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Abstract

Video cameras are frequently used in advanced driver assistance systems. The most

common mounting position of front facing cameras is near the rearview mirror, be-

hind the windshield of the car. As light is refracted at the surface of the windshield,

this acts as an optical element, and causes highly nonlinear, complex distortions in

the images. This is a problem for geometric computer vision algorithms, as they

assume a precise camera model, which can map the 3D world to the 2D image plane.

After presenting the fundamental concepts of camera models and deep learning

methods, two solutions for the problem of distortions caused by a transparent object

in the optical path are presented.

First, a model where we explicitly trace the path of light rays through the refractive

elements is proposed. Both the global and local components of the distortions are

modeled using radial basis functions, and a calibration algorithm based on checker-

board targets is used to find the optimal model parameters. The method is tested

on real images captured by a camera placed behind a glass object, as well as on

synthetically generated distorted images.

Second, a deep learning based approach is presented, where a convolutional neural

network is used to directly estimate the distortions based on a single image. Similar

to the first approach, large scale synthetic and real datasets are generated to train

the models. The network is trained using image reconstruction based loss functions,

and semantic segmentation and optical flow is included as auxiliary task to improve

the results.
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Chapter 1

Introduction

Advanced driver assistance systems became widely adopted in modern cars. These systems

provide safety functions such as automatic emergency braking, lane departure warning and

lane keep assist, traffic sign recognition, intelligent speed assistance, and many others. These

systems rely on multiple sensors to build an accurate representation of the environment around

the car. These representations need to be precise and robust, as these systems operate in safety-

critical environments. The frequently used sensors include cameras, radar, ultrasonic, and in

some cases lidar. Among these sensors, cameras are the most versatile. They provide high

resolution information at a low cost, allowing to extract rich semantics about the surroundings.

As the human road infrastructure is mostly built around vision, for certain tasks, such as

interpreting road markings and traffic signs, cameras are the only solution.

When a scene is captured using a camera, information about the structure of the world is

lost. In order to reason about the position of objects around the car, this information has to

be recovered. This can be done using multi-camera (stereo) systems, where by observing the

same object on multiple views, its position can be recovered using triangulation. When using

monocular systems with a single camera, we can use images captured at different timestamps

instead, and reconstruct the world using Structure-from-Motion approaches. Lately deep learn-

ing techniques were also proposed, which can predict depth information based on single images.

Regardless of the camera system and technique used, these methods all require a precise map-

ping from 3D points in the world to 2D pixels on the image – these mappings are called camera

models.

The ideal camera model depends on the properties of the camera itself. For cameras with

small field of views simple models based on perspective projection are sufficient. Wide angle
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1.1 Objectives

cameras, such as fisheye cameras deviate significantly from the perspective model, the images

are geometrically distorted, which needs to be accounted for. These models characterize the

properties of the cameras globally – only a small number of parameters are used to describe

the mapping across the entire field of view. Global models can fail for example when cameras

are placed behind transparent objects, which refract the incoming light rays. This objects

can introduce highly nonlinear behavior in the mapping function, which needs to be modeled

accordingly – using local models.

The parameters of camera models are estimated during camera calibration. Calibration

methods can be divided into two main categories. When a camera is first deployed, an initial

(offline) calibration takes place. This process is done using controlled environments, in the

presence of specific calibration targets (e.g. checkerboard patterns) and measurement devices.

Initial calibration methods can estimate the parameters to a high precision, but they are time-

consuming and expensive. While the camera is used, it can become decalibrated: due to

environment effects such as large temperature changes and mechanical stresses (e.g. vibrations)

the properties of the lenses drift from their initial values. To correct these issues, an online

self-calibration can be applied. Self-calibration methods adjust the camera while it is operated,

without the need for specific calibration targets in the environment.

1.1 Objectives

The motivation of this thesis comes from smart cameras used for advanced driver assistance

systems. Automotive smart cameras are compact devices, which include both the optical system

and processing units (using System-on-Chip) to implement safety functions. These devices are

mounted in the area above the rearview mirror of the car, behind the front car windshield. This

comes with unique challenges: the refractive windshield in the close proximity of the camera

heavily distorts the images. These distortions are highly nonlinear, and standard camera models

cannot precisely describe them. The work presented in this thesis focuses on modeling these

distortions: both an initial calibration method based on explicitly modeling the light refraction

at the windshield, and a self-calibration method based on deep learning is proposed.

The first objective of this thesis is to propose an initial calibration algorithm which satisfies

the following requirements:

� The model has to be able to describe both the global and local components of the highly

nonlinear windshield distortions. This allows taking into account both the overall shape
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1.1 Objectives

of the windshield, as well as local irregularities of the surface.

� The model has to be physics based: light rays through the transparent media have to

traced, as they are refracted on the surfaces. This approach offers an easy way to incor-

porate prior knowledge of the general properties of the windshield, and it also provides

opportunities to more thoroughly analyze distortions.

� Recent advances of automatic differentiation frameworks have to be leveraged, which

provide the feasibility to build and optimize complex models. This provides high flexibility

when selecting the models we want to use.

Additionally to the initial calibration method, the second objective of this thesis is to propose

a self-calibration method, with the requirements:

� The self-calibration method has to be based on deep learning techniques. Deep learning

models can be easily integrated into automotive camera systems, as these offer specific

accelerators for neural network workloads.

� Similar to the initial calibration method, the neural network has to use a distortion model

which is able to represent both global and local deformations of the image.

� For neural network training a dataset based on real-world measurements of windshield

distortions has to be built. The dataset should contain synthetic and real images, and the

transferability between simulated and real data should be analyzed. This is necessary, as

large scale datasets for camera calibration are not publicly available.

� Image reconstruction based loss functions are preferred over losses relying on ground-truth

distortion data. These loss functions open the possibility to extend the method to use

datasets without ground truth labels.

� Auxiliary tasks shoudl be integrated into the network architecture, and the performance

effects of this multi-task approach should be analyzed. Main auxiliary task candidates

are semantic segmentation and optical flow, as these predictions are already available in

most automotive neural networks.
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1.2 Contributions

1.2 Contributions

The contributions of this thesis are the following:

� New solutions for use-cases where the camera is mounted behind a transparent object,

which introduces distortions are proposed. The contribution has impact on advanced

driver assistance systems, where the camera is mounted above the rearview mirror of the

car. Both an initial calibration (Ch. 4, Ch. 5) and a self-calibration (Ch. 6) method are

proposed.

� An initial calibration method for modeling the uneven surface of a transparent object

(Ch. 4) is proposed. The global shape of the object is assumed to be known, which is

often the case in automotive, while the local components of the distortion are describe

using a parametric model. Because the global shape is known, we choose the approach to

explicitly model the light refraction, contrary to the more explored approach of generalized

camera models.

� To test the proposed method, a distorted image dataset is recorded using a Raspberry Pi

camera mounted behind a curved glass object. Additionally, a synthetic dataset is used

to provide available ground truth distortions.

� The thesis provides an analysis of windshield distortions based on the proposed generative

model. This analysis highlights important properties of the distortions, which opens future

research possibilities.

� Additionally, a method to model the global shape of the transparent object is proposed,

for use-cases where prior knowledge about the object is not available (Ch. 5). The object

is modeled as an ellipsoid, which can cover a large variety of use-cases. Using a similar

methodology as for the local model, a synthetic dataset is generated to evaluate the

method.

� A deep learning based self-calibration method is proposed (Ch. 6). The chosen distortion

model is more complex compared to other methods in the literature, as it includes both

global and local components. More precise distortion estimation is also facilitated by the

use of auxiliary tasks in the network architecture.

� To train the neural networks, two distorted image datasets are constructed – with simu-

lation and real data – based on real-world windshield distortion measurements.
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1.3 List of Publications

1.3 List of Publications

The contributions of this Thesis were published in the conference papers below. Papers are

categorized according to the Compute Research and Education (CORE) 2018 1 rankings (cat-

egories A*, A, B, C, D). Category D includes conferences that are not listed in the CORE

rankings.

� Category A

– Szabolcs-Botond Lőrincz, Szabolcs Pável, and Lehel Csató. Single View Distortion

Correction using Semantic Guidance. In 2019 International Joint Conference on

Neural Networks (IJCNN), pages 1–6. IEEE, July 2019.

� Category B

– Szabolcs Pável, Csanád Sándor, and Lehel Csató. Distortion Estimation Through

Explicit Modeling of the Refractive Surface. In Artificial Neural Networks and Ma-

chine Learning – ICANN 2019: Image Processing, pages 17–28. Springer, September

2019.

� Category D

– Szabolcs Pável. An Ellipsoid Object Model of the Refraction Surface. In Proceed-

ings of the 11th International Conference on Applied Informatics (ICAI), volume

2650, pages 272–279. CEUR Workshop Proceedings, January 2020.

1.4 Thesis Outline

The remainder of this thesis is structured as follows.

In Chapter 2 we lay down the foundations of camera models and camera calibration tech-

niques. We present the classic global models used for normal and fisheye cameras, which are

among the most used camera types. We also introduce the concept of image distortions, and

review examples from the literature for how image distortions are modeled. Finally, we focus

on more general camera models, which can be applied to model a wide variety of distortions,

including the ones introduced by transparent objects in front of the camera. The content of

this Chapter is based on (31, 71, 73).

1CORE Conference Portal: https://portal.core.edu.au/conf-ranks/
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1.4 Thesis Outline

In Chapter 3 we present fundamental concepts from machine learning and deep learning.

We present radial basis functions, which we extensively use to model distortions from wind-

shields both in our proposed initial calibration and deep learning based calibration method.

Next we present the basic building blocks of deep convolutional neural networks, and present

some relevant applications. We close the Chapter with presenting specific loss functions based

on image reconstructions, also used by us for training our neural networks. The contents of

this Chapter are based on (27, 87).

In Chapter 4 we present an initial calibration method focusing the local properties of

the distortions. We assume the global shape of the transparent object (e.g. windshield) to be

known, and model the uneven surface using a radial basis function based model. The model

parameters are optimized using images of checkerboard calibration targets. We test our method

on synthetic and real data, and analyze the observed image distortions. This Chapter is based

on our publication (59).

InChapter 5 we present a similar method as in the previous Chapter, but this time we focus

on the global shape of the transparent object. The global shape is approximated as an ellipsoid,

and we calibrate the parameters based on checkerboard targets. We observe symmetries in the

ellipsoid model, and propose a regularization scheme to guide the optimization process. This

Chapter is based on our publication (58).

In Chapter 6 we turn our attention to self-calibration, and propose a deep learning based

solution. In the lack of available training data, we build two datasets based on real windshield

distortion measurements. We once again use radial basis functions to model the highly nonlinear

distortions, and train our networks using image reconstruction losses. Auxiliary tasks are also

integrated into the network, where we observe that both semantic segmentation and optical

flow improve our results. This Chapter is based on our publication (48).

Finally, Chapter 7 draws the conclusions of our work.

The content of this thesis is based on a list of 90 references, out of which 17 citations

represent the newest advances of the field published in the last 5 years, while others summarize

the fundamental work in classic computer vision, machine learning and deep learning.
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Chapter 2

Camera Models

A digital camera is an imaging system that uses optical elements like lenses and mirrors to focus

light onto a photosensitive sensor, mapping the 3D world to a 2D image plane. This mapping

results in the loss of depth information, which 3D computer vision algorithms seek to recover

using multiple images from different viewpoints. These images provide geometric constraints

that help reconstruct the 3D structure. A precise mathematical model, known as a camera

model, is essential for describing this optical system and is a key component of 3D computer

vision algorithms.

2.1 Classic Camera Models

The choice of camera model depends on the camera used. The pinhole camera model is the most

widely used and employs a perspective projection to map 3D world coordinates to 2D image

points. This model describes an ideal camera and is often paired with a distortion model to

correct deviations from the ideal case. In complex camera systems like fisheye cameras, specific

models are required to account for the nonlinear mapping of pixels.

Camera models are parametric, with parameters that describe the camera system’s charac-

teristics, such as focal length, distortion parameters, and camera position in 3D space. Camera

calibration is the process of finding these optimal parameter values.

2.2 Camera Calibration

Camera calibration methods can be divided into initial calibration and self-calibration. Initial

calibration is performed in controlled environments using calibration targets like checkerboards,

7



2.3 Fisheye Cameras

while self-calibration uses the geometric properties of the scene and the camera’s motion to infer

calibration parameters.

Zhang’s method (88) is a widely known initial calibration technique using planar checker-

board patterns. The process involves capturing multiple images of the pattern, extracting

features, computing homographies, and refining the parameters through nonlinear optimization

to minimize the reprojection error.

Self-calibration methods leverage the geometric properties of the scene and look for regular

structures or rely on the motion of a camera. The method proposed by Devernay and Faugeras

(18), use features like straight lines in the environment. Another approach uses point matches

from multiple views to optimize epipolar constraints, as proposed by Claus and Fitzgibbon (15).

2.3 Fisheye Cameras

Fisheye cameras have wide-angle lenses with fields of view exceeding 180 degrees. Traditional

models like the pinhole camera model are insufficient due to the significant nonlinear distortions.

Various projection models are used for fisheye cameras, including stereographic, equidistant,

orthographic, and equisolid projections, each with specific advantages.

Kannala et al. (40) proposed a model using polynomial terms to account for large radial

distortions. Rational function-based models, like the division model by Fitzgibbon (22), provide

a closed-form inverse and are used for stereo reconstruction. The Field of View (FOV) model

by Devernay and Faugeras (18) uses a single parameter to describe fisheye lenses and also offers

a closed-form inverse.

2.4 Generalized Camera Models

Noncentral camera models, which consider the shift of the optical center, are important for

accurately modeling wide-angle lenses. Gennery (24) proposed a model for fisheye lenses with

a pupil shift function.

Generalized camera models do not rely on physical properties but treat the optical system

as a black-box, providing flexibility at the cost of complex calibration. The Two-Plane Model

(50) uses interpolation functions to map 2D pixels to 3D coordinates on calibration planes,

allowing for both global and local distortions.
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2.5 Modeling Distortions from Refractive Media

Discrete camera models, like the raxel model (28), treat each pixel individually, incorporat-

ing geometric, radiometric, and optical components. These models require dense observations

for calibration.

2.5 Modeling Distortions from Refractive Media

Cameras observing scenes through refractive media, such as underwater or behind windshields,

face complex distortions. These can be addressed by explicitly modeling the refracted ray

path or using generalized camera models that treat the refractive media as part of the imaging

system.

Agrawal et al. (2) studied systems with multiple layers of flat refractive surfaces, describing

them as axial cameras and providing analytical forward projection equations. Yoon et al. (86)

introduced a parametric model for depth estimation using stereo cameras behind transparent

objects.

Generalized models like the two-plane model (80) and local models using B-splines (5) have

been proposed for automotive use-cases. Kim et al. (14, 42) introduced methods for calibrating

cameras with complex refractive distortions, using radial basis functions.

2.6 Conclusions

This chapter presented the theoretical foundations of camera models and calibration. It cov-

ered the classic pinhole camera model, geometric distortions, and calibration techniques. For

complex systems like fisheye cameras, specific models are necessary to account for large distor-

tions. Generalized and noncentral models offer flexible solutions for various optical systems.

Finally, methods for modeling distortions from refractive media were discussed, highlighting

both explicit modeling and generalized camera models.
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Chapter 3

Machine Learning and Deep

Learning

Machine learning, a branch of artificial intelligence, enables computers to learn from data by

identifying statistical patterns. It involves training models for tasks like classification, regres-

sion, and clustering, using optimization algorithms to minimize prediction errors. Classical

machine learning uses models with limited parameters, while deep learning trains neural net-

works with millions of parameters on large datasets. This Chapter presents the fundamental

concepts of both machine learning and deep learning used in our work.

3.1 Radial Basis Functions

Radial Basis Functions (RBFs) (3, 11) are used to interpolate or approximate scattered data.

Given a set of data points, the goal is to find a smooth function that satisfies the interpolation

condition at these points. RBFs define the interpolation function as the weighted sum of basis

functions centered at the data points. The influence of a data point to the interpolated value

depends on the distance from the point. Common kernel functions include Gaussian, thin plate

spline, multiquadric, and inverse multiquadric functions.

For interpolation, the weights are set to satisfy the interpolation condition, which can be

expressed in a matrix form and solved as a linear system. RBFs can also approximate data

points by minimizing a cost function, which includes a least squares error term and a regu-

larization term based on the RBF weights. When combined with a polynomial component,

the interpolation function gains global representational power. In this case the cost function

10



3.2 Gradient Based Optimization of Parametric Models

includes an orthogonality constraint to ensure that global properties are characterized by the

polynomial component.

3.2 Gradient Based Optimization of Parametric Models

Optimization techniques are crucial in machine learning for finding the correct model parameters

by minimizing a loss function. In deep learning, training involves updating neural network

parameters using the gradient of a task-specific loss function, typically with the Stochastic

Gradient Descent (SGD) algorithm. First-order optimization methods, like SGD, use the first

derivative of the loss function and are suitable for deep learning due to the large number of

model parameters. Variants of SGD, such as SGD with momentum and Adam optimizer (43),

address issues related to initial learning rate settings and provide adaptive learning rates.

Second-order optimization techniques consider the curvature of the objective function via the

Hessian matrix, offering faster convergence for problems with fewer parameters. The Newton-

Raphson method and its simplified form for nonlinear least squares problems, the Gauss-Newton

algorithm, are commonly used. Quasi-Newton methods, such as the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm and its limited-memory variant L-BFGS, approximate the Hessian

matrix and are suitable for problems where computing the full Hessian is impractical.

3.3 Convolutional Architectures

Convolutional Neural Networks (CNNs) are state-of-the-art architectures for computer vision

tasks. They process images through layers of convolutions, down- or upsampling, and activation

functions. CNNs are efficient due to their ability to model local interactions and translation

invariance. Key layers include convolutional layers, activation functions, normalization layers,

pooling layers, upsampling layers, and fully connected layers.

Residual networks (ResNets) (33, 34), known for their residual blocks and skip connections,

address the vanishing gradient problem, allowing deeper networks to be trained effectively.

Different ResNet models, such as ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-

152, vary in depth and complexity but share a common structure, with an initial convolutional

layer followed by stages of residual blocks.
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3.4 Computer Vision Tasks

3.4 Computer Vision Tasks

Neural networks have been successfully applied to various computer vision tasks, including se-

mantic segmentation, optical flow estimation and camera calibration. Semantic segmentation

classifies each pixel in an image into semantic classes, essential for automotive perception sys-

tems. Architectures such as U-Net (63) and DeepLabv3 (13) use encoder-decoder structures

and dilated convolutions respectively to maintain high-resolution details while capturing global

context.

Optical flow describes the motion of pixels between images and can be sparse or dense.

FlowNet (20) and its successor FlowNet 2.0 (37) were among the first deep learning approaches

for dense optical flow estimation, using encoder-decoder architectures and cascaded processing

to handle large and small displacements.

Deep learning methods for camera calibration can estimate intrinsic and extrinsic parameters

from single images. Early methods like DeepFocal (82) assumed a simplified pinhole camera

model and predicted a limited set of parameters. Later approaches such as FishEyeRectNet (85)

introduced various improvements, including the use of auxiliary tasks and image reconstruction

based loss functions.

3.5 Image Reconstruction Based Training

When direct supervision of camera calibration parameters is challenging, image reconstruction-

based loss functions can be used. Spatial Transformer Networks (STN) (39) enable differentiable

image warping, making it possible to train networks end-to-end using reconstruction losses.

STNs consist of a localization network, a grid generator, and a differentiable sampler.

In self-supervised training, such as in SfmLearner (90), STNs are used to warp source

images to match target views, using predicted depth and ego-motion. The reconstruction loss

is based on the difference between the real and generated target views. Combining L1 loss with

Structural Similarity Index Measure (SSIM) or multi-scale SSIM (MS-SSIM) (81) provides a

more robust learning signal by accounting for human perception of image quality.

3.6 Conclusions

This Chapter covered the essential concepts of machine learning and deep learning relevant to

our work. Radial Basis Functions (RBFs) are useful for function interpolation and approxi-

12



3.6 Conclusions

mation, and gradient-based optimization techniques are crucial for training machine learning

models. Convolutional Neural Networks (CNNs) remain the dominant architecture for com-

puter vision tasks. Neural networks are effective for self-calibration and can be trained using

image reconstruction-based loss functions with the help of Spatial Transformer Networks.
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Chapter 4

Explicit Modeling of the

Refractive Surface

This Chapter presents our publication titled Distortion Estimation Through Explicit Modeling

of the Refractive Surface (59).

The primary focus of this work is on camera systems used in automotive applications,

where cameras are mounted behind windshields or other protective covers. The presence of

these refractive materials complicates the geometric modeling of the camera system due to

light refraction, which leads to image distortions as light enters or leaves a denser medium,

causing directional changes.

When light passes through a refractive material, it changes direction, resulting in image

distortions. This phenomenon makes it difficult to use global, central camera models because

the refractions make the optical system challenging to characterize. The literature usually ad-

dresses this problem using one of two approaches: either by explicitly modeling the refractions

or by applying generalized camera models. For automotive applications, the global shape of

the windshield is generally known through computer-aided design (CAD) models, though local

irregularities can exist. Assuming the global shape is known, we propose a camera model that

explicitly accounts for light refractions and includes a local model to handle surface irregu-

larities. This method can be used for the initial calibration of cameras behind transparent

objects.

We construct the forward model fθ(p) : Ω → R3, which maps a pixel from the image to a

point in the scene, considering the camera parameters, refractive media, and scene characteris-

tics, collectively denoted as θ. This function is implemented as a raycasting algorithm, allowing
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4.1 Refractive Surface Model

image generation given a set of parameters. By inverting the model, we fit the parameters of the

refractive media to observed displaced points. We build a Radial Basis Function (RBF) network

(6) model of the refractive media’s thickness and use Maximum Likelihood (ML) estimation to

infer the optimal parameters that caused the distortions.

The contributions of this Chapter are:

� Introduction of a local model for uneven refractive surfaces, contrasting with the global

models prevalent in literature.

� Focus on scenarios where the global shape of the transparent object is known, presenting

an explicit refraction model.

� Demonstration that such models significantly reduce calibration error.

� An analysis of windshield distortions, providing insights into these optical systems.

4.1 Refractive Surface Model

The refractive media is modeled as a thick cone slice, which is based on the actual shape of

the glass object used in our experiments. The inner and outer cones have the same aperture,

and the centers are such that the media’s thickness is constant. The cone is positioned with its

main axis parallel to the camera’s y axis and shrinks in the positive y direction.

To account for the uneven surface, a parametric surface in the radial direction is added to

the cone. This radial offset is defined using a Radial Basis Function (RBF) network, which is

chosen for its universal function approximation capabilities (6). The RBF centers are placed

on a regular grid over the input region, and the weights wij ∈ R are tuned to model complex

surfaces. The radial offset at a given cone point is the output of the RBF network with Gaussian

kernels:

Φ(s′) =

N∑
i,j=1

wijϕ(∥sij − s′∥), where ϕ(r) = exp

(
− r2

2β

)
(4.1)

To compute the Cartesian coordinates for a point on the cone, parameterized by a height

s1 and an angle s2, the RBF offset is first computed and then added to the radius. The surface

normals of the outer cone are calculated as the cross product of the partial derivatives of the

Cartesian coordinates with respect to the parameters. This cross product depends on the

RBF weights, which are used as model parameters during minimization. Changing the RBF
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4.2 Raycasting Model

weights alters the surface normals, thus changing the direction of the refracted light rays and,

consequently, the distortion vectors.

4.2 Raycasting Model

The raycasting model describes the process of associating a pixel from the image with a 3D

point on an object, such as a checkerboard pattern. In a distortion-free setup, this can be

achieved using the pinhole camera model, which uses a perspective projection and a set of

linear operations to describe this relationship. However, in the presence of a refractive surface,

this simple geometric description does not hold, and additional steps are needed.

Each ray starts at the camera center, assuming that the intrinsic camera parameters – the

focal lengths and the principal point, i.e., the intrinsic camera matrix – are known. All 3D

points are expressed in the camera coordinate system. Using the camera intrinsics, any pixel

coordinate p can be converted to metric coordinates, which after normalization correspond to

the direction vector rcam of the light ray passing through the selected pixel.

The light ray first hits the inner side of the refractive surface, intersecting the cone at xi

and encountering the normal ni. The direction rm of the refracted light ray inside the media is

computed using Snell’s law. Knowing the geometry of the refractive body and the new direction

of the refracted ray, the location xo where the ray hits the outer surface is identified, and the

second refraction is computed. The direction of the outgoing light ray, ro, is then determined.

This second refraction is modulated by the direction of the normal no, parameterized by the

RBF network.

Finally, the outgoing light ray intersects the calibration target, which is defined through a

3D rotation and translation of the board center relative to the camera coordinate system. The

intersection point xt is computed as the intersection of a line and a plane. A local 2D coordinate

system on the object plane is defined for easier handling, with its origin at the board center

and axes corresponding to the horizontal and vertical directions of the checkerboard grid. The

local coordinates of a 3D point xt are denoted as xcb.

4.3 Optimization of the Surface Parameters

The estimation of image distortions involves finding the surface parameters that generated a

set of calibration images, using a checkerboard pattern as the calibration target. Gradient de-

scent minimization is employed to determine the optimal RBF weights, while other parameters,
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4.4 Calibration Results of the Refractive Surface Model

including camera intrinsics, the sizes of the inner and outer cones, and the calibration pattern

pose and size, are assumed to be known.

For each calibration image, the pixel coordinates and ordering of the checkerboard pattern

corners are identified. The corresponding local coordinates of the detected corners on the object

plane are given by their distance from the board center. The raycasting function, parameterized

by the RBF weights, maps an input pixel to the local coordinates of the corresponding world

point on the target checkerboard pattern. The loss function is defined as the L2 loss between

the estimated local coordinates of a corner and the ground truth local coordinates.

4.4 Calibration Results of the Refractive Surface Model

As no public benchmark dataset is available for our problem, we created our own experimental

setup. We evaluate the algorithm on two datasets: a noise-free synthetic dataset and a real

experimental setup. In the synthetic case, we show that our algorithm is capable of finding

the optimal parameters that generated a given image, even with large irregularities on the

outer surface. In the second case, we present an experimental setup and demonstrate that the

algorithm can reduce reconstruction errors in real-world scenarios.

In the synthetic dataset, we apply the forward image generation model to render synthetic

images. The parameters of the camera, refractive surface, and checkerboard pattern are set to

similar values as in the real-world experiment. Using an RBF grid of size 4× 4, we sample the

weights from a Gaussian distribution and generate synthetic images using random positions for

the calibration target. The optimization is performed, and the final error is stored as the root

mean squared error (RMSE) between the predicted and ground truth checkerboard corners.

In the real dataset, a Raspberry Pi Camera Module v2 captures the checkerboard images.

The camera has a 3.68× 2.76 mm sensor and registers images at a 3280× 2464 pixel resolution.

The camera is calibrated using Zhang’s method (88), resulting in a 2558.36 pixel focal length

and a principal point at (1666.03, 1273.65). After calibration, a cone-shaped glass object is

placed in front of the camera. Images are captured, and the optimization process is performed

on different sets of images.

The results show significant error reduction in the back-projected pixels, demonstrating the

model’s effectiveness. The errors are evaluated in terms of RMSE between the ground truth

and predicted positions of the checkerboard corners. The initial error, considering no distortion

model, is compared to the final error obtained using the optimized Cone + RBF surface model.
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4.5 Conclusions

The method improves the 3D distances, resulting in a more accurate generative model of the

image formation process. Analysis of distortions shows a linear dependence on inverse depth,

suggesting potential for simpler camera models.

Most distortion estimation methods directly model pixel displacements on the image plane,

defining a single, fixed distortion map for a given camera. In contrast, our model estimates

the distortion map by explicitly modeling the refractive material using a raycasting algorithm.

This approach provides a unified and consistent generative model for directional distortions.

The physical model introduces a depth-dependent component in the distortion map, requiring

the distance of a 3D point to determine the image distortion.

To compute the image distortion vector, we start from a distorted pixel on the image. Using

the distorted pixel pd, the raycasting algorithm computes the 3D coordinate xt of the object

point at a given distance. The undistorted pixel coordinates pu are then computed using the

pinhole camera model. The distortion vector ∆p is given by the difference between the distorted

and undistorted coordinates.

The distortion vector field for the real dataset is visualized, showing the dependence of

distortions on pixel depth. The middle pixels exhibit little distortion due to near-orthogonal

rays to the refractive surface, while lateral pixels show larger distortions due to significant

refractions. The linear dependence of distortion on inverse depth is confirmed, indicating that

closer object points cause larger distortions.

4.5 Conclusions

In this Chapter, we presented a camera model that accounts for the uneven surface of a trans-

parent object using an RBF network. By explicitly modeling light refractions at the surfaces

of the object and employing Snell’s law, we developed a comprehensive model that considers

both the global shape and local properties of the object. The model parameters were estimated

using calibration images with checkerboard patterns.

Our experiments demonstrated that the proposed model significantly reduces the error of

back-projected pixels. The model effectively mitigates the bias introduced by the horizontal

curvature of the cone-shaped object, resulting in errors that resemble an isotropic Gaussian

distribution. The linear dependence of distortions on inverse depth offers opportunities for

developing simpler camera models that can be more easily integrated into computer vision

systems.
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4.5 Conclusions

A limitation of our method is the fixed base shape, which in this study was a cone. Although

this shape closely approximated the actual object used in the experiments, parameterizing the

base shape could extend the model’s applicability to other geometries. However, increasing the

number of free parameters also introduces further modeling difficulties, making optimization

more challenging.

In summary, this work provides a detailed exploration of explicit modeling of refractive

surfaces, contributing to the field of camera calibration for systems operating behind transpar-

ent materials. The approach has the potential to improve the accuracy of vision systems in

automotive and other applications where refractive distortions are prevalent.
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Chapter 5

Ellipsoid Object Model

This Chapter presents our publication titled An Ellipsoid Object Model of the Refraction Surface

(58).

Geometric distortions can arise when the camera is placed behind a protective cover, such

as a windshield of a car. These distortions are influenced by global properties of the object

(e.g., position relative to the camera, curvature of the surface, and thickness of the material)

as well as irregularities of the surface, resulting in local distortions. In Ch. 4, we modeled these

irregularities using an RBF-network while assuming that the global properties of the refractive

object are known. This assumption limits the applicability of the camera models.

In this work, we address the global properties of the refractive object using a similar method-

ology as in Ch. 4. We model the surface of the refractive media as an ellipsoid, which can

approximate a variety of objects in the camera’s view. The model is designed to be composable

with the RBF-network model of the local surface.

The contributions of this Chapter are:

� A global model based on an ellipsoid shape is proposed and the raycasting algorithm is

defined.

� The chapter addresses the issue of arising symmetries in the distortion estimation process,

where a regularization term is included to guide the minimization.

� The method is evaluated on a synthetic dataset.
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5.1 Ellipsoid Model

5.1 Ellipsoid Model

We model the refractive object as the space between two ellipsoids sharing the same center

position and orientation. The inner ellipsoid has semi-axes a, b, c, and the outer ellipsoid’s

semi-axes are defined by adding a small thickness t to each semi-axis of the inner ellipsoid. The

parameters of the ellipsoid object model are the center position, orientation, semi-axes, and

thickness.

To simplify further computation, the ellipsoid is viewed as an affine image of a unit sphere

centered at the origin. The transformation involves a 3 × 3 matrix and a translation vector.

Using this affine mapping, necessary operations, including intersection with a ray and surface

normal evaluations, can be reduced to operations on the unit sphere.

The goal of the camera model is to associate pixels with light rays from the outside world.

In a distortion-free setup, the light ray from the camera center goes through the image pixel

as per the pinhole camera model. In our model, the direction of the original light ray changes

when it enters or leaves the refractive object, computed using Snell’s law of refraction. This

change is a function of the incident ray, the surface normal at the intersection point, and the

relative refractive index of the materials. The raycasting process is fully differentiable, allowing

gradient-based optimization of the ellipsoid model parameters. The method is implemented in

PyTorch to utilize automatic differentiation for optimization.

5.2 Symmetries of the Ellipsoid Object Model

The ellipsoid model overparameterizes the image distortions, resulting in symmetries in the

physical model. The observed distortions are invariant to certain transformations of the object.

Consequently, the full parameter set cannot be recovered without prior knowledge about the

object. While distortion estimation may be sufficient in some cases, reconstructing an approxi-

mate 3D model of the object can be desirable. Identifying and handling these symmetries using

regularization techniques is crucial.

An intuitive example of these symmetries is a 2D case where the refractive object is a thick

circle. We consider two variables: the relative distance of the circle center to the camera center

and the radius of the circle. This analysis also applies to the center position of the ellipsoid and

the length of the semi-axes in 3D. By comparing the distortion error relative to a reference setup

for different parameters, we observe that low distortion errors can be achieved by adjusting both

parameters appropriately.
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5.3 Optimization of the Model Parameters

5.3 Optimization of the Model Parameters

We use a standard static camera calibration setup to estimate the model parameters. A planar

checkerboard pattern serves as the target object, with known dimensions of the squares. Using

model inversion based on images of the checkerboard patterns, the parameters of the ellipsoid

model can be recovered through gradient-based minimization.

The loss function comprises a reconstruction and a regularization term. The reconstruction

error is the mean squared error between the estimated and ground truth corner coordinates

of the checkerboard. The regularization term includes prior knowledge as a constraint on the

distance between the camera center and the point where the principal axis intersects the inner

surface of the ellipsoid. The total loss function is minimized using the L-BFGS optimization

method, chosen for its efficiency and compatibility with automatic differentiation.

5.4 Conclusions

This Chapter addressed the scenario where a camera is placed behind a transparent object with

an unknown global shape. We modeled the object as an ellipsoid and used machine learning

techniques to estimate the model parameters. The model is compatible with the RBF surface

model from Chapter 4, allowing simultaneous modeling of both global and local properties

of the refractive surface. We analyzed potential failure cases, proposed a regularization to

address them, and tested the method on a synthetic dataset. The method achieved a close

approximation of the object’s surface in the camera’s view.
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Chapter 6

Single View Distortion

Estimation

This Chapter presents the publication Single View Distortion Correction using Semantic Guid-

ance (48).

Previous Chapters discussed an initial (offline) calibration method addressing distortions

caused by transparent objects like car windshields. The camera model was split into local

distortions and a global shape optimization, as detailed in Chapters 4 and 5 respectively. In

automotive settings, cameras need to maintain functionality over time despite vibrations and

temperature changes, necessitating an online calibration component based on self-calibration,

which functions without specific calibration targets.

We propose a self-calibration method using deep learning with a distortion model based

on thin plate splines (TPS). The neural network predicts the parameters of the distortion

model, including control points for local components and polynomial coefficients for global

components. Experiments demonstrate the model’s capability to estimate complex distortions,

making it suitable for practical applications in autonomous driving systems and other domains

where camera systems are exposed to varying conditions over long periods.

The contributions presented in this Chapter are:

� The Chapter presents scalable deep learning approach that can correct distortions. While

the deep learning methods presented in the literature usually predict only a small number

of parameters for a global camera model, the proposed distortion model is applicable to

arbitrarily complex distortions (including local ones).
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6.1 Windshield Distorted Dataset

� Similar to other methods in the literature, two datasets comprising of real-world (KITTI

odometry (23)) and synthesized (Carla (21)) images and corresponding semantic seg-

mentation are constructed, on which parametric distortions sampled from a distribution

derived from real-world measurements in the presence of different windshields are applied.

� Networks are trained in an end-to-end manner without using hard to obtain ground

truth distortions as supervision, and instead recent advancements in differentiable image

sampling are leveraged to formulate an image reconstruction loss.

� Results show, that auxiliary tasks (semantic segmentation and optical flow) improve the

quality of the predictions.

6.1 Windshield Distorted Dataset

To validate our model’s ability to undistort images, we constructed two datasets, Distorted

Carla (DC) and Distorted KITTI (DK), following established methodologies. These datasets

were designed to test the model’s performance in both synthetic and real-world scenarios,

providing a comprehensive evaluation of its capabilities.

We use a proprietary dataset from 240 car windshields, where images were captured with and

without the windshield and pixel-wise distortion is measured. We fit a high-order polynomial

function to these measurements, and new distortions were generated by sampling and perturbing

polynomial coefficients. This method maintained realistic variability across images, ensuring

that the synthetic distortions closely resembled those found in real-world conditions.

Distorted Carla (DC) comprises 10,000 synthetic images and semantic labels, generated

using the Carla simulator (21). The images, captured at 5 frames per second in a preset

environment, were split into 8000 training and 2000 validation samples. The dataset included

RGB images and semantic segmentation maps, which were used to provide additional context

for the distortion correction model. The Carla simulator’s flexibility allowed us to create a

diverse set of conditions, including different times of day, weather conditions, and dynamic

elements like vehicles and pedestrians.

For real-world data, we used the KITTI odometry dataset (23). This dataset includes

sequences captured from a moving vehicle in various urban environments. We downscaled the

images and applied synthetic distortions, creating the Distorted KITTI (DK) dataset with

10684 training and 4539 validation images.
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6.2 Distortion Model

Optical flow was incorporated as an auxiliary task, using image triplets as input to a flow

estimation network. By including optical flow, we provided the model with temporal informa-

tion, which is particularly useful for understanding dynamic scenes and improving the accuracy

of distortion correction.

6.2 Distortion Model

Bookstein (7) showed that a pair of thin plate splines (TPS) could model 2D deformations. We

modeled geometric distortions using TPS pairs, which are particularly effective for representing

smooth and continuous deformations. This choice of model allows us to handle both global

distortions that affect the entire image and local distortions that are confined to specific regions.

The transformed coordinates ftps(Gi) at image coordinateGi = [xi, yi]
⊤ assuming n control

points are defined as:

ftps(Gi) = A

[
Gi

1

]
+

n∑
k=1

ϕ(∥p′
k −Gi∥) ·wk, where ϕ(r) = r2 log r (6.1)

We used 16 control points, evenly distributed on a 4 × 4 grid. The affine transformation

A modeled global distortions, while the radial basis kernel ϕ(r) and warping coefficient matrix

W captured local deformations. This combination of global and local components allows our

model to handle a wide range of distortion types, from simple linear transformations to complex

nonlinear warping.

The TPS model’s flexibility makes it ideal for applications where the distortions are not

uniform across the image. For example, in automotive settings, the distortions caused by a

windshield can vary significantly depending on its shape and position relative to the camera.

By using TPS, we can accurately model these variations and correct them in a seamless manner.

6.3 Proposed Architecture

Our end-to-end architecture inputs a single distorted image I and outputs the undistorted image

I ′ and optionally its semantic labels. It follows an encoder-decoder structure with auxiliary

tasks that provide additional context for the distortion correction process.

A ResNet-18 (33) pretrained on ImageNet (65) served as the core network. This network

extracts low-level features from the input image, which are then used by the decoder to estimate

and correct distortions. When using optical flow, the network processed concatenated image
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6.4 Model Training

triplets. This modification allowed the core network to handle multiple frames simultaneously,

providing a richer set of features for distortion correction.

The semantic segmentation network upsampled feature maps and concatenated them with

the input image for distortion prediction. By including semantic segmentation, the model

could leverage high-level information about the scene, such as the locations of objects and

boundaries. This information helps the model make more informed decisions about how to

correct distortions, particularly in areas with complex structures.

The distortion correction network followed the Spatial Transformer Network (39) archi-

tecture. It localized control points, calculated the sampling grid, and sampled the distorted

image to create the corrected image. The Spatial Transformer Network’s differentiable nature

allows the entire process to be trained end-to-end, ensuring that all components work together

seamlessly.

Incorporating auxiliary tasks like semantic segmentation and optical flow not only improves

the model’s performance but also provides additional outputs that can be useful in other ap-

plications. For instance, the semantic segmentation maps can be used for object detection and

scene understanding, while optical flow can provide information about motion and dynamics in

the scene.

6.4 Model Training

The model parameters were initialized using ”He” uniform initialization (32). We used various

loss functions, including an image reconstruction loss based on MS-SSIM (81) and a grid loss

formulated as the mean squared error between the estimated and ground truth sampling grids.

These loss functions ensure that the model learns to produce accurate undistorted images and

align the sampling grid closely with the ground truth.

The final loss function was a weighted sum of image reconstruction, grid, and semantic

segmentation losses, optimized using Adam (43) with a batch size of 8 and specific learning

rates for different network components. This combination of loss functions balances the need

for accurate image reconstruction with the requirement to align the sampling grid and produce

correct semantic labels.

During training, we experimented with different settings to find the optimal configuration.

We found that using both reconstruction and grid losses provided the best results, as each loss
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6.5 Training Results

function complements the other. The reconstruction loss ensures that the overall image quality

is preserved, while the grid loss focuses on aligning the distortions precisely.

The inclusion of semantic segmentation and optical flow as auxiliary tasks further improved

the model’s performance. These tasks provide additional information that helps the model

better understand the scene, leading to more accurate distortion correction. By training the

model end-to-end, we ensured that all components worked together seamlessly, resulting in a

robust and reliable distortion correction system.

6.5 Training Results

We trained the networks on the Distorted Carla Train set and tested them on both the Distorted

Carla Test and Distorted KITTI Test sets. Fine-tuning on the Distorted KITTI Train set

further improved results, demonstrating the model’s ability to adapt to different datasets and

environments.

Quantitative evaluation used the residual distortion norm, a metric that measures the av-

erage distance between the distorted and undistorted grid points. Our method significantly

reduced distortion on both datasets, with the best performance achieved using a combination

of reconstruction and grid losses with optical flow as an auxiliary task.

Without fine-tuning, the network trained on Distorted Carla transferred well to Distorted

KITTI, except when optical flow was used as an auxiliary task. Fine-tuning improved re-

sults in all configurations, indicating that the model can adapt to different types of data and

environments with additional training.

Using auxiliary tasks improved performance, with optical flow yielding the best results.

This improvement is likely due to the additional temporal information provided by optical flow,

which helps the model understand motion and dynamics in the scene. Semantic segmentation

also improved performance, providing high-level contextual information that helps the model

make more informed decisions about how to correct distortions.

Both reconstruction and grid losses were effective, indicating that ground truth distortions

were not necessary for training. This finding is significant because it means that the model can

be trained on a wide range of datasets, even those without ground truth distortions. By using

pairs of distorted and undistorted images, the model can learn to correct distortions effectively,

making it versatile and widely applicable.
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6.6 Conclusions

This work presents a deep learning method for correcting complex distortions, useful for self-

calibration without specific calibration targets. Our distortion model, based on thin plate

splines, handles both global and local distortions, making it suitable for a wide range of appli-

cations, including autonomous driving and other domains where cameras are used in dynamic

environments.

We generated two datasets using real-world distortion distributions. Our neural network

effectively reduced residual distortions, with auxiliary tasks enhancing performance. The ex-

periments demonstrated that it is possible to train the network without access to ground truth

distortions, allowing extension to datasets with parallel recordings of distorted and undistorted

images. This capability makes our method highly versatile and applicable to a wide range of

scenarios where traditional calibration methods may fall short.

Overall, our approach represents a significant advancement in the field of camera calibration

and distortion correction. By leveraging deep learning and auxiliary tasks, we have developed

a robust and scalable solution that can handle complex distortions in real-world settings. Fu-

ture work could explore additional auxiliary tasks and further refine the model to improve

performance and extend its applicability to new domains and challenges.
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Chapter 7

Conclusions

When cameras are mounted behind transparent objects, due to light refraction, images will

be deformed, distorted. This issue affects advanced driver assistance systems, where a camera

used for sensing the world around the car is often mounted behind the windshield. Geometric

computer vision algorithms require a precise camera model, which is able to map 3D world

coordinates to 2D pixels. In the presence of a windshield, this camera model also has to take

into the account the distortions. These are usually large and highly nonlinear, having both

global and local components. In our work we studied the problem of camera calibration in the

presence of transparent, refractive surfaces.

We proposed an initial calibration method, where we construct a precise model of distortions

caused by transparent objects in the optical path (Ch. 4 and Ch. 5). We chose a physics based

approach: instead of abstracting away the components of the camera system, we explicitly

model them, including the refractive surfaces. We trace the path of individual light rays from

the center of the camera to rays in the 3D world, taking into account changes in direction at the

boundaries of transparent materials. We base this decision on the fact, that in our use-cases

we have information about the components, which we can incorporate into our physics based

models.

First, we modeled the uneven surface of a transparent object with a global shape. This can

cover use-cases, where physical elements such as windshields can be manufactured only up to

certain tolerances, and can have irregularities. We modeled the surface using radial basis func-

tions, which we can use to estimate the distortions locally. The model parameters – the weights

(amplitudes) – of the radial basis functions were estimated using optimization techniques, based

on images of checkerboard calibration targets. Our model significantly improved the errors for
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the checkerboard corners, both on synthetic and real datasets. We also provided an analysis of

the observed distortions, where we identified that these have a direct linear relationship with

the inverse depth of the pixels.

In this method we formulated the model by defining the back-projection function. As this

function involves the tracing of the rays through multiple surfaces, it has two main limitations.

Due to the complexity of the model, inverting it to formulate the forward projection can only

be done using iterative methods. Also, the high complexity can be a drawback for embedded

use-cases, where the camera model needs to be evaluated frequently, and the large number

of computations can increase runtime. Future work should focus on finding solution to this

problem, by searching for simpler models, which can still capture the main properties of these

distortions, but at the same time can be integrated into real systems. The analysis of the

distortions can provide a good starting point in this direction.

After proposing a model for the local uneven surface of the transparent object, we turned

our attention towards the global shape for use-cases, where this is unknown. We proposed

to model the global shape as an ellipsoid, which is general enough to approximate the shape

of different objects in the region of interest of the camera. This model is directly compatible

with the surface model from our previous work. We found out, that minimizing this problem

is difficult, because it is underconstrained: different parameters (global shapes) can result in

very similar image distortions. A regularization term was added, which was able to guide the

minimization to the right direction.

The main limitations in our proposed method are related to our testing methodology, as

this was done only on synthetic data. Extending this to real data should be the main focus of

future work. After proving it on real data, the two proposed frameworks – an ellipsoid global

model with a radial basis function based local model – could be an interesting future research

problem.

Finally, in Ch. 6 we proposed a solution for self-calibration based on deep learning. We

used a dataset of real windshield distortion measurements, and constructed a synthetic and

a real world dataset by sampling distortions around the measured ones. Our convolutional

neural network based architecture can predict distortions based on single images, or based on

a sequence of 3 images without constraints on the environment of the car. The architecture

also includes semantic segmentation or optical flow as auxiliary tasks, which we show that can

significantly improve our results. We use once again a distortion model, which includes both a

global and a local component: we use thin plate splines with an additional affine component
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to model image deformations. Two loss functions were tested, one based on ground truth

distortions, and a second one based on image reconstruction. The best results were achieved

using the combination of the two, but training only based on image reconstruction provided

competitive results.

The main limitation of this method is our dataset: the distortions although are based on

real windshield distortion measurements, were synthetically applied to the images. The viability

of only using image reconstruction loss opens up however possibility of future work. Instead

of using known distortions, a parallel recording setup could be set up, with one windshield

distorted and one undistorted camera. The reconstruction based loss function can be extended,

where assuming a correct distortion estimate, we synthesize the undistorted image based on

the distorted one. Proving this method without synthetically generated data could open up the

possibility of real applications.
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35



REFERENCES

and J. Braz, editors, Computer Vision and Computer Graphics. Theory and Applications,

pages 109–122. Springer Berlin Heidelberg, 2009.

[42] J. Kim, C. Kim, S. Yoon, T. Choi, and S. Sull. Rbf-based camera model based on a ray

constraint to compensate for refraction error. Sensors, 23(20):8430, 2023. 9

[43] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014. 11, 26

[44] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolu-

tional neural networks. Advances in neural information processing systems, 25:1097–1105,

2012.

[45] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.

Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation,

1(4):541–551, 1989.

[46] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[47] M. Lopez, R. Mari, P. Gargallo, Y. Kuang, J. Gonzalez-Jimenez, and G. Haro. Deep

single image camera calibration with radial distortion. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 11817–11825. IEEE, 2019.
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