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Chapter 1

Introduction

This Doctoral thesis, titled Rough Sets Clustering and Supervised Learning Models with Applications
in Regression Testing, presents our research regarding the development of new machine learning
models as well as their application in the software testing domain. Our contributions include the
proposal of novel methods and approaches, primarily centered on the fields of rough clustering
and test case prioritization. In rough clustering, we have developed new methodologies to en-
hance clustering techniques in uncertain environments, including the study of performance eval-
uation measures in such contexts and comprehensive performance evaluation strategies. For test
case prioritization, this work presents several approaches that simplify and improve the efficiency
of prioritization processes across diverse regression testing scenarios. Several of our approaches
have been applied to real-world industrial datasets or even integrated in real-world industrial

software projects.

1.1 Motivation

Machine learning [1]], a powerful subset of artificial intelligence, transforms how we interact
with and extract value from data. Computers learn to identify patterns and make predictions
with minimal human guidance, revolutionizing industries across the board. From personalized
experiences to medical breakthroughs, machine learning drives innovation in fields like finance,
language processing, and many more. This technology is a pillar of modern progress —automating
tasks, enhancing our understanding of data, and leading us towards a future of unprecedented
efficiency and insight.

Unsupervised learning (or Clustering) [12], a crucial branch of machine learning, works with
unlabeled data. Unlike its supervised counterpart, it does not rely on preclassified examples to
guide its learning process, enabling algorithms to uncover hidden patterns, structures, and rela-
tionships within the data itself. This has the potential to allow them to perform a variety of tasks,
such as clustering similar data points together, dimensionality reduction for data visualization,
and anomaly detection. Unsupervised learning plays a vital role in diverse fields, from image and
text analysis to market research and scientific discovery, offering a powerful tool for unlocking the
hidden potential within data.

Software testing [4], the basis of software development, ensures the quality and reliability of
the programs we rely on daily. It involves a meticulous process of evaluating software against its
intended functionalities and identifying any potential errors or discrepancies. This vital step acts
as a safety net, safeguarding users from encountering unexpected issues and ensuring software

performs as expected.
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As software evolves through new features and bug fixes, regression testing [21] becomes cru-
cial. It involves re-running existing test cases, initially used to validate the original software build,
to ensure that recent changes have not unintentionally introduced new issues. This continuous
check-up is essential to maintain the stability and reliability of the software, especially as it under-
goes modifications.

In the fast-paced world of software development, continuous integration (CI) [11] practices
have emerged to streamline the development and testing cycle. CI involves regularly integrating
code changes from various developers into a central repository, followed by automated testing to
identify any potential issues early on. This continuous loop of integration and testing facilitates
rapid feedback and quicker bug detection, ensuring software quality remains high throughout the
development process.

Regression testing, while necessary, can be time-consuming due to the big volume of test cases
involved. Test Case Prioritization (TCP) [7] emerges as a valuable method within the regression
testing field. It involves re-ordering test cases based on various factors, such as their likelihood of
uncovering faults, execution time, and historical data. This prioritization allows testers to focus
on the most critical test cases first, optimizing the testing process, and minimizing the time spent

identifying critical issues.

1.2 Obijectives of the Thesis

The following objectives guided our research:

1. Study fuzzy and rough set theories in order to evaluate their effectiveness in uncertain con-

texts
2. Propose novel clustering models based on rough sets
3. Implement the rough clustering methods proposed
4. Study existing clustering evaluation methodologies
5. Propose and implement a methodology to evaluate rough clustering results
6. Evaluate the performance of these novel models using standard and novel methodologies
7. Apply the new rough clustering methods on standard and real-world datasets
8. Research the field of regression testing, especially test case prioritization (TCP)
9. Introduce a unified approach for TCP dataset building
10. Analyze state-of-the-art learning methods for TCP
11. Propose neural network-based models for TCP

12. Integrate the new neural network methods into a real-world solution and test on a real-

world project

13. Apply the novel developed rough clustering approaches in software testing, more specifi-
cally test case prioritization
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1.3 Original Contributions

Clustering [3], a central method in pattern recognition, faces challenges in real-world applica-
tions due to overlapping clusters, outliers, and complex data shapes. This research introduces novel
approaches to address these issues by incorporating concepts from rough set theory into various agglomera-
tive clustering algorithms.

Our novel approach, Agent Based Rough Clustering (ABARC) [6], a clustering algorithm
based on rough sets, effectively identifies data points that potentially belong to multiple clusters
(also called as rough instances), while simultaneously separating outliers from the core data. This
process is driven by software agents operating in parallel, promoting computational efficiency.
Additionally, we propose a methodology to evaluate rough clusters.

Moreover, we conducted experiments on standard datasets to demonstrate the significant role
of choosing an appropriate similarity measure for achieving accurate clustering [15, 16], especially
when dealing with overlapping data. Since standard datasets lack information about overlapping
areas, we have implemented methods to extract this data for benchmarking purposes. This con-
tribution highlights the potential of rough set theory and the selection of similarity measures for
effective clustering in real-world scenarios.

Furthermore, we have also performed a comprehensive evaluation of our clustering methods
using various different types of metrics [14]. The results show the promising performance of
ABARC.

Regression testing in CI environments requires efficient execution of numerous test cases to
ensure software quality. Test Case Prioritization (TCP) techniques address this challenge by re-
ordering tests to prioritize those with a higher likelihood of uncovering faults, ultimately mini-
mizing testing time and cost.

We investigate the effectiveness of a neural network-based model, NEUTRON [19], for TCP
in CI. NEUTRON analyzes various features like execution duration, fault rate, and test history to
intelligently prioritize test cases. The study demonstrates that NEUTRON outperforms random
prioritization and achieves similar or better results compared to existing techniques, especially
when considering larger test budgets (75% and 100%).

Building upon the success of NEUTRON, we also implemented MixTCP [17], an applied sys-
tem designed to seamlessly integrate the model into software development workflows. Imple-
mented in Elixir, MixTCP utilizes NEUTRON to prioritize tests, effectively improving fault detec-
tion and reducing testing time. Additionally, its modular architecture allows for future integration
of alternative TCP solutions.

We also highlight the potential of NEUTRON and MixTCP for streamlining CI testing pro-
cesses. NEUTRON tackles the challenges of test case prioritization in CI environments, while
MixTCP offers developers a user-friendly and efficient solution to leverage this advanced model
within their workflow. By optimizing regression testing, these advancements contribute to faster
and more reliable software development cycles.

RoughTCP [5] is our rough clustering-based approach proposed for TCP, utilizing unsuper-
vised learning through rough sets-based agglomerative clustering. This enables it to adapt to dy-
namic CI environments without requiring labeled data. Experiments demonstrate that RoughTCP
outperforms most of the related work.

A novel framework [20] that we proposed for TCP considers various aspects such as traceabil-
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ity information, context, and feature information. This framework aims to provide a more holistic
view of the TCP problem. Experiments using a synthetic dataset demonstrate that the cluster-
ing method based on this framework consistently outperforms other methods, highlighting its
effectiveness.

Overall, these advancements showcase the ongoing efforts to develop efficient and adaptable
TCP techniques for optimized software development in CI environments.

To sum up, this thesis bridges the gap between theoretical advancements in machine learning
and applications in software testing. Not only it offers theoretical contributions to the field of
clustering but also demonstrates the value of these contributions by applying them to the real-
world challenge of software testing.

The original contributions of the research, which are presented in Chapters[3 [#{and [5} are the
following;:

¢ Fundamental research on Rough Clustering

- Novel clustering methods based on rough set theory - Agent Based Rough Clustering
(ABARC) (Section3.1)) [6].

A new methodology on how to evaluate results in uncertain contexts (Section [3.1) [6].

Comparison study of multiple similarity metrics, especially in rough environments us-
ing ABARC and methodology to evaluate them (Section [15)16].

Analysis of performance evaluation metrics (internal, external and rough) and related
experiments on ABARC in unknown conditions (Section [3.3) [14].

Experiments on ABARC and on the similarity metrics on various standard datasets

(Sections 3.1} [6] 15, [16].

¢ Fundamental research on Test Case Prioritization

Novel neural network-based models - Neural Network-based Test Case Prioritization
in Continuous Integration (NEUTRON) (Section [19].

- A unified, unique and comprehensive approach to modern Test Case Prioritization that

considers all the principles used throughout multiple regression testing use cases (Sec-
tion [20].

— A unified synthetic dataset and the demonstration of its effectiveness using ABARC in
the context of Test Case Prioritization (Section[5.2) [20].

- Rough Clustering based unsupervised learning approaches for Test Case Prioritization
- RoughTCP (Section [G].

* Applicative research

- Application of NEUTRON on multiple industrial datasets (Section4.1)) [19].
— Integration of NEUTRON in a real-world solution - MixTCP (Section [4.2) [17].
— Application of NEUTRON through MixTCP on a real-world industrial project (Section

[17].
- Experiments on RoughTCP using standard industrial datasets (Section [5.1) [5].
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Chapter 2

Theoretical Background

In this Chapter we present the background and state of the art contributions that we have
leveraged in our research. It gives more context on functional and concurrent programming,
multi-agent systems, unsupervised learning, rough sets and finally about automated software
testing, especially test case prioritization. Next we will describe the structure of this chapter in the
PhD thesis divided into sections.

Section 1, named Functional concurrent programming, presents how functional and concurrent
programming works, introduces the programming languages and the web framework we used,
gives us ideas how concurrency in those languages work and explains why we have chosen these
technologies.

Section 2, named Multi-agent systems, describes multi-agent systems, starts with the concept of
an agent, continues with agent types and finally it shows how agents can work together to achieve
different goals by listing concrete applications.

Section 3, named Supervised Learning, defines supervised learning, enumerates some of its
methods, and finally describes neural networks in more detail.

Section 4, named Unsupervised Learning, defines unsupervised learning (clustering), outlines
its types, specifies what hierarchical clustering is and finally introduces rough sets and explains
how they can be used when applying hierarchical clustering.

Section 5, named Rough Sets, presents the rough set theory formally, followed by applications
of it, especially in the machine learning domain, and finally the state of the art.

Section 6, named Automated Software Testing, is about automated software testing. It presents
one of the most popular testing method: regression testing. Then it describes the problem of test

case prioritization.



Chapter 3

Novel Approaches to Rough Sets Clustering

This chapter presents our theoretical contributions to Clustering using Rough Sets. These con-
tributions include an original clustering algorithm based on multi-agent systems and rough sets
and experiments on similarity measures for this new approach.

Section[3.1] introduces a novel clustering algorithm that uses rough sets and software agents to
enhance both the accuracy on vague datasets and the time needed in order for the agglomerative
method to converge. This section also proposes a new methodology to evaluate clustering results
that have uncertain (rough) or outlier instances, coined as hybrid instances.

Section [3.2| analyses the impact of various similarity distance metrics and the methodology
used to evaluate their performance both based on well-known measures, like accuracy and on a
novel way, like evaluation based on rough instances.

Section3.3seeks to conduct an in-depth comparison of the ABARC algorithm with a range of
both supervised and unsupervised learning algorithms, using a variety of performance metrics to
evaluate the effectiveness of each algorithm on commonly used datasets.

Section [3.4) concludes the chapter and presents options for future work.

The approaches introduced in this chapter represent original research contributions published in [6] 15}
106, [14]].

3.1 Agent Based Rough Clustering

The content of this section is derived from the original paper [6]].

Clustering is an important task in pattern recognition with many applications in natural sci-
ences and healthcare. However, in practical scenarios, it is often the case that the data cannot be
easily separated into well distinguished groups for several reasons like: the shape of clusters, the
presence of outliers, or the overlapping clusters problem (instances that may belong to more than
one cluster). In order to handle such issues, we propose an agglomerative clustering approach
which identifies instances that may belong to more than one cluster and clearly separates the
outliers from the rest of the instances by integrating concepts from rough set theory. The whole
grouping and regrouping process is driven by software agents executing in parallel. Our approach
is computational friendly and experiments on standard data sets indicate its advantages.

This section presents our approach to clustering. We introduce ABARC (Agent BAsed Rough
Clustering), algorithms which address the overlapping clusters problem by modeling clusters
using notions from the rough set theory. They successfully identify outliers and, by using software
agents, it is also scalable. Besides this clustering approach, we also introduce what we believe to
be an objective methodology for evaluating the quality of a clustering result in case of overlapping

clusters and outliers.
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The main clustering procedure is described in Algorithm where X is the data set con-
taining the instances to be clustered, 7,,,, and A are integers denoting the number of trials for
specific tasks (details bellow), o is the similarity limit and ¢ is a distance metric (for example, the
Euclidean distance). The similarity limit, o, is specific to every data set and it is a real number
denoting the maximum value up to which two instances are considered similar (they surely be-
long to the same group). The first step is to initialize the agents and associate one agent to each
instance. Also, each agent is assigned to a different cluster, so, at the beginning, the number of
clusters is equal to the number of agents which is equal to the number of instances. Agents are
executed in parallel, in separate processes, and this behavior is indicated by the || operator from

line 4.

Algorithm 3.1: Agent Clustering

Data: X, i102, A\, 01,0

Result: RC' //the set of rough clusters
1 @ Let AG be the set of agents
2 fori =1, 44, do

3 fork =1,|AG| do

4 ‘ || doCluster(agenty, A, 01,9, AG)
5 end

6 end

Algorithm [3.2shows the asynchronous behavior of each agent: given an agenty, it tries to find
similar fellows with respect to o1 and § by direct message exchange. One it finds a similar agent,

it moves to its cluster (line 3).

Algorithm 3.2: Do Cluster
Data: agenty, A\, 01, 9, AG
1 say = searchForSimilar(agenty, \, 01,0, AG)
2 if sa # null then
3 ‘ changeCluster(agenty, say)
4 end

Algorithm describes the procedure of finding a similar agent. The argument A\ denotes
the maximum number of attempts the agent should perform in order to find a similar one. On
line 4, an agent is selected in a non-deterministic way as indicated by the [] operator and, if the
two agents are not in the same cluster, their similarity is computed. If this value is bellow the
similarity limit, o1, then a similar agent is found and the function terminates by returning the
selected Agent. Otherwise the search continues and after ) failed attempts of finding similar agents
(which are not located in the current cluster) the function returns null meaning that either there
are no agents similar to the given one (agent;) or the process simply took too much time in which
case the task is left to other agents or to another iteration (line 2 from Algorithm when the
search process is probably faster since there are less clusters. The computeSimilarity function
from line 6 computes the similarity between two agents given a distance metric §. If this value is
bellow the similarity limit, o1, it means that the two agents certainly belong to the same cluster so
they are in the lower approximation of the current cluster.

Algorithm B.4|represents the second phase of our approach. Since agents are grouped together

only if they should certainly belong to the same cluster (based on the similarity limit, o;), the
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Algorithm 3.3: Search for Similar
Data: agenty, A\, 01,90, AG
Result: sa //similar agent

1 if A = 0 then

2 ‘ return null

3 end

4 [|{selectedAgent = a;,V¥j = 1,]A|,a; € AG}

5 if getCluster(agent) # getCluster(selected Agent) then
6 similarity = computeSimilarity(agent, selected Agent, §)
7 if similarity < o then

8 ‘ return selected Agent

9 else

10 ‘ return searchForSimilar(agent, \ — 1,01, 9, AG)
11 end
12 else

13 ‘ return searchForSimilar(agent, A — 1,01, 6, AG)
14 end

first phase of our approach (Algorithms and will probably produce a large number
of clusters. The second phase (Algorithm unifies similar clusters producing rough clusters.
The algorithm receives as a first argument a set of cluster representatives. A cluster representative,
Ry = (Ck, A(Ck)), is a tuple where A(C}) is the centroid of the cluster C and it is computed as
follows:
A(Cy) = L > o (3.1)
i z*eCy,

The second parameter, o, is a rough similarity limit denoting up to what point two agents are
possibly similar. This parameter is different from the o value (used in Algorithms and
which denotes the point up to which two agents are surely similar. The last argument, uni fied,
denotes the set of unified clusters and it is initially equal to the empty set. Cluster similarity
is computed based on the centroid values in the same fashion agent similarity is performed. If a
representative is similar to several ones then the corresponding data will belong to several clusters
in the upper approximation. The result is a set of representatives of the unified clusters. The
update Representatives function from line 8 recalculates the representatives using Equation

Even after executing Algorithm 3.4] there might be a significant number of clusters remaining,
but most of them are normally composed of a very small number of entities which are not similar
to either of the "normal” clusters. The instances from these small clusters will be marked as possi-
ble outliers. Nevertheless, in Algorithm the third phase of our approach, we will assign them
to the closest cluster and we get the final clustering structure.

Algorithm 3.5|receives as input data the clusters, as resulted after applying Algorithm[3.4] In
line 1, the outliers (which are themselves clusters) are separated from the ‘normal’ clusters. This
decision is based on the value of ¢ and the cluster size: if the number of instances from a cluster is
less then ¢ then the cluster is marked as an outlier. The value of ¢ is set to 5% from the total number
of instances in the data set. In line 2, each outlier is unified with the closest ‘normal’ cluster, based
on the cluster representatives. A more comprehensive explanation of the algorithms, alongside
with our novel methodology to evaluate rough clusters can be found in the thesis.

In order to evaluate the quality of our approach, we use several cluster evaluation measures

10
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Algorithm 3.4: SimilarClusterUnification
Data: representatives, oo, uni fied
Result: unified
if representatives = () then
‘ return uni fied
end
Ry = first(representatives)
S = getSimilar(Ry, representatives \ { Rk}, 02)
if S # () then
updateCluster(Ri(Ck),S)
new Representatives = update Representatives(representatives)
return SimilarClusterUni fication(new Representatives, g, ()
else
‘ return SimilarClusterUni fication(representatives \ {Ry}, o2, unified U {Ry})
end

© ® 9 O Ul e W N R
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Algorithm 3.5: Outlier Elimination

Data: clusters,

Result: finalClusters
1 {outliers, clusters} = detectOutliers(clusters, )
2 finalClusters = joinOutliers(outliers, clusters)
3 return finalClusters

presented in the thesis. For each data set, we execute the algorithm 30 times and we present
the average value for each evaluation measure in Table We would like to mention that the
number of executions was chosen to be 30 only because we would like to be consistent with other
approaches we compare with. In line Official from Table we show the index values for the
clusters given in the official data set documentation. In line ABARC we show the average index
values for the clusters obtained by our algorithm with all hybrid data included. Line ABARC — O

shows the average index values for our clusters after eliminating the outliers.

Table 3.1: Cluster quality measures.

DB | DN 1 ST 7T Entropy | ARI T Accuracy(%) 1
- Official 0.511 2484 0.624 0 1 100
0 ABARC 0.464 3.012 0.641 0.116 0.77 95.556
= | ABARC - O 0.354 3.616 0.716 0.067 0.92 97.56
] Official 0.527 2.699 0.561 0 1 100
g ABARC 0.463 3.447 0.614 0.293 0.51 90.952
w | ABARC - O 0.21 5.972 0.772 0.073 0.6 98.121
o | Official 0.98 1474 0.465 0 T 100
8 ABARC 0.968 1.6 0.48 0.11 0.65 96.985
2 | ABARC -0 0.425 3.804 0.677 0 0.85 100

As it may be seen in Table the cluster structure proposed in the official documentation
outperforms the results proposed by us only in terms of accuracy, ARI and entropy (of course).
The best results for each index is marked in bold face. Even without eliminating the outliers, all
results (except for the accuracy, ARI and entropy) are better compared to the official ones, but after
eliminating the outliers the results are significantly improved in some cases. More experiments

and evaluations can be found in the thesis.

11
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3.2 Similarity Measures for Rough Sets Clustering

The content of this section is derived from the original papers [15} [16l].

The proper selection of the similarity measure may be of paramount importance for the clus-
tering result especially if the clusters overlap. Therefore, the aim of this section is to study the
influence of some widely known similarity measures on the clustering structure. The analysis
uses a clustering algorithm based on rough sets which is able to discover hybrid data (outliers
and instances that are close enough to more than one cluster). In this section, we also examine the
similarity measures influence on the overlapping regions as well. Since the standard datasets do
not offer specific information regarding the overlapping areas, we also propose an approach for
extracting this data in order to be used for benchmarking purposes. Experiments conducted on
standard data sets outline the importance of the proper similarity measure selection.

In order to evaluate the influence of a certain similarity measure on the rough instances, we
compare the rough instances reported by the algorithm described in Section 3.1}

Given a similarity measure, we execute the algorithm several times (/V) on a certain data set
and we collect the reported rough instances from each execution.

For each rough instance " we compute the occurrence rate: occ,; = 7 where n denotes the
number of occurrences of the instance in the series of IV executions.

For a given distance d, we compute the rough score as shown in Definition

Definition 1 The rough score of a given similarity measure is the ratio between the sum of the occur-

rence rates of the validated rough instances and the sum of all occurrence rates:

|R14| i
R izt Wrr(x") - oceyi
SC —

RI,
> L:fi‘ 0CCyi

)

where:

* RI,is the set of rough instances reported by the clustering algorithm for a certain similarity measure
(or distance, d)

* RI is the set of actual rough instances produced by the algorithm from Section

* W Ry is the indicator function of RI:

, 1, ifz* e RI
J%R[(x’) = )
0, otherwise.

As seen in Definition[T} the rough-score depends on a fixed parameter x denoting the confidence
of each rough instance z* — so only the instances having an occurrence rate higher than « are taken
into account. Given a similarity measure, we compute the rough score for several values of . The
rest of our methodology can be found in the PhD thesis.

Talking about results, the rough scores can be found in Table It seems that the best results
(high rough scores for high confidence values) are obtained in most cases for values of p close to
2.3. For example, for Wine and Seeds the best results are obtained for p = v/2, while for the other
datasets p = 2v/2 gives the best results, but these values of p are both close to 2.3. Other results
can be found in the thesis.

12
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Table 3.2: Rough scores with minimum confidences (x) ranging between 0 and 1 with a step of 0.1.

Similarity measure 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Manhattan 261 | 11.0 | 25,5 | 255 | 255 | 20.0 | 20.0 | NaN | NaN | NaN | NaN
Chebyshev 636 | 95 |13.13|1431| 195 | 11.0 | 11.0 | 0.0 0.0 0.0 0.0
Euclidean 59 | 385 | 385 | 38,5 | 385 | 51.33 | 51.33 | 45.0 | 45.0 | 45.0 | 0.0

.« | Squared Euclidean | 14.88 | 15.25 | 18.39 | 18.39 | 59.33 | 89.0 | 89.0 | 89.0 | 89.0 | 98.0 | NaN
= | Minkowskip=+/2 | 556 | 36.0 | 36.0 | 36.0 | 36.0 | 48.0 | 46.0 | 46.0 | 46.0 | 46.0 | 0.0
Minkowskip =2.3 | 1571 | 18.17 | 2725 | 43.6 | 43.6 | 545 | 80.0 | 80.0 | 86.0 | NaN | NaN
Minkowskip = 2v/2 | 7.61 | 18.88 | 25.17 | 31.71 | 62.0 | 62.0 | 62.0 | 620 | 93.0 | 98.0 | NaN
Minkowskip = 3 6.12 | 16.0 | 17.33 | 29.71 | 59.33 | 59.33 | 59.33 | 89.0 | 89.0 | 96.0 | NaN
Manhattan NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN
Chebyshev 7.73 | 11.94 | 20.24 | 20.0 | 20.29 | 33.33 | 33.33 | 33.33 | 50.0 | 100.0 | 100.0
Euclidean 536 | 8.0 | 1047|1533 | 23.0 | 0.0 0.0 0.0 0.0 | NaN | NaN
g | Squared Euclidean | 3.65 | 6.83 | 1091 | 64 0.0 0.0 0.0 | NaN | NaN | NaN | NaN
Z | Minkowskip=+v2 | 572 | 8.66 | 10.63 | 11.47 | 14.0 | 1655 | 1057 | 12.33 | 0.0 | NaN | NaN
Minkowskip =2.3 | 499 | 887 | 939 | 10.67 | 0.0 0.0 0.0 0.0 0.0 | NaN | NaN
Minkowskip =22 | 403 | 633 | 829 | 85 0.0 0.0 0.0 0.0 | NaN | NaN | NaN
Minkowski p = 3 515 | 7.04 | 10.74 | 23.33 | 16.0 | 0.0 0.0 0.0 0.0 | NaN | NaN
Manhattan NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN
Chebyshev 174 | 251 | 74 | 475 | 0.0 0.0 0.0 0.0 | NaN | NaN | NaN
Euclidean 3.62 | 487 | 1034 | 175 | 18.62 | 19.0 | 150 | NaN | NaN | NaN | NaN
5 | Squared Euclidean | 449 | 694 | 84 | 864 | 2756 | 416 | 52.0 | 86.0 | 86.0 | NaN | NaN
é Minkowskip=+/2 | 497 | 7.8 | 935 | 1352 | 17.45 | 14.86 | 22.29 | 52.0 | 40.0 | 0.0 0.0
Minkowskip =2.3 | 3.58 | 6.07 | 11.64 | 21.62 | 25.08 | 37.6 | 33.5 | 35.0 | NaN | NaN | NaN
Minkowskip =2v2 | 409 | 7.01 | 11.74 | 2046 | 24.11 | 29.56 | 41.0 | 41.0 | 31.33 | 31.33 | 0.0
Minkowskip = 3 341 | 473 | 704 | 838 | 1892 | 7.78 | 140 | 140 | 0.0 0.0 | NaN
Manhattan 20 | 127 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | NaN | NaN
Chebyshev 14.5 | 19.33 | 19.33 | 19.33 | 29.0 | 29.0 | NaN | NaN | NaN | NaN | NaN
g Euclidean 2.65 | 645 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | NaN | NaN
£ | Squared Euclidean | 1.85 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | NaN | NaN
8 | Minkowskip=+v2 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | NaN | NaN | NaN
& | Minkowskip =23 | 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | NaN | NaN
™ [Minkowskip =22 | 229 | 37.0 | 370 | 370 | 740 | 740 | 740 | 740 | NaN | NaN | NaN
Minkowskip = 3 50 | 824 | 0.0 0.0 0.0 0.0 0.0 0.0 | NaN | NaN | NaN
Manhattan 3.05 | 704 | 6.62 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | NaN
Chebyshev 4.64 | 2293 | 47.0 | 520 | 56.0 | 56.0 | 56.0 | 48.0 | 48.0 | 48.0 | NaN
Euclidean 2.88 | 898 | 11.46 | 1345 | 11.14 | 156 | 26.0 | 78.0 | NaN | NaN | NaN
% | Squared Euclidean | 3.96 | 1048 | 14.16 | 1822 | 272 | 560 | NaN | NaN | NaN | NaN | NaN
& | Minkowskip =+/2 | 323 | 857 | 13.83 | 28.4 [ 47.33 | 47.33 | 4733 | 37.0 | NaN | NaN | NaN
Minkowskip =2.3 | 461 | 12.11 | 1635 | 17.87 | 19.0 | 224 | 0.0 | NaN | NaN | NaN | NaN
Minkowskip =2v2 | 331 | 931 [ 1343 | 195 | 26.0 | 39.0 | 78.0 | 78.0 | NaN | NaN | NaN
Minkowskip = 3 223 | 95 | 1036|1029 | 240 | 240 | 240 | 36.0 | NaN | NaN | NaN
Manhattan 10.0 | 340 | 340 | 34.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN
Chebyshev 8.0 | 16.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN
Euclidean 644 | 340 | 340 | 340 | NaN | NaN | NaN | NaN | NaN | NaN | NaN
§ Squared Euclidean | 9.2 | 34.0 | 340 | 340 | NaN | NaN | NaN | NaN | NaN | NaN | NaN
G | Minkowski p = V2 | 853 | 255 | 255 | 360 | NaN | NaN | NaN | NaN | NaN | NaN | NaN
Minkowskip =2.3 | 11.67 | 17.0 | 340 | 34.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN
Minkowski p = 2v/2 | 50.0 | 50.0 | 50.0 | 80.0 | 80.0 | 80.0 | 80.0 | 80.0 | 80.0 | NaN | NaN
Minkowskip = 3 350 | 35.0 | 52.0 | 52.0 | 72.0 | 720 | 720 | 72.0 | NaN | NaN | NaN
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CHAPTER 3: NOVEL APPROACHES TO ROUGH SETS CLUSTERING

3.3 Uncertainty Driven Clustering Evaluation

The content of this section is derived from the original paper [14].

This section aims to perform a comprehensive comparison of the ABARC algorithm against
several supervised and unsupervised learning algorithms, employing a suite of performance met-
rics to assess each algorithm’s efficacy across standard datasets. Through this comparative analy-
sis, our aim is to show the strengths and limitations of the ABARC algorithm and its counterparts,
thereby contributing to the ongoing research on optimal clustering approaches in the context of
data uncertainty.

This comprehensive analysis includes three types of metrics: external, internal and rough eval-
uation metrics. The external ones we considered are: Accuracy, Precision, Recall, F1-Score, Macro
F1-Score, Weighted Average F1-Score, Micro F1-Score and Kappa Score. Comparisons using these
metrics were conducted on the Iris, Seeds and Wine datasets. The internal ones used are: Purity,
Entropy, V-Measure. For the comparisons we again used the same three datasets. In the final
we have the following rough metrics: Average Accuracy (« index), Average Roughness (p index),
Accuracy of Approximation (o* index), and Quality of Approximation (y index). These evalua-
tion metrics were used only on the Iris and Wine datasets, because we did not have comparison
subjects for the Seeds dataset.

Considering the results, in Table 3.3 we can observe that on Iris the accuracy and purity drops
a bit as we eliminate outliers and rough, but the entropy and the V-Measure after dropping both
of them is significantly better, which makes us assume that outliers and rough instances do not
really affect homogeneity but they affect completeness. On the seeds dataset we cannot see any
real difference when eliminating them, thus they do not affect our performance. Finally, on wine
we can see all metrics improve, entropy and V-Measure improves significantly, so on this dataset
eliminating them makes our results almost perfect regardless of the metric used. The rest of the
performance measurements can be found in the thesis.

Table 3.3: Unsupervised performance measurements for the Iris, Seeds and Wine datasets.

Case Study Inst Acc Entropy | Purity | V
Clusters with hybrids 150 | 98.66% | 0.0803 | 0.987 | 0.733
-8 Clusters without outliers 139 | 98.56% | 0.0847 | 0.986 | 0.717
™ | Clusters without outliers and rough | 126 | 98.41% | 0.0204 | 0.984 | 0.932
. Clusters with hybrids 210 | 92.857% | 0.0839 | 0.929 | 0.721
2 Clusters without outliers 190 | 92.105% | 0.0863 | 0.921 | 0.711
@ [ Clusters without outliers and rough | 178 | 91.573% | 0.0829 | 0.916 | 0.719
0 Clusters with hybrids 178 | 97.753% | 0.0569 | 0.978 | 0.8
= Clusters without outliers 157 | 99.363% | 0.0418 | 0.994 | 0.854
= [Clusters without outliers and rough | 148 | 99.324% | 0.0088 | 0.993 | 0.97

3.4 Conclusions and Further Work

In this chapter, we introduced an agglomerative clustering algorithm that utilizes rough set
theory to identify hybrid data, such as outliers or rough instances. Hybrid data includes instances
with traits of multiple clusters, providing deeper insights than other methods. Identifying outliers

helps analysts remove potential measurement errors, improving classification accuracy. Rough in-
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CHAPTER 3: NOVEL APPROACHES TO ROUGH SETS CLUSTERING

stances can indicate new classes or mutant individuals in datasets like Iris. Our scalable algorithm
runs quickly on standard computers with large datasets.

We also presented an objective methodology to assess hybrid data quality, outperforming
many traditional cluster quality measures. Our validation methodology highlights our algo-
rithm’s performance against documented dataset information. Additionally, we examined the
impact of various similarity measures on clustering accuracy and rough instances, proposing a
method to determine rough instances for benchmarking.

Our algorithm outperforms other classification techniques in Accuracy, Entropy, and Adjusted
Rand Index, especially after outlier removal. The results demonstrate the algorithm’s robust per-
formance and its unique ability to identify hybrid data. We extensively evaluated the Agent BAsed
Rough sets Clustering (ABARC) algorithm using standard datasets and compared it against mul-
tiple methods, analyzing the effects of different metrics in unpredictable contexts.

Experiments show the Minkowsky distance with p = 2.3 is optimal for accuracy and rough
instances, likely due to similar spherical cluster shapes in all datasets. Removing hybrids enhances
ABARC’s performance, particularly in Iris and Wine datasets, underscoring the importance of
hybrid data detection in uncertain environments. The findings also stress the need for suitable
validation metrics for clustering in vague or unpredictable scenarios.

Future work includes experimenting with datasets featuring larger overlapping regions and
varied cluster shapes, and focusing on outlier management by validating results and examining

the influence of similarity measure selection.
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Chapter 4

Contributions to Test Case Prioritization in
Continuous Integration Context

This chapter presents our research on test case prioritization, and our contributions using a
neural network-based approach on industrial datasets and integrating it in an applied solution
for a real-world project.

Section describes our approach to test case prioritization using neural networks (NEU-
TRON), as well as its application and performance on industrial datasets, like Google Shared
Dataset of Test Suite Results.

Section[d.2 presents the application and evaluation of the NEUTRON approach in a real-world
industrial project.

Section 4.3|concludes the chapter and states our potential future work.

The approaches introduced in this chapter represent original research contributions published in [19,
171.

4.1 Neural Network Based Test Case Prioritization in Continuous Inte-
gration

The content of this section is derived from the original paper [19]].

In continuous integration environments, the execution of test cases is performed for every
newly added feature or when a bug fix occurs. Therefore, regression testing is performed consid-
ering various testing strategies. The Test Case Prioritization (TCP) approach considers reordering
test cases so that faults are found earlier with a minimum execution cost.

The purpose of the section is to investigate the impact of neural network-based classification
models to assist in the prioritization of test cases. Three different models are employed with
various features (duration, fault rate, cycles count, total runs count) and considering information
at every 30 cycles or at every 100 cycles.

The results obtained emphasize that the NEUTRON approach finds a better prioritization with
respect to NAPFD (normalized average percent of the detected fault) than random permutation
and is comparable with the solutions that used either duration or faults, considering that it com-
bines both values. Compared to other existing approaches, NEUTRON obtains similar competi-
tive results when considering a budget of 50% and the best results when considering budgets of
75% and 100%.

After presenting the state of the art in test case prioritization, we present our different ap-
proaches to it, followed by the description of the different neural network models (seen on Figure
we use and the design of experiments (seen on Figure [4.2). We have considered three indus-
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CHAPTER 4: CONTRIBUTIONS TO TCP IN CI CONTEXT

trial datasets: two from ABB Robotics Norwayﬂ (Paint Control and IOF/ROL, for testing complex
industrial robots) and Google Shared Dataset of Test Suite Results (GSDTSR) H As for the metrics
for the analysis we NAPFD, which can adapt better to use cases where not all test faults are found.
Labelling of the training data is done through an inteligent agent, that can simulate the experience
and knowledge of an expert in this domain. A more detailed description and explanation of our

approaches can be found in the thesis.

Dataset pre-processing Neural Network Models
Project A
Predictors: Target:

TC in Cl metrics ChatGPT
Duration,
Fault Rate,
Cycles Count
Total Runs Count

fault rates per cye
3 groups ‘
(~100 cycles

11 goups
(~30 cycles)

Project B

Predictors: Target: Cross project testing

IC in Ci s ChatGPT Test Case Classification Models
urarion,
Fault Rate,
Cycles Count
Total Runs Count l

fault rates per cyc

3 groups

(~100 cycles
oo’

(~30 cyeles

Classification

Figure 4.1: Overview of the neural networks-based models for TCP in Continous Integration

For all experiments, the training was carried out in the IOF/ROL project (since it was the most
balanced dataset among the available ones) and testing was carried out in the Paint Control and
GSDTSR projects.

Experiment 1

The current experiment considers for each test case the four general features mentioned above,
together with the fault information for each cycle. The neural network uses the provided data for
every 30 cycles.

As can be observed in Figure the best results, in the case of 50% budget, are obtained by
RETECTS [13] and COLEMAN [8]. It should be noted that NEUTRON obtains better results than
the Random solutions and also better than Sorted by Duration and Sorted by Fault Rate in each of
the tested projects, however, the NEUTRON solution embedded both features regarding duration
and fault rate.

In Figure[4.4] it is shown that NEUTRON obtains the best solution for 75% budget in the case of
testing Paint Control and for both testing projects in the case of the 100% budget. Table[4.1|contains
the values of the NAPFD obtained for the previous papers Elbaum’s approach [2], RETECTS [13],

'https://new.abb.com/products/robotics
https://bitbucket.org/HelgeS/atcs—data/src
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TC in Cl metrics
Duration
Fault Rate
Cycles Count
Total Runs Count

TC in Cl metrics
Duration
Fault Rate
Cycles Count
Total Runs Count

TC in Cl metrics
Duration
Fault Rate
Cycles Count
Total Runs Count

fault rates per cycle
3 groups
(~100 cycles)

Budget

25% 50% 75% 100%

Figure 4.2: Design of experiments

COLEMAN [8], LeanRnTeC [9] and the results for NEUTRON approach, along with the results
for the initial permutation, random and soft by duration or faults. It should be stated that the
complete values exist only for the 50% budget. For the 25% and 75%, we have considered in the
table the results of previous solutions for 10% and 80% respectively. The rest of the experiments
can be found in the thesis.

Table 4.1: Experiment 1

NAPFD
Project Initial | Random | Sort Fault Rate | Sort Duration | NEUTRON | Elbaum | RETECS | COLEMAN

25%-Paint Control | 0.275280 | 0.320224 0.067415 0.567415 0.251276 0.915 0.915

25%-GSDTSR 0.160602 | 0.208414 0.798651 0.692944 0.486858 0.9911 0.9893
50%-Paint Control | 0.584485 | 0.589887 0.372999 0.780898 0.600487 0.9145 0.915 0.915

50%-GSDTSR 0.409727 | 0.486987 0.999755 0.882094 0.917503 0.9891 0.9911 0.9893
75%-Paint Control | 0.666328 | 0.864736 0.700434 0.949570 0.937796 0.9162 0.9171

75%-GSDTSR 0.672442 | 0.697674 0.999878 0.945154 0.987035 0.9921 0.9893
100%-Paint Control | 0.988700 | 0.980494 1 0.972667 0.994003

100%-GSDTSR 0.982327 | 0.974485 0.999904 0.959203 0.998308

4.2 MixTCP: an Approach for Enhancing Software Development Experi-
ence

The content of this section is derived from the original paper [17].

Test Case Prioritization (TCP) is crucial in the fast-paced world of software development to
speed up and optimize testing procedures, particularly in Continuous Integration (CI) setups.
This section aims to first validate a state-of-the-art neural network model to TCP in CI environ-
ments, by applying it into a real-world industrial context, and second to propose MixTCP, an
applied solution that integrates the neural network model and significantly enhances the regres-
sion testing experience from the software developer perspective. It is implemented in the Elixir
programming language and employs the NEUTRON model, a state-of-the-art approach that uses
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NAPFD, budget 50%

Paint Control GSDTSR

Il [nitial Permutation I Sorted by Duration [ RETECS
W Random Permutation I Neural Network N COLEMAN
I Sorted by Fault Rate I Elbaum's Approach LeaRnTeC

Figure 4.3: Experiment 1 with approximately 11x30 cycles, considering 50% budget

neural networks to intelligently prioritize test cases, effectively improving fault detection and re-
ducing testing time. The system is composed of loosely coupled components (Mix TCP task, TCP
Server, and NEUTRON model as seen on Figure [£.5), thus enabling the integration of other Test
Case Prioritization solutions too. The results show that MixTCP has the potential to be a valuable
asset to modern software development methods, offering software engineers a more efficient, a
more user-friendly, and an overall easier to integrate TCP approach.

We firstly present our motivation and the state of the art, and then we introduce our MixTCP
approach (as seen also on Figure [4.5). We applied TCP and NEUTRON (as described in Section
on a real-world Mix project [22]. In the following parts we detail our architecture, specify
how to use this software, and discuss the advantages of it, which shortly are: integration with
NEUTRON (a state-of-the-art approach for TCP), scalability, empirical validation in industrial
settings and user experience and flexible integration. All of this can be seen in more detail in the
thesis.

We have designed an experiment that considers various execution cycles as specified in the
following and as see in Figure [4.6).

The experiment design steps are:

¢ the tests were executed multiple times, throughout 8 cycles

¢ each cycle is a single execution of a subset of tests

¢ for the first 3 cycles we have executed all tests, without using MixTCP

¢ starting with the fourth cycle, we have started using MixTCP, that prioritized the tests by
analyzing data from all previous cycles, thus, we conducted only a select subset of these
tests, choosing them based on their assigned priority order

¢ inorder to compute NAPFD we take the next cycle’s test runs to decide each test file’s verdict

¢ NAPFD is computed for cycles between 3 and 7, the 3rd cycle’s NAPFD will tell how well

the tests were predicted in the 4th cycle
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Initial Permutation, RandomPermutation,
SortedByFaultRate, SortedByDuration, NEUTRON
VERSUS
Elbaum, RETECTS, COLEMAN, LeaRn TeC
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0.8 -
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25% 25% 50% 50% 75% 75% 100% 100%
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Control Control Control Control
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Figure 4.4: Experiment 1 with approximately 11x30 cycles, considering all budgets

execute mix TCP
Any Mix Project »  Mix TCP task

do RPC using
Erlang Distribution Protocol

apply TCP
NEUTRON PRy TCP Server

Figure 4.5: Overview of the MixTCP approach

¢ as there are only 8 cycles, no score can be computed for the 8th cycle yet
¢ there were 8 faults exposed throughout the experiment

In order to measure the results, we used the same metric as in the NEUTRON (from Section4.1))
approach, namely NAPFD. This metric provides a sufficient overview of the general performance
of a TCP approach. The results are shown in Table As one can observe, the performance of
the solution is considerably better than running the tests in a Random way (which is the default
behavior in Elixir).

Figure [4.7| graphically illustrates the outcomes for Random and NEUTRON across the cycles,
clearly showing a notable enhancement in performance for both.

More details on this experiment can be found in the thesis.
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——  nextcycle

next cycle, for NAPFD: use
verdict from next cycle

Run all tests Run Mix TCP
Cycle 1 % Cycle4 [— Cycleb
| — —
Cycle 2 Cycle6 [~ Cycle7
| —
Cycle 3 Cycle 8

Figure 4.6: Experiment Cycles

Table 4.2: Random and NEUTRON NAPEFED per cycle

NARPFD

08

0.6

0.4

0.2

0.0

Cycle | Random NAPFD | NEUTRON NAPFD
3 5.82% 12.18%
4 13.15% 22.25%
5 18.81% 35.06%
6 32.16% 48.20%
7 45.86% 81.46%

Method

® NEUTRON
Random

- 1 ] 1 ] ]
m =+ wn @ I~

Cycle

Figure 4.7: NAPFD per cycle
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4.3 Conclusions and Further Work

In continuous integration settings, a set of tests is run for each new feature or bug fix. There are
several strategies to select or prioritize the execution of the tests. Test Case Prioritization reorders
the test cases so that faults are found earlier with a minimum execution cost.

This chapter investigated the use of neural network-based classification models to help prior-
itize tests, as well as the integration of it into MixTCDP, an applied solution for real-world projects.
Three different models were employed with various features (duration, fault rate, cycles count,
total runs count) and considering information at every 30 cycles or at every 100 cycles.

The NEUTRON approach finds a better prioritization with respect to NAPFD than random
permutation. The NEUTRON results are comparable with other sort-based solutions that used
either duration or faults; in addition, it considers both features when constructing the solution.
Compared to other existing state-of-the-art approaches, NEUTRON achieves similar competitive
results when considering a budget of 50% and the best results when considering budgets of 75%
and 100%.

The evaluation of MixTCP in real-world industrial settings validates its benefits in improving
the TCP process. It also validates the theoretical approach, NEUTRON. The solution has shown
a clear improvement in the prioritization of the test cases, which ultimately leads to earlier fault
detection and also more efficient use of testing resources. This has significant implications for
the speed and quality of software development, as it enables quicker releases and more reliable
software products.

Our future efforts will be directed towards further experiments that are going to be performed
with more projects and with more complex scenarios considering various cycles and more test
cases discovering the same faults, along with the connection to the change in the source code or in
the requirements. In addition, we would like to ensure that MixTCP successfully integrates in any
development environment, we also plan to integrate other state-of-the-art TCP approaches into it,
facilitating faster adoption by the software industry.
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Chapter 5

Rough Sets Clustering for Test Case Prioritization

This chapter presents the application of our novel clustering algorithm in the context of test
case prioritization and proposes a modern, unified approach to test case prioritization validated
on a synthetic dataset using our clustering approach.

Section 5.1 applies our rough clustering method on industrial datasets in the context of test
case prioritization in continuous integration.

Section 5.2)illustrates a novel, original idea regarding test case prioritization that unites all the
well-known concepts into a single dataset. Moreover, it validates the efficacy of this new approach
using our clustering approach.

Section[5.3|concludes the chapter and describes our future work.

The approaches introduced in this chapter represent original research contributions published in [15,120].

5.1 RoughTCP: an Approach on TCP in CI Based on Rough Sets Cluster-
ing

The content of this section is derived from the original paper [5l].

In the rapidly evolving landscape of Continuous Integration (CI), test case execution becomes
pivotal with every code modification, making regression testing strategies indispensable. Among
these, Test Case Prioritization (TCP) has become a popular way to improve the efficiency and
effectiveness of software testing. Recently, researchers have been mostly looking at supervised
learning methods, such as neural networks, to deal with TCP in CI. However, because of the
dynamic nature of these environments, it might be worth exploring unsupervised approaches that
can adapt to the inherent uncertainties without labeled data. This section proposes RoughTCP, a
novel approach that utilizes a rough sets-based agglomerative clustering algorithm to prioritize
test cases.

RoughTCP automatically groups and ranks tests based on their intrinsic patterns and correla-
tions (e.g., faults, tests duration, cycles count, and total runs count) without a predefined model.
This improves fault detection without the need for constant supervision and provides a more com-
prehensive understanding of the results by incorporating rough sets. Three sets of experiments
were performed, considering data from continuous integration contexts in industrial projects.

Compared to recent related work, our experiments show that the RoughTCP approach yields
better results for budgets higher than or equal to 75% on all datasets, while sometimes also out-
performing all other methods on lower budgets. This underlines the potential of unsupervised
methods and, in particular, the strength of RoughTCP in reshaping the TCP landscape in CI envi-
ronments.

The section starts by presenting the test case prioritization problem and context (which is the
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same as in Section alongside state-of-the-art solutions. Next, it outlines our RoughTCP ap-
proach (as seens in Figures[5.1jand [5.2). The section continues with detailing the rough clustering
algorithm that we used for TCP. More details can be found in the thesis.

Stage 1
Test Case Prepocessing

Raw | cicycles
Test Cases Infegration Test Case

‘Grouping

similar test
cases

Figure 5.1: Approach stages

Test cases

Preprocessing | .

Reordered
test cases

Figure 5.2: Approach overview

The results of the experiments performed using rough clustering are provided in Table
together with the results of other approaches from Elbaum’s approach [2], to RETECS [13], COLE-
MAN [8], and NEUTRON.

Our investigations employing the experiments based on the Rough Clustering (RC) are: RC-
Reduced (using the 4 features discussed above), RC-3*100-cycles (using additional 3 features
based on the three 100 cycles), and RC-11*30-cycles (using additional eleven features based on
the eleven 30 cycles). More experiments can be found in the thesis.
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Table 5.1: Experiments

NAPFD

Project Budget | Elbaum | RETECS | RETECS | COLEMAN | COLEMAN | NEUTRON | RC- RC- RC-
RNFail TimeR- RNFail TimeRank Re- 3x100- | 11x30-
ank duced | cycles | cycles
10 0.9078 0.9077 0.9076 0.9076 0.1605 | 0.0393 | 0.0421
25 0.2512 0.5104 | 0.4877 | 0.4767
Paint Control | 20 0.9145 0.915 0.9138 0.915 0.915 0.6004 0.7579 | 0.7352 | 0.7354
75 0.9377 0.9490 | 0.9264 | 0.9265
80 0.9162 0.9160 09171 0.9171 0.9827 | 0.9264 | 0.9265
100 0.9940 0.9940 | 0.9946 | 0.9947
10 0.9893 0.9893 0.9894 0.9894 0.8904 | 0.8904 | 0.8969
25 0.4868 0.9533 | 0.9533 | 0.9551
GSDTSR 50 0.9891 0.9911 0.9906 0.9893 0.9894 0.9175 0.9880 | 0.9880 | 0.9880
75 0.9870 0.9967 | 0.9967 | 0.9965
80 0.9921 0.9914 0.9893 0.9894 0.9977 | 0.9976 | 0.9974
100 0.9983 0.9992 | 0.9992 | 0.9990
10 0.3704 0.3779 0.3632 0.3670 0.1578 | 0.1004 | 0.1939
25 0.4330 | 0.3802 | 0.4718
IOF/ROL 50 0.4892 0.5101 0.5025 0.5046 0.5189 0.7909 | 0.7762 | 0.8125
75 0.8784 | 0.9019 | 0.8964
80 0.5495 0.5287 0.5569 0.5678 0.8874 | 0.9107 | 0.9026
100 0.9180 | 0.9318 | 0.9199

5.2 Embracing Unification: a Comprehensive Approach to Modern Test
Case Prioritization

The content of this section is derived from the original paper [20].

Regression testing is essential for software systems that undergo changes to ensure function-
ality and identify potential problems. It is crucial to verify that modifications, such as bug fixes
or improvements, do not affect existing functional components of the system. Test Case Prioriti-
zation (TCP) is a strategy used in regression testing that involves the reordering of test cases to
detect faults early on with minimal execution cost.

Current TCP methods have investigated various approaches, including source code-based
coverage criteria, risk-based, and requirement-based conditions. However, to our knowledge,
there is currently no comprehensive TCP representation that effectively integrates all these influ-
encing aspects. Our approach aims to fill this gap by proposing a comprehensive perspective of
the TCP problem that integrates numerous aspects into a unified framework: traceability infor-
mation, context, and feature information.

To validate our approach, we use a synthetic dataset that illustrates six scenarios, each with
varying combinations of test cases, faults, requirements, execution cycles, and source code infor-
mation. Three methods, Random, Greedy, and Clustering, are employed to compare the results
obtained under various time-executing budgets. Experiment results show that the Clustering
method consistently outperforms Random and Greedy across various scenarios and budgets.

The section begins with outlining the context of the investigation, along with with the mo-
tivation, TCP background, and state-of-the-art approaches. Then we present our novel, unified
approach to modern TCP (also seen on Figure [5.3). Finally, we provide the case study with the
synthetic dataset and the 6 scenarios for building TCP solutions. More details can be found in the
thesis.

The metric used for the evaluation is the NAPFD [10], however, for each scenario, different

information is incorporated into the formula. For example, in the requirements-based scenario,
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TRACEABILITY CONTEXTS INFORMATION
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- cost of execution
- time constraints

Agile principles

Datfaset standardization
Figure 5.3: Overview of the approach

the faults that are considered are those linked to the requirements that are changed.

The TCP solutions obtained for each employed method are provided in Table The experi-
ments were performed with various time budget configurations, from 10 to 100. The majority of
the best results obtained are for the Clustering method for almost all budgets. The best results are
in bold in Table

Table 5.2: NAPFD values for the Random, Greedy and Clustering approaches for various budget
values.

S2
25 50 75
1347 | 21.2 | 28.16

S3
50 75
27.15 | 35.51

Scenario S1
Budget 10 25 50 75 80
Random | 13.54 | 25.25 | 39.29 | 51.8 | 53.93
Greedy 21.43 | 35.71 | 64.29 | 77.27 | 79.17 | 85.29 | 21.43 | 28.57 | 47.62 | 50.79 | 51.43 | 53.78 | 28.57 | 42.86 | 56.12 | 60.71
Clustering | 42.86 | 57.14 | 72.22 | 77.27 | 80.77 | 85.29 | 21.43 | 28.57 | 45.71 | 51.95 | 52.75 | 53.78 | 28.57 | 42.86 | 58.04 | 62.5
Scenario S4 S5 S6
Budget 10 25 50 75 80 100 10 25 50 75 80 100 10 25 50 75
Random 829 | 15.77 | 24.62 | 32.48 | 33.73 | 39.1 991 | 17.74 | 2425 | 25.66 | 32.01 | 3.48 | 6.54 | 11.94 | 17.1
Greedy | 21.43 | 42.86 | 50 | 51.95 | 52.38 | 53.78 42.86 | 50 |51.95 | 52.38 | 53.78 | 21.43 | 37.5 | 40.18 | 40.91
Clustering | 37.5 | 42.86 50 52.04 | 52.04 | 52.94 42.86 | 51.43 | 53.06 | 53.06 | 53.78 | 21.43 | 38.57 | 40.71 | 41.21

100
43.53
65.13
65.13

100 10
64.46 | 8.64

80
29.59

100 10
36.04 | 9.95

25
17.78

80
36.96
61.69
63.19

100
23.14
41.6
41.6

80
18.05
41.07
41.33

21.43
28.57

The obtained solutions for
dataset [18].

The Greedy solution is: [10, 11, 5,1, 9, 12, 13, 6, 3, 2, 15, 16, 7, 17, 4, 8, 14]. For the Clustering
solution, the clusters are also emphasized: [1, 5], [11], [10, 12], [13, 9], [15], [14, 4, 8, 17, 7], [6, 16,
2, 3]. The analysis reveals that while the Greedy solution identifies the correct test cases sooner

Greedy and Clustering are provided at this link along with the

than the Clustering solution, it overlooks the duration of these tests. In contrast, the Clustering
solution incorporates all relevant information, including test duration, thereby offering a more
comprehensive and balanced solution. More information about the results can be found in the
thesis.

5.3 Conclusions and Further Work

In regression testing, Test Case Prioritization is one of the strategies to be used, which aims to
order the test cases based on different, well-defined criteria. The proposed approach, RoughTCP,
uses a rough set clustering algorithm to group and rank test cases based on their intrinsic patterns
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in information about faults, duration, and continuous integration cycles.

The approach was rigorously validated using three distinct industrial projects, each provid-
ing information from their continuous integration environments, such as duration, faults, or in-
formation from up to 350 cycles. Overall results show that RoughTCP outperforms the current
state-of-the-art solutions.

This chapter also proposed a comprehensive unification of different features and data that may
be needed during a TCP process. As discussed, currently, there is no formal definition of TCP that
adequately covers the various influencing factors. From our case study and validation, we can
empirically state that having comprehensive datasets and a complete solution for them enhances
the overall performance and precision of the process.

Further work may consider other projects to validate RoughTCP on. The characteristics of the
projects can also be taken into account during rough clustering. Another aspect that is important
in the regression testing context is related to the traceability between requirements and test cases,
thus features that encapsulate it may be of interest for future investigations. For the unification,
our vision is to fill the missing gap with a unified TCP framework that adequately integrates
numerous perspectives: requirements, context, and code information. The framework should be
able to assist both with building datasets and solutions for test case prioritization.
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Conclusions and Future Work

This thesis presented our research on theoretical machine learning algorithms as well as their
application in different contexts, including software testing.

First of all, let us address all the objectives mentioned in Chapter (I} We have started with Ob-
jective|ljand studied both fuzzy and rough set theories as both are suitable for uncertain contexts,
we have settled on applying rough sets, because they are easier to apply and adapt to all types
of data. Objective [2|and Objective 3| were achieved by designing and implementing ABARC (de-
scribed in Section [3.1)). Objectived, Objective 5, and Objectivefare all about the evaluation of our
new rough sets based clustering methods, we have used standard methodologies for the usual
evaluation of the clustering results, but for rough clustering results we have not found any exist-
ing evaluation methodology so we have come up with a novel methodology and implemented it
to evaluate results generated by rough clustering methods (found in Chapter . Objective E] was
carried out by applying our rough clustering methods on various standard datasets and industrial
datasets from software testing (explained in Section as well as on other datasets from other
domains. Objective |§|specifies the research of a new domain, software testing, in which our novel
methods turned out to be useful. We have researched this field, and have found usages for our
proposed methods for test case prioritization (TCP). Objective[9|describes our way of contributing
to the TCP field from a more theoretical perspective, we have built a novel and unified approach
for TCP that would combine all of the information known to provide a more accurate regression
testing (more details can be found in Section5.2). Objective[10]is also about researching the field
of TCP, more specifically about analyzing state-of-the-art learning methods. After our analysis,
we have proposed new neural network-based models for TCP as mentioned in Objective[11{(more
information can be found in Section 4.I). Objective [12) was achieved by building the MixTCP
solution in the context of TCP in CI (described in Section .2). Finally, Objective [13] mentions
the application of our new rough clustering approaches in software testing and was achieved by
applying them on industrial datasets in the context of TCP (Section and using them for an
experiment in the framework of the unified approach mentioned above (Section[5.2).

We have developed innovative agglomerative clustering methods that employ rough set the-
ory to identify hybrid data, including outliers and rough instances that exhibit characteristics
aligning with multiple clusters. This approach enhances data analysis by providing deeper in-
sights into complex datasets, potentially revealing new classes or anomalies. Our algorithm’s
scalability is ensured by software agents that enable efficient computation on modern computers,
even for large datasets. Comparative analysis with other classification techniques has shown our
algorithm to outperform most in terms of accuracy, entropy, and the Adjusted Rand Index, even

more so after outlier elimination.
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In addition, we introduced an objective methodology for evaluating the quality of the iden-
tified hybrid data, offering a more reliable assessment compared to traditional cluster quality
measures. This new validation methodology has proven effective in our comparative analysis,
demonstrating our approach’s robust performance.

Our research also investigates the impact of various similarity measures on clustering out-
comes, especially concerning rough instances. Given the challenge posed by the lack of specific
information on overlapping regions in standard datasets, we proposed a novel methodology for
identifying potential rough instances, which could serve as a benchmarking tool.

We have also conducted a comprehensive evaluation of our clustering results, including the
rough ones. We have considered internal, external and rough evaluation metrics too. The com-
parison with related work shows that our methods are the best in most situations.

In the context of continuous integration, automated tests are typically rerun to ensure correct-
ness whenever a new feature is implemented or a bug fixed. However executing all tests can be
time-consuming and resource-intensive, thus choosing the right strategy for Test Case Prioritiza-
tion (TCP) is crucial to detect faults early and efficiently.

Our investigation into neural network-based models, specifically the NEUTRON approach,
shows promising prioritization capabilities, rivaling state-of-the-art methods by considering both
test duration and fault rates. MixTCP’s real-world application has significantly improved the
TCP process, leading to faster fault detection and more efficient resource utilization, which in
turn accelerates software release times and enhances product reliability.

Furthermore, we proposed the RoughTCP approach, which employs our rough set theory-
based clustering methods for TCP in regression testing. The methods prioritize test cases based
on their patterns related to faults, duration, and continuous integration cycles. Validated on three
industrial projects, RoughTCP outperforms existing solutions in most of the cases.

Our work also emphasizes the need for a unified approach to TCP, integrating various data and
features to improve the process’” effectiveness. This comprehensive strategy, validated through
case studies, shows improvement in TCP’s performance and accuracy, highlighting the impor-
tance of a complete and versatile solution for enhancing software development quality and effi-
ciency.

Regarding future directions, first we want to conduct additional experiments with datasets
featuring more extensive overlapping regions and clusters of varied shapes. We aim to explore
the effect of outliers on our findings and examine the influence of diverse distance metrics on
these outcomes.

Next, we plan to extend our research on NEUTRON and RoughTCP by applying these meth-
ods to a broader range of projects and more intricate scenarios that include various cycles and
an increased number of test cases that identify identical faults. This also involves examining the
relationship between changes in source code or requirements and test case outcomes. Moreover,
we intend to enhance MixTCP’s adaptability across different development environments by incor-
porating various advanced TCP methodologies as well as extending it to multiple programming
languages.

Lastly, our future research will potentially include an evaluation of project-specific character-
istics that could influence rough clustering outcomes. In the context of regression testing, the
ability to trace the connection between requirements and test cases is crucial, suggesting that fea-
tures capturing this relationship could be valuable for further study. Our ultimate objective is to
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develop a comprehensive TCP framework that seamlessly integrates multiple dimensions, like
requirements, context, and code information, thus bridging the existing gap in the field. This
framework would support the creation of datasets and the development of solutions for test case

prioritization, offering a holistic approach to improving software testing processes.
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