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Introduction

In this thesis, we combine the notions of fixed points and critical points to gain

a more profound understanding of the qualitative properties of solutions to various

nonlinear systems. Specifically, we investigate the equilibrium properties of solutions

for some nonlinear systems. Our primary emphasis lies on Nash-type equilibria.

The concept of equilibrium, nowadays understood under the name of Nash equi-

librium, has its historical roots in the economic study conducted by A. Cournot in

the mid-nineteenth century, in the book The Mathematical Principles of the Theory

of Wealth [21, Chapter VII]. This study examined the outcomes of two ’proprietors’

who were analyzing both the total price per product and the quantity of sales. The

analysis assumed that the proprietors were not operating as a monopoly, meaning

none of them exerted influence over the others. In other words, the analysis focused

on a scenario in which both proprietors were in a state where neither could improve

their profit relative to the other.

In 1951, J. Nash [40] examined such equilibria in non-cooperative finite games

within game theory and provided a rigorous existence result using Brouwer’s fixed-

point theorem [11]. This paper’s novelty lies in its applicability to any finite game,

contrasting with earlier attempts such as the one by J. Neumann and O. Morgenstern

in 1944 [39].

A new point of view is to use the notion of a Nash equilibrium more generally for

systems of operator equations, specifically for a system of two equations with u and

v as unknowns, where each one of the equations has an energy functional E1(u, v)

and E2(u, v), respectively. A solution (u∗, v∗) is a Nash equilibrium if

E1(u
∗, v∗) = minE1(·, v∗) and E2(u

∗, v∗) = minE2(u
∗, ·).

Since 1951, the idea of a Nash equilibrium has been extensively developed not only

in the field of game theory but also in various other domains (see, e.g., F. Facchinei

and C. Kanzow [29], S. Park [41, 42], J. Li and S. Park [37], J. Krawczyk [36], S.

Cacace, E. Cristiani, M. Falcone [15], J.A. Ramos, R. Glowinski and J. Periaux

[58,59]).
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Structure of the thesis

Our thesis consists of four chapters, each with several sections within.

Chapter 1 is dedicated to essential preliminary concepts, results, and notations

used throughout this work. In Section 1.1, we introduce fundamental results related

to the Fréchet derivative and Nemytskii operators. Section 1.2 discusses Ekeland’s

variational principle and its consequences. In Section 1.3, we review concepts related

to matrices converging to zero and their associated properties. Finally, the last three

sections provide necessary results used throughout the thesis, covering fixed point

theorems, Sobolev spaces, and a new concept of linking introduced by R. Precup.

In Chapter 2, we focus on systems where each one of the equations admits

a variational structure, that is, each equation is equivalent with a critical point

problem. Section 2.1 starts with an existence and uniqueness result for an equation

of Kirchhoff type, where we also prove its equivalence with a critical point prob-

lem. Subsequently, we investigate a system of Kirchhoff equations, demonstrating

the existence of a solution that is also a Nash equilibrium for the associated en-

ergy functionals. This result is retrieved in both the entire domain and in a ball.

Illustrative examples are provided for each case.

The chapter continues with Section 2.2, where we study an abstract system

on reflexive and uniformly convex Banach spaces, under the assumption that each

equation possesses a variational form.

All the results from Section 2.1 are original and have been published in R. Precup

and A. Stan [54]. In Sections 2.2 and 2.3, our contributions are: Theorem 2.8, The-

orem 2.9, Theorem 2.10 and Example 2.3. They have been published in A. Stan [67].

The purpose of Chapter 3 is to further investigate the existence of solutions

that constitute Nash equilibria, even for systems where not all the equations admit

a variational structure. In Section 3.1, we study a system of three equations where

only the last two of them have this property. We provide sufficient conditions such

that the system is solvable and moreover, the last two components from the solution

are a Nash equilibrium for the associated energy functionals.

In Section 3.2, we explore a system similar to the one in Section 3.1 but with

an arbitrary number of equations. Our assumption is that only the last p equations

admit a variational formulation. Our goal is not only to prove the existence of

solutions such that the last p components of the solution are a Nash equilibrium

for their energy functionals, but also to establish their localization within certain

conical sets. Finally, in Section 3.3, we present applications of the results obtained in

4



Contents

both Section 3.1 and Section 3.2. Each application is accompanied by an illustrative

example.

All the results from this chapter are original and they can be found in A. Stan

[65,66].

Chapter 4 aims to extend the concept of Nash equilibrium discussed in previous

chapters. The idea is not only to attain the minimum of the energy functionals but

also to capture saddle points, all of this through a unitary theory. Thus, given a

critical point system E11(u, v) = 0 and E22(u, v) = 0, where Eii (i = 1, 2) represents

the Fréchet derivative of some functional Ei with respect to the ith variable, we

aim to obtain a solution (u∗, v∗) such that one of the following situations holds: a)

E1(u
∗, v∗) is a minimum for E1(u

∗, ·) and E2(u
∗, v∗) is a minimum for E2(·, v∗) (Nash

equilibrium), b) E1(u
∗, v∗) is a minimum for E1(u

∗, ·) and E2(u
∗, v∗) is a mountain

pass point for E2(·, v∗) or c) E1(u
∗, v∗) is a mountain pass point for E1(·, v∗) and

E2(u
∗, v∗) is a mountain pass point for E2(u

∗, ·). To emphasize the significance of

the problem, let us consider the pair of functionals below on R2 × R2:

E1 (x, y, z, w) = x2 + y2 + z2 + w2 − xz, E2 (x, y, z, w) = x2 + 2y2 + z2 + w2 − yw,

F1 (x, y, z, w) = x2 + y2 + z2 + w2 − xz, F2 (x, y, z, w) = x2 + 2y2 + z2 − w2 − yw,

G1 (x, y, z, w) = x2 − y2 + z2 + w2 − xz, G2 (x, y, z, w) = x2 + 2y2 + z2 − w2 − yw.

One easily sees that the pair (u∗, v∗), where u∗ = v∗ = (0, 0), is a critical point

for all the functionals above, but with different proprieties. Indeed: u∗ minimizes

E1 (·, v∗) = x2 + y2 while v∗ minimizes E2 (u∗, ·) = z2 +w2, u∗ minimizes F1 (·, v∗) =

x2 + y2 while v∗ is a mountain pass point for F2 (u∗, ·) = z2 − w2, and finally u∗ is

a mountain pass point for G1 (·, v∗) = x2 − y2 while v∗ is a mountain pass point for

G2 (u∗, ·) = z2 − w2.

This work significantly complements the paper [53] and expands upon the ideas

and techniques presented in M. Be ldzinski and M. Galewski [8], R. Precup and A.

Stan [48, 52, 53, 65] (see also G. Kassay and V. D. Rădulescu [34, Ch. 8]). How-

ever, the absolute novelty introduced by this work lies in the unified approach to

obtain solutions which are generalized Nash equilibrium for the system, i.e., some

components of the solution can be mountain pass critical points, while others can

be minimum points. The theory applies not just to systems with two equations but

can be extended to any number of equations.

All the results from this chapter are included in R. Precup and A. Stan [55].

Author’s publications:
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Chapter 1

Preliminaries

In this chapter we list some notions and results that we use throughout our thesis.

Ekeland’s variational principle, fixed point theorems, proprieties of matrices conver-

gent to zero and results from the theory of Sobolev spaces are the primary tools in

our research.

The concepts discussed here are well-documented in the literature. Some of the

notable references include works by A. I. Perov [44], I. A. Rus [61, 62], F. Browder

[12], H. Brezis [10], K. Deimling [22], R. Precup [45, 49], P. G. Ciarlet [16], H. Le

Dret [26], C. Zălinescu [70], G. Kassay and V. D. Rădulescu [34], R. S. Varga, [69],

A. Granas and J. Dugundji [32], R. Adams and J. Fournier [1].

1.1 Differential calculus in Banach spaces

Definition 1.1. It is said that E is Fréchet differentiable at u ∈ X, if there exists

E ′(u) ∈ X∗ such that

E(u+ v) − E(u) = ⟨E ′(u) , v⟩ + ω(u, v), for all v ∈ X,

where ω is such that
ω(u, v)

|v|
→ 0, as |v| → 0.

Definition 1.2 ([45, Definition 5.1]). A function f : Rm → Rn is said to be of

Carathéodory type if

1. f(·, y) : Rm → Rn is measurable for every y ∈ Rm;

2. f(x, ·) : Rm → Rn is continuous for almost every x ∈ Rm.

In the subsequent discussion, Ω ⊂ Rm denotes a bounded open set.

Definition 1.3. Let f : Ω × Rn → RN be a function. The Nemytskii operator

associated with f is the map which assign to any function u : Ω → Rn, the new
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1.2. Ekeland variational principle

function Nf (u) : Ω → RN , given by

Nf (u) (x) = f(x, u(x)), for all x ∈ Ω.

Theorem 1.1 ([46, Theorem 9.1]). Let p, q ∈ (1,∞) and let f : Ω ×Rn → RN be a

Carathéodory type function. Assume that there are constants c1, c2 ∈ R+ such that

|f(x, y)| ≤ c1|y|
p
q + c2, for all y ∈ Rn and almost all x ∈ Ω.

Then, the Nemytskii operator Nf is well defined and continuous from Lp (Ω;Rn) to

Lq
(
Ω;RN

)
.

Example 1.1. Let F : Ω × Rn → R be a function with the following properties

(1) F (·, 0) = 0,

(2) F is of Carathéodory type,

(3) F (x, ·) continuously differentiable.

If ∇F (x, ·) is also of Carathéodory type, then the functional

E : Lp(Ω;Rn) → R, E(u) =

∫
Ω

F (x, u(x))dx,

belongs to C1 (Lp(Ω,Rn)), and moreover E ′ = Nf , i.e.,

⟨E ′(u), v⟩ =

∫
Ω

(∇F (x, u(x)) , v(x)) dx, for all v ∈ Lp(Ω;Rn).

1.2 Ekeland variational principle

First, we recall the weak form of Ekeland’s variational principle (see, I. Ekeland [27],

D. G. de Figueiredo [30]).

Theorem 1.2 (Ekeland). Let (X, d) be a complete metric space, and E : X → R a

lower semicontinuous functional bounded from below. Then, for every ε > 0, there

exists an element x ∈ X that satisfies the following two proprieties

E (x) ≤ inf
y∈X

E (y) + ε,

and

E (x) ≤ E (y) + εd (x, y) , for all y ∈ X.
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1.2. Ekeland variational principle

Proposition 1.3. Given the assumptions of Theorem 1.2, when X is a Banach

space equipped with the norm | · |X and E is a C1 functional, there exists a sequence

(uk) from X such that

E (uk) → inf
X
E and E ′ (uk) → 0.

The Ekeland variational principle extends to balls or conical sets, notably valu-

able for demonstrating the existence of almost critical points within bounded sets.

Consider H as a Hilbert space with inner product (·, ·)H and induced norm | · |H .

Theorem 1.4 ([63, Theorem 5.3.1]). Let R > 0, and let E : BR → R be a C1

functional that is bounded from below, where BR denotes the closed ball of radius R

centered at the origin. Then, there exists a sequence (uk) from BR such that

E (uk) → inf
BR

E,

and one of the following two situations holds

(a) E ′ (uk) → 0;

(b) |uk|H = R, (E ′ (uk) , uk) ≤ 0, for all k ∈ N, and

E ′ (uk) − (E ′ (uk) , uk)H
R2

uk → 0.

Let K ⊂ H be a cone, and let l : K → R be an upper semicontinuous concave

functional. Additionally, assume the existence of an operator N : H → H and a C1

functional E : H → R such that E ′(u) = u−N(u), for all u ∈ H. For two positive

real numbers 0 < r < R, consider the convex conical set Kr,R be defined by

Kr,R := {u ∈ K : r ≤ l(u), |u|H ≤ R}.

In subsequent, we recall a variant of the Ekeland variational principle on the set

Kr,R. For the proof and further details we send to R. Precup [52, Lemma 2.1]

Lemma 1.5. Assume the following conditions are satisfied:

(i) The functional E is bounded from below on Kr,R, i.e.,

m := inf
Kr,R

E(·) > −∞.

(ii) There exists ε > 0 such that for all u ∈ Kr,R satisfying both |u|H = R and

l(u) = r, we have E(u) ≥ m+ ε.

9



1.3. Matrices convergent to zero

(iii) l(N(u)) ≥ r, for all u ∈ Kr,R.

Then, there exists a sequence (uk) ∈ Kr,R such that

E(uk) ≤ m+
1

k
,

and

|E ′(uk) + λnuk|H ≤ 1

k
,

where

λn =

− 1
R2 (E ′(uk), uk)H , when |uk|H = R and (E ′(uk), uk)H < 0

0, otherwise.

1.3 Matrices convergent to zero

Definition 1.4. A square matrix A ∈ Mn×n (R+) is said to be convergent to zero if

Ak → On as k → ∞,

where On denotes the zero matrix of order n.

For any r ∈ {1, . . . , n}, let us consider the diagonal submatrix Ar := [aij]1≤i,j≤r.

It is not difficult to see that if A is convergent to zero, then Ar is also convergent to

zero, as follows from the subsequent lemma.

Lemma 1.6. Assume that the matrix A is convergent to zero. Then Ar is also

convergent to zero, for any r ∈ {1, . . . , n}.

For a square matrix A ∈ Mn×n(R+), condition that Ak tends to the zero matrix

On as k → ∞ is equivalent to each one of the following properties from Lemma 1.7

below (see, e.g., A. Berman and R. J. Plemmons [7], R. Precup [47]).

Lemma 1.7. The following statements are equivalent:

(i) The matrix A is convergent to zero.

(ii) The matrix I − A is nonsingular, and the entries of its inverse (I − A)−1 are

nonnegative.

(iii) The spectral radius of A is less then 1, i.e., the maximum magnitude of its

eigenvalues is less than 1.

(iv) There exists a positive diagonal matrix D = (dii)1≤i≤n such that

(D(I − A)x, x) > 0, for all x ∈ Rn \ {0}.
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1.4. Fixed point type theorems

In case when n = 2, the following equivalent characterization holds true (see,

e.g., R. Precup [47]).

Lemma 1.8. Let A = [aij]1≤i,j≤2 be a square matrix of nonnegative real numbers.

Then, A is convergent to zero if and only if a11, a22 < 1 and

a11 + a22 < 1 + a11a22 − a12a21. (1.1)

The following result related to matrices convergent to zero is intensively used

throughout this thesis.

Lemma 1.9 ([65, Lemma 2.2]). Let (xk,p)k≥1 , (yk,p)k≥1 be two sequences of vec-

tors in Rn
+ (column vectors), both dependent on an parameter p, which additionally

satisfy:

xk,p ≤ Axk−1,p + yk,p

for all k and p, where A ∈ Mn×n(R+) is a matrix convergent to zero. If the sequence

(xk,p)k≥1 is bounded uniformly with respect to p and yk,p → 0n as k → ∞ uniformly

with respect to p, then xk,p → 0n as k → ∞ uniformly with respect to p.

1.4 Fixed point type theorems

Theorem 1.10 (Perov). Consider two complete metric spaces (Xi, di) (i = 1, 2).

Let Ni : X1 × X2 → Xi be two mappings and assume there exists a square matrix

A of size two with nonnegative entries and spectral radius ρ (A) < 1 such that the

following vector inequality holds(
d1 (N1 (x, y) , N1 (u, v))

d2 (N2 (x, y) , N2 (u, v))

)
≤ A

(
d1 (x, y)

d2 (u, v)

)
,

for all (x, y) , (u, v) ∈ X1 ×X2. Then, there exists a unique point (x∗, y∗) ∈ X1 ×X2

with x∗ = N1 (x∗, y∗) and y∗ = N2 (x∗, y∗) . Furthermore, the point (x∗, y∗) can be

attained using the method of successive approximations starting from an arbitrarily

initial point (x0, y0) , since for any k ∈ N we have(
d1
(
Nk

1 (x0, y0) , x
∗)

d2
(
Nk

2 (x0, y0) , y
∗)
)

≤ Ak (I − A)−1

(
d1 (x0, N1 (x0, y0))

d2 (y0, N2 (x0, y0))

)
.

Theorem 1.11 (Schauder). Let X be a Banach space, D ⊂ X a nonempty closed

convex bounded set and T : D → D a compact operator (i.e., continuous, with T (D)

relatively compact). Then, T has at least one fixed point in D.
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1.5. Sobolev spaces

Theorem 1.12 (Leray-Schauder). Let X be a Banach space and T : X → X a

continuous compact mapping that satisfies the following condition: there exists R > 0

such that the set ∪λ∈[0,1]{x ∈ X : x = λTx} is contained within a ball of radius R,

centered in the origin. Then, T admits at least one fixed point.

Definition 1.5. Let T : X → X∗ be an operator. It is said that

(i) T is strongly monotone if there exists a > 0 such that

⟨T (u) − T (v) , u− v⟩ ≥ a|u− v|2X , for all u, v ∈ X.

T is said to be monotone if the constant a may take the value 0.

(ii) T is coercive if
⟨T (u), u⟩

|u|X
→ ∞ as |u|X → ∞.

(iii) T is demicontinuous if for any xn → x∗ in X we have that T (xn) → T (x)

weakly, i.e.,

⟨T (xn) , y⟩ → ⟨T (x∗) , y⟩, for any y ∈ X.

Theorem 1.13 (Minty-Browder). Let X be a real, reflexive and separable Banach

space. Assume T : X → X∗ is a bounded, demicontinuous, coercive and monotone

operator. Then, for any given v ∈ X∗, there exists a unique u ∈ X such that

T (u) = v.

1.5 Sobolev spaces

Let Ω ⊂ Rn be an open and bounded set, and let us consider the Sobolev space

W 1,p(Ω) := {u ∈ Lp(Ω) : ∇u ∈ Lp(Ω;Rn)} .

Proposition 1.14. For 1 < p < ∞, the space W 1,p(Ω) is a reflexive and separable

Banach space with the norm ∥u∥W 1,p := ∥u∥Lp + ∥u′∥Lp. When p = 2, the space

H1(Ω) := W 1,2(Ω) becomes a Hilbert space together with the inner product

(u, v)H1 = (u, v)L2 + (∇u,∇v)L2 .

In the following, our emphasis will be on to the the Sobolev space

W 1,p
0 (Ω) =

{
u ∈ W 1,p : u|Ω = 0 in the sense of traces

}
.

12



1.5. Sobolev spaces

Proposition 1.15 (Poincaré Inequality, [10,28,43]). There exists a constant C > 0

such that

|u|Lp ≤ C|∇u|Lp , for all u ∈ W 1,p
0 (Ω).

Proposition 1.16. The Sobolev space
(
W 1,p

0 (Ω) , | · |W 1,p
0

)
is a uniformly convex

real Banach space.

Further, let us consider the dual of W 1,p(Ω) denoted with W−1,p′(Ω), where
1
p

+ 1
p′

= 1. One has the following diagram,

W 1,p
0 (Ω) ↪→↪→ Lp(Ω)

Nf−→ Lp′(Ω) ↪→ W−1,p(Ω).

The subsequent result establishes an equivalence between p-Laplacian and the

duality mapping corresponding to the gauge function φ(t) = tp−1 on
(
W 1,p

0 , | · |W 1,p
0

)
.

For details we send to G. Dinca, P. Jebelean and J. Mawhin [25, Theorem 3].

Theorem 1.17. The operator −∆p : W 1,p
0 (Ω) → W−1,p′(Ω) is the Fréchet derivative

of the functional ψ : W 1,p
0 (Ω) → R, where ψ(u) = 1

p
|u|p

W 1,p
0

. Specifically,

ψ′ = −∆p = Jφ,

where Jφ represents the duality mapping corresponding to the gauge function φ(t) =

tp−1.

Let H−1 (Ω) stand for the dual space of H1
0 (Ω) . For any f ∈ H−1 (Ω) , u ∈

H1
0 (Ω) , the expression ⟨f, u⟩ represents the value at u of the continuous linear

functional f. Moreover, one has the Poincaré inequality

|u|L2 ≤ 1√
λ1

|u|H1
0

(
u ∈ H1

0

)
,

where λ1 is the first eigenvalue of the Dirichlet problem for the operator −∆. We

use the notation (−∆)−1 for the inverse of the Laplacian with respect to the homo-

geneous Dirichlet boundary condition.

In case (0, T ) = Ω ⊂ R, the Poincaré inequality holds with λ1 = π2

T 2 (see, e.g., H.

Brezis [10], R. Precup [45]), i.e.,

|u|L2 ≤ 1√
λ1

|u|H1
0

=
T

π
|u|H1

0
,
(
u ∈ H1

0

)
,

where λ1 is the first eigenvalue of the Dirichlet problem −u′′ = λu, u(0) = u(T ) = 0.

Additionally, there exists a positive constant c > 0 exists such that for all t ∈
(0, T ) and u ∈ H1

0 (0, T ), the following inequality holds true

|u(t)| ≤ c|u|H1
0
.
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1.6. A unifying notion of linking

1.6 A unifying notion of linking

The concept of linking, crucial in critical point theory, has widespread application

(V. Benci and P.H. Rabinowitz [5], P.H. Rabinowitz [57], M. Schechter [63], M.

Struwe [68]). Originating from the mountain pass theorem by Ambrosetti and Ra-

binowitz [2], it has evolved and adapted to various generalizations. Linking has

become a potent tool in analyzing diverse nonlinear problems (D.G. Costa and C.A.

Magalh aes [17], N. Costea, M. Csirik and C. Varga [20], R. Filippucci, P. Pucci and

F. Robert [31], P. Pucci and V. D. Rădulescu [56], E.A.B. Silva [64]).

Let X be a Banach space, D and Q be two subsets of X with ∅ ≠ Q ⊂ D.

Definition 1.6 ([53]). It is said that a nonempty set A ⊂ D links a set B ⊂ Q via

Q (in D) if γ (Q) ∩ A ̸= ∅ for every γ ∈ C (Q,D) with γ|B = idB.

Note that, according to the above definition, the entire set A = D links the

empty set B = ∅, via any Q, particularly through any singleton Q = {u} with

u ∈ D. As further explained below, this limiting scenario of trivial linking provides

us with minima of a functional when using the min-max procedure.

Assume that A links B in D via Q. Let E : D → R be a functional, and let

Γ = {γ ∈ C (Q,D) : γ|B = idB}.

Denote

m := inf
v∈D

E (v) , a := inf
v∈A

E (v) , b := sup
v∈B

E (v) ,

and

c := inf
γ∈Γ

sup
q∈Q

E (γ (q)) .

We immediately deduce that

m ≤ a ≤ c and b ≤ c.

Also, if B = ∅ and A = D, then

m = a, b = −∞ and c = m.
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Chapter 2

Nash equilibria for componentwise

variational systems

2.1 Kirchhoff type systems

We consider the coupled system of Kirchhoff equations (see, G. Kirchhoff [35])
−
(
a+ b |u|2H1

0

)
∆u = f1 + g1 (x, u, v)

−
(
a+ b |v|2H1

0

)
∆v = f2 + g2 (x, u, v)

u|∂Ω = v|∂Ω = 0,

(2.1)

where we are interested in a solution that is also a Nash equilibrium. The main idea

is to express the system (2.1) as N1(u, v) = u

N2(u, v) = v ,
(2.2)

where both equations admit a variational structure. This means that there exist en-

ergy functionals E1 (u, v) and E2 (u, v) such that (2.2) is equivalent with the critical

point problem  E11(u, v) = 0

E22(u, v) = 0 .
(2.3)

Here, Eii stands for the partial Fréchet derivative of Ei (i = 1, 2) with respect to

the ith variable.

In the ssequel, let us consider the following Kirchhoff equation with Dirichlet

15



2.1. Kirchhoff type systems

boundary condition −
(
a+ b

∫
Ω
|∇u|2 dx

)
∆u = h, in Ω

u = 0 on ∂Ω.
(2.4)

The first result concerns the existence of a continuous solution operator.

Theorem 2.1. If h ∈ H−1 (Ω) , the problem (2.4) has a unique weak solution, i.e.,

there exists a unique u ∈ H1
0 (Ω) such that(

a+ b

∫
Ω

|∇u|2 dx
)

(u, v)H1
0

= ⟨h, v⟩, v ∈ H1
0 (Ω) . (2.5)

The main idea to guarantee the existence of a solution of (2.5), is to consider

the operator,

Sh : H1
0 (Ω) → H1

0 (Ω) , Sh (v) =
1

a+ b |v|2H1
0

(−∆)−1 h
(
v ∈ H1

0 (Ω)
)
.

Clearly, Sh is compact and moreover,

|Sh (v)|H1
0
≤ 1

a
|h|H−1 . (2.6)

If we define

B =

{
v ∈ H1

0 (Ω) : |v|H1
0
≤ 1

a
|h|H−1

}
,

one clearly has Sh (B) ⊂ B. Consequently, from Theorem 1.11, there exists at least

one u such that Sh (u) = u.

Given the monotony of the function (a+ bx2)x, we deduce that any two solutions

u1, u2 of (2.5) satisfy |u1|H1
0

= |u2|H1
0
. Thus, the uniqueness of solution for the

Dirichlet problem related to −∆ provides u1 = u2.

Theorem 2.2. (The energy functional) A function u ∈ H1
0 (Ω) is a weak solution

of the Dirichlet problem if and only if it is a critical point of the C1 functional

E : H1
0 (Ω) → R,

E (v) =
1

4

(
2a+ b |v|2H1

0

)
|v|2H1

0
− ⟨h, v⟩ . (2.7)

Theorem 2.3. A function u ∈ H1
0 (Ω) solves the Dirichlet problem if and only if it

represents a minimum for the corresponding energy functional (2.7).

2.1.1 Global solution

We are interested to prove the existence of a solution which is a Nash equilibrium

in the entire space H1
0 (Ω) ×H1

0 (Ω) for the system (2.1).
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2.1. Kirchhoff type systems

For each one of the equation from the system (2.1) we associate the energy

functionals E1, E2 : H1
0 (Ω) ×H1

0 (Ω) → R, given by

E1 (u, v) =
1

4

(
2a+ b |u|2H1

0

)
|u|2H1

0
− ⟨f1, u⟩ −

∫
Ω

G1 (x, u (x) , v (x)) dx,

E2 (u, v) =
1

4

(
2a+ b |v|2H1

0

)
|v|2H1

0
− ⟨f2, v⟩ −

∫
Ω

G2 (x, u (x) , v (x)) dx,

where G1 (x, u, v) =
∫ u

0
g1 (x, s, v) ds and G2 (x, u, v) =

∫ v

0
g2 (x, u, s) ds. One has,

E11 (u, v) =
(
a+ b |u|2H1

0

)
u− (−∆)−1 (f1 + g1 (·, u, v)) ,

E22 (u, v) =
(
a+ b |v|2H1

0

)
v − (−∆)−1 (f2 + g2 (·, u, v)) ,

for every u, v ∈ H1
0 (Ω).

Definition 2.1. A function H : Ω × R → R is said to be of coercive-type if the

functional ϕ : H1
0 (Ω) → R,

ϕ (v) =
1

4

(
2a+ b |v|2H1

0

)
|v|2H1

0
− ⟨f2, v⟩ −

∫
Ω

H (x, v) dx

is coercive, i.e., ϕ (v) → +∞ as |v|H1
0
→ +∞.

Theorem 2.4. For each i ∈ {1, 2}, assume that the functions fi ∈ H−1 (Ω) and

gi : Ω × R2 → R are of Carathéodory type and gi (·, 0, 0) = 0. Additionally, let us

assume that the following conditions hold:

(h1) There are constants aij ∈ R+ (i, j = 1, 2) such that

aii < λ1a, i = 1, 2,

a12a21 < (λ1 a− a11)(λ1 a− a22), (2.8)

and

(g1 (t, x, y) − g1 (t, x, y)) (x− x) ≤ a11 |x− x|2 + a12 |x− x| |y − y| , (2.9)

(g2 (t, x, y) − g2 (t, x, y)) (y − y) ≤ a21 |x− x| |y − y| + a22 |y − y|2 ,

for all x, y, x, y ∈ R and a.e. t ∈ Ω. Here, λ1 represents the first eigenvalue of

the Dirichlet problem −∆u = λu, u∂Ω = 0.

(h2) There exist two functions H1, H2 : Ω × R → R of coercive-type such that

H1 (t, y) ≤ G2 (t, x, y) ≤ H2 (t, y) , (2.10)
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2.1. Kirchhoff type systems

for all x, y ∈ R and a.e. t ∈ Ω.

Then, the system (2.1) has a unique solution which is a Nash equilibrium for the

functionals E1, E2.

Remark 2.5 (Classical Lipschitz conditions). It is clear that the unilateral Lipschitz

conditions (2.9) hold when g1 and g2 satisfy to the classical Lipschitz conditions:

|g1 (t, x, y) − g1 (t, x, y)| ≤ a11 |x− x| + a12| |y − y| ,

|g2 (t, x, y) − g2 (t, x, y)| ≤ a21 |x− x| + a22 |y − y| ,

for all x, y, x, y ∈ R and a.e. t ∈ Ω. In R. Precup’s paper [50], the conditions imposed

on the coefficients aij allow us to directly establish both the existence and uniqueness

of the solution to system (2.2) using Perov’s fixed-point theorem (Theorem 1.10).

It is noteworthy that the application of unilateral Lipschitz conditions to prove the

existence of Nash equilibria was initially introduced in R. Precup [51]

Example 2.1. Consider the Dirichlet problem for the system of Kirchhoff type
−
(

1 +
∫ 1

0
|u′|2

)
u′′ = u− sin v

−
(

1 +
∫ 1

0
|v′|2

)
v′′ = v + sinu

u(0) = v(0) = u(1) = v(1) = 0.

on (0, 1) (2.11)

Theorem 2.4 is employed with

Ω = (0, 1) , a = b = 1 , g1(t, x, y) = x− sin y , g2(t, x, y) = sin x+ y.

Note that condition (2.9) is satisfied with aij = 1 (i, j = 1, 2) . Also, the first eigen-

value of the Dirichlet problem −u′′ = λu on (0, 1), u(0) = u(1) = 0 has the value

π2 (see, e.g., R. Precup [45, p. 72]), therefore relation (2.8) holds true since 1 < π2

and 1 < (π2 − 1)
2
. To verify condition (h2), we calculate

G2(t, x, y) =

∫ y

0

(s+ sinx)ds =
1

2
y2 + y sinx.

Let the coercive-type functions H1(t, y) = 1
2
y2 − |y| and H2(t, y) = 1

2
y2 + |y|. One

easily sees that

H1(t, y) ≤ G2(t, x, y) ≤ H2(t, y).

Henceforth, the Dirichlet problem (2.11) possesses a unique solution (u∗, v∗) ∈
H1

0 (0, 1) × H1
0 (0, 1) that also is a Nash equilibrium for the associated energy func-

tionals.
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2.1. Kirchhoff type systems

2.1.2 Solutions in bounded domains

We aim to establish the existence of a solution for the system (2.1) in the bounded

domain BR1 × BR2 , where BRi
represents balls of radius Ri (i = 1, 2) centered at

the origin of the space H1
0 (Ω).

We consider the following Leray-Schauder boundary conditions

E11(u, v) + µu ̸= 0 for all (u, v)∈ BR1 ×BR2 with |u|H1
0

= R1 and all µ > 0,

(2.12)

E22(u, v) + γ v ̸= 0 for all (u, v)∈ BR1 ×BR2 with |v|H1
0

= R2 and all γ > 0.

Theorem 2.6. Let fi ∈ H−1 (Ω) and let gi : Ω × R2 → R be Carathéodory type

functions with gi (·, 0, 0) = 0 (i = 1, 2) that satisfy the monotony conditions from

assumption (h1) of Theorem 2.4. Moreover, let us assume that

(h2’)

a11
λ1
R1 +

a12
λ1
R2 + |f1|H−1 ≤ aR1 + bR3

1,

a21
λ1
R1 +

a22
λ1
R2 + |f2|H−1 ≤ aR2 + bR3

2.

Then, the system (2.1) has a unique solution within BR1 × BR2 which is a Nash

equilibrium for the functionals E1, E2.

Example 2.2. Let the Dirichlet problem for the system of Kirchhoff type
−
(

2 +
∫ 1

0
|u′|2

)
u′′ = −u3 + u− sin v + π2 sin(πx)

−
(

2 +
∫ 1

0
|v′|2

)
v′′ = −v3 + v + sinu

u(0) = v(0) = u(1) = v(1) = 0.

on (0, 1) (2.13)

Let R1 = R2 = 1. In the following, we apply Theorem 2.6 with

Ω = (0, 1), a = 2, b = 1, f1(t) = π2 sin(πt), f2 ≡ 0,

g1(t, x, y) = −x3 + x− sin y, g2(t, x, y) = −y3 + y + sinx.

For any x, x ∈ R one clearly has

(g1 (t, x, y) − g1 (t, x, y)) (x− x) ≤ |x− x|2 + |x− x| |y − y| ,

(g2 (t, x, y) − g2 (t, x, y)) (y − y) ≤ |x− x| |y − y| + |y − y|2 .

Therefore, condition (2.9) holds with aij = 1 (i, j = 1, 2). Moreover, since λ1 = π2,

note that condition (2.8) is also satisfied. Hence, assumption (h1) is verified. Next,

19



2.2. Abstract systems in reflexive Banach spaces

we check condition (h2’). Observe that |f2|H−1 = 0 and in addition, the function

u0 (t) = sin (πt) is the solution of the Dirichlet problem −u′′ = f1 in (0, 1) , u (0) =

u (1) = 0. Thus,

|f1|H−1 = |u0|H1
0

= |u′0|L2 =

(∫ 1

0

π2 cos2 (πt) dt

) 1
2

=
π√
2
.

Finally, condition (h2’) holds true since

2

π2
+

π√
2
< 3 and

2

π2
< 3.

Henceforth, there is a unique solution

(u∗, v∗) ∈
{
u ∈ H1

0 (0, 1) : |u|H1
0
≤ 1
}
×
{
v ∈ H1

0 (0, 1) : |v|H1
0
≤ 1
}
,

to the Dirichlet problem (2.13) that is also a Nash equilibrium for the corresponding

energy functionals.

2.2 Abstract systems in reflexive Banach spaces

In this section, we present some extension of the results obtained by R. Precup [50],

within the context of Hilbert spaces, to a broader functional framework.

Unlike previous approaches using Perov contraction conditions and Ekeland’s

variational principle, our method employs different mathematical tools, including

insights from C. Avramescu [3] and techniques with monotone operators like the

Minty-Browder theorem (cf. Theorem 1.13) and the Leray-Schauder fixed-point

theorem (cf. Theorem 1.12).

We consider the system N1(u, v) = J1(u)

N2(u, v) = J2(v),
(2.14)

where N1, N2 are continuous operators and J1, J2 represent the duality mappings

corresponding to suitable Banach spaces.

Consider a real, separable, and uniformly convex Banach space X along with

its dual space X∗. Let ⟨·, ·⟩ denote the dual pairing between X∗ and X, and J the

duality mapping associated with the gauge function φ(t) := tp−1, where p > 1, i.e.,

Jx := {x∗ ∈ X∗ : ⟨x∗ , x⟩ = |x|p , |x∗|X∗ = |x|p−1}. (2.15)
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2.2. Abstract systems in reflexive Banach spaces

Lemma 2.7. The duality mapping (2.15) has the following properties:

i) J is single valued.

ii) J is strictly monotone, i.e., ⟨Jx− Jy, x− y⟩ > 0 for all x ̸= y.

iii) J satisfies the (S)+ condition, i.e., if xn → x weakly and lim supn→∞⟨J xn , xn−
x⟩ ≤ 0, then xn → x strongly.

iv) J is demicontinuous, i.e., if xn → x strongly, then Jxn → Jx weakly.

v) J is bijective from X to X∗.

Let (X1, | · |1), (X2, | · |2) be two separable and uniformly convex real Banach

spaces, together with their dual spaces X∗
1 and X∗

2 . Denote with ⟨· , ·⟩1, ⟨· , ·⟩2 the

dual pairings between X∗
1 , X1 and X∗

2 , X2, respectively. The duality mappings J1

and J2 correspond to gauge functions φ1(t) := tp−1 and φ2(t) = tq−1, respectively,

where p ≥ q > 1.

We assume variational structure for (2.14), with energy functionals E1 and E2,

such that

E11(u, v) = J1(u) −N1(u, v), E22(u, v) = J2(v) −N2(u, v),

where E11 and E22 are partial Fréchet derivatives. Any (u∗, v∗) ∈ X1×X2 satisfying

E11(u
∗, v∗) = 0 and E22(u

∗, v∗) = 0 is a solution of (2.14)..

Let a11, a22 ∈ [0, 1) be such that

⟨N1(u, v) −N1(u, v) , u− u⟩1 ≤ a11⟨J1(u) − J1(u) , u− u⟩1, (2.16)

⟨N2(u, v) −N2(u, v) , v − v⟩2 ≤ a22⟨J2(v) − J2(v) , u− v⟩2, (2.17)

for all u, u ∈ X1 and v, v ∈ X2.

The problem of finding a Nash equilibrium solution for system (2.14) can be

divided into two subproblems:

(i) Proving any solution’s status as a Nash equilibrium.

(ii) Ensuring the existence of at least one solution.

This division simplifies analysis while maintaining clarity. Notably, in our case, the

equivalence between the original problem and its subproblems (i) and (ii) holds.

Our first result below, ensures that the monotony conditions (2.16) and (2.17)

are sufficient to solve the first subproblem (i).
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Theorem 2.8. Given the previous assumptions, if (u∗, v∗) ∈ X1 ×X2 satisfies both

E11(u
∗, v∗) = 0 and E22(u

∗, v∗) = 0 simultaneously, then (u∗, v∗) ∈ X1 × X2 is, in

fact, a Nash equilibrium for the energy functionals (E1, E2), i.e.,

E1(u
∗, v∗) = inf

X1

E1(·, v∗) and E2(u
∗, v∗) = inf

X2

E2(u
∗, ·) . (2.18)

Theorem 2.9. Assume the following conditions hold true

(h1) The operator J−1
2 ◦N2 : X1 ×X2 → X2 is compact.

(h2) There are real numbers a12, a21 ∈ (0, 1) and M1,M2 ∈ R+ such that

|N1(0, v)| ≤ a12|v|p−1
1 +M1, for all v ∈ X2, (2.19)

|N2(u, 0)| ≤ a21|u|q−1
1 +M2, for all u ∈ X1, (2.20)

and the matrix

A =

[
a11 a12

a21 a22

]
is convergent to zero.

Then, there exists a solution (u∗, v∗) ∈ X1 ×X2 of the system (2.14).

2.3 Applications

Let us consider the Dirichlet problem
−∆p u = f1(·, u, v)

−∆q v = f2(·, u, v)

u|∂Ω = v|∂Ω = 0 ,

on Ω (2.21)

where p ≥ q > 1 and Ω is some bounded domain from Rn with Lipschitz boundary.

We consider X1 = W 1,p
0 (Ω) and X2 = W 1,q

0 (Ω), equipped with the usual norms

|u|1,p := |∇u|Lp and |u|1,q := |∇u|Lq . From Theorem 1.17 we see that the dual

mapping J1 = −∆p and J2 = −∆q. We assume the f1, f2 : Ω × Rn → R satisfy the

growth conditions

|f1(t, x, y)| ≤ C1|x|p−1 + C2|y|p−1 + a(t) , (2.22)

|f2(t, x, y)| ≤ C1|x|q−1 + C2|y|q−1 + b(t) , (2.23)

for all x, y ∈ R and t ∈ Ω, where C1, C2 ∈ R, a ∈ Lp′(Ω) and b ∈ Lq′(Ω). Here, p′

and q′ are such that 1
p

+ 1
p′

= 1 and 1
q

+ 1
q′

= 1.
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From (2.22) and (2.23) we conclude that the Nemytskii operators

Nf1(u, v)(t) := f1(t, u(t), v(t)) and Nf2(u, v)(t) := f2(t, u(t), v(t))

are well defined, continuous and bounded from Lp(Ω) to Lp′(Ω), respectively Lq(Ω)

to Lq′(Ω). The compact embedding of W 1,p
0 (Ω) in Lp(Ω) and W 1,q

0 (Ω) in Lq(Ω),

guarantees that the operator

T = (−∆q)
−1Nf2(u, v) : W 1,p

0 (Ω) ×W 1,q
0 (Ω) → W 1,q

0 (Ω)

is compact (see, e.g., G. Dinca and P. Jebelean [24]).

Observe that each equation from (2.21) admits a variational formulation given

by the energy functionals E1, E2 : W 1,p(Ω) ×W 1,q(Ω) → R,

E1(u, v) :=
1

p
|u|p1,p −

∫
Ω

F1(·, u, v), E2(u, v) :=
1

q
|u|q1,q −

∫
Ω

F2(·, u, v),

where

F1(t, u(t), v(t)) :=

∫ u(t)

0

f1(t, s, w(t))ds, F2(t, u(t), v(t)) :=

∫ v(t)

0

f2(t, u(t), s)ds.

Theorem 2.10. Let the above assumptions be satisfied. Furthermore, let us assume

(H1) There exists positive real numbers a11, a22 such that

(x− x)(f1(·, x, y) − f1(·, x, y)) ≤ a11|x− x|p, (2.24)

(y − y)(f2(·, x, y) − f2(·, x, y)) ≤ a22|s− s|q, (2.25)

for all real numbers x, x, y, y.

(H2) There exists positive real numbers a12, a21,M1,M2 such that

|f1(·, 0, y)| ≤ a12|y|p−1 +M1, (2.26)

|f2(·, x, 0)| ≤ a21|x|q−1 +M2, (2.27)

for all real numbers x, y.

(H3) The matrix

A :=

[
Cp a11 Cp a12

Dq a21 Dq a22

]
is convergent to zero, where C and D represent the constants associated with

the Poincaré inequality (Proposition 1.15) in the spaces W 1,p
0 (Ω) and W 1,q

0 (Ω),

respectively.
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Then, there exists a solution (u∗, v∗) ∈ W 1,p
0 (Ω) ×W 1,q

0 (Ω) for the system (2.21),

such that it is a Nash equilibrium for the energy functionals E1, E2.

In conducting the arguments of the previous results, the following lema is needed

Lemma 2.11. ( [23, Proposition 8]) Under the growth conditions (2.26-2.27), the

Nemytskii’s operators (N f1v)(x) := f1(x, 0, v(x)) and (N f2u)(x) := f2(x, u(x), 0)

satisfy

|N f1v|Lp′ ≤ a12|v|p−1
Lp +M ′

1

|N f2u|Lq′ ≤ a21|u|q−1
Lq +M ′

2.
(2.28)

Example 2.3. Consider the following second order system of differential equations

with Dirichlet boundary conditions
−u′′ = −u+ π sin(u) + π

2
v

−v′′ = u+ cos(v)

u(0) = v(0) = u(1) = v(1) = 0.

on (0, 1) (2.29)

To achieve a solution that is a Nash equilibrium for the associated energy func-

tionals, we will demonstrate that all the assumptions specified in Theorem 2.10 are

fulfilled, where

Ω = (0, 1), p = q = 2, n = 1, C = 1
π

f1(t, x, y) = −x+ π sin(x) + π
2
y, f2(t, x, y) = x+ cos(y).

Note that growth conditions (2.22-2.23) holds with C1 = 1, C2 = π
2

and a(t) = π,

b(t) = 1.

One clearly has

(f1(t, x, y) − f1(t, x, y) (x− x) ≤ π|x− x|,

(f2(t, x, y) − f1(t, x, y) (y − y) ≤ |y − y|.

Hence, we may chose a11 = π and a22 = 1 to satisfy condition (H1). Simple calcula-

tions demonstrate that (H2) also holds with a12 = π
2
, a21 = 1, M1 = 0, and M2 = 1.

In the end, it is clear that the matrix

A =

 1
π

1
2π

1
π2

1
π2


is convergent to zero. Therefore, the system (2.29) has a solution (u∗, v∗) ∈ W 1,2

0 (0, 1)×
W 1,2

0 (0, 1) which is a Nash equilibrium for the corresponding energy functionals.
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Chapter 3

Nash equilibria for partial

variational systems

In this section we extend the results for systems with three equations, where we aim

to find solutions that are a partial Nash type equilibrium.

Related results can be found in R. Precup [52], B. Renata and R. Precup [13],

J. R. López, R. Precup and C.I Gheorghiu [60], I. Benedetti, T. Cardinali and R.

Precup [6], M. Be ldziński, M. Galewski and D. Barilla [9].

3.1 Global existence

We consider the system 
N1(u, v, w) = u

N2(u, v, w) = v

N3(u, v, w) = w,

(3.1)

where only the last two equations admit a variational formulation. Our objective is

to find a solution (u, v, w) such that the pair (v, w) is a Nash-type equilibrium for

the energy functionals associated with the last two equations.

Let (X1, d) be a complete metric space and (X2, | · |2), (X3, | · |3) be two real

Hilbert spaces which are identified with their duals. Denote X := X1 × X2 × X3.

We assume that there exist two functionals E2, E3 : X → R such that E2(u, ·, w) is

Fréchet differentiable for every (u,w) ∈ X1 ×X3, E3(u, v, ·) is Fréchet differentiable

for every (u, v) ∈ X1 ×X2 and

E22(u, v, w) = v −N2(u, v, w),

E33(u, v, w) = w −N3(u, v, w).

Here, E22 represents the Fréchet derivative of the functional E2(u, ·, w), while E33 is
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3.2. Existence of solutions in conical sets

the Fréchet derivative of the functional E3(u, v, ·).
In addition, we assume that the operators Ni satisfy the following Lipschitz

conditions (Perov contraction condition): there are nonegative real numbers aij

(i, j = 1, 2, 3) such that

d (N1(u, v, w), N1(u, v, w)) ≤ a11d(u, u) + a12|v − v|2 + a13|w − w|3, (3.2)

|N2(u, v, w), N2(u, v, w)|2 ≤ a21d(u, u) + a22|v − v|2 + a23|w − w|3,

|N3(u, v, w), N3(u, v, w)|3 ≤ a31d(u, u) + a32|v − v|2 + a33|w − w|3,

for all (u, v, w), (u, v, w) ∈ X and the matrix A = [aij]1≤i,j≤3 is convergent to zero.

Theorem 3.1. Under the previously functional framework, in addition we assume:

(h1) For every triple (u, v, w) ∈ X, the functionals E2(u, ·, w), E3(u, v, ·) are bounded
from below.

(h2) There are positive real numbers R2, R3, a > 0 such that

E2(u, v, w) ≥ inf
X2

E2(u, ·, w)+a for all (u,w) ∈ X1×X3 and |v|2 ≥ R2, (3.3)

and

E3(u, v, w) ≥ inf
X3

E3(u, v, ·)+a for all (u, v) ∈ X1×X2 and |w|3 ≥ R3. (3.4)

Then, the unique fixed point (u∗, v∗, w∗) guaranteed by the Perov contraction theorem

has the property that (v∗, w∗) is a Nash type equilibrium for the pair of functionals

(E2, E3), that is,

E2(u
∗, v∗, w∗) = inf

X2

E2(u
∗, ·, w∗),

E3(u
∗, v∗, w∗) = inf

X3

E3(u
∗, v∗, ·).

3.2 Existence of solutions in conical sets

We consider a system with n equations

N1(u
1, . . . , un) = u1

. . .

Np(u
1, . . . , up, . . . , un) = up

. . .

Nn(u1, . . . , un) = un,

(3.5)
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3.2. Existence of solutions in conical sets

having the special property that only the last n-p equations admit a variational

structure. We aim to find a solution (u1∗, . . . , u
p
∗, . . . , u

n
∗ ) such that (up+1

∗ , . . . , un∗ ) is

located within the Cartesian product of some conical sets and moreover, it is a Nash

equilibrium for the corresponding energy functionals

Definition 3.1. Let x = (xi), y = (yi) ∈ Rn be two vectors. We denote with

◦ : Rn × Rn → Rn the Hadamard product, i.e.,

x ◦ y = (x1y1, . . . , xnyn)T .

The Hadamard product is related to the inner product by the following relation.

Proposition 3.2. Let A = (aij)1≤i,j≤n ∈ Mn,n (R+) be a matrix with positive entries

and let x = (xi), y = (yi), z = (zi) ∈ Rn
+. If

Ax ◦ y ≤ z

then

Ax · y ≤
√
n|z|.

Let (Xi, | · |i) (i = 1, . . . , n) be Hilbert spaces identified with their duals. Denote

X := X1 × · · · ×Xn and X1,q := X1 × · · · ×Xq, (q = 1, . . . , n),

together with the inner products (u, v)X = (u1, v1)1 + . . . + (un, vn)n, (u, v)X1,q =

(u1, v1)1+. . .+(uq, vq)1, and induced norms |u|2X = (u, v)X , |u|2X1,q
= (u, v)X1,q . Also,

let Xq denotes the space obtained from X by excluding Xq, i.e.,

Xq := X1 × · · · ×Xq−1 ×Xq+1 × · · · ×Xn.

For simplicity, for any q ∈ {1, . . . , n}, we refer to

(u1, . . . , uq)T as u1,q, (uq+1, . . . , un)T as uq+1,n

and

(N1(u), . . . , Nq(u))T as N1,q(u), (Nq+1(u), . . . , Nn(u))T as Nq+1,n(u).

With these notations, we have

u =
(
u1,p, up+1,n

)T
and

(N1(u), . . . , Nn(u))T = (N1,q(u), Nq+1,n(u))T .
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3.2. Existence of solutions in conical sets

On X1,q, we consider the vector-valued inner product

⟨⟨u, v⟩⟩ =
(
(u1, v1)1, . . . , (u

q, vq)q
)T ∈ Rq,

and vector valued norm

∥u∥ :=
(
|u1|1, . . . , |uq|q

)T ∈ Rq,

for any u = (u1, . . . , uq), v = (v1, . . . , vq) ∈ X1,q. It is not difficult to see that these

notations remain consistent with respect to Hadamard product since ⟨⟨u , u⟩⟩ =

∥u∥ ◦ ∥u∥.
For each q ∈ {p+ 1, . . . , n}, we assume the existence of functionals Eq : X → R

that are Fréchet differentiable with respect to the qth component (this derivative is

denoted with Eqq), such that

Eqq(u) = uq −Nq(u). (3.6)

For each q ∈ {p + 1, . . . , n}, let Kq ⊂ Xq be a cone. Also, let lq : Kq → R+ be

an upper semicontinuous and concave functional with the property that lq(0) = 0.

On Kq we consider the convex conical set (Kq)rq ,Rq ,

(Kq)rq ,Rq := {uq ∈ Kq : rq ≤ lq(u
q), |uq|q ≤ Rq},

where 0 ≤ rq < Rq ≤ ∞ are nonegative real numbers. Denote

K := (Kp+1)rp+1,Rp+1 × · · · × (Kn)rn,Rn

and

Kq := (Kp+1)rp+1,Rp+1 × · · · × (Kq−1)rq−1,Rq−1 × (Kq+1)rq+1,Rq+1 × · · · × (Kn)rn,Rn .

3.2.1 Existence of a minimizing sequence

Theorem 3.3. In what follows, we assume:

(h1) There exists a matrix A = [aij]1≤i,j≤n convergent to zero such that

⟨⟨N1,n (u) −N1,n (v) , u− v⟩⟩ ≤ A∥u− v∥ ◦ ∥u− v∥, (3.7)
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3.2. Existence of solutions in conical sets

i.e,

(
Ni(u) −Ni(v), ui − vi

)
i
≤

n∑
j=1

∣∣ui − vi
∣∣
i

n∑
j=1

aij
∣∣uj − vj

∣∣
j
, (i = 1, . . . , n) ,

(3.8)

for all u = (u1, . . . , un), v = (v1, . . . , vn) ∈ X.

(h2) For each q ∈ {p+ 1, . . . , n}, one has

lq (Nq(u)) ≥ rq, for all u ∈ X1,p ×K.

(h3) There exists m := infu∈X1,p×K Eq(u) > −∞ and ε > 0 such that

Eq(u) ≥ inf
(Kq)rq,Rq

Eq(u
1, . . . , uq−1, · , uq+1, . . . , un) + ε,

for all (u1, . . . , uq−1, uq+1, un) ∈ X1,p×Kq that satisfies lq(u
q) = rq and |uq|q =

Rq, simultaneously.

Then, there exists a sequence uk = (u1k, . . . , u
p
k, u

p+1
k , . . . , unk)T ∈ X1,p ×K such that

Eq

(
u1,qk , uq+1,n

k−1

)
≤ inf

(Kq)rq,Rq

Eq

(
u1,q−1
k , · , uq+1,n

k−1

)
+

1

k

and ∣∣Eqq

(
u1,qk , uq+1,n

k−1

)
+ λqku

q
k

∣∣
q
≤ 1

k
,

where

λqk :=


− 1

R2
q

(
Eqq

(
u1,qk , uq+1,n

k−1

)
, uqk

)
q
, if |uqk|q = Rq and(

Eqq

(
u1,qk , uq+1,n

k−1

)
, uqk

)
q
< 0

0, otherwise,

for all q ∈ {p, . . . , n}, k ∈ N.

3.2.2 Convergence of the localized minimizing sequence

Now, we establish conditions ensuring convergence of the minimizing sequence (uk)

generated in Theorem 3.3.

Theorem 3.4. Let uk = (u1k, . . . , u
p
k, u

p+1
k , . . . , unk)T ∈ X1,p × K be the sequence

generated in Theorem 3.3. Additionally, we suppose
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3.3. Applications

(h2’) For every q ∈ {p+1, . . . , n}, the following Leray-Schauder boundary condition

are satisfied:

Nq(u) − uq − λuq ̸= 0, for all λ > 0 and u ∈ X1,p ×K with |uq|q = Rq.

(h4) The operator Nq

(
0X1 , . . . , 0Xp , ·

)
is bounded on K.

Then, the sequence uk is convergent to u∗ = (u1,p∗ , up+1,n
∗ ) ∈ X1,p ×K. Furthermore,

u∗ is a solution of the system (3.5) and up+1,n
∗ is a Nash equilibrium in K for the

functionals (Ep+1, . . . , En), i.e. ,

Eq(u∗) = inf
(Kq)rq,Rq

Eq(u
1,q−1
∗ , · , uq+1,n

∗ ) (q = p+ 1, . . . , n) .

Remark 3.5 (Limit cases). In our theory, we do not restrict ourselves to using only

nonegative real numbers for rq and Rq. When we aim for solutions within a ball, we

set rq = 0, and when we intend to find unbounded solutions from above, we choose

for Rq = ∞.

3.3 Applications

3.3.1 Global existence for a partial gradient type system

Let us consider the problem
−u′′ + a21u = f1(t, u(t), v(t), w(t), u′(t))

−v′′ + a22v = ∇yf2(t, u(t), v(t), w(t))

−w′′ + a23w = ∇zf3(t, u(t), v(t), w(t)),

on (0,T) (3.9)

with the periodic conditions

u(0) − u(T ) = u′(0) − u′(T ) = 0,

v(0) − v(T ) = v′(0) − v′(T ) = 0,

w(0) − w(T ) = w′(0) − w′(T ) = 0,

where f2,3 : (0, T )×Rk1×Rk2×Rk3 → R and f1 : (0, T )×Rk1×Rk2×Rk3×Rk1 → Rk1 .

We assume that fi (i = 1, 2, 3) , ∇yf2 and ∇zf3 are continuous and Carathéodory

type functions. Let

C1
p = {u ∈ C1[0, T ] : u(0) − u(T ) = u′(0) − u′(T ) = 0},
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3.3. Applications

and denote by H1
p (0, T ) the completion of C1

p in H1(0, T ).

On H1
p (0, T ), we can define two inner products

(u, v)i =

∫ T

0

u′v′ + a2iuv = (u′, v′)L2 + a2i (u, v)L2 ,

which give rise to equivalent norms. Now, from Riesz representation theorem, for

any h ∈ (H1
p (0, T ))′, there is a unique uh ∈ H1

p (0, T ) such that

h(v) = (uh, v)i, for any v ∈ H1
p (0, T ).

Thus, we may define the operators

Ji : (H1
p (0, T ))′ → (H1

p (0, T )), Ji(h) = uh with (Jih, v)i = h(v), (i = 1, 2, 3).

For the second and third equation from (3.18), we associate the functionals

E2, E3 : H1
p (0, T ;Rk1) ×H1

p (0, T ;Rk2) ×H1
p (0, T ;Rk3) → R,

where

E2(u, v, w) =
1

2
|v|22 −

∫ T

0

f2(t, u(t), v(t), w(t)),

E3(u, v, w) =
1

2
|w|23 −

∫ T

0

f3(t, u(t), v(t), w(t)).

Following J. Mawhin and M. Willem [38, Theorem 1.4], we have

(E22(u, v, w, u
′, w′), φ) = (v, φ)2 − (J2(∇yf2), φ)2,

for any φ ∈ H1
p (0, T ;Rk2). Thus, we may write E22(u, v, w) = v − J2(∇yf2). Simi-

larly, we derive the same relation for E33, i.e.,

E33(u, v, w, u
′, v′) = w − J3(∇zf3).

Therefore, we can write our system (3.18) as a fixed point equation,
N1(u, v, w) = u

N2(u, v, w) = v

N3(u, v, w) = w
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3.3. Applications

where

N1(u, v, w) = J1f1(·, u, v, w, u′),

N2(u, v, w) = J2∇yf2(·, u, v, w),

N3(u, v, w) = J3∇zf3(·, u, v, w).

Related to f1, f2, f3, we will make the following assumptions

|f1(t, x1, ..., x4) − f1(t, x1, ..., x4)| ≤
4∑

i=1

a1i|xi − xi|, (3.10)

|∇yf2(t, x1, x2, x3) −∇yf2(t, x1, x2, x3)| ≤
3∑

i=1

a2i|xi − xi|, (3.11)

|∇zf3(t, x1, x2, x3) −∇zf3(x1, x2, x3)| ≤
3∑

i=1

a3i|xi − xi|, (3.12)

where aij, a14 (i, j = 1, 2, 3) are some positive real numbers.

For every h ∈ L2[0, T ], we can derive the subsequent estimates for the solution

operators Ji (i = 1, 2, 3), |Jih|i ≤ 1
ai
|h|L2 . Next, from (3.10), we obtain

|N1(u, v, w) −N1(u, v, w)|1 = |J1 (f1(·, u, v, w, u′) − f1(·, u, v, w, u′)) |1

≤ 1

a1

((
a11
a1

)2

+ a214

) 1
2

|u− u|1 +
a12
a1a2

|v − v|2 +
a13
a1a3

|w − w|3.

For N2(u, v, w) and N3(u, v, w), we have

|N2(u, v, w) −N2(u, v, w)|2 ≤
a21
a2a1

|u− u|1 +
a22
a22

|v − v|2 +
a23
a2a3

|w − w|3,

|N3(u, v, w) −N3(u, v, w)|3 ≤
a31
a3a1

|u− u|1 +
a32
a23

|v − v|2 +
a33
a23

|w − w|3.

Therefore, the condition related to (3.2) is satisfied if the matrix

A =


1
a1

((
a11
a1

)2
+ a214

) 1
2

a12
a1a2

a13
a1a3

a21
a2a1

a22
a22

a23
a2a3

a31
a3a1

a32
a2a3

a33
a23

 (3.13)

is convergent to zero.

Next, we aim to establish conditions that ensure E2(u, ·, w) and E3(u, v, ·) are

bounded from below. To achieve this, let us assume that for i ∈ {2, 3} and j ∈
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{1, 2, 3, 4}, there exist σij ∈ L1(0, T ;R+) and γi ∈ R with γ2i <
a2i
2

, satisfying

f2(t, x, y, z) ≤ γ22 |y|2 + σ21(t)|x| + σ22(t)|y| + σ23(t)|z| + σ24(t) (3.14)

f3(t, x, y, z) ≤ γ23 |z|2 + σ31(t)|x| + σ32(t)|y| + σ33(t)|z| + σ34(t). (3.15)

Considering the continuous embedding of H1
p

(
0, T ;Rki

)
into C

(
[0, T ] ;Rki

)
, we ob-

tain

E2(u, v, w) ≥
(

1 − 2γ22
a22

)
|v|22 − C21|u|1 − C22|v|2 − C23 |w|3 − C24,

for some constants C2j (j = 1, 2, 3, 4). This guarantees that E2(u, v, w) → ∞ as

|v|2 → ∞. Similarly, E3 (u, v, w) → ∞ as |w|3 → ∞. Consequently, the functionals

E2(u, ·, w) and E3(u, v, ·) are coercive, and moreover, in accordance with R. Precup

[50, Lemma 4.1], they are also bounded from bellow.

Our final assumption concerns the existence of certain L1-Carathéodory functions

gi1, gi2 : (0, T ) × Rki → R (i = 2, 3), of coercive type, such that

g21(t, y) ≤ f2(t, x, y, z) ≤ g22(t, y), (3.16)

g31(t, z) ≤ f3(t, x, y, z) ≤ g32(t, z), (3.17)

for all for all (x, y, z) ∈ Rk1 × Rk2 × Rk3 and t ∈ (0, T ) . Letting a > 0 be fixed, we

can use the above assumption to conclude that

inf
v∈H1

p

E2(u, ·, w) + a ≤ inf
v∈H1

p

(
1

2
|v|22 −

∫ T

0

g21 (t, v) dt

)
+ a.

Moreover, since g22 is coercive, there exists R2 > 0 such that

inf
v∈H1

p

(
1

2
|v|22 −

∫ T

0

g21 (t, v) dt

)
+ a ≤ 1

2
|v|22 −

∫ T

0

g22 (t, v) dt,

for all |v|2 ≥ R2. Now, for |v|2 ≥ R2 and all (u,w) ∈ H1
p (0, T ;Rk1) ×H1

p (0, T ;Rk3),

using again (3.16), we deduce

E2 (u, v, w) ≥ 1

2
|v|22 −

∫ T

0

g22 (t, v) dt ≥ inf
v∈H1

p

E2(u, ·, w) + a,

as desired. A similar inequality can be established for E3.

Under the assumptions (3.10), (3.11),(3.12), (3.14), (3.15), (3.16), (3.17) and if

the matrix (3.20) is convergent to zero, then all the hypotheses of Theorem 3.1 are

fulfilled.

Next, we move to the second subsection where we aim to present an application
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of a system of second-order differential equations that satisfies all the assumptions

outlined in Theorem 3.3 and Theorem 3.4.

3.3.2 Local existence for a second-order ODE system.

We consider the problem
−u′′(t) = f1(t, u(t), v(t), w(t), u′(t))

−v′′(t) = f2(t, u(t), v(t), w(t))

−w′′(t) = f3(t, u(t), v(t), w(t)),

on (0,T) (3.18)

with the Dirichlet boundary conditions
u(0) = u(T ) = 0

v(0) = v(T ) = 0

w(0) = w(T ) = 0,

where f1 : (0, T )×R4 → R+, f2, f3 : (0, T )×R3 → R+ are functions of Carathéodory

type. We emphasize that the presence of u′ in the first equation, unlike equations 2

and 3, disrupts its variational structure. Here, the Hilbert spaces X1, X2, X3 denote

the Sobolev space H1
0 (0, T ) equipped with the inner product (u, v)H1

0
=
∫ T

0
u′v′ and

the norm |u|H1
0

=
(∫ T

0
(u′)2

) 1
2
.

Let (H1
0 (0, T ))

′
be the dual space of H1

0 (0, T ) and let (· , ·)′ be the dual pairing

between (H1
0 (0, T ))

′
and H1

0 (0, T ). From Riesz’s representation theorem (see, e.g.,

G. Bachman and L. Narici [4, Theorem 1.9]), for each h ∈ (H1
0 (0, T ))

′
, there exists

a unique uh ∈ H1
0 (0, T ) such that

(h, ϕ)′ = (uh, ϕ)H1
0
, for every ϕ ∈ H1

0 (0, T ).

Hence, we define the solution operator S : (H1
0 (0, T ))

′ → H1
0 (0, T ), where S(h) = uh.

When h ∈ L2(0, T ), the expression of S(h) is given by

S(h)(t) =

∫ T

0

G(t, s)h(s)ds,

where G(t, s) : (0, T )2 → R+ is the Green function (see, e.g., A. Cabada [14, Exam-

ple 1.8.18]),

G(t, s) =

s
(
1 − t

T

)
, s ≤ t

t
(
1 − s

T

)
, s ≥ t.
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Let K := K2 = K3 denote the cone of nonnegative functions from H1
0 (0, T ) and

let [a, b] be a fixed compact subinterval of (0, T ). Furthermore, we consider the

concave upper semicontinous functionals l2, l3 : K → R+,

l1(u) = l2(u) = min
t∈[a,b]

u(t) (u ∈ K) ,

and the conical sets

(K)rj ,Rj
= {u ∈ Kj | rj ≤ lj(u), |u|H1

0
≤ Rj}, (j = 2, 3) ,

where 0 < rj < Rj are positive real numbers.

We emphasize that the second and third equations from (3.18) admit a variational

formulation given by the energy functionals E2, E3 : H1
0 (0, T ) ×K ×K → R,

E2(u, v, w) :=
1

2
|v|2H1

0
−
∫ T

0

F2(·, u, v, w), E3(u, v, w) :=
1

2
|w|2H1

0
−
∫ T

0

F3(·, u, v, w)

where

F2(x, u(x), v(x), w(x)) :=

∫ v(x)

0

f2(x, u(x), s, w(x))ds

F3(x, u(x), v(x), w(x)) :=

∫ w(x)

0

f2(x, u(x), v(x), s)ds.

Additionally, if H1
0 (0, T ) is identified with its dual (H1

0 (0, T ))
′

, we have

E22(u, v, w) = v − Sf2(u, v, w), E33(u, v, w) = w − Sf3(u, v, w).

Hence, the system (3.18) is equivalent with the following fixed point equation
N1(u, v, w) = u

N2(u, v, w) = v

N3(u, v, w) = w,

where 
N1(u, v, w) = Sf1(·, u, v, w, u′)

N2(u, v, w) = Sf2(·, u, v, w)

N3(u, v, w) = Sf3(·, u, v, w).

Let us denote

m := min
t∈[a,b]

∫ T

0

G(t, s)ds = min
t∈[a,b]

t(T − t)

2
= min

{
a(T − a)

2
,
b(T − b)

2

}
.

Theorem 3.6. Given the assumptions mentioned earlier, we additionally consider
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3.3. Applications

the following

(H1) There exist aij, a14 > 0 (i, j = 1, 2, 3) such that for all real numbers x1, . . . , x4

and x1, . . . , x4, we have

(x1 − x1) (f1(t, x1, ..., x4) − f1(t, x1, ..., x4)) ≤ |x1 − x1|
4∑

j=1

a1j|xj − xj|,

(xi − xi) (fi(t, x1, x2, x3) − fi(t, x1, x2, x3)) ≤ |xi − xi|
3∑

j=1

aij|xj − xj|,

(3.19)

where i ∈ {2, 3}, and moreover, the matrix

A = T 2

π2


(
a11 + π

T
a41
)

a12 a13

a21 a22 a23

a31 a32 a33

 , (3.20)

is convergent to zero.

(H2) The functions fi(t, x, y, z) (i = 2, 3), satisfy:

(i) they are monotonically increasing with respect to the variables y and z.

(ii)

fi(t, ·, r2, r3) ≥
ri

m(b− a)
(3.21)

and

|fi(t, ·, 0, 0)|L2 ≤ π

T
R2 −

T

π
(ai2R2 + ai3R3) (3.22)

for all t ∈ (0, T ).

(iii) there are real numbers M1,M2,M3,M4 > 0 such that

f2(t, ·, cR2, cR3) ≤M1, f2(t, ·, 0, r3) ≥M2,

f3(t, ·, cR2, cR3) ≤M3, f3(t, ·, r2, 0) ≥M4,

for every t ∈ (0, T ) and

TcR2M1 −
R2

2

2
< r2(b− a)M2, T cR3M3 −

R2
3

2
< r3(b− a)M4.

Then, there exists a solution (u∗, v∗, w∗) ∈ H1
0 (0, T ) × (K2)r2,R2 × (K3)r3,R3 for the

system (3.18) such that (v∗, w∗) is a Nash equilibrium for the energy functionals E2

and E3.
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3.3. Applications

Example 3.1. Let the system
−u′′(t) = ā1

(
e−u2(t) + e−(u′(t))2 + e−v2(t) + e−w2(t)

)
−v′′(t) = ā2

(
e−u2(t) + arctan(v(t) + 2w(t)) + π

2

)
−w′′(t) = ā3

(
e−u2(t) + arctan(2v(t) + w(t)) + π

2

)
,

on (0, 3) (3.23)

with Dirichlet boundary conditions
u(0) = u(3) = 0

v(0) = v(3) = 0

w(0) = w(3) = 0

,

where āi (i = 1, 3) are positive real numbers.

We apply the results from Theorem 3.6 with,

f1 (t, x1, x2, x3, x4) = ā1

(
e−x2

1 + e−x2
2 + e−x2

3 + e−x2
4

)
f2 (t, x1, x2, x3) = ā2

(
e−x2

1 + arctan (x2 + x3) +
π

2

)
f3 (t, x1, x2, x3) = ā3

(
e−x2

2 + arctan (x2 + x3) +
π

2

)
Here, we set c =

√
3, r = r2 = r3 and R1 = R2 = ∞. The value of r is selected in

such a way that for each i = 2, 3,

āi

(
arctan 2r +

π

2

)
≥ r. (3.24)

The compact interval [a, b] is chosen to be the interval [1,2]. Consequently

m = min

{
1(3 − 1)

2
,
2(3 − 2)

2

}
= 1.

If the matrix

A =
9

π2

ā1
(
π
3

+ 1
)

ā1 ā1

ā2 ā2 ā2

ā2 ā3 ā3


is convergent to zero, then the system (2.21) has a solution (u∗, v∗, w∗) such that

(v∗, w∗) represents a Nash equilibrium on (K)r,R× (K)r,R for the energy functionals

associated with the second and third equations.
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Chapter 4

Equilibrium points for

componentwise variational systems

In previous chapters, we explored Nash equilibria for energy functionals, where each

minimizes one component while others are fixed. This chapter extends the concept

to generalized Nash-type equilibria, combining mountain pass points with points of

minimum or maximum.

4.1 The equilibrium problem

In this chapter, we explore critical points (u1, u2) for functionals E1 and E2, satis-

fying conditions E11(u1, u2) = 0 and E22(u1, u2) = 0. These points can be classified

as follows:

(a) Nash equilibria, where u1 minimizes E1 and u2 minimizes E2.

(b) Min-mountain pass equilibria, with u1 minimizing E1 and u2 as a mountain

pass type point for E2.

(c) Mountain pass-mountain pass equilibria, where u1 is a mountain pass type point

for E1 and u2 is a mountain pass type point for E2.

A solution with one of the above three proprieties is called a generalized Nash

equilibrium.

We aim to unify the treatment of these cases, employing the linking concept

introduced by R. Precup, which generates both minimizers and mountain pass type

critical points. This approach involves constructing an approximation sequence via

linking alternately to one component while keeping the other fixed, with subsequent

analysis on the convergence of this sequence to the desired critical point.

Let Hi (i = 1, 2) be Hilbert spaces together with inner product (·, ·)i and norm

| · |i, identified with their duals. Denote H = H1 ×H2. For each space Hi, consider
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4.2. Existence of a minimizing sequence to a generalized Nash equilibrium

a linking giving by two closed sets Ai, Bi ⊂ Hi and a compact set Qi ⊂ Hi with

Ai, Qi ̸= ∅ and Bi ⊂ Qi. Let

Γi := {γi ∈ C(Qi, Hi) : γi(ui) = ui for all ui ∈ Bi}.

It is not difficult to see that these sets are complete metric spaces equipped with

the metrics di,

di(γi, γi) := max
q∈Qi

|γi(q) − γi(q) |i,

for any γi, γi ∈ Γi.

Let Ei : H → R (i = 1, 2) be two Fréchet differentiable functionals. For each

(u1, u2) ∈ H, we define:

m1(u2) := infX1 E1(·, u2) ; m2(u1) := infX2 E2(u1, ·) ;

a1(u2) := infA1 E1(·, u2) ; a2(u1) := infA2 E2(u1, ·) ;

b1(u2) := supB1
E1(·, u2) ; b2(u1) := supB2

E2(u1, ·) ;

(4.1)

c1(u2) := inf
µ∈Γ1

max
q∈Q1

E1(µ(q), u2) ; (4.2)

c2(u1) := inf
µ∈Γ2

max
q∈Q2

E2(u1, µ(q)). (4.3)

One easily sees that

mi ≤ ai ≤ ci and bi ≤ ci (i = 1, 2).

4.2 Existence of a minimizing sequence to a gen-

eralized Nash equilibrium

Under a particular linking, we will use the Ekeland variational principle to create

an approximation sequence of nearly critical points, aiming to converge to a desired

critical point falling into categories (a), , (b), , (c), determined by the chosen linking.

Lemma 4.1. Let (X, |·|X) be a Banach space, K a compact subset of X and f ∈
C (K,X∗) a continuous mapping from K to the dual of X. Then, for each ε > 0,

we may find a function φ ∈ C (K,X) such that:

|φ (x)|X ≤ 1, and ⟨f (x) , φ (x)⟩ > |f (x)|X − ε,

for all x ∈ K.
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4.3. Exploring the limiting case.

Theorem 4.2. Let Ai links Bi via Qi in Hi, and assume that

bi < ai, i = 1, 2.

Then, there exist two sequences
(
uk1
)
∈ H1 and

(
uk2
)
∈ H2 such that

0 ≤ E1(u
k
1, u

k−1
2 ) − c1

(
uk−1
2

)
→ 0, 0 ≤ E2(u

k
1, u

k
2) − c2

(
uk1
)
→ 0 (4.4)

and

E11

(
uk1, u

k−1
2

)
→ 0, E22

(
uk1, u

k
2

)
→ 0, (4.5)

as k → ∞.

4.3 Exploring the limiting case.

In the preceding section, we examined the prerequisites for forming an approximation

sequence. Yet, the possibility of non-convergence in this sequence necessitates careful

consideration. In the subsequent section, we delve into the characteristics of limit

points, assuming their existence.

Theorem 4.3. Let
(
uk1
)
,
(
uk2
)
be the sequences obtained in Theorem 4.2. Assume

that they are convergent, i.e., there exists u∗, v∗ such that uk1 → u∗ and uk2 → v∗.

Then

E11(u
∗, v∗) = 0 , E22(u

∗, v∗) = 0, (4.6)

c1
(
uk2
)
→ c1 (v∗) , c2

(
uk1
)
→ c2 (u∗) (4.7)

and

E1(u
∗, v∗) = c1 (v∗) , E2(u

∗, v∗) = c2 (u∗) . (4.8)

Remark 4.4. In the light of the conclusions of Theorem 4.3, we can distinguish

between the following scenarios:

(a) If both linkings of the spaces H1 and H2 are trivial, then u∗ is a minimizer of

the functional E2 (·, v∗) and v∗ is a minimizer of the functional E2 (u∗, ·) . In other

words, the pair (u∗, v∗) represents a Nash equilibrium for the functionals E1 and E2.

(b) If only the linking of the space H2 is trivial, then u∗ is a mountain pass type

point for E1 (·, v∗) , while v∗ serves as a minimizer for the functional E2 (u∗, ·) .
(b) If both linkings of the spaces H1 and H2 are nontrivial, then u

∗ is a mountain

pass type point for the functional E2 (·, v∗), and likewise, v∗ is a mountain pass type

point for the functional E2 (u∗, ·) .

Remark 4.5. Our theory applies in particular to a single functional E defined on

a product space H1 ×H2, when we can take either
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4.4. Conditions for convergence.

(10) E1 = E2 = E; or

(20) E1 = E and E2 = −E.

If the two sequences (uk1) and (uk2) converge to u∗1 and u
∗
2, respectively, one can obtain

critical points (u∗1, u
∗
2) of E with one of the following properties

E (u∗1, u
∗
2) = minE (·, u∗2) = maxE (u∗1, ·) ;

E (u∗1, u
∗
2) = minE (·, u∗2) = sup

µ∈Γ2

min
q∈Q2

E (u∗1, µ (q)) ;

E (u∗1, u
∗
2) = inf

µ∈Γ1

max
q∈Q1

E (µ (q) , u∗2) = maxE (u∗1, ·) ;

E (u∗1, u
∗
2) = inf

µ∈Γ1

max
q∈Q1

E (µ (q) , u∗2) = sup
µ∈Γ2

min
q∈Q2

E (u∗1, µ (q)) .

4.4 Conditions for convergence.

In previous sections, we discussed the properties of the limits of the generated se-

quences. Now, we address the challenge of ensuring these limits exist by presenting

conditions for their existence. To achieve this, we impose monotonicity conditions

on derivatives E11 and E22.

Theorem 4.6. Let L = (L1, L2) : H → H, Li : H → Hi (i = 1, 2) be a continuous

operator and let N = (N1, N2) : H → H, Ni : H → Hi (i = 1, 2) , be defined by

N (u) = u− L (E11 (u) , E22 (u)) . (4.9)

Suppose the following conditions hold

(i) There are nonnegative constants aij (i, j = 1, 2) such that

(N1(u1, u2) −N1(u1, u2) , u1 − u1)1 (4.10)

≤ a11 |u1 − u1|21 + a12 |u1 − u1|1 |u2 − u2|2 ,

(N2(u1, u2) −N2(u1, u2) , u2 − u2)2 (4.11)

≤ a22 |u2 − u2|22 + a21 |u1 − u1|1 |u2 − u2|2 ,

for all u1, u1 ∈ H1 and u2, u2 ∈ H2;

(ii) The matrix A = [aij]1≤i,j≤2 is convergent to zero;

(iii) The sequence
(
uk2
)
(equivalently

(
uk1
)
) is bounded.

Then, the sequences
(
uk1
)
and

(
uk2
)
are convergent.
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4.5. Application

Remark 4.7. The utilization of a continuous operator L enables us to attain a

continuous transformation of the derivatives, to which we can then apply the nec-

essary monotonicity conditions. Without this transformation, meeting the required

monotonicity conditions appears challenging due to the nature of the mountain pass

geometry. It is worth noting that in our previous works focused on Nash-type equi-

libria, the need for a specialized operator like L was avoided, and in those cases, the

identity operator sufficed.

Condition (iii) (boundedness of one sequence) is not assumed beforehand and

needs to be ensured. Here, we outline sufficient conditions based on the chosen

linking to guarantee this condition.

Theorem 4.8. The sequence
(
uk2
)
remains bounded in each one of the following

scenarios:

(a) The linking in H2 is trivial. There exists w ∈ H2 such that

E2 (·, w) is bounded on H1; (4.12)

and

E2 (u, ·) is coercive uniformly with respect to u. (4.13)

(b) The linking in H2 is nontrivial. There exists w ∈ B2, such that

−E2 (·, w) is bounded on H1; (4.14)

and

−E2 (u, ·) is coercive uniformly with respect to u. (4.15)

Remark 4.9. It is worth to note that in practical applications, additional specific

conditions, such as growth and coercivity conditions or the Ambrosetti-Rabinowitz

condition, can be employed to ensure the boundedness of
(
uk2
)
.

4.5 Application

We consider the following Dirichlet problem

−∆v1 = ∇v1F (v1, w1, v2, w2)

−∆w1 = ∇w1F (v1, w1, v2, w2)

−∆v2 = ∇v2G(v1, w1, v2, w2)

−∆w2 = ∇w2G(v1, w1, v2, w2) on Ω

v1|∂Ω = w1|∂Ω = v2|∂Ω = w2|∂Ω = 0.

(4.16)
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4.5. Application

Here, Ω represents a bounded open set in Rn (n ≥ 3). We emphasize that such

problems are well-known in the literature and are commonly employed to model

real-world processes, including stationary diffusion or wave propagation.

Assume the following conditions on the potentials F and G:

(H1) The functions F,G : R4 → R are of C1 class and

F (0, x2) = 0 and G(x1, 0) = 0,

for all x1, x2 ∈ R2. In addition, for some 2 ≤ p ≤ 2∗ = 2n
n−2

, they satisfy the

growth conditions

|F (x1, x2)| ≤ CF (|x1|p + 1) , (4.17)

|G(x1, x2)| ≤ CG (|x2|p + 1) ,

for all x1, x2 ∈ R2 and some positive constants CF , CG.

Here, H1 = H2 := (H1
0 (Ω))

2
= H1

0 (Ω) ×H1
0 (Ω) equipped with the inner product

(u, u)H1
0×H1

0
= (v, v)H1

0
+ (w,w)H1

0
,

and the norm

|u|H1
0×H1

0
=
(
|v|2H1

0
+ |w|2H1

0

)1/2
,

for u = (v, w), u = (v, w).

The distinctive characteristic of the system (4.16) is that the first two equations

and the last two equations coupled together, permit a variational formulation that

can be expressed through the energy functionals E1, E2 : (H1
0 (Ω))

2×(H1
0 (Ω))

2 → R,

E1(u1, u2) = 1
2
|u1|2H1

0×H1
0
−
∫
Ω

F (u1, u2),

E2(u1, u2) = 1
2
|u2|2H1

0×H1
0
−
∫
Ω

G(u1, u2),

where u1 = (v1, w1) , u2 = (v2, w2) ∈ (H1
0 (Ω))

2
.

Let us denote

f1(y1, z1, y2, z2) = ∇y1F (y1, z1, y2, z2),

f2(y1, z1, y2, z2) = ∇z1F (y1, z1, y2, z2),

g1(y1, z1, y2, z2) = ∇y2G(y1, z1, y2, z2),

g2(y1, z1, y2, z2) = ∇z2G(y1, z1, y2, z2).

If we identify H1
0 (Ω) with its dual H−1(Ω) via −∆, then the partial derivatives of
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4.5. Application

E1 and E2 with respect to the first and second component, respectively, are given

by

E11(u1, u2) = u1 −
(
(−∆)−1f1(u1, u2) , (−∆)−1f2(u1, u2)

)
,

E22(u1, u2) = u2 −
(
(−∆)−1g1(u1, u2) , (−∆)−1g2(u1, u2)

)
.

Note that under the growth conditions (4.17), the Nemytskii’s operators

Nfi(u1, u2)(x) := fi(u1(x), u2(x)), Ngi(u1, u2)(x) := gi(u1(x), u2(x)),

(i=1,2), are well defined from
(
L2∗(Ω)

)4
to
(
L(2∗)′(Ω)

)2
, bounded (map bounded

sets into bounded sets) and continuous. Hence, the operators

N1(u1, u2) =
(
(−∆)−1f1(u1, u2)), (−∆)−1f2(u1, u2))

)
N2(u1, u2) =

(
(−∆)−1g1(u1, u2)), (−∆)−1g2(u1, u2))

)
are well-defined and continuous from (H1

0 (Ω))
4

to (H1
0 (Ω))

2
.

(H2) The inequalities (see, e.g., [2, 17–19,33]).

lim sup
|x1|→0

F (x1, x2)

|x1|2
<
λ1
2
< lim inf

|y1|→∞

F ((y1, 0), x2)

y12
,

hold for all y1 ∈ R and uniformly with respect to x2 ∈ R2.

From (4.17) and (H2), we find an r′0 such that

E1(u1, u2) ≥ c > 0 for all |u1|H1
0×H1

0
= r′0. (4.18)

Also, there exists α0 > r′0 such that

E1 ((α0ϕ1, 0), u2) < 0 for all u2 ∈
(
H1

0 (Ω)
)2
. (4.19)

Moreover, one clearly has

E1((0, 0), u2) = 0. (4.20)

On (H1
0 (Ω))

2
, we consider the sets

A1 =
{
u1 ∈

(
H1

0 (Ω)
)2

: |u1|H1
0×H1

0
= r′0

}
,

Q1 =
{
s (ϕ1, 0) ∈

(
H1

0 (Ω)
)2

: 0 ≤ s ≤ α0

}
,

B1 = {((0, 0) , (s0ϕ1, 0))} .
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4.5. Application

From (4.18), (4.19) and (4.20), we see that A1 links B1 via Q1, and in addition

inf
A1

E1(·, u2) ≥ c > sup
B1

E1(·, u2),

for all u2 ∈ (H1
0 (Ω))

2
, i.e., b1 < a1.

Let us consider

A2 =
(
H1

0 (Ω)
)2
, B2 = ∅ and Q2 = {(0, 0)}.

This corresponds to trivial linking. To ensure b2 < a2 (or equivalently, −∞ < m2),

the functional E2(·, u2) must be uniformly bounded from below with respect to

u1. This requirement can be achieved if we assume the following unilateral growth

condition on G:

(H3) There exists 0 ≤ σ < λ1 with

G (x1, x2) ≤
σ

2
|x2|2 + C, for all x1, x2 ∈ R2. (4.21)

Based on Theorem 4.2, it can be inferred that there are two sequences,
(
uk1
)

and(
uk2
)
, that satisfy (4.4) and (4.5). Referring to Theorem 4.6, let us consider the

linear operator L = (L1, L2) , where L1, L2 : (H1
0 (Ω))

2 → (H1
0 (Ω))

2
are given by

L1(v1, w1) = L1 (u1) = β(v1 − w1, v1 − w1), L2(v2, w2) = L2 (u2) = u2, (4.22)

for u1 = (v1, w1) , u2 = (v2, w2) ∈ (H1
0 (Ω))

2
and some β > 0. Consequently, we can

express the operators N1 and N2 in terms of L as follows

N1(u1, u2) = ((1 − β)v1 + βw1, (1 − β)w1 − βv1)

+ β
(
(−∆)−1 (f1(u1, u2) − f2(u1, u2)) , (−∆)−1 (f1(u1, u2) − f2(u1, u2))

)
.

N2(u1, u2) = u2 − L2 (E22(u1, u2)) =
(
(−∆)−1g1(u1, u2) , (−∆)−1g2(u1, u2)

)
Next, we will discuss some conditions related to the monotonicity of the functions

f̃ := f1 − f2, g1 and g2 that appear in the expressions for N1 and N2.
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4.5. Application

(H4) There are nonnegative numbers mij (i, j = 1, 4) such that(
f̃(x1, x2) − f̃(x1, x2)

)
(y1 − y1) (4.23)

≤ |y1 − y1| (m11|y1 − y1| +m12|z1 − z1| +m13|y2 − y2| +m14|z2 − z2|) ,(
f̃(x1, x2) − f̃(x1, x2)

)
(z1 − z1)

≤ |z1 − z1| (m21|y1 − y1| +m22|z1 − z1| +m23|y2 − y2| +m24|z2 − z2|) ,

(g1(x1, x2) − g1(x1, x2)) (y2 − y2)

≤ |y2 − y2|(m31|y1 − y1| +m32|z1 − z1| +m33|y2 − y2| +m34|z2 − z2|),

(g2(x1, x2) − g2(x1, x2)) (z2 − z2)

≤ |z2 − z2| (m41|y1 − y1| +m42|z1 − z1| +m43|y2 − y2| +m44|z2 − z2|) ,

for all x1 = (y1, z1), x1 = (y1, z1), x2 = (y2, z2), x2 = (y2, z2) ∈ R2.

Assuming hypothesis (H4), the operators N1, N2 fulfill the conditions of mono-

tonicity (2.16) and (2.17), with the coefficients

a11 = 1 − β + β
λ1

max{m11, m22} + β
2λ1

(m12 +m21) , (4.24)

a12 = β
λ1

max

{√
m2

13 +m2
23,
√
m2

14 +m2
24

}
, (4.25)

a21 =
1

λ1
max

{√
m2

31 +m2
32,
√
m2

41 +m2
42

}
, (4.26)

a22 =
m34 +m43

2λ1
+ max {m33, m44} . (4.27)

Now it is clear that the first two conditions from Theorem 4.6 are are fulfilled if

(H5) The matrix M := [aij]1≤i,j≤2 is convergent to zero.

It remains to show that the sequence
(
uk2
)

is bounded. To do this, we apply

Theorem 4.8 (a). From G(·, 0) = 0 and the growth condition (4.21), we obtain

E2 (u1, u2) ≥
(

1

2
− σ

2λ1

)
|u2|2H1

0×H1
0
− C meas (Ω) → ∞,

as |u2|H1
0×H1

0
→ ∞, uniformly with respect to u1. Therefore, since all conditions

from Theorem 4.6 are fulfilled, we infer that the sequences
(
uk1
)

and
(
uk2
)

are con-

vergent in (H1
0 (Ω))

2
.

Therefore, relying on Theorem 4.2, we can formulate the following result.

Theorem 4.10. Under the assumptions (H1)-(H5), we conclude that the problem

(2.21) has a mountain pass-min solution. That is, there exists a solution (u∗1, u
∗
2) ∈

(H1
0 (Ω))

2 × (H1
0 (Ω))

2
such that u∗1 is a mountain pass type critical point of the

functional E1(·, u∗2) and u∗2 is a minimizer of the functional E2(u
∗
1, ·).
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4.5. Application

To achieve a mountain pass solution, we follow a similar approach to Theorem

1, with key clarifications. Firstly, both functions F and G must satisfy conditions

(H2)’ for nontrivial linkings. By imposing (H3)’ with −G instead of G, we ensure

boundedness of uk2 (cf. Theorem 3(b)).

Secondly, we use an alternative operator L2 instead of the identity operator (for

simplicity we choose L2 = L1). Condition (H4) requires a monotonicity condition

for g̃ = g1 − g2 instead of g1 and g2 (denoted as (H4)’). Changing L2 necessitates

revising coefficients a21 and a22 (cf. equations (5) and (6)), where a21 corresponds

to a12 and a22 corresponds to a11.

Theorem 4.11. Let the conditions (H1), (H2)’-(H4)’, (H5) be fulfilled. Then the

problem (2.21) has a mountain pass-mountain pass solution, i.e., there is a solution

(u∗1, u
∗
2) ∈ (H1

0 (Ω))
2 × (H1

0 (Ω))
2
such that u∗1 is a mountain pass critical point of the

functional E1(·, u∗2) and u∗2 mountain pass critical point of the functional E2(u
∗
1, ·).

Example 1. Consider the Dirichlet problem

−∆v1 = a(v1 + w1)
3 + ãv1 + a(v1 + w1)

1
v22+w2

2+1

−∆w1 = a(v1 + w1)
3 − ãw1 + a(v1 + w1)

1
v22+w2

2+1

−∆v2 = bv2 + 1
v21+c2

−∆w2 = bw2 + 1
v22+c2

on Ω

v1|Ω = w1|Ω = v2|Ω = w2|Ω = 0.

(4.28)

We apply Theorem 4.10, where

Ω ⊂ R3, a ≤ λ1
4
, ã <

λ1
2
, b < 1, b+ 4

c
< λ1, c > 1,

F (y1, z1, y2, z2) = a
4
(y1 + z1)

4 + ã
2

(
y21 − z21

)
+ a

2
(y1 + z1)

2 1

y22 + z22 + 1
,

G(y1, z1, y2, z2) = b
2

(
y22 + z22

)
+

y2
y21 + c2

+
z2

z21 + c2
.

The absolute value of F (x1, x2) (x1, x2 ∈ R2) is bounded from above by a fourth-

degree polynomial in |x1| and

|G(y1, z1, y2, z2)| ≤
(
b
2

+ 2
c

)
|(y2, z2)|2 + 2

c
.

Hence, the condition (H1) is guaranteed. In addition, condition (H3) also is satisfied

since b
2

+ 2
c
< λ1

2
. Simple computations yields

lim
|y1|+|z1|→0

F (y1, z1, y2, z2)

y12 + z12
≤ ã

2
+ a <

λ1
2

and lim
|y1|→∞

F ((y1, 0), x2)

y12
≥ lim

|y1|→∞
a
4
y21 = ∞,
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4.5. Application

which guarantees that (H2) is satisfied. We see that

f1(y1, z1, y2, z2) = a(y1 + z1)
3 + ãy1 + a(y1 + z1)

1

y22 + z22 + 1
,

f2(y1, z1, y2, z2) = a(y1 + z1)
3 − ãz1 + a(y1 + z1)

1

y22 + z22 + 1
,

g1(y1, z1, y2, z2) = by2 +
1

y21 + c2
,

g2(y1, z1, y2, z2) = bz2 +
1

z21 + c2
,

which yields

f̃(y1, z1, y2, z2) = ãy1 + ãz1.

The linearity of f̃ and the Lipschitz property
∣∣∣ 1
x2+c2

− 1
x2+c2

∣∣∣ ≤ 1
c
|x− x| yields

(
f̃(y1, z1, y2, z2) − f̃(y1, z1, y2, z2)

)
(y1 − y1) ≤ ã|y1 − y1|2 + ã |y1 − y1| |z1 − z1|,(

f̃(y1, z1, y2, z2) − f̃(y1, z1, y2, z2)
)

(z1 − z1) ≤ ã|z1 − z1|2 + ã |y1 − y1| |z1 − z1|,

(g1(y1, z1, y2, z2) − g1(y1, z1, y2, z2)) (y2 − y2) ≤ b|y2 − y2|2 + 1
c
|y2 − y2||y1 − y1|,

(g2(y1, z1, y2, z2) − g(y1, z1, y2, z2)) (z2 − z2) ≤ b|z2 − z2|2 + 1
c
|z1 − z1||z2 − z2|.

Thus, the monotony conditions (4.23) hold with

m11 = ã, m12 = ã, m13 = 0, m14 = 0,

m21 = ã, m22 = ã, m23 = 0, m24 = 0,

m31 =
1

c
, m32 = 0, m33 = b, m34 = 0,

m41 = 0, m42 =
1

c
, m43 = 0, m44 = b.

After straightforward calculations, we obtain

M =

[
1 − β

(
1 − 2 ã

λ1

)
0

1
cλ1

b

]
.

Given that b < 1 and 1 − 2 ã
λ1
> 0, we can select β > 0 in (4.22) small enough that

the matrix M converges to zero.

Therefore, as all the hypothesis of Theorem 2.10 are fulfilled, the problem (4.28)

has a solution (v∗1, w
∗
1, v

∗
2, w

∗
2) . Moreover, u∗1 := (v∗1, w

∗
1) and u∗2 := (v∗2, w

∗
2) are such

that u∗1 is a mountain pass critical point for the energy functional E1 (·, u∗2) , and u∗2

is a minimizer for the energy functional E2 (u∗1, ·) .
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