BABES-BOLYAT UNIVERSITY
FacuLTy OF MATHEMATICS AND COMPUTER SCIENCE

Optimization
of Convolutional Neural Networks
by Pruning and Architecture Design

Summary of the PhD Thesis

Author:
CSANAD SANDOR

Supervisor:
Pror. DR. HORIA F. PopP

2024

Keywords: structured pruning, architecture design, convolutional neural networks, filter
importance, hierarchical convolutional networks






Contents

List of Publications

1

Introduction
1.1 Contributions to the field . . . . . . . . . . . ... ... ...

Structured Pruning

2.1 Linear Filter Ensembles . . . . . . .. ... .. ... ... ... ..
2.1.1 Proposed Method . . . . . . .. ... ... ... ... ...
2.1.2  Experiments with LFE . . . . . ... ... ... .......

2.2 Probabilistic Gradient-Based Pruning . . . . . . . . ... ... ...
2.2.1 Proposed Method . . . . . . . ... ... ... .. .. ...,
2.2.2  Experiments with PGBP . . . . .. .. ... ... ... ..

2.3 Structured Pruning Results . . . . . ... .. ... ... ... ..

24 Conclusion . . . . . ...

Dense Supermasks in Randomly Initialized Neural Networks

3.1 Pruning Methods . . . . . . .. ... .o
3.2 Experimental Setup . . . . . .. ..o oL
3.3 Results. . . .. . .
3.4 Conclusions . . . . . . . . . . . .

HierNet: Hierarchical Convolutional Networks

4.1 HierNet Architecture and Training . . . . . . ... ... ... ...
4.2 Hierarchy Construction and Grouping Algorithm . . . . . . . . . ..
4.3 Experiments and Results . . . . . . ... ... ... ... ... ...
4.4 Conclusion . . . . . . . . ..

Conclusions and future work

10
10
10
11
12
12
13
14
14

15
15
16
16
17

19
19
20
21
22

23



Thesis Table of Contents

1 Introduction
I.1 Objectives . . . . . . . o o i
1.2 Contributions tothefield . . . ... ... ... ... ... ........
1.3 Thesisoutline . . . . .. . . . .. .. .
1.4 Listof publications . . . . . . .. ... ... ... .. ...

2 Artificial intelligence and machine learning
2.1 Artificial neural networks . . . . .. ... oL o
2.2 Neural network architectures . . . . . . .. ... ... oL
2.3 Datasets used to training themodels . . . . . ... ... ... ... ...

3 Domain specific computer architectures and neural network compression
3.1 Domain specific architectures and deep learning frameworks . . . . . . .
3.2 Compression techniques . . . . . . . . .. .. ... .o

3.2.1 Quantization . . . . . . . . . ... e
322 Pruning . . . . ... e
3.2.3 Lottery tickets and supermasks . . . . . .. ... ... L.

4 Linear filter ensembles
4.1 Linear filterensembles . . . . . . . .. ... ...
4.1.1 Importance of filters in a single layer . . . . .. ... ... ...
4.1.2 Pruning filters in a single layer . . . . . . . ... ... ... ...
4.1.3 Networkpruning . . . . . . . . . .. .. ...
4.2 Multilayer perceptron and ResNet architecture experiments . . . . . . . .
4.2.1 Multilayer perceptron trained on a synthetic dataset . . . . . . . .
4.2.2 ResNet architectures on the CIFAR-10data . . . . . .. ... ..
43 Conclusion . . . ... ...

5 Probabilistic pruning
5.1 Importance probabilities . . . . . . ... ... ... ... ...
5.1.1 Scoreofthenetwork . . . ... ... .. ... ... ... ...
5.1.2  Probability distribution . . . . . . ... .. Lo
5.1.3 Network pruning algorithm . . . . . .. .. .. ... ... ....
5.2 Experiments with VGG-like and ResNet architectures . . . . . . . . . ..
5.2.1 Score functions experiments . . . . . . ... ... ...
5.2.2  Pruning of randomly inserted filters from trained networks . . . .

12
19
22

25
25
29
29
33
41

45
46
47
48
49
50
50
53
58

61
62
64
65
65
65
66
67



5.2.3 Pruning the ResNet architecture . . . . . ... ... ... ....
5.2.4 Results of the pruned ResNet architecture . . . . . ... .. ...
5.3 Conclusions . . . . . ...

6 Dense supermasks
6.1 Pruningmethods . . . .. .. ... ... ... L Lo
6.2 Experiments . . . . . . . . ...
6.2.1  Pruning results of the LeNet-300-100 architecture . . . . . . . . .
6.2.2  Pruning results of the Wide-LeNet architecture . . . . . . .. ..
6.3 Conclusions . . . . . . . ...

7 HierNet: Hierarchical Convolutional Networks
7.1 HierNetarchitecture . . . . . . . ... ... .. .. ...
7.2 Hierarchy construction . . . . . . ... .. ... .o
7.3 Experiments with architecture construction and training . . . . . . . . . .
7.3.1 Hyperparemeters of the architecture . . . . . ... ... .. ...
7.3.2 Dataset . . . . ... e e e
7.3.3 ResNet: The backbonemodel . . . ... .............
7.3.4  Software and hardware configurations . . . . . . .. ... .. ..
7.3.5 Grouper algorithmresults . . . . . ... ... ... .. .....
7.3.6 HierNetresults . . . . . .. ... ... ... ... ...,
7.4 Conclusion and futurework . . . . . . ... ... ... ...
7.4.1 Futurework . . . . . . ... ... .

8 Conclusions and future work
8.1 Future work . . . . . . . L

Bibliography

75
75
77
7
80
80

81
83
88
90
90
91
92
93
93
93
94
95

97
98

101



List of publications

All rankings are listed according to the classification of conferences! in Computer
Science.

e Category A:

— Csanad Sandor, Szabolcs Pavel and Lehel Csaté. Pruning cnn’s with
linear filter ensembles. In Proceedings of the 24th FEuropean Conference
on Artificial Intelligence (ECAI 2020), volume 325, series: Frontiers in
Artificial Intelligence and Applications, pages 1435-1442. 10S Press,
2020.

e Category B:

— Csanad Sandor, Szabolcs Pavel and Lehel Csaté. Neural network
pruning based on filter importance values approximated with monte
carlo gradient estimation. In Proceedings of the 17th International Joint
Conference on Computer Vision, Imaging and Computer Graphics The-
ory and Applications (VISIGRAPP 2022) - volume 5, pages 315-322.
INSTICC, SciTePress, 2022.

— Levente Tempfli and Csandd Sandor. HierNet: Image Recognition
with Hierarchical Convolutional Networks. In Proceedings of the 16th
International Conference on Agents and Artificial Intelligence (ICAART
2024), volume 2, pages 147-155, SciTePress, 2024.

e Category D:

— Csanad Sandor. Finding dense supermasks in randomly initialized
neural networks. In Proceedings of the 11th International Conference
on Applied Informatics (ICAI 2020), volume 2650, pages 288-295. Ceur
Workshop Proceedings, 2020.

Publications score: 17 points.

'https://www.core.edu.au/



Chapter 1

Introduction

Over the past decade, deep neural networks have revolutionized many areas of
computer science, including computer vision, speech recognition, machine transla-
tion and natural language processing. By applying deep networks, we have gained
the ability to address a wide variety of highly complex real-world problems.

As deep neural networks can solve more and more problems, there is an increas-
ing demand to deploy them not only on servers with “unlimited” computational
and energy resources (with powerful GPUs and tens or hundreds of gigabytes of
RAM), but also on various energy and computational constrained edge devices
such as smartphones, watches, various embedded and IoT systems. To meet this
demand, continuous development is essential, not only on the hardware side, but
also on the software side. On the hardware side, specialized domain-specific ar-
chitectures are being introduced that are capable of efficiently executing the core
operations found in deep neural networks. At the same time, on the software side,
various compression algorithms, such as quantization and network pruning, are
being developed to reduce the size of the network, thus minimizing memory access
and floating-point or fixed-point operations during inference.

Among these compression techniques, the primary focus of this thesis is on
network pruning which involves the identification and removal of redundant pa-
rameters from the network (see Figure 1.1a). The process of pruning addresses
the following issues when deploying neural networks on devices with limited com-
putational resources:

e Memory requirements: During inference, network parameters are stored
in memory, which is often limited on various embedded devices. A smaller
network has fewer parameters, which requires less memory. In addition,
structured pruning removes entire filters from the network, which means
fewer feature maps during inference. Reducing the number of feature maps
generated by a layer can significantly reduce the memory requirements of the



CH. 1. INTRODUCTION

network.

e Memory bandwidth: Network parameters are read from memory, multi-
plied by the layer’s input, and the results are written back to memory. If the
network contains fewer parameters, fewer memory reads are required. Since
memory access is generally an expensive operation, this can speed up the
inference process significantly. In addition, as mentioned earlier, structured
pruning removes entire channels from the network, which means that addi-
tional memory accesses are eliminated since these feature maps should not
be accessed.

e Computational complexity: Removing parameters from the network re-
sults in fewer multiply-add operations, which can speed up inference.

e Power consumption: As mentioned before, a smaller network requires
less memory access and fewer floating point operations. Of these, memory
access in particular is a power hungry operation (in comparison to 32-bit
multiplications, there is a nearly two-order-of-magnitude discrepancy. [19])
and it is important to reduce as much as possible.

e Privacy: If networks are small enough to fit into the device’s memory, the
various user data can be processed locally without sending it to the cloud.
This can be crucial in different applications where the network has to process
sensitive data.

In addition to reducing network size through parameter reduction or bit-width
reduction, alternative approaches aim to improve network performance by op-
timizing the architecture or a specific layer within the architecture for greater
efficiency [82, 61, 6]. For example, the field of compact architecture design fo-
cuses on creating highly efficient architectures. This is achieved by replacing the
conventional convolution operation with more efficient alternatives, such as using
depthwise separable convolution [6, 61]. This alternative operation can extract
an equivalent number of feature maps while using fewer parameters and fewer
floating point operations. Other approaches attempt to redesign the conventional
single-branch structure of networks by introducing additional branches [80] (see
Figure 1.1b) that perform operations depending on the network input. Although
this approach typically results in larger networks with more parameters and more
floating-point operations, requiring longer training times, only a single (or a few)
branch(es) needs to be evaluated during inference. As a result, the network re-
quires a comparable amount of memory and computational resources as a tradi-
tional single-branch network, but has an enhanced feature extraction capability
that contributes to more accurate predictions. In this thesis, we also explore the



CH. 1. INTRODUCTION

Input

Input 2

Figure 1.1: (a): Example of a pruned network, where neurons and their connection
are removed; (b): Example of a convolutional neural network with branching,.

concept of hierarchical networks, where the network is organized as a quasi-decision
tree, with the edges representing the feature-extracting layers and the nodes rep-
resenting the classifiers.

1.1 Contributions to the field

The contribution of this thesis to the field of deep learning is threefold:

1. Two approaches are proposed to estimate the filter or neuron importance
values in convolutional as well as in fully connected layers. Based on these
importance values, the least important filters are removed from the network,
resulting in a smaller network with a minimal loss of accuracy:

e The first approach is based on the linear filter ensembles (LFE) method,
which estimates the importance of filters and iteratively removes the
least important ones. See Section 2.1 and [63].

e The second approach is based on a method that constructs a proba-
bility distribution over the presence or absence of network filters. The
probabilities associated with filters are inferred by optimizing various
energy functions using the log-derivative trick and Monte Carlo gradient
estimation. See Section 2.2 and [64].



CH. 1. INTRODUCTION

e Experiments are conducted with the pruning methods on the ResNet
architecture trained using the CIFAR-10 dataset. The results demon-
strate that the methods can eliminate approximately 30 — 70% of the
parameters, depending on the model size. This level of parameter re-
duction is comparable to that achieved by state-of-the-art methods [25,
47, 24, 45] employing structured pruning techniques (Section 2.3).

2. It is shown that random subnetworks with high accuracy are present in
randomly initialized networks not just in the sparse form, but also in the
dense form (see Chapter 3 and [62]):

e By applying the developed structured pruning methods, it is shown
that randomly initialized networks contain dense subnetworks with an
accuracy far from chance: the subnetwork of the randomly initialized
LeNet architecture achieves more than 50% accuracy on the MNIST
dataset.

e It is also shown that an untrained, wide LeNet network has a subnetwork
with 80% accuracy on the MNIST dataset.

3. A novel convolutional neural network architecture is presented, constructed
as a quasi-decision tree to exploit the hierarchy between the classes (see
Chapter 4 and [77]):

o A tree-like architecture is introduced, where the edges represent the
feature-extracting layers and the nodes represent the classifiers. The
structure of the decision tree corresponds to the hierarchical relation-
ships between the label classes, meaning that the visually similar classes
are located in the same subtree.

e A semi-supervised method is presented for determining the hierarchical
relationships between a large number of classes.

e [t is shown that this method outperforms the accuracy of the ResNet
architecture by 1—3%, demonstrating the effectiveness of incorporating
input hierarchy into CNNs.



Chapter 2

Structured Pruning

Modern neural networks, despite their efficacy, often suffer from redundancy and
inefficiency due to the vast number of parameters they employ [9]. Structured
pruning addresses these issues by selectively removing entire filters or neurons,
as opposed to individual weights (unstructured pruning), thereby maintaining the
regular structure of the network and ensuring compatibility with existing deep
learning hardware and software [42, 36].

Pruning not only reduces the model size and computational costs but also often
leads to better generalization by eliminating overfitting [19]. In this chapter, we
propose two advanced methods for structured pruning: Linear Filter Ensembles
(LFE) [63] and Probabilistic Gradient-Based Pruning (PGBP) [64].

2.1 Linear Filter Ensembles

The LFE method estimates the importance of filters in a convolutional neural
network (CNN) by considering the impact on network performance when multiple
filters are simultaneously disabled. The method uses a linear model to predict
the importance of filters based on their performance in different filter ensembles.
Filters are ranked based on their importance, and the least important ones are
pruned.

2.1.1 Proposed Method

Given a dataset D = {(x®, y®)} and a convolutional network f(x|W) with input
x and parameters W = {W?! ... WZE} in the layers {1,2,..., L}, the empirical
loss is:

LUFC), Dirain) = 37 D C(f @), 59), (2.1)



CH. 2. STRUCTURED PRUNING

where C'(+,-) is the error function, such as cross-entropy loss, N is the number
of samples in training set Dyqin and 3@ is the ground truth label for the input
sample .

We introduce binary mask vectors z € {0,1}" for each layer I, where N,
represents the number of filters or neurons in that layer. These vectors indicate
which units are active. The network’s performance with a mask z( is scored as:

‘Ci - Emin

(1) — 1 -~ ~mn
° ‘cmax - ﬁmin’

(2.2)

where £; is the loss when z(® mask is applied to the network, £in and Lyax are
the minimum and maximum losses observed with the different masks, respectively.
The importance of each filter is computed by solving the equation

Z-0=s, (2.3)

where Z = [z(V), ..., 2] is the matrix of binary masks (each row of the matrix
is a 2 mask vector), s = [s(V), ..., sM)]T is a column vector of scores, and 6 =
[01,...,0N,]" is a column vector of filter importance values.

The pruning process involves removing the least important filters based on
their computed importance values. Starting from either the first or the last layer,
we iteratively prune filters and retrain the network until a predefined stopping
criterion is met.

Given the importance values 6, we sort the filters and determine an optimal
pruning threshold by evaluating the network accuracy on a validation set D,.
The threshold is tuned to achieve a balance between pruning effectiveness and
accuracy preservation.

After pruning, the network is fine-tuned on the training set Dy,.q;, to recover
any loss in performance due to the removal of filters.

2.1.2 Experiments with LFE

Experiments were conducted on a synthetic XOR dataset and the CIFAR-10
dataset using ResNet architectures. For the XOR dataset, a multilayer percep-
tron with 10 neurons in the hidden layer was pruned. The success rate of pruning
was measured by how often the optimal network structure (3 neurons in the hidden
layer) was achieved. For the CIFAR-10 dataset, ResNet models of varying depths
(20, 32, 56, 110) were pruned. The results of these experiments are presented in
Section 2.3.

11



CH. 2. STRUCTURED PRUNING

2.2 Probabilistic Gradient-Based Pruning

The LFE method assumes that structural units (neurons or filters) within the
same layer are independent of each other. While this assumption may hold for a
single layer, it does not hold when evaluating the importance of these units across
multiple layers.

Pruning the network layer by layer can partially address this issue, but it cannot
fully capture the true influence of the units on each other. To address this, we
introduced a more generalized method. In this approach, a probability distribution
over the network units is learned with the goal of decreasing the empirical loss (or
increasing the empirical score).

While a simple Bernoulli distribution was used in this work, targeting a single
layer at a time, the optimization method based on Monte Carlo gradient estimation
is flexible enough to allow the use of more complex probability models that can
model cross-layer dependencies. Extending this approach with a more complex
probability distribution model will allow modeling connections between layers,
thereby estimating the importance of units not only within a single layer, but also
across multiple successive layers.

2.2.1 Proposed Method

We define z as a vector of binary random variables, where each z; random variable
indicates whether the associated network unit is active or not. z; is treated as a
random variable with a Bernoulli distribution parameterized by 6;:

P(zi=1) = pi = 0(6;), (2.4)

where o is the sigmoid function.
The objective is to optimize the joint probability distribution Py(z) of z (see
Equation 2.12), parameterized by 6, to maximize the expected network score:

0 = argmax E [s(uw(x|z))] = argmax S(Pp), (2.5)
0 z~Pp(z) 0

where pyy () is the network, parameterized by W, @ is the input image, and
s(pw(x|z)) is the network score when z mask applied on it.

We use gradient ascent to optimize the parameters of the probability distribu-
tion Py(z):

0k+1 = Hk + OéVgS(PgNgk. (26)

12



CH. 2. STRUCTURED PRUNING

Given the infeasibility of evaluating all 2" mask combinations to calculate
VoS(Fe)le,, we use Monte Carlo gradient estimation with the log-derivative trick
to approximate the gradient. Namely, from the log-derivative trick we have that:

Vng(z) = Pg(Z)Vg lOg Pg(z). (27)
Using this, the gradient of the expected score can be reformulated as:
ViS(Pe) = [ VoFa(z)s(imm(alz)dz (28)
- / Vo Po(2)Vo log Po(2)s(piyw(]2))d= (2.9)
= E [Vig Po(z)s(uw(x|2))], (2.10)
z~Irgl\z

Next, we approximate the gradient using Monte Carlo estimation with N sam-
ples:

N
VoS(Py) ~ % S Vo log Pa()s(pi(]2)). (2.11)
=1

Variance reduction techniques, such as subtracting the moving average of the
score and normalizing by the score variance, enhance convergence. Various score
functions (loss-score, acc-score, exp-acc-score) are tested for effectiveness, adjust-
ing the score calculations to improve convergence.

The probability distribution Py(z) is modeled as a product of Bernoulli distri-

butions, assuming independence between units:

Po(z) = [ [ w1 =p)" ™, (2.12)

where p; = 0(6;) is the probability of z; = 1.

The network pruning algorithm iteratively optimizes the probability distribu-
tion for each layer, prunes the layer based on Py(z), and fine-tunes the network.
This layer-by-layer pruning accounts for interdependencies within layers, enhanc-
ing the efficiency and effectiveness of the pruning process.

2.2.2 Experiments with PGBP

PGBP was tested on a VGG-like architecture and ResNet architectures trained on
CIFAR-10. For the VGG-like network, random filters were added to the layers,
and the algorithm’s ability to prune these filters was evaluated. In the case of
ResNet architectures, the method was applied to ResNet-32, 56, and 110. The
results showed that PGBP could effectively prune filters while maintaining high
accuracy (see Section 2.3).

13



CH. 2. STRUCTURED PRUNING

2.3 Structured Pruning Results

Both LFE and PGBP were compared to other pruning methods from the literature.
The comparisons were based on the reduction in parameters and FLOPs and the
corresponding impact on accuracy.

Table 2.1 summarizes the results for both methods applied to ResNet architec-
tures and compares them with other state-of-the-art methods.

Accuracy (% L%
ResNet | Method Baseline Pruneil )Diff. 4 FLOPS( P)arams.
SFP [25] 92.63 92.08 0.55 41.5 41.24
39 FPGM [24] 92.63 92.82 -0.19 53.2 53.2*
LFE 92.97 92.42 0.55 46.4 49.35
PGBP 92.97 92.29 0.68 50.22 43.65
PFEC|[42] 93.04 93.06 -0.02 27.6 13.7
SFP [25] 93.59 93.35 0.1 47.14 52.6
ThiNet [47] 93.8 92.98 0.82 49.78 49.67
56 FPGM [24] 93.59 93.49 0.1 47.14 52.6
LFE 93.44 93.18 0.26 57.64 68.14
Adapt-DCP [45]  93.74 93.77 -0.03  68.48 54.80
PGBP 93.44 93.08 0.36 64.22 57.79
PFEC|[42] 93.53 93.3 0.23 38.6 32.40
SFP [25] 93.68 93.86 -0.18 40.8 40.72%*
110 FPGM [24] 93.68 93.85 -0.17 52.3 52.7*
LFE 94.05 93.48 0.57 63.68 60.08
PGBP 94.05 93.45 0.6 72.53  68.89

Table 2.1: Comparison of the pruned ResNet architecture (trained on the CIFAR-
10 dataset) with results from the literature.

2.4 Conclusion

This chapter introduced two structured pruning methods, LFE and PGBP, and
demonstrated their effectiveness on CIFAR-10 with ResNet architectures. Both
methods showed comparable results to state-of-the-art techniques, with PGBP
achieving particularly high compression rates. Future work includes exploring
these methods on larger datasets and more complex architectures to further vali-
date their efficacy and robustness.

14



Chapter 3

Dense Supermasks in Randomly
Initialized Neural Networks

This chapter shows the concept of dense supermasks within randomly initialized,
untrained neural networks, building on the foundational work presented in [62].

Previous research has established the presence of sparse subnetworks within
randomly initialized networks that perform comparably to trained networks [83,
57]. Inspired by these findings, we aim to explore dense subnetworks, termed
supermasks, which demonstrate significantly higher accuracy than chance levels in
untrained networks.

3.1 Pruning Methods

We employed several pruning methods to identify these dense subnetworks:

1. L; and Ly Norms: These norms measure the importance of neurons based
on their parameter values. Neurons with smaller norms are considered less
important and are pruned first.

2. Linear Filter Ensembles (LFE): This method evaluates the importance
of neurons by analyzing the network loss when different filter ensembles are
applied.

3. Probabilistic Gradient-Based Pruning (PGBP): This approach maxi-
mizes the expected score of the network by sampling masks from a probabil-
ity distribution and refining these probabilities using Monte Carlo gradient
estimation.

4. As a control case we also consider random pruning, where neurons are
pruned randomly.

15



CH. 3. DENSE SUPERMASKS IN RANDOMLY INITIALIZED NEURAL
NETWORKS

3.2 Experimental Setup

We conducted experiments on the MNIST dataset using the LeNet-300-100 archi-
tecture. This network comprises an input layer with 784 units, followed by two
hidden layers with 300 and 100 units, respectively, and an output layer with 10
units. The network parameters were initialized from a normal distribution, and no
training was applied. Pruning was performed in both one-shot and iterative man-
ners, progressively reducing the network’s size by removing the least important
neurons.

We also experiment with the Wide-LeNet architecture, an expanded version of
the traditional LeNet model, featuring two fully connected hidden layers with 3010
and 1010 neurons, respectively. This increased width enhances the probability of
identifying high-performing subnetworks within a larger parameter space.

3.3 Results

Figure 3.1 shows the accuracy of the pruned networks as more parameters are
removed. The results are summarized as follows:

1. LeNet-300-100 Architecture:
e Random Pruning: Accuracy remained at 10%, consistent with ran-
dom chance.

e [,; and L; Pruning: No significant accuracy improvement was ob-
served.

e LFE Pruning: Achieved a maximum accuracy of 34.2% with 70% of
the parameters removed.

e Probabilistic Pruning: With the negative loss score, accuracy reached
36.86% after removing 33% of the parameters, and 41.08% with the ex-
ponential score function after 67% parameter removal.

2. Iterative Pruning:

e LFE Method: Reached a maximum accuracy of 39.8%.

e Probabilistic Pruning: Achieved an accuracy of 46.82% with the ex-
ponential score function and 50.52% with the negative loss score func-
tion.

3. Wide-LeNet Architecture:

16



CH. 3. DENSE SUPERMASKS IN RANDOMLY INITIALIZED NEURAL

NETWORKS

LFE

PP - exp. score
PP - neg. loss
random

L1
L2

N\

)

Test accuracy (%

Test accuracy (%)

— LFE

10 PP - exp. score
10 —— PP - neg. loss
© ¥ @ Mmoo © <& MmN NMWN M~ AINQS Y e T @ Mmoo Y < MmN NM~AInQ Y
o m O o M N~ 4 n O M ™S A N O g O00m o m ©o o m N~ 4 In O M~ 4 1N O g O0m
S O 0 0~ VW O N & T M MmN N A 3 O 0 0O~ VW VW N ¥ T MM N N
Weights remaining (%) Weights remaining (%)

(b) LeNet,

iterative pruning accuracy

80

o o o

20

10

LFE
PP - exp. score
PP - neg. loss

o
©
o

(c) Wide-LeNet, iterative pruning accuracy

Figure 3.1: Randomly initialized (untrained), pruned LeNet-300-100 and Wide-

LeNet evaluated on the MNIST dataset

. Change in accuracy as more parameters

are removed from the models. Figure (a) shows the results of the one-shot pruning
experiment, Figure (b) shows the results of the iterative pruning experiment, and
Figure (c) shows the results of the Wide-LeNet iterative pruning experiment.

e Iterative Pruning: The network, initially with 3010 and 1010 neurons
in its first and second hidden layers, achieved over 80% accuracy after

70% of the parameters were p

runed using the probabilistic method with

the negative loss score function. Even with 10% of its original size, the

network maintained an accur

3.4 Conclusions

Our experiments confirmed that dense

acy of 73.3%.

subnetworks with significantly higher ac-

curacy than random chance exist within randomly initialized, untrained neural

networks.

Using linear filter ensembles and probabilistic pruning methods, we

demonstrated the presence of these supermasks in both the LeNet-300-100 and

17



CH. 3. DENSE SUPERMASKS IN RANDOMLY INITIALIZED NEURAL
NETWORKS

Wide-LeNet architectures. This discovery challenges the traditional view of neu-
ral network initialization and training, suggesting that the potential for high-
performance subnetworks exists inherently within the initial random parameters.

These findings provide new avenues for the efficient design of networks, where
the focus may shift from extensive training to the identification of inherent sub-
networks that already possess high accuracy.

18



Chapter 4

HierNet: Hierarchical
Convolutional Networks

Traditional CNNs follow a sequential construction, stacking convolutional layers
from the input layer to fully connected layers. This setup allows the network
to capture fine-grained details in the initial layers and progressively higher-level
features in later stages, providing a comprehensive visual representation of an
object. However, these models treat all classes equally, neglecting the inherent
hierarchy among data classes. For example, some classes share visual similarities,
like dogs and cats, or flowers that look more similar to each other than to animals.

To leverage this inherent class hierarchy, we introduce HierNet, a hierarchical
CNN architecture resembling a decision tree (see Figure 4.1). In HierNet, edges
represent convolutional operations for feature extraction, while nodes perform clas-
sification tasks to determine the next route based on extracted features. Final class
predictions are generated by the leaf nodes. The entire tree is trained, but during
inference, only a single path from the root to a leaf node is evaluated.

4.1 HierNet Architecture and Training

The architecture consists of nodes (V) and edges (E), forming a tree with a unique
root node. Each edge has feature-extracting operations, and nodes contain clas-
sifier functions to route samples to the appropriate child node. The root node
forwards the input image to the first edge. Classifier functions at the nodes in-
clude flattening or pooling, linear transformations, and softmax operations.
HierNet utilizes a sequence of operations similar to standard CNNs, such as
ResNet, as the backbone. As Figure 4.2 shows, the backbone’s layers are dis-
tributed among the edges from root to leaf, maintaining the same order as in the
original model. The primary difference is that HierNet has classifiers in every node

19



CH. 4. HIERNET: HIERARCHICAL CONVOLUTIONAL NETWORKS

image

|
(%1
.

€1

|
Uy ’

€2 €3 €4 €5

U3 Vg Us Vs
i C C3 Cy4 Cp C¢ Cr Cg Cg C10

Figure 4.1: HierNet architecture with a tree topology, feature extraction operations
in the edges, and classification operations in the nodes.

(except the root), unlike the single classification layer in traditional models.

HierNet can be trained end-to-end, with the output probability of each leaf
node being the product of its own output and the probabilities of all ancestor
nodes. The hierarchical tree’s order necessitates reordering dataset labels to match
the hierarchy. Categorical cross-entropy loss is used for training, and the training
settings mirror those of the backbone model. Metrics include ”conditional accu-
racy” for the concatenated output probabilities and "routing accuracy” for the
correct path from root to leaf.

Inference involves evaluating a single path from the root to a leaf node. This
process includes selecting the first edge, running feature extraction, feeding the
output into the classifier, computing probabilities, and determining the next route
until reaching a leaf node.

4.2 Hierarchy Construction and Grouping Algo-
rithm

The hierarchy of classes is represented by the tree’s topology. While manual con-
struction is possible for small datasets, we introduce an automated method using a

20



CH. 4. HIERNET: HIERARCHICAL CONVOLUTIONAL NETWORKS

HierNet Backbone
V1 U1
Jia fi
Ji2 fa
fas fs
) V2
Jo fa1 Jan fa
o2 fa2 fa fs
fa3 f33 fa3 fe
V3 Uy Us U3

Figure 4.2: The layers in HierNet and the backbone model are highlighted in
different colors, indicating specific parameter sets. As shown, HierNet closely
mirrors the layers of the backbone model.

confusion probability matrix (CPM) to group visually similar classes. A CPM cap-
tures misclassification probabilities among classes, which helps define the proximity
between classes. Classes are grouped based on their proximity, with constraints
on group size and minimum similarity to ensure meaningful hierarchies.

4.3 Experiments and Results

We experimented with HierNet on the CIFAR-100 dataset, which has 100 classes
and is suitable for testing our grouping algorithm. Key hyperparameters include
the split point of the backbone CNN, the number of additional classifier layers,
minimum proximity of group members, and maximum group size. Optimal values
were found through extensive testing. We augmented the dataset with random
horizontal flipping and translation, and evaluated the models using accuracy as
the primary metric.

The results demonstrate the significant advantage of HierNet over its back-
bone models (see Table 4.1). HierNet consistently outperforms the corresponding
ResNet and ELU ResNet models across all tested network sizes. For instance,
the 32-layer HierNet model achieves an accuracy of 70.45%, surpassing the 68.38%
accuracy of the 56-layer ResNet. Similarly, the 32-layer HierNet based on the ELU
ResNet backbone attains 70.43% accuracy, compared to the 69.03% accuracy of

21



CH. 4. HIERNET: HIERARCHICAL CONVOLUTIONAL NETWORKS

’ #layers \ \ ResNet \ HierNet \ \ ELU ResNet \ HierNet \

20 65.96 68.08 65.54 68.16
32 67.08 70.45 67.88 70.43
44 68.12 70.75 68.79 70.79
56 68.38 72.01 69.03 72.29
110 71.33 73.27 72.93 74.15

Table 4.1: Comparison of the accuracy of our HierNet and the backbone ResNet
and ELU ResNet for different network sizes

the 56-layer ELU ResNet. This highlights HierNet’s efficiency and superior per-
formance despite its smaller size.

4.4 Conclusion

This chapter introduced HierNet, a hierarchical CNN that leverages visual similari-
ties and class hierarchies to improve classification accuracy. HierNet outperformed
traditional ResNet models, demonstrating the effectiveness of exploiting class hi-
erarchies. Future work includes refining the grouping algorithm to balance class
distributions better and optimizing training configurations specific to HierNet.

22



Chapter 5

Conclusions and future work

This thesis contributes to the field of deep learning by introducing novel structured
pruning methods and a new architecture designed to improve the efficiency of
convolutional neural networks (CNN).

To reduce the number of filters and neurons in CNNs; the linear filter ensem-
bles (LFE) method assign importance values to filters in convolutional layers and
neurons in fully connected layers by building and evaluating linear filter ensem-
bles. The experiments, conducted on models trained on a small XOR-like dataset
as well as on the CIFAR-10 dataset, demonstrated the ability of this method to
identify and remove redundant filters from the network. In particular, when the
pruning technique was applied to different ResNet architectures, the results ob-
tained were comparable to those obtained by various state-of-the-art methods. The
probabilistic gradient-based pruning (PGBP) method was introduced as an alter-
native approach to estimate the importance of filters and neurons by constructing
a probability distribution over the filters using the log-derivative trick and Monte
Carlo gradient estimation. The experiments demonstrated the effectiveness of this
method in identifying random filters added to pre-trained networks and in pruning
the ResNet-110 architecture trained on the CIFAR-10 dataset, removing approxi-
mately 70% of the parameters.

Next, the existence of dense subnetworks in randomly initialized, untrained net-
works was investigated that achieve accuracy far from chance. With the use of the
LFE and PGBP methods, it was shown that the randomly initialized LeNet-300-
100 architecture contains a subnetwork that achieves 50% accuracy on the MNIST
dataset, while pruning the wider version of this architecture finds a subnetwork
that achieves 80% accuracy.

Finally, a novel tree-like architecture, HierNet, was introduced that can exploit
the hierarchical relationships between classes. In this network, the edges represent
the feature extraction layers, while the nodes perform the classifications to first
classify images into superclasses and then perform fine-grained classification on the

23



CH. 5. CONCLUSIONS AND FUTURE WORK

selected branch. This approach achieved 2 — 3% more accuracy on the CIFAR-100
dataset compared to the baseline ResNet model, with only a few more floating-
point operations required during inference.

Possible future research directions from the pruning side include the develop-
ment of probability models that can estimate the importance of units not just
within a single layer, but also across multiple layers. This is possible, since the
PGBP method is flexible enough to allow the use of more complex probability
models. Another interesting direction is to experiment with pruning during the
training phase, similar to the dropout method, which randomly deactivates neu-
rons during training to increase network robustness and improve generalization.
With the use of PGBP, the network could continuously adapt to the evolving
structure by selectively activating or deactivating units according to the learned
probabilities.

HierNet could be further improved by automating the construction of the model
structure. This can be achieved by dynamically constructing and continuously
evaluating the HierNet model, beginning with a smaller CNN architecture with-
out intermediate decision nodes and subsequently adding new layers and decision
nodes based on the confusion probability matrix. One advantage of this method
is that it inherently generates an asymmetric graph based on class similarity. This
concentrates the resource-intensive feature extraction operations where they are
most needed, resulting in more cost-effective processing.

24



Bibliography

Kambiz Azarian et al. “Learned Threshold Pruning”. In: CoRR abs/2003
00075 (2020). arXiv: 200300075.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. “Estimating or
Propagating Gradients Through Stochastic Neurons for Conditional Com-
putation”. In: CoRR abs/1308.3432 (2013). arXiv: 1308.3432. URL: http:
//arxiv.org/abs/1308.3432.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.
ISBN: 0387310738.

Davis Blalock et al. “What is the State of Neural Network Pruning?” In:
Proceedings of Machine Learning and Systems. Ed. by 1. Dhillon, D. Papail-
iopoulos, and V. Sze. Vol. 2. 2020, pp. 129-146. URL: https://proceedings.
mlsys . org/ paper / 2020/ file / d2ddeal18f00665ce8623e36bd4e3c7ch -
Paper.pdf.

Tom Brown et al. “Language Models are Few-Shot Learners”. In: Advances in
Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33.
Curran Associates, Inc., 2020, pp. 1877-1901.

Francois Chollet. “Xception: Deep Learning with Depthwise Separable Con-
volutions”. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2017, pp. 1800-1807. por: 10.1109/CVPR.2017.195.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. “Fast and
accurate deep network learning by exponential linear units (elus)”. In: arXiv
preprint arXiv:1511.07289 (2015).

Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In:
2009 IEEFE conference on computer vision and pattern recognition. leee. 2009,
pp- 248-255.

25



BIBLIOGRAPHY

[9]

[10]

[17]
[18]

[19]

Misha Denil et al. “Predicting Parameters in Deep Learning”. In: Advances
in Neural Information Processing Systems. Ed. by C.J. Burges et al. Vol. 26.
Curran Associates, Inc., 2013. URL: https://proceedings.neurips.cc/
paper _files/paper/2013/file/7fec306d1e665bc9c748b5d2b99a6e97 -
Paper.pdf.

Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding”. In: Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long and Short Pa-
pers). Minneapolis, Minnesota: Association for Computational Linguistics,
June 2019, pp. 4171-4186. DOI: 10 . 18653 /v1/N19-1423. URL: https:
//aclanthology.org/N19-1423.

Xiaohan Ding et al. “Repvgg: Making vgg-style convnets great again”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2021, pp. 13733-13742.

Alexander Finkelstein, Uri Almog, and Mark Grobman. Fighting Quantiza-
tion Bias With Bias. 2019. arXiv: 1906.03193 [cs.LG].

Jonathan Frankle and Michael Carbin. “The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks”. In: ICLR’2019. 2019. URL:
https://openreview.net/forum?id=rJ1-b3RcF7.

Jonathan Frankle et al. Stabilizing the Lottery Ticket Hypothesis. 2020. arXiv:
1903.01611 [cs.LG].

Amir Gholami et al. “A Survey of Quantization Methods for Efficient Neural
Network Inference”. In: CoRR abs/2103.13630 (2021). arXiv: 2103. 13630.
URL: https://arxiv.org/abs/2103.13630.

Aidan N. Gomez et al. “Learning Sparse Networks Using Targeted Dropout”.
In: CoRR abs/1905.13678 (2019). arXiv: 1905.13678. URL: http://arxiv.
org/abs/1905.13678.

[an Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

Shixiang Shane Gu et al. “MuProp: Unbiased Backpropagation for Stochastic
Neural Networks”. In: CoRR abs/1511.05176 (2016).

Song Han, Huizi Mao, and William J. Dally. “Deep Compression: Compress-
ing Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding”. In: CoRR abs/1510.00149 (2015). arXiv: 15610.00149. URL: http:
//arxiv.org/abs/1510.00149.

26



BIBLIOGRAPHY

[20]

[21]

[24]

[25]

Song Han et al. “Learning Both Weights and Connections for Efficient Neural
Networks”. In: Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 1. NIPS’15. Montreal, Canada:
MIT Press, 2015, pp. 1135-1143.

Babak Hassibi et al. “Optimal Brain Surgeon: Extensions and Performance
Comparisons”. In: Proceedings of the 6th International Conference on Neu-
ral Information Processing Systems. NIPS’93. Denver, Colorado: Morgan
Kaufmann Publishers Inc., 1993, pp. 263-270. URL: http://dl.acm.org/
citation.cfm?7id=2987189.2987223.

Kaiming He and Jian Sun. “Convolutional neural networks at constrained
time cost”. In: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2014), pp. 5353-5360.

Kaiming He et al. “Deep Residual Learning for Image Recognition”. In:
2016 IEEE Conference on Computer Vision and Pattern Recognition, C'VPR
2016, Las Vegas, NV, USA, June 27-30, 2016. 2016, pp. 770-778. DOIL: 10.
1109/CVPR.2016.90. URL: https://doi.org/10.1109/CVPR.2016.90.

Yang He et al. “Filter Pruning via Geometric Median for Deep Convolutional
Neural Networks Acceleration”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2019.

Yang He et al. “Soft Filter Pruning for Accelerating Deep Convolutional
Neural Networks”. In: Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI-18. International Joint Confer-
ences on Artificial Intelligence Organization, July 2018, pp. 2234-2240. DOTI:
10.24963/ijcai.2018/309. URL: https://doi.org/10.24963/ijcai.
2018/309.

John L. Hennessy and David A. Patterson. Computer Architecture: A Quan-
titative Approach. 5th ed. Amsterdam: Morgan Kaufmann, 2012. 1SBN: 978-
0-12-383872-8.

Torsten Hoefler et al. “Sparsity in Deep Learning: Pruning and Growth for
Efficient Inference and Training in Neural Networks”. In: J. Mach. Learn.
Res. 22.1 (Jan. 2021). 1SSN: 1532-4435.

Hengyuan Hu et al. Network Trimming: A Data-Driven Neuron Pruning
Approach towards Efficient Deep Architectures. 2016. arXiv: 1607 . 03250
[cs.NE].

Sergey loffe and Christian Szegedy. “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”. In: Proceedings of
the 32nd International Conference on International Conference on Machine
Learning - Volume 37. ICML’15. Lille, France: JMLR.org, 2015, pp. 448-456.

27



BIBLIOGRAPHY

[30]

[31]

[32]

[33]

[34]

[35]

Ruyi Ji et al. “Attention convolutional binary neural tree for fine-grained vi-
sual categorization”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 2020, pp. 10468-10477.

John M. Jumper et al. “Highly accurate protein structure prediction with
AlphaFold”. In: Nature 596 (2021), pp. 583-589.

Khronos OpenCL Working Group. The OpenCL Specification, Version 1.1.
Ed. by Aaftab Munshi. 2011. URL: https://www.khronos.org/registry/
cl/specs/opencl-1.1.pdf.

Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Opti-
mization”. In: ICLR’2015. Ed. by Yoshua Bengio and Yann LeCun. 2015.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Learning Multiple Lay-
ers of Features from Tiny Images. Tech. rep. Faculty of Computer Science,
University of Toronto, 2009. URL: http://www.cs.toronto.edu/~kriz/
cifar.html.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems 25. Ed. by F. Pereira et al. Curran Asso-
ciates, Inc., 2012, pp. 1097-1105.

Aditya Kusupati et al. “Soft Threshold Weight Reparameterization for Learn-
able Sparsity”. In: Proceedings of the 37th International Conference on Ma-
chine Learning. ICML’20. JMLR.org, 2020.

Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST handwritten digit
database”. In: ATT Labs [Online] 2 (2010).

Yann LeCun, John S. Denker, and Sara A. Solla. “Optimal Brain Damage”.
In: Advances in Neural Information Processing Systems 2. Ed. by D. S.
Touretzky. Morgan-Kaufmann, 1990, pp. 598-605. URL: http://papers.
nips.cc/paper/250-optimal-brain-damage.pdf.

Yann Lecun et al. “Gradient-based learning applied to document recogni-
tion”. In: Proceedings of the IEEE. 1998, pp. 2278-2324.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. “Snip:
single-Shot Network Pruning based on Connection sensitivity”. In: 7th In-
ternational Conference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL: https://
openreview.net/forum?id=B1VZqjAcYX.

28



BIBLIOGRAPHY

[41]

[44]

[45]

[46]

Bowen Li et al. “DFQF': Data Free Quantization-aware Fine-tuning”. In: Pro-
ceedings of The 12th Asian Conference on Machine Learning. Ed. by Sinno
Jialin Pan and Masashi Sugiyama. Vol. 129. Proceedings of Machine Learn-
ing Research. PMLR, Nov. 2020, pp. 289-304. URL: https://proceedings.
mlr.press/v129/1i20a.html.

Hao Li et al. “Pruning Filters for Efficient ConvNets”. In: International
Conference on Learning Representations. 2017. URL: https://openreview.
net/forum?id=rJqFGTslg.

Yuhang Li et al. “{{BRECQ}: Pushing the Limit of Post-Training Quan-
tization by Block Reconstruction”. In: International Conference on Learn-
ing Representations. 2021. URL: https://openreview.net/forum?id=
POWv6hDd9XH.

Ji Lin et al. “Runtime Neural Pruning”. In: Advances in Neural Information
Processing Systems. Ed. by 1. Guyon et al. Vol. 30. Curran Associates, Inc.,
2017. URL: https://proceedings . neurips . cc/paper _files/paper/
2017/file/ab1£fb975227d6640e4fe47854476d133-Paper . pdf.

Jing Liu et al. “Discrimination-aware Network Pruning for Deep Model Com-
pression”. In: TPAMI’2021 PP (2021), (early access). DOI: 10.1109/TPAMI.
2021.3066410.

Christos Louizos, Max Welling, and Diederik P. Kingma. “Learning Sparse
Neural Networks through L0 Regularization”. In: ArXiv abs/1712.01312
(2017).

J. Luo, J. Wu, and W. Lin. “ThiNet: A Filter Level Pruning Method for Deep
Neural Network Compression”. In: 2017 IEEE International Conference on
Computer Vision (ICCV). Vol. 00. Oct. 2018, pp. 5068-5076. DOI: 10.1109/
ICCV.2017 . 541. URL: doi . ieeecomputersociety.org/10.1109/ICCV.
2017.541.

Jian-Hao Luo and Jianxin Wu. “AutoPruner: An End-to-End Trainable Fil-
ter Pruning Method for Efficient Deep Model Inference”. In: CoRR abs/1805
08941 (2018). arXiv: 180508941.

Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. Software available from tensorflow.org. 2015. URL: https:
//www.tensorflow.org/.

Eldad Meller et al. “Same, Same But Different: Recovering Neural Net-
work Quantization Error Through Weight Factorization”. In: Proceedings
of the 36th International Conference on Machine Learning. Ed. by Kama-
lika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine
Learning Research. PMLR, June 2019, pp. 4486-4495.

29



BIBLIOGRAPHY

[51]

[52]

[60]

[61]

Pavlo Molchanov et al. “Pruning Convolutional Neural Networks for Re-
source Efficient Inference”. In: International Conference on Learning Repre-
sentations. 2017. URL: https://openreview.net/forum?id=SJGCiwbgl.

MICHAEL C. MOZER and PAUL SMOLENSKY. “Using Relevance to Re-
duce Network Size Automatically”. In: Connection Science 1.1 (1989), pp. 3—
16. DOI: 10.1080/09540098908915626. eprint: https://doi.org/10.1080/
09540098908915626. URL: https://doi.org/10.1080/09540098908915626.

Markus Nagel et al. “A White Paper on Neural Network Quantization”. In:
ArXiv abs/2106.08295 (2021).

Markus Nagel et al. “Up or Down? Adaptive Rounding for Post-Training
Quantization”. In: CoRR abs/2004.10568 (2020). arXiv: 2004 .10568. URL:
https://arxiv.org/abs/2004.10568.

NVIDIA Corporation. NVIDIA CUDA C Programming Guide. Version 3.2.
2010.

Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems.
Ed. by H. Wallach et al. Vol. 32. Curran Associates, Inc., 2019.

Vivek Ramanujan et al. What’s Hidden in a Randomly Weighted Neural
Network? 2019. arXiv: 1911.13299 [cs.CV].

Minsoo Rhu et al. “Compressing DMA Engine: Leveraging Activation Spar-
sity for Training Deep Neural Networks”. In: 2018 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA). 2018, pp. 78—
91. por: 10.1109/HPCA.2018.00017.

Minsoo Rhu et al. “Compressing DMA Engine: Leveraging Activation Spar-
sity for Training Deep Neural Networks”. In: 2018 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA ). 2018, pp. 78—
91. poI1: 10.1109/HPCA.2018.00017.

Christian P. Robert and George Casella. Monte Carlo Statistical Methods.
Springer Publishing Company, Incorporated, 2010. 1SBN: 1441919392.

Mark Sandler et al. “MobileNetV2: Inverted Residuals and Linear Bottle-
necks”. In: The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). June 2018.

30



BIBLIOGRAPHY

[62]

[63]

[64]

[66]

[67]

[68]

[69]

[70]

Csanad Sandor. “Finding Dense Supermasks in Randomly Initialized Neu-
ral Networks”. In: Proceedings of the 11th International Conference on Ap-
plied Informatics (ICAI) (Eger, Hungary, Jan. 29-31, 2020). Ed. by Istvan
Fazekas, Gergely Kovasznai, and Tibor Témécs. CEUR Workshop Proceed-
ings 2650. Aachen, 2020, pp. 288-295. URL: http://ceur-ws.org/Vol-
2650/ #paper30.

Csanad Sandor, Szabolcs Pavel, and Lehel Csaté. “Pruning CNN’s with
Linear Filter Ensembles”. In: ECAI 2020 - 24th European Conference on
Artificial Intelligence. 2020, pp. 1435-1442. DOI: 10.3233/FAIA200249. URL:
https://doi.org/10.3233/FATIA200249.

Csandad Sandor., Szabolcs Pavel., and Lehel Csaté. “Neural Network Pruning
based on Filter Importance Values Approximated with Monte Carlo Gradi-
ent Estimation”. In: Proceedings of the 17th International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and Applica-
tions (VISIGRAPP 2022) - Volume 5: VISAPP. INSTICC. SciTePress, 2022,
pp- 315-322. 1SBN: 978-989-758-555-5. DOI: 10.5220/0010786700003124.

Victor Sanh, Thomas Wolf, and Alexander Rush. “Movement Pruning: Adap-
tive Sparsity by Fine-Tuning”. In: Advances in Neural Information Process-
ing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc.,
2020, pp. 20378-20389. URL: https://proceedings.neurips.cc/paper_
files/paper/2020/file/eaelbaabaa768ae4a5993a8ad4f4fabed -Paper.
pdf.

Shibani Santurkar et al. “How Does Batch Normalization Help Optimiza-
tion?” In: Advances in Neural Information Processing Systems. Ed. by S.
Bengio et al. Vol. 31. Curran Associates, Inc., 2018.

Pedro Savarese, Hugo Silva, and Michael Maire. Winning the Lottery with
Continuous Sparsification. 2020. URL: https://openreview.net/forum?
id=BJe4oxHYPB.

John R. Searle. “Minds, Brains, and Programs”. In: Mind Design. Cam-
bridge, MA, USA: MIT Press, 1985, pp. 282-307. 1SBN: 0262580527.

Anish Shah et al. “Deep Residual Networks with Exponential Linear Unit”.
In: Proceedings of the Third International Symposium on Computer Vision
and the Internet. VisionNet’16. Jaipur, India: Association for Computing
Machinery, 2016, pp. 59-65. 1SBN: 9781450343015. DOT: 10.1145/2983402.
2983406. URL: https://doi.org/10.1145/2983402.2983406.

Sietsma and Dow. “Neural net pruning-why and how”. In: IEEE 1988 In-
ternational Conference on Neural Networks. 1988, 325-333 vol.1. DOI: 10.
1109/ICNN.1988.23864.

31



BIBLIOGRAPHY

[71]

[72]

[74]

[75]

David Silver et al. “Mastering the game of Go with deep neural networks
and tree search”. In: Nature 529 (2016), pp. 484-503. URL: http://www.
nature.com/nature/journal/v529/n7587/full/nature16961.html.

Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Net-
works for Large-Scale Image Recognition”. In: 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings. 2015. URL: http://arxiv.org/abs/
1409.1556.

Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks
from Overfitting”. In: Journal of Machine Learning Research 15.56 (2014),
pp. 1929-1958. URL: http://jmlr.org/papers/vi5/srivastaval4a.html.

Rupesh Kumar Srivastava, Klaus Greff, and Jiirgen Schmidhuber. “High-
way Networks”. In: CoRR abs/1505.00387 (2015). arXiv: 1505.00387. URL:
http://arxiv.org/abs/1505.00387.

Chong Min John Tan and Mehul Motani. “DropNet: Reducing Neural Net-
work Complexity via Iterative Pruning”. In: Proceedings of the 37th In-
ternational Conference on Machine Learning. Ed. by Hal Daumé III and
Aarti Singh. Vol. 119. Proceedings of Machine Learning Research. PMLR,
July 2020, pp. 9356-9366. URL: https://proceedings.mlr.press/v119/
tan20a.html.

Ryutaro Tanno et al. “Adaptive neural trees”. In: International Conference
on Machine Learning. PMLR. 2019, pp. 6166-6175.

Levente Tempfli. and Csanad Sandor. “HierNet: Image Recognition with Hi-
erarchical Convolutional Networks”. In: Proceedings of the 16th International
Conference on Agents and Artificial Intelligence - Volume 2: ICAART. IN-
STICC. SciTePress, 2024, pp. 147-155. 1SBN: 978-989-758-680-4. DOI: 10.
5220/0012321100003636.

Georg Thimm and Emile Fiesler. “Evaluating pruning methods”. In: 1995
International Symposium on Artificial Neural Networks (ISANN’95). Na-
tional Chiao-Tung University, Hsinchu, Taiwan, Republic of China, 1995,
A2 20-25. URL: http://infoscience.epfl.ch/record/82305.

Stijn Verdenius, Maarten Stol, and Patrick Forré. “Pruning via Iterative
Ranking of Sensitivity Statistics”. In: CoRR abs/2006.00896 (2020). arXiv:
2006.00896. URL: https://arxiv.org/abs/2006.00896.

Zhicheng Yan et al. “HD-CNN: Hierarchical Deep Convolutional Neural Net-
works for Large Scale Visual Recognition”. In: 2015 IEEE International Con-
ference on Computer Vision (ICCV). 2015, pp. 2740-2748. por1: 10.1109/
ICCV.2015.314.

32



BIBLIOGRAPHY

[31]

[82]

[83]

[84]

Shuochao Yao et al. “DeeploT: Compressing Deep Neural Network Struc-
tures for Sensing Systems with a Compressor-Critic Framework”. In: Pro-
ceedings of the 15th ACM Conference on Embedded Network Sensor Systems.
SenSys "17. Delft, Netherlands: ACM, 2017, 4:1-4:14. 1SBN: 978-1-4503-5459-
2. DOI: 10.1145/3131672.3131675. URL: http://doi.acm.org/10.1145/
3131672.3131675.

Xiangyu Zhang et al. “ShuffleNet: An Extremely Efficient Convolutional
Neural Network for Mobile Devices”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). June 2018.

Hattie Zhou et al. “Deconstructing Lottery Tickets: Zeros, Signs, and the
Supermask”. In: Advances in Neural Information Processing Systems 32.
Curran Associates, Inc., 2019, pp. 3592-3602.

Barret Zoph et al. “Learning Transferable Architectures for Scalable Im-
age Recognition”. In: 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2017), pp. 8697-8710.

33



