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Introduction

This thesis aims to introduce and study new interpolation operators for three common cases:

univariate, bivariate and spherical. Interpolation is an important branch of Approximation

Theory, widely used in practical applications where reconstructing a surface from some known

data is necessary. This data is usually referred to as scattered due to its lack of a regular

structure.

This kind of problem can be formulated as follows. Given some known data consisting of

data sites X = {xi ∈ Rn, i = 1, . . . ,K} and data values fi = f(xi) ∈ R, i = 1, . . . ,K, find

s : Rn → R such that it either interpolates the given data, i.e., s(xi) = f(xi), or it approximates

it, i.e., s(xi) ≈ f(xi).

The applications of this type of data problem come from many fields, such as mathematics,

computer science, biology, geology or engineering, a reason why scattered data approximation

became a fast-growing and important research subject. Some concrete examples of these appli-

cations mentioned by M. D. Buhmann [7], G. E. Fasshauer [44] and H. Wendland [93] include

surface reconstruction (archaeology artifacts, sculptures, machine parts), image restoration and

inpainting, terrain modeling, measurements for physical phenomena (pressure, ground or sea

level temperature, rainfall, gravitational forces), modeling closed surfaces in CAGD, solutions

to partial differential equations and geophysical problems (topography, magnetic field intensity,

gravitational potential), kernel approximation and support vector machines in neural networks

or data mining.

One of the main tools used in scattered data interpolation is the operator introduced by D.

Shepard in 1968, in [82], which is considered one of the best-suited methods for approximating

large datasets. In its original form, it was obtained as a combination of the available data

values and global weights constructed using the distance between the data sites, involving a

positive control parameter. Despite its advantages, such as small storage requirements and easy

generalization to additional independent variables, it suffers from poor reproduction quality,

low accuracy and a high computational cost. Due to these drawbacks, many authors proposed

several alternatives to improve its efficiency and to obtain an increased accuracy. Some pioneers

with fundamental results in this study include R. Franke and G. Nielson (see, e.g., [46], [47]),

R. J. Renka and A. K. Cline (see, e.g., [72], [74], [76], [77]), R. Farwig (see, e.g., [43]), R. E.

Barnhill, R. P. Dube and F. F. Little (see, e.g., [4]). The Approximation School in Cluj achieved

significant advancements in the study of this method, in both univariate and bivariate cases.

Some of the authors that worked extensively in this field are Gh. Coman, T. Cătinaş and R.
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Tr̂ımbiţaş (see, e.g., [10]–[13], [24]–[31], [90]). Another School with substantial contributions is

the Italian one. In the univariate and bivariate cases, we mention R. Caira, F. Dell’Accio and F.

Di Tomasso (see, e.g. [8], [9], [37]–[39]), while for the spherical case, many improvements were

developed by G. Allasia, R. Cavoretto and A. De Rossi (see, e.g., [2], [18]–[21], [35], [36]).

The thesis is organized into four chapters, each containing several sections and subsections.

Chapter 1 primarily focuses on an overview of existing results and notions concerning

the Shepard method. Section 1.1 introduces key notations and fundamental results essential

throughout this thesis. Section 1.2 briefly discusses radial basis functions, another important

tool in approximating scattered data, which will be used to improve the Shepard operator.

Section 1.3 presents fundamental results for refined variants of the Shepard operator in the

univariate case obtained from its combination with various interpolation polynomials, such as

Lagrange [29], Taylor [29], Hermite [29], Birkhoff [29, 31], Abel-Goncharov [12] and Bernoulli [8].

Section 1.4 revisits important contributions in the theory of the bivariate Shepard method. We

detail here the local variant of this method which ensures that data points farther away from

the approximation point have less influence, obtaining in this manner an improved accuracy

compared to the initial method, which is global. This local approach was initially proposed by

R. Franke and G. Nielson in [47] and further developed by R. Franke in [46] and R. J. Renka

in [76]. As in the previous case, to increase the degree of exactness and obtain smaller approx-

imation errors, several polynomial combinations were proposed, such as Lagrange [30], Taylor

[28], Hermite [24], Birkhoff [25], complete Hermite-Birkhoff [38], Lidstone [9], [13] and Bernoulli

[11], [37]. Finally, we discuss the spherical Shepard operator in Section 1.5. We first recall

some results related to radial basis functions on the sphere (see, e.g. [5], [54], [58], [84]), with

the purpose of presenting spherical Shepard-like methods combined with radial basis functions

(see, e.g., [18]–[21], [35], [36]). The case involving available data about the function’s partial

derivatives is addressed in [2], where the Shepard operator of Hermite-Birkhoff-type is studied.

The aim of Chapter 2 is to introduce a new type of Shepard operator in the univariate

case, obtained using polynomials constructed based on the weighted least squares method. In

Section 2.1, we detail how we constructed these polynomials and study afterward some of their

properties. In Theorem 2.1.1, we prove that these polynomials interpolate the function on the

set of given data sites. Theorem 2.1.2 shows that the degree of exactness of these operators

coincides with the degree of the polynomial used. In the last result of this section, Theorem

2.1.3, we prove the operators’ linearity. Section 2.2 focuses on the combination between the

Shepard operator and the polynomials previously introduced. In Theorems 2.2.2, 2.2.3 and

2.2.4, respectively, we show that the new Shepard operator inherits the properties regarding the

interpolation on the set of given nodes, the degree of exactness and linearity, respectively. Based

on Peano’s Theorem, we study the remainder of the interpolation formula in Theorem 2.2.5. We

end this chapter with some numerical examples performed on two sets of nodes (equidistant and

Chebyshev type) and four test functions, comparing our results with the ones obtained using

other Shepard operators of different types, such as Lagrange, Taylor and Bernoulli. All the

results presented in this chapter are original and they were published in the paper A. Malina
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[62].

The goal of Chapter 3 is to present new combined Shepard operators in the two-dimensional

case, using three radial basis functions: thin-plate spline, inverse quadratic and inverse multi-

quadric. The methods proposed aim to improve the original one, due to the proven efficacy of

radial basis functions in both practical and theoretical contexts. Besides the classical (global)

and the modified (local) forms of the operator, we also use an iterative method that is compa-

rable to the latter one, as proposed by A. V. Masjukov and V. V. Masjukov in [63]. To enhance

the accuracy of the methods, we follow some ideas of J. R. McMahon (see, e.g., [64], [65]) and

compute some sets of representative knot points for the initial set of nodes. The use of these

sets reduces the computational cost and also increases the accuracy of the methods, as shown by

several numerical examples on three test functions. The steps are outlined in Algorithm 1. The

results obtained using the least squares thin-plate spline, presented in Section 3.1, were struc-

tured and published in two articles: T. Cătinaş and A. Malina [14] and A. Malina [61], while the

ones achieved in the cases of inverse quadratic and inverse multiquadric were published in the

paper T. Cătinaş and A. Malina [17]. Finally, Section 3.3 deals with a practical application of

the Shepard operators previously mentioned in image processing, namely the reconstruction of

both black-and-white (Subsection 3.3.1) and color (Subsection 3.3.2) images. In our approach,

we detail two methods, a global (Algorithm 2) and a local one (Algorithm 3), performing several

experiments on three images with different resolutions. The need for image reconstruction may

arise in cases such as inpainting or noise reduction. Since we focus on restoration and not on

detecting the damage, we consider that the area needed to be reconstructed is known. The

results presented in this section are included in the paper A. Malina [60].

Chapter 4 is dedicated to spherical interpolation of scattered data using some new combined

Shepard operators. As emphasized in [19] and [84], these types of data fitting problems, where

the underlying domain is the sphere, arise in many areas, as, in general, the sphere is taken

as a model of the Earth. Section 4.1 presents new local Shepard operators combined with the

least squares-thin plate spline and the inverse multiquadric functions. Combined polynomial

and radial basis function approximations have often been studied in the context of radial basis

functions constructed from conditionally positive definite kernels, in which case a polynomial

part is needed to make the theory work. Here, we restrict our attention to the case of (condition-

ally) strictly positive definite kernels, considering also the inclusion of a polynomial component,

motivated by the fact that approximations of this kind offer real advantages. In Theorem 4.1.3

we study the interpolation error, while in Theorem 4.1.4, we prove that our operators are of class

C1. Finally, in Theorem 4.1.5, we provide an error bound based on the modulus of continuity.

The new results obtained in this section are contained in the paper T. Cătinaş and A. Malina

[15]. In Section 4.2, we derive a second Shepard-type method for the spherical case using the

Bernoulli operator, suitable when information about the function’s derivatives is known. After

performing the Delaunay triangulation of the sphere, we consider two approaches in applying

this kind of operator. The first approach, based on the global Shepard method, involves con-

structing the Bernoulli operator for each node xi, after selecting as a representative triangle the

8



one that has xi as a vertex and for which the Bernoulli approximation error is minimum. We

study the interpolation error in this case in Theorem 4.2.6. The second approach, proposed

in [97] and [98], involves constructing a Bernoulli operator on each triangle from the sphere’s

triangulation. We prove in Theorem 4.2.8 that this type of operator interpolates the function

at the nodes. The original results of this section have been published in the paper T. Cătinaş

and A. Malina [16]. Both sections end with numerical examples performed on test functions,

using different sets of data (random points, spiral points, Halton nodes), demonstrating the

efficiency of the methods proposed. Moreover, two physical phenomena are investigated in the

final part of this chapter. Sections 4.3 and 4.4 present applications of the new spherical Shepard

operators introduced in temperature predictions on the Earth’s surface and topographic data

approximation. The results show that these interpolants offer significant advantages in solving

numerous problems that model real-life phenomena.
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Chapter 1

Preliminaries

The first chapter is dedicated to existing results and notions from Numerical Analysis, mostly

approximation and interpolation theory. After listing some notations and fundamental concepts

that will be used throughout this thesis in Section 1.1 and providing a brief introduction to the

theory of radial basis functions in Section 1.2, we turn our attention to the main focus of this

thesis: the study of the Shepard operator, first introduced in [82]. The pioneers in the study of

this method include Franke and Nielson [46], [47], Renka and Cline [72], [74], [76], [77], Farwig

[43], Barnhill, Dube and Little [4]. Section 1.3 revisits fundamental results in the univariate case,

while Section 1.4 presents the work of several authors in the bivariate case. Notable references

for these two cases include studies by Caira, Dell’Accio and Di Tommaso [8], [9], [37], [38],

[39], Coman, Cătinaş and Tr̂ımbiţaş [10]–[13], [24]–[31], [90]. Finally, Section 1.5 presents the

Shepard operator constructed on the unit sphere. Important results in this area were obtained

by Allasia, Cavoretto and De Rossi [2], [18], [19], [20], [21], [35], [36].

1.1 Main notions and notations

Theorem 1.1.1. [79] (Peano’s Theorem in R)
Let L : Hn[a, b] → R be a linear functional such that it commutes with the definite integral

operator. If kerL = Pn−1, then

L[f ] =

∫ b

a
ϕn(t)f

(n)(t) dt,

with

ϕn(t) =
1

(n− 1)!
Lx
[
(x− t)n−1

+

]
,

Lx[f ] denoting the fact that L is applied to f in regard to the variable x.

Theorem 1.1.2. [79] (Peano’s Theorem in R2)

Consider X = [a, b]× [c, d] and let L : Bα,β(a, c) → R be a linear functional. If kerL = P2
n−1,

10



then

L[f ] =
∑
j<β

∫ b

a
ϕn−j,j(s)

∂nf

∂xn−j∂yj
(s, c) ds

+
∑
i<α

∫ d

c
ϕi,n−i(t)

∂nf

∂xi∂yn−i
(a, t) dt

+

∫∫
X

ϕα,β(s, t)
∂α+βf

∂xα∂yβ
(s, t) ds dt,

with

ϕn−j,j(s) =
1

j! · (n− j − 1)!
Lx,y

[
(x− s)n−j−1

+ · (y − c)j
]
,

ϕi,n−i(t) =
1

i! · (n− i− 1)!
Lx,y

[
(x− a)i · (y − t)n−i−1

+

]
,

ϕα,β(s, t) =
1

(α− 1)! · (β − 1)!
Lx,y

[
(x− s)α−1

+ · (y − t)β−1
+

]
.

1.2 Radial basis functions

Definition 1.2.1. [44] The function Ψ : Rn → R is radial if there is a function ψ : R+ → R
such that Ψ(x) = ψ(∥x∥), with ∥ · ∥ usually denoting the Euclidean norm.

In the RBF case, the interpolant s is considered to have the form [44]

s(x) =
K∑
i=1

aiΨ(x,xi), (1.2.1)

for x ∈ Rn, xi ∈ X, i = 1, . . . ,K, and Ψ(x,xi) = ψ(d(x,xi)), with ψ : R+ → R.
The interpolation conditions required to be satisfied [44]

s(xi) = f(xi), i = 1, . . . ,K, (1.2.2)

lead to the linear system

Ma = f, (1.2.3)

where

M ∈ RK×K , Mij = ψ(d(xi,xj)), i, j = 1, . . . ,K,

a = (a1, . . . , aK)T , f = (f1, . . . , fK)T .

To obtain a unique solution for the system (1.2.3), the interpolation matrix M should be

invertible. As pointed out in [93], from a numerical point of view, a requirement that comes out

naturally is that M should be strictly positive definite.

Often, the study of the strictly positive definiteness of the matrix M will be reduced to the

same study applied to the function Ψ, which we will follow in the sequel.
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Theorem 1.2.2. [93] Let Ψ : Rn → R be a continuous function. Then, Ψ is strictly positive

definite if and only if it is even and for all K ∈ N and for all a = (a1, . . . , aK)T ∈ RK \ {0}, we
have

K∑
i=1

K∑
j=1

aiajΨ(xi,xj) > 0,

with x1, . . . ,xK ∈ Rn, distinct.

If in the above settings, we let a ∈ RK and ” > ” is substituted by ” ≥ ”, the term strictly

positive definite becomes positive definite.

Since dealing with RBFs, it is often encountered in literature to also refer to the univariate

function ψ as radial (strictly) positive definite function, as emphasized in [44].

Lemma 1.2.3. [44] Given that Ψ = ψ ◦ d, we say that ψ is radial (strictly) positive definite on

Rm, for any m ≤ n, if Ψ is radial (strictly) positive definite on Rn.

Often, a polynomial is added to the interpolant s given in (1.2.1), so it becomes [44]

s(x) =
K∑
i=1

aiΨ(x,xi) +

D∑
i=1

Aiyi(x), (1.2.4)

where x ∈ Rn and {y1, . . . , yD} forms a basis of Pn
m−1, with D = dimPn

m−1 =
(
m+n−1
m−1

)
.

Besides the interpolatory conditions (1.2.2), one usually adds D constraints of the form

K∑
i=1

aiyj(xi) = 0, j = 1, . . . , D, (1.2.5)

to obtain a unique solution. The polynomial precision is strongly linked to the condition that

X = {x1, . . . ,xK} forms a (m− 1)−unisolvent set.

Definition 1.2.4. [44] We say that X = {x1, . . . ,xK} ⊂ Rn is m−unisolvent if the only poly-

nomial of maximum total degree m that vanishes on X is the zero polynomial.

This problem is reduced to solving the following linear system [44](
M Y

Y T OD

)
·

(
a

A

)
=

(
f

0

)
, (1.2.6)

where

M ∈ RK×K , Mij = ψ(d(xi,xj)), i, j = 1, . . . ,K,

Y ∈ RK×D, Yij = yj(xi), i = 1, . . . ,K, j = 1, . . . , D,

a = (a1, . . . , aK)T , A = (A1, . . . , AD)
T ,

f = (f1, . . . , fK)T , with fi = f(xi).

Theorem 1.2.5. [93] Let Ψ : Rn → R be an even, continuous function. Then, Ψ is

strictly conditionally positive definite of order m if and only if for all K ∈ N and for all

a = (a1, . . . , aK)T ∈ RK \ {0} with
K∑
i=1

aiy(xi) = 0,

12



where y is any real-valued polynomial of degree less than m, we have

K∑
i=1

K∑
j=1

aiajΨ(xi,xj) > 0,

with x1, . . . ,xK ∈ Rn, distinct.

If, in the theorem above, we consider a ∈ RK and substitute ′′ >′′ with ′′ ≥′′, we obtain the

case of functions that are conditionally positive definite of order m.

Lemma 1.2.6. [44] Given that Ψ = ψ◦d, we say that ψ is radial (strictly) conditionally positive

definite on Rm, for any m ≤ n, if Ψ is radial (strictly) conditionally positive definite on Rn.

Theorem 1.2.7. [44] If Ψ = ψ ◦ d is an even, radial strictly conditionally positive definite of

order m function on Rn and the distinct data sites {x1, . . . ,xK} form an (m − 1)−unisolvent

set, then, the linear system given in (1.2.6) has a unique solution.

1.3 Univariate Shepard operators

This section is devoted to revising certain univariate Shepard operators combined with

various interpolation polynomials, such as Lagrange [29], Taylor [29], Hermite [29], Birkhoff

[29], [31], Abel-Goncharov [12] and Bernoulli [8].

Consider X ⊆ R and f : X → R a real-valued function such that for some given K interpo-

lation nodes, xi ∈ X, i = 1, . . . ,K, the values of f are available. Then, for x ∈ X, we can define

the classical univariate Shepard operator as [82]

Sµf(x) =

K∑
i=1

Ai,µ(x)f(xi), (1.3.1)

with the basis functions Ai,µ given by

Ai,µ(x) =
|x− xi|−µ

K∑
j=1

|x− xj |−µ

, i = 1, . . . ,K, xi ̸= xj , for i ̸= j, j = 1, . . . ,K, (1.3.2)

and µ > 0 an arbitrary parameter.

1.3.1 Univariate Shepard-Lagrange operators

This operator was studied by Coman and Tr̂ımbiţaş in [29]. The univariate Shepard-Lagrange

operator is given by [29]

SLk[f ](x) =
K∑
i=1

Ai,µ(x)L
i
k[f ](x), (1.3.3)

with

Li
k[f ](x) =

k∑
j=0

k∏
α=0, α ̸=j

(x− xi+α)

(xi+j − xi+α)
f(xi+j), (1.3.4)

xK+j = xj , j = 1, . . . , k.
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1.3.2 Univariate Shepard-Taylor operators

This operator was studied by Coman and Tr̂ımbiţaş in [29]. Consider the sets

∆ = {ηi,j(f) = f (j)(xi) : i = 1, . . . ,K, j = 0, . . . , k, k ∈ N∗},

and

∆i = {ηi,p(f) : p = 0, . . . , k},

such that ∆i is a subset of ∆ associated to ηi, having ηi ∈ ∆i, for all i = 1, . . . ,K.

Under these assumptions, the univariate Shepard-Taylor operator is defined as [29]

STk[f ](x) =

K∑
i=1

Ai,µ(x)T
i
k[f ](x), (1.3.5)

with

T i
k[f ](x) =

k∑
j=0

(x− xi)
j

j!
f (j)(xi). (1.3.6)

1.3.3 Univariate Shepard-Hermite operators

The univariate Shepard-Hermite interpolant is defined as [29]

SHk[f ](x) =
K∑
i=1

Ai,µ(x)H
i
k[f ](x), (1.3.7)

with H i
k[f ] being a Hermite-type operator of the form

H i
k[f ](x) =

i+k∑
j=i

rj∑
p=0

hjp(x)f
(p)(xj),

with hjp denoting the fundamental Hermite polynomials, considering xK+i = xi, i ∈ N, i ≤ k

and 1 ≤ k ≤ K.

1.3.4 Univariate Shepard-Birkhoff operators

Coman and Tr̂ımbiţaş studied the Shepard-Birkhoff operator in the univariate case in [29]

and [31]. It is defined as

SBHk[f ](x) =
K∑
i=1

Ai,µ(x)BH
i
k[f ](x), (1.3.8)

with BH i
k[f ], for 1 ≤ k ≤ K, being the kth degree Birkhoff polynomial

BH i
k[f ](x) =

i+k∑
j=i

∑
p∈Ij

bjp(x)f
(p)(xj),

considering xK+i = xi, 1 ≤ i ≤ k.

In contrast to the Hermite case, this polynomial does not always exist, nor is it always

unique.
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1.3.5 Univariate Shepard-Abel-Goncharov operators

The Abel-Goncharov operator has the advantage that it always exists and is unique, by

contrast to the last polynomial. We will consider a set of K + 1 interpolation nodes, xi, i =

0, . . . ,K. The problem that appears in this case is to find an interpolation polynomial PK [f ] of

degree K, such that we have

f (i)(xi) = P
(i)
K [f ](xi), i = 0, . . . ,K.

This polynomial can be expressed as [42]

PK [f ](x) =
K∑
i=0

gi(x)f
(i)(xi),

gi being the Goncharov polynomials [42].

The univariate Shepard-Abel-Goncharov operator was studied by Cătinaş in [12]. Let k ∈
N, k ≤ K and for each node xi, i = 0, . . . ,K, consider the following set [12]

Xi,k = {xi, . . . , xi+k},

with xK+i+1 = xi, i = 0, . . . , k, and its associated Abel-Goncharov operator

P i
k[f ](x) =

i+k∑
j=i

gij−i(x)f
(j−i)(xj), i = 0, . . . ,K,

where

gi0(x) = 1,

gi1(x) = x− xi,

gij(x) =
1

j!

xj − j−1∑
p=0

gp(x)

(
j

p

)
xj−p
p+i

 , j ≥ 1.

We can define the univariate Shepard-Abel-Goncharov operator as [12]

SAGk[f ](x) =

K∑
i=0

Ai,µ(x)P
i
k[f ](x). (1.3.9)

1.3.6 Univariate Shepard-Bernoulli operators

Consider X = [a, b], f ∈ Ck[a, b], k ≥ 1 and K distinct interpolation nodes xi ∈ X, i ∈
{1, . . . ,K}, arranged in ascending order. Caira and Dell’Accio defined the univariate Shepard-

Bernoulli operator as follows [8]

SBk[f ](x) =
K∑
i=1

Ai,µ(x)Bk[f ;xi, xi+1](x), (1.3.10)

with the Bernoulli operators Bk[f ;xi;xi+1] expressed as

Bk[f ;xi, xi+1](x) = f(xi) +

k∑
j=1

hj−1

j!

(
Bj

(
x− xi
h

)
−Bj

)(
f (j−1)(xi+1)− f (j−1)(xi)

)
,
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for h = xi+1 − xi and xK+1 = xK−1.

In general, for n ∈ N, the Bernoulli polynomials Bn(·) are defined recursively as [55]
B0(x) = 1,

B′
n(x) = nBn−1(x), n ≥ 1,∫ 1

0
Bn(x) dx = 0, n ≥ 1.

(1.3.11)

For x = 0, one obtains the Bernoulli numbers Bn, i.e., Bn = Bn(0).

1.3.7 Modified univariate Shepard operators

Franke and Nielson proposed in [47] a local procedure to compute the operator, that consists

of substituting the weight functions Ai,µ by

wi,µ(x) =

(
Rw − |x− xi|
Rw|x− xi|

)µ

+

, (1.3.12)

with Rw a radius of influence that varies with i, resulting in the so-called modified univariate

Shepard operator [47]

SW f (x) =

K∑
i=1
wi,µ (x) f (xi)

K∑
i=1
wi,µ (x)

. (1.3.13)

1.4 Bivariate Shepard operators

In this section, we direct our attention to the two-dimensional case Shepard studied in

[82]. We will focus on presenting this method in its classical (global) form, together with some

modified (local) versions developed in [46], [47], [76]. Afterward, we shall discuss some well-

known Shepard interpolants combined with different operators, such as Lagrange [30], Taylor

[28], Hermite [24], Birkhoff [25], complete Hermite-Birkhoff [38], Lidstone [9], [13] and Bernoulli

[11], [37].

Consider an objective function f : X ⊆ R2 → R whose values fi = f(xi, yi), i = 1, . . . ,K,

are known on a set of scattered data X = {(xi, yi), i = 1, . . . ,K} ⊂ X. Classically, as proposed

by Shepard, this interpolation scheme is given by [82]

Sµf(x, y) =

K∑
i=1

Ai,µ(x, y)f(xi, yi), (1.4.1)

with the weight functions Ai,µ defined as

Ai,µ (x, y) =

K∏
j=1
j ̸=i

dµj (x, y)

K∑
k=1

K∏
j=1
j ̸=k

dµj (x, y)

, (1.4.2)
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considering the control parameter µ > 0 and di (x, y) the distances between (x, y) ∈ X and the

scattered points (xi, yi) ∈ X , i = 1, ...,K. As in the previous cases discussed in this thesis, the

Euclidean distance is considered.

To improve the accuracy of this global method, Franke and Nielson proposed a local approach

in [47] which was further discussed and developed by Franke in [46] and by Renka in [76]. Known

as the modified Shepard operator, it is given as [47]

SW f(x, y) =

K∑
i=1

wi,µ(x, y)f(xi, yi), (1.4.3)

with the compact support basis function wi,µ of the form

wi,µ(x, y) =
wi,µ(x, y)

K∑
j=1

wj,µ(x, y)

, (1.4.4)

for

wi,µ(x, y) =

[
(Rw − di(x, y))+

Rwdi(x, y)

]µ
, µ > 0,

considering di(x, y) as the Euclidean distance between the ith node and the point (x, y), and

Rw a radius of influence that varies with the index i.

Shepard himself considered in [82] an improvement of the method by adding the first-order

partial derivatives of the function f , obtaining

S′
µf(x, y) =

K∑
i=1

Ai,µ(x, y)

[
f(xi, yi) + (x− xi)

∂f

∂x
(xi, yi) + (y − yi)

∂f

∂y
(xi, yi)

]
. (1.4.5)

In this manner, the degree of exactness is 1 and the interpolation properties hold also for

the first-order partial derivatives.

1.4.1 Bivariate Shepard-Lagrange operators

This kind of operator was studied by Coman and Tr̂ımbiţaş in [30]. For the sake of brevity,

denote the node (xi, yi) by xi, i = 1, . . . ,K. If we associate to each node xi a set of m points

Xi,m = {xi,xi+1, . . . ,xi+m−1}, i = 1, . . . ,K, m < K,

where xK+i = xi, i = 1, . . . ,m − 1, then we can introduce the following bivariate Lagrange

polynomial of degree n, Li
n[f ], as [30]

Li
n[f ](x, y) =

i+m−1∑
j=i

lj(x, y)f(xj , yj), for each i = 1, . . . ,K, (1.4.6)

with lj denoting the corresponding cardinal polynomials, i.e.,

lj(xk) = δjk, for each j, k = i, . . . , i+m− 1.

The existence and uniqueness of Li
n[f ], i = 1, . . . ,K, are conditioned by the requirement that

the points xj , j = i, . . . , i+m− 1, should not lie on an algebraic curve of degree n, represented

17



as
∑

α+β≤n

λα,βx
αyβ = 0. Furthermore, the degree n of the Lagrange polynomial Li

n[f ] should be

chosen such that m = (n+ 1)(n+ 2)/2 < K.

Under these assumptions, the bivariate Shepard-Lagrange operator is written as [30]

SLn[f ](x, y) =

K∑
i=1

Ai,µ(x, y)L
i
n[f ](x, y). (1.4.7)

1.4.2 Bivariate Shepard-Taylor operators

When certain information regarding the partial derivatives of the function f are known, we

can improve the bivariate Shepard operator by combining it with a Taylor polynomial T i
n[f ] of

degree n attached to a node xi = (xi, yi), i = 1, . . . ,K, which is defined as [28]

T i
n[f ](x, y) =

∑
α+β≤n

(x− xi)
α(y − yi)

β

α!β!
· ∂

α+βf

∂xα∂yβ
(xi, yi). (1.4.8)

In this manner, the Shepard interpolant of Taylor-type obtained has the form [28]

STn[f ](x, y) =
K∑
i=1

Ai,µ(x, y)T
i
n[f ](x, y). (1.4.9)

1.4.3 Bivariate Shepard-Hermite operators

In this subsection, we will present the main results regarding the Shepard operator combined

with a Hermite-type polynomial, published in [24] by Coman. Consider the following Hermite

data known for f :

∆H(f) =

{
η
(α,β)
i f : η

(α,β)
i f =

∂α+βf

∂xα∂yβ
(xi, yi), α, β ∈ N, α+ β ≤ ri, i = 1, . . . ,K

}
.

To each sample point xi, we attach a set of mi points, i = 1, . . . ,K, denoted by Xi,mi and

defined as

Xi,mi = {xi,xi+1, . . . ,xi+mi−1}, mi ∈ N∗,mi < K − 1,

setting xK+i = xi, i ∈ N. Let us denote by

∆i(f) = {η(α,β)i f : α+ β ≤ ri}

the information we know about the node xi, i = 1, . . . ,K, and by

∆i,mi(f) =

mi−1⋃
j=0

∆i+j(f)

the union of the sets containing the information about the nodes in Xi,mi . The bivariate Hermite

polynomial H i
ni
[f ], i = 1, . . . ,K, of degree ni is the polynomial that fulfills

∂α+βH i
ni
[f ]

∂xα∂yβ
(xj , yj) =

∂α+βf

∂xα∂yβ
(xj , yj) (1.4.10)

for each (xj , yj) ∈ Xi,mi with α+ β ≤ rj .
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The degree ni should be chosen such that card(∆i,mi(f)) =
(ni+1)(ni+2)

2 , for each i = 1, . . . ,K.

If the Hermite polynomial H i
ni

exists, under all the above assumptions, we can define the

combined Shepard-Hermite operator as [24]

SHn1,...,nK [f ](x, y) =

K∑
i=1

Ai,µ(x, y)H
i
ni
[f ](x, y).

1.4.4 Bivariate Shepard-Birkhoff operators

A more general case that extends the operators presented in the previous subsections is the

Birkhoff-type problem, which was studied by Coman in [25].

Consider the subsequent Birkhoff-type data about a real-valued function f : X → R

∆B(f) =

{
η
(α,β)
i f : η

(α,β)
i f =

∂α+βf

∂xα∂yβ
(xi, yi), (α, β) ∈ Ii ⊆ N2, i = 1, . . . ,K

}
.

As in the Hermite case, to each node xi we associate a set Xi,mi of mi points, mi ∈ N∗, mi <

K − 1, i = 1, . . . ,K, of the form

Xi,mi = {xi,xi+1, ...,xi+mi−1},

and taking into account that ∆i(f) represents the known data of f at xi, i.e.,

∆i(f) =
{
η
(α,β)
i f : (α, β) ∈ Ii

}
,

we also define the following information data set for the nodes in Xi,mi

∆i,mi(f) =

mi−1⋃
j=0

∆i+j(f),

agreeing that xK+i = xi, i ∈ N.
The generalization of the Lagrange, Taylor and Hermite problems consists of finding the

polynomial BH i
ni

of total degree ni that meets the interpolation conditions

∂α+βBH i
ni
[f ]

∂xα∂yβ
(xj , yj) =

∂α+βf

∂xα∂yβ
(xj , yj), (1.4.11)

for every (xj , yj) ∈ Xi,mi , with (α, β) ∈ Ij .

When ri := card(∆i,mi(f)) =
(ni+1)(ni+2)

2 , the matrix of the system resulting from (1.4.11)

is square, following that the system has a unique solution in the case of a non-zero determinant.

The Shepard operator of Birkhoff type in this case is defined as [25]

SBHn1,...,nK [f ](x, y) =

K∑
i=1

Ai,µ(x, y)BH
i
ni
[f ](x, y). (1.4.12)

As in the Hermite case, the difficulty that arises is to correctly select subsets Xi,mi such that

card(∆i,mi(f)) = ri and also that the matrix associated to the system (1.4.11) has a non-zero

determinant, for every i = 1, . . . ,K.

Definition 1.4.1. [25] A sequence of subsets Xi,mi , i = 1, . . . ,K, is called admissible if

card(∆i,mi(f)) = ri and the matrix associated to the system consisting of the corresponding

interpolation equations has a non-zero determinant.
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1.4.5 Bivariate Shepard operator of complete Hermite-Birkhoff type

Another approach to constructing a combined Shepard operator involves using complete

Hermite-Birkhoff polynomials, as Dell’Accio and Di Tommaso proposed in [38]. For an open,

convex and bounded set X and the data sites X = {xi, i = 1, . . . ,K} ⊂ X, they considered the

local Shepard operator, i.e., the modified form of it introduced in (1.4.3).

Assume that for each sample point xi, i = 1, . . . ,K, the following Hermite-Birkhoff data-type

is known

∆i(f) =

{
∂α+βf

∂α∂β
(xi) : (α, β) ∈ Ii ⊂ N2, α+ β ≤ ri

}
,

imposing that, if the value of a partial derivative of order γ of f is available at xi, then all the

other partial derivatives of the same order γ are known.

According to [38], the union of these information sets ∆(f) =
K⋃
i=1

∆i(f) is called a set of

complete Hermite-Birkhoff data.

We are going to introduce several notations from [38]. First, consider T (i) to be the triangle

that has a vertex in xi and the other two in xj and xk, such that the latter two are contained

in the closed ball of radius Ri, centered at xi. The point xi is considered to be the referring

vertex of T (i). In a counterclockwise movement, for simplicity of notations, we denote the three

vertices as follows: x1 := xi, x2 := xj , x3 := xk.

Denoting by A(x,y, z) the signed area of the triangle with vertices x,y, z, we introduce the

barycentric coordinates with respect to the triangle T (i) as

λ1(x) =
A(x,x2,x3)

A(x1,x2,x3)
, λ2(x) =

A(x1,x,x3)

A(x1,x2,x3)
, λ3(x) =

A(x1,x2,x)

A(x1,x2,x3)
. (1.4.13)

In addition, we need to use the directional derivatives along the sides of the triangle T (i).

Considering ′′·′′ to be the Euclidean inner product, they are defined as

Dijf(x) = (xi − xj) · ∇f(x)

= (xi − xj)
∂f

∂x
(x) + (yi − yj)

∂f

∂y
(x), i, j = 1, 2, 3, i ̸= j. (1.4.14)

The composition of these directional derivatives is expressed as

D
(γ1,γ2)
1 = Dγ1

21D
γ2
31, D

(γ1,γ2)
2 = Dγ1

12D
γ2
32, D

(γ1,γ2)
3 = Dγ1

13D
γ2
23, (1.4.15)

for (γ1, γ2) ∈ N2.

Now, we can write the complete Hermite-Birkhoff polynomial HBT (i)[f ] as a combination

between the values of the directional derivatives and some polynomials in the variable λ =

(λ1, λ2, λ3) such as [38]

HBT (i)[f ](λ) =
∑
m

q1,m(λ)D
(α1

m,α2
m)

1 f(x1) +
∑
p

q2,p(λ)D
(β1

p ,β
2
p)

2 f(x2)

+
∑
s

q3,s(λ)D
(γ1

s ,γ
2
s )

3 f(x3), (1.4.16)

with

{(α1
m, α

2
m)}m = Ii, {(β1p , β2p)}p ⊂ Ij , {(γ1s , γ2s )}s ⊂ Ik,
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and

card({m}) + card({p}) + card({s}) = (ni + 1)(ni + 2)

2
.

Remark 1.4.2. We have that BHT (i)[f ] ∈ P2
ni
.

After completing the steps of the algorithm consisting of determining HBT (i)[f ], the modified

Shepard operator of Hermite-Birkhoff-type can be written as [38]

SHB[f ](x, y) =
K∑
i=1

wi,µ(x, y)HB
T (i)[f ](x, y). (1.4.17)

1.4.6 Bivariate Shepard-Lidstone operators

The Lidstone operator is constructed based on the Lidstone polynomials [1]
Λ0(x) = x,

Λ′′
n(x) = Λn−1(x), n ≥ 1

Λn(0) = Λn(1), n ≥ 1.

(1.4.18)

In this subsection, we present two approaches to constructing combined Shepard-Lidstone

operators. The first approach, proposed by Cătinaş in [13], extends the Lidstone polynomials on

a rectangular domain. The second one, developed by Caira, Dell’Accio and Di Tommaso in [9],

relies on the approximation formula over a triangular domain utilizing this kind of polynomials,

as presented in [34].

For the rectangular case, we shall first define the Lidstone interpolants in the univariate case

and extend them afterward to the two-dimensional case. Let [a, b], [c, d] be two intervals of real

numbers and denote by ∆1 : a = x1 < x2 < . . . < xK1 = b and ∆2 : c = y1 < y2 < . . . <

yK2 = d, the uniform partitions of [a, b] and [c, d], with stepsizes h1 = b−a
K1−1 and h2 = d−c

K2−1 ,

respectively. We also consider

Ln(∆1) = {p ∈ C[a, b] : p ∈ P2n−1 for each subinterval [xi, xi+1], i = 1, . . . ,K1 − 1}.

For f ∈ C2n−2[a, b], the Lidstone interpolant can be written as [1]

L∆1
n [f ](x) =

K1∑
i=1

n−1∑
j=0

lni,j(x)f
(2j)(xi), (1.4.19)

with

lni,j(x) =


Λj

(
x−xi−1

h1

)
h2j1 , x ∈ [xi−1, xi], i = 2, . . . ,K1,

Λj

(
xi+1−x

h1

)
h2j1 , x ∈ [xi, xi+1], i = 1, . . . ,K1 − 1,

0, otherwise.

The operator (1.4.19) satisfies the following interpolation properties [1]

L∆1
n [f ](2j)(xi) = f (2j)(xi), j = 0, . . . , n− 1, i = 1, . . . ,K1.

In the bivariate case, for f ∈ C2n−2,2n−2([a, b] × [c, d]) and a rectangular partition ∆ =

∆1 ×∆2 of [a, b]× [c, d], the unique Lidstone interpolant is expressed as [1]
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L∆
n [f ](x, y) =

K1∑
i=1

n−1∑
α=0

K2∑
j=1

n−1∑
β=0

lni,α(x)l
n
j,β(y)

∂2α+2βf

∂x2α∂y2β
(xi, yj), (1.4.20)

possessing the similar interpolation properties of the univariate case

∂2α+2βL∆
n [f ]

∂x2α∂y2β
(xi, yj) =

∂2α+2βf

∂x2α∂y2β
(xi, yj),

α, β = 0, . . . , n− 1, i = 1, . . . ,K1, j = 1, . . . ,K2. (1.4.21)

We confine ourselves to the case of K1 = K2 =: K and consider on each subrectangle

∆i = [xi, xi+i]× [yi, yi+1] ⊆ [a, b]× [c, d], i = 1, . . . ,K, the following Lidstone-type data

Li(f) =

{
∂4αf

∂x2α∂y2α
(xi, yi),

∂4αf

∂x2α∂y2α
(xi+1, yi+1), α = 0, . . . , n− 1

}
.

Considering L∆i
n [f ] the restriction of the operator given in (1.4.20) to the rectangle ∆i, we

define the bivariate Shepard-Lidstone operator as [13]

SL∆
n [f ](x, y) =

K∑
i=1

Ai,µ(x, y)L
∆i
n [f ](x, y). (1.4.22)

In the last part of this section, we discuss a different method to construct combined Shepard-

Lidstone operators, proposed in [9]. As in the previous section, the approach is based on

considering a three-point extension of the univariate Lidstone polynomial to a triangle T (i), i =

1, . . . ,K, with referring vertex xi and the other two vertices xj , xk, situated in the closed ball

Bi of center xi and radius Ri, denoted as x1 := xi, x2 := xj , x3 := xk. As before, we use the

barycentric coordinates (λ1, λ2, λ3) of x = (x, y) with respect to the vertices of the triangle T (i),

defined as in (1.4.13). Moreover, we set

v1 = (x2 − x3, y2 − y3), v1 =
v1

∥v1∥
,

v2 = (x3 − x1, y3 − y1), v2 =
v2

∥v2∥
,

v3 = (x2 − x1, y2 − y1), v3 =
v3

∥v3∥
.

The bivariate Lidstone interpolant corresponding to the triangle T (i) has the form [9]

L̃T (i)
n [f ](x, y) =

n−1∑
α=0

n−1−α∑
β=0

∥v2∥2β
(
Λβ(1− λ2 − λ3)

∂2α+2βf

∂v2β2 ∂v2α1
(x1)

+ Λβ(λ2 + λ3)
∂2α+2βf

∂v2β2 ∂v2α1
(x3)

)
·Λα

(
λ3

λ2 + λ3

)
(1.4.23)

+

n−1−α∑
β=0

∥v3∥2β
(
Λβ(1− λ2 − λ3)

∂2α+2βf

∂v2β3 ∂v2α1
(x1)

+Λβ(λ2 + λ3)
∂2α+2βf

∂v2β3 ∂v2α1
(x2)

)
· Λα

(
λ2

λ2 + λ3

)]
· ∥v1∥2α(λ2 + λ3)

2α,

for f ∈ C2n(X), X convex domain, (x, y) ∈ X.
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The modified form of the Shepard-Lidstone operator in this case is given by [9]

SL̃n[f ](x, y) =

K∑
i=1

wi,µ(x, y)L̃
T (i)
n [f ](x, y). (1.4.24)

For each node xi, i = 1, . . . ,K, the corresponding triangle T (i) is chosen such that it is

contained in the closed ball of center xi and radius Ri and in addition, minimizes the quantity

e2nmax(i)
[
e2max(i)A(i)

]2n−1
, where emax(i) = max{∥x1 − x2∥, ∥x2 − x3∥, ∥x3 − x1∥} and A(i) =

|2A(x1,x2,x3)|−1.

1.4.7 Bivariate Shepard-Bernoulli operators

An extension of real functions in Bernoulli polynomials over a rectangle was proposed by

Costabile and Dell’Accio in [32]. Based on these operators, Cătinaş introduced the bivariate

Shepard-Bernoulli interpolant in [11]. We present the main results of these two articles in the

first part of the subsequent section.

Consider the rectangle X = [a, b]× [c, d] ⊆ R2 and f ∈ Cm,n(X). Assuming these conditions,

we can define the Bernoulli-type interpolant as [32]

Bm,n[f ](x, y) =f(a, c) +
m∑
i=1

hi−1

i!
Si

(
x− a

h

)
∆(h,0)

∂i−1f

∂xi−1
(a, c)

+
n∑

j=1

kj−1

j!
Sj

(
y − c

k

)
∆(0,k)

∂j−1f

∂yj−1
(a, c) (1.4.25)

+
m∑
i=1

n∑
j=1

hi−1kj−1

i!j!
Si

(
x− a

h

)
Sj

(
y − c

k

)
∆(h,k)

∂i+j−2f

∂xi−1∂yj−1
(a, c),

considering the notations

∆(h,0)f(x, y) = f(x+ h, y)− f(x, y),

∆(0,k)f(x, y) = f(x, y + k)− f(x, y),

∆(h,k)f(x, y) = f(x, y)− f(x+ h, y) + f(x+ h, y + k)− f(x, y + k),

for h = b− a and k = d− c.

We also have that

Si

(
x− a

h

)
= Bi

(
x− a

h

)
−Bi,

with Bi(·) being the Bernoulli polynomials and Bi = Bi(0) the Bernoulli numbers, defined in

(1.3.11).

For the sake of brevity, we denote the operator introduced in (1.4.25) by Bm,n[f ; (a, c), (h, k)].

Taking into account everything introduced above and considering a set of K sample points

xi = (xi, yi) ∈ X, i = 1, . . . ,K, we define the combined Shepard operator of Bernoulli type in

the bivariate case as [11]

SBm,n[f ](x, y) =

K∑
i=1

Ai,µ(x, y)B
i
m,n[f ](x, y), (1.4.26)
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Bi
m,n[f ](x, y) = Bm,n[f ; (xi, yi), (hi, ki)], i = 1, . . . ,K,

considering the rectangle [xi, xi+1]×[yi, yi+1], with hi = xi+1−xi and ki = yi+1−yi, i = 1, . . . ,K,

where xK+1 = xK−1.

The three-point extended Bernoulli operator is obtained by assigning to each node xi, i =

1, . . . ,K, a triangle T (i) with other two data samples xj and xk as vertices, such that they are

contained within the closed ball centered at xi with radius Ri. For ease of notation, in each

triangle T (i) we adhere again to the convention that x1 := xi, x2 := xj , x3 := xk. We consider

(λ1, λ2, λ3) the barycentric coordinates of a point x ∈ X relative to the triangle T (i), computed

as in (1.4.13). Moreover, we require that X ⊆ R2 is a compact convex domain.

Assuming all of the above, for a real-valued function f of class Cn(X), the Bernoulli operator

of order n introduced in [37] is of the form

B̃T (i)
n [f ](x, y) =f(x1) +

n∑
i=1

Si(λ2 + λ3)

i!

(
D

(0,i−1)
1 f(x3)−D

(0,j−1)
1 f(x1)

)

+

n∑
i=1

n−i+1∑
j=1

(λ2 + λ3)
i−1Si

(
λ2

λ2+λ3

)
Sj(λ2 + λ3)

i!j!
(1.4.27)

·
[
(−1)i+j

(
D

(j−1,i−1)
2 f(x2)−D

(j−1,i−1)
2 f(x1)

)
+(−1)j

(
D

(j−1,i−1)
3 f(x3)−D

(j−1,i−1)
3 f(x1)

)]
,

with the expressions for the directional derivatives and their compositions D
(γ1,γ2)
i , i = 1, 2, 3,

provided in (1.4.14) and (1.4.15), respectively.

For each data sample xi, the choice of the corresponding triangle T (i) is made similarly as

in the previous two cases.

We define the bivariate Shepard-Bernoulli operator of order n as [37]

SB̃n[f ](x, y) =
K∑
i=1

wi,µ(x, y)B̃
T (i)
n [f ](x, y). (1.4.28)

1.5 Spherical data interpolation using the Shepard operator

This section intends to present some literature results regarding the interpolation problem

on the d-dimensional unit sphere Sd. The case we are interested in is d = 2, since this kind of

problem appears in many types of practical areas, where the data represents, for example, some

physical phenomena measured on the surface of the Earth, so the unit sphere S2 is suitable as

a fitting model, as noted in [19], [53], [84]. Other topics that use spherical interpolation include

modeling closed surfaces in CAGD, as mentioned in [36], or solving some geophysical problems

(topography, magnetic field intensity, gravitational potential [53]).

The spherical approximation of functions was the subject of many authors’ investigations. A

frequent topic that was studied is based on the theory of radial basis functions (see, e.g., [5], [54],

[58], [84]). Other authors focused on Shepard-like methods combined with radial basis functions

(see, e.g., [18], [19], [20], [21], [35], [36]) or, when data about derivatives are available, combined,
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for instance, with Hermite-Birkhoff polynomials [2]. Additionally, Shepard-type methods based

on a spherical triangulation of the scattered data points have been proposed in [97], [98].

1.5.1 Spherical radial basis functions

The unit sphere S2 is defined as

S2 = {x = (x, y, z) ∈ R3 : ∥x∥ = 1},

with ∥ · ∥ denoting the Euclidean norm. The surface area of S2 is ω2 = 4π.

The geodesic metric between x, y ∈ S2, denoted by g(x,y), is computed as [54]

g(x,y) = arccos(x · y), (1.5.1)

with ′′·′′ denoting the Euclidean inner product. This distance measures the arc length of the

shortest path between x and y.

The spherical analog of the radial basis functions problem (1.2.1) uses instead of the Eu-

clidean distance, the geodesic distance g and a spherical basis function (SBF) ψ : [0, π] → R. For
a set of scattered data samples X = {xi ∈ S2 : i = 1, . . . ,K} with known values of a function

f : S2 → R on X , the target is to find an interpolant s of the form [54]

s(x) =
K∑
i=1

aiψ(g(x,xi)), (1.5.2)

such that s(xi) = f(xi), i = 1, . . . ,K.

The resulting linear system is [54]

Ma = f, (1.5.3)

where

M ∈ RK×K , Mij = ψ(g(xi,xj)), i, j = 1, . . . ,K,

a = (a1, . . . , aK)T , f = (f1, . . . , fK)T , with fi = f(xi).

Often, as mentioned in [84], it is considered the approximation by spherical radial basis

functions plus spherical harmonics (which are the analog of polynomials). In this situation, the

interpolant has the form [54]

sh(x) =
K∑
i=1

aiψ(g(x,xi)) + y(x), (1.5.4)

with y being a fitting spherical harmonic.

Definition 1.5.1. [54] A polynomial p : R3 → R of degree d, d ≥ 0, is homogeneous of degree

d if p(tx) = tdp(x), for any x ∈ R3 and t > 0.

Definition 1.5.2. [54] A polynomial p : R3 → R is harmonic if ∆p(x) = 0, for any x ∈ R3,

where ∆ is the Laplace operator, i.e.,

∆p =
∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
.
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Definition 1.5.3. [54] If Pd is the set of polynomials of degree d in R3 that are harmonic and

homogeneous of order d, the set of spherical harmonics of exact order d is given by the linear

space

H∗
d(S

2) = {p|S2 : p ∈ Pd}.

Definition 1.5.4. [54] The space of spherical harmonics of maximum order d, denoted by

Hd(S
2), is defined as

Hd(S
2) =⊕d

j=0H
∗
j (S

2).

If y in (1.5.4) is a spherical harmonic of order d, after expanding it, we obtain the following

form of the interpolant sh [54]

sh(x) =

K∑
i=1

aiψ(g(x,xi)) +

D∑
i=1

Aiyi(x), (1.5.5)

with D = dimHd(S
2) and {y1, . . . , yD} a basis of Hd(S

2).

Besides the interpolation conditions

sh(xi) = f(xi), i = 1, . . . ,K, (1.5.6)

the following linear constraints should be satisfied [54]

K∑
k=1

akyi(xk) = 0, i = 1, . . . , D. (1.5.7)

Now we have an augmented linear system of K +D unknowns and K +D equations, that

can be written in matrix form as [54](
M Y

Y T 0

)
·

(
a

A

)
=

(
f

0

)
, (1.5.8)

where

M ∈ RK×K , Mij = ψ(g(xi,xj)), i, j = 1, . . . ,K,

Y ∈ RK×D, Yij = yj(xi), i = 1, . . . ,K, j = 1, . . . , D,

a = (a1, . . . , aK)T , A = (A1, . . . , AD)
T ,

f = (f1, . . . , fK)T , with fi = f(xi).

According to [54], the SBF interpolants s and sh uniquely exist if and only if the matrices

in (1.5.3) and (1.5.8), respectively, are non-singular. Similar to the RBF case, this occurs for

strictly positive and conditionally strictly positive definite functions on the sphere.

Definition 1.5.5. [54] Let ψ : [0, π] → R be a continuous function. We say that ψ is strictly

positive definite on S2 (ψ ∈ SPD) if, for any set of K distinct data sites xi ∈ S2, i = 1, ...,K,

the quadratic form
K∑
i=1

K∑
j=1

aiajψ(g(xi,xj)) (1.5.9)

is positive on RK \ {0}.
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Theorem 1.5.6. [54] Any function ψ ∈ SPD can provide a unique interpolant s as in (1.5.2).

Definition 1.5.7. [54] Let ψ : [0, π] → R be a continuous function and m ∈ N. We say that ψ

is conditionally strictly positive definite on S2 of order m (ψ ∈ CSPD(m)) if, for any set of K

distinct data sites xi ∈ S2, i = 1, ...,K, the quadratic form (1.5.9) is positive on

Wm−1 =
{
a ∈ RK \ {0} :

K∑
i=1

aiy(xi) = 0 for all y ∈ Hm−1(S
2)
}
.

Definition 1.5.8. [54] Consider m ∈ N and D = dimHm−1(S
2). A set of distinct points

X = {xi ∈ S2 : i = 1, . . . , D} is called unisolvent with respect to Hm−1(S
2) if the only element

that vanishes for each xi is the zero spherical harmonic.

Theorem 1.5.9. [54] Any function ψ ∈ CSPD(m) can provide a unique interpolant sh as in

(1.5.5) if the unisolvency condition on the sphere is satisfied.

1.5.2 Shepard operator combined with spherical basis functions

The spherical interpolation of data using Shepard-type operators combined with radial basis

functions has been thoroughly studied by Cavoretto and De Rossi (see, e.g., [18], [19], [20], [21],

[35], [36]).

Let us consider the set of distinct nodes X = {xi = (xi, yi, zi), i = 1, ...,K}, lying on the

unit sphere S2 along with their corresponding function values fi = f(xi), i = 1, ...,K, with

f : S2 → R. For x = (x, y, z) ∈ S2 the modified spherical Shepard operator is given by [36]

S(x) =

K∑
j=1

wj(x)fj , (1.5.10)

with

wj(x) =
wj(x)

K∑
k=1

wk(x)

. (1.5.11)

The weights wj are defined as

wj (x) =
[
(Rw

j −g(x,xj))+
Rw

j g(x,xj)

]µ
, (1.5.12)

with Rw
j a radius of influence about the node j and g the geodesic distance (1.5.1).

Definition 1.5.10. [36] The zonal basis function interpolant s(1) : S2 → R associated to X and

to the corresponding function values of f on X is defined as

s(1)(x) =
K∑
j=1

ajψ(g(x,xj)), (1.5.13)

with the coefficients aj , j = 1, ...,K, obtained from the interpolation relations

s(1)(xi) = fi, i = 1, ...,K,

where ψ : [0, π] → R is a spherical radial basis function.
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Definition 1.5.11. [35] The augmented zonal basis function interpolant s(2) : S2 → R associated

to X and to the corresponding function values of f on X is defined as

s(2)(x) =
K∑
j=1

ajψ(g(x,xj)) +
D∑

k=1

Akyk(x), (1.5.14)

where yk ∈ Hd(S
2), k = 1, . . . , D, are spherical harmonics of maximum order d, D = dimHd(S

2)

and {y1, ..., yD} forms a basis for Hd(S
2).

The coefficients aj , j = 1, ...,K and Ak, k = 1, ..., D are obtained from

s(2)(xi) = fi, i = 1, ...,K,

and imposing the constraints

K∑
i=1

aiyk(xi) = 0, k = 1, ..., D.

Definition 1.5.12. [36] Attaching to each point xj , j = 1, ...,K, a set Ij of indices of nZ closest

neighbors of xj , we define a local zonal basis function interpolant s
(1)
j : S2 → R as

s
(1)
j (x) =

∑
i∈Ij

ajiψ(g(x,xj)), (1.5.15)

with aji , i ∈ Ij , j = 1, ...,K, resulting from imposing

s
(1)
j (xi) = fi, i ∈ Ij , j = 1, ...,K.

Definition 1.5.13. [35] Attaching to each point xj , j = 1, ...,K, a set Ij of indices of nZ closest

neighbors of xj , we define the augmented local zonal basis function interpolant s
(2)
j : S2 → R as

s
(2)
j (x) =

∑
i∈Ij

ajiψ(g(x,xj)) +
D∑

k=1

Aj
kyk(x), (1.5.16)

with D = dimHd(S
2), D ≤ nZ , {y1, . . . , yD} basis for Hd(S

2).

The coefficients aji , i ∈ Ij , j = 1, ...,K and Aj
k, k = 1, ..., D, are obtained imposing

s
(2)
j (xi) = fi, i ∈ Ij , j = 1, ...,K,

and ∑
i∈Ij

ajiyk(xi) = 0, j = 1, ...,K, k = 1, ..., D.

Definition 1.5.14. [35, 36] For a set of distinct nodes X = {xi ∈ S2, i = 1, . . . ,K} and the

associated function values fi = f(xi), i = 1, . . . ,K, for f : S2 → R, the modified spherical

Shepard operator combined with a zonal basis function is given as

S(k)(x) =
K∑
j=1

wj(x)s
(k)
j (x), k = 1, 2. (1.5.17)
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1.5.3 Spherical Shepard operator of Hermite-Birkhoff type

Allasia, Cavoretto and De Rossi proposed in [2] a method for spherical interpolation of scat-

tered data based on Shepard-like cardinal basis functions and Hermite-Birkhoff-type operators.

The combined Shepard operator of Hermite-Birkhoff type is defined as [2]

H(x) =
K∑
i=1

Ai(x)T [f ](x,xi,∆i), (1.5.18)

where

T [f ](x,xi,∆i) =
∑
γ∈∆i

∂|γ|f

∂xγ1∂yγ2∂zγ3
(xi) ·

3∏
j=1

(uj − uj(xi))
γj

γj !
, (1.5.19)

and Ai are some cardinal basis functions that satisfy the following conditions

Ai ∈ Ck(X), Ai(x) ≥ 0,
K∑
i=1

Ai(x) = 1, Ai(xj) = δij , (1.5.20)

and, moreover,

∂|γ|Ai

∂xγ1∂yγ2∂zγ3
(xj) = 0, γ ∈ ∆i, |γ| ∈ {1, . . . , k}, j = 1, . . . ,K.

To obtain a Shepard-like method, the cardinal basis functions can be expressed as [2]

Ai(x) =
(α(x,xi))

−1

K∑
j=1

(α(x,xj))
−1

, Ai(xi) = 1, i = 1, . . . ,K. (1.5.21)

The function α : X ×X → R+ should be continuous and bounded, with α(x,xi) > 0, ∀x ∈
X, x ̸= xi and α(xi,xi) = 0, ∀xi ∈ X . In addition, α should be k−times continuously

differentiable on X with

∂|γ|α

∂xγ1∂yγ2∂zγ3
(x,xi)

∣∣∣∣∣
x=xi

= 0, 0 < |γ| ≤ k, i = 1, . . . ,K.

Based on the geodesic distance g defined in (1.5.1), α can be written as

α(x,y) = (g(x,y))µ , µ ∈ R+, µ ≥ k, x,y ∈ X. (1.5.22)

Another approach developed in [2] implies a local method to construct the cardinal basis

functions, of the form

wi(x) =
τ(x,xi) (g(x,xi))

−µ

K∑
k=1

τ(x,xk) (g(x,xk))
−µ

, (1.5.23)

such that wi vanishes in the exterior of xi’s neighborhood, so

τ(x,xi) =

(
1− g(x,xi)

R

)k+1

+

, x ∈ X, i = 1, . . . ,K.

With this choice, the function τ : X → R+ is of class Ck on X and, for a proper value of

R > 0, it vanishes outside the ball of center xi and radius R.

Now, the new local Hermite-Birkhoff interpolation operator can be written as [2]

H̃(x) =
K∑
i=1

wi(x)T [f ](x,xi,∆i). (1.5.24)
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Chapter 2

Univariate Shepard operators

obtained using least-squares

polynomials

This chapter introduces a new univariate Shepard operator which is combined with polynomi-

als constructed using the weighted least squares method. Section 2.1 presents the construction

of these polynomials along with some of their properties, such as the interpolation properties,

the degree of exactness and linearity. Section 2.2 deals with the resulting Shepard operator,

proving that it inherits the previously mentioned properties. Finally, we analyze the error based

on Peano’s Theorem and provide some numerical examples that demonstrate the benefits of

using these Shepard operators. The results obtained in this chapter were published in the paper

Malina [62].

2.1 Construction and properties of univariate least-squares fit-

ting polynomials

Renka introduced in [72], in 1988, an algorithm for improving the bivariate Shepard operator,

considering a quadratic polynomial that interpolates the function f on a set of given nodes

and also approximates the data in a weighted least squares way. Later on, in 1999, in [74], he

improved this method by replacing the quadratic polynomial with a cubic one. In 2010, W.

I. Thacker et al. [89] emphasized the main disadvantages of these two methods and suggested

the combination of the Shepard operator with a linear polynomial that still fits the data in a

weighted least squares sense.

Consider X ⊂ R, f : X → R and K given real nodes, denoted by xj , j = 1, ...,K. The values

of the function f on the given nodes are known and denoted by fj = f(xj), j = 1, ...,K.

Under these assumptions, for a point x ∈ X, let us define the nth degree polynomial function
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Cn
j [f ], j = 1, ...,K, n ∈ N, as

Cn
j [f ](x) = fj +

n∑
k=1

aj,k(x− xj)
k, (2.1.1)

where the coefficients aj,k are found such that they minimize

Ej =
K∑
i=1
i ̸=j

λi,j
[
Cn
j [f ](xi)− fi

]2
, (2.1.2)

where

λi,j =
|xi − xj |−µ

K∑
k=1
k ̸=i

|xi − xk|−µ

, (2.1.3)

for i, j = 1, ...,K and µ > 0.

To find the coefficients aj,k (i.e., obtain the minimum of expression (2.1.2)), we solve the

following system
∂Ej

∂aj,k
= 0, for each k = 1, ..., n, and j = 1, ...,K.

Further, for every j = 1, ...,K, one obtains

∂Ej

∂aj,k
= 2

K∑
i=1
i ̸=j

λi,j

 n∑
p=1

aj,p(xi − xj)
p + (fj − fi)

 (xi − xj)
k = 0, for each k = 1, ..., n.

For every j = 1, ...,K, we can write the normal equations that result above in matrix form

as

Mj · aj = bj , (2.1.4)

whereMj is a n×nmatrix having on the entry (r, s) the element
K∑
i=1
i ̸=j

λi,j(xi−xj)r+s, bj is a column

vector of n elements with
K∑
i=1
i ̸=j

λi,j(xi−xj)k(fi−fj) on the kth entry and aj = (aj,1, aj,2, ..., aj,n)
T

is the vector of unknowns.

Theorem 2.1.1. The operator Cn
j [f ] defined in (2.1.1) satisfies the following interpolation

properties

Cn
j [f ](xj) = fj , j = 1, ...,K.

Theorem 2.1.2. The operator Cn
j [f ], j = 1, ...,K, has the degree of exactness n, i.e.,

dex(Cn
j [f ]) = n, j = 1, ...,K.

Theorem 2.1.3. The operator Cn
j [f ] is linear.
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2.2 Univariate Shepard operators combined with least squares-

fitting polynomials

Definition 2.2.1. For f : X ⊂ R → R and a set X = {xj : j = 1, . . . ,K} ⊂ X of K

interpolation nodes, such that the values of f are known on X , we can define the univariate

Shepard operator combined with a nth degree polynomial as

SPn[f ](x) =

K∑
j=1

Aj,µ(x)C
n
j [f ](x), (2.2.1)

with Cn
j [f ] defined in (2.1.1), Aj,µ given by (1.3.2) and µ > 0.

Theorem 2.2.2. The following interpolation properties hold

SPn[f ](xj) = f(xj), j = 1, ...,K.

Theorem 2.2.3. The operator SPn is linear.

Theorem 2.2.4. The Shepard operator SPn has the degree of exactness n.

The interpolation formula for the univariate Shepard operator combined with a polynomial

is given by

f = SPn[f ] +Rn[f ],

with Rn[f ] denoting the remainder.

Theorem 2.2.5. If f ∈ Hn+1[a, b], then

Rn[f ](x) =

∫ b

a
ϕn(x, t)f

(n+1)(t) dt,

where

ϕn(x, t) =
(x− t)n+

n!
−

K∑
j=1

Aj,µ(x)

[
(xj − t)n+

n!
+

n∑
k=1

aj,k(x− xj)
k

]
, (2.2.2)

with aj,k given as solutions of
∂Ej

∂aj,k
= 0, for each k = 1, ..., n, for

Ej =

K∑
i=1
i ̸=j

λi,j

[
(xj − t)n+

n!
+

n∑
k=1

aj,k(xi − xj)
k −

(xi − t)n+
n!

]2
,

and λi,j given in (2.1.3), j = 1, ...,K.
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Chapter 3

Bivariate Shepard operators

obtained using radial basis functions

This chapter introduces new combined Shepard operators in the two-dimensional case, us-

ing three radial basis functions: least squares thin-plate spline, inverse quadratic and inverse

multiquadric. This approach aims to achieve better approximation results, due to the proven

efficacy of radial basis functions in both practical and theoretical contexts. Besides the classical

and the modified forms of the operator, we also use an iterative method that is comparable to

the latter one. The original results presented in Sections 3.1 and 3.2 were published in three

articles: Cătinaş and Malina [14], [17] and Malina [61].

At the end of the chapter, in Section 3.3, we consider an application of some of these operators

in the reconstruction of damaged black-and-white and color images. The results obtained in this

section are contained in Malina [60].

3.1 The combined Shepard operator of least squares thin-plate

spline type

Consider f a real-valued function defined on X ⊂ R2, and (xi, yi) ∈ X some distinct points,

such that f(xi, yi), i = 1, . . . ,K, are known.

Definition 3.1.1. The classical Shepard operator of least squares thin-plate spline type is ex-

pressed as

Sm
µ [f ](x, y) =

K∑
i=1

Ai,µ(x, y)Fi(x, y), (3.1.1)

where Ai,µ, i = 1, ...,K, are defined by (1.4.2), for a given parameter µ > 0 and the least squares

thin-plate splines are given by

Fi(x, y) =
i∑

j=1
αjd

2
j log(dj) + ax+ by + c, i = 1, ...,K, (3.1.2)

with dj =
√

(x− xj)2 + (y − yj)2.
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The coefficients αj , a, b, c of Fi are found such that they minimize the expression

E =
K∑
i=1

[Fi(xi, yi)− f(xi, yi)]
2,

so, as solutions for systems of the following form (see, e.g., [64])



0 d212 log d12 · · · d21K log d1K x1 y1 1

d221 log d21 0 · · · d22K log d2K x2 y2 1
...

...
...

...
...

...
...

d2K1 log dK1 d2K2 log dK2 · · · 0 xK yK 1

x1 x2 · · · xK 0 0 0

y1 y2 · · · yK 0 0 0

1 1 · · · 1 0 0 0



·



α1

α2

...

αK

a

b

c



=



f1

f2
...

fK

0

0

0



, (3.1.3)

with d2ij = (xi − xj)
2 + (yi − yj)

2 , fi = f(xi, yi), i, j = 1, . . . ,K.

Definition 3.1.2. We define the modified Shepard operator of least squares thin-plate spline

type as

Sm
W [f ](x, y) =

K∑
i=1

wi,µ (x, y)Fi(x, y), (3.1.4)

with wi,µ given by (1.4.4) and Fi given by (3.1.2), for i = 1, ...,K.

To improve upon the methods described above, we consider a smaller set of k ∈ N∗ knot

points (x̂j , ŷj), j = 1, ..., k, that will be representative for the original set of K interpolation

nodes. This set is obtained following an idea proposed by J. R. McMahon in 1986. The steps of

the algorithm are outlined below (see, e.g., [64], [65]):

1. Generate k random knot points, with k < K ;

2. Assign to each point the closest knot point, based on the Euclidean distance ;

3. If there are knots with no point assigned, replace them with the nearest point ;

4. Compute the next set of knots as the arithmetic mean of all corresponding points ;

5. Repeat steps 2-4 until the sets of knots remain unchanged for two successive

iterations.
Algorithm 1: Generation of representative knot points for a given set of data.

Remark 3.1.3. Using the set of K interpolation nodes is indicated by setting m = 1, while

using the representative set of k knot points is indicated by m = 2.

The modified Shepard operator, introduced by Franke and Nielson [47], requires some arti-

ficial parameters such as the number of closest nodes or a radius of influence. An alternative

approach was proposed in [63], consisting of an iterative method that is free of these setup pa-

rameters and performs a reduction of the current interpolation result’s residue at each iteration.

The accuracy of this method is comparable to that of the modified Shepard procedure as shown

in [63], although there are cases where one method is preferred to the other.
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For (x, y) ∈ X, the iterative Shepard operator introduced in [63] is of the following form

u(x, y) =

M∑
i=0

K∑
j=1

u(k)j ω ((x− xj , y − yj)/τi) /

K∑
p=1

ω ((xp − xj , yp − yj)/τi)

 , (3.1.5)

where (xi, yi) ∈ X, i = 1, ...,K, are the interpolation nodes and ω is a continuously differentiable

weight function, satisfying the properties:

ω(x, y) ≥ 0, ∀(x, y) ∈ R2, ω(0, 0) > 0, and ω(x, y) = 0 if ∥(x, y)∥ > 1.

In the equation above, u
(k)
j denotes the interpolation residuals at the kth step, with u

(0)
j ≡ uj .

Using the ideas and method described in [63], we introduce below a new Shepard operator

of least squares thin-plate spline type.

Definition 3.1.4. The iterative Shepard operator of least squares thin-plate spline type is rep-

resented as

umL [f ](x, y) =

M∑
i=0

K∑
j=1

u(i)Fj
ω ((x− xj , y − yj)/τi) /

K∑
p=1

ω ((xp − xj , yp − yj)/τi)

 , (3.1.6)

with the interpolation residuals at the ith step u
(i)
Fj

given by

u
(0)
Fj

= Fj(xj , yj), (xj , yj) ∈ X, j = 1, ...,K,

and

u
(i+1)
Fj

= u
(i)
Fj

−
K∑
q=1

u(i)Fq
ω ((xj − xq, yj − yq)/τi) /

K∑
p=1

ω ((xp − xq, yp − yq)/τi)

 .
The weight function ω is defined as

ω(x, y) = ω(x)ω(y),

with

ω(x) =

{
5(1− |x|)4 − 4(1− |x|)5, |x| < 1

0, |x| ≥ 1
.

The functions Fj are the least squares thin-plate splines given in (3.1.2). The parameter τi

is chosen as in [63] and it decreases from a given value τ0, which can be, for example,

τ0 > sup
(x,y)∈X

max
1≤j≤K

∥(x− xj , y − yj)∥

to

τM < min
k ̸=j

∥(xk − xj , yk − yj)∥.

The sequence {τi} of scale factors is given by

τi = τ0 · γi, γ ∈ (0, 1).

Applying the concept of multiscale analysis, it was demonstrated in [63] that the behavior

of the interpolant remains relatively stable for γ ∈ [0.6, 0.95]. Smaller values of γ can also be

selected to reduce the computational time, especially in the case of sparsed interpolation nodes.
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3.2 The combined Shepard operator of inverse quadratic and

inverse multiquadric type

For a function f : X ⊆ R2 → R, with known values only on a set of K interpolation nodes

(xi, yi) ∈ X, i = 1, . . . ,K, let us consider the functions

ϕβi (x, y) =
i∑

j=1
αj

[
1 + (ϵdj)

2
]β

+ ax+ by + c, i = 1, ...,K, (3.2.1)

with ϵ being a shape parameter and dj =
√
(x− xj)2 + (y − yj)2.

For β = −1, we get the case of inverse quadratic RBF and for β = −1/2, the case of inverse

multiquadric RBF.

The coefficients αj , a, b, c are obtained as solutions of systems that have a similar form to

the ones in (3.1.3). Shortly, they can be written as(
A XT

X O3

)
·

(
α

u

)
=

(
f

0

)
, (3.2.2)

considering the following notations:

A ∈ RK×K , aij =
[
1 + (ϵdij)

2
]β
, j = 1, ...,K, β ∈ {−1, −1/2};

X ∈ R3×K(R), X =


x1 ... xK

y1 ... yK

1 ... 1

 ;

u = (a, b, c)T , α = (α1, . . . , αK)
T ,0 = (0, 0, 0)T ;

f = (f1, . . . , fK)T , fi = f(xi, yi), i = 1, . . . ,K.

As in the thin-plate spline case, we will consider two sets of nodes: an initial set with K

interpolation nodes (m = 1) and a second set with k representative knot points, obtained using

Algorithm 1 (m = 2).

Definition 3.2.1. The classical Shepard operators combined with the inverse quadratic and

inverse multiquadric RBFs are defined as

Sβ,m
µ [f ](x, y) =

K∑
i=1

Ai,µ(x, y)ϕ
β
i (x, y), (3.2.3)

where Ai,µ, i = 1, ...,K, are defined by (1.4.2), for a given parameter µ > 0 and ϕβi are given in

(3.2.1), for β ∈ {−1,−1/2}.

Definition 3.2.2. We define the modified Shepard operators combined with the inverse quadratic

and inverse multiquadric RBFs as

Sβ,m
W [f ](x, y) =

K∑
i=1

wi,µ (x, y)ϕ
β
i (x, y), (3.2.4)

with wi µ, i = 1, ...,K, given by (1.4.4) and ϕβi defined in (3.2.1), for β ∈ {−1,−1/2}.
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Definition 3.2.3. The iterative Shepard operators combined with the inverse quadratic and

inverse multiquadric RBFs are expressed as

uβ,mϕ [f ](x, y) =

M∑
i=0

K∑
j=1

u(i)
ϕβ
j

ω ((x− xj , y − yj)/τi) /

K∑
p=1

ω ((xp − xj , yp − yj)/τi)

 , (3.2.5)

with β ∈ {−1,−1/2} and u
(i)

ϕβ
j

the interpolation residuals at the ith step given by

u
(0)

ϕβ
j

= ϕβj (xj , yj), (xj , yj) ∈ X, j = 1, ...,K,

and

u
(i+1)

ϕβ
j

= u
(i)

ϕβ
j

−
K∑
q=1

u(i)
ϕβ
q
ω ((xj − xq, yj − yq)/τi) /

K∑
p=1

w ((xp − xq, yp − yq)/τi)

 .
The functions ϕβi are given in (3.2.1). For the choice of parameters in the iterative approach,

we follow the ideas from [63], as detailed in the preceding section.

3.3 Application in image reconstruction

In the subsequent part, we focus on an application of a combined-type Shepard operator,

specifically in image reconstruction. This problem has been intensively studied based on radial

basis functions approaches (see, e.g., [69], [80], [83], [91], [92], [95], [96]), but few results have

been reported for the Shepard operator. Here, we will reconstruct damaged images, both black-

and-white and color, using the combined Shepard operator of inverse quadratic and inverse

multiquadric type. Image reconstruction is typically required in cases involving inpainting or

noise. Since our focus is on restoration rather than damage detection, we assume that the area

to be reconstructed has already been identified.

3.3.1 Reconstruction of damaged black-and-white images

Consider an original, uncorrupted black-and-white image whose matrix representation is

denoted by M , with each entry M(x, y) storing a pixel of the image. Let us denote the matrix

representation of the corrupted image by M̂ . The coordinates of a valid pixel fi are denoted

by xi = (xi, yi), i.e., fi = M̂(xi, yi) and the coordinates of a defective pixel f̂i are x̂i = (x̂i, ŷi),

i.e., f̂i = M̂(x̂i, ŷi). In our approach, we will deliberately corrupt several pixels using the ”Salt-

and-Pepper” noise. This consists of changing the values of a specific percentage of pixels into 0

(black = pepper) or 255 (white = salt).

• Global case

Following some ideas proposed in [69] we consider the reconstruction of a damaged black-

and-white image using the bivariate Shepard operators Sβ
µ [f ] introduced in (3.2.3), specifically of

inverse quadratic (β = −1) and inverse multiquadric (β = −1/2) types. For the reconstruction,
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we will use a global approach, where the value of a defective pixel is computed based on all the

information provided by the set of correct pixels. Consider the matrix M̂ associated with an

image of resolution m × n that contains a percentage p% of damaged pixels. Let us denote by

K the number of valid pixels and by K̂ the number of defective pixels.

Let X be the set of interpolation nodes, X = {xi = (xi, yi), i = 1, ...,K} where xi and yi

represent the matrix coordinates of the correct pixels fi, i = 1, . . . ,K. We apply the Shepard

operator given in (3.2.3) to reconstruct the set of the defective pixels, X̂ = {x̂i = (x̂i, ŷi), i =

1, ..., K̂}. The reconstructed values of the damaged pixels are obtained as f̂i = Sβ
µ [f](x̂i), i =

1, . . . , K̂. The pseudo-code for this approach is given in Algorithm 2.

Data: damaged matrix M̂

Result: reconstructed matrix M ′

X = {xi = (xi, yi), i = 1, ...,K} ; /* correct pixels’ coordinates */

X̂ = {x̂i = (x̂i, ŷi), i = 1, ..., K̂} ; /* defective pixels’ coordinates */

f = {M̂(xi), xi ∈ X , i = 1, ...,K} ; /* correct pixels’ values */

M ′ = M̂ ;

for i = 1 . . . K̂ do

M ′(x̂i) = Sβ
µ [f ](x̂i) ; /* reconstruction of damaged pixels */

end

Algorithm 2: Global reconstruction of black-and-white images.

• Local case

In the global method, an incorrect pixel’s value is reconstructed based on all the information

provided by the correct pixels, but this approach does not always produce the best results for the

reconstructed image, since the pixels of an image have strongly local properties, as emphasized

in [83]. It would be more efficient to approximate the value of an incorrect pixel based on a local

procedure. This approach leads to a smaller computational time compared to the global case,

especially for high-resolution images because the systems (3.2.2) have a significantly reduced

size. The pseudo-code is presented in Algorithm 3.

3.3.2 Reconstruction of damaged color images

Consider a multivalued function f : X ⊆ R2 → Rm, f = (f1, . . . , fm) and a set of K

interpolation nodes xi = (xi, yi) ∈ X, i = 1, . . . ,K. Somogyi and Soos introduced in [88] the

Shepard-type multivalued interpolation operator as

m⋃
k=1

Sµ,k[f ](x) =
m⋃
k=1

K∑
i=1

Ai,µ(x)fk(xi), (3.3.1)

for x ∈ X, µ > 0, Ai,µ given in (1.4.2).

Based on this, we can define the multivalued Shepard operator combined with inverse

quadratic and inverse multiquadric RBFs in the bivariate case as

m⋃
k=1

Sβ
µ,k[f ](x) =

m⋃
k=1

K∑
i=1

Ai,µ(x)ϕ
β
i,k(x), (3.3.2)
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Data: damaged matrix M̂ , initial tolerance ε

Result: reconstructed matrix M ′

X̂ = {x̂i = (x̂i, ŷi), i = 1, ..., K̂} ; /* defective pixels’ coordinates */

M = M̂ ;

while X̂ not empty do

K̂ = size(X̂ ) ;

for i = 1 . . . K̂ do

Define Xi = neighborhood of x̂i ;

Xi = {xj ∈ Xi, j = 1, ...,Ki} ; /* correct pixels in Xi */

if nr wrong pixels neighborhood / nr pixels neighborhood < ε then

fi = {M̂(xj), xj ∈ Xi, j = 1, ...,Ki} ;

M(x̂i) = Sβ
µ [fi](x̂i) ; /* reconstruction of damaged pixels */

end

end

Update X̂ ;

ε = ε+ 0.01 ;

end

Algorithm 3: Local reconstruction of black-and-white images.

for x ∈ X, µ > 0, Ai,µ given in (1.4.2) and

ϕβi,k(x) =
i∑

j=1

αj,k

[
1 + (ϵdj)

2
]β

+ akx+ bky + ck, k = 1, . . . ,m. (3.3.3)

The coefficients αj,k, ak, bk, ck are found solving similar systems as the one in (3.2.2).

A color image is represented as an m × n × 3 structure with each component defining the

colors red, green and blue (RGB) of every pixel. Using the multivalued Shepard operator (3.3.2)

with m = 3, we can reconstruct colored images using similar ideas as in the case of black-and-

white images. Computational, we apply the local method described in Algorithm 3 for each

of the three components: red, green and blue. Since the three component reconstructions are

independent, we considered parallel computing, performed in Matlab.
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Chapter 4

Spherical interpolation using some

new Shepard operators

The last chapter is dedicated to spherical interpolation of scattered data using combined

Shepard operators. As mentioned in Section 1.5, this interpolation problem is important as it

appears in solving some problems related to physical phenomena. The new results obtained in

Section 4.1 and published in the paper Cătinaş and Malina [15] are derived using two spherical

radial basis functions: the least squares thin-plate spline and the inverse multiquadric.

The second Shepard method is obtained using the Bernoulli operators, suitable when infor-

mation about the function’s derivatives is known. After performing the Delaunay triangulation

of the sphere, we consider two approaches in applying this kind of operator, detailed in Section

4.2. The original results have been published in the paper Cătinaş and Malina [16].

Two physical phenomena are investigated in Sections 4.3 and 4.4: temperature prediction on

the Earth’s surface and topographic data approximation. The results show that these methods

represent a powerful instrument for solving various problems that model real-life phenomena.

4.1 Spherical Shepard operators combined with radial basis

functions

4.1.1 Combined spherical Shepard operators of least squares thin-plate spline

and inverse multiquadric type

We consider S2 to be the unit sphere in R3 centered at the origin and a set of given

interpolation nodes X = {xi = (xi, yi, zi) ∈ S2 : i = 1, . . . ,K} together with the corresponding

function values fi = f(xi), i = 1, . . . ,K, of f : S2 → R. Using the local zonal basis functions

(1.5.15) and (1.5.16), built upon the thin-plate spline and the inverse multiquadric functions,

we intend to improve the modified spherical Shepard operator (1.5.10), considering µ = 2.

Definition 4.1.1. Let X = {xi, i = 1, . . . ,K} ⊂ S2 be a set of given data samples and Ij a set

that contains the indices that correspond to nZ closest neighbors of xj . We define the new local
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Shepard interpolants of thin-plate spline type as

S1(x) =
K∑
j=1

wj(x)Z
(1)
j (x), (4.1.1)

with the local zonal basis function given by

Z
(1)
j (x) =

∑
i∈Ij

ajiψ1(g(x,xi)),

and

S2(x) =
K∑
j=1

wj(x)Z
(2)
j (x), (4.1.2)

with the augmented zonal basis function given by

Z
(2)
j (x) =

∑
i∈Ij

ajiψ1(g(x,xi)) +

D∑
k=1

Aj
kyk(x),

considering the thin-plate spline spherical radial basis function (see, e.g., [5])

ψ1(r) = r2 log r, r = 2 sin
g(x,y)

2
, g(x,y) = arccos(x · y).

In both cases, the coefficients that appear are found from

Z
(k)
j (xi) = fi, i ∈ Ij , j = 1, . . . ,K, k = 1, 2, (4.1.3)

along with additional constraints for Z
(2)
j , which are imposed on the set that contains spherical

harmonics of maximum order d on S2, Y = {y1, . . . , yD}. Here, Y constitutes a basis for Hd(S
2)

and D = dimHd(S
2) ≤ nZ . These conditions are∑

i∈Ij

ajiyk(xi) = 0, k = 1, . . . , D, j = 1, . . . ,K. (4.1.4)

Definition 4.1.2. Consider X = {xi, i = 1, . . . ,K} ⊂ S2 a set of interpolation nodes lying on

S2 and Ij a set that consists of the indices of nZ neighbors for the node xj . We define the new

local Shepard interpolants of inverse multiquadric type as

S3(x) =
K∑
j=1

wj(x)Z
(3)
j (x), (4.1.5)

with the local zonal basis function given by

Z
(3)
j (x) =

∑
i∈Ij

ajiψ2(g(x,xi)),

and

S4(x) =
K∑
j=1

wj(x)Z
(4)
j (x), (4.1.6)

with the augmented local zonal basis function given by

Z
(4)
j (x) =

∑
i∈Ij

ajiψ2(g(x,xi)) +
D∑

k=1

Aj
kyk(x), (4.1.7)
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considering the inverse multiquadric spherical radial basis function (see, e.g., [5])

ψ2(r) = (r2 + c2)−
1
2 , r = 2 sin

g(x,y)

2
, g(x,y) = arccos(x · y).

As in the previous case, the coefficients of Z
(3)
j and Z

(4)
j are obtained from the interpolation

conditions (4.1.3), together with the additional constraints (4.1.4) for Z
(4)
j .

Theorem 4.1.3. Consider a set of distinct nodes X = {xi, i = 1, ...,K}, lying on S2 and the

corresponding function values fi, i = 1, ...,K, with f : S2 → R. For each x ∈ S2, we obtain the

following approximation of the error of the Shepard operators Si, i = 1, ..., 4, given by (4.1.1),

(4.1.2), (4.1.5) and (4.1.6):

Ei(x) = |f(x)− Si(x)| ≤
K∑
j=1

wj(x)ej(x), i = 1, 2, 3, 4,

with ej(x) =
∣∣∣f(x)− Z

(i)
j (x)

∣∣∣ being the interpolation error of the local basis functions Z
(i)
j , i =

1, ..., 4, on the set of nodes xk, k ∈ Ij, Ij containing the indices of nZ closest neighbours of xj,

j = 1, ...,K. In addition, we have

Ei(x) ≤ max
j=1,...,K

ej(x), for i = 1, ..., 4, and x ∈ S2.

Theorem 4.1.4. Consider a set of distinct nodes X = {xi, i = 1, ...,K}, lying on S2 and the

corresponding function values fi, i = 1, ...,K, with f : S2 → R. For the Shepard operators S1, S3

given in (4.1.1) and (4.1.5), respectively, we have Si(x) ∈ C1(S2), i = 1, 3.

Theorem 4.1.5. For X = {xi, i = 1, . . . ,K} a set of distinct nodes in S2 and f ∈ C(S2), the

following estimation holds

|Si(x)− f(x)| ≤
K∑
j=1

wj(x)|Z(i)
j (x)− Z

(i)
j (xj)|+ ω(f, hX ), for i = 1, ..., 4,

where ω(f, hX )= sup
d(x,y)≤hX

|f(x) − f(y)| is the modulus of continuity of f and hX is the mesh

norm, i.e., hX = sup
x∈S2

g(x,X ).

4.2 Spherical Shepard-Bernoulli operators

4.2.1 Delaunay triangulation of a sphere

The problem of data interpolation on the sphere, with the aid of triangulation methods, has

been addressed and solved, for example, in [68], [75].

Definition 4.2.1. [73] A triangulation T of X is a set of triangles that have the following

properties:

1. The vertices of the triangles in T are formed by the nodes in X ;

2. The only nodes contained in a triangle are the ones that form its vertices;
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3. The interiors of the triangles are pairwise disjoint;

4. The union of all triangles covers the convex hull of X .

Remark 4.2.2. The vertices x1,x2,x3 of a triangle are specified in counterclockwise order (i.e,

the determinant that has as rows/columns x1,x2,x3, in this order, is non-negative).

Definition 4.2.3. [73] We say that a triangulation T has the empty circumcircle interior prop-

erty if the circumcircle corresponding to each triangle of T does not contain any nodes in its

interior. This kind of triangulation is called Delaunay triangulation.

4.2.2 Combined spherical Shepard-Bernoulli method

To obtain the new combined Shepard operators of Bernoulli type, we will use the spherical

coordinates (ϕ, θ) corresponding to x ∈ S2, given in cartesian coordinates (x, y, z).

Similarly to the planar case (1.4.14), one can obtain the directional derivatives of a function

f with respect to ϕ and θ (see, e.g., [68]), so, B
T (i)
m [f̃ ](ϕ, θ) can be written similarly to (1.4.27),

considering f̃(ϕ, θ) = f(x, y, z).

Moreover, in this case, the barycentric coordinates λ1, λ2, λ3 given in (1.4.13) are computed

based on the signed area A of a spherical triangle of vertices x,y, z ∈ S2, that is

tan

(
A(x1,x2,x3)

2

)
=

x1 · (x2 × x3)

1 + x1 · x2 + x2 · x3 + x1 · x3
,

with ′′·′′ denoting the Euclidean inner product and ′′×′′ the vector cross product.

Remark 4.2.4. The barycentric coordinates λ1, λ2, λ3 satisfy the relation λ1 + λ2 + λ3 = 1.

Definition 4.2.5. Let T be the Delaunay triangulation of a set X containing K data samples

xi ∈ S2, i = 1, . . . ,K, and Ti the set of all triangles that have a vertex in xi, for each i =

1, . . . ,K. Choosing the representative triangle T (i) ⊂ Ti, on which the operator B
T (i)
m [f̃ ] is

constructed, such that the approximation error is minimum, we define the spherical Shepard-

Bernoulli operator as

S1
Bm

[f ](x) =
K∑
i=1
Ai,µ(x)B

T (i)
m [f̃ ](ϕ, θ), x ∈ S2, (4.2.1)

with B
T (i)
m [f̃ ](ϕ, θ) given in (1.4.27), f̃(ϕ, θ) = f(x, y, z) and Ai,µ given in barycentric form as

Ai,µ(x) =
(g(x,xi))

−µ

K∑
k=1

(g(x,xk))
−µ

, (4.2.2)

for µ ∈ R+ a control parameter and g the geodesic distance (1.5.1).

Theorem 4.2.6. Consider a set of distinct nodes xi, i = 1, ...,K, lying on the unit sphere S2

and f : S2 → R. For each x ∈ S2, we have the following estimation of the error of the Shepard

operator S1
Bm

given by (4.2.1)

E(x) =
∣∣f(x)− S1

Bm
[f ](x)

∣∣ ≤ K∑
i=1

Ai,µ(x)ei(x),
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with ei(x) =
∣∣∣f(x)−B

T (i)
m [f ](ϕ, θ)

∣∣∣ , i = 1, ...,K. In addition, we have

E(x) ≤ max
i=1,...,K

ei(x), for all x ∈ S2.

In the sequel, we consider another approach, proposed in [97] and [98], that consists of

constructing a Bernoulli operator on each triangle from the triangulation T of S2. Here, we use

the Delaunay triangulation. Let N be the number of triangles that form the triangulation. In

this part, Ti, i = 1, . . . , N, will denote a triangle from the triangulation, with vertices xi1 ,xi2 ,xi3 ,

such that each node xi, i = 1, . . . ,K, is a vertex of at least one triangle, i.e.,⋃
i

{i1, i2, i3} = {1, . . . ,K}.

Each basis function Φi,µ corresponding to Ti, i = 1, . . . , N, will have the form [97]

Φi,µ(x) =

3∏
j=1

(
g(x,xij )

)−µ

N∑
k=1

3∏
j=1

(
g(x,xkj )

)−µ
, i = 1, . . . , N, (4.2.3)

for µ ∈ R+ a control parameter.

Definition 4.2.7. Let T be a Delaunay triangulation of the unit sphere S2 and Ti, i = 1, . . . , N,

a triangle of T , such that each point from a set of K distinct nodes xi ∈ S2, i = 1, . . . ,K, is

the vertex of at least one triangle from T . Using the basis functions Φi,µ, i = 1, . . . , N, given

by (4.2.3), we define the modified spherical Shepard-Bernoulli operator as

S2
Bm

[f ](x) =
N∑
i=1

Φi,µ(x)B
Ti
m [f̃ ](ϕ, θ), for all x ∈ S2, (4.2.4)

with BTi
m [f̃ ](ϕ, θ) given in (1.4.27) and f̃(ϕ, θ) = f(x, y, z).

Theorem 4.2.8. Considering xj , j = 1, ...,K, the vertices of at least one triangle Ti, i =

1, . . . , N , we have the following interpolation properties of S2
Bm

[f ],

S2
Bm

[f ](xj) = f(xj), j = 1, ...,K. (4.2.5)

4.3 Application in monthly mean temperature predictions

We consider an example of approximation with the operators introduced in the previous two

sections, using some real data, namely the monthly mean temperatures on the Globe in January

2010 and June 2010. The set of data was selected from https://www.kaggle.com/datasets/

shishu1421/global-temperature?select=air_temp.2010. For our numerical tests, we con-

sidered 1073 nodes and we reconstructed the temperature values for 21449. For the Shepard

operator combined with the two spherical RBFs, we considered the case of zonal basis functions

combined with a spherical harmonic, S2 and S4, as given in (4.1.2) and (4.1.6). In the case of the

Shepard-Bernoulli operator, we considered its second variant, as in (4.2.4), using the Bernoulli

operator of order 1, i.e., S2
B1

. The values from January are displayed in Figure 4.1 and the values

from June in Figure 4.2.
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(a) Real values. (b) S2 (c) S4 (d) S2
B1

Figure 4.1: Temperatures in January 2010.

(a) Real values. (b) S2 (c) S4 (d) S2
B1

Figure 4.2: Temperatures in June 2010.

4.4 Application to topographic data problem

To illustrate other practical benefits of these operators, we use topographic data from the

National Geophysical Data Center, NOAA US Department of Commerce, available in Matlab

using the command load topo. For the reconstruction of 21600 data values using the operators

S2, S4 and S2
B1

, given in (4.1.2), (4.1.6) and (4.2.4), respectively, we have used 1063 nodes. The

graphical results are displayed in Figure 4.3.

(a) Exact values. (b) S2 (c) S4 (d) S2
B1

Figure 4.3: Topographic data values.
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Conclusions

The main objective of this thesis was to introduce and study new Shepard operators in the uni-

variate, bivariate and spherical cases. Given the importance of the scattered data interpolation

problem nowadays, it is understood that finding new ways to improve this kind of interpolant

is needed due to its numerous practical applications.

The primary goal was to introduce a new type of Shepard operator in the univariate case,

obtained using polynomials constructed based on the weighted least squares method. We detailed

the construction of these kinds of polynomials and investigated some of their properties, including

the interpolation properties, the degree of exactness and linearity. Subsequently, with the aid

of these polynomial functions, we derived some new Shepard interpolants and proved that they

inherit the properties mentioned before. Additionally, we investigated the remainders of the

interpolation formulas, using Peano’s Theorem.

The second research direction concerned the bivariate case. Using three radial basis functions

(thin-plate spline, inverse quadratic and inverse multiquadric), we developed new methods of

approximation, using the classical, modified and iterative forms of the Shepard operator. The

first one is a global method, as proposed in its original form [82], in 1968. The second one [47]

is a local approach that ensures only the closest neighbors of a point have a significant influence

on the approximation data. The latter one [63] is free of the setup parameters necessary in

the first two approaches and performs a reduction of the current interpolation result’s residue

at each iteration. We demonstrated that these operators can be successfully used in image

reconstruction of damaged black-and-white and color images.

The last part of this thesis focused on the spherical interpolation of scattered data. We

introduced two types of Shepard operators. The first one was constructed using a local method

and two spherical radial basis functions: the thin-plate spline and the inverse multiquadric.

Additionally, we used another approach, based on the addition of a polynomial component,

specifically spherical harmonics, motivated by the fact that approximations of this kind offer

real advantages. We studied the interpolation error, proved that our operators are of class

C1 and provided an error bound based on the modulus of continuity. For the second type

of Shepard interpolant, we considered its combination with the Bernoulli operator, suitable

when information about the function’s partial derivatives are available. The new operators were

obtained after we performed the Delaunay triangulation of the sphere, using two types of basis

functions. We investigated the interpolation error and the interpolatory properties. Finally,

we presented two real-life applications of the operators introduced in the last chapter, namely
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temperature prediction on the Earth’s surface and topographic data approximation.

The accuracy of our methods has been investigated throughout all three chapters using

several test functions and datasets.

As future research directions following this thesis, we mention, for example, further improve-

ments of the spherical Shepard operator, which is a recent topic in the literature. Combinations

with operators such as Lagrange or Lidstone could be performed. Moreover, optimization of the

algorithm implementation is needed, as real-data problems involve large numbers of datasets,

requiring speed, efficiency and parallelization of algorithms in all three cases. Given the current

demand for research in artificial intelligence and machine learning, we also intend to explore po-

tential applications of Shepard-type operators in these fields. Recently, novel techniques based

on the Shepard interpolation have been developed for neural networks. They have been success-

fully tested in solving different tasks like time series classification, image classification, image

recognition or inpainting, emphasizing the potential of this kind of operator in such applications.
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Numér. Théor. Approx. 32 (2003), pp. 11–20.

48
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[15] T. Cătinaş and A. Malina. “Spherical interpolation of scattered data using least squares

thin-plate spline and inverse multiquadric functions”. In: Numer. Algor. 97 (2024),

pp. 1397–1414. doi: 10.1007/s11075-024-01755-6.

[16] T. Cătinaş and A. Malina. “Spherical Shepard-Bernoulli operator”. In: J. Appl. Math.

Comput. (2024). doi: 10.1007/s12190-024-02285-z.
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