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Front matter

Abstract

This PhD thesis presents alternative approaches to Hardy and Rellich inequalities on
Riemannian manifolds. Regarding Hardy inequalities, we establish a generic functional
inequality, both in additive and multiplicative forms, which produces well-known and
genuinely new inequalities. For the additive version we introduce the notion of Riccati
pairs, which enables us to give short/elegant proofs for several celebrated functional
inequalities on Riemannian manifolds with sectional curvature bounded from above,
by simply solving a Riccati-type ODE. The multiplicative version allows us to cover
uncertainty principles as well. Concerning the Rellich inequalities, we establish two
generic functional inequalities on Riemannian manifolds of the same type as before.
As applications, on the one hand, we prove sharp spectral gap estimates for various
higher-order eigenvalue problems. On the other hand, we provide extensions for some
well-known Rellich inequalities. The latter methods differ from the approach of Riccati
pairs, thus, as a final point, we discuss the applicability of Riccati pairs in the context
of Rellich inequalities. The elegance of our approaches lies in their simplicity: the
proofs are based on convexity arguments and applications of divergence/comparison
theorems; moreover, they are symmetrization-free. Consequently, the validity of the
generalized Cartan–Hadamard conjecture is not required, which broadens the range of
applicability of our results.

Keywords and phrases

Hardy inequalities, Rellich inequalities, Riemannian manifolds, Riccati pairs,
Spectral gap estimates, Symmetrization-free approach
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Chapter 1

Introduction

More than one hundred years elapsed since the celebrated (one-dimensional) Hardy
inequality appeared (see Hardy [52]). A multi-dimensional version of the original result
can be stated as follows: Given a smooth, compactly supported function u on Ω ⊆ Rn,
the L2-norm of the singular term u(x)/|x| is controlled by the L2-norm of |∇u(x)|,
more precisely, one has∫

Ω

|∇u(x)|2 dx ≥ (n− 2)2

4

∫
Ω

|u(x)|2

|x|2
dx, ∀u ∈ C∞

0 (Ω).

Several extensions and improvements of this inequality can be found by now in the
literature, involving more general weights, additional correction terms, and/or various
underlying geometrical settings; sometimes in alternative formulation, often referred
to as uncertainty principles. In general, they can be written in the following forms:∫

Ω

V |∇u|p dm ≥
∫
Ω

W |u|p dm, ∀u ∈ C∞
0 (Ω), (H)(∫

Ω

V |∇u|p dm
) 1

p
(∫

Ω

W |u|p dm
) 1

p′

≥
∫
Ω

W̃ |u|p dm, ∀u ∈ C∞
0 (Ω), (UP)

respectively, where p > 1 and p′
def
= p

p−1
is the conjugate of p; Ω is an open subset of

an ambient space M , which could be the Euclidean space Rn, any Riemannian/Finsler

manifold, or a stratified group; m is a measure on M , while V,W,W, W̃ : Ω → (0,∞)
are certain potentials, possibly containing singular terms.

These inequalities became indispensable from the point of view of applications. On
the one hand, solutions of a large class of elliptic problems involving singular terms
are based on the validity of corresponding Hardy-type inequalities; hence, they appear
in several fields of mathematics. In particular, they play a crucial role in the spectral
theory of the fixed membrane problem, describing the fundamental tones.

On the other hand, uncertainty principles have an especially important role in
quantum mechanics, formulating one of its most fundamental and yet most surprising
facts: Given an arbitrary particle of the Universe, one cannot determine precisely both
its position and momentum, i.e., the more precisely we know its position, the less
precisely we know its momentum, and vice versa. In this study we restrict ourselves
to the mathematical point of view of such uncertainty principles.
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Key observations related to Hardy-type inequalities have been made (mainly for
p = 2 and the Euclidean setting) e.g., by Adimurthi, Chaudhuri, and Ramaswamy [1],
Brezis and Marcus [16], Brezis and Vázquez [17], Devyver, Fraas, and Pinchover [33],
Fefferman [40], Filippas, Maz’ya, and Tertikas [41, 42], Filippas and Tertikas [43],
Muckenhoupt [81], Ruzhansky and Suragan [91] and Tertikas and Zographopoulos [94].

The higher-order variants of the inequality (H) are the following two Rellich-type
inequalities: ∫

Ω

U |∆u|p dm ≥
∫
Ω

W |u|p dm, ∀u ∈ C∞
0 (Ω), (R1)∫

Ω

U |∆u|p dm ≥
∫
Ω

V |∇u|p dm, ∀u ∈ C∞
0 (Ω), (R2)

where p > 1 and U, V,W are given positive potentials on Ω. Both inequalities of
types (R1) and (R2) have numerous applications; here we highlight the spectral theory
of the clamped plate problem and the buckling problem, respectively. The first problem
describes the vibrations within a thin elastic plate with a clamped boundary. The
second problem investigates a similar plate that is subjected to a compressive load. We
also notice that inequality (R1) can be obtained by combining either (R2) and (H), or
their alternative versions, where the classical gradient ∇u is replaced by the directional
derivative ∇radu = ⟨∇u,∇dx0⟩ and dx0 is the distance from a fixed point x0 ∈ Ω.

For both problems, it is increasingly true that they are mainly considered in the
Euclidean setting for p = 2. The classical version of (R1) dates back to the 1950s
and is due to Rellich [90]. Surprisingly, as claimed by the authors, the corresponding
version of (R2) only appeared relatively recently (in the 2000s) in the paper by Tertikas
and Zographopoulos [94]. These facts suggest inequality (R2) being more problematic.
Further pioneering results in the Euclidean setting can be found e.g., in the papers
by Davies and Hinz [31] and Mitidieri [78]. For results on more general structures,
see e.g., Kombe and Özaydin [61, 62] and Kristály and Repovš [70]. Comprehensive
discussions about Hardy and Rellich inequalities can also be found in the monographs
by Balinsky, Evans, and Lewis [7], Ghoussoub and Moradifam [50], and Ruzhansky
and Suragan [92].

A milestone result – concerning the problems (H) and (R2) – has been provided by
Ghoussoub and Moradifam [48, 49], again for p = 2 and the Euclidean setting. On the
one hand, the authors showed that the inequality (H) holds if and only if (V,W ) is a
Bessel pair. The latter notion is based on the solvability of a second-order linear Bessel-
type ordinary differential equation (ODE for short) containing the potentials V and W .
On the other hand, they showed that under certain conditions, inequality (R2) holds if

and only if (U, Ṽ ) is a Bessel pair, where Ṽ is a potential involving V and an additional
correction term. The proofs are heavily based on the technique of spherical harmonics
decomposition, which works well on the model space forms (Euclidean space, hyperbolic
space, and the sphere), but it cannot be applied to general Riemann manifolds. The
concept of Bessel pairs was extended to general p > 1 (see Duy, Lam, and Lu [35]),
and has applications on non-positively curved Riemannian manifolds (see Flynn, Lam,
Lu, and Mazumdar [45] and Berchio, Ganguly, and Grillo [10]), where still the usual
notion of Bessel pairs and fine comparison arguments are used.
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In this work, we present an alternative approach to Hardy–Rellich inequalities,
which completely avoids the use of spherical harmonics decomposition. As we shall
see, our forthcoming proofs are built upon simple convexity arguments, multiple uses
of divergence theorems, and comparison theorems that encode curvature information
of the ambient manifold. In the sequel, we present our results simultaneously with the
structure of this study, as follows.

In Chapter 2 we recall some definitions and preliminary results that are relevant
for our presentation. In Section 2.1 we list several concepts and their corresponding
notations concerning general Riemannian manifolds. In Section 2.2 we present various
notions regarding model space forms and relevant comparison results. In Section 2.3
we address various eigenvalue problems and their spectral gap estimates; namely, the
fixed membrane problem (Section 2.3.1), the clamped plate problem (Section 2.3.2) and
the buckling problem (Section 2.3.3). Finally, in Section 2.4 we summarize the method
of Bessel pairs mentioned earlier. Here, we also discuss the relation between Bessel
pairs and the classical method of supersolutions, also known as the Allegretto–Moss–
Piepenbrink approach, which emerges from the early works of Allegretto [4] and Moss
and Piepenbrink [80].

In Chapter 3 we restrict our attention to Hardy inequalities; our approach for them
is presented in Section 3.1: First, in Theorem 3.1, we provide a general functional in-
equality on Riemannian manifolds in both additive and multiplicative forms that turn
out to be equivalent to each other. Both forms involve several parameters besides the
unknown function u; substituting concrete parameters yields inequalities of types (H)
and (UP), respectively. Next, in Section 3.1.1, we make a key observation: Both forms
contain the Laplacian of a given potential (implicitly encoding curvature information
about the manifold), which suggests the application of an appropriate comparison
argument. This comparison furnishes – in the additive form – a Riccati-type ordinary
differential inequality (ODI), which leads to the notion of Riccati pairs for certain
potentials (see Definition 3.2). Incorporating this notion into the additive form yields
Theorem 3.3, which turns out to be extremely efficient in proving inequalities of
type (H). Indeed, to prove an inequality of this type, it is enough to solve a Riccati-
type ODI, and to apply Theorem 3.3. Finally, in Proposition 3.4 and Remark 3.5 we
show that Riccati pairs extend Bessel pairs (slightly in the Euclidean case); however,
the difference is mainly in the underlying technique, not in the ODE/ODI.

In Section 3.2 we present simple alternative proofs for various functional inequalities
of type (H) using Theorem 3.1/(i) and Theorem 3.3. We highlight that a part of
these results is formally well-known in the Euclidean setting. Our method, however,
extends them to Cartan–Hadamard manifolds, which are complete, simply connected
Riemannian manifolds, with non-positive sectional curvature. This demonstrates the
efficiency of our main results, mostly based on Riccati pairs. We shall consider the
following inequalities:

• In Section 3.2.1 we present two Lp-Caccioppoli-type inequalities on Riemannian
manifolds, providing alternative proofs for the results obtained by D’Ambrosio
and Dipierro [29] (see Theorems 3.6 & 3.8). Some new improvements are also
established in the case p ∈ (1, 2].
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• In Section 3.2.2 we discuss a number of improved Hardy-type inequalities on
Cartan–Hadamard manifolds, including results by Carron [19] and Kombe and
Özaydin [61, 62] (see Theorem 3.9), Edmunds and Triebel [36] (see Theorem 3.12),
Adimurthi, Chaudhuri, and Ramaswamy [1] (see Theorem 3.13), and Brezis and
Vázquez [17] (see Theorem 3.14).

• In Section 3.2.3 we present spectral estimates on Riemannian manifolds. First,
we establish a simple alternative proof of the celebrated Cheng’s comparison
result on Riemannian manifolds with sectional curvature bounded from above
(see Theorem 3.15). Next, we consider the well-known Faber–Krahn inequality
and the McKean spectral gap estimate (see Theorems 3.16 & 3.17). In addition,
we give a short proof of the main spectral result of Carvalho and Cavalcante [20]
(see Theorem 3.18).

• In Section 3.2.4 we establish an interpolation inequality connecting the Hardy
inequality and McKean’s spectral gap estimate on Cartan–Hadamard manifolds,
in the spirit of Berchio, Ganguly, Grillo, and Pinchover [11] (see Theorem 3.19).
A simple modification of the latter argument also provides a short alternative
proof of the inequality by Akutagawa and Kumura [3] (see Theorem 3.22).

• In Section 3.2.5 we consider two parameter-dependent Ghoussoub–Moradifam-
type weighted inequalities in the Euclidean case (cf. [49]), where the weights are
of non-singular type (see Theorem 3.23). For a certain parameter range, we also
extend these inequalities to Cartan–Hadamard manifolds (see Theorem 3.25).

In Section 3.3 we provide alternative proofs for various multiplicative Hardy-type
inequalities, which are simple consequences of Theorem 3.1/(ii). We proceed as follows:

• In Section 3.3.1 we establish a sharp parameter-dependent uncertainty principle
on Cartan–Hadamard manifolds, which implies the Heisenberg–Pauli–Weyl and
the Hydrogen uncertainty principles (see Theorem 3.27). We also establish a
rigidity result: If the quantitative uncertainty principle holds on an n-dimensional
Cartan–Hadamard manifolds with Ricci curvature bounded from below, then the
manifold is isometric to the corresponding model space form (see Theorem 3.29).

• In Section 3.3.2 we present two sharp Caffarelli–Kohn–Nirenberg inequalities on
Cartan–Hadamard manifolds (see Theorems 3.30 & 3.31).

In Chapter 4 we focus on Rellich inequalities. In Section 4.1 we present two general
functional inequalities on Riemannian manifolds, built upon convexity arguments and
divergence/comparison theorems. The first inequality involves a second-order ODI, and
provides inequalities of type (R1), for general p > 1 (see Theorem 4.1). The second
inequality involves a second-order partial differential inequality (PDI) and produces
inequalities of type (R2), for p = 2 (see Theorem 4.2). We notice that for special
choices of parameters, the latter PDI reduces to an ODI, becoming easier to deal with.
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In the rest of the chapter, several applications are presented on Cartan–Hadamard
manifolds. Here we highlight that our proofs are symmetrization-free, hence they do not
require the validity of the generalized Cartan–Hadamard conjecture, i.e., the validity
of the sharp isoperimetric inequality in this geometrical setting. We note that the
conjecture is valid for general Cartan–Hadamard manifolds in dimension n ∈ {2, 3}
(see Bol [14] and Kleiner [59]), and for space forms in any dimension (see Dinghas [34]).

In Section 4.2 we establish fourth-order variants of the celebrated spectral gap result
by McKean [75]. The latter result states that a strong negative curvature (when it is
less than or equal to a negative number) produces a universal, domain-independent
spectral gap for the first/principal eigenvalue of the fixed membrane problem, which is
in radical contrast to the Euclidean case.

• In Section 4.2.1 we prove a spectral gap estimate and its sharpness for the
clamped plate problem on Cartan–Hadamard manifolds with strong negative
curvature, for p > 1 (see Theorem 4.3) We notice that the same estimate was
also established by Kristály [65] (on Cartan–Hadamard manifolds satisfying the
generalized Cartan–Hadamard conjecture) and Ngô and Nguyen [83] (on space
forms) using symmetrization. In this case, our result completes the picture.

• In Section 4.2.2 we provide a sharp spectral gap estimate for the buckling problem
on Cartan–Hadamard manifolds with strong negative curvature, for p = 2 (see
Theorem 4.4). The same estimate is known on space forms due to Ngô and
Nguyen [83]. In this case, our result adds a new piece of puzzle to the picture;
however, the pieces corresponding to the general case when p > 1 are still missing.

• In Section 4.2.3 we establish higher-order sharp spectral gap estimates by simply
combining our previous inequalities. The results are valid on Cartan–Hadamard
manifolds with strong negative curvature. The clamped plate-type results hold
for p > 1, while the buckling-type results hold for p = 2 (see Theorems 4.5 & 4.6).

In Section 4.3 we consider additional Rellich-type inequalities on Cartan–Hadamard
manifolds, namely:

• In Section 4.3.1 we extend the classical and weighted Rellich inequalities to
Cartan–Hadamard manifolds (see Theorem 4.7 and Corollary 4.8). These results
are well-known in the Euclidean settings (see e.g., Mitidieri [79]).

• In Section 4.3.2 we provide higher-order variants of the classical Rellich inequality
on Cartan–Hadamard manifolds (see Theorem 4.9).

• In Section 4.3.3 we provide further Rellich-type inequalities on general Cartan–
Hadamard manifolds: Theorems 4.10 & 4.11 are improvements of type (R1), the
second result is valid for strong negative curvature. In Theorem 4.12 we extend
the classical Rellich inequality of type (R2) to Cartan–Hadamard manifolds, but
only in dimensions n ≥ 8. This constraint arises from technical conditions; for a
similar phenomenon, see Kristály and Repovš [70].
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In Chapter 5 we present a second alternative approach for establishing Rellich
inequalities on space forms, using Riccati pairs. Parallel to presenting the structure of
this chapter, which contains the final versions of this approach and its applications, let
us briefly describe the development process and the intermediate observations. This
additional information is intended to motivate the choice of presentation of our results.

Our initial goal was to develop a general functional inequality built upon Riccati
pairs, which provides Rellich inequalities of type (R2). Having such an inequality and
combining it with the results from Chapter 3 providing inequalities of type (H), would
automatically yield inequalities of type (R1). Clearly, we intended to formulate our
inequality on the most general manifolds possible. Keeping in mind the requirement of
the Laplace comparison in our argument, manifolds with sectional curvature bounded
from above seemed to be good candidates in this case as well.

During the study, it turned out that the suitable convexity argument requires both
a Laplace and a Hessian comparison, having ‘opposite’ direction to each other. Thus,
one either imposes a lower bound on the sectional curvature as well, or simply considers
space forms. We decided on the second option because several applications are also
formulated in this setting. Additionally, in this particular case, the results can be
presented in a formally simpler and more accessible manner.

In Section 5.1 we present our approach for Rellich inequalities on space forms.
In Section 5.1.1 we start with two definitions. First, motivated by the simplicity of
the ambient geometrical setting, in Definition 5.1 we introduce simplified Riccati pairs
including the same ODI, but more straightforward conditions on parameter functions.
Next, in Definition 5.2 we introduce dual Riccati pairs including an ODI, which is the
true driving force behind the Rellich inequalities. We note that the latter ODI differs
from the former by a change of function, the introduction of the second concept is a
personal decision that hopefully enhances the presentation of the results.

Using these simplified concepts, we established a general functional inequality that
furnishes inequalities of type (R2) (see Theorem 5.3/(ii)). Unfortunately, it turned out
that the technical conditions resulting from the convexity argument typically imply
a dimension constraint, similarly to Theorem 4.12. At this point, the idea of radial
derivatives seemed useful. First, in Theorem 5.3/(i) we developed a general functional
inequality, which provides radial versions of inequality (R2), where the gradient is
replaced with the radial derivative. Here, the technical conditions are less restrictive, at
least they do not require unnecessary dimensional constraints. Next, in Theorem 5.4 we
established a general functional inequality providing radial versions of inequality (H).
We note that due to the Cauchy–Schwarz inequality, the latter inequality is stronger
than its non-radial variant, i.e., the reformulation of Theorem 3.3 in these geometrical
settings. We also notice that this inequality does not require any additional conditions.
In the rest of the chapter, we present applications of type (R1) exploiting the idea of
radial derivatives. We note that each of the obtained intermediate radial inequalities
admits a non-radial counterpart, whose technical condition is typically more restrictive;
for the simplicity of presentation, these inequalities are omitted.

In Section 5.2 we provide applications to our method in Euclidean spaces; here we
intend to present both the strengths and limitations of our approach. To do this, we test
our result against two recent inequalities proved by Adimurthi, Grossi, and Santra [2].
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First, we combine Theorem 5.3/(i) and Theorem 5.4 to provide a general functional
inequality (see Theorem 5.5) formulated in terms of Bessel potentials (a notion related
to Bessel pairs), which allows us to have a simpler presentation. Next, we show that
the first inequality meets the conditions of the latter result (see Corollary 5.6), while
the second does not (see Remark 5.7).

In Section 5.3 we apply our approach to hyperbolic spaces. In Theorem 5.8 we
provide a radial inequality as a consequence of Theorem 5.3/(i), interpolating between
Rellich-type and spectral gap estimate-type inequalities. This result can be seen as
a higher-order radial variant of the interpolation inequality from Theorem 3.19. For
the extremal values of the parameter, we obtain formally well-known inequalities (see
Corollaries 5.9 & 5.10). In Theorem 5.11 lower-order counterparts of Theorem 5.8 are
presented, which are simple consequences of Theorem 5.4. Finally, in Theorem 5.13 we
combine the previous two results and provide a sophisticated inequality of type (R1)
on hyperbolic spaces.
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Chapter 3

Hardy inequalities on general
Riemannian manifolds

In this chapter, we consider Hardy inequalities. In § 3.1 we present our abstract
approach, while in § 3.2 & 3.3 we provide application of types (H) & (UP), respectively.

3.1 General functional inequalities

Our first result is a general functional inequality formulated in two equivalent forms,
which provide inequalities of types (H) and (UP). It can be stated as follows.

Theorem 3.1 (see [56]). Let (M, g) be a complete, non-compact, n ≥ 2-dimensional
Riemannian manifold. Let Ω ⊆ M be a domain, p > 1, and let ρ ∈ W 1,p

loc (Ω) be non-
constant and positive with Hn

g (ρ
−1(supΩ ρ)) = 0. Suppose that w : (0, supΩ ρ) → (0,∞),

G : (0, supΩ ρ) → R, and H : R → R are C1 functions such that

(G)ρ,w : G(ρ)w(ρ)
1
p′ |∇gρ|p−1 ∈ Lp′

loc(Ω) and (G(ρ)w(ρ))′|∇gρ|p, w(ρ) ∈ L1
loc(Ω),

and H(0) = H ′(0) = 0. The following inequalities hold:

(i) (Additive form) For every u ∈ C∞
0 (Ω) one has∫

Ω

w(ρ)|∇gu|p dvg ≥ p

∫
Ω

[(G(ρ)w(ρ))′|∇gρ|p +G(ρ)w(ρ)∆g,pρ]H(u) dvg

+ (1− p)

∫
Ω

|G(ρ)|p′|∇gρ|pw(ρ)|H ′(u)|p′ dvg. (3.1)

(ii) (Multiplicative form) For every u ∈ C∞
0 (Ω) one has

∫
Ω

w(ρ)|∇gu|p dvg ≥

∣∣∣∣∫
Ω

[(G(ρ)w(ρ))′|∇gρ|p +G(ρ)w(ρ)∆g,pρ]H(u) dvg

∣∣∣∣p(∫
Ω

|G(ρ)|p′ |∇gρ|pw(ρ)|H ′(u)|p′ dvg
)p−1 , (3.2)

provided that there exists a neighborhood V ⊆ R of zero satisfying

H ′(s) ̸= 0,∀s ∈ V \ {0}, G(t) ̸= 0,∀t ∈ (0, sup
Ω

ρ), and Hn
g (|∇gρ|−1(0)) = 0. (3.3)

19
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As one shall see, both inequalities in Theorem 3.1 are generic, that is, for suitable
choices of parameters, they produce various functional inequalities. In the sequel we
show that this procedure can be reversed: For a number of Hardy inequalities one can
find suitable choices of parameters providing short/elegant proofs for them.

3.1.1 Riccati pairs

Let us focus on the additive form (i) of Theorem 3.1. Let p > 1, and observe that if

H(s) = |s|p
p
, for every s ∈ R, then pH(s) = |H ′(s)|p′ = |s|p. This observation, together

with the Laplace comparison suggest the following notion.

Definition 3.2 (see [56]). Let (M, g) be a complete, non-compact n ≥ 2-dimensional
Riemannian manifold. Let Ω ⊆ M be a domain, p > 1, and ρ ∈ W 1,p

loc (Ω) be
a positive function with |∇gρ| = 1 dvg-a.e. in Ω. Fix the continuous functions
L,W : (0, supΩ ρ) → (0,∞) and the function w : (0, supΩ ρ) → (0,∞) of class C1.
We say that the couple (L,W ) is a (p, ρ, w)-Riccati pair in (0, supΩ ρ) if there exists a
function G : (0, supΩ ρ) → R such that

(c1) (G)ρ,w holds (from Theorem 3.1);

(c2) ∆gρ ≥ L(ρ) in the distributional sense in Ω, and

G ≥ 0, if Hn
g ({x ∈ Ω : ∆gρ(x) > L(ρ(x))}) ̸= 0;

(c3) for every t ∈ (0, supΩ ρ) one has

(G(t)w(t))′ +G(t)w(t)L(t) + (1− p)|G(t)|p′w(t) ≥ W (t)w(t). (3.4)

A function G satisfying the above conditions is said to be admissible for (L,W ).

An efficient application of Theorem 3.1/(i) based on the concept of Riccati pairs
can be stated as follows.

Theorem 3.3 (see [56]). Let (M, g) be a complete, non-compact n ≥ 2-dimensional
Riemannian manifold. Let Ω ⊆ M be a domain, p > 1, and ρ ∈ W 1,p

loc (Ω) be a positive
function with |∇gρ| = 1 dvg-a.e. in Ω. Suppose that L,W : (0, supΩ ρ) → (0,∞) are
continuous functions and w : (0, supΩ ρ) → (0,∞) is of class C1 such that (L,W ) is a
(p, ρ, w)-Riccati pair in (0, supΩ ρ). Then for every u ∈ C∞

0 (Ω) one has∫
Ω

w(ρ)|∇gu|p dvg ≥
∫
Ω

W (ρ)w(ρ)|u|p dvg. (3.5)

To present the efficiency of Theorem 3.3, we sketch a short proof of the celebrated
McKean’s sharp spectral gap estimate: If (M, g) is an n-dimensional Cartan–Hadamard
manifold with n ≥ 2 and sectional curvature K ≤ κ for some κ < 0, then the essential
spectrum of the Laplace–Beltrami operator on (M, g) is [Kκ,n,∞), where

Kκ,n
def
=

(
(n− 1)

√
−κ

2

)2

.
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Indeed, fix x0 ∈ M and choose ρ = dg,x0 , i.e., the distance from x0, as well as

w ≡ 1, L ≡ (n− 1)
√
−κ, W ≡ (n− 1)c

√
−κ− c2, and G ≡ c,

for some c > 0 which will be defined later. We obtain that the ODI of (3.4) is verified
with equality, thus, Conditions (c1) & (c3) clearly hold. The Laplace comparison
implies ∆gρ ≥ L, hence (c2) holds as well. We obtained that (L,W ) is a (p, ρ, w)-
Riccati pair in (0,∞), and G is admissible for (L,W ). A simple computation yields

max
c>0

(
(n− 1)

√
−κc− c2

)
= Kκ,n,

thus, Theorem 3.3 immediately implies the required spectral estimate:∫
M

|∇gu|2 dvg ≥ Kκ,n

∫
M

|u|2 dvg, ∀u ∈ C∞
0 (M).

In the sequel, we establish the connection between Riccati and Bessel pairs. The
definition of tha latter is as follows: Let p > 1, R > 0, and A,B : (0, R) → R are
functions with A being of class C1. The couple (A,B) is a p-Bessel pair in (0, R), if
the ODE (

tn−1A(t)|y′(t)|p−2y′(t)
)′
+ tn−1B(t)|y(t)|p−2y(t) = 0 (3.6)

has a positive solution in (0, R). This concept is related to Riccati pairs as follows.

Proposition 3.4 (see [56]). Let R > 0 and w,W : (0, R) → (0,∞) be two potentials
with w of class C1. The function y > 0 is a solution of (3.6) on (0, R) for the couple

(A,B) = (w,wW )

if and only if

G(t) = −|y′(t)|p−2y′(t)

y(t)p−1
(3.7)

is a solution of

(G(t)w(t))′ +G(t)w(t)L0(t) + (1− p)|G(t)|p′w(t) = W (t)w(t), (3.8)

on (0, R), that is precisely (3.4) with equality and

L(t) =
n− 1

t
= L0(t).

Remark 3.5. In a Riemannian manifold (M, g) with sectional curvature K ≤ κ for
some κ ∈ R, a more appropriate ODE in the definition of a p-Bessel pair (A,B) instead
of (3.6), is as follows:(

sn−1
κ (t)A(t)|y′(t)|p−2y′(t)

)′
+ sn−1

κ (t)B(t)|y(t)|p−2y(t) = 0, ∀t ∈ (0, R). (3.9)

Indeed, when κ = 0, equation (3.9) reduces to (3.6), while for κ ̸= 0, the density sκ
encodes the curvature and explains the choice of

L(t) = (n− 1)ctκ(t) = Lκ(t), ∀t ∈ (0, R).

This observation will be crucial in some functional inequalities in the forthcoming
sections, which will be obtained by means of Riccati pairs; see e.g., Cheng’s comparison
principle for the first eigenvalue in Theorem 3.15.
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3.2 Applications I: Additive Hardy-type

inequalities

3.2.1 Caccioppoli inequalities

The first simple consequence of Theorem 3.1 is a Caccioppoli-type inequality, proved
by D’Ambrosio and Dipierro [29, Theorems 2.1 & 3.1; Corollary 2.3].

Theorem 3.6 (see [56]). Let (M, g) be a complete, non-compact n ≥ 2-dimensional
Riemannian manifold. Let Ω ⊆ M be a domain, p > 1, and ρ ∈ W 1,p

loc (Ω) be a non-
negative function. If α ∈ R such that −(p− 1−α)∆g,pρ ≥ 0 in the distributional sense
in Ω and |∇gρ|pρα−p, ρα ∈ L1

loc(Ω), then for every u ∈ C∞
0 (Ω) one has∫

Ω

ρα|∇gu|p dvg ≥
(
|p− 1− α|

p

)p ∫
Ω

ρα
|u|p

ρp
|∇gρ|p dvg. (3.10)

An immediate consequence of Theorem 3.6 is the estimate of the first Dirichlet
eigenvalue of the p-Laplace–Beltrami operator, i.e., of the p-fixed membrane problem.
For simplicity, we consider the unweighted case (α = 0):

Corollary 3.7 (see [56]). Let (M, g) be a complete, non-compact n ≥ 2-dimensional
Riemannian manifold, Ω ⊆ M be a bounded domain, p > 1, and ρ(x) = dg,∂Ω(x) for
every x ∈ Ω. If −∆gρ ≥ 0 in the distributional sense in Ω, then the first Dirichlet
eigenvalue of the Riemannian p-Laplacian can be estimated as

Λm,p(Ω) = inf
u∈C∞

0 (Ω)\{0}

∫
Ω
|∇gu|p dvg∫
Ω
|u|p dvg

≥
(
p− 1

p

)p
1

Rp
Ω

,

where RΩ = supx∈Ω ρ(x) is the Riemannian-inradius of the domain Ω ⊆ M .

Using the notation RΩ = supx∈Ω ρ(x) from Corollary 3.7, in the spirit of Brezis and
Marcus [16] and Barbatis, Filippas, and Tertikas [8], we provide an improvement of
Theorem 3.6 with a suitable reminder term, whenever 1 < p ≤ 2, as follows.

Theorem 3.8 (see [56]). Under the assumptions of Corollary 3.7, if 1 < p ≤ 2, then
one has ∫

Ω

|∇gu|p dvg ≥
(
p− 1

p

)p ∫
Ω

|u|p

ρp
(1 +Rp(ρ)) dvg, (3.11)

for every u ∈ C∞
0 (Ω), where

Rp(t) =

(
1 + log−1

(
t

eRΩ

))p−2(
1 + (2− p) log−1

(
t

eRΩ

)
+ log−2

(
t

eRΩ

))
−1 ≥ 0,

for every t ∈ (0, RΩ). In particular, if p = 2, then we have∫
Ω

|∇gu|2 dvg ≥
1

4

∫
Ω

u2

ρ2
dvg +

1

4

∫
Ω

u2

ρ2
log−2

(
ρ

eRΩ

)
dvg. (3.12)
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3.2.2 Improved Hardy inequalities on Cartan–Hadamard
manifolds

We present the following Lp-Hardy inequality, which has been first established by
Kombe and Özaydin [61, Theorem 2.1] for generic p > 1; the initial version for p = 2
is the celebrated result of Carron [19, Theorem 1.4].

Theorem 3.9 (see [56]). Let (M, g) be a complete, non-compact n ≥ 2-dimensional
Riemannian manifold. Let α ∈ R, p > 1, and ρ : M → [0,∞) be a function such that
ρ−1(0) ⊆ M is compact, |∇gρ| = 1 and ∆gρ ≥ C

ρ
in the distributional sense for some

C > 0 with the property that C + 1 + α > p > 1. Then for every u ∈ C∞
0 (M \ ρ−1(0))

one has ∫
M

ρα|∇gu|p dvg ≥
(
C + 1 + α− p

p

)p ∫
M

ρα
|u|p

ρp
dvg. (3.13)

Remark 3.10. We notice that if the p-capacity of the compact set ρ−1(0) ⊆ M is
zero, then inequality (3.13) is valid not only in C∞

0 (M \ ρ−1(0)) but also in C∞
0 (M);

see e.g., Carron [19] and D’Ambrosio and Dipierro [29]. In particular, if n ≥ p
and Hn−p

g (ρ−1(0)) < ∞, then the p-capacity of ρ−1(0) ⊆ M is zero (see Heinonen,
Kilpeläinen, and Martio [54]).

A simple consequence of Theorem 3.9 is the following weighted Hardy inequality.

Corollary 3.11 (see [56]). Let (M, g) be an n ≥ 2-dimensional Cartan–Hadamard
manifold. Let x0 ∈ M be fixed and p, α ∈ R such that 1 < p < n + α. Then for every
u ∈ C∞

0 (M \ {x0}) one has∫
M

dαg,x0
|∇gu|p dvg ≥

(
n+ α− p

p

)p ∫
M

dαg,x0

|u|p

dpg,x0

dvg. (3.14)

Moreover, the constant
(

n+α−p
p

)p
is sharp.

When α = 0 in Corollary 3.11, the limit case p = n does not provide any reasonable
inequality similar to (3.14). In the next result we prove a parameter-dependent Hardy
inequality with logarithmic weights, which is valid also in the limit case p = n; similar
results were established by Edmunds and Triebel [36] in the Euclidean case, as well as by
D’Ambrosio and Dipierro [29, Theorem 6.5], Nguyen [84], and Zhao [100, Theorem 1.3]
on Riemannian/Finsler manifolds.

Theorem 3.12 (see [56]). Let (M, g) be an n ≥ 2-dimensional Cartan–Hadamard
manifold, x0 ∈ M be a fixed point, Ω = Bg,x0(1), and α, p ∈ R such that 1 < p ≤ n and
α + 1 < p. Then for every u ∈ C∞

0 (Ω \ {x0}) one has∫
Ω

logα(1/dg,x0)|∇gu|p dvg ≥
(
p− α− 1

p

)p ∫
Ω

logα−p(1/dg,x0)
|u|p

dpg,x0

dvg. (3.15)

Moreover, the constant
(

p−α−1
p

)p
is sharp.
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In the sequel, we provide an alternative approach to establish improved Hardy
inequalities on Cartan–Hadamard manifolds. For simplicity of presentation, we shall
consider the case when p = 2 and α = 0. The first such result ‘interpolates’ between
Corollary 3.11 and Theorem 3.12 (see Adimurthi, Chaudhuri, and Ramaswamy [1]).

Theorem 3.13 (see [56]). Let (M, g) be an n ≥ 3-dimensional Cartan–Hadamard
manifold, and Ω ⊆ M be a bounded domain. Let x0 ∈ Ω and DΩ = supx∈Ω dg(x0, x).
Then for every u ∈ C∞

0 (Ω) one has∫
Ω

|∇gu|2 dvg ≥
(n− 2)2

4

∫
Ω

u2

d2g,x0

dvg +
1

4

∫
Ω

log−2

(
dg,x0

eDΩ

)
u2

d2g,x0

dvg. (3.16)

Another relevant improvement of the Hardy inequality in Rn is due to Brezis and
Vázquez [17, Theorem 4.1]; more precisely, if Ω ⊆ Rn is a bounded domain (n ≥ 2),
then for every u ∈ C∞

0 (Ω) one has∫
Ω

|∇u|2 dx ≥ (n− 2)2

4

∫
Ω

u2

|x|2
dx+ j20,1

(
ωn

Vol(Ω)

) 2
n
∫
Ω

u2 dx, (3.17)

where j0,1 ≈ 2.4048 is the first positive root of the Bessel function J0, and ωn is the
volume of the unit Euclidean ball. Inequality (3.17) has been obtained by Schwarz
symmetrization and an ingenious 1-dimensional analysis. In the sequel, by using our
approach, we provide a Riemannian version of the result by Brezis and Vázquez [17],
which sheds new light on the appearance of j0,1 in inequality (3.17). As before, let jν,k
be the kth positive root of the Bessel function Jν of the first kind and order ν ∈ R.

Theorem 3.14 (see [56]). Let (M, g) be an n ≥ 2-dimensional Cartan–Hadamard
manifold and Ω ⊆ M be a bounded domain. Let x0 ∈ Ω and DΩ = supx∈Ω dg,x0(x).
Then for every ν ∈

[
0, n−2

2

]
and u ∈ C∞

0 (Ω) one has∫
Ω

|∇gu|2 dvg ≥
(
(n− 2)2

4
− ν2

)∫
Ω

u2

d2g,x0

dvg +
j2ν,1
D2

Ω

∫
Ω

u2 dvg. (3.18)

3.2.3 Spectral estimates on Riemannian manifolds

Let (M, g) be an n-dimensional Riemannian manifold with n ≥ 2. Let Ω ⊆ M be a
domain and p > 1. The first Dirichlet eigenvalue of Ω for the p-Laplace–Beltrami
operator −∆g,p on (M, g) is given by

Λm,p(Ω) = inf
u∈C∞

0 (Ω)\{0}

∫
Ω
|∇gu|p dvg∫
Ω
|u|p dvg

.

The first result of the section is Cheng’s comparison principle (see Cheng [27]),
whose original proof is based on Barta’s argument.

Theorem 3.15 (see [56]). Let (M, g) be an n-dimensional Riemannian manifold with
n ≥ 2 and sectional curvature K ≤ κ for some κ ∈ R. Fix x0 ∈ M and suppose that

0 < R < min(injx0
, π/

√
κ) with the convention π/

√
κ

def
= ∞, if κ ≤ 0. Then one has

Λm,2(Bg,x0(R)) ≥ Λm,2(Bκ(R)), (3.19)

where Bκ(R) is an arbitrary ball of radius R in the model space form Mn
κ.
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In the case when the domain is not a ball, as in Cheng’s result, a more powerful
argument is needed. We shall consider only the case when κ = 0, which corresponds
to the famous Faber–Krahn inequality on Cartan–Hadamard manifolds:

Theorem 3.16 (see [56]). Let (M, g) be an n ≥ 2-dimensional Cartan–Hadamard
manifold, which satisfies the Cartan–Hadamard conjecture, and let Ω ⊆ M be a bounded
domain. Then we have

Λm,2(Ω) ≥ Λm,2(Ω
∗) = j2n

2
−1,1

(
ωn

Volg(Ω)

)2/n

, (3.20)

where Ω∗ ⊆ Rn is a ball with Vol(Ω∗) = Volg(Ω).

The next result is McKean’s spectral gap estimate, established by McKean [75] for
p = 2 by using fine properties of Jacobi fields; our argument is based on Riccati pairs.

Theorem 3.17 (see [56]). Let (M, g) be an n ≥ 2-dimensional Cartan–Hadamard
manifold, with sectional curvature K ≤ κ < 0. If p > 1, then

Λm,p(M) ≥
(
n− 1

p

√
−κ

)p

. (3.21)

The next result by Carvalho and Cavalcante [20, Theorem 1.1] concludes the section.

Theorem 3.18 (see [56]). Let (M, g) be an n-dimensional Riemannian manifold, n ≥ 2
and Ω ⊆ M be a domain. Given p > 1, we assume that there exists a function ρ : Ω → R
such that |∇gρ| ≤ a and ∆g,pρ ≥ b for some a, b > 0. Then

Λm,p(Ω) ≥
bp

ppap(p−1)
. (3.22)

3.2.4 Interpolation: Hardy inequality versus McKean
spectral gap

The main result of this section is to prove an interpolation between the classical Hardy
inequality and McKean’s spectral gap, established first by Berchio, Ganguly, Grillo,
and Pinchover [11, Theorem 2.1] in the hyperbolic space Hn

−1.

Theorem 3.19 (see [56]). Let (M, g) be an n ≥ 3-dimensional Cartan–Hadamard
manifold, having sectional curvature K ≤ κ < 0, and x0 ∈ M be fixed. Then, for every

λ ∈ [n− 2, (n−1)2

4
] and u ∈ C∞

0 (M \ {x0}) one has∫
M

|∇gu|2 dvg ≥ λ|κ|
∫
M

u2 dvg + h2
n(λ)

∫
M

u2

d2g,x0

dvg

+ |κ|
(
(n− 2)2

4
− h2

n(λ)

)∫
M

u2

sinh2(
√
−κdg,x0)

dvg

+ hn(λ)γn(λ)

∫
M

Dκ(dg,x0)

d2g,x0

u2 dvg, (3.23)

where γn(λ) =
√

(n− 1)2 − 4λ and hn(λ) =
γn(λ)+1

2
.
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A direct consequence of Theorem 3.19 can be stated as follows for the two marginal
values of λ.

Corollary 3.20 (see [56]). Let (M, g) be an n ≥ 3-dimensional Cartan–Hadamard
manifold with sectional curvature K ≤ κ < 0. If x0 ∈ M is fixed, then for every
u ∈ C∞

0 (M \ {x0}) the following inequalities hold:

(i) (Hardy improvement)∫
M

|∇gu|2 dvg ≥
(n− 2)2

4

∫
M

u2

d2g,x0

dvg + (n− 2)|κ|
∫
M

u2 dvg

+
(n− 2)(n− 3)

2

∫
M

Dκ(dg,x0)

d2g,x0

u2 dvg. (3.24)

(ii) (McKean spectral gap improvement)∫
M

|∇gu|2 dvg ≥
(n− 1)2

4
|κ|
∫
M

u2 dvg +
1

4

∫
M

u2

d2g,x0

dvg

+ |κ|(n− 1)(n− 3)

4

∫
M

u2

sinh2(
√
−κdg,x0)

dvg. (3.25)

Remark 3.21. (a) It is worth mentioning that inequalities from Theorem 3.19 and
Corollary 3.20 are known to be critical on Hn

−1 (see Devyver, Fraas, and Pinchover [33,
Definition 2.1]). Classical criticality proofs are usually formulated using the approach
of supersolutions; however, they can be adapted to Riccati pairs.

(b) We note that Berchio, Ganguly, and Grillo [10, Theorem 2.5] provided a more
general version of the inequality (3.25) under a pointwise curvature assumption. Similar
inequalities can also be obtained in terms of Riccati pairs by using an appropriate
pointwise Laplace comparison (see e.g., Greene and Wu [51]).

The next result by Akutagawa and Kumura [3, Theorem 1.3/(5)] concludes the
section.

Theorem 3.22 (see [56]). Let (M, g) be an n ≥ 2-dimensional Cartan–Hadamard
manifold with sectional curvature K ≤ κ < 0. Let x0 ∈ M be fixed, R > 0, and
Ω = M \Bg,x0(R). Then for every u ∈ C∞

0 (Ω) one has∫
Ω

|∇gu|2 dvg ≥
∫
Ω

(n− 1)2

4
|κ|u2 dvg +

∫
Ω

u2

4
(
dg,x0 −R + 1

(n−1)ctκ(R)

)2 dvg
+

∫
Ω

|κ| (n− 1)(n− 3)

4 sinh2(
√
−κdg,x0)

u2 dvg.
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3.2.5 Ghoussoub–Moradifam-type inequalities

In this section, we consider some inequalities established by Ghoussoub and Moradi-
fam [49, Theorem 2.12] (see also [50]), where the weights are of the form

(a+ b|x|α)β/|x|2m

for some parameters a, b > 0. Possible extensions of these inequalities to the case of
Cartan–Hadamard manifolds are also discussed; see Remark 3.24 and Theorem 3.25,
where some technical difficulties are commented.

Theorem 3.23 (see [56]). Suppose that a, b > 0 and α, β,m ∈ R. The following
statements hold:

(i) If αβ > 0 and m ≤ n−2
2
, then for every u ∈ C∞

0 (Rn) one has

∫
Rn

(a+ b|x|α)β

|x|2m
|∇u|2 dx ≥

(
n− 2m− 2

2

)2 ∫
Rn

(a+ b|x|α)β

|x|2m+2
u2 dx. (3.26)

(ii) If αβ < 0 and 2m− αβ ≤ n− 2, then for every u ∈ C∞
0 (Rn) one has∫

Rn

(a+ b|x|α)β

|x|2m
|∇u|2 dx ≥

(
n− 2m+ αβ − 2

2

)2 ∫
Rn

(a+ b|x|α)β

|x|2m+2
u2 dx. (3.27)

Remark 3.24. One could expect a similar proof on Cartan–Hadamard manifolds as in
Theorem 3.23. However, a subtle technical difficulty shows up that comes from the fact
that – despite several confirming numerical tests – there is no evidence on positiveness
of the function G for the full range of parameters.

Theorem 3.25 (see [56]). Let (M, g) be an n ≥ 2-dimensional Cartan–Hadamard
manifold, and x0 ∈ M be a point. Let a, b, α, β > 0 and m ∈ R, with m ≤ n−2

2
and

αβ +
√

αβ(αβ + 2(n− 2m− 2)) ≤ 2. (3.28)

Then for every u ∈ C∞
0 (M) the following inequality holds:∫

M

(a+ bdαg,x0
)β

d2mg,x0

|∇gu|2 dvg ≥
(
n− 2m− 2

2

)2 ∫
M

(a+ bdαg,x0
)β

d2m+2
g,x0

u2 dvg. (3.29)

Remark 3.26. As we already pointed out in Remark 3.24, numerical tests confirm the
positiveness of G for every a, b > 0 and α, β,m ∈ R, whose proof requires some specific
arguments from the theory of special functions. At this moment, such an approach
is not available. In particular, we expect to cancel the additional hypothesis from
Theorem 3.25.
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3.3 Applications II: Multiplicative Hardy-type

inequalities

3.3.1 Sharp uncertainty principles

Let (M, g) be a complete, non-compact n-dimensional Riemannian manifold (n ≥ 2),
and x0 ∈ M be fixed. Suppose that p, α ∈ R such that

n > p > 1 and − p+ 1 < α ≤ 1. (3.30)

We investigate the following uncertainty principle: for every u ∈ C∞
0 (M), one has(∫

M

|∇gu|p dvg
) 1

p
(∫

M

dp
′α

g,x0
|u|p dvg

) 1
p′

≥ n+ α− 1

p

∫
M

(
1 +

n− 1

n+ α− 1
Dκ(dg,x0)

)
dα−1
g,x0

|u|p dvg. (UPκ)

We observe that (UPκ) formally reduces to the:

• Heisenberg–Pauli–Weyl uncertainty principle, whenever α = 1 (see Kombe and
Özaydin [61, 62] for p = 2 and κ = 0, Kristály [64] for p = 2 and κ ≤ 0, and
Nguyen [85] for generic p > 1 and κ ≤ 0);

• Hydrogen uncertainty principle, whenever α = 0 (see Cazacu, Flynn, and Lam [22]
and Frank [46] in Rn, thus, for κ = 0);

• Hardy inequality in the limit case when α → −p+ 1 (see Corollary 3.11).

Our first result shows the validity of (UPκ) on Cartan–Hadamard manifolds, which
can be stated as follows.

Theorem 3.27 (see [56]). Let (M, g) be an n-dimensional Cartan–Hadamard manifold
(n ≥ 2), such that K ≤ κ ≤ 0. If the conditions of (3.30) hold, then (UPκ) holds as
well; moreover, the constant n+α−1

p
is sharp.

Remark 3.28. If equality holds in (UPκ) for some positive function u ∈ W 1,p(M),
then equality ∆gdg,x0 = (n − 1)ctκ(dg,x0) also holds, which implies that the manifold
(M, g) is isometric to the model space form Mn

κ. This rigidity result is known for κ = 0
from Kristály [64] for p = 2, and from Nguyen [85] for p > 1.

The following result is a counterpart of Theorem 3.27, providing the rigidity of
Riemannian manifolds with Ric ≥ κ(n−1)g for some κ ≤ 0 supporting the uncertainty
principle (UPκ). Similar results have been obtained first by Kristály [64] for p = 2 and
α = 1, and then by Nguyen [85] for generic p > 1, both considering only the case κ = 0.
Now, we have a more general result, valid for every κ ≤ 0 :

Theorem 3.29 (see [56]). Let (M, g) be an n ≥ 2-dimensional complete, non-compact
Riemannian manifold, with Ric ≥ κ(n − 1)g, for some κ ≤ 0. Suppose that (UPκ)
holds for some x0 ∈ M and the parameters α, p, n verify either −p+1 < α ≤ 1 < p < n,
when κ = 0, or 0 < α ≤ 1 < p < n, when κ < 0. Then (M, g) is isometric to the model
space form Mn

κ.
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3.3.2 Caffarelli–Kohn–Nirenberg inequalities

In this section, we prove a version of the Caffarelli–Kohn–Nirenberg inequality (see [18]),
which easily follows from the multiplicative inequality of Theorem 3.1/(ii).

Theorem 3.30 (see [56]). Let (M, g) be an n-dimensional Cartan–Hadamard manifold
with n ≥ 2 such that K ≤ κ for some κ ≤ 0. Fix x0 ∈ M and suppose that p, α, r ∈ R
satisfy

r > p > 1, α+ p > 1, and p(n+ α− 1) > r(n− p) > 0.

Then for every u ∈ C∞
0 (M) one has(∫

M

|∇gu|p dvg
) 1

p
(∫

M

dp
′α

g,x0
|u|p′(r−1) dvg

) 1
p′

≥ n+ α− 1

r

∫
M

(
1 +

n− 1

n+ α− 1
Dκ(dg,x0)

)
dα−1
g,x0

|u|r dvg.

Moreover, the constant n+α−1
r

is sharp.

As we already pointed out, various choices of H and G in Theorem 3.1 produce
well-known or new functional inequalities. In this spirit, we conclude the section with
an unusual Caffarelli–Kohn–Nirenberg-type inequality, which can be the starting point
to build further functional inequalities through Theorem 3.1.

Theorem 3.31 (see [56]). Let (M, g) be an n-dimensional Cartan–Hadamard manifold
(n ≥ 2), such that K ≤ κ < 0. Then for every u ∈ C∞

0 (M) \ {0} and c ∈ R, we have∫
M

|∇gu|2 dvg ≥
(∫

M
s2c(u) dvg

)2∫
M
s2c(2u) dvg

(n− 1)2|κ|. (3.31)

In particular, we also have the McKean spectral gap estimate

λm(M) ≥ (n− 1)2

4
|κ|.





Chapter 4

Rellich inequalities on general
Riemannian manifolds

In this chapter, we present our first approach to Rellich inequalities. In § 4.1 we present
our abstract approach. In § 4.2 we establish spectral gap estimates for various higher-
order eigenvalue problems on general Riemannian manifolds, while in § 4.3 we provide
alternative proofs for additional Rellich inequalities.

4.1 General functional inequalities

In this section, we present two general functional inequalities. The first inequality
connects |∆gu|p and |u|p, for general p > 1. The statement is as follows.

Theorem 4.1 (see [38]). Let (M, g) be an n ≥ 2-dimensional, complete, non-compact
Riemannian manifold. Let Ω ⊆ M be a domain, x0 ∈ Ω, and ρ = dg,x0. Let p > 1 and
suppose that L,W,w,G,H : (0, supΩ ρ) → (0,∞) satisfy the following conditions:

(C1) L,W are continuous, w,G are of class C2, and H is of class C1;

(C2) ∆gρ ≥ L(ρ) in the distributional sense and (wG)′ ≤ 0;

(C3) the ordinary differential inequality

(p−1)
[
2(wGH)′ + 2wGHL− pwGH2 − w|G|p′

]
−(wG)′′−(wG)′L ≥ W (4.1)

holds for the functions L(t),W (t), w(t), G(t), H(t), for all t ∈ (0, supΩ ρ).

Then for every u ∈ C∞
0 (Ω) one has∫

Ω

w(ρ)|∆gu|p dvg ≥
∫
Ω

W (ρ)|u|p dvg.

The second functional inequality connects |∆gu|2 and |∇gu|2. The statement is as
follows.
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Theorem 4.2 (see [38]). Let (M, g) be an n ≥ 2-dimensional complete, non-compact
Riemannian manifold. Let Ω ⊆ M be a domain, x0 ∈ Ω, and ρ = dg,x0. Suppose that
L,W,G,H : (0, supΩ ρ) → (0,∞) satisfy the following conditions:

(C1’) L,W are continuous, G is of class C2, and H is of class C1;

(C2’) ∆gρ ≥ L(ρ) in the distributional sense;

(C3’) the following PDI holds for ρ = dg,x0(x) and for every x ∈ Ω:

(W (ρ)H(ρ))′ +W (ρ)H(ρ)L(ρ)−W (ρ)H(ρ)2 ≥ ∆gG(ρ) +G(ρ)2. (4.2)

Then for every u ∈ C∞
0 (Ω) one has∫
Ω

|∆gu|2 dvg ≥
∫
Ω

(2G(ρ)−W (ρ))|∇gu|2 dvg.

4.2 Applications I: Spectral gap estimates

In this section, we establish sharp spectral estimates on Cartan–Hadamard manifolds
for the clamped plate problem (for general p > 1), the buckling problem (for p = 2) and
their higher-order variants. All the proofs are built upon convexity and comparison
arguments; moreover, they are symmetrization-free.

4.2.1 Clamped plate problem

Our spectral gap result concerning the clamped plate problem reads as follows.

Theorem 4.3 (see [38]). Let (M, g) be an n-dimensional Cartan–Hadamard manifold
with n ≥ 2 and sectional curvature K ≤ κ, for some κ < 0. Let p > 1 and Ω ⊆ M be
a domain. Then for every u ∈ C∞

0 (Ω) one has∫
Ω

|∆gu|p dvg ≥
(
(n− 1)2|κ|(p− 1)

p2

)p ∫
Ω

|u|p dvg. (4.3)

Moreover, the constant in (4.3) is sharp.

We highlight that the estimate from Theorem 4.3 is a novel result that has not yet
been established in such a general context.

4.2.2 Buckling problem

Our spectral gap result concerning the buckling problem reads as follows.

Theorem 4.4 (see [38]). Let (M, g) be an n-dimensional Cartan–Hadamard manifold,
with n ≥ 2 and sectional curvature K ≤ κ, for some κ < 0. If Ω ⊆ M is a domain,
then for every u ∈ C∞

0 (Ω) one has∫
Ω

|∆gu|2 dvg ≥
(n− 1)2|κ|

4

∫
Ω

|∇gu|2 dvg. (4.4)

Moreover, the constant in (4.4) is sharp.
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We note that Theorem 4.4 is a novel result, which provides the spectral gap estimate
in general Cartan–Hadamard manifolds for p = 2.

4.2.3 Higher-order estimates

In the sequel, we present higher-order estimates concerning both the clamped plate
problem and the buckling problem.

Theorem 4.5 (see [38]). Let (M, g) be an n-dimensional Cartan–Hadamard manifold
with n ≥ 2 and sectional curvature K ≤ κ for some κ < 0. Let p > 1 and Ω ⊆ M be a
domain. Then for every u ∈ C∞

0 (Ω) and k ≥ 1 with k ∈ N, one has∫
Ω

|∆k
gu|p dvg ≥

(
(n− 1)2(p− 1)κ2

p2

)kp ∫
Ω

|u|p dvg, (4.5)∫
Ω

|∇g∆
k
gu|p dvg ≥

(
(n− 1)κ

p

)p(
(n− 1)2(p− 1)κ2

p2

)kp ∫
Ω

|u|p dvg. (4.6)

Moreover, the constants in (4.5) and (4.6) are sharp.

Theorem 4.6 (see [38]). Let (M, g) be an n-dimensional Cartan–Hadamard manifold
with n ≥ 2 and sectional curvature K ≤ κ for some κ < 0. If Ω ⊆ M is a domain,
then for every u ∈ C∞

0 (Ω) and k ≥ 1 one has∫
Ω

|∆k
gu|2 dvg ≥

(
(n− 1)κ

2

)4k−2 ∫
Ω

|∇gu|2 dvg, (4.7)∫
Ω

|∇g∆
k
gu|2 dvg ≥

(
(n− 1)κ

2

)4k ∫
Ω

|∇gu|2 dvg. (4.8)

4.3 Applications II: Rellich inequalities

In this section, we present additional applications of our general functional inequalities.

4.3.1 Classical and weighted Rellich inequalities

The extension of the weighted Rellich inequality reads as follow; for the Euclidean
version, see Mitidieri [79, Theorem 3.1].

Theorem 4.7 (see [38]). Let (M, g) be an n-dimensional Cartan–Hadamard manifold,
with n ≥ 5. Let Ω ⊆ M be a domain, and p, γ ∈ R such that

1 < p < n/2 and 2− n

p
< γ <

n(p− 1)

p
.

Fix x0 ∈ Ω and let ρ = dg,x0. Then for every u ∈ C∞
0 (Ω) one has∫

Ω

ργp|∆gu|p dvg ≥
(
n

p
− 2 + γ

)p(
n(p− 1)

p
− γ

)p ∫
Ω

|u|p

ρ(2−γ)p
dvg. (4.9)
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Corollary 4.8 (see [38]). By choosing γ = 0 in Theorem 4.7, we obtain the extension
of the classical Rellich inequality; namely, one has for every u ∈ C∞

0 (Ω) that∫
Ω

|∆gu|p dvg ≥
(
n

p
− 2

)p(
n(p− 1)

p

)p ∫
Ω

|u|p

ρ2p
dvg.

In particular, for p = 2 one has for every u ∈ C∞
0 (Ω) that∫

Ω

|∆gu|2 dvg ≥
n2(n− 4)2

16

∫
Ω

|u|2

ρ4
dvg. (4.10)

4.3.2 Higher-order variants of the classical Rellich inequality

Extension of higher-order Rellich inequalities can be stated as follows; for the Euclidean
versions, see Mitidieri [79, Theorem 3.3].

Theorem 4.9 (see [38]). Let (M, g) be an n-dimensional Cartan–Hadamard manifold,
with n ≥ 5. Let Ω ⊆ M be a domain, fix x0 ∈ Ω and define ρ = dg,x0. The following
inequalities hold:

(i) If k ≥ 1 and n > 2kp, then∫
Ω

|∆k
gu|p dvg ≥ Λr;1(k, p)

∫
Ω

|u|p

ρ2kp
dvg, ∀u ∈ C∞

0 (Ω),

where

Λr;1(k, p) =
k∏

s=1

(
n

p
− 2s

)p(
n(p− 1)

p
+ 2s− 2

)p

.

(ii) If k ≥ 1 and n > (2k + 1)p, then∫
Ω

|∇g∆
k
gu|p dvg ≥ Λr;2(k, p)

∫
Ω

|u|p

ρ(2k+1)p
dvg, ∀u ∈ C∞

0 (Ω)

where

Λr;2(k, p) =

(
n− p

p

)p k∏
s=1

(
n

p
− 2s− 1

)p(
n(p− 1)

p
+ 2s− 1

)p

.

4.3.3 Further Rellich inequalities

In this section we present further applications to our general functional inequalities
providing short proofs for additional Rellich-type inequalities.

Theorem 4.10 (see [38]). Let (M, g) be an n-dimensional Cartan–Hadamard manifold
(n ≥ 5). Let Ω = Bg,x0(1) ⊆ M be a ball centered at x0 ∈ M with unit radius. Define
ρ = dg,x0. Then for every u ∈ C∞

0 (Ω) one has∫
Ω

|∆gu|2 dvg ≥
n2(n− 4)4

16

∫
Ω

u2

ρ4
dvg +

n(n− 4)j20,1
2

∫
Ω

u2

ρ2
dvg,

where j0,1 denotes the first positive zero of the Bessel function J0.



4.3. APPLICATIONS II: RELLICH INEQUALITIES 35

The second result deals with the case when K ≤ κ for some κ < 0, and can be
formulated as follows.

Theorem 4.11 (see [38]). Let (M, g) be an n-dimensional Cartan–Hadamard manifold
with n ≥ 5 and sectional curvature K ≤ κ for some κ < 0. Let Ω ⊆ M be a domain,
fix x0 ∈ Ω and define ρ = dg,x0. Then for every u ∈ C∞

0 (Ω) one has∫
Ω

|∆gu|2 dvg ≥
(n− 1)4|κ|2

16

∫
Ω

u2 dvg +
(n− 1)2|κ|

8

∫
Ω

u2

ρ2
dvg

+
(n− 1)3(n− 3)|κ|2

8

∫
Ω

u2

sinh2(κρ)
dvg.

The third result of the section is a simple application of Theorem 4.2.

Theorem 4.12 (see [38]). Let (M, g) be an n-dimensional Cartan–Hadamard manifold
(n ≥ 8), Ω ⊆ M be a domain, x0 ∈ M be fixed and define ρ = dg,x0. Then for every
u ∈ C∞

0 (Ω) one has ∫
Ω

|∆gu|2 dvg ≥
n2

4

∫
Ω

|∇gu|2

ρ2
dvg.

Remark 4.13. Note that Theorem 4.12 is expected to hold for every n ≥ 5; however,
the technical condition n ≥ 8 is required to guarantee the applicability of Theorem 4.2
(W > 0 whenever n ≥ 9, and if n = 8, then W = 0, in which case the proof of
Theorem 4.2 is obvious). A similar restriction also appeared in the Finsler context
when proving quantitative Rellich inequalities; see Kristály and Repovš [70], where
another approach was applied.





Chapter 5

Rellich inequalities on space forms

In this chapter, using the idea of Riccati pairs, we provide a second approach for proving
Rellich inequalities on model space forms: In § 5.1 we present our abstract approach,
while in § 5.2 & 5.3 we provide applications in the Euclidean spaces and hyperbolic
spaces, respectively.

5.1 General functional inequalities

In this section, we present our abstract approach. Motivated by the simplify of the
underlying geometrical setting, we also refactor the definition of Riccati pairs.

5.1.1 Simplified Riccati pairs and dual Riccati pairs

Let κ ≤ 0 and define Lκ : (0,∞) → (0,∞), by

Lκ(t) = (n− 1)ctκ(t).

A simplified definition of Riccati pairs refactored for space forms is as follows (for the
original version, see Definition 3.2).

Definition 5.1 (see [55]). Let κ ≤ 0 and Ω ⊆ Mn
κ be an open domain. Fix x0 ∈ Ω

and let ρ = dκ,x0 the distance from x0. Suppose that w,W : (0, supΩ ρ) → [0,∞) are
smooth functions. The couple (Lκ,W ) is a (ρ, w)-simplified Riccati pair on (0, supΩ ρ)
if there exists a smooth function G : (0, supΩ ρ) → R such that the following ODI holds:

G′(t) +

(
Lκ(t) +

w′(t)

w(t)

)
G(t)−G(t)2 ≥ W (t), ∀t ∈ (0, supΩ ρ). (5.1)

A function G satisfying (5.1) is said to be admissible for (Lκ,W ).

The above inequality is a driving force for the Hardy-type functional inequalities.
However, as we shall see soon, the Rellich-type inequalities are more compatible with
its dual version, which can be stated as follows.
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Definition 5.2 (see [55]). Let κ ≤ 0 and Ω ⊆ Mn
κ be an open domain. Fix x0 ∈ Ω

and let ρ = dκ,x0 the distance from x0. Suppose that v, V : (0, supΩ ρ) → [0,∞) are
smooth functions. The couple (Lκ, V ) is a (ρ, v)-dual Riccati pair on (0, supΩ ρ) if there
exists a smooth function H : (0, supΩ ρ) → R such that the following ODI holds:

−H ′(t) +

(
Lκ(t)−

v′(t)

v(t)

)
H(t)−H(t)2 ≥ V (t), ∀t ∈ (0, supΩ ρ). (5.2)

A function H satisfying (5.2) is said to be dual admissible for (Lκ, V ).

The first result of the section is a general functional inequality, which can be stated
as follows.

Theorem 5.3 (see [55]). Let κ ≤ 0 and Ω ⊆ Mn
κ be an open domain. Fix x0 ∈ Ω

and define ρ = dκ,x0. Suppose that (Lκ, V ) is a dual Riccati pair on (0, supΩ ρ) and H
is dual admissible for (Lκ, V ). Then the following statements hold.

(i) For every u ∈ C∞
0 (Ω) one has∫

Ω

v(ρ)|∆κu|2 dxκ ≥
∫
Ω

v(ρ)V (ρ)|∇rad
κ u|2 dxκ, (5.3)

provided that E1(t) = (v(t)H(t))′ + v(t)H(t)(Lκ(t)− 2ctκ(t)) ≥ 0, for all t > 0.

(ii) For every u ∈ C∞
0 (Ω) one has∫

Ω

v(ρ)|∆κu|2 dxκ ≥
∫
Ω

v(ρ)V (ρ)|∇κu|2 dxκ, (5.4)

provided that E2(t) = 2(v(t)H(t))′ + v(t)H(t)(H(t)− 2ctκ(t)) ≥ 0, for all t > 0.

The second result of the section is tailored to complement Theorem 5.3/(i). It can
be stated as follows.

Theorem 5.4 (see [55]). Let κ ≤ 0 and Ω ⊆ Mn
κ be an open domain. Fix x0 ∈ Ω and

define ρ = dκ,x0. Suppose that (Lκ, V ) is a simplified Riccati pair on (0, supΩ ρ) and H
is admissible for (Lκ, V ). Then for every u ∈ C∞

0 (Ω) one has∫
Ω

w(ρ)|∇rad
κ u|2 dxκ ≥

∫
Ω

w(ρ)W (ρ)u2 dxκ. (5.5)

We note that Theorems 5.3/(i) & 5.4 can be efficiently use to prove Rellich-type
inequalities on model space forms. This can also be done by combining Theorem 5.3/(ii)
and Theorem 3.3 but at the price of some additional conditions, typically involving
restrictive dimension constraints.
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5.2 Applications I: Inequalities on Euclidean

spaces

In the Euclidean setting, a number of well-known Rellich inequalities are discussed
by Ghoussoub and Moradifam [49] in terms of Bessel potentials and/or Bessel pairs.
After recalling the related concepts, we discuss two novel inequalities among them,
which highlight the strengths and the limitations of our method. For the original
proofs of the selected inequalities (5.7) & (5.8), see Adimurthi, Grossi, and Santra [2].

Recall that a function Z > 0 is a Bessel potential on (0, R) if there exist a constant
c > 0 and a function z > 0 such that following ODE holds:

z′′(t) +
z′(t)

t
+ c · Z(t) · z(t) = 0, ∀t ∈ (0, R). (5.6)

Using Theorems 5.3/(i) & 5.4 we obtain the following general result.

Theorem 5.5 (see [55]). Let n ≥ 5 and B ⊆ Rn be a ball centered at the origin with
radius R > 0. Suppose that Z is a Bessel potential on (0, R) with solution z and best
constant c, such that

(Z) : Z′(t)
Z(t)

= −λ
t
+ f(t), where λ < n− 2, f(t) ≥ 0 and limt→0 tf(t) = 0.

holds. Define H(t) = n
2t
+ z′(t)

z(t)
. If E1(t) = H ′(t) + H(t) · n−3

t
≥ 0 for all t ∈ (0, R),

then for every u ∈ C∞
0 (B) one has∫

B

|∆u|2 dx ≥ n2(n− 4)2

16

∫
B

u2

|x|4
dx+ c

(
n2

4
+

(n− λ− 2)2

4

)∫
B

Z(|x|)u2

|x|2
dx.

In the sequel, for an arbitrary function h define

h[0](t) = t, h[1](t) = h(t) and h[i](t) = h(h[i−1](t)), ∀i ≥ 2.

A corollary of Theorem 5.5 can be stated as follows.

Corollary 5.6 (see [55]). Let n ≥ 5 and B ⊆ Rn be a ball centered at the origin with
radius R > 0. If k ≥ 1 and r = R · exp[k−1](e), then for every u ∈ C∞

0 (Ω) one has∫
B

|∆u|2 dx ≥ n2(n− 4)2

16

∫
B

u2

|x|4
dx

+

(
1 +

n(n− 4)

8

) k∑
j=1

∫
B

u2

|x|4

(
j∏

i=1

log[i]

(
r

|x|

))−2

dx. (5.7)

The limitations of Theorem 5.5 can be illustrated as follows.

Remark 5.7. Let ℓ(t) = 1
1−log(t)

, k ≥ 1, R > 0 and consider the inequality∫
Ω

|∆u|2 dx ≥ n2(n− 4)2

16

∫
Ω

u2

|x|4
dx

+

(
1 +

n(n− 4)

8

) k∑
j=1

∫
Ω

u2

|x|4
j∏

i=1

ℓ2[i]

(
|x|
R

)
dx. (5.8)
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The inequality (5.8) is generated by the Bessel potential with parameters

Z̃k,R(t) =
k∑

j=1

1

t2

j∏
i=1

ℓ2[i]

(
t

R

)
, z̃k,R(t) =

(
k∏

i=1

ℓ[i]

(
t

R

))− 1
2

, ∀t ∈ (0, R),

and c = 1
4
. Moreover, Condition (Z) holds for λ = 2. Observe that

lim
t→R

E1(t) = lim
t→R

(
H ′(t) +H(t) · n− 3

t

)
=

n− k

2
, where H(t) =

n

2t
+

z̃′k,r(t)

z̃k,r(t)
.

The above relation shows that if k > n, the positivity condition does not hold, and
therefore, Theorem 5.5 cannot be applied.

5.3 Applications II: Inequalities on hyperbolic

spaces

In this section, we present applications to our results on hyperbolic spaces. The first
result in this setting is the following interpolation inequality.

Theorem 5.8 (see [55]). Let κ < 0, n ≥ 5, and Ω ⊆ Hn
κ be an open domain. Fix

x0 ∈ Ω and denote by ρ = dκ,x0 the Riemannian distance from x0. Then for every
u ∈ C∞

0 (Ω) one has∫
Ω

|∆κu|2 dxκ ≥ |κ|λ
∫
Ω

|∇rad
κ u|2 dxκ + h2

n(λ)

∫
Ω

|∇rad
κ u|2

ρ2
dxκ

+ |κ|
(
n2

4
− h2

n(λ)

)∫
Ω

|∇rad
κ u|2

sinh2(
√
−κρ)

dxκ

+ γn(λ)hn(λ)

∫
Ω

(ρ ctκ(ρ)− 1)

ρ2
|∇rad

κ u|2 dxκ, (5.9)

where 0 ≤ λ ≤ (n−1)2

4
, γn(λ) =

√
(n− 1)2 − 4λ and hn(λ) =

γn(λ)+1
2

.

Direct consequences can be stated as follows for the two marginal values of λ.

Corollary 5.9 (see [55]). Choose λ = 0 in (5.9) to obtain for every u ∈ C∞
0 (Ω) that∫

Ω

|∆κu|2 dxκ ≥ n2

4

∫
Ω

|∇rad
κ u|2

ρ2
dxκ +

n(n− 1)

2

∫
Ω

(ρ ctκ(ρ)− 1)

ρ2
|∇rad

κ u|2 dxκ.

Corollary 5.10 (see [55]). Choose λ = (n−1)2

4
in (5.9) to obtain for every u ∈ C∞

0 (Ω)
that ∫

Ω

|∆κu|2 dxκ ≥ (n− 1)2|κ|
4

∫
Ω

|∇rad
κ u|2 dxκ +

1

4

∫
Ω

|∇rad
κ u|2

ρ2
dxκ

+
(n2 − 1)|κ|

4

∫
Ω

|∇rad
κ u|2

sinh2(
√
−κρ)

dxκ.
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Lower-order counterparts of Corollary 5.10 can be stated as follows.

Theorem 5.11 (see [55]). Let κ < 0, n ≥ 5, and Ω ⊆ Hn
κ be an open domain. Fix

x0 ∈ Ω and denote by ρ = dκ,x0 the Riemannian distance from x0. Then for every
u ∈ C∞

0 (Ω) one has∫
Ω

|∇rad
κ u|2 dxκ ≥ (n− 1)2|κ|

4

∫
Ω

u2 dxκ +
1

4

∫
Ω

u2

ρ2
dxκ

+
(n− 1)(n− 3)|κ|

4

∫
Ω

u2

sinh2(
√
−κρ)

dxκ, (5.10)∫
Ω

|∇rad
κ u|2

ρ2
dxκ ≥ 9

4

∫
Ω

u2

ρ4
dxκ − (n− 1)

∫
Ω

ctκ(ρ)

ρ3
dxκ +

(n− 1)2|κ|
4

∫
Ω

u2

ρ2
dxκ

+
(n− 1)(n− 3)|κ|

4

∫
Ω

u2

ρ2 sinh2(
√
−κρ)

dx, (5.11)∫
Ω

|∇rad
κ u|2

sinh2(
√
−κρ)

dxκ ≥ 1

4

∫
Ω

u2

t2 sinh2(
√
−κρ)

dxκ +
(n− 3)2|κ|

4

∫
Ω

u2

sinh2(
√
−κρ)

dxκ

+
(n− 3)(n− 5)|κ|

4

∫
Ω

u2

sinh4(
√
−κρ)

dxκ. (5.12)

Remark 5.12. We note that non-radial versions of the latter three inequalities can
be obtained using Theorem 3.3 by choosing the same parameter functions; see also
Section 3.2.4 and the results therein.

We conclude the section with the following result, which combines Theorem 5.11
and Corollary 5.10. This last result can be stated as follows.

Theorem 5.13 (see [55]). Let κ < 0, n ≥ 5, and Ω ⊆ Hn
κ be an open domain.

Fix x0 ∈ Ω and denote ρ = dκ,x0 the Riemannian distance from x0. Then for every
u ∈ C∞

0 (Ω) one has∫
Ω

|∆κu|2 dxκ ≥ (n− 1)4|κ|
16

∫
Ω

u2 dxκ +
(n− 1)2|κ|

8

∫
Ω

u2

ρ2
dxκ

+
(n− 1)2|κ|

8

∫
Ω

u2

ρ2 sinh2(
√
−κρ)

dxκ

+
(n− 1)(n− 3)(n2 − 2n− 1)κ2

8

∫
Ω

u2

sinh2(
√
−κρ)

dxκ

− (n− 1)κ

4

∫
Ω

ctκ(ρ)|u2|
t3

dxκ

+
(n2 − 1)(n− 3)(n− 5)κ2

16

∫
Ω

u2

sinh4(
√
−κρ)

dxκ +
9

16

∫
Ω

u2

ρ4
dxκ.
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Poincaré identities on the hyperbolic space via Bessel pairs. Calc. Var. Partial
Differ. Equ., 61(4):24, Paper No. 130, 2022.

[14] G. Bol. Isoperimetrische Ungleichungen für Bereiche auf Flächen. Jahresber.
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[56] S. Kajántó, A. Kristály, I. R. Peter, and W. Zhao. A generic functional inequality
and Riccati pairs: an alternative approach to Hardy-type inequalities. Math.
Ann., 2024. accepted.

[57] S. Kajántó and A. Kristály. Unexpected Behaviour of Flag and S-Curvatures on
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the hyperbolic space. Acta Math. Vietnam., 44:781–795, 2019.



BIBLIOGRAPHY 49

[84] V. H. Nguyen. New sharp Hardy and Rellich type inequalities on Cartan–
Hadamard manifolds and their improvements. Proc. Roy. Soc. Edinburgh Sect.
A, 150(6):2952–2981, 2020.

[85] V. H. Nguyen. Sharp Caffarelli–Kohn–Nirenberg inequalities on Riemannian
manifolds: the influence of curvature. Proc. Roy. Soc. Edinburgh Sect. A,
152(1):102–127, 2022.

[86] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (eds). NIST
Handbook of Mathematical Functions. Cambridge Univ. Press, Cambridge, 2010.

[87] Y. Pinchover. Criticality and ground states for second-order elliptic equations.
J. Differ. Equ., 80(2):237–250, 1989.

[88] Y. Pinchover. On criticality and ground states of second order elliptic equations,
II. J. Differ. Equ., 87(2):353–364, 1990.

[89] J. W. S. Rayleigh. The Theory of Sound. 2nd edition, revised and enlarged (in
two volumes), 1945.

[90] F. Rellich. Halbbeschränkte Differentialoperatoren höherer Ordnung. In Proc.
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