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Introduction

The purpose of this PhD thesis is the treatment of important elliptic boundary value problems for
systems of partial differential equations (PDEs) that arise in Fluid Mechanics by using the methods
of potential theory and a fixed point theorem. We have treated various boundary value problems
as the Dirichlet, Robin-Dirichlet, transmission, Robin-transmission in the linear case as well as
the non-linear case. We have provided suggestive numerical examples for a practical problem with
multiple applications, while the objective is to complete the theoretical study, which is presented
in the first three chapters.

In what follows, let D ⊂ Rn, n ≥ 2 be a bounded Lipschitz domain and we denote its boundary
by Γ. Let us consider P , a matrix-valued function, whose entries are essentially bounded functions.
We introduce the generalized Brinkman system by

∆v− Pv−∇p = f, div u = 0, in D, (0.0.1)

where the pair (v, p) represents the velocity and pressure fields of the considered fluid flow and f is
a given, external force which acts on the fluid flow. In the special case P = αI, where α > 0 is a
given constant, the system (0.0.1) becomes the classical Brinkman system,

∆v− αv−∇p = f, div v = 0, in D. (0.0.2)

If we consider P = 0 in the system (0.0.1), we obtain the well-known Stokes system,

∆v−∇p = f, div v = 0, in D. (0.0.3)

Now, let us also consider the generalized Darcy-Forchheimer-Brinkman system

∆v− Pv− k|v|v− β(v · ∇)v−∇p = f, div v = 0, in D, (0.0.4)

where k, β are positive, essentially bounded functions on D. In the special case P = αI, where
α > 0 is a given constant and k, β > 0 are given constants, the system (0.0.4) reduces to the
classical Darcy-Forchheimer-Brinkman system

∆v− αv− k|v|v− β(v · ∇)v−∇p = f, div v = 0, in D. (0.0.5)

Let us mention the fact that the Darcy-Forchheimer-Brinkman system is used in problems in which
the inertia of the fluid is not negligible (see, e.g., [86]).

Finally, for P = 0, k = 0 and β > 0 a given constant, the system (0.0.4) becomes the Navier-
Stokes system

∆v− β(v · ∇)v−∇p = f, div v = 0, in D. (0.0.6)

For additional details regarding the Navier-Stokes equations we refer the reader to [38], [100], [97],
[102].
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INTRODUCTION 7

In this thesis, we will concern ourselves with the coupling of these aforementioned PDE systems.
In these transmission problems, we will deal specifically with two types of configurations. The
geometry of these configurations is thoroughly specified in Chapter 1. Moreover, in these problems,
we consider the following boundary conditions

TrD+v+ − TrD−v− = g, tP,D+(v+, p+, f+)− tD−(v−, p−, f−) + LTrD+v+ = h, on Γ, (0.0.7)

which will be referred as transmission conditions, where the trace operator Tr, the conormal deriva-
tive operator t and the matrix-valued function L are described in the latter.

In our thesis, we have considered the generalized Brinkman system (0.0.1), which we obtained
by substituting the constant α > 0 (in the system (0.0.2)) with a matrix-valued function P whose
entries are essentially bounded functions. In this case, by this aforementioned generalization, we
move towards the concept of an anisotropic Brinkman system. The purpose that we have in mind
is that of investigating fluid flow in porous media, in the case that our porous medium has variable
porosity or permeability. For additional details, see, e.g., [58], [59], [60].

Let us provide some insight for the practical motivation for the study of transmission problems.
Note that, transmission problems appear as a mathematical model for the study of environmental
problems where free air flow is interacting with evaporation from soils and or the transvascular
exchange between blood flow in vessels and the surrounding tissue (for additional details [52] and
the references therein). The anisotropic Stokes system is used to describe certain processes (for
example, processes in physics, engineering, industry) in which the flow of immiscible fluids or the
flow of nonhomogeneous fluids with density dependent viscosity are involved (cf. [18], see also [60]).

In order to study such problems, many techniques can be employed. For linear boundary value
problems, we emphasize two approaches, namely, layer potential methods and variational methods,
respectively. Also, for the study of nonlinear boundary value problems, one can employ either fixed
point theory or topological degree theory.

In the latter, we shall provide a historical overview of the scientific literature that concerns
boundary problems.

Let us explore previous works that are concerned with the study of boundary problems in
Euclidean setting. We begin with the work of Verchota [107], who established the invertibility
property of the classical layer potentials for Laplace’s equation, on L2(∂Ω) and subspaces of L2(∂Ω),
in the case of a bounded Lipschitz domain Ω ⊂ Rn, n ≥ 2. Dahlberg, Kenig and Verchota [21]
have obtained well-posedness results for the Dirichlet and traction boundary problems for the Lame
system in an arbitary Lipschitz domain in Rn with L2-boundary data. They have also investigated
the ’slip condition’ for the Stokes equations, for boundary data belonging to L2 boundary spaces
accompanied by optimal estimates (see also [22]). Amrouche, Girault and Girore [12] have solved the
Dirichlet and Neumann boundary value problems for the Laplacian in exterior domains of Rn, n ≥ 2,
while working in weighted Sobolev spaces. Fabes, Mendez and Mitrea [32] have used boundary
integral methods for the investigation of inhomogeneous boundary problems for the Laplacian in
arbitrary Lipschitz domains with data in Besov spaces. Escauriaza and Mitrea [30] have established
existence and uniqueness results for the transmission problem for the Laplacian in the setting of
complementary Lipschitz domains in Rn for n ≥ 2, while the boundary data was considered in
Lebesgue and Hardy spaces.

In what follows, let us name a few papers in which the studies on the Stokes system (0.0.3)
were conducted. Nevertheless, the list of publication where this subject is discussed is much more
longer. The work of Fabes, Kenig and Verchota [31] is an important contribution of the field of
layer potential theory. The authors have used layer potentials in order to obtain existence and
uniqueness results for the Dirichlet problem for the Stokes system in an arbitrary Lipschitz domain
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in Rn, in the case of boundary data in L2. Dauge [24] has studied the Hs-regularity of solutions
of the Stokes system in domains with corners. Girault and Sequeira [40] have investigated the
Dirichlet problem for the Stokes system in exterior Lipschitz domains in Rn, n = 2, 3. Power [89]
has extended the method used in [90] to that of the Stokes flow problem in multiple cylinders,
in the two-dimensional setting of bounded and unbounded domains. Shen [98] has considered the
Lp Dirichlet problem for the Stokes system in bounded Lipschitz domains in Rn, n ≥ 3, and has
provided well-posedness results for such a problem. Alliot and Amrouche [9] have devoted a study
to the Stokes problem in Rn, n ≥ 2, in weighted Sobolev spaces. This approach allows the authors
discuss the decay or growth of solutions at infinity. Alliot and Amrouche [11] have investigated
the nonhomogeneous Dirichlet problem for the Stokes system in an exterior, connected, Lipschitz
domain in Rn, n ≥ 2 in weighted Sobolev spaces, in order to account the behavior of the solution at
infinity. Russo and Tartaglione [94] have provided existence and uniqueness results for the Robin
type problem associated to the Stokes system and also for the Navier-Stokes system, in a bounded
Lipschitz domain in Euclidean setting.

The linear, elliptic Brinkman system (0.0.2) was also investigated by a great deal of researchers.
McCracken [72] has studied the Dirichlet problem for the Stokes resolvent system on the half-space
of in R3 and provided the well-posedness of the Dirichlet problem in some Lp spaces. Deuring [25]
has constructed solutions in Lp-spaces for the Dirichlet problem for the resolvent Stokes system
in the exterior of a bounded domain with C2 boundary belonging to R3. Farwig and Sohr [33]
have shown that the Dirichlet problem for the Stokes resolvent system admits a unique solution
in weighted Sobolev spaces, in the setting of an exterior C1,1 domain of Rn, n ≥ 2. Shen [99]
has obtained Lp resolvent estimates for the Stokes system in the setting of Lipschitz domains in
Rn, n ≥ 3, by employing layer potential methods in his study. Kohr, Lanza de Cristoforis and
Wendland [53] have investigated Robin type boundary problems for the Brinkman system and the
Darcy-Forchheimer-Brinkman system in Lipschitz domains in Euclidean setting. They treat also
mixed Dirichlet-Robin and transmission boundary value problems for the Brinkman systems in the
setting of bounded creased Lipschitz domains in Rn, n ≥ 3, as well as the Navier problem for the
Brinkman system in a bounded Lipschitz domain of R3. Kohr, Lanza de Cristoforis and Wendland
[55] have obtained an existence result for the Poisson problem for a semilinear Brinkman system
on a bounded Lipschitz domain in Rn, n ≥ 2 with Dirichlet or Robin conditions on the boundary.
Medkova [76] has investigated the Dirichlet problem for the resolvent Stokes system in the setting
of bounded and unbounded domains with compact Lyapunov boundary.

Now, let us focus on previous studies that aim to investigate boundary value problems for non-
linear equations, such as the Navier-Stokes equations (0.0.6) or the Darcy-Forchheimer-Brinkman
equations (0.0.5). We mention the contribution of Alliot and Amrouche [10], who have studied
regularity properties of the weak solutions of the steady-state Navier-Stokes system in exterior
domains of R3. Russo and Tartaglione [95] have studied the Robin problem for the Oseen and
Navier-Stokes systems in an C1-class, exterior domain of R3. They have used a layer potential
approach in order to show the existence of a solution for the Robin problem for the Oseen system
and for existence result for the Robin problem for the Navier-Stokes system, they have employed
a fixed point method. Amrouche and Nguyen [13] have investigated the exterior, homogeneous,
Dirichlet problem for the Navier-Stokes system in an exterior Lipschitz domain in R3, in the setting
of weighted Sobolev spaces. Russo and Tartaglione [96] have used a variational approach and fixed
point theorems to obtain existence results for the Navier problem for the Navier-Stokes system
in bounded Lipschitz domains and exterior Lipschitz domains in R3. Kohr, Lanza de Cristoforis
and Wendland [55] obtained an existence and uniqueness result for the Dirichlet problem for the
semilinear Darcy-Forchheimer-Brinkman system in the case of small boundary data.
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Researchers have also devoted themselves to the investigation of boundary problems in the
setting of manifolds. We highlight some works in the later. Let us begin by noting that Mitrea,
Mitrea, Mitrea and Taylor [80] have treated boundary problems for the Hodge-Laplacian in the
setting of Riemannian manifolds. Also, Dindos and Mitrea [26] employed the method of boundary
integral equations to obtain the well-posedness of the Poisson problem for the Stokes system in
Lipschitz domains in the setting of smooth, compact Riemannian manifolds. In [63], Kohr, Pintea
and Wendland have used a layer potential approach in order to investigate a certain type of general
pseudodifferential matrix operators defined on Lipschitz domains in compact Riemannian manifolds.
The authors have proposed a useful approach, by which, well-posedness results of certain boundary
value problems can be derived by using well-posedness results for transmission-type problems. Kohr,
Mikhailov and Wendland [57] have investigated transmission-type boundary value problems for the
Navier-Stokes and Darcy-Forchheimer-Brinkman systems in complementary Lipschitz domains in a
compact Riemannian manifold of dimension m, m = 2, 3. Their approach is based on layer potential
techniques combined with fixed point arguments.

Let us point out some papers that deal with transmission-type problems. Mitrea and Taylor
[83] have developed layer potential methods for partial differential equations on Lipschitz domains
in smooth, connected and compact Riemannian manifolds of dimension m ≥ 3. Mitrea and Taylor
[84] have provided well-posedness results for the Dirichlet problem for the Stokes system and for
the initial boundary value problem for the Navier-Stokes system with Dirichlet boundary condition.
Kohr, Lanza de Cristoforis and Wendland have [54] investigated the existence of a solution for
the nonlinear Neumann-transmission problem for the Stokes and Brinkman systems in Lipschitz
domains in Euclidean setting. Medkova [74] has employed the method of integral equations in
order to provide well-posedness results of transmission problems, Robin-transmission problem and
Dirichlet-transmission problem for the Brinkman system in the setting of complementary Lipschitz
domains in Rn, n ≥ 3. The author in [75] has used the method of integral equations to find well-
posedness results for transmission problems associated to the Stokes equations in complementary
domains of R3 with Lipschitz boundaries. Kohr, Lanza de Cristoforis, Mikhailov and Wendland
[52] have obtained well-posedness results for a transmission problem for the Darcy-Forchheimer-
Brinkman and Stokes system in complementary Lipschitz domains in R3. Their approach proposes
a layer potential technique combined with a fixed point theorem. Kohr, Lanza and Wendland [56]
have investigated a Robin-transmission problem for the Darcy-Forchheimer-Brinkman and Navier-
Stokes systems in two adjacent and bounded Lipschitz domains in Rn, n = 2, 3. The authors
in [56] have studied a Robin-transmission boundary value problem for the Darcy-Forchheimer-
Brinkman and Navier-Stokes systems in two adjacent Lipschitz domains in Rn, n = 2, 3, with linear
transmission and linear Robin boundary conditions.

Let us also mention important works that concern the investigation of variable-coefficient PDE
systems and boundary value problems for such systems. Duffy [29] has provided a model for an
anisotropic incompressible viscous fluid. In this case, the equations of state of such a fluid involve
an anisotropic physical constant tensor. Mitrea, Mitrea and Shi [81] have investigated variable co-
efficient transmission boundary value problems in the setting of bounded Lipschitz domains defined
on non-smooth manifolds of dimension n ≥ 2. Choi and Yang [19] have studied the fundamental
solution of the measurable-coefficient stationary Stokes system in Rn, n ≥ 3. Choi, Dong and Kim
[18] have investigated the conormal derivative problem for the stationary Stokes equations with
irregular coefficients in Sobolev spaces defined on Reifenberg flat domains. Dong and Kim [28] have
studied the stationary Stokes system with variable coefficients, which are measurable in one direc-
tion, in a Reifenberg flat domain. In addition, they establish well-posedness results in standard
Sobolev spaces and in Muckenhoupt type weighted Sobolev spaces as well. Dong and Kim [27]
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have investigated solutions of the stationary Stokes system with variable coefficients in bounded
Lipschitz domains. Kohr and Wendland [67] have obtained, in the setting of Lipschitz domains on
compact Riemannian manifolds, well-posedness results for the Dirichlet boundary value problems
for the L∞-variable coefficients Stokes and Navier-Stokes PDE systems.

Kohr, Mikhailov and Wendland [59] have investigated transmission problems for the anisotropic
Stokes and Navier-Stokes systems with L∞ strongly elliptic coefficient tensor in the setting of com-
plementary Lipschitz domains in Rn, n ≥ 3. The well-posedness of transmission-type problems
that involve the anisotropic Stokes system was extracted by a variational method, and, as a conse-
quence, the author have introduced volume and layer potentials for the anisotropic Stokes system
with L∞ strongly elliptic coefficient tensor and mapping properties for these operators were also
established. These aforementioned potentials were used to establish the well-posedness of certain
linear transmission problems. The well-posedness results in the linear case, together with a fixed
point argument, have led the authors to obtain well-posedness results in the non-linear case as well.
Kohr, Mikhailov and Wendland [60] have studied the anisotropic Stokes system with L∞ viscosity
tensor coefficient which fulfills an ellipticity condition for symmetric matrices such that their trace
is equal to zero. They have provided a layer potential theory for this PDE system, in L2-based
weighted Sobolev spaces on Lipschitz domains in Rn, n ≥ 3. Their approach is rooted in the inves-
tigation of particular transmission problems for the anisotropic Stokes system. After introducing
the layer potentials and the volume potential, they employ these potentials to analyze Dirichlet and
Neumann boundary value problems for the anisotropic Stokes system.

Kohr, Mikhailov and Wendland [58] have investigated the anisotropic Stokes system with L∞

viscosity tensor coefficient which satisfies an ellipticity condition in terms of symmetric matrices
with zero matrix trace. For such a system, they have obtained well-posedness results for Dirichlet
and transmission problems in Lipschitz domains in Rn, n ≥ 3, with data belonging to standard
and weighted Sobolev spaces. Moreover, the authors also treat Dirichlet and transmission prob-
lems for the anisotropic Navier-Stokes system in bounded Lipschitz domains in R3. Kohr and
Precup [65] have provided a theoretical analysis for coupled systems of Navier-Stokes type with
non-homogeneous reaction-type terms. Kohr and Precup [66] have used a variational approach and
fixed point index theory in order to analyze a Dirichlet boundary value problem for a general coupled
systems of stationary Navier-Stokes type equations with variable coefficients and non-homogeneous
reaction type terms in a bounded domain of Rn, n ≤ 3.

Note that boundary value problems can be investigated also from a numerical point of view.
This has lead to the development of diverse numerical methods (finite differences, finite volumes,
finite element) whose purpose is to find numerical solutions for various boundary value problems
(see also [93]). In the latter we discuss studies that are concerned with the numerical treatment of
these problems. Ghia, Ghia and Shin [39] have used the vorticity-stream function formulation for
the incompressible Navier-Stokes equations in dimension n = 2. The model problem that they have
employed is the driven flow in a square cavity. Vafai [104] has analyzed the effects that occur in the
case of variable porosity and inertial forces on convective flow and heat transfer in porous media.
Guo and Zhao [43] have proposed a lattice Boltzmann model for an isothermal incompressible flow
in porous media and they have included the porosity into the equilibrium distribution and a force
term to the evolution equation (to account for the drag forces of the medium), i.e., the Darcy
term and the Forchheimer term. Yang, Xue and Mahias [109] have concerned themselves with
the investigation of the lid-driven rectangular cavity containing a porous Brinkman-Forchheimer
medium. AlAmiri [3] has investigated an incompressible, laminar mixed-convection heat transfer in
square lid-driven cavity in the presence of a porous block. Gutt and Groşan [44] have studied the
flow of an incompressible viscous fluid through a porous medium in a square cavity of dimension
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n = 2. They analyze this problem theoretically and numerically, as well. Groşan, Pătrulescu and
Pop [42] have proposed a mathematical model which contains the Brinkman PDE system in order
to discuss the steady free convection in a square differentially heated cavity which is filled by a
bidisperse porous medium.

The thesis consists of four chapters.

� Chapter 1 contains an overview of the notions that are used in this thesis. We define
the concept of a Lipschitz domain, we discuss some notations that we use in this thesis.
Also, we provide two assumptions (see Assumption 1.1.6 and Assumption 1.1.7, respectively)
which describe the geometric setting in which we investigate our boundary problems. These
problems are analyzed in the following chapters. Next, we introduce the function spaces that
we use in this thesis, namely Sobolev spaces in Lipschitz domains in the Euclidean setting,
Sobolev spaces on Lipschitz boundaries in the Euclidean setting, weighted Sobolev spaces in
R3 (see [47]). We discuss the (Gagliardo) trace operator in the case of classical Sobolev spaces
and also in the case of weighted Sobolev spaces. Next, we describe the Stokes operator and
the Brinkman operator. For each of these operators, we give their corresponding conormal
derivative operators. We also introduce a generalized version of the Brinkman system and
provide its associated conormal derivate operator (see Definition 1.2.14 and Lemma 1.2.15).
Furthermore, we provide the fundamental solution of the Stokes system and we give the
Newtonian potentials and layer potentials for the Stokes system together with their mapping
properties, their jump properties and their growth conditions. A similar approach is made
also for the Brinkman system, we give the fundamental solution of the Brinkman system, we
provide the Newtonian potentials and layer potentials for the Brinkman system, their mapping
properties, their jump properties and their growth properties.

� Chapter 2 is concerned with existence and uniqueness results of transmission type problems
for linear PDE systems. We begin this chapter by providing a well-posedness result for the
Dirichlet-type problem for the Brinkman system in an exterior Lipschitz domain in R3 (see
Theorem 2.1.2). Next, an existence and uniqueness result is given for the transmission problem
for the generalized Brinkman equations and Stokes equations in R3 (see Theorem 2.2.2 and
Theorem 2.2.3). We continue by providing a well-posedness result for the transmission problem
for the classical and generalized Brinkman equations in R3 (see Theorem 2.3.1). In the last
section of this chapter, we have the well-posedness result for a Robin-transmission problem
for the Brinkman equations in Rn, n ≥ 2 (see Theorem 2.4.1). In addition, by using a similar
procedure as in the case of Theorem 2.4.1, we provide an existence and uniqueness result for a
limiting Robin-transmission problem for the Brinkman equations in Rn, n ≥ 2 (see Theorem
2.4.2). As a consequence of Theorem 2.4.2, we are able to derive an existence and uniqueness
result for the Robin-Dirichlet problem for the Brinkman system (see Corollary 2.4.3). The
content of this chapter is based on the papers [6], [7], [8].

� In Chapter 3 we discuss a generalization of the Darcy-Forchheimer-Brinkman equations
(see Relation (3.1.1)). Also, we have provided a useful lemma (see Lemma 3.1.3). Then,
we give an existence and uniqueness result for the transmission problem for the generalized
Darcy-Forchheimer-Brinkman and Stokes equations in R3 (see Theorem 3.2.1). Next, we
present an existence and uniqueness result for the transmission problem for the generalized
Darcy-Forchheimer-Brinkman and Brinkman equations in R3 (see Theorem 3.3.1). We also
have an existence and uniqueness result for the Robin-transmission problem for the Darcy-
Forchheimer-Brinkman equations in Rn, n = 2, 3 (see Theorem 3.4.1). Similar arguments are
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employed in order to get a well-posedness result for a limiting Robin-transmission problem
Darcy-Forchheimer-Brinkman equations in Rn, n = 2, 3 (see Theorem 3.4.2). Finally, due to
Theorem 3.4.2, we are able to obtain an existence result for the Robin-Dirichlet problem for
the Darcy-Forchheimer-Brinkman equations in Rn, n = 2, 3 (see Corollary 3.4.3). The content
of this chapter is based on the papers [4], [5], [8].

� Lastly, the goal of Chapter 4 is to give a numerical analysis in order to determine a numer-
ical solution for the Robin-Dirichlet boundary problem for the Darcy-Forchheimer-Brinkman
equations. This numerical study concerns the lid-driven porous cavity problem with Navier
slip boundary condition in the presence of a solid body. The geometric setting of this problem
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� Albişoru, A.F., On transmission-type problems for the generalized Darcy-Forchheimer-
Brinkman and Stokes systems in complementary Lipschitz domains in R3, Filomat, 33(11),
2019, 3361-3373. ISI, IF(November 2022): 0.988.
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1

Layer Potential Methods for the Stokes and
Brinkman systems in Lipschitz domains

This chapter establishes the functional setting in which we will analyze our boundary values
problems for the Stokes, Brinkman, Navier-Stokes and Darcy-Forchheimer-Brinkman equations. To
this end, we recall definitions, notations and properties that we will use throughout this work.

Hence, we will introduce the concepts of a bounded Lipschitz domain and an unbounded (or
exterior) Lipschitz domain in (the Euclidean setting of) Rn, where n ≥ 2. We will also place
an emphasis on the case n = 3 in whose setting, we have obtained many of our well-posedness
results. Next, we will recall the definitions of the Sobolev spaces in the Euclidean setting and their
properties, which are most relevant to our study. In addition, we will also discuss the Gagliardo
Trace Lemma which allows us to define the trace operator in the setting of Sobolev spaces. This
previous operator is involved in the boundary conditions of the boundary value problems that we
study.

Further, we will study the Stokes and Brinkman systems. In the case of these two systems, we
will discuss their associated conormal derivative operators. These operators, again, will appear in
the boundary conditions of the boundary value problems that we treat in the latter.

One important aspect that we wish to point out is that, in this chapter, we deal with a generalized
version of the Brinkman system. Our original results involve these particular systems of PDEs.

Finally, we conclude this chapter with two very important sections. These sections contain the
layer potential operators associated to the Stokes and Brinkman equations, respectively. These
operators are used in the proof of our well-posedness results, due to the fact that with their help,
we are able to construct solutions for our boundary value problems. The sources that were used in
the preparation of this chapter are [1], [2], [45], [49], [51], [73], [91], [101], [103], [108].

1.1 Functional Setting

This section is dedicated to the description of the main notions that are used all through this
work. First of all, we define the concept of Lipschitz domain and we describe important notations
that we use throughout this thesis. Also, we describe the geometry of the Lipschitz domains that are
involved in the boundary problems that we will study in the latter. Next, we provide an overview
of Sobolev spaces in Rn, on Lipschitz domains and Lipschitz boundaries. Some properties of these
Sobolev spaces are also given. Moreover, we recall the concept of a weighted Sobolev space in the
exterior of a bounded Lipschitz domain in R3. We end this section with the useful Gagliardo trace
lemma.
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Chapter 1. Layer Potential Methods

1.1.1 Lipschitz domains

We will review the definition of a bounded Lipschitz domain and introduce the spaces in which
we seek our solutions for our boundary value problems. Also, we will discuss the systems that are
encountered in our study, and describe the operators that appear in our boundary conditions. Let
us provide in the latter the definition of the concept of a Lipschitz domain (see also [46, Def. 2.1]).

Definition 1.1.1. Let D ⊂ Rn, n ≥ 2 be a nonempty, open and bounded set. Denote by Γ the
boundary of the set D. We say that D is a bounded Lipschitz domain if for any x ∈ Γ, there are
some constants r1, r2 > 0, a coordinate system (y1, ..., yn) = (y′, yn) ∈ Rn−1×R that is isometric to
the canonical one and has its origin at x, and a Lipschitz function ψ : Rn−1 → R, such that

D ∩ C(r1, r2) = {y = (y′, yn) ∈ Rn−1 × R : |y′| < r1 and ψ(y′) < yn < r2},

where

C(r1, r2) := {y = (y′, yn) ∈ Rn−1 × R : |y′| < r1, |yn| < r2} ⊆ Rn.

Next, we state some useful remarks.

Remark 1.1.2. In this thesis, we will use the repeated index summation convention.

Remark 1.1.3. In this thesis, we use the notation a.e. instead of almost everywhere.

Remark 1.1.4. If X denotes a Banach space, its topological dual is denoted by X ′.

Remark 1.1.5. If Y is an open subset of Rn, n ≥ 2, then we denote the duality pairing between
two dual spaces defined on Y by 〈·, ·〉Y .

In the latter, we will state some assumptions that allow us to represent the geometry of the
Lipschitz domains, the setting where our problems will be formulated.

Assumption 1.1.6. Let D+ := D ⊆ Rn, n ≥ 2, be a bounded Lipschitz domain with connected
boundary Γ. Denote by D− := Rn \ D the complementary (exterior) Lipschitz domain (see Figure
1.1).

Assumption 1.1.7. Let D ⊆ Rn, n ≥ 2, be a bounded Lipschitz domain with connected boundary
Γ−. Assume that D+ is a bounded Lipschitz domain, with connected boundary denoted by Γ+, such
that D+ ⊂ D and let D− := D \ D+. Hence, the boundary of D− has two connected components,
namely, Γ+ and Γ− (see Figure 1.2).

Figure 1.1: The complementary Lipschitz domains D+ and D− in Rn.
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Chapter 1. Layer Potential Methods

Figure 1.2: A bounded Lipschitz domain D = D+ ∪ D− which satisfies Assumption 1.1.7

1.1.2 On Sobolev spaces in Lipschitz domains

The purpose of this section is to provide an overview of Sobolev spaces in an Euclidean setting
in Rn. These spaces are used in the investigation of (weak) solutions of certain PDEs, for which no
classical solution can be found. We will use these spaces throughout this thesis.

In the latter, Z+ denotes the set of non-negative integers and the vector α = (α1, ..., αn) ∈ Zn+
is called a multi-index. Let us set |α| =

∑n
i=1 αj. We introduce the differential operator

Dα =
∂|α|

∂x1
α1 ...∂xnαn

. (1.1.1)

Moreover, we also introduce the differential operator

Dk :=
1

i

∂

∂xk
, i2 = −1. (1.1.2)

Now, we denote by D ⊆ Rn, n ≥ 2, either a bounded Lipschitz domain or an exterior Lipschitz
domain or Rn. In the case of a bounded Lipschitz domain or an exterior Lipschitz domain D, we
denote the boundary of such domains by Γ.

Note that space C(D) is the space of continuous functions on D and it is endowed with the
sup-norm.

For a function g : D→ R, we define the support of g by

supp g := {x ∈ D | g(x) 6= 0}. (1.1.3)

We denote by C∞(D) the space of infinitely differentiable functions defined on D. We also denote
by C∞0 (D) the space of infinitely differentiable functions, that vanish in some neighborhood of Γ.
Let us note that if g ∈ C∞0 (D) then g|Γ = 0. Also, if g ∈ C∞0 (D) then the set (1.1.3) is compact in
D. We also introduce the vector function spaces C∞(D)n and C∞0 (D)n by

C∞(D)n := {u : D→ Rn | u = (u1, ..., un), ui ∈ C∞(D), i = 1, n},
C∞0 (D)n := {u : D→ Rn | u = (u1, ..., un), ui ∈ C∞0 (D), i = 1, n}.

(1.1.4)

For p ∈ [1,∞), the Lebesgue space Lp(D) of (equivalence classes of) measurable functions, p-th
power, absolute value Lebesgue integrable on D is given by

Lp(D) :=

{
u : D→ R

∣∣∣∣ ∫
D

|u(x)|pdx <∞
}

(1.1.5)
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Chapter 1. Layer Potential Methods

and its norm is given by

||u||Lp(D) :=

(∫
D

|u(x)|pdx
) 1

p

, (1.1.6)

for 1 ≤ p <∞. Also, we define the space of vector functions Lp(D)n by

Lp(D)n := {u : D→ Rn | u = (u1, ..., un), ui ∈ Lp(D), i = 1, n}. (1.1.7)

Note that the space L∞(D) is the space of (equivalence classes of) essentially bounded functions
on D. Its norm is given by

||u||L∞(D) := esssupx∈D|u(x)|. (1.1.8)

The quantity in the right hand side of relation (1.1.8) is called the essential supremum of u. It is
the smallest number ε such that the set {x ∈ D | u(x) > ε} has Lebesgue measure equal to zero. In
addition, we define the space L∞(D)n by

L∞(D)n := {u : D→ Rn | u = (u1, ..., un), ui ∈ L∞(D), i = 1, n}. (1.1.9)

In the latter, we will also use the space

L∞(D)n×n := {U : D→ Rn × Rn | U = (uij), uij ∈ L∞(D), i, j = 1, n} (1.1.10)

Note that, for p ∈ (1,∞), the topological dual of the space Lp(D) is the space Lq(D), where
1
p

+ 1
q

= 1. In addition the dual of the space L1(D) is the space L∞(D). Let us note that, for

1 ≤ p ≤ ∞, the space Lp(D) is a Banach space. In addition, L2(D) is a Hilbert space.
In the latter, let us view the space C∞0 (D) as a topological vector space. Then, let us introduce

the spaces D(D) and D′(D).

Definition 1.1.8. The Schwarz space of test functions D(D) is the space C∞0 (D) endowed with the
inductive limit topology.

Note that, the space D(D)n can be defined in a similar way, namely,

D(D)n := {ψ : D→ Rn | ψ = (ψ1, ..., ψn), ψi ∈ D(D), i = 1, n}. (1.1.11)

Definition 1.1.9. The space of distributions D′(D) is the space of all linear and continuous func-
tionals on D(D).

The space of vector functions D′(D)n is given by

D′(D)n := {Ψ : D→ Rn | Ψ = (Ψ1, ...,Ψn),Ψi ∈ D′(D), i = 1, n}. (1.1.12)

Next, we describe the notion of a Sobolev space. Note that, in this thesis, we use L2-based
Sobolev spaces that are defined on D. Consequently, we introduce the integer order L2-based
Sobolev spaces as follows.

Definition 1.1.10. Assume that k ∈ Z+. Then, the Sobolev space Hk(D) is defined by

Hk(D) := {u ∈ L2(D) | Dαu ∈ L2(D),∀ α ∈ Zn+, |α| ≤ k}, (1.1.13)

and its norm is given by

||u||Hk(D) :=

∑
|α|≤k

||Dαu||2L2(D)

 1
2

. (1.1.14)
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We also introduce the Sobolev space Hk(D)n by

Hk(D)n := {u : D→ Rn | u = (u1, ..., un), ui ∈ Hk(D), i = 1, n}. (1.1.15)

Let us also introduce the space Hk
0 (D) ≡ H̊k(D) as the closure of D(D) in Hk(D) with respect

to the norm || · ||Hk(D). Similarly, we can introduce the space Hk
0 (D)n ≡ H̊k(D)n. Moreover,

H̊k(Rn) = Hk(Rn) and H̊k(Rn)n = Hk(Rn)n.
The spaces Hk(D) and H̊k(D) are Hilbert spaces. Also, let us mention that the Hilbert space

Hk(D) is endowed with the inner product

(u, v)Hk(D) :=
∑
|α|≥k

(Dαu,Dαv)
1
2

L2(D). (1.1.16)

The following definitions allow us to introduce the fractional order L2-based Sobolev spaces.

Definition 1.1.11. Assume that 0 < s < 1. The fractional order Sobolev space Hs(D) is defined
by

Hs(D) :=

{
u ∈ L2(D)

∣∣∣∣ ∫
D

∫
D

|u(x)− u(y)|2

|x− y|n+2s
dxdy <∞

}
(1.1.17)

and its norm is given by

||u||Hs(D) =

(∫
D

|u(x)|2dx+

∫
D

∫
D

|u(x)− u(y)|2

|x− y|n+2s
dxdy

) 1
2

. (1.1.18)

Definition 1.1.12. Assume that 0 < s < 1 and k ∈ Z+. Let σ = k + s. The fractional order
Sobolev space Hσ(D) is defined by

Hσ(D) := {u ∈ Hk(D) | Dαu ∈ Hs(D), ∀α ∈ Zn+, 0 ≤ |α| ≤ k} (1.1.19)

and its norm is given by

||u||Hσ(D) :=

∑
|α|≤k

||Dαu||2Hs(D)

 1
2

. (1.1.20)

By taking into account Definition 1.1.11 and Definition 1.1.12, one can introduce the spaces
of vector-valued functions Hs(D)n and Hσ(D)n component-wise. Moreover, the fractional order
Sobolev space Hσ(D) is a Hilbert space.

Let us discuss the negative order L2-based Sobolev spaces. Let k ∈ Z+. In order to introduce
these Sobolev spaces, let us note that the space Hk

0 (D) is the closure of C∞0 (D) in the space Hk(D).
In addition,

Hk
0 (Rn) = Hk(Rn). (1.1.21)

Similarly, we can define the space of vector functions Hk
0 (D)n component-wise and relation (1.1.21)

can be written also for the vector-valued space Hk
0 (Rn)n.

Let us now define the negative order L2-Sobolev spaces.

Definition 1.1.13. Assume that k ∈ Z+. Then, the negative order Sobolev space H−k(D) is the
dual of the space Hk

0 (D), i.e.,
H−k(D) := (Hk

0 (D))′, (1.1.22)

and its norm is given by

||h||H−k(D) := sup
u∈Hk

0 (D),u6=0

|〈h, u〉|
||u||Hk

0 (D)

. (1.1.23)
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Let us note that the vector-valued space H−k(D)n is defined component-wise. Moreover, we
have that H−k(D)n = (Hk

0 (D)n)′. In addition, we have that the density of C∞0 (D) in Hk
0 (D) implies

the inclusion H−k(D) ⊂ D′(D). Note that the space H−k(D) is a Hilbert space.
Since C∞0 (D) is not dense in the space Hk(D), for k ∈ Z+, the dual of Hk(D) cannot be embedded

as a subspace of the space of distributions D′(D).

Definition 1.1.14. Assume that s ∈ R. Assume that D is a Lipschitz domain in Rn. The space
H̃s(D) is defined as the closure of D(D) in Hs(Rn).

Moreover, the vector-valued space H̃s(D)n is given by

H̃s(D)n := {u : D→ Rn | u = (u1, ..., un), ui ∈ H̃s(D), i = 1, n}. (1.1.24)

The space H̃s(D) can be characterized as

H̃s(D) = {u ∈ Hs(Rn) | supp u ⊆ D}. (1.1.25)

In addition, H̃s(Rn) = Hs(Rn).
We have the following duality relations

(Hk
0 (D))′ = H−k(D), (Hk(D))′ = H̃−k(D), (1.1.26)

for k ∈ Z+. Let us mention that the duality relations in (1.1.26) hold also in the case of the vector
function Sobolev spaces.

Next, we provide the Sobolev embedding theorem (see, e.g., [1, Theorem 4.12], [2]).

Theorem 1.1.15. Assume that k ∈ Z+. Let D ⊂ Rn be a bounded Lipschitz domain. We have that

(i) the embedding Hk(D) ↪→ C(D) is continuous if k > n
2
.

(ii) the embedding Hk(D) ↪→ Lq(D) is continuous and compact, for all q ∈ [1,∞), if k = n
2
.

(iii) the embedding Hk(D) ↪→ Lq(D) is continuous for 1
q

= 1
2
− k

n
, if k < n

2
.

(iv) the embedding Hk(D) ↪→ Lr(D) is compact for 1 < r < q, 1
q

= 1
2
− k

n
, if k < n

2
.

1.1.3 Sobolev spaces on Lipschitz boundaries

Define the space L2(Γ) of (equivalence classes of) square-power integrable functions on Γ as the
completion of the space C0(Γ) with respect to the norm

||g||L2(Γ) :=

(∫
Γ

|g(y)|2dσ

) 1
2

.

Let s ∈ (0, 1). Define the boundary Sobolev space Hs(Γ) as the completion of the space

C0
2 := {f ∈ C0(Γ) | ||f ||Hs(Γ) <∞},

with respect to the norm

||f ||Hs(Γ) :=

{
||f ||2L2(Γ) +

∫
Γ

∫
Γ

|f(x)− f(y)|2

|x− y|n−1+2s
dσxdσy

} 1
2

.

Let us conclude this part by taking into account that, for s ∈ (−1, 0), we define the Sobolev spaces
of negative index by duality, that is, H−s(Γ) = (Hs(Γ))′. As usual, we have H0(Γ) = L2(Γ). The
vector-valued versions of the spaces introduced in the former are defined component-wise.
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1.1.4 Weighted Sobolev spaces

In this subsection, we will consider the setting provided by Assumption 1.1.6 in the case n = 3.
We point out that, in this particular case, we work with an exterior (or complementary) Lipschitz
domain D− in R3. This fact brings an issue to the forefront. Some of our considered transmission
problems contain the Stokes system in this complementary Lipschitz domain D−. Our purpose will
be that of taking into account the behavior at infinity of the solutions of our studied boundary
value problems. As such, the behavior of these solutions must be included in the spaces that will
be used in our analysis and this can be done in terms of weights. Hence, in the setting of R3, we
introduce the weighted Sobolev spaces, as in the work of Hanouzet (see [47]).

Let Assumption 1.1.6 be satisfied for n = 3. Let us consider the weight function

ρ(x) := (1 + |x|)
1
2 , for x ∈ R3.

We introduce the weighted Lebesgue space

L2(ρ−1;D) := {f : D− → R | ρ−1f ∈ L2(D−)}
and with its help, we are able to define the weighted Sobolev space

H1(D−) := {f ∈ D(D−) | ρ−1f ∈ L2(D−),∇f ∈ L2(D−)3},
where the vector-function space L2(D−)3 can be described component-wise (as in (1.1.7)). The
weighted Sobolev space H1(D−) is a Hilbert space with respect to the norm

||f ||H1(D−) :=
(
||ρ−1f ||2L2(D−) + ||∇f ||2L2(D)3

) 1
2
. (1.1.27)

Let us introduce also the space

H̃1(D−) as the closure of D(D−) in H1(R3).

We introduce the spaces

H−1(D−) = (H̃1(D−))′, H̃−1(D−) = (H1(D−))′.

Let us remark that D(D−) is dense in the spaceH1(D−) and the space D(D−) is dense in H̃1(D−).
In view of the fact that the seminorm

|g|H1(D−) := ||∇g||L2(D−)3

is equivalent to the norm (1.1.27) and by the Sobolev inequality (see [1, Theorem 4.31]) we have
the embedding

H1(D−) ↪→ L6(D−).

Note that the vector-value weighted Sobolev spaces H1(D−)3 and H̃−1(D−)3 are given by

H1(D−)3 := {u : D− → R | u = (u1, u2, u3), ui ∈ H1(D−), i = 1, 3},
H̃−1(D−)3 := {u : D− → R | u = (u1, u2, u3), ui ∈ H̃−1(D−), i = 1, 3}.

(1.1.28)

Finally, let us describe the notion of a function that tends to a constant at infinity in the sense
of Leray and a particular result. These concepts will be used in the following chapters (see, e.g.,
[52, Definition 2.3 and Corollary 2.4] and the references therein).

Definition 1.1.16. A function u tends to a constant u∞ at ∞, in the sense of Leray if

lim
r→∞

∫
S2
|u(ry)− u∞|dσy = 0,

where S2 denotes the unit sphere in R3.

Corollary 1.1.17. If u ∈ H1(D−), then u tends to zero at ∞ in the sense of Leray.

19



Chapter 1. Layer Potential Methods

1.1.5 The trace operator on Sobolev spaces

In this subsection, our aim is to introduce an operator which appears in the boundary conditions
of our transmission-type problems that are studied in this thesis.

The connection between the Sobolev spaces defined on Lipschitz domains and the Sobolev spaces
defined on Lipschitz boundaries is given by the following result known as the Gagliardo Trace Lemma
(see, e.g., [20], [36], [50, Proposition 3.3], [77, Lemma 2.6]).

Lemma 1.1.18. (The Gagliardo Trace Lemma) Let Assumption 1.1.6 be satisfied. Then, there
exist linear and bounded operators

TrD± : H1(D±)→ H
1
2 (Γ), (1.1.29)

called the (Gagliardo) trace operators, such that

TrD±v = v|Γ, (1.1.30)

for all v ∈ D(D±). Moreover, these operators are surjective and have (non-unique) linear and
bounded right inverse operators

Tr−1
D±

: H
1
2 (Γ)→ H1(D±), (1.1.31)

that is TrD± ◦ Tr−1
D±

= I.

We end this subsection by pointing out some useful remarks.

Remark 1.1.19. Similar to Lemma 1.1.18, one can define the exterior trace operator on the
weighted Sobolev space H1(D−), that is, TrD− : H1(D−) → H

1
2 (Γ) (for additional details, see,

e.g., [77, Theorem 2.3, Lemma 2.6], [52, Lemma 2.2]).

Remark 1.1.20. Lemma 1.1.18 holds also in the case of vector-valued and matrix-valued functions.
For the sake of brevity, we keep the notations TrD± and Tr−1

D±
in the setting of vector-valued or

matrix-valued functions.

1.2 The Stokes, classical Brinkman and generalized

Brinkman operators

In this section we will discuss the operators that appear in this work. These operators are
involved in the transmission problems that we study. Recall the S(Rn) is the Schwartz space of
rapidly decreasing functions and recall that its dual, denoted by S ′(Rn), is the space of tempered
distributions. The vector function spaces S(Rn)n and S ′(Rn)n are defined component-wise.

The Stokes operator is given by

S :=

[
∆ −∇
div 0

]
: S(Rn)n × S(Rn)→ S(Rn)n × S(Rn) (1.2.1)

and the operator

L0 : S(Rn)n × S(Rn)n → S(Rn)n, L0(v, p) := ∆v−∇p. (1.2.2)
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Let us note that the operator S introduced in relation (1.2.1) is Agmon-Douglis-Nirenberg elliptic
(see also [49], [108]) and this operator S together with the operator L0 can be extended to linear
and bounded operators, that is,

S : H1(Rn)n × L2(Rn)n → H−1(Rn)n × L2(Rn), L0 : H1(Rn)n × L2(Rn)n → H−1(Rn)n. (1.2.3)

Let α > 0 be a given constant. Let us introduce also the Brinkman operator as follows

Bα :=

[
(∆− αI) −∇

div 0

]
: S(Rn)n × S(Rn)→ S(Rn)n × S(Rn) (1.2.4)

and it associated operator

Lα : S(Rn)n × S(Rn)n → S(Rn)n, Lα(v, p) := (∆− αI)v−∇p. (1.2.5)

The operator Bα introduced in relation (1.2.4) is Agmon-Douglis-Nirenberg elliptic (see also [49],
[108]) and together with its associated operator Lα are extended to linear and bounded operators,
as follows

Bα : H1(Rn)n × L2(Rn)n → H−1(Rn)n × L2(Rn), Lα : H1(Rn)n × L2(Rn)n → H−1(Rn)n. (1.2.6)

Finally, we address some notations that we will employ from now on, throughout this thesis.

Notation 1.2.1. Consider the spaces of divergence free vector fields

H1
div(D)n = {u ∈ H1(D)n | div u = 0 in D}, (1.2.7)

and
H1

div(D−)3 := {u ∈ H1(D−)3 | div u = 0 in D−}. (1.2.8)

Notation 1.2.2. Throughout this thesis, we introduce the operator E̊±, which represents the exten-
sion by zero operator outside D±. More specifically, it allows us to extend functions from H̊1(D±)
by zero to Rn \ D±. We keep the same notation E̊± in the case of vector-valued spaces.

1.2.1 The conormal derivate operator associated to the Stokes and
Brinkman systems

This subsection is dedicated to the introduction of the conormal derivative operators associated
to the Stokes and Brinkman systems. We discuss the classical derivative operator and the generalized
conormal derivative operator associated for these systems. In the latter, let D ⊂ Rn, n ≥ 2, be a
bounded Lipschitz domain with connected boundary Γ.

We will introduce the classical conormal derivative operator as follows. For a pair (v, p) ∈
C1(D±)n×C0(D±) satisfying div v = 0 in D± we have that classical derivative operator (or traction
field) associated to the Stokes or Brinkman operator is provided by the constitutive equation of the
Newtonian (viscous) incompressible fluid, i.e.,

t±(v, p) := TrDσ(v, p)ν, (1.2.9)

where
σ(v, p) := −pI + 2E(v) (1.2.10)
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is the stress tensor and E(v) is the symmetric part of ∇v, that is E(v) = 1
2
(∇v + (∇v)t), where

the superscript t denotes the transpose. The symbol ν represents the outward unit normal to D,
which is defined a.e. on Γ.

Note that, for φ ∈ D(Rn)n, we have the following Green identity for the Brinkman system,

± 〈t±α (v, p),φ〉Γ = 2〈E(v),E(φ)〉D± + α〈v,φ〉D± − 〈p, div φ〉D± + 〈Lα(v, p),φ〉D± , (1.2.11)

where α > 0 is a given constant. In particular, for α = 0, we obtain the Green identity for the
Stokes system,

± 〈t±(v, p),φ〉Γ = 2〈E(v),E(φ)〉D± − 〈p, div φ〉D± + 〈L0(v, p),φ〉D± . (1.2.12)

Formulas (1.2.11) and (1.2.12) follow after repeated integration by parts.
Formula (1.2.12) suggests the definition of the generalized conormal derivative operator associ-

ated to the Stokes system, and the corresponding Green formula in the setting of Sobolev spaces
(see, e.g., [85, Theorem 10.4.1], [20, Lemma 3.2], [77, Defintion 3.1, Theorem 3.2]).

Definition 1.2.3. Let D+ := D ⊂ Rn, be a bounded Lipschitz domain and let D− := Rn \D. Define
the space H1(D±, L0) by

H1(D±, L0) := {(v±, p±,g±) ∈ H1(D±)n × L2(D±)× H̃−1(D±)n : L0(v±, p±) = g±|D±
and div v± = 0 in D±}.

Then, the generalized conormal derivative operators tD± for the Stokes system in D± are defined on
each (v±, p±,g±) ∈ H1(D±, L0) by the following relation:

±〈tD±(v±, p±,g±),φ〉Γ := 2〈E(v±),E(Tr−1
D±
φ)〉D± − 〈p±, div (Tr−1

D±
φ)〉D±

+〈g±,Tr−1
D±
φ〉D± ,∀ φ ∈ H

1
2 (Γ)n.

(1.2.13)

Lemma 1.2.4. In the setting of Definition 1.2.3, the generalized conormal derivative operators

tD± : H1(D±, L0)→ H−
1
2 (Γ)n (1.2.14)

are linear and bounded and Definition 1.2.3 is independent of the choice of a right inverse Tr−1
D±

:

H
1
2 (Γ)n → H1(D+)n of the trace operator TrD± : H1(D+)n → H

1
2 (Γ)n. Moreover, the following

Green formulas hold

±〈tD±(v±, p±,g±),TrD±ψ±〉Γ := 2〈E(v±),E(ψ±)〉D± − 〈p±, div ψ±〉D±
+〈g±,ψ±〉D± ,

(1.2.15)

for all (v±, p±,g±) ∈ H1(D±, L0) and for any ψ± ∈ H1(D±)n.

Similarly, formula (1.2.11) suggests the definition of the generalized conormal derivative operator
associated to the Brinkman system, (see, e.g., [20, Lemma 3.2], [56, Lemma 2.2], [52, Lemma 2.5]).

Definition 1.2.5. Let D+ := D ⊂ Rn, be a bounded Lipschitz domain and let D− := Rn \D. Define
the space H1(D±, Lα) by

H1(D±, Lα) := {(v±, p±,g±) ∈ H1(D±)n × L2(D±)× H̃−1(D±)n : Lα(v±, p±) = g±|D±
and div v± = 0 in D±}.

Then, the generalized conormal derivative operators tα,D± for the Brinkman system in D± are defined
on each (v±, p±,g±) ∈ H1(D±, Lα) by the following relation:

±〈tα,D±(v±, p±,g±),φ〉Γ := 2〈E(v±),E(Tr−1
D±
φ)〉D± + α〈v±,Tr−1

D±
φ〉D±

−〈p±, div (Tr−1
D±
φ)〉D± + 〈g±,Tr−1

D±
φ〉D± ,∀ φ ∈ H

1
2 (Γ)n.

(1.2.16)
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Lemma 1.2.6. In the setting of Definition 1.2.5, the generalized conormal derivative operators

tα,D± : H1(D±, Lα)→ H−
1
2 (Γ)n (1.2.17)

are linear and bounded and Definition 1.2.5 is independent of the choice of a right inverse Tr−1
D±

:

H
1
2 (Γ)n → H1(D+)n of the trace operator TrD± : H1(D+)n → H

1
2 (Γ)n. Moreover, the following

Green formulas hold

±〈tα,D±(v±, p±,g±),TrD±ψ±〉Γ := 2〈E(v±),E(ψ±)〉D± + α〈v±,ψ±〉D±
−〈p±, div ψ±〉D± + 〈g±,ψ±〉D± ,

(1.2.18)

for all (v±, p±,g±) ∈ H1(D±, Lα) and for any ψ± ∈ H1(D±)n.

Let us end this subsection by pointing out some useful remarks (see also [52, Remark 2.6, Lemma
2.9], [56, Remark 2.4]).

Remark 1.2.7. For α = 0, the conormal derivative for the Brinkman system (see Definition 1.2.5)
reduces to the conormal derivative for the Stokes system (see Definition 1.2.3).

Remark 1.2.8. Let D+ := D ⊂ R3, be a bounded Lipschitz domain and let D− := R3 \ D. For
(v−, p−,g−) ∈ H1(D−)3×L2(D−)×H̃−1(D−)3 satisfying L0(v−, p−) = g−|D−, the conormal derivative
operator tD−(v−, p−,g−) is well-defined by relation (1.2.13) and a corresponding Green formula
similar to relation (1.2.15) holds true in D−.

Remark 1.2.9. Let D+ := D ⊂ R3, be a bounded Lipschitz domain and let D− := R3 \ D. Then
for (v−, p−,g−) ∈ H1(D−)3 ×M(D−) × H̃−1(D−)3, such that Lα(v−, p−) = g−|D−, the conormal
derivative tα,D−(v−, p−,g−) is well-defined by relation (1.2.16). In addition, in this case, the Green
formula (1.2.18) also holds, in D−. The space M(D−) is provided by Definition 2.1.1.

Remark 1.2.10. Let D ⊂ Rn, n ≥ 2, be a bounded Lipschitz domain and denote its boundary by
Γ. In the case Γ = Γ1 ∪ Γ2, where Γ1 and Γ2 are connected components of Γ such that Γ1 ∩ Γ2 = ∅,
we define the operator

(tα,D(·, ·, ·))|Γ1 : H1(D, Lα)→ H−
1
2 (Γ1)n, (1.2.19)

by the relation
〈tα,D(v, p,g)|Γ1 ,Φ〉Γ1 := 〈tα,D(v, p,g),Φ〉Γ, (1.2.20)

for all Φ ∈ C∞(Rn)n which vanish in an open neighborhood of Γ2.

Remark 1.2.11. Throughout this thesis, we will write tα,D(v, p) instead of tα,D(v, p,0).

1.2.2 The generalized Brinkman system and related results

In this thesis we consider a generalized type Brinkman system. Indeed, the term αI which
appears in the classical Brinkman operator (see relations (1.2.4) and (1.2.5)) has been replaced by
another, much more general term. Part of the original results that are included in the thesis are
transmission problem in which this generalized version of the Brinkman system is involved. More
recently, this generalized type Brinkman system has also been treated in the much more general
setting of variable coefficient PDE systems (see, e.g., [58], [59], [60], [67]).

Hence, for the introduction of this generalized version of the Brinkman system, we consider a
bounded Lipschitz domain D ⊆ R3. The generalized Brinkman system is given by

LP(v, p) := ∆v− Pv−∇p = g in D, div v = 0 in D, (1.2.21)
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where P ∈ L∞(D)3×3 such that P satisfies the following non-negativity condition

〈Pv,v〉D ≥ cP‖v‖2
L2(D)3 , ∀ v ∈ L2(D)3, (1.2.22)

where cP > 0 is a constant.
The system (1.2.21) is viewed in a distributional sense, that is, for (v, p) ∈ H1(D)3 ×L2(D), we

have
〈LP(v, p),ψ〉D+ = 〈g,ψ〉D, 〈div v, g0〉D = 0, (1.2.23)

for all (ψ, g0) ∈ D(D)3 ×D(D), where

〈LP(v, p),ψ〉D := 〈∆v− Pv−∇p,ψ〉D = −〈∇v,∇ψ〉D − 〈Pv,ψ〉D + 〈p, div ψ〉D.

Also, the continuous embedding L2(D) ↪→ H−1(D) implies the linearity and boundedness of the
operator

LP : H1(D)3 × L2(D)→ H−1(D)3 = (H̊1(D)3)′. (1.2.24)

Note that, we are able to extract from this generalized version of the Brinkman system the
classical Stokes or Brinkman systems, respectively. This fact is emphasized in the following remarks.

Remark 1.2.12. For P ≡ 0, the system (1.2.21) is the classical Stokes system.

Remark 1.2.13. For P ≡ αI, where α > 0 is a constant, the system (1.2.21) is the classical
Brinkman system.

For this generalized version of the Brinkman system, we introduce its associated conormal
derivative operator (see, e.g., [6, Lemma 2.4]).

Definition 1.2.14. Let D+ := D ⊂ R3, be a bounded Lipschitz domain and denote its boundary by
Γ. Let P ∈ L∞(D+)3×3 such that condition (1.2.22) is satisfied. Define the space H1(D+, LP) by

H1(D+, LP) := {(v+, p+,g+) ∈ H1(D+)3 × L2(D+)× H̃−1(D+)3 : LP(v+, p+) = g+|D+

and div v+ = 0 in D+}.

Then, the conormal derivative operator

tP,D+ : H1(D+, LP)→ H−
1
2 (Γ)3 (1.2.25)

for the generalized Brinkman system in D+ is defined on each (v+, p+,g+) ∈ H1(D+, LP) by the
following relation:

〈tP,D+(v+, p+,g+),φ〉Γ := 2〈E(v+),E(Tr−1
D+
φ)〉D+ + 〈Pv+,Tr−1

D+
φ〉D+

− 〈p+, div (Tr−1
D+
φ)〉D+ + 〈g+,Tr−1

D+
φ〉D+ ,∀ φ ∈ H

1
2 (Γ)3.

(1.2.26)

Lemma 1.2.15. In the setting of Definition 1.2.14, the conormal derivative operator for the gen-
eralized Brinkman system,

tP,D+ : H1(D+, LP)→ H−
1
2 (Γ)3 (1.2.27)

is linear and bounded, and Definition 1.2.14 is independent of the choice of a right inverse Tr−1
D+

:

H
1
2 (Γ)3 → H1(D+)3 of the trace operator TrD+ : H1(D+)3 → H

1
2 (Γ)3. Moreover, the following

Green formula holds

〈tP,D+(v+, p+,g+),TrD+ψ+〉Γ := 2〈E(v+),E(ψ+)〉D+ + 〈Pv+,ψ+〉D+

−〈p+, div ψ+〉D+ + 〈g+,ψ+〉D+ ,
(1.2.28)

for all (v+, p+,g+) ∈ H1(D+, LP) and for any ψ+ ∈ H1
div(D+)n.
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The proof of Lemma 1.2.15 follows similar ideas to those used in the proof of Lemma 1.2.6, i.e.,
the special case P = αI, where α > 0 is a given constant. For additional details, we refer the reader
to [56, Lemma 2.2].

Remark 1.2.16. Taking into account the definitions of the conormal derivative operators for the
Stokes and generalized Brinkman systems, given by (1.2.13) and (1.2.26), we deduce that

tP,D+(v, p,g) = tD+(v, p,g + E̊+(Pv)), (1.2.29)

where E̊+ denotes the operator of extension by zero outside D+.

1.3 Stokes layer potentials and their properties

In this section we give the fundamental solution for the Stokes system in Rn, n ≥ 2, and with its
help we define the layer operators that are involved in the solutions of our transmission problems.
The sources that we used for the preparation of this section are [49], [52], [64], [85].

1.3.1 The Stokes system and its fundamental solution

Let (G(·, ·),P(·, ·)) ∈ D′(Rn × Rn)n×n × D′(Rn × Rn)n denote the fundamental solution of the
Stokes system. By G(·, ·) we denote the fundamental velocity tensor and by P(·, ·) we denote the
fundamental pressure vector for the Stokes system in Rn.

Note that the fundamental solution of the Stokes system satisfies the equations

∆xG(x,y)−∇xP(x,y) = −δy(x)I, divxG(x,y) = 0, (1.3.1)

where the symbol δy denotes the Dirac distribution with mass at y. Also, the differential operators
∆x, ∇x and divx act with respect to the variable x.

The components of the fundamental solution (G(Gjk),P(Pk)) are given by (see, e.g., [64, p.
38-39], [85, Relation (4.19), Relation (4.20), Relation (4.21)], [106])

Gjk(x,y) :=
1

2ωn

{
δjk

(n− 2)|y− x|n−2
+

xjxk
|y− x|n

}
, Pk(x,y) =

1

ωn

xk
|y− x|n

, (1.3.2)

for n ≥ 3, and

Gjk(x,y) :=
1

4π

{
xjxk
|y− x|2

− δjk log |y− x|n−2

}
, Pk(x,y) =

1

2π

xk
|y− x|2

, (1.3.3)

for n ≥ 2. Note that δjk denotes the Kronecher symbol and ωn is the surface measure of the unit
sphere Sn−1 in Rn.

Let also S(Sjkl) and R(Rjk) denote the associated stress and pressure tensors for the Stokes
system. Their components are given by (see, e.g., [64, Chapter 2], [85])

Sjkl(x,y) :=
n

ωn

xixjxk
|y− x|n+2

, Rjk(x,y) := − 2

ωn

{
− δjk
|y− x|n

+ n
xjxk

|y− x|n+2

}
, (1.3.4)

for n ≥ 2.
For x,y ∈ Rn, x 6= y, the pair (S(Sjkl),R(Rjk)) satisfies the Stokes system

∆xSjkl(x,y)− ∂Rjk(y,x)

∂xk
= 0,

∂Sjkl(x,y)

∂xk
= 0. (1.3.5)
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1.3.2 The volume potential for the Stokes system and its properties

The purpose of this subsection is to introduce the Newtonian (volume) potential operators
associated to the Stokes system and to give their mapping properties. To this end, we consider
the Lipschitz domains D± as described in Assumption 1.1.6 and we will take into account the
fundamental solution of the Stokes system, that is, the pair (G(·, ·),P(·, ·)) ∈ D′(Rn × Rn)n×n ×
D′(Rn × Rn)n given by formula (1.3.2) or (1.3.3).

Definition 1.3.1. For f ∈ H−1(Rn)n, define the Newtonian (volume) velocity and pressure poten-
tials for the Stokes system, by

(NRnf)(x) := −〈G(x, ·), f〉Rn , (QRnf)(x) := −〈P(x, ·), f〉Rn . (1.3.6)

Moreover, the Newtonian (volume) velocity and pressure potentials for the Stokes system corre-
sponding to D±, are given by

ND±f := (NRnf)|D± , QD±f := (QRnf)|D± , (1.3.7)

where |D± is the restriction operator to D±, which acts on vector-valued or scalar-valued functions
in Rn.

The following lemma describes the mapping properties of the Newtonian (volume) layer potential
operators in the setting of Sobolev spaces (see, e.g., [52, Lemma A.3]).

Theorem 1.3.2. The Newtonian (volume) velocity and pressure potential operators for the Stokes
system, introduced in relation (1.3.6),

NRn : H−1(Rn)n → H1(Rn)n, QRn : H−1(Rn)n → L2(Rn),

NR3 : H−1(R3)3 → H1(R3)3, QR3 : H−1(R3)3 → L2(R3)
(1.3.8)

are linear and continuous operators. Moreover, the Newtonian (volume) velocity and pressure po-
tentials for the Stokes system, introduced in relation (1.3.7),

ND+ : H̃−1(D+)n → H1(D+)n, QD+ : H̃−1(D+)n → L2(D+), (1.3.9)

and

ND− : H̃−1(D−)3 → H1(D−)3, QD− : H̃−1(D−)3 → L2(D−), (1.3.10)

in the case n = 3, are linear and continuous operators as well.

Finally, by taking into account relation (1.3.1), we have that the Newtonian potentials satisfy
the following equations (in the sense of distributions):

∆(NRnf)−∇(QRnf) = f, div (NRnf) = 0, in Rn, (1.3.11)

and

∆(ND±f)−∇(QD±f) = f, div (ND±f) = 0, in D±, (1.3.12)

respectively.
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1.3.3 Stokes layer potentials and related results

In this subsection, we concern ourselves with the single layer potential and the double layer
potential operators associated to the Stokes system. Our purpose is to give their definitions, their
mapping properties their jump relations and specify their behavior at infinity. From now on, let
Assumption 1.1.6 be satisfied and in addition, we assume that the bounded Lipschitz domain D+

has a connected boundary Γ.
Firstly, let us focus on the single-layer velocity and pressure potentials, associated to the Stokes

system (see, e.g., [85, Relation (4.24), Relation (4.27)]).

Definition 1.3.3. Let Assumption 1.1.6 be satisfied. Let ϕ ∈ H−
1
2 (Γ)n. Define the single-layer

velocity potential VΓϕ and its associated pressure potential QsΓϕ for the Stokes system, by

(VΓϕ) := 〈G(x, ·),ϕ〉Γ, (Qs
Γϕ) := 〈P(x, ·),ϕ〉Γ, ∀ x ∈ Rn \ Γ. (1.3.13)

By taking into account relation (1.3.1), we have that the pair (VΓϕ,QsΓϕ) satisfies the homo-
geneous Stokes system

∆(VΓϕ)−∇(QsΓϕ) = 0, div (VΓϕ) = 0 (1.3.14)

in Rn \ Γ.
The following theorem gives some useful mapping properties for the single layer potential oper-

ators associated to the Stokes system (see, e.g., [52, Lemma A.4]).

Theorem 1.3.4. Let Assumption 1.1.6 be satisfied. Then the following operators

(VΓ)|D+ : H−
1
2 (Γ)n → H1(D+)n, (QsΓ)|D+ : H−

1
2 (Γ)n → L2(D+) (1.3.15)

are linear and bounded. Moreover, for n = 3, we have that the operators

(VΓ)|D− : H−
1
2 (Γ)3 → H1(D−)3, (QdΓ)|D− : H−

1
2 (Γ)3 → L2(D−) (1.3.16)

are linear and bounded as well, where the weighted Sobolev space H1(D−)3 is given in relation
(1.1.28).

Secondly, we focus on the double-layer velocity and pressure potentials, associated to the Stokes
system (see, e.g., [85, Relation (4.25), Relation (4.28)]).

Definition 1.3.5. Let Assumption 1.1.6 be satisfied. Let φ ∈ H
1
2 (Γ)n. Then, the double-layer

velocity potential WΓφ and its associated pressure potential QdΓφ for the Stokes system are defined
by

(WΓφ)k(x) :=

∫
Γ

Sjkl(y,x)νl(y)φj(y)dσy, ∀ x ∈ Rn \ Γ,

(QdΓφ)(x) :=

∫
Γ

Rjl(x,y)νl(y)φj(y)dσy, ∀ x ∈ Rn \ Γ,

(1.3.17)

where ν(νl)l=1,n is the outward unit normal to D+, defined a.e. on Γ.

Note that, in view of relation (1.3.5), we have that the pair (WΓφ,QdΓφ) satisfies the homoge-
neous Stokes system

∆(WΓφ)−∇(QdΓφ) = 0, div (WΓφ) = 0 (1.3.18)

in Rn \ Γ.
In addition, let us introduce the boundary version of the Stokes double layer velocity potential

in the sense of the principal value, as follows (see, e.g., [85, Relation (4.44)]).
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Definition 1.3.6. Define the principal value of WΓφ, denoted by KΓφ and given by:

(KΓφ)k(x) : = p.v.

∫
Γ

Sjkl(y,x)νl(y)φj(y)dσy

= lim
ε→0

∫
Γ\(Γ∩B(x,ε))

Sjkl(y,x)νl(y)φj(y)dσy,
(1.3.19)

for x ∈ Γ, where this limit makes sense.

Also, the following result provides us with useful mapping properties of the double layer potential
operators for the Stokes system (see, e.g., [52, Lemma A.4]).

Theorem 1.3.7. Let Assumption 1.1.6 be satisfied. Then, the following operators

(WΓ)|D+ : H
1
2 (Γ)n → H1(D+)n, (QdΓ)|D+ : H

1
2 (Γ)n → L2(D+), (1.3.20)

are linear and bounded. Moreover, for n = 3, we have that the operators

(WΓ)|D− : H
1
2 (Γ)3 → H1(D−)3, (QdΓ)|D− : H

1
2 (Γ)3 → L2(D−) (1.3.21)

are linear and bounded as well.

Let us also provide the lemma which describes the jump relations of the single and double layer
potentials for the Stokes system, in the setting of Sobolev spaces (see, e.g., [52, Lemma A.4], [85,
Proposition 4.2.2, Proposition 4.2.5, Proposition 4.2.9, Corollary 4.3.2, Theorem 5.3.6, Theorem
5.4.1]).

Lemma 1.3.8. Let Assumption 1.1.6 be satisfied.

(i) For ϕ ∈ H− 1
2 (Γ)n and φ ∈ H 1

2 (Γ)n, the following jump relations

TrD+(VΓϕ) = TrD−(VΓϕ) =: VΓϕ,

TrD±(WΓφ) =

(
∓1

2
I + KΓ

)
φ,

tD±(VΓϕ,QsΓϕ) =

(
±1

2
I + K∗Γ

)
ϕ,

tD+(WΓφ,QdΓφ) = tD−(WΓφ,QdΓφ) =: DΓφ

(1.3.22)

hold a.e. on Γ, where K∗Γ : H−
1
2 (Γ)n → H−

1
2 (Γ)n is the adjoint of the double layer potential

operator KΓ : H
1
2 (Γ)n → H

1
2 (Γ)n.

(ii) The following Stokes layer potential operators

VΓ : H−
1
2 (Γ)n → H

1
2 (Γ)n, KΓ : H

1
2 (Γ)n → H

1
2 (Γ)n,

K∗Γ : H−
1
2 (Γ)n → H−

1
2 (Γ)n, DΓ : H

1
2 (Γ)n → H−

1
2 (Γ)n,

(1.3.23)

are linear and bounded. Moreover, the operator VΓ : H−
1
2 (Γ)n → H

1
2 (Γ)n is a Fredholm

operator of index zero and its kernel, denoted by Ker VΓ, is given by

Ker {VΓ : H−
1
2 (Γ)n → H

1
2 (Γ)n} = Rν. (1.3.24)
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We have the following useful remark.

Remark 1.3.9. If f and g are two functions defined in a neighborhood of a point x (which could
also be ∞), then

f(x) = O(g(x))⇔ |f(x)|
|g(x)|

is bounded. (1.3.25)

Let us end this subsection by stating the following asymptotic formulas which are satisfied by
the Stokes layer potential at infinity (see, e.g., [54, Relation (3.14)])

(VΓϕ)(x) = O(ln|x|), (QsΓϕ)(x) = O(|x|−1) as |x| → ∞, n = 2

(VΓϕ)(x) = O(|x|2−n), (QsΓϕ)(x) = O(|x|1−n) as |x| → ∞, n ≥ 3

(WΓφ)(x) = O(|x|1−n), (QdΓφ)(x) = O(|x|−n) as |x| → ∞, n ≥ 2.

(1.3.26)

1.4 Brinkman layer potentials and their properties

In this section we consider the fundamental solution for the Brinkman system in Rn, n ≥ 2,
and then we define the layer potential operators that are useful in the analysis of the transmission
problems in the next chapters. The sources used in the preparation of this section are [49], [54],
[56], [52].

1.4.1 The Brinkman system and its fundamental solution

Let α > 0 be a given constant. Let (Gα(·, ·),Pα(·, ·)) ∈ D′(Rn ×Rn)n×n ×D′(Rn ×Rn)n denote
the fundamental solution of the Brinkman system, where Gα(·, ·) is the fundamental velocity tensor
and by Pα(·, ·) is the fundamental pressure vector for the Brinkman system in Rn. Therefore, the
pair (Gα(·, ·),Pα(·, ·)) satisfies the following equations

∆xG
α(x,y)− αGα(x,y)−∇xP

α(x,y) = −δy(x)I, divxG
α(x,y) = 0. (1.4.1)

Recall that δy denotes the Dirac distribution with mass at y and the differential operators ∆x, ∇x

and divx act with respect to the variable x.
The components of the fundamental solution (Gα(Gαjk),P

α(Pαk )) are given by (see, e.g., [54,
Relation (2.29)], [106])

Gαjk(x,y) :=
1

2ωn

{
δjk

|y− x|n−2
E1(α|y− x|) +

xjxk
|y− x|n

E2(α|y− x|)
}
,

Pαk (x,y) =
1

ωn

xk
|y− x|n

,

(1.4.2)

where

E1(s) :=

(
s
2

)n
2
−1
Kn

2
−1(s)

Γ
(
n
2

) + 2

(
s
2

)n
2 Kn

2
(s)

s2 · Γ
(
n
2

) − 1

s2
,

E2(s) :=
n

s2
− 4

(
s
2

)n
2

+1
Kn

2
+1(s)

s2 · Γ
(
n
2

) ,

(1.4.3)

and Kβ is the second kind Bessel function of order β ≥ 0, Γ(·) is the Euler Gamma function. Recall
that δjk is the Kronecher symbol and ωn is the surface measure of the unit sphere Sn−1 in Rn, n ≥ 2.
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In addition, let Sα(Sαjkl) and Rα(Rαjk) be the associated stress and pressure tensors for the
Brinkman system. Their components are given by (see, e.g., [54, Relation (2.31) and Relation
(2.32)])

Sαjkl(x,y) :=
1

ωn

{
δjl

xj
|y− x|n

E1(α|y− x|) +
δjlxi + δijxl
|y− x|n

E2(α|y− x|) +
xixjxl
|x|n+2

E3(α|y− x|)
}
,

Rαjk(x,y) :=
1

2π

{
−(yi − xi)

4(yk − xk)
|y− x|4

− (α|y− x|2 log |y− x|+ 2)
δik

|y− x|2

}
, n = 2,

Rαjk(x,y) :=
1

ωn

{
−(yi − xi)

2n(yk − xk)
|y− x|n+2

+
2δik
|y− x|n

− α 1

n− 2

1

|y− x|n−2
δik

}
, n ≥ 3,

(1.4.4)
where

E1(s) := 8

(
s
2

)n
2

+1
Kn

2
+1(s)

s2 · Γ
(
n
2

) − 2n

z2
+ 1

E2(s) := 8

(
s
2

)n
2

+1
Kn

2
+1(s)

s2 · Γ
(
n
2

) + 2

(
s
2

)n
2 Kn

2
(s)

Γ
(
n
2

) − 2n

s2

E3(s) := −16

(
s
2

)n
2

+2
Kn

2
+2(s)

s2 · Γ
(
n
2

) +
2n(n+ 2)

s2
.

(1.4.5)

For x,y ∈ Rn, x 6= y, the pair (Sα(Sαjkl),R
α(Rαjk)) satisfies the Brinkman system

∆xS
α
jkl(x,y)− αSαjkl(x,y)−

∂Rαjk(y,x)

∂xk
= 0,

∂Sαjkl(x,y)

∂xk
= 0. (1.4.6)

1.4.2 The volume potential for the Brinkman system and its properties

The purpose of this subsection is to introduce the Newtonian (volume) potential operators
associated to the Brinkman system and to give their mapping properties. To this end, we consider
the Lipschitz domains D± as described in Assumption 1.1.6 and we will take into account the
fundamental solution of the Brinkman system, that is, the pair (Gα(·, ·),Pα(·, ·)) ∈ D′(Rn×Rn)n×n×
D′(Rn × Rn)n given by relation (1.4.2).

Definition 1.4.1. Let α > 0 be a given constant. For f ∈ H−1(Rn)n, define the Newtonian (volume)
velocity and pressure potentials for the Brinkman system, by

(Nα,Rnf)(x) := −〈Gα(x, ·), f〉Rn , (Qα,Rnf)(x) := −〈Pα(x, ·), f〉Rn . (1.4.7)

Moreover, the Newtonian (volume) velocity and pressure potentials for the Brinkman system corre-
sponding to D±, are given by

Nα,D±f := (Nα,Rnf)|D± , Qα,D±f := (Qα,Rnf)|D± . (1.4.8)

Recall that |D± is the restriction to D± operator, which acts on vector-valued or scalar-valued dis-
tributions in Rn.

The following result describes the mapping properties of the Newtonian (volume) layer potential
operators in the setting of Sobolev spaces (see, e.g., [52, Lemma A.3]).
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Theorem 1.4.2. Let α > 0 be a given constant. The Newtonian (volume) velocity and pressure
potential operators for the Brinkman system, given by relation (1.4.7),

Nα,Rn : H−1(Rn)n → H1(Rn)n, Qα,Rn : H−1(Rn)n → L2(Rn),

Qα,R3 : H−1(R3)3 →M(R3)
(1.4.9)

are linear and continuous operators. Moreover, the Newtonian (volume) velocity and pressure po-
tentials operators for the Brinkman system, introduced in relation (1.4.8),

Nα,D+ : H̃−1(D+)n → H1(D+)n, Qα,D+ : H̃−1(D+)n → L2(D+) (1.4.10)

and
Nα,D− : H̃−1(D−)3 → H1(D−)3, Qα,D− : H̃−1(D−)3 →M(D−), (1.4.11)

in the case n = 3, are linear and continuous operators as well, while the spaces M(R3) and M(D−)
are given by Definition 2.1.1.

Finally, by taking into account relation (1.4.1), we have that the Newtonian (volume) potentials
for the Brinkman system, introduced in Definition 1.4.1 satisfy the equations (in the sense of
distributions)

∆(Nα,Rnf)− α(Nα,Rnf)−∇(Qα,Rnf) = f, div (Nα,Rnf) = 0, in Rn, (1.4.12)

and
∆(Nα,D±f)− α(Nα,D±f)−∇(Qα,D±f) = f, div (Nα,D±f) = 0, in D±, (1.4.13)

respectively.

1.4.3 Brinkman layer potentials and related results

In this subsection, we consider the single layer potential and the double layer potential operators
associated to the Brinkman system. We give their definitions, their mapping properties, their jump
relations and we describe their behavior at infinity. As in the previous section, let Assumption 1.1.6
be satisfied and let D+ be a bounded Lipschitz domain with connected boundary Γ.

Firstly, let us focus on the single-layer velocity and pressure potentials, associated to the
Brinkman system (see, e.g., [56, Relation (3.6)], [54, Relation (3.1)]).

Definition 1.4.3. Let Assumption 1.1.6 be satisfied. Let α > 0 be a given constant. Let ϕ ∈
H−

1
2 (Γ)n. Define the single-layer velocity potential Vα,Γϕ and its associated pressure potential

Qsα,Γϕ for the Brinkman system, by

(Vα,Γϕ) := 〈Gα(x, ·),ϕ〉Γ, (Qsα,Γϕ) := 〈Pα(x, ·),ϕ〉Γ, ∀ x ∈ Rn \ Γ. (1.4.14)

By taking into account relation (1.4.1), we have that the pair (Vα,Γϕ,Qsα,Γϕ) satisfies the
homogeneous Brinkman system

∆(Vα,Γϕ)− α(Vα,Γϕ)−∇(Qsα,Γϕ) = 0, div Vα,Γϕ = 0 (1.4.15)

in Rn \ Γ.
The following theorem provides some useful mapping properties of the single-layer potentials

associated to the Brinkman system (see, e.g., [54, Lemma 3.1], [52, Lemma A.8]).
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Theorem 1.4.4. Let Assumption 1.1.6 be satisfied. Let α > 0 be a given constant. Then the
following operators

(Vα,Γ)|D+ : H−
1
2 (Γ)n → H1(D+)n, (Qsα,Γ)|D+ : H−

1
2 (Γ)n → L2(D+), (1.4.16)

are linear and bounded. Moreover, for n = 3, we have that the operators

(Vα,Γ)|D− : H−
1
2 (Γ)3 → H1(D−)3, (Qsα,Γ)|D− : H−

1
2 (Γ)3 → L2(D−) (1.4.17)

are linear and bounded as well.

Secondly, we focus on the double-layer velocity and pressure potentials, associated to the
Brinkman system (see, e.g., [56, Relation (3.7)]).

Definition 1.4.5. Let Assumption 1.1.6 be satisfied. Let α > 0 be a given constant. Let φ ∈
H

1
2 (Γ)n. We define the double-layer potential Wα,Γφ and its associated pressure potential Qdα,Γφ

for the Brinkman system, by

(Wα,Γφ)k(x) :=

∫
Γ

Sαjkl(y,x)νl(y)φj(y)dσy, ∀ x ∈ Rn \ Γ,

(Qdα,Γφ)(x) :=

∫
Γ

Rαjl(x,y)νl(y)φj(y)dσy, ∀ x ∈ Rn \ Γ.

(1.4.18)

Recall that ν(νl)l=1,n is the outward unit normal to D+, defined a.e. on Γ.

Note that, in view of relation (1.4.6), the pair (Wα,Γφ,Qdα,Γφ) satisfies the homogeneous
Brinkman system

∆(Wα,Γφ)− α(Wα,Γφ)−∇(Qdα,Γφ) = 0, div (Wα,Γφ) = 0 (1.4.19)

in Rn \ Γ.
Moreover, we introduce the boundary version of the Brinkman double layer velocity potential

in the sense of principal value, as follows (see, e.g., [56, Relation (3.8)]).

Definition 1.4.6. Let α > 0 be a given constant. Define the principal value of Wα,Γφ, denoted by
Kα,Γφ and given by:

(Kα,Γφ)k(x) : = p.v.

∫
Γ

Sαjkl(y,x)νl(y)φj(y)dσy

= lim
ε→0

∫
Γ\(Γ∩B(x,ε))

Sαjkl(y,x)νl(y)φj(y)dσy,
(1.4.20)

for x ∈ Γ, where this limit makes sense.

Also, we state some useful mapping properties of the double-layer potentials in the following
statement (see, e.g., [54, Lemma 3.1], [52, Lemma A.8]).

Theorem 1.4.7. Let Assumption 1.1.6 be satisfied. Let α > 0 be a given constant. Then the
following operators

(Wα,Γ)|D+ : H
1
2 (Γ)n → H1(D+)n, (Qdα,Γ)|D+ : H

1
2 (Γ)n → L2(D+) (1.4.21)

are linear and bounded. Moreover, for n = 3, we have that the operators

(Wα,Γ)|D− : H
1
2 (Γ)3 → H1(D−)3, (Qdα,Γ)|D− : H

1
2 (Γ)3 →M(D−) (1.4.22)

are linear and bounded as well and the space M(D−) is given by Definition 2.1.1.
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Next, we concern ourselves with the jump relations of the single and double layer potentials
for the Brinkman system, in the setting of Sobolev spaces (see, e.g., [54, Lemma 3.1], [52, Lemma
A.4]).

Lemma 1.4.8. Let Assumption 1.1.6 be satisfied. Let α > 0 be a given constant.

(i) Let ϕ ∈ H− 1
2 (Γ)n and φ ∈ H 1

2 (Γ)n. Then, the following jump formulas

TrD+(Vα,Γϕ) = TrD−(Vα,Γϕ) := Vα,Γϕ,

TrD±(Wα,Γφ) =

(
∓1

2
I + Kα,Γ

)
φ,

tα,D±(Vα,Γϕ,Qsα,Γϕ) =

(
±1

2
I + K∗α,Γ

)
ϕ,

tα,D+(Wα,Γφ,Qdα,Γφ) = tα,D−(Wα,Γφ,Qdα,Γφ) = Dα,Γφ

(1.4.23)

hold a.e. on Γ, where K∗α,Γ : H−
1
2 (Γ)n → H−

1
2 (Γ)n is the adjoint of the double layer potential

operator Kα,Γ : H
1
2 (Γ)n → H

1
2 (Γ)n.

(ii) The following operators

Vα,Γ : H−
1
2 (Γ)n → H

1
2 (Γ)n, Kα,Γ : H

1
2 (Γ)n → H

1
2 (Γ)n,

K∗α,Γ : H−
1
2 (Γ)n → H−

1
2 (Γ)n, Dα,Γ : H

1
2 (Γ)n → H−

1
2 (Γ)n

(1.4.24)

are well-defined, linear and continuous. Moreover, the operator Vα,Γ : H−
1
2 (Γ)n → H

1
2 (Γ)n is

a Fredholm operator of index zero and its kernel, denoted by Ker Vα,Γ, is given by

Ker {Vα,Γ : H−
1
2 (Γ)n → H

1
2 (Γ)n} = Rν. (1.4.25)

Now, we introduce the operators

Vα,0,Γ := Vα,Γ − VΓ, Kα,0,Γ := Kα,Γ −KΓ,

K∗α,0,Γ := K∗α,Γ −K∗Γ, Dα,0,Γ := Dα,Γ − DΓ,
(1.4.26)

which will be called complementary layer potential operators. Note that the operators VΓ, KΓ, K∗Γ
and DΓ are introduced in Lemma 1.3.8 which concerns the jump formulas for the single layer and
double layer potentials associated to the Stokes system. We have the following lemma (see, e.g.,
[54, Theorem 3.1]).

Lemma 1.4.9. The complementary layer potential operators

Vα,0,Γ : H−
1
2 (Γ)n → H

1
2 (Γ)n, Kα,0,Γ : H

1
2 (Γ)n → H

1
2 (Γ)n,

K∗α,0,Γ : H−
1
2 (Γ)n → H−

1
2 (Γ)n, Dα,0,Γ : H

1
2 (Γ)n → H−

1
2 (Γ)n,

(1.4.27)

are compact a.e. on Γ.

Now, we provide the asymptotic formulas (see Remark 1.3.9) which specify the behavior at
infinity for the Brinkman layer potentials (see, e.g., [54, Relation (3.12)])

(Vα,Γϕ)(x) = O(|x|−n), (Wα,Γφ)(x) = O(|x|1−n) as |x| → ∞, n ≥ 2

(Qsα,Γϕ)(x) = O(|x|−1), (Qdα,Γφ)(x) = O(ln|x|) as |x| → ∞, n = 2

(Qsα,Γϕ)(x) = O(|x|1−n), (Qdα,Γφ)(x) = O(|x|2−n) as |x| → ∞, n ≥ 3.

(1.4.28)

Remark 1.4.10. The results presented in Section 1.3 and in Section 1.4, including the definitions
of the layer potentials, can be extended to the case of the Stokes (or Brinkman) system with variable
coefficients (which belong to L∞) by using a variational approach (see, e.g., [58], [59], [60], [67]).
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2

Linear Boundary Value Problems of
Transmission-type related to the Stokes and

Brinkman systems

This chapter deals with certain linear transmission-type problems which involve the Stokes
system, the Brinkman system and a generalized version of the Brinkman system (see relation
(1.2.21)) in the Lipschitz domains in Euclidean setting (see Assumption 1.1.6 and Assumption
1.1.7). The content of this chapter follows the results that were obtained in the papers [6], [7], [8].

We present and prove well-posedness results for the following boundary value problems. Firstly,
we treat the Poisson problem of transmission-type for the generalized Brinkman and Stokes sys-
tems in complementary Lipschitz domains in R3. Secondly, we analyze the Poisson problem of
transmission-type for the generalized Brinkman and classical Brinkman system in complementary
Lipschitz domains in R3. Next, we look at the Poisson problem of Robin-transmission-type for the
Brinkman system in Euclidean setting provided by Assumption 1.1.7.

Let us note that, the Stokes system can be seen as a particular case of the Brinkman system.
Even so, we have separated the study of transmission problems involving the Brinkman and Stokes
system from the transmission problems involving only the Brinkman system. Such a distinction
can be justified in view of different practical applications (see, e.g., [15], [52]). Moreover, we use
different solution spaces for each of the studied transmission problems, namely, if we work with the
Stokes system in an unbounded, exterior domain, we use weighted Sobolev spaces, while if we work
with the Brinkman system in an unbounded, exterior domain, we use the usual Sobolev spaces.

In order to obtain the results that are presented in this chapter, the main tools of investigation
that we have employed are layer potential theory and Fredholm operator theory. Indeed, using the
Stokes layer potentials, the Brinkman layer potentials, results regarding Fredholm operators and
Green formulas we construct unique solutions to our considered boundary problems.

In the latter, let us mention some past works that have contributed to investigation of elliptic
boundary value problems. Firstly, let us note the paper of Fabes, Kenig and Verchota [31] which
concerns the investigation of the Dirichlet problem for the Stokes system in a Lipschitz domain in Rn

and they provided representation formulas in terms of layer potential for the solution. Costabel [20]
has studied simple and double layer potentials for second order linear elliptic differential operators
on Lipschitz domains in Euclidean setting and has provided continuity and regularity results. Dalla
Riva, Lanza de Cristoforis and Musolino [23] have analyzed basic boundary value problems for the
Laplace equation in singularly perturbed domains, with an emphasis on domains with small holes.

Varnhorn [105] has used potential theory to construct an explicit solution of the Stokes rezolven
system in a bounded domain in R3 with C2-boundary. Also, Varnhorn [106] has provided a theory
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of solvability for the Stokes system in exterior domains and has analyzed the existence of strong
solutions in Sobolev spaces and further properties. Medkova [74] has used the integral equation
method in order to obtain L2-solutions for the transmission problem, Robin-transmission problem
and the Dirichlet-transmission problem for the Brinkman system, while in [75], she used the same
method in order to study the transmission problem for the Stokes system, in homogeneous Sobolev
spaces in Lipschitz domains in R3. Medkova [76] has also studied the Dirichlet problem for the
resolvent Stokes system with bounded boundary data in the setting of bounder and unbounded
domains with compact Lyapunov boundary. Chkadua, Mikhailov and Natroshvili [16] have used
localized integral potentials associated with the Laplace operator in order to reduce boundary value
problems for variable-coefficient divergence-from second-order elliptic PDEs to systems of localized
boundary-domain singular integral equations. Escauriaza and Mitrea [30] have used layer potential
methods to obtain the well-posedness of the transmission problem for the Laplacian in the presence
of a Lipschitz interface with boundary data belonging to Lebesgue and Hardy spaces. The work of
Mitrea and Wright [85] concerns also transmission boundary value problems for the Stokes system
in Lipschitz domains in the Euclidean setting, for n ≥ 2.

The authors in [56] have obtained a well-posedness result for a linear Robin-transmission problem
for the Stokes and Brinkman systems in adjacent Lipschitz domains in Rn, n ≥ 2 with linear
transmission conditions on the Lipschitz interface and Robin condition on the remaining boundary.
Kohr, Wendland and Lanza de Cristoforis [54] have analyzed a nonlinear Neumann-transmission
problems for the Stokes and Brinkman systems in Euclidean Lipschitz domains with boundary
data in Lp, Sobolev and Besov spaces. Fericean, Groşan, Kohr and Wendland [34] have treated
interface boundary value problems of Robin-transmission type for the Stokes and Brinkman systems
in Lipschitz domains in Rn for n ≥ 3 and with boundary data in Lp or Sobolev spaces. Fericean
and Wendland [35] have used layer potential theory in order to obtain well-posedness results for a
Dirichlet-transmission problem for the Stokes and Brinkman systems in Lipschitz domains in Rn

for n ≥ 3. The authors in [52] have obtained a well-posedness result for a transmission problem for
the Stokes and Brinkman systems in complementary Lipschitz domains in R3 in weighted Sobolev
spaces by making use of layer potential techniques. In [78], Mikhailov and Portillo have studied a
mixed boundary value problem for the stationary compressible Stokes system with variable viscosity
in an exterior domain of R3 by the means of boundary-domain integral equations (BDIEs). Mitrea,
Mitrea and Mitrea [79] have proved well-posedness and Fredholm solvability results for boundary
value problems for elliptic second-order homogeneous constant coefficient systems in domains of
general geometric nature.

Regarding the setting of manifolds, let us mention that Kohr, Pintea and Wendland [63] have
developed a potential analysis for certain pseudodifferential matrix operators on Lipschitz do-
mains in compact Riemmanian manifolds and they have studied Dirichlet-transmission problems
for Brinkman operators in Lipschitz domains in compact Riemmanian manifolds. Also, Kohr,
Mikhailov and Wendland [57] have investigated a linear transmission problem for the Stokes and
generalized Brinkman system in two complementary Lipschitz domains in a compact Riemannian
manifold of dimension m ≥ 2.

More recently, a great deal of attention has been directed to the variable coefficient PDEs.
Note that the works of Kohr, Mikhailov and Wendland [58], [59], [60] concern the analysis of the
anisotropic Stokes system with L∞ coefficient tensor. They investigate diverse boundary problems,
Dirichlet type, transmission type and they have also discussed potentials for this anisotropic system.
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2.1 Dirichlet type problem for the Brinkman system in an

exterior domain

The goal of this section is twofold. First, we introduce a special function space which is involved
in the mapping properties of the Newtonial layer potentials for the Brinkman system (see relation
(1.4.10) of Theorem 1.4.2). Secondly, we study an exterior Dirichlet boundary value problem for
the Brinkman system, which is involved in the proof of our well-posedness results (see Theorem
2.3.1, Theorem 2.3.3, Theorem 3.3.1).

In the latter, let D be either of the domains R3, D+ or D−, which are described in Assumption
1.1.6, for n = 3. Let us introduce the space H−1

curl(D)3 by

H−1
curl(D)3 := {h ∈ H−1(D)3 : curl h = 0}.

Definition 2.1.1. Let D be either of the domains described in Assumption 1.1.6, for n = 3. Define
the space M(D) by

M(D) := {g ∈ L2(ρ−1,D) : ∇g ∈ H−1
curl(D)3}. (2.1.1)

Now, denote by M′(D) the dual of the space M(D), we have the following continuous chain of
embeddings (see, e.g., [52, (A.24)])

L2(ρ,D) ⊂M′(D) ⊂ L2(D) ⊂M(D) ⊂ L2(ρ−1,D) ⊂ L2
loc(D). (2.1.2)

In the latter, we concern ourselves with two important results. First, we analyze exterior Dirich-
let problem for the classical Brinkman system in the space H1(D−)3 ×M(D−), where D− is the
exterior Lipschitz domain introduced in Assumption 1.1.6, in the case n = 3. The well-posedness
result is as follows (see, [6, Theorem A.1], [52, Lemma A.2], and [105, Prop. 4.5] in the case of an
exterior domain with a C2-boundary).

Theorem 2.1.2. Let Assumption 1.1.6 be satisfied for n = 3. Let α > 0 be a given constant. Then,
the exterior Dirichlet problem for the Brinkman system

∆u− αu−∇π = 0 in D−,

div u = 0 in D−,

TrD−u = h ∈ H
1
2 (Γ)3 on Γ,

u(x) = O(|x|−2),∇u(x) = O(|x|−1), π(x) = O(|x|−1) as |x| → ∞,

(2.1.3)

has a unique solution in the space H1(D−)3 ×M(D−).

Lastly, we conclude this section with a result, which shows that if we have a pair (v, p) ∈
H1(D−)3×M(D−) satisfies the Brinkman system in an exterior Lipschitz domain, then the far field
conditions described in problem (2.1.3) are also satisfied (see [6, Lemma A.2], [52, Lemma A.2]).

Lemma 2.1.3. Let Assumption 1.1.6 be satisfied for n = 3. Let α > 0 be a given constant. If the
pair (v, p) ∈ H1(D−)3 ×M(D−) satisfies

∆v− αv−∇p = 0, div v = 0 in D−, (2.1.4)

then
v(x) = O(|x|−2),∇v(x) = O(|x|−1), p(x) = O(|x|−1) as |x| → ∞. (2.1.5)

36



Chapter 2. Linear Transmission Problems

2.2 Transmission problem for a Brinkman type system and

the Stokes system in complementary Lipschitz domains

in R3

In this section we aim to state and prove a well-posedness result, for a transmission-type problem,
which was obtained in the setting of Assumption 1.1.6 for n = 3, i.e., complementary Lipschitz
domains in R3. We consider a generalized version of the Brinkman system in the bounded Lipschitz
domain D+ and the Stokes system in the complementary Lipschitz set D−. Also, we have the
following assumption that we will use in the latter.

Assumption 2.2.1. Let n ≥ 2. Assume that L ∈ L∞(Γ)n×n be a symmetric matrix valued function,
which satisfies the following non-negativity condition

〈Lu,u〉Γ ≥ 0, (2.2.1)

for all u ∈ L2(Γ)n.

We consider the following spaces, namely the space of solutions,

Xw := H1
div(D+)3 × L2(D+)×H1

div(D−)3 × L2(D−) (2.2.2)

and the space of given data,

Yw := H̃−1(D+)3 × H̃−1(D−)3 ×H
1
2 (Γ)3 ×H−

1
2 (Γ)3, (2.2.3)

respectively.
The considered transmission problem of Poisson type for the Stokes and generalized Brinkman

systems is 

∆u+ − Pu+ −∇π+ = f+|D+ in D+,

∆u− −∇π− = f−|D− in D−,

div u± = 0 in D±,

TrD+u+ − TrD−u− = g on Γ,

tP,D+(u+, π+, f+)− tD−(u−, π−, f−) + LTrD+u+ = h on Γ,

(2.2.4)

with the unknown fields (u+, π+,u−, π−) ∈ Xw. Note that, the presence of the Stokes system in the
unbounded Lipschitz domain D− justifies the inclusion of the space H1

div(D−)3 in the solution space
Xw provided in relation (2.2.2).

Hence, we begin with the well-posedness result that was obtained for the transmission problem
(2.2.4), in the case u∞ = 0 (see [7, Theorem 4.5], [52, Theorem 4.2], [57, Theorem 4.4]).

Theorem 2.2.2. Let Assumption 1.1.6 and Assumption 2.2.1 be satisfied, for n = 3. Let P ∈
L∞(D+)3×3 such that condition (1.2.22) holds. Then, for (f+, f−,g,h) ∈ Yw given, the Poisson
problem of transmission type for Stokes and generalized Brinkman systems (2.2.4) has a unique
solution (u+, π+,u−, π−) ∈ Xw. Moreover, there is a constant C ≡ C(D+,D−,P ,L) > 0 such that

||(u+, π+,u−, π−)||Xw ≤ C||(f+, f−,g,h)||Yw , (2.2.5)

and u− vanishes at infinity in the sense of Leray.
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Now, we provide the well-posedness result for the transmission problem (2.2.4), in the case
u∞ 6= 0 (see, [7, Remark 4.6], [52, Theorem 4.4]).

Theorem 2.2.3. Let Assumption 1.1.6 and Assumption 2.2.1 be satisfied, for n = 3. Let P ∈
L∞(D+)3×3 such that condition (1.2.22) holds. Then, for (f+, f−,g,h,u∞) ∈ Yw × R3, the Poisson
problem of transmission-type for the generalized Brinkman and Stokes systems (2.2.4) has a unique
solution

(u+, π+,u−, π−) (2.2.6)

satisfying the condition
(u+, π+,u− − u∞, π−) ∈ Xw. (2.2.7)

In addition, the corresponding solution operator,

T : Yw × R3 → Xw, (2.2.8)

is linear and bounded, and hence, there exists a constant C ≡ C(D+,D−,P ,L) > 0 such that the
unique solution of (2.2.4) satisfies the estimate

||(u+, π+,u− − u∞, π−)||Xw ≤ C||(f+, f−,g,h,u∞)||Yw×R3 , (2.2.9)

and u− − u∞ vanishes at infinity in the sense of Leray.

2.2.1 Transmission problem for the Stokes system in complementary
Lipschitz domains in R3

This subsection is dedicated to the study of the transmission problem for the Stokes system
in complementary Lipschitz domains in R3, i.e., the setting of Assumption 1.1.6 for n = 3. In
addition, let Assumption 2.2.1 be satisfied, for n = 3. The considered transmission-type problem
for the Stokes system reads as follows

∆u+ −∇π+ = f+|D+ in D+,

∆u− −∇π− = f−|D− in D−,

div u± = 0 in D±,

TrD+u+ − TrD−u− = g on Γ,

tD+(u+, π+, f+)− tD−(u−, π−, f−) + LTrD+u+ = h on Γ.

(2.2.10)

Let us describe the steps that we follow in order to show that the transmission problem (2.2.10),
is well-posed. Firstly, we will state and prove the following lemma (see, [7, Lemma 4.1, Corollary
4.2]).

Lemma 2.2.4. Let Assumption 1.1.6 and Assumption 2.2.1 be satisfied, for n = 3. Then, the
operators

I + VΓL : H
1
2 (Γ)3 → H

1
2 (Γ)3,

I + LVΓ : H−
1
2 (Γ)3 → H−

1
2 (Γ)3,

(2.2.11)

are isomorphisms.

Secondly, we state and prove a lemma that shows that our transmission problem (2.2.10) has at
most one solution (u+, π+,u− − u∞, π−) ∈ Xw, where u∞ ∈ R3 is a constant vector (see [7, Lemma
4.1], [52, Lemma 4.1]).
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Lemma 2.2.5. Let Assumption 1.1.6 and Assumption 2.2.1 be satisfied, for n = 3. Then, for
(f+, f−,g,h,u∞) ∈ Yw×R3, the Poisson problem of transmission-type for the Stokes system (2.2.10)
has at most one solution (u+, π+,u−, π−) which satisfies (u+, π+,u− − u∞, π−) ∈ Xw.

Let us now state and prove the well-posedness result, that we have obtained, for our transmission
problem for the Stokes system in complementary Lipschitz domains in R3 in the case u∞ = 0 (see
[7, Theorem 4.3], [52, Theorem 4.2], [75, Theorem 5.1]).

Theorem 2.2.6. Let Assumption 1.1.6 and Assumption 2.2.1 be satisfied, for n = 3. Then, for
(f+, f−,g,h) ∈ Yw, the Poisson problem of transmission-type for the Stokes system (2.2.10) has a
unique solution (u+, π+,u−, π−) ∈ X. Moreover, there exists a linear and continuous operator

S : Yw → Xw, (2.2.12)

that maps the given data (f+, f−,g,h) ∈ Yw to the unique solution (u+, π+,u−, π−) ∈ Xw of the
problem (2.2.10), in the sense that, there is a constant C ≡ C(D+,D−,L) > 0 such that

||(u+, π+,u−, π−)||Xw ≤ C||(f+, f−,g,h)||Yw . (2.2.13)

In addition, u− vanishes at infinity in the sense of Leray.

Lastly, we provide the well-posendess result of the transmission problem (2.2.10) in the case
u∞ 6= 0 (see, e.g., [7, Theorem 4.4], [52, Theorem 4.4]).

Theorem 2.2.7. Let Assumption 1.1.6 and Assumption 2.2.1 be satisfied for n = 3. Then, for
(f+, f−,g,h,u∞) ∈ Yw×R3, the Poisson problem of transmission-type for the Stokes system (2.2.10)
has a unique solution (u+, π+,u−, π−) satisfying the condition (u+, π+,u− − u∞, π−) ∈ Xw. More-
over, there is a constant C ≡ C(D+,D−,L) > 0 such that

||(u+, π+,u− − u∞, π−)||Xw ≤ C||(f+, f−,g,h,u∞)||Yw×R3 , (2.2.14)

and u− − u∞ vanishes at infinity in the sense of Leray.

2.3 Transmission problem for the generalized Brinkman

and classical Brinkman systems in complementary Lip-

schitz domains in R3

In this section we will state and prove a well-posedness result, for a transmission-type problem,
which was obtained in the setting of Assumption 1.1.6 for n = 3, i.e., complementary Lipschitz
domains in R3. We have considered a generalized version of the Brinkman in the bounded Lipschitz
domain D+ and the Brinkman system in the complementary Lipschitz set D−. Also, let Assumption
2.2.1 be satisfied, for n = 3.

Let us introduce the following spaces, namely the space of solutions,

XB := H1
div(D+)3 × L2(D+)×H1

div(D−)3 ×M(D−) (2.3.1)

and the space of given data,

YB := H̃−1(D+)3 × H̃−1(D−)3 ×H
1
2 (Γ)3 ×H−

1
2 (Γ)3, (2.3.2)
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respectively. We point out the fact that the space M(D−) is introduced in Definition 2.1.1.
Let us emphasize the fact that the presence of the Brinkman system in the exterior Lipschitz

domain D−, provided in Assumption 1.1.6, n = 3, leads to the use of classical Sobolev spaces, instead
of the weighted Sobolev spaces (as in the case of the Stokes system in exterior Lipschitz domains),
in order to find the velocity field in D−. This is a consequence of the behavior of the fundamental
solution of the Brinkman system at infinity, in the case n = 3.

We turn our attention to the transmission problem for the generalized Brinkman and classical
Brinkman system, which is given by

∆u+ − Pu+ −∇π+ = f+|D+ in D+,

∆u− − αu− −∇π− = f−|D− in D−,

div u± = 0 in D±,

TrD+u+ − TrD−u− = g on Γ,

tP,D+(u+, π+, f+)− tα,D−(u−, π−, f−) + LTrD+u+ = h on Γ,

(2.3.3)

where unknown fields are (u+, π+,u−, π−) ∈ XB.
Let us state and prove the well-posedness result that we have obtained for problem (2.3.3) (see

also [6, Theorem 3.3] and [57, Theorem 4.4] in the case of compact Riemannian manifolds). In
addition, the following well-posedness result also provides the far field conditions that our solution
satisfies (see Remark 1.3.9).

Theorem 2.3.1. Let Assumption 1.1.6 and Assumption 2.2.1 be satisfied for n = 3. Let α > 0 be a
constant. Let P ∈ L∞(D+)3×3 be such that the condition (1.2.22) holds. Then, for (f+, f−,g,h) ∈ YB
given, the Poisson problem of transmission-type for the generalized and classical Brinkman systems
(2.3.3) has a unique solution

(u+, π+,u−, π−) ∈ XB. (2.3.4)

In addition, the corresponding solution operator,

TB : YB → XB, (2.3.5)

is linear and bounded, and hence, there exists a constant C ≡ C(D+,D−,P ,L) > 0 such that the
unique solution of (2.3.3) satisfies

||(u+, π+,u−, π−)||XB ≤ C||(f+, f−,g,h)||YB . (2.3.6)

Moreover, the pair (u−, π−) satisfies the following far field conditions

u−(x) = O(|x|−2), ∇u−(x) = O(|x|−1), π−(x) = O(|x|−1), (2.3.7)

as |x| → ∞.

2.3.1 Transmission problem for the Stokes and Brinkman systems in
complementary Lipschitz domains in R3

This subsection is dedicated to the study of the transmission problem for the Stokes and
Brinkman systems in complementary Lipschitz domains in R3, i.e., the setting of Assumption 1.1.6
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for n = 3. In addition, let Assumption 2.2.1 be satisfied, for n = 3. The considered transmission-
type problem for the Stokes and Brinkman systems is given by

∆u+ −∇π+ = f+|D+ in D+,

∆u− − αu− −∇π− = f−|D− in D−,

div u± = 0 in D±,

TrD+u+ − TrD−u− = g on Γ,

tD+(u+, π+, f+)− tα,D−(u−, π−, f−) + LTrD+u+ = h on Γ.

(2.3.8)

First of all, we have a preliminary result in which we will show that the transmission problem
(2.3.8) has at most one solution (see [6, Lemma 3.1], [52, Lemma 4.1]).

Lemma 2.3.2. Let Assumption 1.1.6 and Assumption 2.2.1 be satisfied for n = 3. Let α > 0 be a
constant. Then, for the given data (f+, f−,g,h) ∈ YB, the Poisson problem of transmission-type for
the Stokes and Brinkman systems (2.3.8) has at most one solution (u+, π+,u−, π−) ∈ XB.

We are now able to state and prove the well-posedness result for the transmission problem (2.3.8)
(see, [6, Theorem 3.2], [52, Theorem 4.2]).

Theorem 2.3.3. Let Assumption 1.1.6 and Assumption 2.2.1 be satisfied for n = 3. Let α > 0 be a
constant. Then, for the given data (f+, f−,g,h) ∈ YB, the Poisson problem of transmission-type for
the Stokes and Brinkman systems (2.3.8) has a unique solution (u+, π+,u−, π−) ∈ XB. In addition,
the operator

S : YB → XB, (2.3.9)

which maps the given data (f+, f−,g,h) ∈ YB to the corresponding solution (u+, π+,u−, π−) ∈ XB
of the transmission problem (2.3.8) is linear and continuous. Consequently, there is a constant
C ≡ C(D+,D−,L) > 0 such that:

||(u+, π+,u−, π−)||XB ≤ C||(f+, f−,g,h)||YB . (2.3.10)

Moreover, u−, π− satisfy the far field conditions

u−(x) = O(|x|−2), ∇u−(x) = O(|x|−1), π−(x) = O(|x|−1), (2.3.11)

as |x| → ∞.

2.4 On a Robin-Transmission problem for the Brinkman

system

In this section we aim to state and prove a well-posedness result, for a transmission-type problem,
which was obtained in the setting of Assumption 1.1.7. Before we state the transmission problem,
let us mention that such problems are used to model the fluid flow in the exterior of a cavity or
in cavities filled with porous media, in the case of the jump of either tensions or velocity on the
interface. Another idea is to analyze the fluid flow in a porous media in reservoirs whose boundary
has two parts, the first one that of a solid surface and the second, an interface between the fluid
and another fluid or viscoelastic material (for additional details, see, e.g., [53]). From a practical
point of view, Baber [15] has analyzed applications of transmission problems, such as the water
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management in fuel cells or the processing of nutrients between two domains, one containing blood,
the other porous tissue.

The transmission-type problem that we wish to treat will be called the Robin-transmission
problem for the Brinkman system (see problem (2.4.3)). In addition, let Assumption 2.2.1 be
satisfied.

We consider the following spaces, namely the space of solutions,

XRT := H1
div(D+)n × L2(D+)×H1

div(D−)n × L2(D−), (2.4.1)

and the space of given data,

YRT := H̃−1(D+)n × H̃−1(D−)n ×H
1
2
ν (Γ+)n ×H−

1
2 (Γ+)n ×H−

1
2 (Γ−)n, (2.4.2)

respectively.
We will study the Robin-transmission problem for the Brinkman system, which is given by

∆u± − αu± −∇π± = f±|D± in D±,

div u± = 0 in D±,

λ(TrD+u+)−
(
TrD−u−

)
|Γ+ = g1 on Γ+,

tα,D+(u+, π+, f+)−
(
tα,D−(u−, π−, f−)

)
|Γ+ = h1 on Γ+,(

tα,D−(u−, π−, f−)
)
|Γ− + L

(
TrD−u−

)
|Γ− = g2 on Γ−,

(2.4.3)

where α > 0 and λ ∈ (0, 1] are given constants. We aim to determine the unknown fields
(u+, π+,u−, π−) ∈ XRT .

Let us state and prove the well-posedness result that was obtained for the Robin-transmission
problem (2.4.3) (see also [8, Theorem 1], [56, Theorem 4.1], [63, Theorem 5.8]).

Theorem 2.4.1. Let α > 0 and λ ∈ (0, 1] be given constants. Let Assumption 1.1.7 and Assumption
2.2.1 be satisfied. Then, for all data (f+, f−,g1,h1,g2) ∈ YRT , the Poisson problem of Robin-
transmission type for the Brinkman system (2.4.3) has a unique solution

(u+, π+,u−, π−) ∈ XRT . (2.4.4)

In addition, the corresponding solution operator,

TRT : YRT → XRT , (2.4.5)

is linear and bounded, and hence, there exists a constant C ≡ C(D+,D−, α,L, λ) > 0 such that the
unique solution of (2.4.3) satisfies

||(u+, π+,u−, π−)||XRT ≤ C||(f+, f−,g1,h1,g2)||YRT . (2.4.6)

Proof. We prove this result in a similar way as to the one used in the proof of Theorem 4.1 in [56]
and Theorem 5.8 in [63]. This approach uses layer potential methods. In order to preserve the
simplicity of our arguments, let us introduce the space

Y := H
1
2
ν (Γ+)n ×H−

1
2 (Γ+)n ×H−

1
2 (Γ−)n, (2.4.7)

which will appear in the latter.
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We divide our arguments into two separate cases. The first case concerns the situation λ ∈ (0, 1)
and the second case refers to the situation λ = 1.

Case 1: Assume that λ ∈ (0, 1). Firstly, we show that our problem admits a solution, (i.e., the
existence of a solution) and we aim to construct it by using a layer potential approach. To this end,
let us seek a solution in the form

u+ = Nα,D+f+ + Wα,Γ+Φ + Vα,Γ+ϕ,

π+ = Qα,D+f+ + Qd
α,Γ+

Φ + Qs
α,Γ+

ϕ,

u− = Nα,D−f− + Wα,Γ+Φ + Vα,Γ+ϕ+ Vα,Γ−ψ,

π− = Qα,D−f− + Qd
α,Γ+

Φ + Qs
α,Γ+

ϕ+ Qs
α,Γ−ψ,

(2.4.8)

where (Φ,ϕ,ψ) ∈ Y are unknown densities and the space Y is given in relation (2.4.7).
Note that, the mapping properites of the Newtonian, simple and double layer potentials for the

Brinkman system (see Theorem 1.4.2, Theorem 1.4.4, Theorem 1.4.7) imply that (u+, π+,u−, π−) ∈
XRT .

Next, by taking into account the jump formulas for single and double layer potentials (see
relation (1.4.23) of Lemma 1.4.8) and by substitution into relation (2.4.3)3, we get(

λ

(
−1

2
I + Kα,Γ+

)
−
(

1

2
I + Kα,Γ+

))
Φ +

(
λVα,Γ+ − Vα,Γ+

)
ϕ− VΓ−,Γ+ψ = g01, (2.4.9)

and g01 is given by

g01 = g1 − λ(TrD+(Nα,D+f+)) + (TrD−(Nα,D−f−))|Γ+ . (2.4.10)

Note that, the operator

VΓ−,Γ+ : H−
1
2 (Γ−)n → H

1
2 (Γ+)n, VΓ−,Γ+ψ :=

(
TrD−

(
Vα,Γ−ψ

))
|Γ+ , (2.4.11)

is compact, as an integral operator with real analytic kernel (see [23, Theorem A.28, Statement
(ii)] which deals with the properties of integral operators with real analytic kernels) and due to the

compact embedding H1(Γ+)n ↪→ H
1
2 (Γ+)n. Also, we have g01 ∈ H

1
2
ν (Γ+)n. This assertion holds

true after the application of the Divergence Theorem while taking into account relation (1.4.13).
Now, let us take into account again the jump formulas for single and double layer potentials,

and by substitution into relation (2.4.3)4, we get

ϕ−K∗Γ−,Γ+
ψ = h01, (2.4.12)

and h01 is given by

h01 := h1 − tα,D+(Nα,D+f+,Qα,D+f+, f+) + (tα,D−(Nα,D−f−,Qα,D−f−, f−))|Γ+ . (2.4.13)

Let us notice that the operator

K∗Γ−,Γ+
: H−

1
2 (Γ−)n → H−

1
2 (Γ+)n, K∗Γ−,Γ+

ψ :=
(
tα,D−(Vα,Γ−ψ,Qα,Γ−ψ)

)
|Γ+ , (2.4.14)

is a compact operator, based on [23, Theorem A.28, Statement (ii)] and the compactness of the

embedding L2(Γ+)n ↪→ H−
1
2 (Γ+)n.
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It remains now to apply, again, the jump properties of the single-layer and double-layer potentials
for the Brinkman system (see Lemma 1.4.8) and by substitution into relation (2.4.3)5 (i.e., the Robin
boundary condition), we get the equation

(
DΓ+,Γ− + LKΓ+,Γ−

)
Φ +

(
K∗Γ+,Γ− + LVΓ+,Γ−

)
ϕ+

(
1

2
I + K∗α,Γ− + LVα,Γ−

)
ψ = g02, (2.4.15)

and g02 is given by

g02 := g2 − (tα,D−(Nα,D−f−,Qα,D−f−, f−))|Γ− −L(TrD−(Nα,D−f−))|Γ− . (2.4.16)

We emphasise the fact that the following operators

DΓ+,Γ− : H
1
2 (Γ+)n → H−

1
2 (Γ−)n, DΓ+,Γ−Φ :=

(
tα,D−(Wα,Γ+Φ,Qd

α,Γ+
Φ)
)
|Γ− ,

KΓ+,Γ− : H
1
2 (Γ+)n → H

1
2 (Γ−)n, KΓ+,Γ−Φ :=

(
TrD−

(
Wα,Γ+Φ

))
|Γ− ,

K∗Γ+,Γ− : H−
1
2 (Γ+)n → H−

1
2 (Γ−)n, K∗Γ+,Γ−ϕ :=

(
tα,D−

(
Vα,Γ+ϕ,Q

s
α,Γ+

ϕ
))
|Γ− ,

VΓ+,Γ− : H−
1
2 (Γ+)n → H

1
2 (Γ−)n, VΓ+,Γ−ϕ :=

(
TrD−

(
Vα,Γ+ϕ

))
|Γ− ,

(2.4.17)

which are present in relation (2.4.15) are compact operators. This assertion holds true if we apply
[23, Theorem A.28, Statement (ii)] and if we take into account the compactness of the embeddings

H1(Γ+)n ↪→ H
1
2 (Γ+)n and L2(Γ+)n ↪→ H−

1
2 (Γ+)n.

Consequently, the Robin-transmission problem (2.4.3) reduces to the equations given by relations
(2.4.9), (2.4.12), (2.4.15). Let us write these equations in matrix form as follows

A(Φ,ϕ,ψ)t = (g01,h01,g02) in Y, (2.4.18)

in the unknown (Φ,ϕ,ψ)t ∈ Y. The matrix operator A : Y → Y involved in relation (2.4.18) is
given by

A :=

λ (−1
2
I + Kα,Γ+

)
−
(

1
2
I + Kα,Γ+

)
λVα,Γ+ − Vα,Γ+ −VΓ−,Γ+

0 I −K∗Γ−,Γ+

DΓ+,Γ− + LKΓ+,Γ− K∗Γ+,Γ−
+ LVΓ+,Γ−

1
2
I + K∗α,Γ− + LVα,Γ−

 . (2.4.19)

Let us write the matrix operator (2.4.19) in the following equivalent form,

A :=

−λ+1
2
I + (λ− 1)Kα,Γ+ (λ− 1)Vα,Γ+ −VΓ−,Γ+

0 I −K∗Γ−,Γ+

DΓ+,Γ− + LKΓ+,Γ− K∗Γ+,Γ−
+ LVΓ+,Γ−

1
2
I + K∗α,Γ− + LVα,Γ−

 . (2.4.20)

We claim that the matrix operator A : Y→ Y is an isomorphism. In order to prove this claim,
we will prove operator A : Y→ Y is a Fredholm operator of index zero, for λ ∈ (0, 1] and that it is
also an injective operator.

Let us proceed by showing, first of all, that A : Y→ Y is a Fredholm operator of index zero. A
simple rearrangement allows us to rewrite operator (2.4.20) in the following form

A :=

(λ− 1)
(

1
2

1+λ
1−λI + Kα,Γ+

)
(λ− 1)Vα,Γ+ −VΓ−,Γ+

0 I −K∗Γ−,Γ+

DΓ+,Γ− + LKΓ+,Γ− K∗Γ+,Γ−
+ LVΓ+,Γ−

1
2
I + K∗α,Γ− + LVα,Γ−

 . (2.4.21)
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It is immediate that the matrix operator A : Y→ Y is well-defined, linear and continuous.
Let us now recall the definition of the complementary layer-potential operators (see relation

(1.4.26)) and with their help we are decompose the matrix operator (2.4.21) as

A = A0 + AC : Y→ Y, (2.4.22)

where the operators A0 : Y→ Y and AC : Y→ Y are defined by

A0 :=

(λ− 1)
(

1
2

1+λ
1−λI + KΓ+

)
(λ− 1)VΓ+ 0

0 I 0
0 0 1

2
I + K∗Γ− + LVΓ−

 (2.4.23)

and

AC :=

 (λ− 1)Kα,0,Γ+ (λ− 1)Vα,0,Γ+ −VΓ−,Γ+

0 0 −K∗Γ−,Γ
DΓ+,Γ− + LKΓ+,Γ− K∗Γ+,Γ−

+ LVΓ+,Γ− K∗α,0,Γ− + LVα,0,Γ−

 . (2.4.24)

Let us analyze the properties of the operator A0 : Y→ Y given by relation (2.4.23). Let us take
into account the fact the operator

1

2

1 + λ

1− λ
I + KΓ+ : H

1
2 (Γ+)n → H

1
2 (Γ+)n, (2.4.25)

is a Fredholm operator of index zero (see, e.g., [85, Corollary 9.1.2], [63, Lemma 5.3]). Next, by the
second statement of Lemma 1.3.8, the operator

VΓ+ : H−
1
2 (Γ+)n → H

1
2 (Γ+)n, (2.4.26)

is also a Fredholm operator of index zero. Moreover, the operator

1

2
I + K∗Γ− + LVΓ− : H−

1
2 (Γ−)n → H−

1
2 (Γ−)n, (2.4.27)

is another Fredholm operator of index zero, since

1

2
I + K∗Γ− : H−

1
2 (Γ−)n → H−

1
2 (Γ−)n (2.4.28)

is Fredholm operator of index zero and the operator

LVΓ− : H−
1
2 (Γ−)n → H−

1
2 (Γ−)n (2.4.29)

is a compact operator in view of the compact embeddings H
1
2 (Γ−)n ↪→ L2(Γ−)n and L2(Γ−)n ↪→

H−
1
2 (Γ−)n (for additional details see, e.g., [56, Theorem 4.1]).
By the arguments in the former, we have shown that the operators (2.4.25), (2.4.26) and (2.4.27)

are Fredholm operators of index zero and it follows that the operator A0 : Y → Y is Fredholm of
index zero.

Let us now focus on the operator AC : Y → Y provided in relation (2.4.24). In view of the
compactness of the complementary layer-potential operators Kα,0,Γ+ , Vα,0,Γ+ , K∗α,0,Γ− , Vα,0,Γ− (see
relation (1.4.27) of Lemma 1.4.9) and also the compactness of the operators (2.4.11), (2.4.14) and
(2.4.17), we have that, in turn, the operator AC : Y→ Y is a compact operator.

Since our operator A : Y → Y is a sum of a Fredholm operator of index zero and a compact
operator, we deduce that A : Y→ Y is a Fredholm operator of index zero, for λ ∈ (0, 1).
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In order to fully prove our claim, we show that the operator A : Y → Y is injective, or equiva-
lently, we show that the kernel of the operator A : Y→ Y is the null space, i.e.,

Ker {A : Y→ Y} = {0}. (2.4.30)

To achieve this, we consider (Φ0,ϕ0,ψ0)t ∈ Ker {A : Y→ Y}. Then, we construct the fields
(u0

+, π
0
+) and (u0

−, π
0
−) as follows

u0
+ := Wα,Γ+Φ0 + Vα,Γ+ϕ0 π0

+ := Qd
α,Γ+

Φ0 + Qs
α,Γ+

ϕ0

u0
− := Wα,Γ+Φ0 + Vα,Γ+ϕ0 + Vα,Γ−ψ0 π0

− := Qd
α,Γ+

Φ0 + Qs
α,Γ+

ϕ0 + Qs
α,Γ−ψ0.

(2.4.31)

Let us note that these fields (u0
+, π

0
+) and (u0

−, π
0
−) satisfy

λ(TrD+u0
+) =

(
TrD−u0

−
)
|Γ+ a.e. on Γ+,

tα,D+(u0
+, π

0
+) =

(
tα,D−(u0

−, π
0
−)
)
|Γ+ a.e. on Γ+,(

tα,D−(u0
−, π

0
−)
)
|Γ− + L

(
TrD−u0

−
)
|Γ− = 0, a.e. on Γ−.

(2.4.32)

Now, we apply the Green formula (1.2.18) to the fields introduced in relation (2.4.31) and we
get

2
〈
E(u0

+),E(u0
+)
〉
D+

+ α
〈
u0

+,u
0
+

〉
D+

=
〈
tα,D+(u0

+, π
0
+),TrD+u0

+

〉
Γ+
,

2
〈
E(u0

−),E(u0
−)
〉
D−

+ α
〈
u0
−,u

0
−
〉
D−

=−
〈(

tα,D−(u0
−, π

0
−)
)
|Γ+ ,

(
TrD−u0

−
)
|Γ+

〉
Γ+

+
〈(

tα,D−(u0
−, π

0
−)
)
|Γ− ,

(
TrD−u0

−
)
|Γ−
〉

Γ−
.

(2.4.33)

Let us now multiply relation (2.4.33)1 by λ and we add the resulting quantities to relation
(2.4.33)2 and by using relations (2.4.32)1, (2.4.32)2 and (2.4.32)3 we have

λ
(

2
〈
E(u0

+),E(u0
+)
〉
D+

+ α
〈
u0

+,u
0
+

〉
D+

)
+ 2

〈
E(u0

−),E(u0
−)
〉
D−

+ α
〈
u0
−,u

0
−
〉
D−

= −
〈
L
(
TrD−u0

−
)
|Γ− ,

(
TrD−u0

−
)
|Γ−
〉

Γ−
.

(2.4.34)

Note that, the left hand side of the equality (2.4.34) is non-negative and the right hand side of
the equality (2.4.34) is non-positive (due to the fact that L satisfies condition (2.2.1)). This leads
to the fact that

λ
(

2
〈
E(u0

+),E(u0
+)
〉
D+

+ α
〈
u0

+,u
0
+

〉
D+

)
+ 2

〈
E(u0

−),E(u0
−)
〉
D−

+ α
〈
u0
−,u

0
−
〉
D−

= 0. (2.4.35)

Consequently, we get u0
± = 0 in D±, which, in turn, implies that π0

± = c0
±, where c0

± ∈ R are
constants. Also, relations (2.4.32)2 and (2.4.32)3 imply c0

+ = c0
− = 0. Hence, we have that

u0
± = 0, in D±, π

0
± = 0 in D±. (2.4.36)

Let us now apply relation (1.4.23) of Lemma 1.4.8 in order to get

TrD−u0
+ = Φ0, TrD+u0

− = −Φ0, a.e. on Γ+,

tα,D−(u0
+, π

0
+) = −ϕ0, tα,D+(u0

−, π
0
−) = ϕ0 a.e. on Γ+.

(2.4.37)

In addition, the membership Φ0 ∈ H
1
2
ν (Γ+)n implies that (Wα,Γ+Φ0)(x) = O(|x|−n) as |x| → ∞,

(see [106, Lemma 2.12]). Let us mention that the single-layer potential Vα,Γ+ϕ0 behaves in a similar
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manner at infinity (see [106, Lemma 2.12]). Hence, u0
+(x) = O(|x|−n) as |x| → ∞. Consequently,

the fields (u0
+, π

0
+) satisfy the Green formula (1.2.18) corresponding to the domain Rn \ D+. Let

us apply the Green formula (1.2.18) for the fields (u0
+, π

0
+) in Rn \ D+, while taking into account

relation (2.4.37). We get

2
〈
E(u0

+),E(u0
+)
〉
Rn\D+

+ α
〈
u0

+,u
0
+

〉
Rn\D+

= −
〈
tα,ν,Rn\D+

(u0
+, π

0
+),TrRn\D+

u0
+

〉
Γ+

= 〈ϕ0,Φ0〉Γ+
.

(2.4.38)

Moreover, we apply the Green formula (1.2.18) for (u0
−, π

0
−) in D+, while taking into account

relation (2.4.37) and we obtain

2
〈
E(u0

−),E(u0
−)
〉
D+

+ α
〈
u0
−,u

0
−
〉
D+

=
〈
tα,D+(u0

−, π
0
−),TrD+u0

−
〉

Γ+
= −〈ϕ0,Φ0〉Γ+

. (2.4.39)

Let us now add relations (2.4.38) and (2.4.39). We obtain the following

2
〈
E(u0

+),E(u0
+)
〉
Rn\D+

+ α
〈
u0

+,u
0
+

〉
Rn\D+

+ 2
〈
E(u0

−),E(u0
−)
〉
D+

+ α
〈
u0
−,u

0
−
〉
D+

= 0, (2.4.40)

which shows that
u0

+ = 0, π0
+ = 0 in Rn \ D+, u0

− = 0, π0
− = 0 in D+. (2.4.41)

Let us stress the fact that π0
+ = 0 in Rn \D+ is a consequence of the fact that the pair (u0

+, π
0
+)

satisfies the homogeneous Brinkman equation in Rn \D+ and also the fact that π0
+(x) = O(|x|1−n)

as |x| → ∞ (see [54, Relations (3.12), (3.13)]).
Now, by relations (2.4.37) and (2.4.41) we are able to deduce that

Φ0 = 0, ϕ0 = 0. (2.4.42)

Relation (2.4.42) together with the fact that u0
− = 0 in D+, implies that Vα,Γ−ψ0 = 0 in D+. The

continuity of the single layer potential for the Brinkman system on Γ− (see Theorem 1.4.4) implies
that

Vα,Γ−ψ0 = 0 in Rn \ D+, (2.4.43)

while the behavior at infinity of the single layer pressure potential (namely, that Qs
α,Γ−ψ0 =

O(|x|1−n) for n ≥ 2, as it can be seen in relation (3.12) of [54]) leads to the fact that

Qs
α,Γ−ψ0 = 0 in Rn \ D+. (2.4.44)

Therefore, by relations (2.4.43) and (2.4.44) we get

tα,D+(Vα,Γ−ψ0,Q
s
α,Γ−ψ0) = 0, on Γ−, tα,ν,Rn\D+

(Vα,Γ−ψ0,Q
s
α,Γ−ψ0) = 0, on Γ−. (2.4.45)

Let us subtract (2.4.45)2 from (2.4.45)1 and by using the jump formulas (1.4.23) of Lemma 1.4.8
we obtain

ψ0 = 0. (2.4.46)

To conclude our argument, we have that, in view of relations (2.4.42) and (2.4.46), we have that
property (2.4.30) is satisfied, namely the kernel of the matrix operator A : Y→ Y is the null space,
or equivalently, A : Y→ Y is injective.

It follows that our matrix operator A : Y → Y is an isomorphism and equation (2.4.18) has
a unique solution (Φ,ϕ,ψ)t ∈ Y. The unique solution of the equation (2.4.18) together with the
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layer potential representations provided in relation (2.4.8) give a solution of the Robin-transmission
problem (2.4.3) in the space XRT .

Next, we are concerned about the uniqueness of the solution of the problem (2.4.3). In order
to show this property, let us assume that the problem (2.4.3) admits two solutions and we denote
their difference by (v0

±, π
0
±). Hence, the fields (v0

+, π
0
+,v

0
−, π

0
−) ∈ XRT satisfy

∆v0
± + αv0

± −∇p0
± = 0 in D±,

div v0
± = 0 in D±,

λ(TrD+v0
+)−

(
TrD−v0

−
)
|Γ+ = 0 on Γ+,

tα,D+(v0
+, π

0
+)−

(
tα,D−(v0

−, π
0
−)
)
|Γ+ = 0 on Γ+,(

tα,D−(v0
−, π

0
−)
)
|Γ− + L

(
TrD−v0

−
)
|Γ− = 0 on Γ−,

(2.4.47)

i.e., the homogenenous version of (2.4.3).

Let us now use Green’s formula (1.2.18) in the domains D± in order to get the following relations

2
〈
E(v0

+),E(v0
+)
〉
D+

+ α
〈
v0

+,v
0
+

〉
D+

=
〈
tα,D+(v0

+, π
0
+),TrD+v0

+

〉
Γ+

2
〈
E(v0

−),E(v0
−)
〉
D−

+ α
〈
v0
−,v

0
−
〉
D−

= −
〈
tα,D−(v0

−, π
0
−)|Γ+ ,

(
TrD−v0

−
)
|Γ+

〉
Γ+

+
〈(

tα,D−(v0
−, π

0
−)
)
|Γ− ,

(
TrD−v0

−
)
|Γ−
〉

Γ−
.

(2.4.48)

Let us multiply relation (2.4.48)1 by λ and to the result we will add (2.4.48)2, while taking into
account the boundary conditions in problem (2.4.47). After computations, we get

λ
(

2
〈
E(v0

+),E(v0
+)
〉
D+

+ α
〈
v0

+,v
0
+

〉
D+

)
+ 2

〈
E(v0

−),E(v0
−)
〉
D−

+ α
〈
v0
−,v

0
−
〉
D−

= −
〈
L
(
TrD−v0

−
)
|Γ− ,

(
TrD−v0

−
)
|Γ−
〉

Γ−
.

(2.4.49)

Let us note that, left hand side of (2.4.49) is non-negative and since L satisfies condition (2.2.1),
the right hand side of (2.4.49) is non-positive. It follows that

v0
± = 0, π0

± = c0
± ∈ R in D±. (2.4.50)

Now, in view of relation (2.4.50) and the boundary conditions in (2.4.47), we get c0
± = 0 in D±.

This shows the uniqueness of the solution of the problem (2.4.3).

Finally, the continuity of the potentials involved in relation (2.4.8) implies the existence of some
constant C ≡ C(D+,D−, α,L, λ) > 0, such that the solution (u+, π+,u−, π−) ∈ XRT of the problem
(2.4.3) satisfies (2.4.6).

Case 2: Assume that λ = 1. In this particular case, the matrix operator A in (2.4.20) becomes

A =

 −I 0 −VΓ−,Γ+

0 I −K∗Γ−,Γ+

DΓ+,Γ− + LKΓ+,Γ− K∗Γ+,Γ−
+ LVΓ+,Γ−

1
2
I + K∗α,Γ− + LVα,Γ−

 . (2.4.51)

By using similar steps as presented in the case λ ∈ (0, 1), we are able to prove that the Robin-
transmission problem (2.4.3) admits a unique solution which depends continuously on the given
data for λ = 1. This concludes our proof.
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2.4.1 The Brinkman system and a related Limiting Robin-Transmission
problem in the case λ = 0

In the latter, let Assumption 1.1.7 be satisfied. We dedicate our efforts to the treatment of
the Robin-transmission problem of the Brinkman system (2.4.3) in the special case λ = 0. This
particular choice leads to the problem (2.4.52) which contains a special transmission condition on
the boundary Γ+, namely, that it contains just a trace of the unknown velocity u− on Γ+. Hence,
we will call problem (2.4.52) the limiting Robin-transmission problem for the Brinkman system.
We treat this case separately due to the fact that the Robin-transmission problem (2.4.3) is not the
same problem as the limiting Robin-transmission problem (2.4.52). These problems are different
because they have different transmission conditions on the interior boundary. The analysis of the
Robin-transmission problem for the Brinkman system (2.4.52) is very useful as its well-posedness
provides the well-posedness of the Dirichlet-Robin problem for the same system. This analysis
comes from the idea to find well-posedness results for Dirichlet, Neumann, and Robin problems,
and of their combination, from well-posedness results for transmission problems (see [63]).

We consider now λ = 0 in our Robin-transmission problem (2.4.3) and we obtain the following
limiting transmission problem

∆u± − αu± −∇π± = f±|D± in D±,

div u± = 0 in D±,(
TrD−u−

)
|Γ+ = −g1 on Γ+,

tα,D+(u+, π+, f+)−
(
tα,D−(u−, π−, f−)

)
|Γ+ = h1 on Γ+,(

tα,D−(u−, π−, f−)
)
|Γ− + L

(
TrD−u−

)
|Γ− = g2 on Γ−,

(2.4.52)

where α > 0 is a given constant. We aim to determine the unknown fields (u+, π+,u−, π−) ∈ XRT .
In this special case, we have obtained the following well-posedness result (see also [8, Theorem

2], [56, Theorem 4.1], [63, Theorem 6.1]).

Theorem 2.4.2. Let α > 0 be a given constant. Let Assumption 1.1.7 and Assumption 2.2.1
be satisfied. Then, for all data (f+, f−,g1,h1,g2) ∈ YRT , the limiting Poisson problem of Robin-
transmission type (2.4.52) has a unique solution

(u+, π+,u−, π−) ∈ XRT . (2.4.53)

In addition, the corresponding solution operator,

Tlim : YRT → XRT , (2.4.54)

is linear and bounded, and hence, there exists a constant C ≡ C(D+,D−, α,L, λ) > 0 such that the
unique solution of (2.4.52) satisfies

||(u+, π+,u−, π−)||XRT ≤ C||(f+, f−,g1,h1,g2)||YRT . (2.4.55)

2.4.2 The Brinkman system and a related Robin-Dirichlet problem

In this subsection, we aim to emphasize the special role that a transmission-type problem
fulfills. In the latter, let α > 0 be a given constant and let Assumption 1.1.7 be satisfied. Let us
mention that, we will be focusing on the Lipschitz domain D− and we use similar arguments to those
presented in [63, p. 4581]. We point out the fact that the problem (2.4.52) is well-posed, as it was
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established in Theorem 2.4.2. This means that we get a unique solution (u+, π+,u−, π−) ∈ XRT , of
the problem (2.4.52). This solution produces a pair (u−, π−) ∈ H1

div(D−)n × L2(D−) that satisfies
another boundary value problem, namely, the following Robin-Dirichlet problem for the Brinkman
system 

∆u− − αu− −∇π− = f−|D− in D−,

div u− = 0 in D−,

(TrD−u−)|Γ+ = −g1 on Γ+,

(tα,D−(u−, π−, f−))|Γ− + L(TrD−u)|Γ− = g2 on Γ−.

(2.4.56)

In other words, we are able to determine the solution to a boundary value problem (namely, prob-
lem (2.4.56)) by extracting it from the solution of a transmission-type problem (namely, problem
(2.4.52)). Consequently, the pair (u−, π−) is a solution of the Robin-Dirichlet problem (2.4.56).

Moreover, an uniqueness argument, similar to that presented in the proof of Theorem 2.4.2,
will lead to the fact that, the Robin-Dirichlet problem for the Brinkman system (2.4.56) is, in turn,
well-posed. Under the assumption of Theorem 2.4.2, we obtain the following result (see [8, Corollary
1], [63, p. 4581]).

Corollary 2.4.3. The Robin-Dirichlet problem for the Brinkman system (2.4.56) has a unique
solution (u−, π−) ∈ H1

div(D−)n × L2(D−), for n ∈ N, n ≥ 2.
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3

Nonlinear Boundary Value Problems of
Transmission-type related to the Navier-Stokes

and Darcy-Forchheimer-Brinkman systems

This purpose of this chapter is to treat nonlinear transmission-type problems which contain a
generalized version of the Darcy-Forchheimer-Brinkman system or the classical Darcy-Forchheimer-
Brinkman system (see relation (3.1.1) in Lipschitz domains in Euclidean setting (see Assumption
1.1.6 and Assumption 1.1.7). All these problems are important for their practical applications (see,
e.g., [37], [86]). The content of this chapter follows the results that were obtained in the papers [4],
[5], [8].

Let us briefly describe the content of this chapter. We give existence and uniqueness results
for the following boundary problems. First of all, we analyze Poisson problem of transmission-type
for the generalized Darcy-Forchheimer-Brinkman and Stokes systems in complementary Lipschitz
domains in R3. Next, we investigate the Poisson problem of transmission-type for the generalized
Darcy-Forchheimer-Brinkman and Brinkman systems in complementary Lipschitz domains in R3.
Lastly, we have the the Poisson problem of Robin-transmission-type for the Darcy-Forchheimer-
Brinkman system in Euclidean setting provided by Assumption 1.1.7.

The well-posedness results for the linear problems analyzed in Chapter 2 introduce their solution
operators, which are linear and continuous. Taking them into account together with the nonliniari-
ties of the PDEs considered in this chapter (Navier-Stokes equations, Darcy-Forcheimer-Brinkman
equations), we reduce the analysis of the boundary value problems for such nonlinear PDEs to the
study of certain nonlinear operators and of their fixed points in some special cases. Such nonlinear
operators appear from the composition of the linear operators mentioned above and the operators
that describe the nonlinearities of the nonlinear PDEs. Their fixed points will provide the solutions
of our nonlinear boundary problems (see also [70]).

Let us also take note of some works that concern the investigation of boundary problems which
involve nonlinear PDE systems. For example, Choe and Kim [17] have obtained the existence and
regularity of solutions for the non-homogeneous Dirichlet problem for the Navier-Stokes system
in a bounded Lipschitz domain in R3, whose boundary data possesses minimal regularity. Kohr,
Lanza de Cristoforis and Wendland [55] have obtained an existence and uniqueness result for the
Dirchlet problem for the semilinear Darcy-Forchheimer-Brinkman system in a bounded Lipschitz
domain in Rn, n ≤ 4. The authors in [52] have obtained an existence and uniqueness result for a
transmission-type problem for the Darcy-Forchheimer-Brinkman and Stokes systems in R3. Also,
in [61], the authors have obtained the existence of solutions of a Dirichlet-transmission problem for
the anisotropic Navier-Stokes system in Lipschitz domains in Rn, n = 2, 3 (see also [14], [68], [71]).
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3.1 The generalized Darcy-Forchheimer-Brinkman system

and related results

In this section, let us consider D ⊂ R3 a bounded Lipschitz domain, unless specified otherwise.
We present a generalized version of the Darcy-Forchheimer-Brinkman system, which is given by

∆v− Pv− k|v|v− β(v · ∇)v−∇p = g in D, div v = 0 in D, (3.1.1)

where P ∈ L∞(D)3×3 such that condition (1.2.22) holds and k, β : D → R+ are given functions,
such that k, β ∈ L∞(D,R+), i.e., essentially bounded, non-negative functions defined on D (for
additional details, see also [41]). We have the following useful remarks.

Remark 3.1.1. For P ≡ αI and α, k, β > 0 given constants, the system (3.1.1) becomes the
classical Darcy-Forchheimer-Brinkman system.

Remark 3.1.2. For P ≡ 0, k = 0 and for β > 0 a given constant, the system (3.1.1) becomes the
well-known Navier-Stokes system.

Now, let us state and prove a lemma that we will employ in the proofs of our well-posedness
results of this chapter. The lemma reads as follows (see also, [52, Lemma 5.1]).

Lemma 3.1.3. Let D ⊂ Rn, n = 2, 3, be a bounded Lipschitz domain and let k, β : D → R+ such
that k, β ∈ L∞(D,R+). Let

Jk,β,D(u) := E̊(k|u|u + β(u · ∇)u), (3.1.2)

where E̊ is the extension by zero operator outside D. Then, the nonlinear operator

Jk,β,D : H1
div(D)n → H̃−1(D)n, (3.1.3)

is continuous and bounded, in the sense that there exists a constant c0 = c0(D, k, β) > 0 such that

||Jk,β,D(u)||H̃−1(D)n ≤ c0||u||2H1(D)n . (3.1.4)

In addition, the following Lipschitz-like relation

||Jk,β,D(u)− Jk,β,D(v)|| ≤ c0(||u||H1(D)n + ||v||H1(D)n)||u− v||H1(D)n , (3.1.5)

holds, where c0 = c0(D, k, β) > 0 is the constant that is present in relation (3.1.4).

3.2 Transmission problem for the generalized Darcy-

Forchheimer-Brinkman and classical Stokes systems in

complementary Lipschitz domains in R3

The purpose of this section is to provide a well-posedness result, for a transmission-type problem,
which was obtained in the setting of Assumption 1.1.6 for n = 3, i.e., complementary Lipschitz
domains in R3. We have considered a generalized version of the Darcy-Forchheimer-Brinkman
system in the bounded Lipschitz domain D+ and the Stokes system in the complementary Lipschitz
set D−. Also let Assumption 2.2.1 be satisfied, for n = 3.
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Let us recall the space in which we seek our solution, that is,

Xw := H1
div(D+)3 × L2(D+)×H1

div(D−)3 × L2(D−) (3.2.1)

and the space of given data,

Yw := H̃−1(D+)3 × H̃−1(D−)3 ×H
1
2 (Γ)3 ×H−

1
2 (Γ)3. (3.2.2)

We study the following transmission problem of Poisson type for the generalized Darcy-
Forchheimer-Brinkman and Stokes systems,

∆u+ − Pu+ − k|u+|u+ − β(u+ · ∇)u+ −∇π+ = f+|D+ in D+,

∆u− −∇π− = f−|D− in D−,

div u± = 0 in D±,

TrD+u+ − TrD−u− = g on Γ,

tP,D+(u+, π+, f+ + E̊+(k|u+|u+ + β(u+ · ∇)u+))

− tD−(u−, π−, f−) + LTrD+u+ = h on Γ,

(3.2.3)

and we aim to determine the unknown fields (u+, π+,u−, π−) ∈ Xw. Once again, since the Stokes
system appears in the unbounded Lipschitz domain D−, we must work with the weighted space
H1

div(D−)3, which is included in the solution space Xw.
The following result regarding the well-posedness of the transmission problem (3.2.3) was ob-

tained, for u∞ ∈ R3 a given constant (see [5, Theorem 3.3] see also [52, Theorem 5.2] in the case
k, β > 0, P ≡ αI, where α > 0 is a constant).

Theorem 3.2.1. Let Assumption 1.1.6 and Assumption 2.2.1 be satisfied, for n = 3. Let P ∈
L∞(D+)3×3 such that condition (1.2.22) holds. Let u∞ ∈ R3 be a constant vector. Then, there exist
two constants

ξ = ξ(D+,D−,P , k, β,L) > 0, η = η(D+,D−,P , k, β,L) > 0, (3.2.4)

such that for all given (f+, f−,g,h,u∞) ∈ Yw × R3 that satisfy

||(f+, f−,g,h,u∞)||Yw×R3 ≤ ξ, (3.2.5)

the Poisson problem of transmission-type for the Darcy-Forchheimer-Brinkman and Stokes systems
(3.2.3) has a unique solution (u+, π+,u−, π−) ∈ Xw and

||(u+, π+,u− − u∞, π−)||Xw ≤ η. (3.2.6)

In addition, the solution depends continuously on the given data and satisfies the following estimate

||(u+, π+,u− − u∞, π−)||Xw ≤ C0||(f+, f−,g,h,u∞)||Yw×R3 , (3.2.7)

where C0 = C0(D+,D−,P ,L) > 0 is a constant and u− − u∞ vanishes at infinity in the sense of
Leray.

We end this section by stating some important remarks which show the particular situations
that are also treated by Theorem 3.2.1.

Remark 3.2.2. In the case k = 0 and β : D+ → R+ such that β ∈ L∞(D+,R+), Theorem 3.2.1 gives
a well-posedness result for the nonlinear transmission problem for the generalized Navier-Stokes and
Stokes systems.

Remark 3.2.3. In the case k : D+ → R+ such that k ∈ L∞(D+,R+) and β = 0, Theorem 3.2.1 gives
a well-posedness result for a semilinear transmission problem for a semilinear Darcy-Forchheimer-
Brinkman system and Stokes system.
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3.3 Transmission problem for the generalized Darcy-

Forchheimer-Brinkman and classical Brinkman sys-

tems in complementary Lipschitz domains in R3

In this section, our goal is to provide a well-posedness result, for a transmission-type problem,
which was obtained in the setting of Assumption 1.1.6 for n = 3, i.e., complementary Lipschitz
domains in R3. We have considered a generalized version of the Darcy-Forchheimer-Brinkman
system in the bounded Lipschitz domain D+ and the Brinkman system in the complementary
Lipschitz set D−. Also, let Assumption 2.2.1 be satisfied, for n = 3.

Let us recall the space

XB := H1
div(D+)3 × L2(D+)×H1

div(D−)3 ×M(D−) (3.3.1)

that is, the space in which we seek our solution and

YB := H̃−1(D+)3 × H̃−1(D−)3 ×H
1
2 (Γ)3 ×H−

1
2 (Γ)3, (3.3.2)

the space of given data. Note that M(D−) is the space provided by Definition 2.1.1.
Since we are dealing with the Brinkman system in the exterior Lipschitz domain D− (see As-

sumption 1.1.6 in the case n = 3), it follows that we are able to use the classical Sobolev space
H1

div(D−)3, instead of the weighted Sobolev space H1
div(D−)3, as the space in which we seek the ve-

locity field in D−. This is due to the behavior of the fundamental solution of the Brinkman system
at infinity, in the case n = 3.

Now, we consider the transmission problem for the generalized Darcy-Forchheimer-Brinkman
and classical Brinkman systems, which is given by

∆u+ − Pu+ − k|u+|u+ − β(u+ · ∇)u+ −∇π+ = f+|D+ in D+,

∆u− − αu− −∇π− = f−|D− in D−,

div u± = 0 in D±,

TrD+u+ − TrD−u− = g on Γ,

tP,D+(u+, π+, f+ + E̊+(k|u+|u+ + β(u+ · ∇)u+))− tα,D−(u−, π−, f−)

+ LTrD+u+ = h on Γ,

(3.3.3)

in the unknown fields (u+, π+,u−, π−) ∈ XB.
The well-posedness result that we have obtained is as follows (see e.g., [4, Theorem 3.2], and

[52, Theorem 5.2] in the case P = αI, where α, k, β > 0 are constants).

Theorem 3.3.1. Let α > 0 be a given constant. Let Assumption 1.1.6 and Assumption 2.2.1 be
satisfied, for n = 3. Let P ∈ L∞(D+)3×3 such that condition (1.2.22) holds. Then, there exist two
constants,

ξ = ξ(D+,D−,P , k, β,L) > 0 η = η(D+,D−,P , k, β,L) > 0 (3.3.4)

such that, for all given data (f+, f−,g,h) ∈ YB that satisfy the condition

||(f+, f−,g,h)||YB ≤ ξ, (3.3.5)

the Poisson problem of transmission-type for the generalized Darcy-Forchheimer-Brinkman and
Stokes systems (3.3.3) has a unique solution (u+, π+,u−, π−) ∈ XB such that

||u+||H1
div(D+)3 ≤ η. (3.3.6)

54



Chapter 3. Nonlinear Transmission Problems

In addition, the solution depends continuously on the given data, which means that there exists a
given constant C0 = C0(D+,D−,P ,L) > 0 such that

||(u+, π+,u−, π−)||XB ≤ C0||(f+, f−,g,h)||YB . (3.3.7)

We end this section by stating some useful remarks that are derived from our well-posedness
result, that is, Theorem 3.3.1.

Remark 3.3.2. If k = 0 and β : D+ → R+ such that β ∈ L∞(D+,R+) in Theorem 3.3.1, then we get
the well-posedness result for the nonlinear transmission problem for the generalized Navier-Stokes
and Brinkman systems in complementary Lipschitz domains in R3.

Remark 3.3.3. If k : D+ → R+ such that k ∈ L∞(D+,R+) and β = 0 in Theorem 3.3.1, then we get
the well-posedness result for a semilinear transmission problem for a semilinear Darcy-Forchheimer-
Brinkman system and the Brinkman system in complementary Lipschitz domains in R3.

3.4 On a Robin-Transmission problem for the Darcy-

Forchheimer-Brinkman system

In this section, we give an existence and uniqueness result for a transmission-type problem,
which was obtained in the setting of Assumption 1.1.7. This particular transmission-type problem
that we study will be called the Robin-transmission problem for the Darcy-Forchheimer-Brinkman
system (see problem (3.4.3)). In addition, let λ ∈ (0, 1] be a constant and let Assumption 2.2.1 be
satisfied, for n = 2, 3.

Let us recall the space in which we seek our solution,

XRT := H1
div(D+)n × L2(D+)×H1

div(D−)n × L2(D−), (3.4.1)

and the space of given data,

YRT := H̃−1(D+)n × H̃−1(D−)n ×H
1
2
ν (Γ+)n ×H−

1
2 (Γ+)n ×H−

1
2 (Γ−)n. (3.4.2)

The Robin-transmission problem for the Darcy-Forchheimer-Brinkman system is given by

∆u± − αu± − k|u±|u± − β(u± · ∇)u± −∇π± = f±|D± in D±,

div u± = 0 in D±,

λ
(
TrD+u+

)
−
(
TrD−u−

)
|Γ+ = g1 on Γ+,

tα,D+(u+, π+, f+ + E̊+(k|u+|u+ + β(u+ · ∇)u+))

−
(
tα,D−(u−, π−, f− + E̊−(k|u−|u− + β(u− · ∇)u−))

)
|Γ+ = h1 on Γ+,(

tα,D−(u−, π−, f− + E̊−(k|u−|u− + β(u− · ∇)u−))
)
|Γ−

+ L
(
TrD−u−

)
|Γ− = g2 on Γ−,

(3.4.3)

in the unknown fields (u+, π+,u−, π−) ∈ XXT . Note that E̊± is the extension by zero-operator
outside D±.

We have obtained the following well-posedness result (see also, [52, Theorem 5.2]).

55



Chapter 3. Nonlinear Transmission Problems

Theorem 3.4.1. Let α > 0, k, β ∈ R∗ and λ ∈ (0, 1] be given constants. Let Assumption 1.1.7 and
Assumption 2.2.1 be satisfied, for n = 2, 3. Then, there exist two constants,

ξ ≡ ξ(D+,D−, α, k, β, λ,L) > 0, η ≡ η(D+,D−, α, k, β, λ,L) > 0, (3.4.4)

such that, for every (f+, f−,g1,h1,g2) ∈ YRT , which satisfies the condition

||(f+, f−,g1,h1,g2)||YRT ≤ ξ, (3.4.5)

the Poisson problem of Robin-transmission type (3.4.3) for the Darcy-Forchheimer-Brinkman system
has a unique solution (u+, π+,u−, π−) ∈ XRT with the property

||(u+, π+,u−, π−)||XRT ≤ η. (3.4.6)

Moreover, there exists a constant C0 ≡ C0(D+,D−, α,L, λ) > 0 such that the unique solution
satisfies

||(u+, π+,u−, π−)||XRT ≤ C0||(f+, f−,h1,h1,g2)||YRT . (3.4.7)

Proof. We prove this result by employing similar arguments to those presented in the proof of [52,
Theorem 5.2]. We divide our arguments into three steps.

Step 1. We will show that a solution of the problem (3.4.3) exists. We rewrite the nonlinear
transmission problem (3.4.3) as

∆u± − αu± −∇π± = f±|D± + Jk,β,D±(u±)|D± in D±,

div u± = 0 in D±,

λ
(
TrD+u+

)
−
(
TrD−u−

)
|Γ+ = g1 on Γ+,

tα,D+(u+, π+, f+ + Jk,β,D±(u+))−
(
tα,D−(u−, π−, f− + Jk,β,D±(u−))

)
|Γ+

= h1 on Γ+,(
tα,D−(u−, π−, f− + Jk,β,D±(u−))

)
|Γ− + L

(
TrD−u−

)
|Γ− = g2 on Γ−.

(3.4.8)

Next, we aim to construct a nonlinear operator H that maps a closed ball Bη of the space
H1

div(D+)n×H1
div(D−)n into itself, and also is a contraction on Bη. Hence, the unique fixed point of

H will provide a solution of the problem (3.4.8).
Let us construct our nonlinear operator in the following way. Recall that the given data

(f+, f−,g1,h1,g2) ∈ YRT which appears in (3.4.8) is fixed. In addition, we fix

(u+,u−) ∈ H1
div(D+)n ×H1

div(D−)n. (3.4.9)

Let us consider the following linear Poisson problem of transmission type for the Brinkman system
in the unknowns (u0

+, π
0
+,u

0
−, π

0
−)

∆u0
± − αu0

± −∇π0
± = f±|D± + Jk,β,D±(u±)|D± in D±,

div u0
± = 0 in D±,

λ
(
TrD+u0

+

)
−
(
TrD−u0

−
)
|Γ+ = g1 on Γ+,

tα,D+(u0
+, π

0
+, f+ + Jk,β,D±(u+))−

(
tα,D−(u0

−, π
0
−, f− + Jk,β,D±(u−))

)
|Γ+

= h1 on Γ+,(
tα,D−(u0

−, π
0
−, f− + Jk,β,D±(u−))

)
|Γ− + L

(
TrD−u0

−
)
|Γ− = g2 on Γ−.

(3.4.10)

In addition, the membership E̊(k|u±|u±+β(u± ·∇)u±) ∈ H̃−1(D±)n holds in view of Lemma 3.1.3.
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Let us apply Theorem 2.4.1. Consequently we deduce that the transmission problem (3.4.10)
has a unique solution

(u0
+, π

0
+,u

0
−, π

0
−) := TRT (f+|D+ + Jk,β,D+(u+)|D+ , f−|D− + Jk,β,D−(u−)|D− ,g1,h1,g2) ∈ XRT

= (U+(u+,u−),R+(u+,u−),U−(u+,u−),R−(u+,u−)).
(3.4.11)

Let us note that, the operator TRT : YRT → XRT which is involved in relation (3.4.11) is the solution
operator given by relation (2.4.5). Let us recall that TRT : YRT → XRT is the well-defined, linear
and continuous operator, which maps the given data (belonging to the space YRT ) to the unique
solution of the Poisson problem of Robin-transmission type (2.4.3) for the Brinkman system in the
setting of Assumption 1.1.7, for n = 2, 3. Also, TRT : YRT → XRT satisfies the estimate (2.4.6) of
Theorem 2.4.1.

Furthermore, by Lemma 3.1.3 and Theorem 2.4.1 and for (f+, f−,g1,h1,g2) ∈ YRT , the nonlinear
operators given by relation (3.4.11),

(U+,R+,U−,R−) : H1
div(D+)n ×H1

div(D−)n → XRT , (3.4.12)

are continuous and there exists a constant C ≡ C(D+,D−, α, λ,L) > 0 such that

||(U+(u+,u−),R+(u+,u−),U−(u+,u−),R−(u+,u−))||XRT
≤ C||(f+|D+ + Jk,β,D+(u+)|D+ , f− + Jk,β,D−(u−)|D− ,g1,h1,g2)||YRT
≤ C||(f+|D+ , f−|D− ,g1,h1,g2)||YRT + ||Jk,β,D+(u+)||H̃−1(D+)n + ||Jk,β,D−(u−)||H̃−1(D−)n

≤ C||(f+|D+ , f−|D− ,g1,h1,g2)||YRT + c+
1 C||u+||2H1

div(D+)n + c−1 C||u−||2H1
div(D−)n ,

(3.4.13)

for all (u+,u−) ∈ H1
div(D+)n ×H1

div(D−)n, where c+
1 and c−1 are the constants provided by Lemma

3.1.3, corresponding to D+ and D−, respectively.
By taking into account (3.4.10), we have

∆U±(u+,u−)− αU±(u+,u−)−∇R±(u+,u−)

= f±|D± + Jk,β,D±(u±)|D± in D±,

div U±(u+,u−) = 0 in D±,

λ
(
TrD+U+(u+,u−)

)
−
(
TrD−U−(u+,u−)

)
|Γ+ = g1 on Γ+,

tα,D+(U+(u+,u−),R+(u+,u−), f+ + Jk,β,D±(u+))

−
(
tα,D−(U−(u+,u−),R−(u+,u−), f− + Jk,β,D±(u−))

)
|Γ+

= h1 on Γ+,(
tα,D−(U−(u+,u−),R−(u+,u−), f− + Jk,β,D±(u−))

)
|Γ−

+ L
(
TrD−U−(u+,u−)

)
|Γ− = g2 on Γ−.

(3.4.14)

Let us introduce the nonlinear operator

H : H1
div(D+)n ×H1

div(D−)n → H1
div(D+)n ×H1

div(D−)n

by
H(u+,u−) := (U+(u+,u−),U−(u+,u−)). (3.4.15)

Now, if we prove that the nonlinear operator H possesses a fixed point (u+.u−) ∈ H1
div(D+)n ×

H1
div(D−)n, this fixed point will solve the equation H(u+,u−) = (u+,u−) and together with π± =

R±(u+,u−) provides a solution of the problem (3.4.8) in XRT .
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In order to justify our claim, we show that H maps a closed ball Bη ⊆ H1
div(D+)n ×H1

div(D−)n

to itself and also is a contraction on the ball Bη.
Let us introduce the constants

ξ :=
3

16C2 max{c+
1 , c

−
1 }

> 0, η :=
1

4C max{c+
1 , c

−
1 }

> 0, (3.4.16)

and the closed ball

Bη := {(u+,u−) ∈ H1
div(D+)n ×H1

div(D−)n : ||(u+,u−)||H1
div(D+)n×H1

div(D−)n ≤ η}, (3.4.17)

while the constants c+
1 and c+

1 are the same constants that appear in relation (3.4.13). In addition,
we assume that the given data satisfies

||(f+, f−,g1,h1,g2)||YRT ≤ ξ. (3.4.18)

In view of relations (3.4.13), (3.4.16), (3.4.17), (3.4.18), we get

||(U+(u+,u−),U−(u+,u−))||XRT ≤ η, (3.4.19)

for all (u+,u−) ∈ Bη, which shows that ||H(u+,u−)||H1
div(D+)n×H1

div(D−)n ≤ η. Consequently H maps
Bη to Bη.

Let us prove that H is a contraction on Bη. To achieve this, let us fix the given data
(f+, f−,g1,h1,g2) ∈ YRT . If (v+,v−), (w+,w−) ∈ Bη are arbitrary fields, we obtain

||H(v+,v−)− H(w+,w−)||H1
div(D+)n×H1

div(D−)n

≤ C||(Jk,β,D+(v+)− Jk,β,D+(w+), Jk,β,D+(v−)− Jk,β,D+(w−))||H̃−1(D+)n×H̃−1(D−)n

≤ Cc+
1 (||v+||H1

div(D+)n + ||w+||H1
div(D+)n)||v+ −w+||H1

div(D+)n

+ Cc−1 (||v−||H1
div(D−)n + ||w−||H1

div(D−)n)||v− −w−||H1
div(D−)n

≤ 2ηC max{c+
1 , c

−
1 }||(v+ −w+,v− −w−)||H1

div(D+)n×H1
div(D−)n

=
1

2
||(v+ −w+,v− −w−)||H1

div(D+)n×H1
div(D−)n .

(3.4.20)

In (3.4.20) we have used the linearity and continuity of the operator TRT : YRT → XRT (see relation
(2.4.5)) together with relation (3.1.5) of Lemma 3.1.3. Hence we have that the operator H : Bη → Bη
is a 1

2
-contraction.

Due to Banach’s fixed point theorem we get the existence of a unique fixed point (u+,u−) ∈ Bη
of the operator H, namely, H(u+,u−) = (u+,u−). The pair (u+,u−) together with the functions
π± = R±(u+,u−) given by (3.4.11), determine a solution of the nonlinear problem (3.4.8) in the
space XRT . Hence, (u+, π+,u−, π−) is a solution of the nonlinear transmission problem (3.4.3) in
XRT .

In view of the membership (u+,u−) ∈ Bη, we get

Cc+
1 ||u+||H1

div(D+)n ≤ Cc+
1 η ≤

1

4
, Cc−1 ||u−||H1

div(D+)n ≤ Cc−1 η ≤
1

4
. (3.4.21)

Then, we apply inequality (3.4.13) to obtain

||u+||H1
div(D+)n + ||π+||L2(D+) + ||u−||H1

div(D−)n + ||π−||L2(D−) = ||(u+, π+,u−, π−)||XRT

≤ C||(f+|D+ , f−|D− ,g1,h1,g2)||YRT +
1

4
||u+||H1

div(D+)n +
1

4
||u−||H1

div(D−)n ,
(3.4.22)
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hence

||u+||H1
div(D+)n + ||u−||H1

div(D−)n ≤
4

3
C||(f+|D+ , f−|D− ,g1,h1,g2)||YRT . (3.4.23)

By substituting relation (3.4.23) into relation (3.4.22), we get the desired estimate (3.4.7) with
C0 = 4

3
C.

Step 2. We want to show the uniqueness property of the solution of the nonlinear transmssion
problem (3.4.3). The Banach fixed point theorem implies the uniqueness property of the solution of
problem (3.4.3) inside the ball Bη. Since the arguments that are involved in the proof of this step
are similar to those in the proof of Theorem 3.2.1, we omit them for the sake of brevity.

Step 3. It remains to show that the solution of our problem (3.4.3) depends continuously on the
given data. To this end, the continuity of the nonlinear operator H : Bη → Bη and the continuity
of the solution operator TRT : YRT → XRT (see relation (2.4.5)) show that the unique solution
(u+, π+,u−, π−) ∈ XRT depends continuously on the given data and the estimate (3.4.7) holds with
the choice of constant C0 = 4

3
C. This concludes our proof.

3.4.1 The Darcy-Forchheimer-Brinkman system and a related Limiting
Robin-Transmission Problem in the case λ = 0

In this subsection, we will work in the setting of Assumption 1.1.7. We wish to discuss a special
Robin-transmission problem of the Darcy-Forchheimer-Brinkman system. This new transmission-
type problem is obtained by choosing λ = 0 in the transmission problem (3.4.3). Consequently,
we get the problem (3.4.24) which includes a particular transmission condition on the boundary
Γ+, that is, it contains just a trace of the unknown velocity u− on Γ+. Due to this fact, problem
(3.4.24) will be called the limiting Robin-transmission problem for the Darcy-Forchheimer-Brinkman
system. Note that, this limiting Robin-transmission problem contains a Robin-Dirichlet boundary
value problem for the Darcy-Forchheimer-Brinkman system in D−. Our purpose is to state the well-
posedness of the limiting Robin-transmission problem for the Darcy-Forchheimer-Brinkman system
and, as a consequence, obtain a well-posedness result for the Robin-Dirichlet problem for the Darcy-
Forchheimer-Brinkman system. Equivalently, we isolate the solution of the Robin-Dirichlet problem
from the solution of the limiting Robin-transmission problem. This original method emphasizes the
fact that the solutions of certain boundary value problems can be determined by considering, first
of all, particular transmission problems.

Let us consider λ = 0 in the Robin-transmission problem for the Darcy-Forchheimer-
Brinkman system (3.4.3). We get the following limiting Robin-transmission problem for the Darcy-
Forchheimer-Brinkman system,

∆u± − αu± − k|u±|u± − β(u± · ∇)u± −∇π± = f±|D± in D±,

div u± = 0 in D±,(
TrD−u−

)
|Γ+ = −g1 on Γ+,

tα,D+(u+, π+, f+ + E̊+(k|u+|u+ + β(u+ · ∇)u+))

−
(
tα,D−(u−, π−, f− + E̊−(k|u−|u− + β(u− · ∇)u−))

)
|Γ+

= h1 on Γ+,(
tα,D−(u−, π−, f− + E̊−(k|u−|u− + β(u− · ∇)u−))

)
|Γ−

+ L
(
TrD−u−

)
|Γ− = g2 on Γ−,

(3.4.24)
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in the unknown fields (u+, π+,u−, π−) ∈ XXT . Note that, E̊± is (the extension by zero)-operator
outside D±. In addition, let Assumption 2.2.1 be fulfilled, for n = 2, 3.

The well-posedness result that was obtained is as follows (see, e.g., [52, Theorem 5.2]).

Theorem 3.4.2. Let α > 0, k, β ∈ R∗ be given constants. Let Assumption 1.1.7 and Assumption
2.2.1 be satisfied for n = 2, 3.s Then, there exist two constants,

ξ ≡ ξ(D+,D−, α, k, β,L) > 0, η ≡ η(D+,D−, α, k, β,L) > 0, (3.4.25)

such that, for every (f+, f−,g1,h1,g2) ∈ YRT , which satisfies the condition

||(f+, f−,g1,h1,g2)||YRT ≤ ξ, (3.4.26)

the limiting Poisson problem of Robin-transmission type (3.4.24) for the Darcy-Forchheimer-
Brinkman system has a unique solution (u+, π+,u−, π−) ∈ XRT with the property

||(u+, π+,u−, π−)||XRT ≤ η. (3.4.27)

Moreover, there exists a constant C0 ≡ C0(D+,D−, α,L, λ) > 0 such that the unique solution
satisfies the estimate

||(u+, π+,u−, π−)||XRT ≤ C0||(f+, f−,g1,h1,g2)||YRT . (3.4.28)

3.4.2 The Darcy-Forchheimer-Brinkman system and a related Robin-
Dirichlet problem

The goal of this subsection is to highlight the particular role that a transmission-type problem
satisfies. In the latter, let α, k, β > 0 be given constants and let Assumption 1.1.7 be satisfied. Note
that, we consider the Lipschitz domain D− and we use similar arguments as those described in [63,
p. 4581]. Let us proceed by stating the fact that the problem (3.4.24) is well-posed (see Theorem
3.4.2). Consequently, we obtain a unique solution (u+, π+,u−, π−) ∈ XRT of the problem (3.4.24).
From it, we extract the pair (u−, π−) ∈ H1

div(D−)n × L2(D−) and we note that this particular pair
satisfies another boundary value problem, namely, the following Robin-Dirichlet problem for the
Darcy-Forchheimer-Brinkman system in D−. This boundary value problem is given by

∆u− − αu− − k|u−|u− − β(u− · ∇)u− −∇π− = f−|D− in D−,

div u− = 0 in D−,

(TrD−u−)|Γ+ = −g1 on Γ+,

(tα,D−(u−, π−, f− + E̊−(k|u−|u− + β(u− · ∇)u−)))|Γ− + L(TrD−u)|Γ− = g2, on Γ−.

(3.4.29)

To summarize, we can obtain the solution for a boundary value problem (that is, problem
(3.4.29)) by extracting it from the solution of a transmission-type problem (that is, problem
(3.4.24)). It follows that the pair (u−, π−) is a solution of the Robin-Dirichlet problem (3.4.29)
for the Darcy-Forchheimer-Brinkman system.

Let (f−,g1,g2) ∈ H̃−1(D−)n × H
1
2
ν (Γ+)n × H−

1
2 (Γ−)n satisfying conditon (3.4.26) of Theorem

3.4.2. Then, we have the following consequence (see [63, p. 4581]).

Corollary 3.4.3. The Robin-Dirichlet problem for the Darcy-Forchheimer-Brinkman system
(3.4.29) has a solution in the space H1

div(D−)n × L2(D−), where n = 2, 3.
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4

A numerical approach related to the
Darcy-Forchheimer-Brinkman system with

Robin-Dirichlet conditions

The aim of this chapter is to study, numerically, the Robin-Dirichlet problem for the Darcy-
Forchheimer-Brinkman system, namely problem (3.4.29). In addition, we have an existence result
for the problem (3.4.29), which is Corollary 3.4.3. We solve numerically a lid-driven cavity problem.
This problem consists of a square cavity which contains a solid square. Consequently, we have an
interior boundary (that is, the boundary of the internal solid square) and an exterior boundary
(that is, the exterior walls of the cavity). The interior walls are considered to be fixed. The exterior
walls slide at different constant velocities. In addition, the domain contained between the exterior
and the interior boundary is filled with a porous media and is saturated by a viscous Newtonian
incompressible fluid, which is modelled by the Darcy-Forchheimer-Brinkman system (see Relation
(4.1.1)). The geometry is given in Figure 4.1. The content of this chapter follows the results that
were obtained in the paper [8].

We note that our previous approaches in Chapter 2 and Chapter 3 have focused on obtaining
a unique solution for our transmission-type problems. Indeed, we have used layer potential theory
to construct a solution in the linear problems. We have also used the Banach fixed point Theorem
in order to get a solution in the non-linear setting. In addition, we have seen that we may obtain
a solution to other boundary value problems by extracting it from a transmission problem. We
present another approach to finding a solution for a boundary value problem which is rooted in
some devices that stem from Numerical Analysis.

In the latter, we take note of some past works that concern the lid-driven cavity flow problem.
Firstly, let us emphasize the contribution of Ghia, Ghia and Shin [39]. The authors have obtained
numerical results for a driven flow in a square cavity. These results provide a useful test case by
which other numerical methods can be checked against. In [69], the authors note that the lid-driven
cavity flow problem is a test problem, in two or three dimensions, through which diverse numerical
schemes can be validated or invalidated. The attractiveness of such a problem consists of its simple
geometry and its perceived flow structure. Gutt and Groşan [44] have investigated numerically
a mixed Dirichlet-Robin boundary problem for the Darcy-Brinkman system in the setting of the
lid-driven porous cavity problem. They also analyze the influence of various parameters on the fluid
flow.
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4.1 Numerical study of the lid-driven cavity flow problem

in a 2-dimensional cavity with Navier slip boundary

condition in the presence of a solid body

4.1.1 Statement of the problem and remarks

Let us describe the mathematical model of our lid-driven problem in a two-dimensional cavity
with Navier slip boundary condition, in the presence of a solid body. Our goal is to study the
flow of a viscous Newtonian incompressible fluid in a porous medium in a special Lipschitz domain
denoted by D−, as seen in Figure 4.1, while we consider Dirichlet boundary condition on the interior
boundary and Robin boundary conditions on the exterior boundary. Let us describe the geometry
of our problem. We consider D ⊂ R2 a square cavity of length L which contains a solid square
obstacle, denoted by D+, of length l such that l < L. Let us define D− := D \ D+. The interior
boundary, denoted by Γ+ is considered to be fixed, while the exterior boundary Γ−, consist of four
walls Γt−, Γl−, Γb−, Γr− which are sliding at different constant velocities (see Figure 4.1).

Figure 4.1: The porous cavity with internal square block

4.1.2 Mathematical model of the problem

Inside the porous cavity, i.e., Fig 4.1, the fluid flow is described by the Darcy-Forchheimer-
Brinkman system (see, e.g., [3], [43], [109]). On the exterior boundary Γ−, we impose the Navier-slip
condition which is a Robin type boundary condition (see, [48], [92]) and on the interior boundary
Γ+, we impose the Dirichlet boundary condition. The mathematical model for our problem is

∆u− −
κ

K
u− −

κ

νρ
∇π− =

1

ν
(u− · ∇)

u−
κ

+
κCf

ν
√
K
|u−|u− in D−

div u− = 0 in D−

u− = g1 on Γ+

u− + sl
∂u−
∂n−

= g2 on Γ−.

(4.1.1)

Now, in order to conduct the non-dimensional analysis, let us replace the dimensional variables
in (4.1.1) with the dimensionless variables

X =
x

L
, Y =

y

L
, Sl =

sl
L
, Ux =

ux
ut
, Uy =

uy
ut
, Π =

π

ρ(ut)2
.
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. Hence, we obtain

∆U− −
κ

Da
U− −Reκ∇Π = Re (U− · ∇)

U−
κ

+
ReκCf√

Da
|U−|U− in D−

div U− = 0 in D−

U− = (0, 0) on Γ+

U− + Sl
∂U−
∂n−

= G2 on Γ−

(4.1.2)

and

G2 =



(1, 0) on Γt−
(0, U r) on Γr−

(U b, 0) on Γb−

(0, U l) on Γl−.

(4.1.3)

In our analysis, we also consider the stream function Ψ which is given by

Ux =
∂Ψ

∂Y
, Uy = − ∂Ψ

∂X
. (4.1.4)

We use this function to compute the maximum stream function value reached inside the cavity,
Ψmax. Also, we use the stream function Ψ in order to visualize the fluid flow pattern, which is
observed in the form of the stream lines.

4.1.3 Numerical method and validation of the model

We use the finite element based software COMSOL Multiphysics (see [110]) in order to solve
the system (4.1.2) together with the equation

∆Ψ =
∂Ux
∂Y
− ∂Uy
∂X

, (4.1.5)

Note that equation (4.1.5) is derived from relation (4.1.4).
In order to discretize the domain in Figure 4.1, we consider a free quad mesh. The mesh was

constructed as follows. We starting with a fixed number of elements, N , which established on either

side of Γ−. On the side of the Γ+ we have N
L

l
elements. The maximum size of an element inside

the cavity is set to
1

N
. To get a numerical solution, the nonlinear solver iterates until the relative

error is less than ε = 10−6.
Next, we perform a convergence test for the maximum value of the stream function, Ψmax,

depending on the refinement level of the mesh. Then, for our problem (4.1.2) together with (4.1.5)
we have the following default settings

L = 1, l = 0.4, κ = 0.3, Re = 100, Da = 0.01, U r = U b = −0.1, U l = 0.1. (4.1.6)

In view of (4.1.6) we have obtained Table 4.1, which contains the computed values of Ψmax for
different values N . From Table 4.1 we determine that the choice of the mesh containing 80 elements
on each side of Γ− of in Figure 4.1 is appropriate for our simulations.
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N (elements on exterior side) Ψmax ErrorΨmax

20 0.04366673
40 0.04358508 0.000081465
60 0.04358398 0.0000011
80 0.04358332 0.00000066

Table 4.1: Mesh dependence

Now we compare our numerical solutions with previous established results in order to validate
our approach. To this end, we have the following settings

U r = U b = U l = 0, µ = 1, l = 0, Sl = 0, (4.1.7)

which is the case of the porous lid-driven square cavity problem with vanishing obstacle and no-slip
boundary condition. Next, for the values

κ = 0.1, Re = 10, Da = 0.01, (4.1.8)

we plot the x component of the velocity, Ux, along the vertical line through the cavity center and the
y component of the velocity, Uy, along the horizontal line through the cavity center. We compare
the obtained velocity profiles that we determined with the data obtained in [43]. Both graphs in
Figure 4.2 show a good agreement.

(a) Ux along vertical cen-
terline

(b) Uy along horizontal
centerline

Figure 4.2: The components of the velocity along vertical and horizontal center-lines of the squared
cavity, compared with [43].

4.1.4 Results and discussion

We aim to determine the impact of the dimensionless slip length, Sl, on the fluid flow inside the
porous cavity. To this aim, we set the parameters

l = 0.4, κ = 0.3, Re = 100, Da = 0.01, U r = U b = −0.1, U l = 0.1 (4.1.9)

and we study the flow properties for Sl ∈ (0, 0.003).
The computed values Ψmax inside the cavity for different values of the dimensionless parameter

Sl ∈ (0, 0.003) are displayed in Table 4.2. These values are also represented in Figure 4.3. Figure
4.3 shows the linear decrease of Ψmax between Sl = 0.0005 and Sl = 0.003. The fluid displacement

64



Chapter 4. Numerical approach - Robin-Dirichlet problem - Darcy-Forchheimer-Brinkman system

Sl Ψmax

0 0.04371041
0.0005 0.04317579
0.001 0.04290319
0.0015 0.04262631
0.002 0.04234790
0.0025 0.04206969
0.003 0.04179283

Table 4.2: Maximum stream function
values for different Sl

Figure 4.3: Dimensionless slip length ef-
fect

inside the porous cavity is highlighted in Figure 4.4. An important remark that can be made here is
that the variation of the dimensionless slip parameter Sl does not suddenly change the flow pattern.
This can be seen in the similarity of all three images in Figure 4.4 being quite similar. Even if the
stream lines and the velocity profile are different in each case, these differences are negligible and
not so obvious.

(a) Sl = 0 (b) Sl = 0.0015 (c) Sl = 0.003

Figure 4.4: Streamlines and Velocity profiles for different values of slidding parameter Sl.

We continue our analysis and we set Sl = 0.0005. We consider

U r = U b = U, U l = −U, (4.1.10)

where U is a constant which takes the values

U = 0.1, 0.3, 0.5, 0.7, 0.9, (4.1.11)

respectively. Hence, we want to see the how fluid flow behaves inside the cavity, whether the
velocity of the vertical walls and the bottom one increases towards the velocity of the top lid. The
other parameters remain the same as in relation (4.1.9). In this situation, the stream lines and
the velocity profiles for the fluid particles for U = 0.1, 0.5, 0.9 are provided in Figure 4.5. Let us
note that, for increasing values of U , the center of the secondary vortex, which is initially close to
the top side, tends to approach the center of the cavity, eventually being assimilated by the main
vortex rotating around the obstacle. This is due to the balance of forces generated by the four walls
arranged symmetrically. In Table 4.3 we see how Ψmax varies, while its minimum is reached for
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U = 0.3. Beyond U = 0.3, Ψmax tends to increase as U approaches the velocity of the upper wall,
reaching a maximum value for U = 0.9.

(a) U = 0.1 (b) U = 0.5 (c) U = 0.9

Figure 4.5: Streamlines and Velocity profiles for Sl = 0.0005 and U = 0.1, 0.5, 0.9.

U Ψmax

0.1 0.04317579
0.3 0.04286458
0.5 0.04294202
0.7 0.04330634
0.9 0.04392932

Table 4.3: Maximum stream function values for
variation of U
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Further research directions

We would like to point out some research directions that could be followed after this thesis.

Extension of the obtained results

As a first future direction, we aim to extend the original results that were presented in this thesis
to more general function spaces such as Lp-based Sobolev space, for p ∈ (1,∞), Besov spaces, Bessel
potential spaces, Triebel-Lizorkin spaces. We can also consider our boundary value problems in
certain domains whose geometry is more general or more complex, for example, polyhedral domains,
domains with cusps. In addition, we intend to obtain such results by using other techniques such
variational methods and the fixed point index theory. In addition, we can pursue a practical study
such as the investigation of the correlation between physical parameters (for example, the Reynolds
number) and the existence of vortexes in some viscous fluid flows in the presence of solid obstacles.
In such a study we can formulate boundary value problems which are similar to the ones investigated
in this thesis.

Variable coefficients

In recent years, a great deal of work has been devoted (see, e.g., [59], [60], [67]) to the generaliza-
tion of the Stokes equations. Namely, instead of the Laplacian, one can consider another divergence
form, second-order elliptic differential operator. Consequently, this approach leads to the anisotropic
Stokes system and anisotropic Navier-Stokes system, respectively. These generalizations account of
the possibility of the modeling of a incompressible fluid with variable viscosity.

This new perspective leads to the future idea of studying boundary problems for more gen-
eral Brinkman or Darcy-Forchheimer-Brinkman equations, in various configurations, while all the
coefficients that appear in these systems are variable (see, e.g., [66]).

Bidisperse (Multidisperse) Porous Media Models

Another possible development that can be pursued is the theoretical and/or numerical study of
bidisperse porous media.

The authors in [65] have developed a theoretical analysis for a general system of coupled Navier-
Stokes-type equations in the incompressible case in the setting of a bounded domain, where a
homogeneous Dirichlet condition was considered. Their approach is based on the model proposed
by Nield and Kuznetsov in the papers [87] and [88]. Kohr and Precup [66] have studied a general class
of coupled anisotropic Navier-Stokes-like equations with variable coefficients that describe viscous
fluid flows in multidisperse anisotropic porous media. They have considered also non-homogeneous
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reaction-type terms in the incompressible case. The authors have employed a variational technique
and fixed point index theory in order to obtain existence results.

The papers [65] and [66] suggest an a possible research direction, that of the investigation of
other models that appear in the study of flows in anisotropic bidisperse (or multidisperse) porous
media with the goal of obtaining existence results for other boundary problems associated to the
underlying PDE systems.

Moreover, another point of exploration can be the diversification of the numerical methods that
can be employed in the study of boundary problems suggested by applications in Fluid Mechanics
and porous media. Let us mention that, in addition to the classical approaches as finite difference
methods (e.g., employed in [42]), finite volume methods, there are powerful PDE solvers such as
FreeFem++, Ansys, Comsol that can be employed in order to obtain numerical results for future
studies of various boundary value problems.

Boundary value problems on manifolds

Finally, we want to specify the results included in the thesis have all been obtained in the
Euclidean setting of Rn. There are also many works devoted to the investigation of boundary
problems on compact manifolds (see, e.g., [57], [63], [67], [83], [84]). A natural step would be to
consider similar boundary value problems with those treated in this thesis in the setting of compact
Riemannian manifolds or non-compact Riemannian manifolds.

More recently, a new concept has been developed. We want to highlight a contribution made
by Kohr, Nistor and Wendland in [62], in which they obtained the results needed to introduce and
investigate layer potentials on manifolds with conical or cylindrical ends. They devoted their study
to the introduction of classes of pseudodifferential operators that are defined on these manifolds,
called ’translation invariant at infinity’ and ’essentially translation invariant’ operators and studied
their properties, having in view applications to the Stokes system. As a future research direction
that can be inferred, the work [62] (see also [82]) provides an opening for the analysis of various
boundary problems for other elliptic PDE systems in the setting of manifolds with cylindrical ends.



Conclusions

The aim of this thesis is to provide existence and uniqueness results for transmission-type
boundary value problems for certain constant-coefficient and variable-coefficient elliptic systems.
Such systems can be found in the field of Fluid Mechanics, while others are involved in certain
models of porous media. The aforementioned transmission-type problems are investigated in the
Euclidean setting using the means of potential theory and fixed point methods and we complement
the theoretical results with a numerical investigation of a boundary value problem.

We begin by describing all notions that we use throughout this thesis. We introduce the
(Gagliardo) trace operator in the classical Sobolev spaces as well in the weighted Sobolev spaces.
We analyze the Stokes, Brinkman and generalized Brinkman equations and we provide their asso-
ciated conormal derivative operators. For the Stokes and Brinkman systems, respectively, we give
their respective fundamental solution, we introduce their associated single layer, double layer and
Newtonian potentials. For each of these potentials we have given their mapping properties, their
jump properties and their growth conditions at infinity.

The following chapter is concerned with well-posedness results for transmission problems for
linear PDE systems. First, we have a well-posedness result for the exterior Dirichlet problem for
the Brinkman system in R3 (see Theorem 2.1.2). Next, we have a well-posedness result for the
transmission problem for the generalized Brinkman and Stokes systems in complementary Lipschitz
domains in R3 (see Theorem 2.2.2). Another well-posedness result for the transmission problem
for the generalized Brinkman and classical Brinkman systems is also obtained in complementary
Lipschitz domains in R3 (see Theorem 2.3.1). Moreover, we have a well-posedness result for the
Robin-transmission problem for the classical Brinkman system (see Theorem 2.4.1). Also, we show
that, the limiting Robin-transmission for the classical Brinkman system is also well-posed (see
Theorem 2.4.2) and as a consequence, we get the well-posedness of the Robin-Dirichlet problem for
the Brinkman system (see Corollary 2.4.3).

The next chapter contains the generalization of the Darcy-Forchheimer-Brinkman system and a
useful lemma. Here, we have the well-posedness result for the transmission problem the generalized
Darcy-Forchheimer-Brinkman and Stokes systems in weighted Sobolev spaces in R3 (see Theorem
3.2.1). Next, we have the well-posedness result for the transmission problem for the generalized
Darcy-Forchheimer-Brinkman and Brinkman systems in R3 (see Theorem 3.3.1). Also, another well-
posedness result is obtained for the Robin-transmission problem for the classical Darcy-Forchheimer-
Brinkman system (see Theorem 3.4.1). In addition, the limiting Robin-transmission problem for the
classical Darcy-Forchheimer-Brinkman system is also well-posed (see Theorem 3.4.2) and this result
also gives an existence result for the Robin-Dirichlet problem for the Darcy-Forchheimer-Brinkman
system (see Corollary 3.4.3).

The final chapter consists of a numerical investigation for the lid-driven cavity flow problem
in two dimensions for the Darcy-Forchheimer-Brinkman system. We consider Dirichlet boundary
conditions on the interior wall and Robin boundary conditions on the exterior wall. We analyze the

69



70 CONCLUSIONS

impact of the dimensionless slip length on the behavior of the fluid flow inside the porous cavity.
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[6] Albişoru, A.F., A layer potential analysis for transmission problems for Brinkman-type sys-
tems in Lipschitz domains in R3, Mathematische Nachrichten, 292(9), 2019, 1876-1896. ISI,
IF(November 2022): 1.199. 11, 24, 34, 36, 40, 41
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