n=2

n · n!
(n− k)!

|an|, k ≤ 2

k−1∑
n=2

n|an|+
∞∑
n=k

n · n!
(n− k)!

|an|, k ≥ 3.

(2.1.5)

If σk ≤ 1, then Gkf is univalent on U. In particular, Gkf ∈ S.

Remark 2.1.7. In particular, for k = 0, we obtain the well-known univalence condition for a holomorphic
function on U (see e.g. [45, Exercise 1.1.4]): if

∑∞
n=2 n|an| ≤ 1, then f is univalent on U.
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2.2 Subclasses of univalent functions

Using the differential operator Gk defined above, we can construct some particular subclasses of univalent
functions on the unit disc U in C. These subclasses, denoted here by E∗

k(α), respectively Ek(α), where
α ∈ [0, 1), are related to the classes of starlike, respectively convex functions of order α on U. An important
remark is that for k = 0 we obtain E∗

0(α) = S∗(α) and E0(α) = K(α), so we can start our study of these
new subclasses in terms of the well-known families S∗(α) and K(α) introduced by Robertson in [120]. On
the other hand, we have that E1 is strictly included in the family K(1/2) of convex functions of order 1/2
(see Proposition 2.2.25). The original results included in this section can be found in [54].

2.2.1 The subclass E∗
k(α)

First, we present some general results about the subclass E∗
k(α) and connections of this class with another

important classes of univalent functions (for example, the class of starlike functions of order α or the class
of univalent functions introduced by Sălăgean in [124]).

Definition 2.2.1. Let α ∈ [0, 1) and k ∈ N. Let Gk be the differential operator defined by formula (2.1.1).
Then

E∗
k(α) =

{
f ∈ S : Gkf ∈ S∗(α)

}
is the family of normalized univalent functions f on the unit disc such that Gkf is starlike of order α. In
particular, we denote by E∗

k = E∗
k(0).

Remark 2.2.2. It is clear that E∗
0(α) = S∗(α) is the family of normalized starlike functions of order α on

U.

Remark 2.2.3. Taking into account the definition of starlikeness of order α (see Definition 1.4.8), we
deduce that

E∗
k(α) =

ß
f ∈ S : Re

ï
z(Gkf)

′(z)

(Gkf)(z)

ò
> α, z ∈ U

™
. (2.2.1)

Indeed, if f ∈ S, then Gkf ∈ H(U), (Gkf)(0) = 0 and (Gkf)
′(0) = 1. Together with the condition

Re
[ z(Gkf)

′(z)
(Gkf)(z)

]
> α, for all z ∈ U, all the assumptions from the definition of starlikeness of order α are

satisfied.

Proposition 2.2.4. Let α ∈ [0, 1). Then E∗
1(α) = K(α).

Remark 2.2.5. As a consequence of the previous two remarks, we obtain that E∗
0 = S∗ and E∗

1 = K.
It is important to mention here that the second equality is no longer true in the case of several complex
variables (see [53]).

Remark 2.2.6. It is very important to mention here that

E∗
0(α) = S0(α) and E∗

1(α) = S1(α),

where S0(α) and S1(α) are particular forms of the class Sn(α) introduced by Sălăgean in [124] for α ∈ [0, 1).
These equalities hold because

D0f(z) = f(z) = (G0f)(z) and D1f(z) = zf ′(z) = (G1f)(z),

for all z ∈ U, where Dn is the differential operator introduced by Sălăgean. However, for n = k ≥ 2, we
have that

E∗
k(α) ̸= Sn(α),

since the Sălăgean differential operator Dnf (see [124]) is different from the operator Gkf , for every n =
k ≥ 2. For example, if n = 2, then

D2f(z) = D(Df(z)) = z2f ′′(z) + zf ′(z) ̸= z2f ′′(z) + z = (G2f)(z),

for all z ∈ U. Hence, the common results from this thesis and the ones obtained by Sălăgean in [124] are
only for the particular cases k = 0 and k = 1 (which are already well-known, as reduces to the classes
S∗(α), respectively K(α)).

17



2.2. Subclasses of univalent functions

Using a similar argument as in Proposition 2.1.6, we can prove the following result. We mention here
that this result is a general form of the theorem proved by Merkes, Robertson and Scott in [101].

Theorem 2.2.7. Let α ∈ [0, 1), k ∈ N and f ∈ S. Also, let σk,α be defined by

σk,α =



∞∑
n=2

(n− α) · n!
(n− k)!

|an|, k ≤ 2

k−1∑
n=2

(n− α)|an|+
∞∑
n=k

(n− α) · n!
(n− k)!

|an|, k ≥ 3.

(2.2.2)

If σk,α ≤ 1− α, then f ∈ E∗
k(α).

Next, we provide some results regarding to coefficient estimates and distortion theorems for the class
E∗

k(α). For the proof of our first result, we use the coefficient estimates for the class S∗(α) given by
Robertson in [120] (see [45]). Note that this result was obtained by Grigoriciuc in [54].

Theorem 2.2.8. Let α ∈ [0, 1), k ∈ N and f ∈ E∗
k(α). Then

|an| ≤
(n− k)!

(n− 1)! · n!

n∏
m=2

(m− 2α), n ≥ k ≥ 2. (2.2.3)

Corollary 2.2.9. Let k ∈ N and f ∈ E∗
k. Then

|an| ≤
n

n(n− 1)(n− 2) · ... · (n− k + 1)
=

n · (n− k)!

n!
, n ≥ k. (2.2.4)

Following the idea presented by Duren in [19] and treated by Goodman in [29] (also by Grigoriciuc in
[51]), we can prove a general distortion result for the class E∗

k . In fact, we obtain upper bounds for the
m-th derivative of a function f ∈ E∗

k , where m ∈ N such that m ≥ k (see [54]).

Theorem 2.2.10. Let k ∈ N. If f ∈ E∗
k, then∣∣f (m)(z)
∣∣ ≤ [

m+ (1− k)|z|
]
· (m− k)!

(1− |z|)m−k+2
, (2.2.5)

for all m ≥ k and z ∈ U.

Remark 2.2.11. Obviously, for k ∈ {0, 1} we obtain the classical results proved by Goodman in [29].

Based on the previous theorem and the result proved in [51], we propose the following conjecture
(already proved for the particular cases k = 0, α = 0 and α = 1

2):

Conjecture 2.2.12. Let α ∈ [0, 1) and m, k ∈ N. If f ∈ E∗
k(α), then∣∣f (m)(z)

∣∣ ≤ [
m+ (1− k)(1− 2α)|z|

]
·B(m− k, α)

(1− |z|)m−k+2−2α
, (2.2.6)

for all m ≥ k + 1 and z ∈ U, where

B(m− k, α) =


1
m(m− k)!, α = 1

2

1

1− 2α

m−k∏
j=1

(j − 2α), α ̸= 1
2 .

(2.2.7)

Remark 2.2.13. It is clear that for k = 0, Conjecture 2.2.12 reduces to Theorem 1.4.9 (see e.g. [51]).
Moreover, for α = 0, the previous Conjecture reduces to Theorem 2.2.10 proved in this section.
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2.2. Subclasses of univalent functions

2.2.2 The subclass Ek(α)

Similarly as in the previous section, we can use the operator Gk to define the class Ek(α) of holomorphic
functions on U for which Gkf is a convex function of order α on U. In the first part, we discuss some
general results for the class Ek(α) related to coefficient estimates and general distortion results. The final
part of this section is dedicated to the particular case k = 1.

In this subsection we introduce the subclass Ek(α) together with some general properties of it. The
original results presented in this part have been obtained by Grigoriciuc in [54].

Definition 2.2.14. Let α ∈ [0, 1) and k ∈ N. Let Gk be the differential operator defined by formula (2.1.1).
Then

Ek(α) =
{
f ∈ S : Gkf ∈ K(α)

}
is the family of normalized univalent functions f on the unit disc such that Gkf is convex of order α. In
particular, we denote by Ek = Ek(0).

Remark 2.2.15. Taking into account the definition of convexity of order α (see Definition 1.4.17; see also
[45], [120], [102]), we deduce that

Ek(α) =

ß
f ∈ S : Re

ï
1 +

z(Gkf)
′′(z)

(Gkf)′(z)

ò
> α, z ∈ U

™
. (2.2.8)

It is clear that E0(α) = K(α) is the family of normalized convex functions of order α on U.

Taking into account Theorem 2.2.7, we can prove a similar criteria for the family Ek(α), as follows

Theorem 2.2.16. Let α ∈ [0, 1), k ∈ N and f ∈ S. Also, let σk,α be defined by

σk,α =



∞∑
n=2

n(n− α) · n!
(n− k)!

|an|, k ≤ 2

k−1∑
n=2

n(n− α)|an|+
∞∑
n=k

n(n− α) · n!
(n− k)!

|an|, k ≥ 3.

(2.2.9)

If σk,α ≤ 1− α, then f ∈ Ek(α).

Remark 2.2.17. If k = 0, then E0(α) = K(α) and we obtain the sufficient condition for convexity of
order α (one may consult [45] or [101]).

Similar with Theorem 2.2.8, we can obtain some bounds for the coefficients of a function f ∈ Ek(α),
as follows

Theorem 2.2.18. Let α ∈ [0, 1), k ∈ N and f ∈ Ek(α). Then

|an| ≤
(n− k)!

n! · n!

n∏
m=2

(m− 2α), n ≥ k ≥ 2. (2.2.10)

Corollary 2.2.19. Let k ∈ N and f ∈ Ek. Then

|an| ≤
1

n(n− 1)(n− 2) · ... · (n− k + 1)
=

(n− k)!

n!
, n ≥ k. (2.2.11)

Remark 2.2.20. If k = 0, then E0 = K and we obtain the classical result related to the coefficient
estimates for convex functions (see e.g. [19]).

Following the remarks presented before Theorem 2.2.10, we can prove the following general distortion
result (see [54]):
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2.2. Subclasses of univalent functions

Theorem 2.2.21. Let k ∈ N. If f ∈ Ek, then∣∣f (m)(z)
∣∣ ≤ (m− k)!

(1− |z|)m−k+1
, (2.2.12)

for all m ≥ k and z ∈ U.

Remark 2.2.22. It is clear that for k = 0 we obtain the result proved by Goodman in [29, Theorem 9,
Chapter 8].

We end the first part of this subsection with the following characterization of functions from Ek in
terms of Loewner chains. Based on the Alexander’s duality theorem (see 1.4.16) and the characterization
of starlikeness, respectively convexity with Loewner chains (see Theorems 1.6.6 and 1.6.8), we can construct
two different Loewner chains starting from the same function f ∈ Ek, as follows

Theorem 2.2.23. Let k ∈ N and f ∈ H0(U). Then f ∈ Ek if and only if

f1(z, t) = (Gkf)(z) + (et − 1)z(Gkf)
′(z) (2.2.13)

or
f2(z, t) = etz(Gkf)

′(z) (2.2.14)

is a Loewner chain, for all z ∈ U and t ≥ 0. Moreover,

f2(z, t)− f1(z, t) = z(Gkf)
′(z)− (Gkf)(z), z ∈ U, t ≥ 0.

The particular case k = 1 and α = 0

The next section is dedicated to the study of a special form (k = 1 and α = 0) of the class Ek(α). Because
we consider such a particular case, we obtain some nice results and examples related to classical properties
of univalent functions on U. According to Definition 2.2.14, we have that E1 is defined by

E1 =
{
f ∈ S : G1f ∈ K

}
,

where G1f(z) = zf ′(z), for all z ∈ U.

Example 2.2.24. Let f : U → C be defined by f(z) = − log(1 − z) for all z ∈ U, where log denotes the
principal branch of the complex logarithm. Then f belongs to the class E1.

Next, we present an important result that establishes the connection between classes E1 and K(1/2).
In particular, we obtain that every function from E1 is also convex (see [54]). This proof of this result was
given by the author and is based on the proof of [45, Theorem 2.3.2] given by Suffridge.

Proposition 2.2.25. If f belongs to the class E1, then f belongs to the class K(1/2). This result is sharp.

Proposition 2.2.26. If f belongs to the class E1, then f belongs to the class R(1/2), i.e. Ref ′(z) > 1/2,
for all z ∈ U.

Theorem 2.2.27. Let f ∈ E1. Then

log(1 + |z|) ≤ |f(z)| ≤ − log(1− |z|) (2.2.15)

and
1

1 + |z|
≤ |f ′(z)| ≤ 1

1− |z|
, (2.2.16)

for all z ∈ U. All of these estimates are sharp.

Corollary 2.2.28. If f belongs to the class E1, then the open disc Uln 2 is included in f(U).
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2.2. Subclasses of univalent functions

The last result in this subsection is a particular form of Theorem 2.2.23 and presents the characterization
of mappings in class E1 via Loewner chains.

Theorem 2.2.29. Let f ∈ H0(U). Then f ∈ E1 if and only if

f1(z, t) = etzf ′(z) + (et − 1)z2f ′′(z) (2.2.17)

or
f2(z, t) = etzf ′(z) + etz2f ′′(z) (2.2.18)

is a Loewner chain, for all z ∈ U and t ≥ 0. Moreover,

f2(z, t)− f1(z, t) = z2f ′′(z), z ∈ U, t ≥ 0.

2.2.3 Connections between E∗
k and Ek

Based on the Alexander’s duality theorem between convex and starlike functions on U (see [1], [19], [102]),
we prove in this section similar duality results for the subclasses E∗

k and Ek (see [54]).

Lemma 2.2.30. Let k ∈ N and f, g ∈ S be such that g(z) = zf ′(z), for all z ∈ U. Then

z(Gkf)
′(z) = (Gkg)(z), z ∈ U. (2.2.19)

Based on the previous lemma, we can obtain an Alexander type theorem for the families E∗
k and Ek.

This result was proved by Grigoriciuc in [54].

Theorem 2.2.31. Let k ∈ N and f, g ∈ S. Then f ∈ Ek if and only if g ∈ E∗
k, where g(z) = zf ′(z), for

all z ∈ U.

Theorem 2.2.32. Let k ∈ N. If f ∈ Ek, then f ∈ E∗
k(1/2).

Remark 2.2.33. It is clear that Theorem 2.2.32 is a generalization of Proposition 2.2.25 (where k = 1). On
the other hand, if k = 0, then Theorem 2.2.32 reduces to [45, Theorem 2.3.2] due to Marx and Strohhäcker.

Finally, we end this section with some questions related to the subclasses Ek and E∗
k studied above.

First question is a generalization of Proposition 2.2.25:

Question 2.2.34. Is it true that Ek+1 ⊂ Ek, for all k ∈ N?

Clearly, a similar question can be formulated also for the subclass E∗
k . Another important property of

these subclasses is the compactness. Hence, one may ask

Question 2.2.35. Is it true that the subclasses Ek and E∗
k are compact in H(U)?

Since E∗
k and Ek are subclasses of the class S, it would be interesting to study also other geometric

and analytic properties of them.

2.2.4 The subclass EN

We end this chapter with some remarks on a particular class related to the one presented above. For this,

let k ∈ N and f ∈
⋂
k∈N

Ek. Then, for every k ∈ N, we have that f ∈ Ek. Moreover, according to Corollary

2.2.19, it follows that for every k ∈ N

|an| ≤
(n− k)!

n!
, n ≥ k.

In particular, for n = k we obtain that |ak| ≤ 1
k! , for every k ∈ N. Let us denote by

EN =

ß
f ∈ S : |an| ≤

1

n!
, n ≥ 2

™
. (2.2.20)

Then, we obtain the following remark

Remark 2.2.36. Let EN be the set defined by (2.2.20). Then
⋂

k∈NEk ⫋ EN, i.e. the intersection of all
subclasses Ek is included in EN, but it is not equal with EN.
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Contributions in the theory of
biholomorphic mappings of several

complex variables
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Chapter 3

Biholomorphic mappings and Extension
operators in several complex variables

In this chapter we include general aspects related to biholomorphic mappings of several complex variables
in Cn. We begin with basic notations, notions and preliminary results that will be used during the
second part of the thesis. We refer here to the theory of holomorphic functions, respectively holomorphic
mappings in Cn, including the open mapping theorem and the minimum/maximum modulus theorem with
its applications (e.g. the Schwarz’s lemma). We recall also the definition of a set of uniqueness (see e.g.
[45], [83]) and two important results related to this notion, namely the Montel, respectively Vitali’s theorem
in Cn (see e.g. [83], [107], [119]). In the final part of this section we present some general results about
holomorphic mappings in Cn and the main results that will be used in this chapter (e.g. the Schwarz-Pick’s
lemma).

The second section contains results about subordination in Cn and generalizations to higher dimensions
of the notions related to the Carathéodory class of functions with positive real part on U. We refer here
especially to growth and distortion theorems obtained by Graham, Hamada and Kohr (see [32]), Pfaltzgraff
(see [109]) and Poreda (see [115]). One of the most important results that was proved by Graham, Hamada
and Kohr (see [32], [68]) is the compactness of the Carathéodory family M. Their result had a strong
impact on the evolution of the geometric function theory in Cn.

The next two sections are dedicated to the presentation of special subclasses of biholomorphic mappings
on the Euclidean unit ball Bn, respectively on the unit polydisc Un in Cn. For n ≥ 2, we denote by S(Bn)
the family of biholomorphic and normalized mappings on Bn (see e.g. [45], [83]). It is known that the set
S(Bn) is not locally uniformly bounded and then it does not admit a growth and distortion theorem. As
an important consequence of this property due to Cartan (see e.g. [7], [45]) we obtain that S(Bn) is not
compact for n ≥ 2. Among the most important subclasses of S(Bn) we mention the family of starlike,
starlike of order α, convex and spirallike mappings on Bn. For these mappings we recall analytical and
geometric characterizations, growth and distortion results together with suggestive examples that are used
throughout this chapter.

Section 3.5 contains generalizations of the notions presented in §1.6 related to Loewner chains, Loewner
differential equation and parametric representation in higher dimensions. Pfaltzgraff (see e.g. [109]) was
the first who obtained generalizations of the Loewner chains and Loewner differential equation on Bn.
The study was extended on Un by Poreda (see e.g. [115], [116]), respectively by Kubicka and Poreda
(see e.g. [86]). Important results were obtained over time by Duren, Graham, Hamada and Kohr (see
e.g. [20]), Graham, Hamada and Kohr (see e.g. [32]), Graham, Hamada, Kohr and Kohr (see e.g. [36],
[37]) and others. One of the most important distinction between the one dimensional case and the higher
dimensions is the compactness of the family of normalized biholomorphic mappings. It is known that S(U)
is a compact set (see Theorem 1.4.4) while the set S(Bn) is not compact for n ≥ 2 (see e.g. [7], [45]). This
problem was solved by Graham, Hamada and Kohr who introduced the class S0(Bn) of mappings which
admit parametric representation on Bn (see e.g. [32]; see also [114]). For n = 1, we have that S0(B1) = S
(see e.g. [114]). However, if n ≥ 2, then S0(Bn) is strictly included in S(Bn). Moreover, Graham, Kohr
and Kohr (see [48]) proved that S0(Bn) is compact (see e.g. [32], [45], [48]). This result is one of the
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3.1. General notions regarding holomorphy in Cn

results that presents the clear distinction between one and several complex variables cases. On the other
hand, it opened new ways of studying geometric function theory in higher dimensions. Another important
problem that was solved by Graham, Hamada, Kohr and Kohr is the existence in Cn of mappings which
cannot be embedded as the first elements of a Loewner chain. Using the family S0(Bn) they succeed to
prove the analogous of Pommerenke’s theorem (see Theorem 1.6.3) in higher dimensions (see [48]; see also
[32]). Moreover, the notion of parametric representation was extended to g-parametric representation by
Graham, Hamada and Kohr (see e.g. [32]). More details about the class S0

g (Bn) will be discussed in the
last part of the thesis.

In the next section we study convex combinations of the form (1 − λ)f + λg, where f, g ∈ S(Bn) and
λ ∈ (0, 1). It is known that, in general, the convex combination of two normalized biholmorphic mappings
is not biholomorphic on Bn (see e.g. [45], [83]). The phenomenon also occurs in the one dimensional case
and was intensively studied by several authors (see e.g. [9], [58], [97], [100]). The main idea of this section
is to obtain biholomorphic mappings on Bn (or even starlike mappings) as convex combinations of the form
(1 − λ)f + λg, where f, g ∈ S(Bn) and λ ∈ (0, 1). The results presented in this section original and were
obtained by Grigoriciuc in [52].

A powerful tool in the study of biholomorphic mappings in higher dimensions is the theory of extension
operators. In §3.7 we present various extension operators that preserve geometric and analytic properties
on the unit ball in Cn. We start our discussion with the Roper-Suffridge extension operator Φn (defined
by K. Roper and T.J. Suffridge in [121]) and the Graham-Kohr extension operator Ψn,α (defined by I.
Graham and G. Kohr in [44]; see also [43]). Then we will look at two generalizations of the Roper-Suffridge
extension operator introduced by Graham, Hamada, Kohr, Kohr and Suffridge (see e.g. [42], [47]) that
map a locally univalent function on U into a locally biholomorphic mapping on Bn. In the final part of
this section we present the extension operator introduced by Pfaltzgraff and Suffridge (see [111]) and a
generalization of their operator (see e.g. [10]).

We end this chapter with an short study that combine the ideas presented above, namely extension
operators and convex combinations of biholomorphic mappings in Cn. Hence, we discuss about convex
combinations of extension operators on Bn. In particular, we consider a new extension operator obtained
as a convex combination of two Graham-Kohr type extension operators (see e.g. [43], [44]). The results
presented in this section are original.

Finally, we mention that the main references used in this chapter are [14], [24], [25], [27], [32], [45], [46],
[48], [83], [84], [88], [107], [109], [117], [128], [138].

3.1 General notions regarding holomorphy in Cn

This section is focused on the study of the properties of holomorphic functions and holomorphic mappings
in higher dimensions. We discuss here the main results that can be generalized from one dimension to the
case of several complex variables. For details, one may consult [8], [45], [83], [88], [119].

3.1.1 Preliminaries

Let Cn denote the space of n complex variables z = (z1, ..., zn) equipped with the Euclidean inner product
⟨z, w⟩ =

∑n
k=1 zkwk and the Euclidean norm ∥z∥ =

√
⟨z, z⟩, where z, w ∈ Cn. We denote by

Bn(a, r) =
{
z ∈ Cn : ∥z − a∥ < r

}
the open ball of center a ∈ Cn and radius r > 0 with respect to the Euclidean norm. For simplicity, we
use the notation Bn

r = Bn(0, r) for the open ball of center zero and radius r. In particular, we denote
by Bn = Bn(0, 1) the (open) Euclidean unit ball in Cn. The open polydisc Un(a,R) of center a and
(multi)radius R is defined by

Un(a,R) = U(a1, r1)× ...× U(an, rn),

where a = (a1, ..., an) ∈ Cn and R = (r1, ..., rn) ∈ Rn
+. If rj = r, for all j = 1, n, then we denote this

polydisc by Un(a, r). In particular, we denote by Un = Un(0, 1) the (open) unit polydisc in Cn. Is it clear
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3.1. General notions regarding holomorphy in Cn

that Un is the open unit ball in Cn with respect to the maximum norm ∥z∥∞ = max{|zj | : j = 1, n}, for
all z = (z1, ..., zn) ∈ Cn.

During this thesis we are working on different domains (especially, unit balls in Cn with respect to
different norms), as follows:

� Bn – the Euclidean unit ball in Cn with respect to the Euclidean norm ∥z∥ =
»∑n

j=1 |zj |2, for all

z = (z1, ..., zn) ∈ Cn.

For the Euclidean case, we denote the Euclidean norm simply ∥ · ∥ without any index. Then, every time
we use the notation ∥ · ∥, we automatically refer to the Euclidean norm.

� Un – the unit polydisc in Cn with respect to the maximum norm ∥z∥∞ = max{|zj | : j = 1, n}, for all
z = (z1, ..., zn) ∈ Cn.

� Bn
p – the unit ball in Cn with respect to the p-norm ∥z∥p =

ï∑n
j=1 |zj |p

ò1/p
, for all z = (z1, ..., zn) ∈

Cn and p ∈ [1,∞).

In C each of the sets B1, U1 and B1
p coincides with U. Mention that when we work with an arbitrary norm,

it will be denoted ∥ · ∥∗. But, when the domains are those described above, we use the particular notations
for unit balls and norms presented for each case.

3.1.2 Holomorphic functions in Cn

The first part of this section contains results regarding holomorphic functions in several complex variables
(see e.g. [45], [88], [107])

Definition 3.1.1. Let Ω ⊆ Cn be an open set. If f : Ω → C is holomorphic in each variable and continuous
on Ω, then f is holomorphic. We denote by H(Ω,C) =

{
f : Ω → C : f is holomorphic on Ω

}
the family

of all holomorphic functions from Ω to C.

Note that, in view of the Hartogs result, the assumption of continuity from the previous definition can
be neglected. Hence, it follows that every holomorphic function in each variable individually is, in fact,
holomorphic (see e.g. [8], [88]).

Next we present some known properties of holomorphic functions in Cn. These results are generaliza-
tions of the properties presented in the first chapter for the case of one complex variable. First, we state
the open mapping theorem in Cn (see e.g. [83], [107], [119]).

Theorem 3.1.2 (Open mapping theorem). Let Ω ⊆ Cn be a domain. If f : Ω → C is holomorphic and
nonconstant, then f(Ω) ⊆ C is a domain.

An application of Theorem 3.1.2 is the Schwarz lemma for holomorphic functions in Cn (see e.g. [83],
[107]):

Lemma 3.1.3 (Schwarz’s lemma). Let f ∈ H(Bn,C) with f(0) = 0 and |f(z)| < 1, for all z ∈ Bn. Then
|f(z)| ≤ ∥z∥, for all z ∈ Bn. Morevoer, if ∃z0 ∈ Bn \ {0} such that |f(z0)| = ∥z0∥, then |f(az0)| = ∥az0∥,
for all a ∈ C with |a| ≤ 1

∥z0∥ .

3.1.3 Holomorphic mappings in Cn

Next, we briefly describe the case of holomorphic mappings from Cn into Cm, where m,n ∈ N such that
m,n ≥ 2. Among the references used in this subsection, we mention [45], [83], [88], [107], [119].

Definition 3.1.4. Let Ω ⊆ Cn be an open set and let f : Ω → Cm. If fk ∈ H(Ω,C), for each k = 1,m,
then f = (f1, ..., fm) is holomorphic on Ω.
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3.2. The Carathéodory family in Cn

We denote by H(Ω,Cm) the family of all holomorphic mappings from the open set Ω ⊆ Cn into Cm.
In particular, if m = n, then we use the simple notation H(Ω).

If Ω ⊆ Cn is a domain such that 0 ∈ Ω, then we say that f ∈ H(Ω,Cm) is normalized if f(0) = 0 and
Df(0) = Im, where the differential

Df(z) =

Ö
∂f1
∂z1

... ∂f1
∂zn

... ... ...
∂fm
∂z1

... ∂fm
∂zn

è
is a complex linear mapping from Cn into Cm at the point z ∈ Ω and Im is the identity operator in Cm.
When m = n, we denote by Jf (z) = detDf(z) for z ∈ Ω and it is the complex Jacobian determinant of f
at z. In this case, we denote by H0(Ω) the set of all normalized holomorphic mappings from Ω into Cn.

The following result presents the Schwarz’s lemma for holomorphic mappings (see e.g. [83], [107]). For
this, let us consider an arbitrary norm ∥ · ∥∗ on Cn and Bn ⊆ Cn the unit ball.

Theorem 3.1.5 (Schwarz’s lemma). Let f ∈ H(Bn,Cn) with f(0) = 0 and ∥f(z)∥∗ < 1, for all z ∈ Bn.
Then ∥f(z)∥∗ ≤ ∥z∥∗, for all z ∈ Bn and ∥Df(0)∥ ≤ 1. Moreover, if ∃z0 ∈ Bn \ {0} with the property that
∥f(z0)∥∗ = ∥z0∥∗, then ∥f(az0)∥∗ = ∥az0∥∗, for all a ∈ C with |a| ≤ 1/∥z0∥∗.

We end this subsection with an important result, namely the Schwarz-Pick Lemma for holmorphic
mapping on the Euclidean unit ball Bn. This result will play a key role in the final part of this thesis (see
e.g. [76], [123]).

Lemma 3.1.6. Let f ∈ H(Bn) be such that f(Bn) ⊆ Bn. Then

|Jf (z)| ≤
ï
1− ∥f(z)∥2

1− ∥z∥2

òn+1
2

, z ∈ Bn. (3.1.1)

This inequality is sharp and equality at a point z ∈ Bn holds if and only if f is an automorphism of Bn.

3.2 The Carathéodory family in Cn

In Section 3.2 we focus our attention on the notion of subordination in Cn and the generalization of the
Carathéodory class in Cn (see e.g. [32], [45], [109]). For this, let Bn be the Euclidean unit ball in Cn.

Definition 3.2.1. Let f, g, ϕ ∈ H(Bn). Then

1. ϕ is a Schwarz mapping if ∥ϕ(z)∥ ≤ ∥z∥, for all z ∈ Bn;

2. f ≺ g if there is a Schwarz mapping ϕ such that f(z) = g(ϕ(z)), for all z ∈ Bn (we already know
that this means that f is subordinate to g)

The family of normalized holomorphic mapping on Bn that extend the Carathéodory class in Cn (see
e.g [109], [127], [128]; see also [45], [83]) is given by

M(Bn) =

ß
h ∈ H0(Bn) : Re⟨h(z), z⟩ > 0, z ∈ Bn \ {0}

™
.

When Cn is endowed with the Euclidean norm, we denote M(Bn) simply by M. The class M is very
powerful in the theory of Loewner chains in Cn, as well as in the characterizing different subclasses of
univalent mappings in Cn (see e.g. [45], [83], [109]).

In the case of one complex variable it is not difficult to observe that h ∈ M if and only if p ∈ P, where
h(ζ) = ζp(ζ), for all ζ ∈ U.

Next we list a few properties of the class M in the simplest case of the Euclidean norm in Cn. Note
that these properties are also true for an arbitrary norm. First, we state the growth result obtained by
Pfaltzgraff in [109] (see also [57]).
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3.3. General results regarding biholomorphic mappings in Cn

Theorem 3.2.2. If h ∈ M(Bn), then

∥z∥2 1− ∥z∥
1 + ∥z∥

≤ Re⟨h(z), z⟩ ≤ ∥z∥2 1 + ∥z∥
1− ∥z∥

, z ∈ Bn. (3.2.1)

These inequalities are sharp.

Similar to the previous bounds, Graham, Hamada and Kohr obtained a stronger result (see [32]), as
follows:

Theorem 3.2.3. If h ∈ M(Bn), then

∥z∥1− ∥z∥
1 + ∥z∥

≤ ∥h(z)∥ ≤ 4∥z∥
(1− ∥z∥)2

, z ∈ Bn. (3.2.2)

Based on the results presented above, Graham, Hamada and Kohr obtained the compactness of the
class M (see [32], [68]).

Corollary 3.2.4. The family M(Bn) is compact.

It is important to mention that the results presented above may be extended to an arbitrary norm in
Cn. For more details, one may consult [45], [57], [127], [128].

3.3 General results regarding biholomorphic mappings in Cn

In the last subsection we study the biholomorphic mappings in Cn and a few properties that are fulfilled
by these mappings. Also, we present the notion of univalence in several complex variables (see e.g. [45],
[83], [88], [107]).

Definition 3.3.1. Let Ω ⊆ Cn be a domain. Then f : Ω → Cn is

a) univalent on Ω if f ∈ H(Ω) and f is injective on Ω;

b) biholomorphic on Ω if f ∈ H(Ω) and ∃f−1 ∈ H(∆), where ∆ = f(Ω).

If f ∈ H(Ω) is biholomorphic, then the domains Ω and ∆ are biholomorphically equivalent. Moreover, if
the domains coincide, then f is an automorphism of Ω.

Similar to the case of one complex variables, the notions of biholomorphy and univalence are equivalent
(see e.g. [107], [119]). However, in the infinite dimensional case, this equivalence is no longer valid (see
[128]).

Theorem 3.3.2. Let Ω ⊆ Cn be a domain. Then f : Ω → Cn is univalent on Ω if and only if f is
biholomorphic from Ω into f(Ω).

One of the important results in Cn is the Poincaré theorem (see e.g. [112]) which shows that Bn and
Un are not biholomorphically equivalent. Hence, the Riemann’s mapping theorem is not valid in higher
dimensions (see e.g. [107], [119]).

Theorem 3.3.3 (Poincaré). If n ≥ 2, then the Euclidean unit ball Bn and the unit polydisc Un are not
biholomorphically equivalent.

3.4 Families of biholomorphic mappings on the unit ball Bn

In Section 3.4 we discuss general properties of some families of biholomorphic mappings on the Euclidean
unit ball Bn. We recall here the classes of normalized starilke, starlike of order α, almost starlike of order
α, convex and spirallike mappings on Bn together with the most important results. We include in this part
the analytical characterizations of these classes, growth theorems and some examples. The most important
references used in this section are [24], [45], [83], [128].
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3.4. Families of biholomorphic mappings on the unit ball Bn

3.4.1 Normalized biholomoprhic mappings

Let L(Cn,Cn) be the set of linear operators from Cn into Cn with the (standard) operator norm

∥A∥ = sup
{
∥A(z)∥ : ∥z∥ = 1

}
.

Recall that if Ω ⊆ Cn is a domain such that 0 ∈ Ω and f ∈ H(Ω), then f is normalized if f(0) = 0 and
Df(0) = In, where In is the identity operator in L(Cn,Cn) and Df(z) is the Fréchet derivative of f at z.

In this thesis we denote by S(Bn) the set of normalized biholomorphic mappings on Bn in Cn and by
LSn(Bn) the set of normalized locally biholomorphic mappings on Bn in Cn. In particular, if n = 1, then
S(B1) = S is the well-known family of normalized univalent functions on U, respectively LS1(B1) = LS is
the family of locally univalent functions on U (for details, one may consult [24], [45], [83], [128]).

3.4.2 Starlike mappings

In this subsection we present the notion of starlikeness in Cn together with some results related to the class
of starlike mappings on Bn. For simplicity, we consider the Euclidean case, but all the results presented
here are valid with respect to any norm in Cn (see e.g. [24], [45], [83]).

Recall that a domain Ω ⊆ Cn is starlike (with respect to 0) if the closed segment [0, z] ⊆ Ω, for all
z ∈ Ω (see e.g. [83]). Next, we reiterate the definition of a starlike mapping on Bn (see e.g. [24], [45]).

Definition 3.4.1. Let f ∈ H(Bn). We say that f is starlike on Bn if f(0) = 0, f is biholomorphic on Bn

and f(Bn) is a starlike domain with respect to the origin.

We denote by S∗(Bn) the class of normalized starlike mappings on the Euclidean unit ball Bn. Clearly,
if n = 1, then S∗(B1) = S∗.

The first result stated in this section is the analytical characterization of starlikeness on Bn given by
Matsuno (see e.g. [99]). Other authors obtained extensions of this result for the unit ball of a Banach
space (Gurganus [57] and Suffridge [127]) and for the unit polydisc in Cn (Suffridge [126]).

Theorem 3.4.2. Let f ∈ LS(Bn) be such that f(0) = 0. Then f ∈ S∗(Bn) if and only if

Re⟨[Df(z)]−1f(z), z⟩ > 0, z ∈ Bn \ {0}. (3.4.1)

It is not difficult to observe that for n = 1, the previous result reduces to the analytical characterization
of starlikeness on U (see Theorem 1.4.7).

3.4.3 Starlike mappings of order α

We continue this section by presenting the class of starlike mappings of order α on Bn, where α ∈ [0, 1).
This notion was first considered by Kohr (see [81]; see also [75]) and Curt (see [13]).

Definition 3.4.3. Let α ∈ [0, 1). We say that f ∈ LS(Bn) is starlike of order α if

Re

ï ∥z∥2

⟨[Df(z)]−1f(z), z⟩

ò
> α, z ∈ Bn \ {0}. (3.4.2)

If n = 1, then the previous definition reduces to the starlikeness of order α on U.

We denote by S∗
α(Bn) the family of all starlike mappings of order α on Bn. Hence, S∗

0(Bn) = S∗(Bn)
and S∗

α(Bn) ⊆ S∗(Bn), for every α ∈ [0, 1).
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3.4. Families of biholomorphic mappings on the unit ball Bn

3.4.4 Almost starlike mappings of order α

Another important notion that is considered in this section is the almost starlikeness of order α on Bn.
Feng defined this concept in the case of complex Banach spaces (see [22]).

Definition 3.4.4. Let α ∈ [0, 1). Then f ∈ LS(Bn) is almost starlike of order α if

1

∥z∥2
Re⟨[Df(z)]−1f(z), z⟩ > α, z ∈ Bn \ {0}.

We denote by AS∗
α(Bn) the family of almost starlike mappings of order α on Bn.

Notice that for n = 1 the previous definition reduces to Definition 1.4.10 and we can denote AS∗
α(B1) =

AS∗
α.

3.4.5 Convex mappings

In the subsequent subsection, we describe the family of convex mappings on the polydisc, respectively on
the Euclidean unit ball in Cn. Since Un and Bn are not biholomorphically equivalent for n ≥ 2, it is not
trivial to study both of these cases in Cn. We present the analytical characterizations and growth theorems
for normalized convex mappings on these two domains in Cn. The key bibliographic sources utilized in
this part include [24], [45], [83], [128].

Recall that a domain Ω ⊆ Cn is convex if the closed segment [z1, z2] ⊆ Ω, for all z1, z2 ∈ Ω (see e.g.
[24], [83]). Next, we given the definition of a convex mapping on the unit ball Bn in Cn with respect to an
arbitrary norm (see e.g. [83]).

Definition 3.4.5. Let f ∈ H(Bn). Then f is convex on Bn if f is biholomorphic on Bn and f(Bn) is a
convex domain.

We denote by K(Bn) the class of normalized convex mappings on Bn. Clearly, if n = 1, then K(B1) =
K.

Convexity on the unit polydisc Un

On the unit polydisc Un in Cn we have the following analytical characterization of convexity due to Suffridge
(see [126]).

Theorem 3.4.6. Let f ∈ LS(Un). Then f belongs to the class K(Un) if and only if ∃φk ∈ K, for every
k = 1, n such that f(z) =

(
φ1(z1), ..., φn(zn)

)
, for all z = (z1, ..., zn) ∈ Un.

Convexity on the Euclidean unit ball Bn

In the case of Euclidean unit ball Bn, Kikuchi obtained the following analytical characterization (see [80]).
Gong, Wang and Yu obtained an equivalent characterization on Bn in [28].

Theorem 3.4.7. Let f ∈ LS(Bn). Then f is convex if and only if

1−Re⟨[Df(z)]−1D2f(z)(w,w), z⟩ > 0, (3.4.3)

for every z ∈ Bn and w ∈ Cn with ∥w∥ = 1 and Re⟨z, w⟩ = 0.

It is clear that if n = 1, then the previous result reduces to the analytical characterization of convexity
on U (see Theorem 1.4.13).

We end this subsection with the extension of Marx-Strohhäcker’s theorem (see [45], [102]). In the case
of several complex variables, this generalization was obtained by Kohr [81] and Curt [13].

Theorem 3.4.8. If f belongs to the class K(Bn), then f belongs to the class S∗
1/2(B

n) and this result is
sharp.

Remark 3.4.9. An important remark regarding the convexity in higher dimensions is that the generaliza-
tion of Alexander’s duality theorem (see Theorem 1.4.16) does not hold on Bn, when n ≥ 2 (see e.g. [45],
[83]). For details and examples, one may consult [81], [83], [128].
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3.5. The theory of Loewner chains in Cn

3.4.6 Spirallike mappings

The last part of this section explores the concept of spirallikeness on Bn in Cn. The spirallikeness relative
to a normal linear operator having eigenvalues with positive real part was introduced by Gurganus (see
[57]). In the case of complex Banach spaces, this idea was extended by Suffridge (see [128]). For more
details, one may consult also [37], [67], [94].

Definition 3.4.10. Let A ∈ L(Cn,Cn) be characterized by m(A) > 0, where m(A) = min
{
Re⟨A(z), z⟩ :

∥z∥ = 1
}
. Then f ∈ S(Bn) is spirallike relative to A if e−tAf(Bn) ⊆ f(Bn), for all t ≥ 0, where

e−tA =
∞∑
k=0

(−1)k

k!
tkAk.

Let us consider A ∈ L(Cn,Cn) with the property m(A) > 0. We now present the analytical character-
ization given by Suffridge (see [128]; see also [57]) of the spiralikeness relative to A.

Theorem 3.4.11. Let f ∈ LS(Bn). Then f belongs to the class of spirallike mappings (relative to A) if
and only if

Re⟨[Df(z)]−1Af(z), z⟩ > 0, z ∈ Bn \ {0}. (3.4.4)

In particular, if A = e−iδIn, where δ ∈ R with |δ| < π
2 , then we obtain the class Ŝδ(Bn) of spirallike

mappings of type δ. This class was introduced by Hamada and Kohr in [67].

3.5 The theory of Loewner chains in Cn

The fifth section of this chapter contains generalizations of the notions presented in §1.6. Pfaltzgraff (see
e.g. [109]) was the first who obtained generalizations of the Loewner chains and Loewner differential
equation on the Euclidean unit ball. The study was extended by Poreda in the case of the unit polydisc
in Cn (see e.g. [115], [116]), respectively by Kubicka and Poreda (see e.g. [86]). Important results were
obtained over time by Duren, Graham, Hamada and Kohr (see e.g. [20]), Graham, Hamada and Kohr (see
e.g. [32]), Graham, Hamada, Kohr and Kohr (see e.g. [36], [37], [47]) and others.

Probably the most important distinction between the one dimensional case and the higher dimension
is the compactness of the family of normalized univalent mappings. It is known that S(U) is a compact set
(see Theorem 1.4.4) while the set S(Bn) is not compact for n ≥ 2 (see e.g. [45]). This problem was solved
by Graham, Hamada and Kohr who introduced the class S0(Bn) of mappings which admit parametric
representation on Bn (see e.g. [32]; see also [114]). For n = 1, we have that S0(B1) = S (see e.g. [114]).
However, if n ≥ 2, then S0(Bn) is strictly included in S(Bn). Moreover, Graham, Kohr and Kohr (see [48])
proved that S0(Bn) is compact (see e.g. [32], [45], [48]).

Another important problem that was solved by Graham, Hamada, Kohr and Kohr is the existence in Cn

of mappings which cannot be embedded as the first elements of a Loewner chain. Using the family S0(Bn)
they succeed to prove the analogous of Pommerenke’s theorem (see Theorem 1.6.3) in higher dimensions
(see [48]; see also [32]). Other important results can be found in [14], [16], [17], [32], [45], [48].

3.5.1 General results related to Loewner chains in Cn

This section opens with some preliminary notions and results connected to the theory of Loewner chains
on Bn (see e.g. [14], [45], [48], [109], [117]).

Definition 3.5.1. Let f = f(z, t) : Bn × [0,∞) → Cn be a mapping.

� Let f satisfies the properties: f(·, t) is biholomorphic on Bn, f(0, t) = 0, for all t ≥ 0 and f(·, s) ≺
f(·, t), for all 0 ≤ s ≤ t < ∞. Then f(z, t) is a univalent subordination chain on Bn.

� If f(z, t) satisfies also the property that Df(0, t) = etIn, for all t ≥ 0, then f(z, t) is called a Loewner
chain (normalized univalent subordination chain) on Bn.
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3.5. The theory of Loewner chains in Cn

Remark 3.5.2. If f(z, t) is a Loewner chain, then there is a unique biholomorphic Schwarz mapping
v = v(z, s, t) such that

f(z, s) = f
(
v(z, s, t), t

)
, z ∈ Bn, 0 ≤ s ≤ t < ∞. (3.5.1)

The mapping v(z, s, t) is called the transition mapping of f(z, t) (see e.g. [45], [109]).

Based on the normalization of f(z, t), we easily deduce that Dv(0, s, t) = es−tIn, for all 0 ≤ s ≤ t < ∞.
From (3.5.1), it follows that v = v(z, s, t) satisfies also the semigroup property

v(z, s, T ) = v
(
v(z, s, t), t, T

)
, z ∈ Bn, 0 ≤ s ≤ t ≤ T < ∞. (3.5.2)

The next result was obtained by Graham, Kohr and Kohr (see [48]), respectively Curt and Kohr (see [15])
and presents the strong connection between the Loewner chains and transition mappings (see also [45]).

Theorem 3.5.3. Let f(z, t) be a Loewner chain and let v(z, s, t) be its transition mapping. Let also
(tk)k∈N ⊆ R∗

+ be such that limk→∞ tk = ∞ and the limit

lim
k→∞

e−tkf(z, tk) = F (z) ∈ H(Bn)

is locally uniformly on Bn. Then ∃ limt→∞ etv(z, s, t) = f(z, s) locally uniformly on Bn, for all s ∈ [0,∞).

The second important result in this section was given by Pfaltzgraff (see [109]). In the case of complex
Banach spaces the result was studied by Poreda (see [117]). The theory of Loewner chains was also
considered in the abstract setting of complex hyperbolic manifolds and was studied by Arosio, Bracci,
Hamada and Kohr (see [3]). Other contributions can be found in [2], [5].

Theorem 3.5.4. Let h : Bn × [0,∞) → Cn be such that h(·, t) belongs to the class M, for all t ≥ 0 and
h(z, ·) belongs to the family of measurable functions on [0,∞), for all z ∈ Bn. Let also

∂v

∂t
= −h(v, t), a.e. t ≥ s

v(s) = z
(3.5.3)

be an initial value problem. Then ∀s ∈ [0,∞) and z ∈ Bn, the problem (3.5.3) is uniquely solvable and its
solution v(t) = v(z, s, t) = es−tz + ... is locally absolutely continuous. Moreover, v(·, s, t, ) belongs to the
family of univalent Schwarz mappings on Bn for a fixed s ≤ t ∈ [0,∞). For fixed s ≥ 0 and z ∈ Bn we
know that v(z, s, ·) belongs to the family of Lipschitz functions locally uniformly with respect to z.

Remark 3.5.5. Recall that the application h = h(z, t) presented in the previous result is known as a
Herglotz vector field (see e.g. [45]). The differential equation (3.5.3) is called Loewner (ordinary) differential
equation associated to h.

The subsequent result indicates that if the transition mapping solves the problem (3.5.3), then it
generates a Loewner chain. This result is due to Poreda (see [117]), Hamada and Kohr (see [68]).

Theorem 3.5.6. Let us consider h(z, t) a Herglotz vector field and v(z, s, t) the solution of the Cauchy
problem (3.5.3). Then

∀s ≥ 0, ∃ lim
t→∞

etv(z, s, t) = f(z, s)

locally uniformly on Bn. Moreover, f(·, s) belongs to the family of biholomorphic mappings on Bn and

f(z, s) = f
(
v(z, s, t), t

)
, z ∈ Bn, 0 ≤ s ≤ t < ∞.

Consequently, f(z, t) is a Loewner chain with the property that the family
{
e−tf(·, t)

}
t≥0

is normal on Bn

and f(z, ·) belongs to the family of locally Lipschitz functions on [0,∞) locally uniformly with respect to
z ∈ Bn. In this context, f(z, t) satisfies also the equation

∂f

∂t
(z, t) = Df(z, t)h(z, t), a.e. t ≥ 0, z ∈ Bn. (3.5.4)
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3.5. The theory of Loewner chains in Cn

The differential equation (3.5.4) is called the (generalized) Loewner differential equation associated to
h (see e.g. [45]).

The main result in the theory of Loewner chains in higher dimensions is state in the following theorem.
This result was obtained by Pfaltzgraff (see [109]) and was generalized by Poreda (see [117]) in the case of
complex Banach spaces. Other notable contributions have been achieved by Hamada and Kohr(see [68]).

Theorem 3.5.7. Let us consider h(z, t) a Herglotz vector field and let f = f(z, t) : Bn × [0,∞) → Cn

satisfy the properties: f(·, t) belongs to the family H(Bn), f(0, t) = 0, Df(0, t) = etIn, for all t ≥ 0
and f(z, ·) belongs to the class of locally absolutely continuous functions on [0,∞) locally uniformly with
respect to z ∈ Bn. Also, suppose that the relation (3.5.4) holds. If (tk)k∈N ⊆ R∗

+ is increasing such that
lim
k→∞

tk = ∞ and limk→∞ e−tkf(z, tk) = F (z) locally uniformly on Bn, then f(z, t) is a Loewner chain and

for all s ≥ 0, the limit limt→∞ etv(z, s, t) = f(z, s) holds locally uniformly on Bn, where v(z, s, t) solves the
problem (3.5.3) for all z ∈ Bn.

The following result was achieved by Graham, Hamada, and Kohr (see [32]). See also the results
obtained by Curt and Kohr in [15].

Theorem 3.5.8. Assume that f = f(z, t) : Bn × [0,∞) → Cn is a Loewner chain. Then ∃h = h(z, t) :
Bn × [0,∞) → Cn with the properties: h(·, t) belongs to the class M, for all t ≥ 0, h(z, ·) belongs to the
family of measurable functions on [0,∞), for z ∈ Bn and

∂f

∂t
= Df(z, t)h(z, t), a.e. t ≥ 0, z ∈ Bn.

Morevoer, if ∃(tk)k∈N ⊆ R∗
+ with lim

k→∞
tk = ∞ and the limit limk→∞ e−tkf(z, tk) = F (z) is locally uniformly

on Bn, then for every s ≥ 0, there exists the limit limt→∞ etv(z, s, t) = f(z, s) locally uniformly on Bn,
where v(z, s, t) solves the problem (3.5.3) for all z ∈ Bn.

We end this section with the growth theorem for Loewner chains that satisfy the property that the
family

{
e−tf(·, t)

}
t≥0

is normal on Bn (see e.g. [32]). Note that in Cn there are Loewner chains that do

not meet this assumption (see [32], [45]).

Theorem 3.5.9. Let f(z, t) be a Loewner chain such that the family
{
e−tf(·, t)

}
t≥0

is normal on Bn.
Then

∥z∥
(1 + ∥z∥)2

≤ ∥e−tf(z, t)∥ ≤ ∥z∥
(1− ∥z∥)2

,

for all z ∈ Bn and t ≥ 0.

3.5.2 Loewner chains and biholomorphic mappings in Cn

This subsection outlines some characterizations of certain subclasses of S(Bn) via Loewner chains. Based
on these results, one may easily construct examples of Loewner chains in Cn (see e.g. [45]).

The first result states the characterization of mappings from the class Ŝδ(Bn) and was obtained by
Hamada and Kohr (see [67]). In particular, for δ = 0, we obtain the characterization of starlikeness on Bn

proved by Pfaltzgraff and Suffridge (see [110]).

Theorem 3.5.10. Let f ∈ LS(Bn), δ ∈ R be such that |δ| < π
2 and a = tan δ. Then f ∈ Ŝδ(Bn) if and

only if f(z, t) = e(1−ia)tf(eiatz) is a Loewner chain, for all z ∈ Bn and t ≥ 0. For δ = 0 we obtain the
characterization of starlikeness on Bn.

3.5.3 Parametric representation on Bn

The third part of this section is dedicated to study of mappings which admit parametric representation on
Bn in Cn. We present here some general notions, growth and distortion theorems, as well as the connection
between these mappings and Loewner chains.
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3.5. The theory of Loewner chains in Cn

First, the univalent mappings that admit parametric representation were studied by Poreda on Un (see
[115], [116]) and by Kohr on Bn in Cn (see [82]). Graham, Hamada, and Kohr generalized these results to
the case of arbitrary norm (see [32]; see also [48]).

Definition 3.5.11. Let f ∈ H0(Bn). Then f has parametric representation if ∃h : Bn × [0,∞) → Cn

a Herglotz vector field such that limt→∞ etv(z, t) = f(t) locally uniformly on Bn, where v(z, ·) uniquely
solves the problem (3.5.3) on [0,∞) for s = 0. We denote by S0(Bn) the class of mappings which admit
parametric representation on Bn.

The analogous of Pommerenke’s theorem (see Theorem 1.6.3) in higher dimension was proved by Gra-
ham, Kohr and Kohr (see [48]; see also [32]).

Theorem 3.5.12. Let f ∈ H0(Bn). Then f ∈ S0(Bn) if and only if ∃f = f(z, t) : Bn × [0,∞) → Cn a
Loewner chain that satisfy the property that

{
e−tf(z, t)

}
t≥0

is a normal family on Bn and f = f(·, 0).

Recall that for n = 1, we have that S0(B1) = S (see e.g. [114]). However, if n ≥ 2, then S0(Bn) is
strictly included in S(Bn). This inclusion and the property that many subsets of S(Bn) are also subsets of
S0(Bn) was proved by Graham, Hamada, Kohr and Kohr (see [32], [48], [115], [116]).

We present the growth theorem for mappings with parametric representation on Bn. This result was
obtained by Graham, Hamada and Kohr for the unit ball of Cn with respect to an arbitrary norm (see
[32]).

Theorem 3.5.13. If f ∈ S0(Bn), then

∥z∥
(1 + ∥z∥)2

≤ ∥f(z)∥ ≤ ∥z∥
(1− ∥z∥)2

, z ∈ Bn.

These inequalities are sharp. As a consequence, we obtain that f(Bn) ⊇ Bn
1/4.

Based on the previous result we obtain the compactness of the class S0(Bn). This result was proved by
Graham, Kohr and Kohr (see [48]) and it is contrast with the class S(Bn) which is not compact (see e.g.
[32], [45], [48]).

Corollary 3.5.14. The family S0(Bn) ⊆ H(Bn) is compact.

3.5.4 g-parametric representation on Bn

Strongly related to the notion of parametric representation is the notion of g-parametric representation
(see e.g. [32]). First, let us consider the following assumption that will be used during this thesis.

Assumption 3.5.15. Let g ∈ Hu(U) be such that g(0) = 1, g(ζ) = g(ζ) and Reg(ζ) > 0, for all ζ ∈ U. In
addition, assume that for ρ ∈ (0, 1) we have that

min
|ζ|=ρ

Reg(ζ) = min
{
g(ρ), g(−ρ)

}
and max

|ζ|=ρ
Reg(ζ) = max

{
g(ρ), g(−ρ)

}
.

Considering the previous assumption, we introduce the class Mg(Bn) that is the analogous of the
Carathéodory family in Cn (see [32]).

Definition 3.5.16. Let g : U → C be such that Assumption 3.5.15 is satisfied. Then we denote by

Mg(Bn) =

ß
h ∈ H0(Bn) :

≠
h(z),

z

∥z∥2

∑
∈ g(U), z ∈ Bn

™
,

where we consider the particular case
〈
h(z), z

∥z∥2
〉∣∣

z=0
= 1. When the space Cn is endowed with the

Euclidean norm we denote Mg(Bn) simply by Mg. This class was introduced and intensively studied by
Graham, Hamada and Kohr (see [32]).
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3.6. New results on convex combinations of biholomorphic mappings on Bn

Note that Mg ̸= ∅, since idBn ∈ Mg and it is clear that Mg ⊆ M. In particular, if g(ζ) = 1−ζ
1+ζ , for all

ζ ∈ U, then Mg ≡ M.
Next, we revisit the definition of mappings that have g-parametric representation given by Graham,

Hamada and Kohr in [32] (see also [82]).

Definition 3.5.17. Let g : U → C satisfy the Assumption 3.5.15. Then f ∈ H0(Bn) has g-parametric
representation if ∃h : Bn × [0,∞) → Cn a Herglotz vector field that satisfy the properties: h(·, t) belongs
to the class Mg, for all t ≥ 0 and

lim
t→∞

etv(z, t) = f(t)

locally uniformly on Bn, where v(z, ·) uniquely solves the problem (3.5.3) on [0,∞) for s = 0. We denote
by S0

g (Bn) the family of mappings which have g-parametric representation on Bn.

Remark 3.5.18. Graham, Hamada and Kohr (see [32]) proved that

S0
g (Bn) ⊆ S0(Bn) ⊊ S(Bn) (3.5.5)

and the equality holds in the first inclusion if g(ζ) = 1−ζ
1+ζ , for all ζ ∈ U.

Definition 3.5.19. Let f : Bn× [0,∞) → Cn be a mapping. Then f(z, t) is a g-Loewner chain if f(z, t) is
a Loewner chain such that

{
e−tf(·, t)

}
t≥0

is a normal family on Bn and the mapping h(z, t) from equation

(3.5.4) has the property that h(·, t) belongs to the family Mg for almost every t ≥ 0.

The characterization of the class S0
g (Bn) via Loewner chains was given by Graham, Hamada and Kohr

in [32].

Proposition 3.5.20. A mapping f ∈ H0(Bn) belongs to the class S0
g (Bn) if and only if ∃f(z, t) a g-Loewner

chain that satisfy the property f = f(·, 0).

3.6 New results on convex combinations of biholomorphic mappings on
Bn

In this section we study convex combinations of the form (1− λ)f + λg, where f, g ∈ S(Bn) and λ ∈ [0, 1].
It is known that, in general, the convex combination of two normalized biholmorphic mappings is not
biholomorphic on Bn (see e.g. [45], [83]). The phenomenon also occurs in the case of one dimension and
was intensively studied by several authors (see e.g. [9], [58], [97], [100]).

The main idea of this section is to obtain biholomorphic mappings on Bn (or even starlike mappings)
as convex combinations of the form (1−λ)f +λg, where f, g ∈ S(Bn) and λ ∈ [0, 1]. The results presented
in this section are due to Grigoriciuc (see [52]) and represent partial extensions of the results obtained by
Chichra and Singh in [9].

3.6.1 Preliminaries

We start the first part of this section with some examples of convex combinations of univalent functions in
C. This classical examples show that the linear combination of two normalized univalent functions is not,
in general, univalent on U in C (see e.g. [19], [85], [97], [102]).

Example 3.6.1. Let f, g : U → C be given by f(ζ) =
ζ

(1− ζ)2
and g(ζ) =

ζ

(1 + ζ)2
, for all ζ ∈ U. Then

f, g ∈ S, but h = f+g
2 does not belong to S.

In Example 3.6.1, the functions f and g are not only normalized and univalent, they are even starlike
on U. However, the function h is not starlike on B (in fact, h is not even univalent on U). On the other
hand, MacGregor (see [97]) proved that the linear combination of two convex functions is not necessarily
univalent on the unit disc.

Next, we can extend the statement of Example 3.6.1 to the case of several complex variables. For n = 2,
we obtain the following example (see e.g. [45], [83]):
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3.6. New results on convex combinations of biholomorphic mappings on Bn

Example 3.6.2. Let F,G : B2 → C2 be given by

F (z) =

Å
z1

(1− z1)2
,

z2
(1− z2)2

ã
and G(z) =

Å
z1

(1 + z1)2
,

z2
(1 + z2)2

ã
,

for all z = (z1, z2) ∈ B2. Then H = 1
2(F +G) ̸∈ S∗(B2). In fact, H ̸∈ S(B2).

Although linear combinations of univalent functions are not always univalent (for more details about
these results, one may consult [58], [97]), there exist subclasses of the class S that satisfy this condition
(see e.g. [9], [100] in one dimension). Our purpose is to extend in the case of several complex variables a
result proved by P.N. Chichra and R. Singh (see [9] for the case of one complex variable). In the following,
we state their result for the case n = 1

Theorem 3.6.3. Let λ ∈ (0, 1). If f ∈ S∗ and Ref ′(ζ) > 0, for all ζ ∈ U, then

hλ(ζ) = (1− λ)ζ + λf(ζ) (3.6.1)

is starlike with respect to zero in U and Reh′(ζ) > 0, for all ζ ∈ U.

3.6.2 Univalence of convex combinations in Cn

In view of the results presented in the previous section we can prove some criteria for univalence of a convex
combination of normalized holomorphic mappings on the Euclidean unit ball Bn. In fact, we can obtain
a condition for a convex combination to be a mapping which has parametric representation on Bn. The
original results presented in this part have been obtained by Grigoriciuc in [52].

Lemma 3.6.4. Let f ∈ H0(Bn) be such that Re⟨Df(z)(u), u⟩ > 0, for all z ∈ Bn and u ∈ Cn with ∥u∥ = 1.
Also let hλ : Bn → Cn be given by

hλ(z) = (1− λ)z + λf(z), (3.6.2)

for all z ∈ Bn and λ ∈ [0, 1]. Then hλ ∈ S(Bn).

Lemma 3.6.5. Let f ∈ H0(Bn) be such that ∥Df(z) − In∥ < 1, for all z ∈ Bn and let hλ be given by
(3.6.2) for λ ∈ [0, 1]. Then hλ ∈ S0(Bn). In particular, hλ is univalent on Bn.

3.6.3 Starlikeness of convex combinations on Bn

In this subsection we discussed about the starlikeness of a convex combination of biholomorphic mappings
on Bn. We present also some examples that illustrate how this property occurs in several particular cases.

Proposition 3.6.6. Let λ ∈ [0, 1] and let fj ∈ S∗ be such that Ref ′
j(ζ) > 0, for j = 1, n and ζ ∈ U. Also,

let f(z) =
(
f1(z1), ..., fn(zn)

)
, for z ∈ Bn. Then hλ ∈ S∗(Bn), where hλ is given by (3.6.2). Moreover,

Re⟨Dhλ(z)(u), u⟩ > 0, for z ∈ Bn and u ∈ Cn with ∥u∥ = 1.

It is clear that the mapping used in the previous result has a very particular form (has on each component
a starlike function of one complex variable). However, we can obtain similar results for arbitrary starlike
mappings on Bn, as in the following examples (see e.g. [47], [128]). Here, we use arbitrary starlike mappings
to construct convex combinations that are starlike on Bn.

Example 3.6.7. Let f : B2 → C2 be defined by f(z) =
(
z1 + az22 , z2

)
, for all z = (z1, z2) ∈ B2 with

|a| ≤ 3
√
3

2 . We know (see e.g. [24], [45], [83]) that f ∈ S∗(B2). Moreover,

hλ(z) = (1− λ)z + λf(z) = (1− λ)
(
z1, z2

)
+ λ

(
z1 + az22 , z2

)
=

(
(1− λ)z1 + λz1 + λaz22 , (1− λ)z2 + λz2

)
=

(
z1 + λaz22 , z2

)
,

for all z ∈ B2. Since λ ∈ [0, 1] and |a| ≤ 3
√
3

2 , it follows that |λa| ≤ 3
√
3

2 and then hλ ∈ S∗(B2).
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3.7. Extension operators in Cn

Based on the ideas presented in the previous examples, we can prove a second version of Chichra-Singh’s
theorem (see Theorem 3.6.3) in Cn, for n ≥ 2. Note that this result was obtained by Grigoriciuc in [52].

Theorem 3.6.8. Let λ ∈ (0, 1), µ = λ/(1− λ) and let f ∈ LSn(Bn) be such that∥∥Df(z)− In
∥∥ < λ−1 (3.6.3)

and
Re

〈(
In + µDf(z)

)−1(
z + µf(z)

)
, z
〉
> 0, z ∈ Bn \ {0}. (3.6.4)

Then hλ ∈ S∗(Bn), for all λ ∈ (0, 1), where hλ is given by (3.6.2).

Inspired by the previous result, we can define a subclass L∗
λ(Bn) of normalized locally biholomorphic

mappings on Bn that satisfies conditions from Theorem 3.6.8.

Definition 3.6.9. Let us consider λ ∈ (0, 1) and µ = λ/(1− λ). We say that f ∈ L∗
λ(Bn) if f ∈ LSn(Bn)

such that (3.6.3) and (3.6.4) are satisfied. Note that L∗
λ(Bn) ̸= ∅ since In ∈ L∗

λ(Bn).

Next we offer a non-trivial example of a mapping f ∈ L∗
λ (see also [24], [45], [83], [128]).

Example 3.6.10. Let f : B2 → C2 be given by f(z) =
(
z1 + az22 , z2

)
, for all z ∈ B2 with |a| ≤ 1

2 . Then
f ∈ L∗

λ(B2). Moreover, hλ ∈ S∗(B2), where hλ is given by (3.6.2).

We end this section by proposing a conjecture which generalize the result proved by Chichra and Singh
(see [9]). Starting from the result proved in C, we consider the following conjecture on Bn in Cn (see [52]):

Conjecture 3.6.11. Let λ ∈ (0, 1). If f ∈ S∗(Bn) and Re
〈
Df(z)(u), u

〉
> 0, for all z ∈ Bn and u ∈ Cn

with ∥u∥ = 1, then hλ(z) = (1−λ)z+λf(z) is a starlike mapping on Bn. Moreover, Re
〈
Dhλ(z)(u), u

〉
> 0,

for z ∈ Bn and u ∈ Cn with ∥u∥ = 1. In particular, hλ is biholomorphic on Bn.

It is clear that in C the statement of Conjecture 3.6.11 proposed by Grigoriciuc in [52] is true, as it
reduces to Theorem 3.6.3 obtained by Chichra and Singh in [9].

3.7 Extension operators in Cn

In this section we present some extension operators that preserve geometric and analytic properties on the
unit ball in Cn. Our discussion starts with the Roper-Suffridge extension operator Φn (considered by K.
Roper and T.J. Suffridge in [121]) and the Graham-Kohr extension operator Ψn,α (defined by I. Graham
and G. Kohr in [44]; see also [43]). The third part of this section contains two generalizations of the
Roper-Suffridge extension operator introduced by Graham, Hamada, Kohr, Kohr and Suffridge (see e.g.
[42], [47]) that map a locally univalent function on U into a locally biholomorphic mapping on Bn. In the
final part of this section we briefly look at the extension operator introduced by Pfaltzgraff and Suffridge
(see [111]) and a generalization of their operator (see e.g. [10]).

During the following sections, for n ≥ 2, we use the variable z = (z1, z̃) ∈ Cn, where z̃ = (z2, ..., zn) ∈
Cn−1. Recall that LSn(Bn) is the family of normalized locally biholomorphic mappings on Bn and
LS1(B1) = LS.

3.7.1 The Roper-Suffridge extension operator Φn

The Roper-Suffridge extension operator Φn : LS → LSn(Bn) is given by

Φn(f)(z) =

Å
f(z1), z̃

»
f ′(z1)

ã
, z = (z1, z̃) ∈ Bn, (3.7.1)

where the branch of the square root function has the property
√
f ′(z1)

∣∣
z1=0

= 1.
The first important result related to the extension operator Φn is due to Roper and Suffridge. They

proved that Φn preserves the notion of convexity from one dimensional case to higher dimensions (see e.g.
[121]). The same result was proved by Graham and Kohr in a different manner (see [43]).
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3.7. Extension operators in Cn

Theorem 3.7.1. If f ∈ K, then Φn(f) belongs to the class K(Bn). Hence, Φn(K) ⊆ K(Bn).

Another important property of the operator Φn is related to the preservation of starlikeness of order
α ∈ [0, 1). During the time, several authors obtained strong extension results, as follows:

� Graham and Kohr (see [43]) proved that Φn preserves the starlikeness;

� Hamada, Kohr and Kohr (see [73]) obtained that Φn preserves the stralikeness of order 1/2;

� Liu (see [92]) obtained that Φn preserves the starlikeness of order α ∈ (0, 1);

The last result is due to Graham, Kohr and Kohr (see [48]) and states the relation between the Loewner
theory and the Roper-Suffridge extension operator.

Theorem 3.7.2. If f belongs to the class S, then Φn(f) ∈ S0(Bn). Hence, Φn(S) is a subset of S0(Bn), i.e.
Φn maps the functions that have parametric representation on U to mappings that have the same property
on Bn.

3.7.2 The Graham-Kohr extension operator Ψn,α

The second extension operator that is presented here was defined by I. Graham and G. Kohr (see [43],
[44]). For α ∈ [0, 1], let Ψn,α be defined by

Ψn,α(f)(z) =

Å
f(z1),

Å
f(z1)

z1

ãα
z̃

ã
, z = (z1, z̃) ∈ Bn (3.7.2)

for any function f ∈ LS with f(z1) ̸= 0 for z1 ∈ U \ {0}. We take the branch of the power function with

the property
(f(z1)

z1

)α∣∣
z1=0

= 1. The particular case Ψn,1 was studied by Pfaltzgraff and Suffridge in [111].

Graham and Kohr (see [44]) proved that the extension operator Ψn,α has the following important
properties. It is important to mention here that the extension results remain true also for the norm ∥ · ∥p,
where 1 ≤ p ≤ ∞ (see e.g. [44]).

Theorem 3.7.3. Let α ∈ [0, 1].

a) If f ∈ S, then Ψn,α(f) belongs to the class S0(Bn). Hence, Ψn,α(S) is a subset of S0(Bn).

b) If f ∈ S∗, then Ψn,α(f) belongs to the class S∗(Bn). Hence, Ψn,α(S
∗) is a subset of S∗(Bn).

c) The extension operator Ψn,α does not preserve convexity for n ≥ 2.

3.7.3 Generalizations of the Roper-Suffridge extension operator

In the third part of this section we focus our attention on two generalizations of the Roper-Suffridge
extension operator introduced by Graham, Kohr and Kohr (see [47]), respectively by Graham, Hamada,
Kohr and Suffridge (see [42]). Other results related to the generalized Roper-Suffridge extension operator
can be found in [25], [27], [43], [46], [84], [93], [103], [138].

The generalized Roper-Suffridge extension operator Φn,β

A first general form of the operator Φn was considered by Graham, Kohr and Kohr in [47]. For β ∈ [0, 1/2],
they defined the operator Φn,β : LS → LSn(Bn) given by

Φn,β(f)(z) =

Å
f(z1),

(
f ′(z1)

)β
z̃

ã
, z = (z1, z̃) ∈ Bn, (3.7.3)

where the branch of the power function has the property
(
f ′(z1)

)β∣∣
z1=0

= 1. It is clear that Φn,1/2 = Φn

is the Roper-Suffridge extension operator given by (3.7.1).
The following properties of the operator Φn,β were obtainted by Graham, Kohr and Kohr in [47].
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3.7. Extension operators in Cn

Theorem 3.7.4. Let β ∈ [0, 1/2] and δ ∈ R be such that |δ| < π
2 .

a) If f ∈ S, then Φn,β(f) belongs to the class S0(Bn). Hence, Φn,β(S) is a subset of S0(Bn).

b) If f ∈ Ŝδ, then Φn,β(f) belongs to the class Ŝδ(Bn). Hence Φn,β(Ŝδ) is a subset of Ŝδ(Bn). In
particular, if δ = 0, then Φn,β(S

∗) is a subset of S∗(Bn).

It is important to mention here that the operator Φn,β preserves the convexity only if β = 1
2 (i.e. the

Roper-Suffridge extension operator). This result was obtained by Graham, Kohr and Kohr (see [47]).

The generalized Roper-Suffridge-Graham-Kohr extension operator Φn,α,β

The second generalization of the Roper-Suffridge, respectively of the Graham-Kohr extension operator was
introduced by Graham, Hamada, Kohr and Suffridge in [42]. They considered the extension operator Φn,α,β

defined by

Φn,α,β(f)(z) =

Å
f(z1),

Å
f(z1)

z1

ãα(
f ′(z1)

)β
z̃

ã
, z = (z1, z̃) ∈ Bn,

where α, β ≥ 0 and f ∈ LS has the property that f(z1) ̸= 0 for z1 ∈ U\{0}. Here, the branches of the power
functions are taken such that

(f(z1)
z1

)α∣∣
z1=0

= 1 and
(
f ′(z1)

)β∣∣
z1=0

= 1. It is clear that Φn,0,1/2 = Φn is the
Roper-Suffridge extension operator, Φn,0,β = Φn,β is the generalized Roper-Suffridge extension operator
and Φn,α,0 = Ψn,α is the Graham-Kohr extension operator.

Graham, Hamada, Kohr and Suffridge (see [42]) studied the operator Φn,α,β and obtained the following
extension results:

Theorem 3.7.5. Let α ∈ [0, 1] and β ∈ [0, 1/2] be such that α+ β ≤ 1.

a) If f ∈ S, then Φn,α,β(f) belongs to the class S0(Bn). Hence, Φn,α,β(S) is a subset of S0(Bn).

b) If f ∈ S∗, then Φn,α,β(f) belongs to the class S∗(Bn). Hence, Φn,α,β(S
∗) is a subset of S∗(Bn).

In addition, Graham, Hamada, Kohr and Suffridge (see [42]) proved that Φn,α,β preserves the notion
of convexity only if α = 0 and β = 1

2 (i.e. the Roper-Suffridge extension operator).

3.7.4 The Pfaltzgraff-Suffridge extension operator Γn

Pfaltzgraff and Suffridge considered a different extension of the Roper-Suffridge operator in [111]. They
defined an operator that extend locally biholomorphic mappings on Bn in Cn to a local biholomorphic
mapping on Bn+1 in Cn+1. Here, let z = (z′, zn+1) ∈ Cn+1, where z′ = (z1, ..., zn) ∈ Cn.

For n ≥ 1, the Pfaltzgraff-Suffridge extension operator Γn : LSn(Bn) → LSn+1(Bn+1) is given by

Γn(f)(z) =

Å
f(z′), zn+1

[
Jf (z

′)
] 1
n+1

ã
, z = (z′, zn+1) ∈ Bn+1, (3.7.4)

where Jf (z
′) = detDf(z′), for z′ ∈ Bn. We consider the power function such that

[
Jf (z

′)
] 1
n+1

∣∣
z′=0

= 1.
Note that, if n = 1, then Γ1 = Φ2 is a particular form of the Roper-Suffridge extension operator Φn.

Remark 3.7.6. It is clear that if f ∈ LSn(Bn), then Γn(f) ∈ LSn+1(Bn+1). Moreover, Γn

(
S(Bn)

)
⊆

S(Bn+1). For details, one may consult [111].

Graham, Kohr and Suffridge (see [49]) proved that the extension operator preserves the first element
of a Loewner chain from Bn to Bn+1. For n ≥ 2, Graham, Hamada and Kohr (see [35]; see also [10], [33])
obtained the same property in the setting of bounded symmetric domains.

Theorem 3.7.7. If f ∈ S0(Bn), then Γn(f) belongs to the class S0(Bn+1). Hence, Γn

(
S0(Bn)

)
is a subset

of S0(Bn+1).
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3.8. Convex combinations of Graham-Kohr type extension operators

3.8 Convex combinations of Graham-Kohr type extension operators

In the last section of this chapter we combine the ideas presented above, namely extension operators and
convex combinations of biholomorphic mappings in Cn (see e.g. [9], [19], [97] for convex combinations of
univalent functions in C; see e.g. [45], [52], [83] for convex combinations of biholomorphic mappings in
Cn; see also [42], [44], [111], [121] for extension operators). Hence, we discuss about convex combinations
of extension operators on Bn. In particular, we consider a new extension operator obtained as a convex
combination of two Graham-Kohr type extension operators (see e.g. [43], [44]). The results presented in
this section are original.

3.8.1 The extension operator Kα,β
n,λ

First, for λ, α, β ∈ [0, 1], let us introduce the extension operator Kα,β
n,λ in Cn. This operator is obtained as

a convex combination of two Graham-Kohr type extension operators (see e.g. [44]).

Definition 3.8.1. Let λ, α, β ∈ [0, 1]. We define the operator

Kα,β
n,λ(f, g)(z) = (1− λ)Ψn,α(g)(z) + λΨn,β(f)(z)

=

Å
(1− λ)g(z1) + λf(z1), (1− λ)z̃

ï
g(z1)

z1

òα
+ λz̃

ï
f(z1)

z1

òβã
, (3.8.1)

for all z = (z1, z̃) ∈ Bn, where f, g ∈ LS such that f(z1) ̸= 0 and g(z1) ̸= 0, for all z1 ∈ U \ {0} and
Ψn,α and Ψn,β are the Graham-Kohr extension operators defined by (3.7.2). We consider the branch of the

power functions such that
(g(z1)

z1

)α∣∣
z1=0

= 1 and
(f(z1)

z1

)β∣∣
z1=0

= 1.

Proposition 3.8.2. Let λ, α, β ∈ [0, 1] and let Kα,β
n,λ be the operator defined by (3.8.1). Also let f, g : U → C

be two functions with the properties from Definition 3.8.1. Then Kα,β
n,λ(f, g) ∈ H0(Bn).

Taking into account Definition 3.8.1 it is natural to consider λ ∈ (0, 1), α, β ∈ [0, 1] and the particular

cases of the operator Kα,β
n,λ presented in the next definition. We also impose some supplementary conditions

on the function f in order to obtain a complete generalization of the Graham-Kohr extension operator
Ψn,α.

Definition 3.8.3. Let α, β, γ ∈ [0, 1] be such that α ̸= β and λ ∈ (0, 1). Let f ∈ LS be such that

f(z1) ̸= 0, for all z1 ∈ U \ {0} and
(f(z1)

z1

)γ∣∣
z1=0

= 1. Moreover, let us consider the assumptions

A) f ′(z1) ̸= λ−1
λ , for all z1 ∈ U and λ ∈ (0, 1)

B)

ï
f(z1)

z1

òγ
̸= λ− 1

λ
, for all z1 ∈ U, λ ∈ (0, 1) and γ ∈ [0, 1].

Then we define

� the extension operator Kβ
λ by

Kβ
λ(f)(z) = Kα,β

n,λ(f, idU)(z) = (1− λ)In(z) + λΨn,β(f)(z)

=

Å
(1− λ)z1 + λf(z1), (1− λ)z̃ + λz̃

ï
f(z1
z1

òβã
, z ∈ Bn, (3.8.2)

where In is the identity operator in Cn and

� the extension operator Kα,β
λ by

Kα,β
λ (f)(z) = Kα,β

n,λ(f, f)(z) = (1− λ)Ψn,α(f)(z) + λΨn,β(f)(z)

=

Å
f(z1), (1− λ)z̃

ï
f(z1)

z1

òα
+ λz̃

ï
f(z1)

z1

òβã
, z ∈ Bn. (3.8.3)

Note that Ψn,α and Ψn,β are Graham-Kohr type extension operators defined by (3.7.2).
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3.8. Convex combinations of Graham-Kohr type extension operators

3.8.2 The preservation of biholomorphy through the operator Kβ
λ

In the second part of this section we study particular properties of the operator Kβ
λ(f). We observe

that some additional conditions on the normalized locally univalent function f can ensures the locally
biholomorphy, respectively the univalence of the mapping Kβ

λ(f) in Cn. The original results presented here
have been obtained by the author.

General properties

In view of relation (3.8.2) we deduce that if f ∈ LS, then Kβ
λ(f) ∈ H0(Bn), for all λ ∈ (0, 1) and β ∈ [0, 1],

where
DKβ

λ(f)(z) = (1− λ)In + λDΨn,β(f)(z), z ∈ Bn. (3.8.4)

Indeed, if f ∈ LS, then Ψn,β(f) ∈ LSn(Bn), for all β ∈ [0, 1]. In addition, under the assumptions considered

in Definition 3.8.3, we obtain the locally biholomorphy of the mapping Kβ
λ(f), as follows:

Lemma 3.8.4. Let f ∈ LS be such that f(z1) ̸= 0, for all z1 ∈ U \ {0} and
(f(z1)

z1

)β∣∣
z1=0

= 1, for

all β ∈ [0, 1]. Also, let us consider that f satisfies assumptions A) and B) from Definition 3.8.3. Then

Kβ
λ(f) ∈ LSn(Bn), for all λ ∈ (0, 1) and β ∈ [0, 1].

In view of the previous result, we deduce the following statement:

Proposition 3.8.5. Let f ∈ LS be with f(z1) ̸= 0, for all z1 ∈ U\{0} and
(f(z1)

z1

)β∣∣
z1=0

= 1, for β ∈ [0, 1].

Also, assume that Ref ′(z1) > 0, for all z1 ∈ U. Then Kβ
λ(f) ∈ LSn(Bn), for λ ∈ (0, 1) and β ∈ [0, 1].

For some particular choices of β, we can obtain even a better result which ensures the univalence of the
mapping Kβ

λ(f). These particular forms of the operator Kβ
λ are not trivial, as can be seen in the following

result.

Theorem 3.8.6. Let λ ∈ (0, 1) and f ∈ S be such that Ref ′(z1) > 0, for all z1 ∈ U. Then Kβ
λ(f) ∈ S0(Bn),

for all λ ∈ (0, 1) and β ∈ {0, 1}.

3.8.3 The preservation of starlikeness through the operator Kβ
λ

Based on the result obtained above, we can prove that under similar hypothesis, the operator Kβ
λ preserve

the starlikeness from the unit disc U to the Euclidean unit ball Bn in Cn. The following results are due to
Grigoriciuc.

Theorem 3.8.7. Let λ ∈ (0, 1) and f ∈ S∗ be such that Ref ′(z1) > 0, for all z1 ∈ U. Then K1
λ(f) ∈

S∗(Bn), for all λ ∈ (0, 1).

By applying Theorem 3.8.6 and employing a similar argument as in the previous proof, we can derive
the following result concerning the starlikeness of the mapping K0

λ(f):

Proposition 3.8.8. Let λ ∈ (0, 1) and f ∈ S∗ be such that Ref ′(z1) > 0, for all z1 ∈ U. Then K0
λ(f) ∈

S∗(Bn), for all λ ∈ (0, 1).

Until this point, we proved that if f ∈ S∗ with Ref ′(z1) > 0, for all z1 ∈ U, then Kβ
λ(f) ∈ S∗(Bn), for

all λ ∈ (0, 1) and β ∈ {0, 1}. Even if these results hold, the case when β ∈ (0, 1) remains an open question.
Hence, it is natural to consider the following question:

3.8.4 The preservation of local biholomorphy by the operator Kα,β
λ

We end this section by presenting two simple properties of the operator Kα,β
λ given by (3.8.3). First, we

observe that the operators Kβ
λ and Kα,β

λ are different for all α, β ∈ [0, 1] with α ̸= β and λ ∈ (0, 1), even in
the simplest form of the second one. Then, it is not trivial to prove a local biholomorphy criteria for the
operator Kα,β

λ . This subsection contains original results obtained by the author.

Theorem 3.8.9. Let f ∈ LS be such that Ref ′(z1) > 0, for all z1 ∈ U and let 0 ≤ α < β ≤ 1. Then

Kα,β
λ (f) ∈ LSn(Bn), for all λ ∈ (0, 1) and 0 ≤ α < β ≤ 1.
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Chapter 4

New subclasses of biholomorphic
mappings on Bn

The fourth chapter of this thesis contains extensions of the main results presented in Chapter 2 related to
a new differential operator, respectively new subclasses of biholomorphic mappings on the Euclidean unit
ball Bn in Cn.

First, we discuss about the n-dimensional form of the operator Gk, denoted here by Gn,k, for every
n ∈ N with n ≥ 2 and k ∈ N. The operator Gn,k will be used to extend the subclasses Ek and E∗

k from
the unit disc U to the unit ball Bn in Cn with respect to an arbitrary norm. Even if these classes can be
defined in a very general context, the case of the Euclidean unit ball Bn will be addressed in particular
in our discussion, considering the properties that are preserved (or not) from the one dimensional case to
higher dimensions.

The main result that is highlighted in §4.2 shows that the family E∗
1(Bn) coincides with the class K

of convex functions for n = 1 (see Theorem 4.2.1; see also Proposition 2.2.4). However, for n ≥ 2, we
obtain that E∗

1(Bn) ∩K(Bn) ̸= ∅, but E∗
1(Bn) ̸= K(Bn). Note that in the case of the subclass E∗

1(Bn) we
obtain a notable difference between the one dimensional case and the one of several complex variables, i.e.
the family of convex mappings is not the same with the subclass E∗

1(Bn). Another result that is proved
in this section (see Theorem 4.2.3) says something about the connection between E1(Bn) and the family
K(Bn; 1/2) of convex mappings of order 1/2. The inclusion E1 ⊂ K(1/2) that holds in the one dimensional
case can be partially extended in Cn. Other properties and relevant examples are presented in this section
in order to describe the new subclasses introduced by the author (e.g. a Marx-Strohhäcker type theorem
for our subclasess).

We end this chapter with the study of two particular cases of the Graham-Kohr extension operator
Ψn,α (presented in in §3.7) applied to the family of convex functions K. Although the operator Ψn,α does
not preserve the notion of convexity (see e.g. [44]), we can prove an important property related to the
subclass E∗

1 . We know that E∗
1 = K in C and thus, in §4.3 we show that Ψn,α(K) ⊆ E∗

1(Bn) ̸= K(Bn) for
α ∈ {0, 1}. With this result, not only we managed to connect the results proved in Chapters 2 and 4 with
the help of the Graham-Kohr extension operator, but we also obtained a new property for this operator.
Along with these results, we also propose some questions and open problems related to the Graham-Kohr
extension operator and the subclass E∗

k in higher dimensions.
Finally, let us mention that all original outcomes detailed in this chapter were attained by Grigoriciuc

in [53]. Other important bibliographic sources used to prepare this chapter are [19], [44], [45], [71], [83],
[122].

4.1 Preliminaries

In this section we introduce the n-dimensional version of the differential operator Gk defined in Chapter
2. We denote this operator in Cn by Gn,k, for every n ∈ N with ≥ 2 and k ∈ N. Using the differential
operator Gn,k we can extend also the subclasses E∗

k , respectively Ek from the unit disc U to the unit ball
Bn in Cn with respect to an arbitrary norm ∥ · ∥∗. We give the definitions of the mentioned subclasses in a
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4.1. Preliminaries

general setting (on the unit ball Bn in Cn with respect to an arbitrary norm ∥ · ∥∗), but we will focus our
attention on the particular case of the Euclidean unit ball Bn. The original results from this section can
be found in [53].

Definition 4.1.1. Let k ∈ N = {0, 1, 2, ...} and let f ∈ H0(B
n) be of the form f(z) = z +

∑∞
m=2 Pm(z),

where

Pm(z) =
1

m!
Dmf(0)(zm), z ∈ Bn, m ≥ 2. (4.1.1)

Then we define the differential operator Gn,k : H0(B
n) → H(Bn) by

(
Gn,kf

)
(z) =


Dkf(z)(zk) + z +

k−1∑
m=2

Pm(z), k ≥ 3

D2f(z)(z2) + z, k = 2

Df(z)(z), k = 1

f(z), k = 0,

(4.1.2)

for all z ∈ Bn. It is clear that G1,k = Gk is the differential operator defined in Chapter 2 (see Definition
2.1.1) for every k ∈ N. Moreover, Gn,0 = In is the identity operator in Cn and, as in the case of one
dimension, also here Gn,k(In) = In, for all k ∈ N.

Taking into account the definition of the operator Gn,k, we can define the n-dimensional version of the
subclasses E∗

k , respectively Ek presented in Chapter 2 (see Definitions 2.2.1 and 2.2.14). These subclasses
were introduced by Grigoriciuc in [53].

Definition 4.1.2. Let k ∈ N. Then we denote by

E∗
k(B

n) =
{
f ∈ S(Bn) : Gn,kf ∈ S∗(Bn)

}
(4.1.3)

the subclass of normalized univalent mappings on Bn for which Gn,kf is starlike on Bn, respectively by

Ek(B
n) =

{
f ∈ S(Bn) : Gn,kf ∈ K(Bn)

}
. (4.1.4)

the subclass of normalized univalent mappings on Bn for which Gn,kf is convex on Bn.

Remark 4.1.3. According to the previous definition, it is clear that

1. if k = 0, then E∗
0(B

n) = S∗(Bn) and E0(B
n) = K(Bn);

2. if k = 1, then E∗
1(B

n) =
{
f ∈ S(Bn) : Gn,1f ∈ S∗(Bn)

}
and E1(B

n) =
{
f ∈ S(Bn) : Gn,1f ∈

K(Bn)
}
, where Gn,1f(z) = Df(z)(z), for z ∈ Bn.

An important remark on the previous subclasses of biholomorphic mappings in Cn is based on the fact
that Alexander’s duality theorem is no longer true in higher dimensions (see Remark 3.4.9; see e.g. [45],
[83]). According to this, we obtain the following remarks:

Remark 4.1.4. If n ≥ 2, then

K(Bn
1 ) ⊊ E∗

1(B
n
1 ) and K(Un) ⊊ E∗

1(Un), (4.1.5)

where Bn
1 is the unit ball in Cn with respect to the 1-norm (recall that the 1-norm is given by ∥z∥1 =∑n

j=1 |zj |, for all z = (z1, ..., zn) ∈ Cn), respectively Un is the unit polydisc in Cn (for details, one may
consult §3.1.1).

Remark 4.1.5. In contrast to Remark 4.1.4, we can prove (see Theorem 4.2.1 presented in the next
section) that

E∗
1(Bn) ̸= K(Bn), n ≥ 2, (4.1.6)

where Bn is the Euclidean unit ball in Cn. Hence, it is not trivial to define the subclasses E∗
k and Ek of

univalent mappings in the case of several complex variables. Even the simplest case k = 1 is important for
the Euclidean unit ball Bn in view of the difference provided by relation (4.1.6).

42



4.2. General properties of the subclasses E∗
k(Bn) and Ek(Bn)

Next we present an example of mapping which belong to the class E∗
1(B

n
p ) for the general case of the

unit ball Bn
p in Cn with respect to a p-norm (recall that Bn

p is defined in §3.1.1). This example was also
considered in [45], [83], [71], [122]. We present here this example in order to show that the family E∗

1(B
n)

is nonempty.

Example 4.1.6. Let f : B2
p ⊂ C2 → C2 be defined by f(z) =

(
z1 + az22 , z2

)
, for all z = (z1, z2) ∈ B2

p .

Then f ∈ E∗
1(B

2
p) if and only if |a| ≤ 1

2

(p2−1
4

)1/p(p+1
p−1

)
, for all p > 1.

4.2 General properties of the subclasses E∗
k(Bn) and Ek(Bn)

The second section is dedicate to study of some general properties of the subclasses defined above. We will
highlight the connection between subclasses E∗

1 (respectively E1) on U and the class of convex mappings
K(Bn

p ) in Cn. It is important to mention that results from the case n = 1 are not longer true in Cn, for
n ≥ 2. The following results are novel and were achieved in [53].

Theorem 4.2.1. Regarding to the class E∗
1 , the following statements are true:

1. If n = 1, then E∗
1(U) = K(U) = K.

2. If n ≥ 2, then E∗
1(Bn) ∩K(Bn) ̸= ∅ and E∗

1(Bn) ̸= K(Bn).

Remark 4.2.2. According to Theorem 4.2.1, it is clear that if n = 1, then K(U) = E∗
1(U). However, if

n ≥ 2, then K(Bn
1 ) ⊊ E∗

1(B
n
1 ) and K(Un) ⊊ E∗

1(Un) in view of Remark 4.1.4 and K(Bn) ̸= E∗
1(Bn) in view

of Theorem 4.2.1.

Theorem 4.2.3. Regarding to the class E1, the following statements are true:

1. If n = 1, then E1(U) ⊊ K(1/2).

2. If n ≥ 2, then E1(Bn) ∩ K(Bn; 1/2) ̸= ∅ and K(Bn; 1/2) \ E1(Bn) ̸= ∅, i.e. there exist also convex
mappings of order 1/2 on Bn which does not belong to class E1(Bn).

Definition 4.2.4. Let k ∈ N and α ∈ [0, 1). In view of Definition 4.1.2, we denote by

E∗
k(B

n;α) =

ß
f ∈ S(Bn) : Gn,kf ∈ S∗

α(B
n)

™
, (4.2.1)

where S∗
α(B

n) is the family of starlike mappings of order α in Cn (see Definition 3.4.3; see also [13], [81])
and Bn is the unit ball in Cn with respect to an arbitrary norm ∥ · ∥∗. Clearly, for α = 0, we have that
S∗
0(B

n) = S∗(Bn) and then E∗
k(B

n; 0) = E∗
k(B

n).

Using the previous definition, we can obtain another form of the Marx-Strohhäcker theorem for the
classes Ek and E∗

k (see Theorem 3.4.8 for the case of several complex variables; see also [13], [45]). This
result was proved by the author in [53].

Theorem 4.2.5. Let k ∈ N. Then Ek(B
n) ⊆ E∗

k(B
n; 1/2) ⊆ E∗

k(B
n), where Bn is the unit ball of Cn with

respect to an arbitrary norm ∥ · ∥∗.

We end this section with some consequences of the previous result related to the inclusions between sub-
classes studied in this part. In particular, we obtain some well-known results in one and higher dimensions
(see e.g. [13], [29], [45], [83], [102]).

Corollary 4.2.6. Let us consider k ∈ N.

1. If n = 1, then Ek(U) ⊆ E∗
k(U; 1/2) ⊆ E∗

k(U). In particular, for k ∈ {0, 1} we obtain that

K = E0(U) ⊆ E∗
0(U; 1/2) = S∗(1/2) ⊆ S∗ = E∗

0(U) (4.2.2)

and
E1(U) ⊆ E∗

1(U; 1/2) = K(1/2) ⊆ K = E∗
1(U). (4.2.3)
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4.3. Geometric properties preserved by the Graham-Kohr extension operator

2. On the other hand, if n ≥ 2 and k ∈ {0, 1}, then

E0(B
n
p ) = K(Bn

p ) ⊆ E∗
0(B

n
p ; 1/2) = S∗(Bn

p ; 1/2) ⊆ S∗(Bn
p ) (4.2.4)

and
E1(B

n
p ) ⊆ E∗

1(B
n
p ; 1/2), 1 ≤ p < ∞, (4.2.5)

where Bn
p is the unit ball in Cn with respect to the p-norm and

E1(Un) ⊆ E∗
1(Un; 1/2), (4.2.6)

where Un is the unit polydisc in Cn.

4.3 Geometric properties preserved by the Graham-Kohr extension op-
erator

In the third part of this section we consider two particular cases of the Graham-Kohr extension operator
Ψn,α for α ∈ {0, 1}. Although the operator Ψn,α does not preserve the notion of convexity (see e.g. [44]),
we can still observe an important property related to the subclass E∗

1 (see Definition 2.2.1) in the particular
cases mentioned above, i.e. the subclass E∗

1 is preserved by the Graham-Kohr extension operator Ψn,α.
The original results discussed in this section were derived by Grigoriciuc in [53].

Proposition 4.3.1. If f belongs to the family K, then Ψn,0(f) ∈ E∗
1(Bn). Hence,

Ψn,0(K) = Ψn,0

(
E∗

1(U)
)
⊆ E∗

1(Bn) ̸= K(Bn). (4.3.1)

The following property was observed and proved by Grigoriciuc in [53].

Lemma 4.3.2. Let α = 0 and k ∈ {0, 1, 2}. Then Ψn,0(Gn,kf) = Gn,k(Ψn,0(f)).

As a direct consequence of Lemma 6.1.1 we have that

Corollary 4.3.3. Let α = 0 and k ∈ {0, 1, 2}. Then Ψn,0

(
E∗

k(U)
)
⊆ E∗

k(Bn).

The second important result in this section is related to the operator Ψn,1 in the particular case α = 1.

Theorem 4.3.4. If f ∈ K, then Ψn,1 ∈ E∗
1(Bn). Hence, Ψn,1(K) = Ψn,1

(
E∗

1(U)
)
⊆ E∗

1(Bn) ̸= K(Bn).

Lemma 4.3.5. Let α = 1 and k ∈ {0, 1, 2}. Then Ψn,1(Gn,kf) = Gn,k(Ψn,1(f)).

Based on Lemma 6.1.2, we obtain the following direct consequence:

Corollary 4.3.6. Let α = 1 and k ∈ {0, 1, 2}. Then Ψn,1

(
E∗

k(U)
)
⊆ E∗

k(Bn).

Recall that Graham and Kohr proved in [44] that the extension operator Ψn,α does not preserve con-
vexity for n ≥ 2, for all α ∈ [0, 1]. However, in this section we have proved that Ψn,α

(
E∗

k(U)
)
⊆ E∗

k(Bn),
for α ∈ {0, 1} and k ∈ {1, 2}. In particular, this leads to Ψn,α(K) ⊆ E∗

1(Bn), for α ∈ {0, 1}. However,
these are just some particular cases of the extension operator, respectively of the class E∗

k so one might
reasonably ask the following question:

Question 4.3.7. Let α ∈ [0, 1] and k ∈ N

� Is it true that Ψn,α

(
E∗

k(U)
)
⊆ E∗

k(Bn)?

� In particular, is it true that Ψn,α(K) ⊆ E∗
1(Bn), for all α ∈ [0, 1]?

On the other hand, Roper and Suffridge stated in [121] that their extension operator preserves convexity
from U to the unit ball of a complex Hilbert space. Graham, Hamada, Kohr and Kohr proved in [36] that
the extension operator Ψα,β preserves the notion of starlikeness from the unit disc U to the unit ball BH

of a complex Hilbert space H. In view of these results, we consider the following question:

Question 4.3.8. Let α ∈ [0, 1] and k ∈ N. Let also BH be the unit ball of a complex Hilbert space H.

� Is it true that Ψn,α

(
E∗

k(U)
)
⊆ E∗

k(BH)?

� In particular, is it true that Ψn,α(K) ⊆ E∗
1(BH)?
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Part III

Contributions in the theory of
biholomorphic mappings in complex

Banach spaces
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Chapter 5

Biholomorphic mappings and Loewner
theory in complex Banach spaces

The fifth chapter of this thesis is dedicated to a short study on biholomorphic mappings and Extension
operators in complex Banach spaces. We include here extensions of most of the results presented in
previous chapters. Among those who have made important contributions in the geometric function theory
of complex variables in the infinite dimensional case are J. Mujica, T. Poreda, T.J. Suffridge (see e.g. [106],
[117], [118], [127]) and more recently F. Bracci, I. Graham, H. Hamada, G. Kohr and M. Kohr (see e.g.
[3], [34], [38], [39], [40], [41]). We start our discussion from the very recent paper published by Graham,
Hamada, Kohr and Kohr regarding biholomorphic mappings, Loewner chains and Extention operators in
complex Banach spaces (see e.g. [39], [40], [41]). These papers constitute the basis of our study, containing
some of the fundamental ideas in obtaining all the other results in this chapter.

First section of this chapter contains basic results and properties of holomorphic functions and holo-
morphic mappings in infinite dimensions. We present the main notions and results that will be used during
this chapter (e.g. the maximum modulus theorem, the Schwarz’s lemma). For more details, one may
consult [45], [78], [79], [106], [127], [128]. Moreover, we recall here the generalization of the Carathéodory
family and the growth results obtained by Gurganus (see [57]), respectively by Bracci, Elin, Shoikhet (see
[6]) and Graham, Hamada, Honda, Kohr and Shon (see [31]) in infinite dimensional case.

The next section is dedicated to some particular families of biholomorphic mappings in complex Banach
spaces. We present here the classes of starlike, convex, respectively ε-starlike mappings together with their
analytical characterization. Important contributions were made by Suffridge (see [127]), Gurganus (see
[57]), Hamada and Kohr (see e.g. [68], [74]), Gong and Liu (see [25], [26]).

In §5.3 we focus our attention on general results related to the theory of Loewner chains in complex Ba-
nach spaces that will be used in our main results. The study of subordination chains in infinite dimensional
spaces was started by Poreda (see e.g. [117], [118]). These ideas were continued and improved by Graham,
Hamada, Kohr and Kohr (see e.g. [34], [38], [39], [40], [41]), Hamada and Kohr (see e.g. [70], [72]), Arosio,
Bracci, Hamada and Kohr (see e.g. [2], [3]) who obtained important results related to Loewner chains and
Loewner PDE in infinite dimensional spaces. The latter part of this section presents results pertaining
to the concept of parametric representation in infinite dimensions. This concept was introduced by Gra-
ham, Hamada, Kohr and Kohr (see [38]) and represents the generalization of the parametric representation
presented in Definition 3.5.11. Also, we discuss in this section about the concept of g-parametric represen-
tation, g-Loewner chain and particular families of biholomorphic mappings associated to g-Loewner chains.
For details, one may consult [32], [34], [45], [60], [61], [62], [74].

As we have already mentioned, the main bibliographic sources are [3], [34], [38], [39], [40], [41], [106],
[117], [118], [127], [131], [132], [133], [134].

5.1 General notions regarding holomorphy in complex Banach spaces

This section is devoted to the study of basic properties of holomorphic functions and holomorphic mappings
in infinite dimensions. We present the main notions and results that will be used during this chapter. For
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more details, one may consult [45], [78], [79], [106], [127], [128].

5.1.1 Holomorphic mappings in complex Banach spaces

Let X be a complex Banach space with respect to the norm ∥ · ∥. We denote by

BX(x0, r) =
{
x ∈ X : ∥x− x0∥ < r

}
the open ball of center x0 ∈ X and radius r > 0. In particular, we denote simply by BX = BX(0, 1) the
open unit ball of X.

We denote by L(X,Y ) the set of continuous linear operators from X into another complex Banach
space Y with the standard operator norm

∥A∥ = sup
{
∥A(x)∥Y : ∥x∥X = 1

}
,

for every A ∈ L(X,Y ). When it is clear the norm whose space we are considering, we will omit the inferior
indices of the norm. In particular, we denote L(X,X) by L(X) and the identity operator in L(X) by IX
(see e.g. [45], [79], [106], [127], [128]).

Definition 5.1.1. Let Ω ⊆ X be a domain. The mapping f : Ω → Y is called holomorphic on Ω if for
each x ∈ Ω there exists a mapping Df(x) ∈ L(X,Y ) such that

lim
h→0

∥f(x+ h)− f(x)−Df(x)(h)∥
∥h∥

= 0.

We denote by H(Ω, Y ) the set of holomorphic mappings on Ω into Y . If Y = X, then we denote H(Ω, Y )
simply by H(Ω).

Remark 5.1.2. Let X be a complex Banach space and let Ω ⊆ X be a domain such that 0 ∈ Ω. We say
that f ∈ H(Ω) is normalized if f(0) = 0 and Df(0) = IX , where Df(x) is the Fréchet derivative of f at x.
We denote the set of normalized holomorphic mappings on Ω by H0(Ω).

The next result is an extension of the Schwarz’s lemma (see Lemma 1.1.4 for n = 1; see Lemma 3.1.3
for n ≥ 2) in infinite dimensions (see e.g. [78]).

Lemma 5.1.3. Let M > 0 and let f ∈ H(BX) be such that f(0) = 0 and ∥f(x)∥ < M , for all x ∈ BX .
Then ∥f(x)∥ ≤ M∥x∥, for all x ∈ BX . Moreover, if ∃x0 ∈ BX \ {0} with ∥f(x0)∥ = M∥x0∥, then
∥f(ax0)∥ = M∥ax0∥, for all a ∈ C with |a| ≤ 1

∥x0∥ .

5.1.2 Generalizations of the Carathéodory family

In this subsection we present the generalization of the Carathéodory family in complex Banach spaces (see
e.g. [45], [57], [74], [106], [127], [128]).

Let X be a complex Banach space and for x ∈ X \ {0}, we denote by

T (x) =
{
lx ∈ L(X,C) : lx(x) = ∥x∥X , ∥lx∥ = 1

}
.

In view of the Hahn-Banach theorem we know that T (x) ̸= ∅. Note that, if X = Cn is endowed with a

p-norm ∥ ·∥p, p ≥ 1 (recall that in §3.1.1 the p-norm is defined by ∥x∥p =
(∑n

j=1 |xj |p
) 1

p , for all x ∈ Cn; see

e.g. [45], [106]) and lx ∈ L(X,C) is given by lx(y) =
1

∥x∥p−1
p

∑
j≥1,xj ̸=0 |xj |p

yj
xj
, for all x, y ∈ X with x ̸= 0,

then lx ∈ T (x) (for details, one may consult [45], [106]). It is well-known that this set plays an important
role in the study of biholomorphic mappings in complex Banach spaces.

Let BX be the open unit ball of X. Then

M(BX) =

ß
h ∈ H0(BX) : Relx

(
h(x)

)
> 0, x ∈ BX \ {0}, lx ∈ T (x)

™
(5.1.1)
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is the Carathéodory family in H(BX). If X = C, it is easy to observe that f ∈ M(U) if and only if
f(x)
x ∈ P, where P is the Carathéodory family on U defined in Chapter 1.

One of the results that can be extended from the n-dimensional case to the complex Banach spaces
is the growth theorem for the Carathéodory class (see Theorem 3.2.2). This extension was obtained by
Gurganus (see [57]).

Proposition 5.1.4. Let X be a complex Banach space and let h ∈ M(BX). Then

∥x∥1− ∥x∥
1 + ∥x∥

≤ Relx
(
h(x)

)
≤ ∥x∥1 + ∥x∥

1− ∥x∥
, (5.1.2)

for all x ∈ BX \ {0} and lx ∈ T (x).

For details and other important results related to the Carathéodory family in higher dimensions, one
may consult [32], [36], [38], [45], [118], [128].

5.2 Families of biholomorphic mappings in complex Banach spaces

Let X,Y be two complex Banach spaces and let Ω ⊆ X be a domain. We say that f ∈ H(Ω, Y ) is

� locally biholomorphic on Ω if ∀x ∈ Ω, ∃r1, r2 > 0 such that f is one-to-one map of BX(x, r1) into
BY (f(x), r2) whose inverse is holomorphic on BY (f(x), r2);

� biholomorphic on Ω if f(Ω) ⊆ Y is a domain and ∃f−1 ∈ H(f(Ω)).

As in the finite dimensional case, we denote by

� LS(BX) the family of normalized locally biholomorphic mappings from BX into X;

� S(BX) the family of normalized biholomorphic mappings from BX into X.

In particular, when X = C, we have that BX = U and then LS(U) = LS, respectively S(U) = S as in
Chapter 1. For details, one may consult [45], [106], [127], [128].

Remark 5.2.1. It is important to mention here that f ∈ LS(BX) if and only if the Frechét derivative
Df(x) has a bounded inverse at each x ∈ BX . If X = Cn, the previous condition reduces to the property
that Jf (z) ̸= 0, for every z ∈ Bn (in particular, for n = 1, we obtain f ′(ζ) ̸= 0, for every ζ ∈ U).

Remark 5.2.2. Another important remark is that in the case of complex Banach spaces, the notions
of univalence and biholomorphy are not equivalent, i.e. there exist univalent mappings which are not
biholomoprhic (see e.g. [107], [119], [128]). This result is in contrast with the finite dimensional case (see
Definition 3.3.1). For more details and examples, one may consult also [128].

5.2.1 Starlike mappings

In the following, let X,Y be two complex Banach spaces and let Ω ⊆ X be a domain.

Definition 5.2.3. Let f : Ω → Y be a mapping and let x0 ∈ Ω. Then f is starlike with respect to x0 on
Ω if f is biholomorphic on Ω and f(Ω) is a starlike domain with respect to f(x0).

We denote by S∗(BX) the family of normalized starlike (with respect to zero) mappings from the
open unit ball BX into X. The analytical characterization of this family was obtained by Suffridge (see
[127]). A simplified form of this result was proved by Gurganus (see [57]); the rectified final form of the
characterization is due to Hamada and Kohr (see e.g. [68]).

Theorem 5.2.4. Let f : BX → Y be a locally biholomorphic mapping such that f(0) = 0. Then f ∈ S∗(BX)
if and only if there is h ∈ M(BX) such that

f(x) = Df(x)h(x), x ∈ BX . (5.2.1)
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For more details and examples of starlike mappings in infinite dimensions, one may consult [45], [75],
[127], [128]. Note that the notions of spirallikeness of type δ ∈ (−π/2, π/2), respectively almost starlikeness
of order α ∈ [0, 1) can be extended in the case of complex Banach spaces (see e.g. [45], [74], [127], [128],
[133]).

5.2.2 Convex mappings

Let X,Y be two complex Banach spaces and let Ω ⊆ X be a domain.

Definition 5.2.5. Let f ∈ H(Ω, Y ) be a mapping. Then f is convex on Ω if f is biholomoprhic on Ω and
f(Ω) is a convex domain in Y .

We denote by K(BX) the family of normalized convex mapping from the open unit ball BX into X.
Next, we present a necessary condition for convexity obtained by Suffridge, respectively by Roper and
Suffridge (see [122], [127]). Note that this condition is necessary, but not sufficient for convexity.

Theorem 5.2.6. If f : BX → Y is convex, then

D2f(x)(x, x) +Df(x)x = Df(x)h(x), (5.2.2)

for all x ∈ BX , where h ∈ M(BX).

Other important results related to convex mappings and characterization theorems in infinite dimensions
can be found in [45], [127], [128].

5.2.3 ε-starlike mappings

An important notion that links the classes presented above is the ε-starlikeness introduced by Gong and
Liu (see [25]). We present here the definition, respectively the analytical characterization of ε-starlikeness
(see [25]).

Definition 5.2.7. Let 0 ≤ ε ≤ 1 and let f : BX → Y be a biholomorphic mapping such that f(0) = 0.
Then f is ε-starlike on BX if f(BX) is starlike with respect to every point in εf(BX), i.e.

(1− t)f(x) + tεf(y) ∈ f(BX), t ∈ [0, 1], x, y ∈ BX .

Remark 5.2.8. It is easy to observe that for ε = 0 we obtain the family of starlike mappings on BX and
for ε = 1 we obtain the family of convex mappings on BX .

5.3 The theory of Loewner chains in complex Banach spaces

In this section we present some general results related to the theory of Loewner chains in complex Banach
spaces that will be used in our main results. As will be mentioned in the following, the study of subordi-
nation chains in infinite dimensional spaces was started by Poreda (see e.g. [117], [118]). These ideas were
continued and improved by Graham, Hamada, Kohr and Kohr (see e.g. [34], [38], [39], [40], [41]), Hamada
and Kohr (see e.g. [70], [72]), Arosio, Bracci, Hamada and Kohr (see e.g. [2], [3]) who obtained important
results related to Loewner chains and Loewner PDE in infinite dimensional spaces. The second part of
this section contains results related to the concept of parametric representation in infinite dimensions.
This notion is due to Graham, Hamada, Kohr and Kohr (see [38]) and represents the generalization of
the parametric representation presented in Definition 3.5.11. Also, we discuss in this part about the con-
cept of g-parametric representation, g-Loewner chain and particular families of biholomorphic mappings
associated to g-Loewner chains. For details, one may consult also [32], [34], [45], [60], [61], [62], [74].
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5.3.1 Loewner chains and biholomorphic mappings

We start this section with some introductory notions and results related to theory of Loewner chains in
infinite dimensions. Poreda was the first who studied subordination chains and the Loewner PDE on the
unit ball of a complex Banach space (see e.g. [117], [118]). Later, various important results were obtained
by Arosio, Bracci, Hamada and Kohr (see e.g. [2], [3]), Graham, Hamada, Kohr and Kohr (see e.g. [34],
[38], [39], [70]). It is important to mention that very recent results were obtained by Graham, Hamada,
Kohr and Kohr in [40], [41], [72].

In the following, let X be a complex Banach space with respect to the norm ∥ · ∥ and let BX be the
unit open ball of X.

Definition 5.3.1. Let f, g, ϕ ∈ H(BX). Then

1. ϕ is a Schwarz mapping if ∥ϕ(x)∥ ≤ ∥x∥, for all x ∈ BX ;

2. f is subordinate to g and write f ≺ g if there exists a Schwarz mapping ϕ such that f(x) = g(ϕ(x)),
for all x ∈ BX .

Definition 5.3.2. A mapping f : BX × [0,∞) → X is called

� a univalent subordination chain if f(·, t) is univalent on BX , f(0, t) = 0 for t ≥ 0 and f(·, s) ≺ f(·, t)
for all 0 ≤ s ≤ t < ∞;

� in addition, if f(·, t) is biholomorphic on BX and Df(0, t) = etIX for all t ≥ 0, then f is called a
Loewner chain.

Recall that the previous subordination condition corresponds to the existence of a unique biholomorphic
Schwarz mapping v = v(·, s, t) with

f(x, s) = f(v(x, s, t), t), x ∈ BX , 0 ≤ s ≤ t < ∞.

The mapping v = v(·, s, t) is called the transition mapping associated with f(x, t). The transition mapping
v satisfies also the semigroup property (see e.g. [34])

v(x, s, t) = v
(
v(x, s, u), u, t

)
, x ∈ BX , 0 ≤ s ≤ u ≤ t < ∞.

Definition 5.3.3. A mapping h = h(x, t) : BX × [0,∞) → X is said to be a generating vector field (or
Herglotz vector field) if:

a) h(·, t) belongs to the class M(BX), for all t ≥ 0;

b) h(x, ·) belongs to the class of strongly measurable functions on [0,∞), for all x ∈ BX .

According to previous definitions, we have the following existence and uniqueness result obtained in
[69] (see also [31], [109]). This result is the analogous of the results presented in the one dimensional case
(see Theorem 1.6.4), respectively in finite higher dimensions (see Theorems 3.5.4 and 3.5.6).

Lemma 5.3.4. Let X be a reflexive complex Banach space and let h = h(x, t) : BX × [0,∞) → X be a
Herglotz vector field. Then for every s ≥ 0 and x ∈ BX , the Cauchy problem

∂v

∂t
= −h(v, t), a.e. t ≥ s

v(x, s, s) = x
(5.3.1)

has a unique solution v = v(x, s, t) such that

� v(·, s, t) belongs to the family of univalent Schwarz mappings;

� v(x, s, ·) belongs to the class of Lipschitz continuous functions on [s,∞) uniformly with respect to
x ∈ BX(0, ρ), where ρ ∈ (0, 1);
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� Dv(0, s, t) = es−tIX , for 0 ≤ s ≤ t.

In addition, for all ρ ∈ (0, 1) and s ≥ 0, there exists the limit limt→∞ etv(x, s, t) = f(x, s) uniformly on
BX(0, ρ). Then f(x, t) is a Loewner chain and for each ρ ∈ (0, 1), there exists Mρ ≤ ρ

(1−ρ)2
such that

∥e−tf(x, t)∥ ≤ Mρ, ∥x∥ ≤ ρ, t ≥ 0. (5.3.2)

In view of the results obtained by Poreda (see [118]), we know that if h(x, t) is continuous on BX×[0,∞),
then the conclusion of the previous lemma is true in the case of complex Banach spaces, not necessarily
reflexive (see e.g. [34]). Other important results related to the theory of Loewner chains in complex Banach
spaces can be found in the recent papers of Graham, Hamada, Kohr and Kohr (see e.g. [34], [39], [40],
[41], [72]).

5.3.2 Parametric and g-parametric representation

Next, we present the notion of parametric representation in infinite dimensions. This notion is due to
Graham, Hamada, Kohr and Kohr (see [38]) and represents the generalization of the idea presented in
Definition 3.5.11. Also, we discuss in this part about the g-parametric representation and g-Loewner
chains. For details, one may consult [34], [45], [61], [74].

Parametric representation

Let X be a reflexive complex Banach space. Recall that we denote by H0(BX) the set of normalized
holomorphic mappings on BX .

Definition 5.3.5. A mapping f ∈ H0(BX) has parametric representation if there is a Herglotz vector field
h(x, t) : BX × [0,∞) → X such that f(x) = limt→∞ etv(x, t) uniformly on BX(0, ρ), for every ρ ∈ (0, 1),
where v(x, t) is the unique Lipschitz continuous solution of the problem (5.3.1) on [0,∞) for s = 0. We
denote by S0(BX) the family of mappings which have parametric representation on BX .

g-parametric representation

In order to present the definition of g-parametric representation, let us consider the following assumption
that will play a key role in our study (see e.g. [34], [45]):

Assumption 5.3.6. Let g : U → C be a holomorphic univalent function with g(0) = 1 and Reg(ζ) > 0,
for all ζ ∈ U.

An important step is to extend the class Mg in infinite dimensions (see Definition 3.5.16 for X = Cn).
For details, one may consult [34], [45], [61], [74].

Definition 5.3.7. Let g : U → C satisfy Assumption 5.3.6 and let h ∈ H0(BX). We say that h ∈ Mg(BX)
if 1

∥x∥ lx
(
h(x)

)
∈ g(U), for all x ∈ BX \ {0} and lx ∈ T (x).

In view of the previous results, we can present the notion of g-parametric representation, respectively
g-Loewner chain in infinite dimensions (see e.g. [32], [34], [40]).

Definition 5.3.8. Let X be a reflexive complex Banach space and let f ∈ S0(BX). We say that f has
g-parametric representation if h(·, t) ∈ Mg(BX) and we denote by S0

g (BX) the family of mappings that
have g-parametric representation on BX .

Definition 5.3.9. Let g : U → C satisfy Assumption 5.3.6 and let f = f(x, t) : BX × [0,∞) → X be a
mapping. We say that f(x, t) is a g-Loewner chain if

a) f(x, t) is a Loewner chain such that the family
{
e−tf(·, t)

}
t≥0

is uniformly bounded on ρBX , for

ρ ∈ (0, 1);
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b) ∃A ⊆ [0,∞) null set such that ∃∂f
∂t (x, t) for t ∈ [0,∞) \ A and for all x ∈ BX , and ∃h = h(x, t) :

BX × [0,∞) → X a generating vector field with the property that h(·, t) belongs to the class Mg(BX)
for t ∈ [0,∞) \A and

∂f

∂t
(x, t) = Df(x, t)h(x, t), t ∈ [0,∞) \A, ∀ x ∈ BX . (5.3.3)

Remark 5.3.10. It is important to highlight here that in [39] (see also [40]) the authors mention that in
general, if X is a complex Banach space and if f(x, t) satisfies the first condition from Definition 5.3.9,
then it is not known whether ∃∂f

∂t (x, t) for x ∈ BX and t ∈ [0,∞) \A, where A ⊂ [0,∞) is a null set. Also,

if ∃∂f
∂t (x, t) in the same hypothesis, it is not known whether ∃h(x, t) a generating vector field such that the

differential Loewner equation (5.3.3) holds. However, in the case of separable reflexive complex Banach
spaces, we obtain positive answers to these questions (see e.g. [39], [40]).

5.3.3 Biholomorphic mappings associated to g-Loewner chains

The last part of this section is dedicated to some particular families of biholomorphic mappings associated
to g-Loewner chains. These notions were studied in both in finite and infinite dimensions by several
authors (see e.g. [32], [45], [60], [61], [62], [74]). In the following, let g : U → C be a function that satisfies
Assumption 5.3.6.

Definition 5.3.11. Let d ∈ (0, 1] and µ ∈ [0, 1). A mapping f ∈ LS(BX) is called

a) g-starlike mapping on BX if h ∈ Mg(BX), where

h(x) =
[
Df(x)

]−1
f(x), x ∈ BX . (5.3.4)

We denote by S∗
g (BX) the family of normalized g-starlike mappings on BX .

b) strongly starlike of order d if h ∈ Mg(BX), where h is given by (5.3.4) and

g(ζ) =

Å
1− ζ

1 + ζ

ãd
, ζ ∈ U. (5.3.5)

Note that the branch of the power function is chosen such that
(1−ζ
1+ζ

)d∣∣
ζ=0

= 1.

c) almost starlike of order µ if h ∈ Mg(BX), where h is given by (5.3.4) and

g(ζ) = (1− µ)
1− ζ

1 + ζ
+ µ, ζ ∈ U. (5.3.6)

d) parabolic starlike of order µ if h ∈ Mg(BX), where h is given by (5.3.4), g = 1/qµ and

qµ(ζ) = 1 +
4(1− µ)

π2

Å
log

1 +
√
ζ

1−
√
ζ

ã2
, ζ ∈ U

Note that we choose the branch of the logarithm function such that log 1 = 0.

Theorem 5.3.12. Let f ∈ LS(BX) and let g : U → C be a univalent function that fulfil the conditions from
Assumption 5.3.6. Then f ∈ S∗

g (BX) if and only if f(x, t) = etf(x) is a g-Loewner chain on BX × [0,∞).

For details and results related to other subclasses of biholomorphic mappings associated to g-Loewner
chains, one may consult [39], [40], [74]. For the finite dimensional case, see [32], [34], [60] (see also [61],
[62], [98]).
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Chapter 6

New results related to Loewner chains
and Extension operators in complex
Banach spaces

This last chapter of the thesis contains original results related to Loewner chains and Extension operators
in complex Banachs spaces based on the ideas presented by Graham, Hamada, Kohr and Kohr in [39]
and [40]. Part of the original results have been obtained by Grigoriciuc in [55]. First, we consider the
Graham-Kohr extension operator Ψα on the domain Ωp,r =

{
(z1, w) ∈ Y = C ×X : |z1|p + ∥w∥rX < 1

}
,

where X is a complex Banach space, α ≥ 0 and p, r ≥ 1. Based on the results proved by Graham, Hamada,
Kohr and Kohr in [39] for p = 2 (see also [40]), we try to obtain extension properties for the general case
p ∈ [1,∞).

The second section is dedicated to study of preservation of Loewner chains by the Pfaltzgraff-Suffridge
extension operator from one dimension to infinite dimensional complex Banach spaces. Recently, Graham,
Hamada, Kohr and Kohr (see e.g. [40]) proved that the Pfaltzgraff-Suffridge extension operator preserves
the first elements of Loewner chains from the open unit ball BX of an n-dimensional JB∗-triple X into a
domain Dα ⊆ BX × BY , where Y is a complex Banach space (for the complete results and their proofs,
one may consult [33], [35] and [40]). Similar results were obtained for the finite dimensional case in [21],
[33], [43], [49]. Inspired by the results obtained by Graham, Hamada, Kohr and Kohr, we prove that the
Pfaltzgraff-Suffridge type extension operator preserve the first elements of Loewner chains from the unit
ball Bn of Cn (with respect to different norms) into the unit ball of W = Cn × Y , where Y is a complex
Banach space.

The main bibliographic sources are the recent papers [34], [38], [39], [40], [41], [131], [132], [133], [134].

6.1 g-Loewner chains and the Graham-Kohr extension operator

Let X be a complex Banach space and let p, r ≥ 1. Also, let

Ωp,r =
{
(z1, w) ∈ Y = C×X : |z1|p + ∥w∥rX < 1

}
. (6.1.1)

where z1 ∈ C and w ∈ X. Then the Minkowski functional of Ωp,r is a complete norm ∥ · ∥Y on Y and Ωp,r

is the unit ball of Y = C×X with respect to this norm, where

� the Minkowski functional of Ωp,r is given by ρ(z) = inf{t > 0 : 1
t z ∈ Ωp,r}, z ∈ Ωp,r;

� the norm ∥ · ∥Y on Y is given by ∥z∥Y = |z1|p + ∥w∥rX , for all z = (z1, w) ∈ Y = C×X.

Let α ≥ 0 and let Ψα : LS → LS(Ωp,r) be the Graham-Kohr extension operator given by

Ψα(f)(z1, w) =

Å
f(z1),

Å
f(z1)

z1

ãα
w

ã
, z = (z1, w) ∈ Ωp,r, (6.1.2)
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where we take the branch of the power function such that
(f(z1)

z1

)α∣∣
z1=0

= 1. Recall that for α, β ≥ 0, we
denote by

Φα,β(f)(z1, w) =

Å
f(z1),

Å
f(z1)

z1

ãα(
f ′(z1)

)β
w

ã
, z = (z1, w) ∈ Ωp,r (6.1.3)

the Roper-Suffridge type extension operator. We consider the branches of the power functions such that(f(z1)
z1

)α∣∣
z1=0

= 1 and
(
f ′(z1)

)β∣∣
z1=0

= 1.

Recently, Graham, Hamada, Kohr and Kohr (see e.g. [39], [40]) proved that the Roper-Suffridge type
extension operator Φα,β preserves the first elements of g-Loewner chains on U to the first elements of g-
Loewner chains on Ω2,r with r ≥ 1, where α ∈ [0, 1] and β ∈ [0, 1/r] such that α+ β ≤ 1 and g is a convex
function on U that satifies Assumption 5.3.6. As consequences of this result, the authors proved that Φα,β

preserves the notions of g-starlikness, strongly starlikeness of order d ∈ (0, 1] and almost starlikeness of
order µ ∈ [0, 1) in the same setting (see e.g. [39], [40]).

If β = 0 and g ∈ Hu(U) satisfies Assumption 5.3.6 such that g(U) is a starlike domain with respect to
1, then we obtain the preservation of the first elements of g-Loewner chains and of the notion of parabolic
starlikeness of order µ ∈ [0, 1) under the extension operator Φα,0 = Ψα on Ω2,r, for α ∈ [0, 1] and r ≥ 1
(see e.g. [39], [40]). For the finite dimension version of these results, one may consult [33], [42], [47].

6.1.1 Preliminaries

In this section we consider the Graham-Kohr extension operator Ψα on the domain Ωp,r, with α ≥ 0 and
p, r ≥ 1. Based on the results proved by Graham, Hamada, Kohr and Kohr in [39] (see also [40]) we try
to obtain extension properties for the case p ∈ [1,∞). The original results presented in this section have
been obtained by Grigoriciuc in [55].

For this, let X be a complex Banach space and let Ωp,r given by (6.1.1) be the unit ball of Y = C×X,
for all p, r ≥ 1. In order to prove our main results, we will use the following lemma (that is a generalization
of Lemma 2.15 proved by Graham, Hamada, Kohr and Kohr in [39] in the case p = 2). Very recently, J.
Wang proved the same result (see [131]) on the domain Ωp,r, where p, r ≥ 1. We present here the detailed
proof of the result (in the general case) based on the ideas given by Graham, Hamada, Kohr and Kohr in
[39].

Lemma 6.1.1. Let X be a complex Banach space and let Ωp,r given by (6.1.1) be the unit ball of Y = C×X,
where p, r ≥ 1. Let z = (z1, w) ̸= 0. Then we have

lz
(
(z1, 0)

)
=

p|z1|p∥z∥Y
p|z1|p + r(∥z∥pY − |z1|p)

(6.1.4)

and

lz
(
(0, w)

)
=

r(∥z∥pY − |z1|p)∥z∥Y
p|z1|p + r(∥z∥pY − |z1|p)

, (6.1.5)

for every lz ∈ T (z).

The second result proved in this section is related to the holomorphy of the mapping Ψα(f) on the
domain Ωp,r.

Lemma 6.1.2. Let α ∈ [0, 1] and p, r ≥ 1. Also, let f ∈ Hu(U) be such that f(U) ⊆ U and f(0) = 0. Then

F (z) = Ψα(f)(z) =

Å
f(z1),

Å
f(z1)

z1

ãα
w

ã
, z = (z1, w) ∈ Ωp,r

is a holomorphic mapping from Ωp,r to Ωp,r.

The last result of this subsection is related to the subordination principle on Ωp,r. Its proof follows the
main ideas presented by Wang and Zhang in [134] (see Theorem 3.6) for p ∈ [1, 2] and r ≥ 1.

Proposition 6.1.3. Let f, g ∈ S and let Ωp,r be the domain given by (6.1.1), where p, r ≥ 1. If α ∈ (0,∞),
then f ≺ g on U if and only if Ψα(f) ≺ Ψα(g) on Ωp,r.
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6.1. g-Loewner chains and the Graham-Kohr extension operator

6.1.2 Extension results on Ωp,r

We continue this section by studying the preservation of the first elements of g-Loewner chains by the
Graham-Kohr extension operator Ψα given by (6.1.2) on the domain Ωp,r, where p, r ≥ 1. For now,
g : U → C is a convex univalent function which satisfies Assumption 5.3.6. Note that in the proof of this
result we follow arguments similar to those for Theorem 3.1 in [39]. It is important to mention here that
for X = Cn−1, r = 2 and g(ζ) = 1−ζ

1+ζ , one may consult [33, Corollary 2.9], [42, Theorem 2.1] and [47,
Theorem 2.1].

Moreover, for similar results related to the Roper-Suffridge type extension operator Φα,β, see [39] for
p = 2 and r ≥ 1, respectively [131] for p, r ≥ 1. The following results were obtained by Grigoriciuc in [55].

Theorem 6.1.4. Let X be a complex Banach space and let Ωp,r be the domain given by (6.1.1), where
p, r ≥ 1. Also let g be a convex function on U which satisfies Assumption 5.3.6. If f ∈ S is the first
element of the g-Loewner chain f(·, t) on U and F (·, t) is a g-Loewner chain on Ωp,r, for all t ≥ 0, then
F (·, 0) = Ψα(f), for all α ∈ [0, 1].

In particular, from the previous result, we obtain that the first elements of Loewner chains are preserved
from the unit disc U to the domain Ωp,r, for p, r ≥ 1, under the Graham-Kohr extension operator (for the
case p = 2 and the operator given by (6.1.3), see Corollary 3.2 from [39]). Also, see Theorem 2.1 in [42]
and Theorem 2.1 in [47] for the case X = Cn−1 and p = r = 2.

Corollary 6.1.5. Let Ωp,r and g be as in Theorem 6.1.4, where p, r ≥ 1. If f ∈ S and F (·, t) is a Loewner
chain on Ωp,r, for all t ≥ 0, then F (·, 0) = Ψα(f), for all α ∈ [0, 1].

In the second consequence of Theorem 6.1.4 we obtain that the Graham-Kohr extension operator Ψα

preserves g-starlike mappings from U into Ωp,r for p, r ≥ 1. The proof of this result is based on ideas
similar to those for Corollary 3.3 in [39], where the authors considered p = 2 and the extension operator
given by (6.1.3). For the case X = Cn−1, p = r = 2 and g(ζ) = 1−ζ

1+ζ , where ζ ∈ U, one may consult [43,

Theorem 2.2]; see also [11, Corollary 2.3] in the case X = Cn−1, p = r = 2 and g(ζ) = 1−ζ
1+(1−2γ)ζ for ζ ∈ U

and γ ∈ (0, 1).

Corollary 6.1.6. Let Ωp,r and g be as in Theorem 6.1.4, where p, r ≥ 1. If f ∈ S∗
g (U), then F = Ψα(f) ∈

S∗
g (Ωp,r), for all α ∈ [0, 1], where S∗

g (Ωp,r) is the family of g-starlike mappings on Ωp,r.

Corollary 6.1.7. Let Ωp,r and g be as in Theorem 6.1.4, where p, r ≥ 1. If f ∈ sS∗
d(U), for d ∈ (0, 1],

then F = Ψα(f) ∈ sS∗
d(Ωp,r), for α ∈ [0, 1], where sS∗

d(Ωp,r) is the family of strongly starlike mappings of
order d on Ωp,r.

Another important result is related to the preservation of the first elements of g-Loewner chains by the
Graham-Kohr extension operator, where g is a starlike (univalent) function with respect to 1 that satifies
Assumption 5.3.6. This result is an extension of [39, Theorem 3.4] and its proof follows arguments similar
to those used by authors in [39] for p = 2.

Theorem 6.1.8. Let X be a complex Banach space and let Ωp,r be the domain given by (6.1.1), where
p, r ≥ 1. Also let g be a function that satisfies Assumption 5.3.6 such that g(U) is starlike with respect to
1. If f ∈ S is the first element of the g-Loewner chain f(·, t) on U and F (·, t) is a g-Loewner chain on
Ωp,r, for all t ≥ 0, then F (·, 0) = Ψα(f), for all α ∈ [0, 1].

From the previous theorem we obtain a consequnece (see [39, Corollary 3.5] for the case p = 2) related
to the property of parabolic starlikeness of order µ ∈ [0, 1). The proof of this result follows the ideas
presented by the authors in [60, Theorem 5.1] and [62, Theorem 5.3].

Corollary 6.1.9. Let Ωp,r and g be as in Theorem 6.1.8, where p, r ≥ 1. If f ∈ PS∗(U), for µ ∈ [0, 1),
then F = Ψα(f) ∈ PS∗(Ωp,r), for all α ∈ [0, 1], where PS∗(Ωp,r) is the family of parabolic starlike mappings
of order µ on Ωp,r.
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6.2. Loewner chains and the Pfaltzgraff-Suffridge extension operator

The third theorem is devoted to the preservation of the almost starlikeness of complex order λ, where
λ ∈ C with Reλ ≤ 0, under the Graham-Kohr extension operator. We can prove that Ψα preserves the
almost starlikeness of complex order λ from U into Ωp,r for all p, r ≥ 1 and α ∈ [0, 1]. In the proof of
this theorem we follow the main ideas as in the proof of [134, Theorem 3.8] given by Wang and Zhang for
p ∈ [1, 2] and for the extension operator Φα,β given by relation (6.1.3). In our result we consider α ∈ [0, 1],
β = 0 and p, r ∈ [1,∞).

Remark 6.1.10. Recall that the property of almost starlikeness of complex order λ ∈ C with Reλ ≤ 0
can be described via Loewner chains (see e.g. [134, Lemma 3.5]) as: f ∈ LS(BX) is an almost starlike
mapping of complex order λ on BX if and only if F (z, t) is a Loewner chain, where

F (z, t) = e(1−λ)tf(eλtz), z ∈ BX , t ∈ [0,∞). (6.1.6)

Theorem 6.1.11. Let X be a complex Banach space and let Ωp,r be the domain given by (6.1.1), where
p, r ≥ 1. Let also λ ∈ C be such that Reλ ≤ 0. If f ∈ Asc∗λ(U), then F = Ψα(f) ∈ Asc∗λ(Ωp,r) for all
α ∈ [0, 1], where we denote by Asc∗λ(Ωp,r) the family of almost starlike mappings of complex order λ on
Ωp,r.

Remark 6.1.12. If p ∈ [1, 2], then Theorem 6.1.11 reduces to [134, Theorem 3.8]. Moreover, if X = Cn−1

and p = r = 2, then Ωp,r is the Euclidean unit ball Bn. For λ = 0 we obtain that F (z, t) = etΨα(f)(z) is a
Loewner chain and hence, Ψα(f) is a starlike mapping on Bn. This result is well-known since was proved
by Graham and Kohr in [44] (see also [45] or [133]).

Finally, we present two consequences of Theorem 6.1.11 related to the preservation of the almost
starlikeness of order µ ∈ [0, 1), respectively the spirallikeness of order δ ∈ (−π

2 ,
π
2 ) through the Graham-

Kohr extension operator Ψα from the unit disc U to the domain Ωp,r for p, r ≥ 1 and α ∈ [0, 1].

Remark 6.1.13. According to [134, Definition 2.1] if λ = µ
µ−1 for µ ∈ [0, 1), then the almost starlikeness

of complex order λ reduces to the almost starlikeness of order µ ∈ [0, 1). On the other hand, if λ = i tan δ,
for δ ∈ (−π

2 ,
π
2 ), then the almost starlikeness of complex order λ reduces to the spirallikeness of order δ.

Based on Theorem 6.1.11 and Remark 6.1.13 we obtain immediately the following results:

Corollary 6.1.14. Let Ωp,r with p, r ≥ 1 be as in Theorem 6.1.11. If f ∈ AS∗
µ(U), where µ ∈ [0, 1), then

F = Ψα(f) ∈ AS∗
µ(Ωp,r), for α ∈ [0, 1].

Corollary 6.1.15. Let Ωp,r with p, r ≥ 1 be as in Theorem 6.1.11. If f ∈ Ŝδ(U), where δ ∈ (−π
2 ,

π
2 ), then

F = Ψα(f) ∈ Ŝδ(Ωp,r), for α ∈ [0, 1].

6.2 Loewner chains and the Pfaltzgraff-Suffridge extension operator

Section 6.2 is dedicated to the study of preservation of Loewner chains by the Pfaltzgraff-Suffridge extension
operator from one dimension to infinite dimensional complex Banach spaces. Recently, Graham, Hamada,
Kohr and Kohr (see e.g. [40]) proved that the Pfaltzgraff-Suffridge extension operator preserves the first
elements of Loewner chains from the open unit ball BX of an n-dimensional JB∗-triple X into a domain
Dα ⊆ BX × BY , where Y is a complex Banach space (for the complete results and their proofs, one
may consult [33], [35] and [40]). Another important results proved in this general setting are related to
the preservation of starlikeness and spirallikeness of order γ ∈ (−π/2, π/2) from BX into Dα under the
Pfaltzgraff-Suffridge type extension operator. Similar results were obtained for the finite dimensional case
in [21], [33], [43], [49].

6.2.1 Preliminaries

In this section we consider two particular cases of the operator studied by Graham, Hamada, Kohr and
Kohr in [40] on special domains in complex Banach spaces (similar to those in [55], [131] and [134]). The
presented results are original.
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6.2. Loewner chains and the Pfaltzgraff-Suffridge extension operator

The main idea is to prove that the Pfaltzgraff-Suffridge type extension operator preserves the first
elements of Loewner chains from the unit ball Bn of Cn (with respect to different norms) to the unit ball
of W = Cn × Y , where Y is a complex Banach space.

It is important to mention here that throughout this section we will use different norms on the space
Cn (e.g. Euclidean ∥x∥ =

»∑n
j=1 |xj |2, maximum norm ∥x∥∞ = max{|xj | : j = 1, n}, p-norm ∥x∥p =(∑n

j=1 |xj |p
)1/p

, for all x = (x1, ..., xn) ∈ Cn, p ≥ 1; for details, see §3.1.1) which are equivalent since the
space Cn is finite dimensional.

Remark 6.2.1. Let p, r ≥ 1 and let Y be a complex Banach space with the norm ∥ · ∥Y . If the space Cn

is equipped with the Euclidean norm ∥ · ∥, then we denote by

Ωn,p,r =
{
(x, y) ∈ W = Cn × Y : ∥x∥p + ∥y∥rY < 1

}
(6.2.1)

the unit ball of Cn × Y , for every p, r ≥ 1, respectively the Pfaltzgraff-Suffridge extension operator by

Ψn,r(f)(z) =

Å
f(x),

[
Jf (x)

] 2
r(n+1) y

ã
, z = (x, y) ∈ Ωn,p,r, (6.2.2)

where the branch of the power function has the property
[
Jf (x)

] 2
r(n+1)

∣∣
x=0

= 1. In particular, if p = 2,
then we denote Ωn,2,r by Ωn,r, where

Ωn,r =
{
(x, y) ∈ W = Cn × Y : ∥x∥2 + ∥y∥rY < 1

}
, r ≥ 1.

Remark 6.2.2. Let p, r ≥ 1, let Y be a complex Banach space with the norm ∥ · ∥Y and let BY be the
unit ball of Y . If we endowed the space Cn with the maximum norm ∥ · ∥∞, then we denote by

∆n,p,r =

ß
(x, y) ∈ Un × BY : ∥y∥Y <

n∏
j=1

(1− |xj |p)
1
rn

™
(6.2.3)

the unit ball of W = Cn × Y , for every p, r ≥ 1, respectively the Pfaltzgraff-Suffridge extension operator
by

Γn,r(f)(z) =

Å
f(x),

[
Jf (x)

] 1
rn y

ã
, z = (x, y) ∈ ∆n,p,r, (6.2.4)

where we consider the branch of the power function such that
[
Jf (x)

] 1
rn
∣∣
x=0

= 1. In particular, if p = 2,
then we denote ∆n,2,r simply by ∆n,r, where

∆n,r =

ß
(x, y) ∈ Un × BY : ∥y∥Y <

n∏
j=1

(1− |xj |2)
1
rn

™
, r ≥ 1.

Note that the definition of the domain ∆n,p,r in (6.2.3) is based on the ideas presented by Graham, Hamada,
Kohr and Kohr in [40] (see also [63]). Starting from an n-dimensional JB∗-triple X and a complex Banach
space Y they defined the set Dr = {(x, y) ∈ BX × Y : ∥y∥Y < [detB(x, x)]1/(2rc(BX))}, where r ≥ 1, BX

is the unit ball of X, B(x, y) ∈ L(X) is the Bergman operator, x, y ∈ X, and c(BX) is a constant that
depends on the Bergman metric on X (for details, see [40], [63]). If X is the space Cn with the maximum
norm ∥ ·∥∞, then BX = Un, c(Un) = n and detB(x, x) =

∏n
j=1(1−|xj |2)2, for all x ∈ Un (see [63]). Hence,

by simple computations we obtain the domain Dr = ∆n,r. Finally, if we consider p ∈ [1, 2], then we obtain
the more general domain ∆n,p,r defined in (6.2.3).

Remark 6.2.3. Let p ∈ [1, 2] and let ϕ : [0, 1] → R be given by ϕ(t) = 1−t2

1−tp , for all t ∈ [0, 1]. Then ϕ
is increasing on [0, 1], for every p ∈ [1, 2]. This result (considered first by Wang in [131, Lemma 3.2] and
[134]) will be used in the proofs of the main results in this section.

For the extension operators presented above we can prove the following two lemmas related to the
holomorphy of Ψn,r(f) (respectively Γn,r(f)) on Ωn,p,r (respectively on ∆n,r,p), where p ∈ [1, 2] and r ≥ 1.
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6.2. Loewner chains and the Pfaltzgraff-Suffridge extension operator

Lemma 6.2.4. Let p ∈ [1, 2] and r ≥ 1. Also let f ∈ Hu(Bn) be such that f(Bn) ⊆ Bn and f(0) = 0. Then

F (z) = Ψn,r(f)(z) =

Å
f(x), [Jf (x)]

2
r(n+1) y

ã
, z = (x, y) ∈ Ωn,p,r

is a holomorphic mapping from Ωn,p,r to Ωn,p,r.

Lemma 6.2.5. Let p ∈ [1, 2] and r ≥ 1. Also let f ∈ Hu(Un) be such that f(Un) ⊆ Un and f(0) = 0.
Then

Γn,r(f)(z) =

Å
f(x), [Jf (x)]

1
rn y

ã
, z = (x, y) ∈ ∆n,p,r

is a holomorphic mapping from ∆n,p,r to ∆n,p,r.

6.2.2 Extension results on Ωn,p,r

In the subsequent part, we outline the main result of this subsection related to the preservation of the first
elements of a Loewner chain from the Euclidean unit ball Bn into the domain Ωn,p,r under the Pfaltzgraff-
Suffridge type extension operator Ψn,r for p ∈ [1, 2] and r ≥ 1. This result is strongly related to [35,
Theorem 3.1] and [49, Theorem 2.1], where the authors treated the same problem on different domains.
The results stated here are original and were proved by the author.

Theorem 6.2.6. Let r ≥ 2n
n+1 , p ∈ [1, 2] and let f belongs to S be the first element of the Loewner chain

f(·, t) on Bn. Let also F (·, t) be a Loewner chain on Ωn,p,r, for all t ≥ 0. Then F (·, 0) = Ψn,r(f).

From the previous theorem we obtain the following consequences related to the preservation of almost
starlikeness of complex order λ, almost starlikeness of order α, spirallikeness of order γ and starlikeness
from Bn into Ωn,p,r for p ∈ [1, 2]. Notice that if p = 2, then our results reduces to the one proved by
Graham, Hamada, Kohr and Kohr in [40, Corollary 5.4], Graham, Kohr and Pfaltzgraff in [49, Corollary
2.4], respectively by Wang and Zhang in [134, Theorem 3.12, Corollaries 3.13 and 3.14].

Corollary 6.2.7. Let r ≥ 2n
n+1 , p ∈ [1, 2] and λ ∈ C be such that Reλ ≤ 0. If f ∈ Asc∗λ(Bn), then

F = Ψn,r(f) ∈ Asc∗λ(Ωn,p,r), where we denote by Asc∗λ(Ωn,p,r) the family of almost starlike mappings of
complex order λ on Ωn,p,r.

Corollary 6.2.8. Let r ≥ 2n
n+1 , p ∈ [1, 2] and α ∈ [0, 1). If f ∈ AS∗

α(Bn), then F = Ψn,r(f) ∈ AS∗
α(Ωn,p,r),

where AS∗
α(Ωn,p,r) is the class of almost starlike mappings of order α on Ωn,p,r.

Corollary 6.2.9. Let r ≥ 2n
n+1 , p ∈ [1, 2] and |γ| < π

2 . If f belongs to the family Ŝγ(Bn), then F =

Ψn,r(f) ∈ Ŝγ(Ωn,p,r), where Ŝγ(Ωn,p,r) is the family of spirallike mappings of order γ on Ωn,p,r.

Corollary 6.2.10. Let r ≥ 2n
n+1 , p ∈ [1, 2] and |γ| < π

2 . If f belongs to the family S∗(Bn), then F =
Ψn,r(f) ∈ S∗(Ωn,p,r).

6.2.3 Remarks on ε-starlikeness

Another important property of the operator Ψn,r is related to the preservation of the ε-starlikeness on the
domain Ωn,2,r. Our first result from this subsection is a generalization of Theorem 2.6 proved by Wang
and Wang in [133]. Notice that in the following result we consider p = 2.

Theorem 6.2.11. Let r ≥ 2n
n+1 . If f ∈ S(Bn) is an ε-starlike mapping on Bn, then F = Ψn,r(f) ∈ S(Ωn,2,r)

is an ε-starlike mapping on Ωn,2,r.

Remark 6.2.12. If Y = C and r = 2, then for ε = 0, Theorem 6.2.11 reduces to [49, Corollary 2.4].
On the other hand, if ε = 1, then Theorem 6.2.11 treats the case of convex mappings associated with the
operator Ψn,r conjectured by Pfaltzgraff and Suffridge in [111] (see also [49]).
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6.2. Loewner chains and the Pfaltzgraff-Suffridge extension operator

6.2.4 Remarks on convexity

Let Y be a complex Banach space. For a ∈ (0, 1] and r ≥ 1, let us denote by

Da,r =
{
(x, y) ∈ W = Cn × Y : ∥y∥rY < a

2n
n+1 (1− ∥x∥2)

}
. (6.2.5)

Then Da,r ⊆ Ωn,p,r and D1,r = Ωn,2,r, where Ωn,2,r is a particular case of the domain defined by formula
(6.2.1) for p = 2. Following the arguments presented by Graham, Kohr and Pfaltzgraff in [49], we can
extend some of their result as follows:

Theorem 6.2.13. Let r ≥ 2n
n+1 , f ∈ K(Bn) and α1, α2 ∈ R∗

+ be such that α1 + α2 ≤ 1. Also, let
F = Ψn,r(f) be the extension operator given by (6.2.2). Then (1 − λ)F (x, y) + λF (x̃, ỹ) ∈ F (Dα1+α2,r),
where (x, y) ∈ Dα1,r, (x̃, ỹ) ∈ Dα2,r and λ ∈ [0, 1].

Corollary 6.2.14. Let r ≥ 2n
n+1 , f ∈ K(Bn) and F = Ψn,r(f). Then (1−λ)F (x, y)+λF (x̃, ỹ) ∈ F (Ωn,2,r),

where (x, y), (x̃, ỹ) ∈ D1/2,r and λ ∈ [0, 1].

Remark 6.2.15. As we mentioned above, in the particular case Y = C and r = 2, Theorem 6.2.13
and Corollary 6.2.14 reduce to the results proved by Graham, Kohr and Pfaltzgraff in [49, Theorem 2.2],
respectively in [49, Corollary 2.5].

6.2.5 Extension results on ∆n,p,r

The last part of this section is devoted to the study of the Pfaltzgraff-Suffridge type extension operator
Γn,r on the domain ∆n,p,r (for details, one may consult [35] and [40]). Let us consider again Y a complex
Banach space, p ∈ [1, 2] and r ≥ 1. Recall that if X = Cn is equipped with the maximum norm ∥ · ∥∞,
then we denote by

∆n,p,r =

ß
(x, y) ∈ Un × BY : ∥y∥Y <

n∏
j=1

(1− |xj |p)
1
rn

™
,

where Un is the unit polydisc in Cn and BY is the open unit ball in the complex Banach space Y . Moreover,
the Pfaltzgraff-Suffridge type extension operator Γn,r is given by

Γn,r(f)(z) =

Å
f(x),

[
Jf (x)

] 1
rn y

ã
, z = (x, y) ∈ ∆n,p,r,

where we take the branch of the power function with the property
[
Jf (x)

] 1
rn
∣∣
x=0

= 1.
Based on the ideas presented by Graham, Hamada and Kohr in [35] we obtain a result similar to the

one in Theorem 6.2.6 that describes the preservation of Loewner chains under the operator Γn,r on the
domain ∆n,p,r (see [35, Corollary 3.4] for the case p = 2; see also [33, Theorem 2.1], [35, Theorem 3.1] and
[49, Theorem 2.1]).

Theorem 6.2.16. Let r ≥ 1, p ∈ [1, 2] and let f ∈ S be the first element of the Loewner chain f(·, t) on
Un. Let also G(·, t) be a Loewner chain on ∆n,p,r, for all t ≥ 0. Then G(·, 0) = Γn,r(f).

Finally, we present two results that derive from Theorem 6.2.16 that describe the preservation of
spirallikeness, respectively of starlikeness under the extension operator Γn,r on the domain ∆n,p,r for r ≥ 1
and p ∈ [1, 2]. In the proof of these results we follow the main ideas as in the proof of [35, Corollary 3.2]
given by Graham, Hamada and Kohr. For the case p = 2, see [35, Corollary 3.4].

Corollary 6.2.17. Let r ≥ 1, p ∈ [1, 2] and |γ| < π
2 . If f belongs to the family Ŝγ(Un), then Γn,r(f) ∈

Ŝγ(∆n,p,r).

Corollary 6.2.18. Let r ≥ 1 and p ∈ [1, 2]. If f belongs to the family S∗(Un), then Γn,r(f) ∈ S∗(∆n,p,r).

It is important to mention that it would be of interest to consider extensions of the results presented
above for the Pfaltzgraff-Suffridge type extension operator on the domain Ωn,p,r for all p, r ≥ 1 (see e.g. the
results presented in [55] for the Graham-Kohr extension operator or in [131] for the Roper-Sufridge type
extension operator). On the other hand, another interesting problem would be to study similar results for
the Muir extension operator (see [39], [40], [103]).
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Conclusions

During this thesis we discussed several results related to the geometric function theory of complex variables
in one and higher dimensions. In this last part we want to recall and highlight the main original results
we obtained in each chapter.

The first part of the thesis was devoted to the study of classical results and families of univalent
functions of one complex variable. The main bibliographical sources used to prepare this part were [19],
[29], [45], [77], [85], [87], [102], [114]. Even if Chapter 1 is an introductory one, it also contains original
results obtained by the author in [50] and [51]. First, in section §1.4 we proved some general distortion
theorems for starlike (see Theorem 1.4.9), respectively convex functions of order α (see Theorem 1.4.19).
These results were obtained by Grigoriciuc in [51].

Another important family of univalent functions in C was studied in §1.5. Here, we have extended the
class R of functions whose derivative has positive real part introduced by MacGregor in [96]. Starting from
R we defined two new subclasses, Rp and Rp(α), and studied some of their properties. The original results
were obtained in [50].

In Chapter 2 we introduced a new differential operator that was used to define two new subclasses of
univalent functions on the unit disc in C. In §2.1 we have obtained general properties of the operator Gk

related to linearity, convolution product and a sufficient condition of univalence (see Propositions 2.1.3 –
2.1.6).

The second section of this chapter was dedicated to the study of subclasses Ek(α) and E∗
k(α), where

k ∈ N and α ∈ [0, 1). Together with general properties of these subclasses (growth and distortion theo-
rems, coefficient estimations, analytical characterization, connection with Loewner chains) we also studied
particular cases (e.g. k = 1 and α = 0) that were of interest being in close connection with the classes of
univalent functions mentioned in the first chapter (see e.g. Propositions 2.2.25 and 2.2.26 in §2.2.2). All
the results in this chapter are original and were obtained by the author in [54].

The second part of this thesis begins with Chapter 3 and was devoted to the study of univalent
mappings of several complex variables in Cn, where n ≥ 2. This part is based on several important books
(e.g. [45], [83], [107], [119], [123]) and papers (e.g. [32], [37], [44], [128]). Besides the classical results of
the geometric function theory of several complex variables, in this chapter we addressed a new problem:
the biholomorphy of convex combinations of biholomorphic mappings on the Euclidean unit ball in Cn. It
is known that if f, g ∈ S(Bn), then (1− λ)f + λg is not necessary biholomorphic on Bn, where λ ∈ (0, 1).
However, in §3.6 we proved some results (see e.g. Proposition 3.6.6 and Theorem 3.6.8) that solved partially
this problem (based on the idea proposed by Chichra and Singh in [9]). The original results presented here
were obtained in [52].

A natural extension of the previous results that was considered in this chapter (see §3.8) is related to
the convex combination of two Graham-Kohr type extension operators (see Definiton 3.8.3). The extension
operator that is mentioned here was defined by I. Graham and G. Kohr in [44] (see also [43]). They also
proved that their operator preserves the notions of starlikeness, spirallikeness, parametric representation
(see e.g. [44], [60], [62]). We used this type of extension operator to prove several properties of a new
extension operator in Cn (see Theorems 3.8.6 – 3.8.9). The results presented in §3.8 are also original are
were obtained by the author.

In Chapter 4 we introduced the n-dimensional form of the differential operator Gk defined in Chapter
2. Using this operator we have generalized the subclasses E∗

k , respectively Ek from the unit disc U to the
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unit ball Bn in Cn. In §4.2 we proved some important results related to the connection between subclasses
E∗

1 (respectively E1) on U and the class of convex mappings K(Bn) in Cn (see Theorems 4.2.1, 4.2.3 and
4.2.5). Recall that the results from the case n = 1 are not longer true in the case of several complex
variables (see e.g. Theorem 4.2.1). All the results obtained in this section are original and were obtained
by the author in [53].

The second part of this chapter was dedicated to study the preservation of the class E∗
1 = K under the

Graham-Kohr extension operator Ψn,α mentioned above. Although the operator Ψn,α does not preserve
the notion of convexity (see e.g. [44]), we managed to prove that Ψn,α(K) ⊆ E∗

1(Bn) for α ∈ {0, 1}. The
results presented in Proposition 4.3.1 and Theorem 4.3.4 are original and partially answer Question 4.3.7
proposed in [53].

The last part of the thesis contains results related to biholomorphic mappings and Extension operators
in complex Banach spaces. In Chapter 5 we have included a short presentation of the main results
that were used in the last chapter (e.g. families of biholomorphic mappings, Extension operators and the
Loewner theory in infinite dimensional case). This part is mainly based on the references [39], [40], [41],
[45], [106], [117], [127].

In Chapter 6 we proved several results related to extension of Loewner chains under the Graham-
Kohr, respectively Pfaltzgraff-Suffridge extension operator on particular domains in infinite dimensions. In
§6.1 we obtained some extensions (see e.g. Lemma 6.1.1, Theorems 6.1.4, 6.1.8 and 6.1.11) of the results
presented by Graham, Hamada, Kohr and Kohr in [39] and [40]. Starting from their results, we proved
that g-Loewner chains are preserved under the Graham-Kohr extension operator from the unit disc U to
the unit ball Ωp,r defined by (6.1.1) for every p, r ≥ 1 (for the case p = 2, see [39], [40]).

In §6.2 we obtained results related to the preservation of the first elements of Loewner chains from
the Euclidean unit ball Bn into the domain Ωn,p,r under the Pfaltzgraff-Suffridge type extension operator
Ψn,r for p ∈ [1, 2] and r ≥ 1 (for details, see §6.2.1). The original results presented here were obtained
using similar arguments to those used by the authors in [35] and [49]. In Theorem 6.2.11 we obtained
the preservation of the ε-starlikeness on the domain Ωn,2,r under the Pfaltzgraff-Suffridge type extension
operator. This result is a generalization of Theorem 2.6 proved by Wang and Wang in [133]. We ended this
section with some results related to convexity (see e.g. Theorem 6.2.13), respectively the preservation of
the first elements of Loewner chains from the unit polydisc Un into the domain ∆n,p,r under the Pfaltzgraff-
Suffridge type extension operator Γn,r for p ∈ [1, 2] and r ≥ 1 (see Theorem 6.2.16, Corollaries 6.2.17 and
6.2.18). Part of the results presented in this chapter are original and were obtained by the author in [55].

Finally, let us mention that all the original results presented in this thesis have been obtained using
classic and modern methods from the geometric function theory of one and several complex variables, with
a particular emphasis on the theory of Loewner chains and Extension operators. Note that I. Graham, H.
Hamada, G. Kohr and M. Kohr had special and very important contributions in this modern and dynamic
field with multiple applications in Fluid Mechanics (e.g. Hele-Shaw flow problems), Probability theory
(e.g. Schramm-Loewner evolution, non-commutative probability) or Optimal control.
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Further Research Directions

We conclude this thesis with a list of potential research directions that could be explored to enhance or
extend the results presented in each chapter.

� Related to the notions defined in Chapter 2 it would be of interest to study the compactness of the
new subclasses Ek and E∗

k (see Question 2.2.35), the relation between two consecutive families, i.e.
Ek+1 ⊂ Ek, for all k ∈ N (see Question 2.2.34), radius of starlikeness, respectively convexity for these
classes and extensions of presented results in the n-dimensional case and complex Banach spaces.

� In Chapter 3 we discussed about convex combinations of biholomorphic mappings (with real coeffi-
cients) in several complex variables. A natural extension of our results is to consider the problem of
convex combinations with complex coefficients.

An interesting problem related to the convex combinations of two Graham-Kohr type extension
operators is the preservation of the notion of parametric representation under the operators Kβ

λ,

respectively Kα,β
λ , for all 0 ≤ α < β ≤ 1 and λ ∈ (0, 1). As a consequence of this result, we can study

the preservation of the starlikeness under the same extension operators.

Obviously, although they are not studied in this thesis, the operators Kβ
λ and Kα,β

λ can also be
considered in infinite dimensional case.

� Chapter 4 is dedicated to study of families of biholomorphic mappings that generalize the subclasses
introduced in Chapter 2. It would be of interest to study properties of the subclasses Ek(Bn) and
E∗

k(Bn) in Cn and complex Banach spaces. Beside these, the problem of preservation of the class
K = E∗

1 through the Graham-Kohr extension operator remains an open problem, as can be seen in
Question 4.3.7 (the n-dimensional case) and Question 4.3.8 (the infinite dimensional case). Surely,
other important extension operators (e.g. the generalized Roper-Suffridge, the Pfaltzgraff-Suffridge,
the Muir extension operator) can be considered for the same problem.

In view of the results obtained by Hamada, Iancu and Kohr in [65] and [66] (see also [59], [64]) we
can also address problems of approximation and density for our new subclasses of biholomorphic
mappings in Cn.

� Taking into account the results obtained in §6.2 from Chapter 6, it would be of interest to consider
extension results under the Pfaltzgraff-Suffridge operator on the domain Ωn,p,r for r ≥ 1 and p > 2.

Another problem related to the Pfaltzgraff-Suffridge extension operator is the preservation of g-
parametric representation from BX to Dα (see e.g. [40]). In this case, BX is the open unit ball of an
n-dimensional JB∗-triple X, BY is the open unit ball of a complex Banach space Y and Dα ⊆ BX×BY

is a domain such that BX ×{0} ⊂ Dα for α > 0. Extension results related to the Pfaltzgraff-Suffridge
type extension operator in this abstract setting were obtained by Graham, Hamada, Kohr and Kohr
in [40] (see also [132], [134]).

� Together with the operators introduced by Roper and Suffridge, Graham and Kohr, Pfaltzgraff
and Suffridge, respectively generalizations of these operators, we can also study the Muir extension
operator Φn,Q. The operator Φn,Q was introduced by Muir Jr. (see [103]) as a different generalization
of the Roper-Suffridge extension operator. Here, Q : Cn−1 → C is a homogeneous polynomial of
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degree 2 and Φn,Q : LS → LSn(Bn) is given by

Φn,Q(f)(z) =

Å
f(z1) +Q(z̃)f ′(z1), z̃

»
f ′(z1)

ã
, z = (z1, z̃) ∈ Bn,

where the branch of the square root is considered such that
√
f ′(z1)

∣∣
z1=0

= 1. The Muir extension

operator and its generalizations have been intensively studied by several authors (see e.g. [11],
[39], [76], [84], [98], [139]) in finite and infinite dimensions. An interesting problem is to study the
preservation of the notion of g-parametric representation by the generalized Muir extension operator
(defined by Graham, Hamada, Kohr and Kohr in [39])

ΦPk
(f)(z) =

Å
f(x) + Pk(y)f

′(x),
(
f ′(x)

) 1
k y

ã
, z = (x, y) ∈ Ωp,k,

where Pk : Y → C is a homogeneous polynomial of degree k ≥ 2, on the domain Ωp,k =
{
(x, y) ∈

C×Y : |x|p+ ∥y∥kY < 1
}
, where p ≥ 1, k ≥ 2 and Y is a complex Banach space. Note that for p = 2

it has been proved in [39] that ΦPk
preserve g-parametric representation and Bloch functions, where

g satisfies Assumption 5.3.6.

Recently, Muir (see [104], [105]) considered a new direction in the theory of Loewner chains. He
studied Loewner chains that have a locally uniform Lp-continuity property in t. This type of map-
pings were considered by Muir to construct a new concept of spirallikeness, related to a locally
integrable operator-valued function on [0,∞). In this setting it would be interesting to construct this
type of mappings using other extension operators, i.e. the Graham-Kohr extension operator or the
generalized Roper-Suffridge type extension operator.

� An important tool to generate extension operators is the semigroup theory studied by Elin (see e.g.
[21]). This new approach can be used also in the case of the extension operators listed above.

� Another strong development related to Loewner chains is presented by Arosio, Bracci, Hamada and
Kohr in [3]. They considered Loewner chains in the setting of complete hyperbolic complex man-
ifolds and generate a one-to-one equivalence between Ld-Loewner chains and Ld-evolution families.
Moreover, they used the Roper-Suffridge extension operator to construct Ld-Loewner chains. A sim-
ilar study can be considered using another extension operators (e.g. the Graham-Kohr extension
operator).

� The most recent approach to the Loewner theory was introduced by Hamada and Kohr in [72].
They studied a new concept, namely the inverse Loewner chain, in infinite dimensional case. Their
important work represents a new way of studying the results related to the Loewner chains and
extension operators (e.g. the Graham-Kohr extension operator).
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Napoca, 2003 (in romanian).

[86] Kubicka E., Poreda T., On the parametric representation of starlike maps of the unit ball in Cn into
Cn, Demonstratio Math. 21 (1988), 345–355.

[87] Krantz S.G., Handbook of Complex Variables, Birkhäuser Verlag, Boston, 1999.
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