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Introduction

This thesis commenced under
the supervision of the late
Professor Nicolae Popovici

Optimization is a branch of mathematics that involves finding the best
solution within a set of possible solutions, typically by maximizing or min-
imizing an objective function while taking constraints into account. It is a
highly important and influential field within mathematics, and it has sig-
nificant relevance not only for mathematicians but also for various other
fields and industries, due to its ability to find optimal solutions in complex
decision-making scenarios.

Among the great list of fields that rely upon Optimization, we mention
the following (see, e.g., Frenk and Schaible [26], Schaible [72], Shen and Yu
[75, 76], Hillier and Lieberman [41], Khisty and Lall [46] and the references
therein).

Operations Research: Optimization is at the core of operations research,
helping businesses make decisions related to resource allocation, production
planning, inventory management, and logistics;

Engineering : Engineers use optimization techniques to design efficient
systems, structures, and processes, such as optimizing the shape of aircraft
wings or designing energy-efficient buildings;

Economics and Finance: In economics, optimization models are used
to study and predict economic behavior. In finance, it’s used for portfolio
optimization and risk management;

Transportation and Logistics : Optimization is essential for route plan-
ning, vehicle scheduling, and supply chain management, leading to cost re-
ductions and improved efficiency;

Energy and Environment : Optimization helps optimize energy consump-
tion, reduce emissions, and design sustainable systems in areas like renewable
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Introduction

energy integration and environmental modeling.
There are various types of optimization problems, including linear pro-

gramming, convex programming, nonlinear programming, integer program-
ming, and dynamic programming, among others. Like many other mathe-
matical domains, optimization draws upon and incorporates concepts and
results from various related fields, including mathematical analysis, func-
tional analysis, convex analysis, game theory etc and is, nontheless, open to
algorithms and numerical modeling.

Following the trend observed in many other mathematical fields, opti-
mization has evolved to encompass linearity, a development exemplified by
the emergence of linear programming as a significant component within the
field.

The next step in this field, crucial for addressing practical problems effec-
tively, involved tackling nonlinearity and, by extension, nonlinear functions.
This still presents a crucial challenge, which would not have been possible
to address without the intermediate step of incorporating convex analysis.
Convexity plays a fundamental and critical role in optimization because it
simplifies the problem-solving process, guarantees global optimality, ensures
robustness in real-world applications, and enables efficient algorithms. These
advantages make it a cornerstone of modern optimization theory and prac-
tice.

A popular branch within the domain of Optimization is Fractional Opti-
mization. This specialized subfield deals with optimizing functions involving
fractions or rational expressions and is commonly used in economics (frac-
tional programming), engineering, healthcare (resource allocation), network
design (optimal routes for data transmission), optimal control systems (for
processes that involve fractional-order dynamics, such as electrical circuits,
chemical reactors, or mechanical systems), supply chain management, math-
ematics (Fractional Differential Equations), environmental studies (optimiz-
ing land use, allocating conservation funds, or designing wildlife corridors)
among other areas, where such problems typically arise. In these domains,
fractional optimization techniques are actively researched and applied.

The typical fractional optimization problem (usually called fractional pro-
gramming problem or fractional program) is defined as follows:

A (x)

B (x)
−→ min

x∈D
,

where A and B are two functions defined on a nonempty set D and B (x) ̸= 0
for all x ∈ D. Solving the problem involves obtaining a pair (λ∗, x∗), where
λ∗ represents the minimum value of A/B, and x∗ corresponds to a minimum
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point., i.e.,

λ∗ =
A (x∗)

B (x∗)
= min

D

A

B
.

From a history perspective, as referenced in Frenk and Schaible [26], it
is noteworthy that one of the earliest instances of fractional programming,
although not explicitly termed as such, emerged in 1937 with John von Neu-
mann’s equilibrium model for a growing economy. The model calculates
the economic growth rate by selecting the highest value among the smallest
output-input ratios from multiple sources. Nonetheless, with the exception
of a handful of individual papers, such as those by von Neumann, a com-
prehensive study of fractional programming started significantly later. The
influence of several authors who significantly contributed to the field during
that period is also highlighted in Frenk and Schaible [26].

The first monograph on fractional programming, titled Analyse und An-
wendungen von Quotientenprogrammen, Ein Beitrag zur Planung mit Hilfe
der nichtlinearen Programmierung, was written by Schaible in 1978. As men-
tioned in Frenk and Schaible [26], two additional monographs focused exclu-
sively on fractional programming followed. One was authored by Craven in
1988, and the other, by Stancu-Minasian in 1997.

Since then, many researchers have invested substantial effort in this topic.
Notable contributions include the papers of Avriel et al. [2], Cambini and
Martein [14], Stancu-Minasian [79], Elbenani and Ferland [21], Crouzeix [15,
16], Hadjisavvas [26], Schaible [71, 72], Rodenas [69], Shi [77], Boţ et al.
[10, 11], and Tammer [81], among others, as referenced therein.

The methods and techniques developed within the field of fractional op-
timization have generated significant interest regarding the properties of the
functions f and g, such as convexity, concavity, boundedness, linearity etc.
Consequently, the first two chapters of this thesis explore this particular
aspect.

To begin with, we introduce a new concept of semistrict quasiconvex-
ity for vector-valued functions defined on a nonempty convex set in a real
linear space X and taking values in some real topological linear space Y , par-
tially ordered by a proper solid convex cone C. Subsequently, we provide a
characterization of these functions using the nonlinear scalarization function
introduced by Gerstewitz (Tammer) in 1983. In addition, we give some char-
acterizations of two special classes of fractional-type set-valued functions in
terms of convexity-preserving properties of sets by direct and inverse images.

An important area of research within the field of fractional optimization
focuses on the development of algorithms for solving fractional programs.
Among many algorithms addressing fractional problems, old and new (see,
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for instance, Boţ and Csetnek [10], Boţ, Dao and Li [11], Boyd et al. [12],
Geissler et al. [28], Goldstein et al. [31], Kleinert and Schmidt [47] and
the references therein), the Dinkelbach Algorithm (Dinkelbach [20]) stands
as one of the most renowned. As mentioned in Tammer and Ohlendorf [81,
Sec. 3], it is based on the algorithm of Jagannathan from 1966 for linear
fractional problems. This procedure is a technique used to solve fractional
programming problems by transforming the initial fractional problem into
a non-fractional parametric problem and, the second part of the thesis is
dedicated to this subject.

In this second part, we initially introduced two approximated variations
of the original Dinkelbach algorithm (with a given error ε > 0 and with
errors decreasing to zero), and delivered a new version of the algorithm,
the Dinkelbach-Ekeland algorithm, which incorporates Ekeland’s variational
principle.

In the final chapter of the thesis, we presented a modified version of
Dinkelbach’s algorithm, which we have named the Componentwise Dinkel-
bach algorithm. Unlike the original version, this variant is designed to address
fractional objective functions that depend on two variables. A noteworthy
accomplishment of our work lies in establishing the convergence of this al-
gorithm. However, it’s essential to note that its success relies on additional
prerequisites concerning the spaces and functions involved, encompassing
conditions like Lipschitz-type continuity, partial Fréchet differentiability, and
coercivity.

The thesis is divided into four chapters, with each chapter containing
multiple sections and subsections for structured organization.

Chapter 1: Generalized convexity for vector functions

In the first chapter, we introduce the new concept of semistrict quasi-
convexity for vector functions defined on a convex set in a real linear space
X and mapped to a real topological linear space Y ordered by a convex
cone C. Section 1.1 focuses on presenting the general framework and no-
tions that will prove to be of great interest in the sequel. In Section 1.2,
we review some classical generalized convexity notions for real-valued and
vector-valued functions, and state our new semistrictly quasiconvexity con-
cept for vector-valued functions. Finally, in Section 1.3, we present our main
result, which characterizes semistrictly C-quasiconvex vector-valued func-
tions using nonlinear scalarization functions. Additionally, within the spe-
cific framework of finite-dimensional real Euclidean space Y = Rm, ordered
by the standard cone C = Rm

+ , we establish a relationship between our con-
cept of semistrict C-quasiconvexity and well-established concepts, namely,
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componentwise semistrict quasiconvexity and componentwise explicit quasi-
convexity.

Our contribution in this chapter is as follows. In Section 1.2 we have:
Definition 1.2.7 (semistrict C- quasiconvexity), Lemma 1.2.8, Lemma 1.2.9
(relationships between semistrict C-quasiconvexity and other concepts of
generalized convexity), Theorem 1.2.10 (characterization of explicitly C-
quasiconvex vector functions), Lemma 1.2.11, Theorem 1.2.13 (sufficient
conditions for C-quasiconvexity), Theorem 1.2.15 (relationship between
semistrict C-quasiconvexity and semistrictly ⟨P ⟩-quasiconvex in the sense
of Flores-Bazán). In Section 1.3 we present: Theorem 1.3.1 (characteriza-
tion of explicitly C-quasiconvex vector functions by means of the nonlinear
scalarization functions) and Corollary 1.3.2 (characterization of component-
wise explicitly quasiconvex functions).

All of the above results are original and have been included into the paper
Günther, Orzan, and Popovici [35].

Chapter 2: Properties of fractional functions

In this chapter, we provide characterization results for two particular
classes of fractional-type set-valued functions, based on the preservation of
convexity properties of sets through both direct and inverse mappings. The
chapter is divided into four sections.

Section 2.1 is devoted to presenting the overall framework and essential
tools of set-valued and convex analysis.

Section 2.2 studies the concept of set-valued affine functions, as defined by
Tan [84]. We emphasize that the inverse of this function shares an affine char-
acteristic, setting it apart from other concepts of affine set-valued functions,
as shown by Kuroiwa et al. [48, Ex. 2]. Furthermore, we extend the clas-
sic results established by Rothblum [70] from finite-dimensional Euclidean
spaces to encompass real linear spaces. In the last part of this section, we in-
troduce a class of set-valued ratios derived from affine functions and provide
a series of convexity preserving properties.

In Section 2.3, we examine an alternative notion of affine set-valued func-
tions as introduced in the literature by Gorokhovik [33, 34] and present a
series of results that will be of significant importance for the subsequent
section.

The last Section 2.4 delivers a series of results concerning convexity-
preserving properties of sets through direct and inverse images for general
set-valued maps, and investigates the scenario involving set-valued ratios of
affine functions, where it extends and generalizes certain convexity-preserving
findings presented in the preceding sections.

Our contribution in this chapter is as follows. In Section 2.2 we present:
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Proposition 2.2.2 (condition for affinity of set-valued functions in the sense
of Tan), Theorem 2.2.3, Corollary 2.2.4 (concerning the inverse of a set-
valued affine function), Propositions 2.2.6, 2.2.7, 2.2.8 (extensions to real
linear spaces of results obtained by Rothblum in the particular framework
of finite-dimensional Euclidean spaces), Theorem 2.2.10 (characterization of
affine set-valued functions), Theorems 2.2.11, 2.2.12, Corollary 2.2.13 (con-
vexity preserving results for set-valued ratios). In Section 2.3 we provide:
Lemma 2.3.4, Proposition 2.3.5 (properties of set-valued ratios in the sense
of Gorokhovik). In the last Section 2.4, we have: Propositions 2.4.1, 2.4.3,
Corollary 2.4.2 (convexity-preserving results for general set-valued functions),
Theorem 2.4.4, 2.4.6, Corollary 2.4.5, Theorem 2.4.7, Corollaries 2.4.8, 2.4.9
(convexity-preserving results for set-valued ratios of affine functions).

All of the above results are original and have been included in the papers
authored by Orzan and Popovici [60, 61], as well as in Orzan’s publication
[59].

Chapter 3: Dinkelbach type approximation algorithms for fractional
problems

In the third chapter of the thesis, we present approximate versions of the
classical Dinkelbach algorithm for nonlinear fractional optimization problems
within the general framework of Banach spaces. The chapter is structured
into five sections.

Section 3.1 serves as an introduction to our overall framework and the
original Dinkelbach algorithm. In Section 3.2, we address the case where
the minimizer point for our optimization problem can only be determined
with a specified error (ε > 0), and also establish a sufficient condition for
achieving the minimum value of the functional A/B. In Section 3.3, we
deliver the Dinkelbach algorithm with error decreasing to zero, demonstrating
its convergence to the solution of our fractional optimization problem under
the Palais-Smale compactness condition.

Section 3.4 provides our new algorithm, the Dinkelbach-Ekeland approx-
imation algorithm, for fractional optimization problems, which utilizes Eke-
land’s variational principle to generate the sequence of points (xk) involved
in the iterative process.

The final section Section 3.5, offers sufficient conditions that enable the
fulfillment of the Palais-Smale requirement and, in turn, establishes our ulti-
mate result regarding the convergence of the Dinkelbach-Ekeland algorithm.

Our contribution in this chapter is as follows. In Section 3.2 we present:
Theorems 3.2.2, 3.2.3 (for the case when the Dinkelbach algorithm incorpo-
rates a specific predetermined error threshold ε > 0). Section 3.3 provides:
Theorems 3.3.2 and 3.3.3 (concerning the convergence of the Dinkelbach Al-
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gorithm when the error εk, accepted at any step, decreases to zero). In
Section 3.4 we have: Algorithm 3.4.1 (the Dinkelbach-Ekeland algorithm)
and Theorem 3.4.2 (with regard to the convergence of the algorithm). The
concluding Section 3.5 delivers: Lemmas 3.5.1, 3.5.2 , Proposition 3.5.3 and
Theorem 3.5.4 (all results representing important steps in ensuring the suf-
ficient conditions under which a functional F satisfies the (PS) condition,
which is crucial for the convergence of your algorithm).

All of the above results are original and have been included in the paper
Orzan and Precup [62].

Chapter 4: Componentwise Dinkelbach algorithms for fractional prob-
lems

In the last chapter of the thesis, we introduce a Dinkelbach-type approxi-
mation algorithm, specifically developed for calculating partial minimizers in
fractional optimization problems. The chapter is divided into four sections.

Section 4.1 presents the background essential for understanding fractional
optimization problems where the objective function involved (a ratio of two
functions) is defined on the Cartesian product of two real normed spaces,
namely X and Y . Another objective of this section is to identify ”partial
minimizers”, points in X × Y where one variable minimizes the objective
function while the other remains constant. In Section 4.2 we establish some
connections between global minimizers and partial minimizers, and also ex-
plore the case where A(x, y) and B(x, y) have separate variables, demon-
strating that in this context, the partial minimizer coincides with the global
minimizer. Additionally, we provide a similar result for finite-dimensional
Euclidean spaces towards the end of this section. Section 4.3 begins by in-
troducing the original Dinkelbach algorithm, applied to functions with two
variables. Additionally, it presents our componentwise variant of the Dinkel-
bach algorithm, and investigates its limitations.

The final Section 4.4 focuses on the algorithm’s convergence. It demon-
strates that by imposing assumptions on the spaces and functions involved,
such as Lipschitz-type continuity, partial Fréchet differentiability, and coer-
civity, the algorithm converges to a partial minimizer.

Our contribution in this chapter is as follows. In Section 4.2 we present:
Propositions 4.2.1, 4.2.2 and 4.2.3 (outlying connections between global min-
imizers, partial minimizers, and critical points in different settings). Sec-
tion 4.3 provides: Algorithm 4.3.2 (Componentwise Dinkelbach algorithm),
Proposition 4.3.3 (existence results for the solutions of the problems (1.31)
and (1.32) involved in the algorithm). The last Section 4.4 delivers: Theo-
rems 4.4.1, 4.4.2 and 4.4.4 (vital results that ensure the convergence of our
Algorithm 4.3.2).
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All of the above results are original and have been included in the paper
Günther, Orzan and Precup [36].
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Chapter 1
Generalized convexity for vector

functions

The conventional understanding of function convexity is acknowledged as a
limiting factor in many practical scenarios, as demonstrated in works like
Cambini and Martein [14]. In response to this limitation, several researchers
have introduced broader classes of functions known as generalized convex
functions. These generalized convex and concave functions encompass the
class of convex functions while also inheriting valuable properties from them.
Generalized convex and concave functions find applications across diverse
fields, including economics for representing preferences and utility functions,
finance for tasks like portfolio optimization, risk management, and asset pric-
ing, as well as engineering for applications in structural design, process opti-
mization, and signal processing, among others.

In terms of mathematical applications, these functions are widely recog-
nized and extensively studied, particularly in the context of scalar, vector,
and set optimization. Notable references in this field include works by Avriel
et al. [2], Bagdasar and Popovici [3], Crouzeix, Mart́ınez-Legaz and Volle [17],
Flores-Bazán [23], Flores-Bazán and Vera [25], Göpfert et al. [32], Günther
and Tammer [39, 40], Jahn [43], Khan, Tammer and Zălinescu [45], La Torre
and Popovici [49], Luc [53], Luc and Schaible [54], Popovici [64], along with
additional references cited therein.

Widely recognized concepts of generalized convexity for vector functions,
defined on a nonempty convex subset D of a real linear space X and map-
ping to a real linear topological space Y equipped with a convex cone C,
encompass the notions of C-convexity, C-quasiconvexity, and explicit C-
quasiconvexity, which were introduced by Luenberger [55], Borwein [9], Luc
[53], and Popovici [63].

These concepts of C-convexity, C-quasiconvexity, and explicit C-
quasiconvexity represent natural extensions of the classical concepts of con-
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Chapter 1. Generalized convexity for vector functions

vexity, quasiconvexity, and explicit quasiconvexity, which are typically ap-
plied to real-valued functions. This extension arises from the fact that within
the specific context of the finite-dimensional real Euclidean space Y = Rm,
which is partially ordered by the standard cone C = Rm

+ , a vector function
f = (f1, . . . , fm) is C-convex (C-quasiconvex, explicit C-quasiconvex) if and
only if its scalar component functions conform to the classical definition of
being convex (quasiconvex, explicit quasiconvex).

Certainly, applying such a componentwise approach to general image
spaces is not feasible. Therefore, an intriguing research area within vector
optimization focuses on characterizing the generalized convexity of vector
functions by leveraging the classical generalized convexity principles of spe-
cific real-valued functions. This approach has been explored by researchers
such as Benoist, Borwein, and Popovici [6], La Torre, Popovici, and Rocca
[50], Luc [53], and Günther and Popovici [37, 38].

In this first chapter, we present a new concept of semistrict quasiconvex-
ity for vector functions defined on a nonempty convex set in a real linear
space X and mapping to a real topological linear space Y , partially ordered
by a proper solid convex cone C. The main result of this chapter is the
characterization of semistrictly C-quasiconvex functions using semistrictly
quasiconvex scalar functions σa ◦f . Based on this, it appears that our notion
of vector semistrict C-quasiconvexity serves as a natural vector counterpart
for the corresponding scalar concept of semistrict quasiconvexity.

The chapter is divided into three sections. Section 1.1 is focused on
presenting the foundational framework and essential tools that will prove to
be of great interest in the sequel.

In Section 1.2, we reiterate some classical notions of generalized con-
vexity for both real-valued and vector-valued functions and state our new
concept of semistrictly quasiconvexity for vector functions.

In the concluding Section 1.3, we deliver our central result, which
provides a characterization of semistrictly C-quasiconvex vector functions
through the use of nonlinear scalarization functions. Furthermore, within the
context of finite-dimensional real Euclidean space Y = Rm, partially ordered
by the standard cone C = Rm

+ , we establish a connection between our new
concept of semistrict C-quasiconvexity and well-established notions, namely,
componentwise semistrict quasiconvexity and componentwise explicit quasi-
convexity.

The results of this part of the thesis were included in the paper Günther,
Orzan and Popovici [35].

14



Chapter 1. Generalized convexity for vector functions

1.1 Preliminaries and properties of convex

cones

In the first section of this chapter we will present a set of fundamental defi-
nitions and key results related to generalized convexity and convex cones.
These insights will serve as valuable building blocks as we delve deeper
into the subject. To facilitate our understanding, let us begin by consid-
ering that X is a real linear space, Y is a real topological linear space,
D ⊆ X is a nonempty convex set, and C ⊆ Y is a convex cone, i.e.,
0 ∈ C = R+ · C = C + C, where 0 stands for the origin of Y while R+

is the set of all nonnegative real numbers. The lineality space of C is given
by ℓ(C) := C ∩ (−C), which is in fact the largest linear subspace of Y con-
tained by C. For any point y ∈ Y and any set A ⊆ Y , we denote by V(y) the
family of all neighborhoods of y, while by intA, clA and bdA the interior,
the closure and the boundary of A, respectively. It is well known that

intA ⊆ {x ∈ A | ∀ d ∈ Y, ∃ r ∈ R∗
+ s.t. x+ [−r, r] · d ⊆ A}, (1.1)

where R∗
+ := R+ \ {0} is the set of all positive real numbers.

We will investigate several concepts of generalized convexity for vector
functions f : D → Y with respect to C, which naturally extend the corre-
sponding classical notions of generalized convexity known for scalar functions
of type φ : D → R. To this aim, we may occasionally need to introduce ad-
ditional assumptions concerning the convex cone C, the specific context will
dictate the nature of these assumptions. We recall that C is said to be:
proper, if C ̸= Y ; pointed, if ℓ(C) = {0}; solid, if intC ̸= ∅; closed, if
clC = C.

In the subsequent part of our preliminaries, we review some basic prop-
erties of the convex cone C (see e.g., the books by Jahn [43], and Tammer
and Weidner [82]):

intC = R∗
+ · intC = C + intC = clC + intC = C + R∗

+ · e, ∀ e ∈ intC,
(1.2)

Y = intC − R∗
+ · e, ∀ e ∈ intC, (1.3)

clC = R∗
+ · clC,

bdC = R∗
+ · bdC. (1.4)

If C is solid, then

intC = int(clC),

clC = cl(intC).
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Chapter 1. Generalized convexity for vector functions

If C is proper, then

0 ∈ bdC.

Lemma 1.1.1. Assume that C is solid. Then, for any e ∈ intC we have

Y \ clC = bdC − R∗
+ · e = bdC − intC. (1.5)

Lemma 1.1.2. Assume that C is solid and let e ∈ intC. Then, for any
v ∈ Y the following assertions are equivalent:

1◦ v ∈ clC.

2◦ (v + intC) ∩ bdC = ∅.

3◦ (v + R∗
+ · e) ∩ bdC = ∅.

1.2 Generalized convexity

1.2.1 Generalized convex scalar functions

In this subsection we will revisit the classical concept of convexity, in addi-
tion to three well-established concepts of generalized convexity for real-valued
functions, which are widely recognized for their significance in scalar opti-
mization (refer to, for example, Avriel et al. [2], Cambini and Martein [14]).

Definition 1.2.1. A function φ : D → R is called:

• convex, if for all x, x′ ∈ D and t ∈ (0, 1) we have

φ((1− t)x+ tx′) ≤ (1− t)φ(x) + tφ(x′).

• quasiconvex, if for all x, x′ ∈ D and t ∈ (0, 1) we have

φ((1− t)x+ tx′) ≤ max
{
φ(x), φ(x′)

}
.

• semistrictly quasiconvex, if for any x, x′ ∈ D and t ∈ (0, 1),

φ(x) ̸= φ(x′) =⇒ φ((1− t)x+ tx′) < max
{
φ(x), φ(x′)

}
.

• explicitly quasiconvex, if φ is both quasiconvex and semistrictly quasi-
convex.
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The next result follows immediately by Definition 1.2.1 and the charac-
terization of explicit quasiconvexity given by Popovici [63, Rem. 3.1] (see
also Günther and Popovici [37, Prop. 2.2]).

Proposition 1.2.2. For any function φ : D → R the following characteri-
zations hold:

a) φ is convex if and only if for any λ, λ′ ∈ R, x, x′ ∈ D and t ∈ (0, 1),

φ(x) ≤ λ and φ(x′) ≤ λ′ =⇒ φ((1− t)x+ tx′) ≤ (1− t)λ+ tλ′.

b) φ is quasiconvex if and only if for any λ ∈ R, x, x′ ∈ D and t ∈ (0, 1),

φ(x) ≤ λ and φ(x′) ≤ λ =⇒ φ((1− t)x+ tx′) ≤ λ.

c) φ is semistrictly quasiconvex if and only if for any λ ∈ R, x, x′ ∈ D
and t ∈ (0, 1),

φ(x) = λ and φ(x′) < λ =⇒ φ((1− t)x+ tx′) < λ.

d) φ is explicitly quasiconvex if and only if for any λ ∈ R, x, x′ ∈ D and
t ∈ (0, 1),

φ(x) ≤ λ and φ(x′) < λ =⇒ φ((1− t)x+ tx′) < λ.

Remark 1. The following statements regarding real-valued functions are
well-known:

a) Convex functions are explicitly quasiconvex.
b) Semistrictly quasiconvex functions, that are lower semicontinuous

along line segments (cf. Popovici [64]), are also explicitly quasiconvex.
c) Quasiconvexity and semistrict quasiconvexity do not necessarily imply

each other, as shown by the next examples.

In the subsequent part, for any n ∈ N, will be convenient to denote

In := {1, . . . , n}.

In the upcoming sections, we will present and examine concepts of gener-
alized convexity for vector functions that map to the real topological linear
space Y . We would like to point out that in the finite-dimensional framework
when Y = Rn (n ≥ 2) one can also define such concepts by a componentwise
approach as follows.

Definition 1.2.3. A vector function f = (f1, . . . , fn) : D → Rn is said to
be componentwise convex (quasiconvex, semistrictly quasiconvex, explicitly
quasiconvex) if for every i ∈ In the scalar function fi : D → R is convex
(quasiconvex, semistrictly quasiconvex, explicitly quasiconvex, respectively)
in the classical sense.
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The following result collects some notable characterizations of componen-
twise generalized convex functions (see, e.g., Günther and Popovici [37, Ex.
4.7], La Torre, Popovici and Rocca [50, Cor. 8], Luc [53, Cor. 6.6]).

Proposition 1.2.4. For any vector function f = (f1, . . . , fn) : D → Rn the
following assertions are equivalent:

1◦ f is componentwise convex (quasiconvex, explicitly quasiconvex).

2◦ For any numbers a1, . . . , an ∈ R, the scalar function

max{fi(·)− ai | i ∈ In} : D → R

is convex (quasiconvex, explicitly quasiconvex, respectively) .

1.2.2 C-convex, C-quasiconvex, and explicitly C-quasi-
convex vector functions

Subsequently, we will recapitulate three important concepts of generalized
convexity for vector functions. These concepts hold contemporary relevance
in the domain of vector optimization and its associated fields, as evidenced
by their incorporation in works such as those authored by Bagdasar and
Popovici [3, 4], Luc [53], Popovici [63, 64], and the references therein.

Definition 1.2.5. A function f : D → Y is called

• C-convex, if for all x, x′ ∈ D and t ∈ (0, 1) we have

f((1− t)x+ tx′) ∈ (1− t)f(x) + tf(x′)− C, i.e.,

for any y, y′ ∈ Y , x, x′ ∈ D and t ∈ (0, 1),

f(x) ∈ y−C and f(x′) ∈ y′−C =⇒ f((1−t)x+tx′) ∈ (1−t)y+ty′−C.

• C-quasiconvex, if for any y ∈ Y , x, x′ ∈ D and t ∈ (0, 1),

f(x) ∈ y − C and f(x′) ∈ y − C =⇒ f((1− t)x+ tx′) ∈ y − C.

• explicitly C-quasiconvex, if for any y ∈ Y , x, x′ ∈ D and t ∈ (0, 1),

f(x) ∈ y−C and f(x′) ∈ y−intC =⇒ f((1−t)x+tx′) ∈ y−intC.

The subsequent result compiles various recognized characterizations of
generalized convex vector functions (see, e.g., Luc [53] and Popovici [63]).
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Proposition 1.2.6. For any function f : D → Y the following assertions
hold:

1◦ f is C-convex iff its epigraph epiC(f) = {(x, y) ∈ D×Y | y ∈ f(x)+C}
is convex.

2◦ f is C-quasiconvex iff for every y ∈ Y , the lower level set f−1(y − C)
is convex.

3◦ f is explicitly C-quasiconvex iff for any points y ∈ Y , x ∈ f−1(y −C),
x′ ∈ f−1(y−intC) and t ∈ (0, 1) we have (1−t)x+tx′ ∈ f−1(y−intC).

1.2.3 Semistrictly C-quasiconvex vector functions

In this last subsection, we introduce our new concept of semistrict qua-
siconvexity for vector functions (as defined in Definition 1.2.7) and ex-
plore its relationships with other established concepts for vector functions,
including quasiconvexity, explicit quasiconvexity, and semistrict quasicon-
vexity in the sense of Flores-Bazán. To this aim, let us consider that
C ⊆ Y is a proper solid convex cone. Under these assumptions, it is well-
known that C − C = Y (i.e., C generates the space), bdC ̸= ∅ (since
0 ∈ C \ intC ⊆ bdC) and C \ (−C) ̸= ∅ (otherwise, C ⊆ −C would entail
Y = C − C ⊆ −C − C = −C ̸= Y , a contradiction).

We now introduce a new concept of semistrict quasiconvexity for vector
functions.

Definition 1.2.7. We say that f : D → Y is semistrictly C-quasiconvex if
for any y ∈ Y , x, x′ ∈ D and t ∈ (0, 1) we have

f(x) ∈ y−bdC and f(x′) ∈ y− intC =⇒ f((1− t)x+ tx′) ∈ y− intC.

Remark 2. Similarly to the characterization of explicitly C-quasiconvex
functions given by Proposition 1.2.6 (3◦), it can be easily seen that a func-
tion f : D → Y is semistrictly C-quasiconvex if and only if for any points
y ∈ Y , x ∈ f−1(y − bdC), x′ ∈ f−1(y − intC) and t ∈ (0, 1) we have
(1− t)x+ tx′ ∈ f−1(y − intC).

Remark 3. Let C ′ ⊆ Y be a convex cone such that intC ′ = intC. Since C is
solid, it follows that clC ′ = cl(intC ′) = cl(intC) = clC, hence bdC ′ = bdC.
Therefore, f is semistrictly C-quasiconvex if and only if f is semistrictly C ′-
quasiconvex.

Subsequently, we investigate the relationship between semistrict C-quasi-
convexity and other concepts of generalized convexity.
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Lemma 1.2.8. If f : D → Y is both semistrictly C-quasiconvex and C-
quasiconvex, then f is explicitly C-quasiconvex.

Lemma 1.2.9. If C is closed, then every explicitly C-quasiconvex function
f : D → Y is both C-quasiconvex and semistrictly C-quasiconvex.

The following result gives a new characterization of explicitly C-
quasiconvex vector functions.

Theorem 1.2.10. If C is closed, then for any function f : D → Y the
following assertions are equivalent:

1◦ f is explicitly C-quasiconvex.

2◦ f is both C-quasiconvex and semistrictly C-quasiconvex.

In what follows, given a function f : D → Y , it will be convenient to
introduce the notation

Θf (x, x
′, y) = {t ∈ [0, 1] | (1− t)x+ tx′ /∈ f−1(y − C)}

for any points x, x′ ∈ D and y ∈ Y .

Remark 4. Let f : D → Y be a function and let y ∈ Y . If x, x′ ∈ f−1(y−C),
then

Θf (x, x
′, y) = {t ∈ (0, 1) | (1− t)x+ tx′ /∈ f−1(y − C)}.

Remark 5. For any function f : D → Y , the following assertions are
equivalent:

1◦ f is C-quasiconvex.

2◦ For any y ∈ Y and x, x′ ∈ f−1(y − C) we have Θf (x, x
′, y) = ∅.

Lemma 1.2.11. Assume that C is closed and f : D → Y is semistrictly C-
quasiconvex. Then, for any y ∈ Y and x, x′ ∈ f−1(y−C), the set Θf (x, x

′, y)
is either empty or reduces to a singleton.

Definition 1.2.12. We say that a function f : D → Y is C-lower semicon-
tinuous along line segments if for any points x, x′ ∈ D the function

t ∈ [0, 1] 7−→ f((1− t)x+ tx′) ∈ Y

has closed C-lower level sets, i.e.,

{t ∈ [0, 1] | f((1− t)x+ tx′) ∈ y − C} (1.6)

is closed for any y ∈ Y .
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Remark 6. Let f : D → Y be a function and let x, x′ ∈ D. For any y ∈ Y
the level set (1.6) can be represented as

{t ∈ [0, 1] | f((1− t)x+ tx′) ∈ y − C} = [0, 1] \Θf (x, x
′, y).

Theorem 1.2.13. Assume that C is closed. If f : D → Y is semistrictly
C-quasiconvex and C-lower semicontinuous along line segments, then f is
C-quasiconvex.

We conclude this section by establishing a relationship between semistrict
C-quasiconvexity and another concept of generalized convexity, that has been
introduced by Flores-Bazán in [23] (see also Flores-Bazán and Vera [25], and
Flores-Bazán and Hernández [24]).

Definition 1.2.14. Let P ⊆ Y be a nonempty set. We say that a vector-
valued function f : D → Y is semistrictly ⟨P ⟩-quasiconvex in the sense of
Flores-Bazán if for any x, x′ ∈ D and t ∈ (0, 1),

f(x′) ∈ f(x)− P =⇒ f((1− t)x+ tx′) ∈ f(x)− P.

Theorem 1.2.15. Assume that C is a closed convex cone and consider P ∈
{intC, C\(−C), Y \(−C)}. Then, every semistrictly C-quasiconvex function
f : D → Y is semistrictly ⟨P ⟩-quasiconvex in the sense of Flores-Bazán.

1.3 Characterization of semistrictly/explicitly

cone-quasiconvex vector functions by

means of nonlinear scalarization func-

tions

The last section contains the central result that characterizes semistrictly
C-quasiconvex vector functions through the use of nonlinear scalarization
functions. We also present some known results concerning the characteriza-
tion of C-convex (respectively, semistrictly ⟨intC⟩-quasiconvex, semistrictly
⟨C⟩-quasiconvex, explicitly C-quasiconvex) vector functions by means of the
nonlinear scalarization functions σa. Finally, we establish some connections
between our new concept of semistrict C-quasiconvexity and well-known
notions such as componentwise semistrict quasiconvexity and component-
wise explicit quasiconvexity by examining the specific context of the finite-
dimensional real Euclidean space Y = Rm, which is partially ordered by the
standard cone C = Rm

+ .
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To this aim, we assume that C ⊆ Y is a proper solid closed convex cone.
Given a point e ∈ intC, we denote by σ : Y → R the nonlinear scalarization
function in the sense of Gerstewitz (Tammer) [29], which is defined for all
y ∈ Y by

σ(y) := min{s ∈ R | y ∈ se− C}.

One can also associate to each point a ∈ Y a function σa : Y → R, defined
for all y ∈ Y by

σa(y) = σ(y − a),

the initial function σ being recovered as σ0. These functions have been widely
applied in vector and set optimization and are recognized by various names
in the field of mathematical economics (see, e.g., Göpfert et al. [32], Khan,
Tammer and Zălinescu [45], Luc [53], Tammer and Weidner [30], Tammer
and Zălinescu [83] and the references therein). According to Göpfert et al.
[32, Th. 2.3.1], the following properties hold:

{y ∈ Y | σ(y) ≤ 0} = −C, (1.7)

{y ∈ Y | σ(y) = 0} = −bdC, (1.8)

{y ∈ Y | σ(y) < 0} = −intC. (1.9)

Furthermore, for any λ ∈ R and y ∈ Y we have

σ(y − λe) = σ(y)− λ. (1.10)

A characterization of explicitly C-quasiconvex vector functions by means
of the nonlinear scalarization functions σa is given in the following theorem.

Theorem 1.3.1. A vector function f : D → Y is explicitly C-quasiconvex if
and only if for every a ∈ Y , the scalar function σa ◦ f : D → R is explicitly
quasiconvex.

Corollary 1.3.2. If f1, . . . , fn are lower semicontinuous along line segments,
then the following assertions are equivalent:

1◦ f is semistrictly Rn
+-quasiconvex.

2◦ f is explicitly Rn
+-quasiconvex.

3◦ f is componentwise explicitly quasiconvex.

4◦ f is componentwise semistricty quasiconvex.
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Chapter 2
Properties of fractional functions

The property of preserving convexity of sets by direct and inverse images
is significant in optimization, particularly in convex optimization because it
simplifies problem formulations, enables the use of efficient algorithms, and
plays a fundamental role in convex duality theory.

This property is closely related to convex functions. However, other
classes of functions such as ratios between a convex function and a con-
cave one (particularly, a quadratic function and an affine one, or two affine
functions), have also proven significant in scalar optimization. Addition-
ally, the study of vector-valued functions with fractional-type scalar compo-
nents has garnered substantial attention in the domain of vector optimiza-
tion. Works by researchers such as Cambini and Martein [14], Göpfert et al.
[32], Schaible [73], and Stancu-Minasian [79] have explored this area com-
prehensively, among others referenced therein. While set-valued optimiza-
tion remains a vital field of study (see, e.g., Khan, Tammer and Zălinescu
[45]), there has been a limited introduction of concepts related to fractional-
type set-valued functions in the literature. Noteworthy contributions include
works like Bhatia and Mehra [8], as well as recent papers such as the one
by Das and Nahak [18]. Within this chapter we give some characteriza-
tions of two special classes of fractional-type set-valued functions in terms of
convexity-preserving properties of sets by direct and inverse images.

The chapter is divided into four sections. Section 2.1 is dedicated to in-
troducing the general framework and necessary tools of set-valued and convex
analysis.

Section 2.2 investigates the concept of set-valued affine functions, as
defined by Tan [84]. In particular, we demonstrate that the inverse of such
a function is affine as well—a distinction from other concepts of affine set-
valued functions, as illustrated by Kuroiwa et al. [48, Ex. 2]. Additionally,
we extend the classical results of Rothblum [70] from finite-dimensional Eu-
clidean spaces to real linear spaces. Ultimately, we introduce a class of set-
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valued ratios of affine functions and present a series of convexity-preserving
properties.

In Section 2.3, we delve into an alternative concept of affine set-valued
functions introduced in the litreture by Gorokhovik [33, 34] and deliver a set
of results that will hold significant importance for the subsequent section.

Finally, in the last Section 2.4, we present a series of results related to
convexity-preserving properties of sets through direct and inverse images for
general set-valued maps. In addition, we investigate the scenario involving
set-valued ratios of affine functions, wherein we extend and generalize certain
convexity-preserving findings presented in the preceding sections. The results
of this part of the thesis were published in the papers Orzan and Popovici
[60, 61] and Orzan [59].

2.1 General framework and preliminaries

In the opening section of this chapter, we will cover some basic definitions
and results of set-valued and convex analysis, that will prove helpful as we
progress further. To this aim, let us consider that X and Y are two real linear
spaces. As usual in set-valued analysis (see, e.g., Aubin and Frankowska [1]),
for any set-valued function F : X → P(Y ) we denote by

domF = {x ∈ X | F (x) ̸= ∅}

the domain of F . We say that F is proper if domF ̸= ∅. The (direct) image
of a set A ⊆ X by F is defined by

F (A) =
⋃
x∈A

F (x).

There are different manners to define the inverse image of a set B ⊆ Y by
a set-valued map F , two of them being currently used in set-valued analysis
(Aubin and Frankowska [1]), namely:

F−1(B) = {x ∈ X | F (x) ∩B ̸= ∅}, (1.11)

F+1(B) = {x ∈ X | F (x) ⊆ B}. (1.12)

The set F−1(B) is called the inverse image of B by F and F+1(B) is called
the core of B by F (also known as the lower inverse image and the upper
inverse image of B by F , respectively). They are related by (see, e.g., Kassay
and Rădulescu [44, Sec. 1.3])

F+1(B) = X \ F−1(Y \B). (1.13)
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2.2 Affine multifunctions in the sense of Tan

The generalization of the affinity concept to set-valued functions has been
approached in various manners within the literature. Noteworthy examples
include the works of Deutsch and Singer [19], Nikodem and Popa [57], Tan
[84], Gorokhovik [33], Gorokhovik and Zabreiko [34] and the references cited
therein. Among these approaches, one particular instantiation, drawing in-
spiration from Tan [84], will serve as the main tool in this section and is
presented in what follows.

Definition 2.2.1. A set-valued function G : X → P(Y ) is said to be affine
(in the sense of Tan) if

G((1− t)x1 + tx2) = (1− t)G(x1) + tG(x2) (1.14)

for all x1, x2 ∈ domG and t ∈ R.

Proposition 2.2.2. For any set-valued function G : X → P(Y ) the follow-
ing assertions are equivalent:

1◦ G is affine.

2◦ For all x1, x2 ∈ domG and t ∈ R we have

(1− t)G(x1) + tG(x2) ⊆ G((1− t)x1 + tx2).

Theorem 2.2.3. Let G : X → P(Y ) be a set-valued affine function. Then
the inverse of G, i.e., the set-valued function G−1 : Y → P(X), is affine.

Corollary 2.2.4. If g : E → Y is a vector-valued affine function, defined on
a nonempty affine set E ⊆ X, then the set-valued function g−1 : Y → P(X)
is affine.

2.2.1 Vector-valued ratios of affine functions

We begin this subsection by extending the notion of vector-valued ratios
of affine functions, originally introduced by Rothblum [70] within finite-
dimensional Euclidean spaces, to the framework of general real linear spaces.

Definition 2.2.5. A vector-valued function f : D → Y, defined on a
nonempty convex set D ⊆ X, is said to be a ratio of affine functions if
there exist a vector-valued affine function g : X → Y and a real-valued affine
function h : X → R, such that

D ⊆ {x ∈ X | h(x) > 0}
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and

f(x) =
g(x)

h(x)
, ∀x ∈ D.

The following propositions extend to the framework of general real linear
spaces some results obtained within Rn by Rothblum (see [70, Props. 1, 2
and 3] along with subsequent remarks). Their proofs are ommited, since they
follow the main lines in Rothblum [70].

Proposition 2.2.6. Given a vector-valued function f : D → Y defined on a
nonempty convex set D ⊆ X, the following assertions are equivalent:

1◦ conv f(S) ⊆ f(convS) for every set S ⊆ D.

2◦ f(A) is convex for every convex set A ⊆ D, i.e., f preserves the con-
vexity of sets by direct images.

Proposition 2.2.7. Given a vector-valued function f : D → Y defined on a
nonempty convex set D ⊆ X, the following assertions are equivalent:

1◦ f(convS) ⊆ conv f(S) for every set S ⊆ D.

2◦ f−1(B) is convex for every convex set B ⊆ Y , i.e., function f preserves
the convexity of sets by inverse images.

Proposition 2.2.8. Let D ⊆ X be a nonempty convex set. If f : D → Y is
a vector-valued ratio of affine functions, then

conv f(S) = f(convS) for every set S ⊆ D.

Therefore f preserves the convexity of sets by direct and inverse images.

2.2.2 Set-valued ratios of affine functions

In this subsection we introduce a class of set-valued ratios of affine functions,
by slightly modifying the one proposed by Orzan in [59, Def. 3.3]. We show
that these fractional-type functions preserve the convexity of sets through
direct and inverse images, a property that, as we have already stated, is very
significant in optimization, especially in the context of convex optimization.

Definition 2.2.9. Let F : X → P(Y ) be a set-valued function with the
domain nonempty and convex. We say that F is a set-valued ratio of affine
functions (in the sense of Tan) if there exist a proper set-valued affine function
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G : X → P(Y ) and a real-valued affine function h : X → R, other than the
null functional, such that

domF ⊆ {x ∈ X | h(x) > 0} ∩ domG

and

F (x) =


G(x)

h(x)
if x ∈ domF

∅ if x ∈ X \ domF.

(1.15)

Theorem 2.2.10. Let F : X → P(Y ) be a set-valued ratio of affine functions
defined by (1.15). Then there exist a vector-valued ratio of affine functions
f : domF → Y and a linear subspace M ⊆ Y , such that

F (x) =

 f(x) +M if x ∈ domF

∅ if x ∈ X \ domF.
(1.16)

Theorem 2.2.11. Consider a set-valued function F : X → P(Y ) of type
(1.16), where domF ⊆ X and M ⊆ Y are nonempty convex sets, while
f : domF → Y is a vector-valued function that preserves the convexity of
sets by direct images. Then, for every convex set A ⊆ X, the set F (A) is
convex, i.e., F preserves the convexity of sets by direct images.

Theorem 2.2.12. Consider a set-valued function F : X → P(Y ) of type
(1.16), where domF ⊆ X and M ⊆ Y are nonempty convex sets, while
f : domF → Y is a vector-valued function that preserves the convexity of
sets by inverse images. Then, for every convex set B ⊆ Y , the sets F−1(B)
and F+1(B) ∩ domF are convex, i.e., F preserves the convexity of sets by
lower inverse images as well as by upper inverse images in the sense of Berge.

Corollary 2.2.13. If F : X → P(Y ) is a set-valued ratio of affine functions
defined by (1.15), then the following assertions hold:

1◦ F preserves the convexity of sets by direct images.

2◦ F preserves the convexity of sets by lower inverse images.

3◦ F preserves the convexity of sets by upper inverse images in the sense
of Berge.
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2.3 Affine multifunctions in the sense of

Gorokhovik

In the subsequent section of this chapter, we will investigate another type
of affinity for set-valued functions, introduced by V. Gorokhovik [33], which
encompasses the previously mentioned concept of affinity by Tan. To this
aim, we will also revisit the classical notions of convexity and concavity for
set-valued functions.

Definition 2.3.1. A set-valued function G : X → P(Y ) is said to be
(i) convex if

(1− t)G(x1) + tG(x2) ⊆ G((1− t)x1 + tx2)

for any x1, x2 ∈ domG and t ∈ [0, 1];
(ii) concave if domG is a convex subset of X and

G((1− t)x1 + tx2) ⊆ (1− t)G(x1) + tG(x2)

for any x1, x2 ∈ domG and t ∈ [0, 1];
(iii) affine (in the sense of Gorokhovik) if

G((1− t)x1 + tx2) = (1− t)G(x1) + tG(x2)

for any x1, x2 ∈ domG and t ∈ [0, 1].

Let K ⊆ X be a cone (i.e. a set with 0X ∈ K = R+ ·K).

Definition 2.3.2 (Nikodem [56]). Let F : X → P0(Y ) be a set-valued func-
tion. Then F is called K-quasiconcave if it satisfies the condition

F (x1) ⊆ A+K and F (x2) ⊆ A+K ⇒ F ((1− t)x1 + tx2) ⊆ A+K

for any convex set A ⊆ Y , x1, x2 ∈ X and t ∈ [0, 1].

Remark 7. If K = {0X}, then F is quasiconvex.

The following notions and results will be used in the subsequent part.
For any two points a, b ∈ R, a, b > 0 we consider the ratio of affine functions
σa,b : [0, 1] → [0, 1] defined by

σa,b(t) =
tb

(1− t)a+ tb
. (1.17)
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Remark 8. It is easy to see that the function σa,b is well-defined and has the
following properties:

1◦ σa,b is strictly increasing;

2◦ σa,b is convex if a > b, σa,b is concave if a < b and σa,b(t) = t for any
t ∈ [0, 1] if a = b;

3◦ σa,b is bijective and its inverse σ−1
a,b is σb,a.

2.3.1 Set-valued ratios of affine functions

In our way to explore convexity preserving properties based on Gorokhovik’s
concept of affinity for set-valued maps, we will deliver a similar definition to
Definition 2.2.9. This will facilitate our work and, at the same time, will set
the stage for the upcoming results.

Definition 2.3.3. Let F : X → P(Y ) be a set-valued function with domF
a convex set. We say that F is a set-valued ratio of affine functions (in
the sense of Gorokhovik) if there exists a proper affine set-valued function
G : X → P(Y ) and a real-valued affine function h : X → R, other than the
null functional, such that

domF ⊆ {x ∈ X | h(x) > 0} ∩ domG

and

F (x) =


G(x)

h(x)
if x ∈ domF

∅ if x ∈ X \ domF.

Lemma 2.3.4. Let F be the ratio between a set-valued function G and a
positive affine function h. The next statements are true:

1◦ if G is convex, then

(1− σh(x1),h(x2)(t))F (x1) + σh(x1),h(x2)(t)F (x2) ⊆ F ((1− t)x1 + tx2)

for any points x1, x2 ∈ domF and t ∈ [0, 1];

2◦ if G is concave, then

F ((1− t)x1 + tx2) ⊆ (1− σh(x1),h(x2)(t))F (x1) + σh(x1),h(x2)(t)F (x2)

for any points x1, x2 ∈ domF and t ∈ [0, 1];
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3◦ if G is affine, then

F ((1− t)x1 + tx2) = (1− σh(x1),h(x2)(t))F (x1) + σh(x1),h(x2)(t)F (x2)

for any points x1, x2 ∈ domF and t ∈ [0, 1].

Proposition 2.3.5. Let F be the ratio between a convex set-valued function
G and a positive affine function h. Then

1◦ for any point x ∈ X, the set F (x) is convex;

2◦ for any point y ∈ Y , the set F−1(y) is convex.

2.4 Convexity-preserving properties

We conclude this chapter by a two-part section. In the first subsection we
deliver some convexity-preserving results for general set-valued functions.
The second subsection deals with set-valued ratios of affine functions (in the
sense of Gorokhovik) and generalizes some of the results obtained in the
previous sections.

2.4.1 The case of general set-valued functions

Proposition 2.4.1. For any set-valued map F : X → P(Y ), the following
assertions are equivalent:

1◦ convF (A) ⊆ F (convA) for any set A ⊆ X.

2◦ For any convex set C ⊆ X, the set F (C) is convex.

3◦ convF ({x1, x2}) ⊆ F (conv {x1, x2}) for any x1, x2 ∈ X.

4◦ convF ({x1, x2}) ⊆ F (conv {x1, x2}) for any x1, x2 ∈ domF .

Corollary 2.4.2. For any set-valued map F : X → P(Y ) the following
assertions are equivalent:

1◦ convF−1(A) ⊆ F−1(convA) for any set A ⊆ Y .

2◦ For any convex set C ⊆ Y , the set F−1(C) is convex, i.e., F is quasi-
convex in the sense of Nikodem.

3◦ convF−1({y1, y2}) ⊆ F−1(conv {y1, y2}) for any y1, y2 ∈ Y .

4◦ convF−1({y1, y2}) ⊆ F−1(conv {y1, y2}) for any y1, y2 ∈ domF−1.
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Proposition 2.4.3. For any set-valued function F : X → P(Y ) such that
domF is convex, the following assertions are equivalent:

1◦ F (convA) ⊆ convF (A) for any set A ⊆ domF .

2◦ For any convex set C ⊆ Y , the set F+1(C) ∩ domF is convex.

3◦ F (conv {x1, x2}) ⊆ convF ({x1, x2}) for any x1, x2 ∈ domF .

2.4.2 The case of set-valued ratios of affine functions

Theorem 2.4.4. Let F : X → P(Y ) be the ratio of a convex set-valued
function and a positive affine function. Then for any convex set C ⊆ X, the
set F (C) is convex.

Corollary 2.4.5. If F : X → P(Y ) is a set-valued ratio of affine functions,
then for any convex set C ⊆ X, the set F (C) is convex.

Theorem 2.4.6. Let F : X → P(Y ) be a set-valued ratio of affine functions
as given by Definition 2.3.3. Then for any convex set C from Y , the set
F+1(C) ∩ domF is convex.

Theorem 2.4.7. Let F : X → P(Y ) be the ratio of a concave set-valued
map and a positive affine function with domF ⊆ X nonempty and convex.
Then for any convex set C ⊆ Y , the set F−1(C) is convex.

Corollary 2.4.8. Let F : X → P(Y ) be a ratio of affine set-valued functions.
Then for any convex set B ∈ P(Y ), the set F−1(B) is convex.

Corollary 2.4.9. Let F : X → P(Y ) be an affine set-valued function. Then
for any convex set B ∈ P(Y ), the set F−1(B) is convex.

31



Chapter 3
Dinkelbach type approximation

algorithms for fractional problems

Fractional optimization problems have gained significant attention from re-
searchers due to their relevance in modeling various real-world processes.
Numerous authors have dedicated substantial efforts to studying this sub-
ject, such as Avriel et al. [2], Cambini and Martein [14], Stancu-Minasian
[79], Elbenani and Ferland [21] and the references therein. Examples of frac-
tional optimization problems can also be identified in mathematics in mul-
tiple publications among which we mention the papers of Crouzeix [15, 16],
Hadjisavvas [26], Schaible [71, 72], Rodenas [69], Shi [77], Boţ et al.[10, 11],
Tammer [81]. In this chapter of the thesis we establish some approxima-
tion versions of the classical Dinkelbach algorithm for nonlinear fractional
optimization problems in Banach spaces.

The chapter is structured into five sections. The first one, Section 3.1,
introduces our general framework and the original Dinkelbach algorithm.

Section 3.2 presents the case in which at any step of the algorithm,
the generated point desired to be a minimizer can only be determined with
a given error ε > 0 and provides a sufficient condition under which the
functional A/B reaches the minimum value.

In Section 3.3 we deliver the Dinkelbach algorithm with errors decreas-
ing to zero and show that under the same Palais-Smale compactness condition
from the previous section, the algorithm is convergent to the pair (λ∗, x̃), in
other words, the solution of our fractional optimization problem. Section
3.4 puts forward the Dinkelbach-Ekeland approximation algorithm for our
fractional problem.

Finally, the last Section 3.5 offers sufficient conditions that make the
achievement of the Palais-Smale requirement possible and grants our final
result concerning the convergence of the Dinkelbach-Ekeland algorithm.
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problems

The results of this chapter were published in the paper Orzan and Precup
[62].

3.1 Fractional optimization problems and the

Dinkelbach algorithm

A fractional optimization problem can be expressed in its general form as
follows

A (x)

B (x)
−→ min

x∈D
,

where A and B are two given functionals defined on a nonempty set D and
B (x) ̸= 0 for all x ∈ D. Solving the problem means to obtain a pair (λ∗, x∗) ,
where λ∗ is the minimal value of A/B and x∗ is a minimum point, i.e.,

λ∗ =
A (x∗)

B (x∗)
= min

D

A

B
.

In addition to direct minimization methods, there exist specific techniques
that transform the problem into an optimization problem involving a non-
ratio functional. One such technique, introduced by Dinkelbach [20], is based
on the parametric problem

A (x)− λB (x) −→ min
x∈D

.

The method involves generating a sequence (λk) of parameter values that
ultimately leads to the minimum of the ratio A/B. Alongside this sequence,
another sequence (xk) is generated to converge to the desired minimum point.
In order to enhance our understanding of this method and facilitate compari-
son with the forthcoming results, we provide a brief overview of Dinkelbach’s
algorithm and outline the main stages of its convergence proof. Assuming
that D is a nonempty arbitrary set, A : D → R is bounded from bellow, and
B : D → R has the property that

0 < c ≤ B (x) ≤ C for all x ∈ D,

for some real numbers c, C ∈ R, the Dinkelbach algorithm reads as follows:

Algorithm 3.1.1 (Dinkelbach’s algorithm).

Step 0 (initialization) Take any point x0 ∈ D, calculate λ0 = A(x0)
B(x0)

and
set k = 1.
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Step k (cycle step for k ≥ 1) Find a point xk ∈ D such that

A (xk)− λk−1B (xk) = mk := min
D

(A− λk−1B) ,

calculate

λk =
A (xk)

B (xk)

and perform Step k + 1.

Theorem 3.1.2. Dinkelbach’s algorithm is convergent and if λ∗ = limλk

and x∗ ∈ D is a point such that

A (x∗)− λ∗B (x∗) = min
D

(A− λ∗B) ,

then

λ∗ =
A (x∗)

B (x∗)
= min

D

A

B
. (1.18)

We conclude this section by recalling the Ekeland variational principle
and some of its consequences (see, e.g., Ekeland [22], Frigon [27]), which will
prove to be of great importance for our work. We also recall the Palais-Smale
(compactness) condition, denoted for simplicity by (PS).

Theorem 3.1.3 (Ekeland). Let (X, d) be a complete metric space and let
E : X → R be a lower semicontinuous function bounded from below. Then
given ε > 0 and u0 ∈ X, there exists a point u ∈ X such that

E(u) ≤ E(v) + εd(u, v) for all v ∈ X

and
E(u) ≤ E(u0)− εd(u, u0).

Corollary 3.1.4. Let (X, | · |) be a Banach space and E : X → R a C1

functional bounded from below. Then for every ε > 0, there exists an element
u ∈ X such that

E(u) ≤ inf
X

E + ε, |E ′ (u)| ≤ ε

A C1 functional E defined on a Banach space is said to satisfy the (PS)
condition if any sequence (xk) with

E(xk) → l (l ∈ R) and E ′(xk) → 0

has a convergent subsequence.

Theorem 3.1.5. Let (X, | · |) be a Banach space and E : X → R be a C1

functional bounded from below that satisfies the (PS) condition. Then there
exists a point x∗ ∈ X with

E(x∗) = inf
X

E and E ′ (x∗) = 0.
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3.2 Dinkelbach algorithm with fixed error

In this section, we are going to discuss the case when Dinkelbach’s algorithm
incorporates a specific predetermined error threshold ε > 0. Consequently,
Algorithm 4.3.1 is modified as follows:

Algorithm 3.2.1 (Dinkelbach algorithm with fixed error).

Step 0 (initialization) Take any point x0 ∈ D, calculate λ0 = A(x0)
B(x0)

and
set k = 1.

Step k (cycle step for k ≥ 1) Find a point xk ∈ D such that

A (xk)− λk−1B (xk) ≤ inf
D

(A− λk−1B) + ε, (1.19)

calculate

λk = min

{
A (xk)

B (xk)
, λk−1

}
and perform Step k + 1.

Theorem 3.2.2. If λ̃ = limλk and x̃ ∈ D is such that

A (x̃)− λ̃B (x̃) ≤ inf
D

(
A− λ̃B

)
+ ε,

then

inf
D

A

B
≤ λ̃ ≤ inf

D

A

B
+

ε

c
(1.20)

and

λ̃− ε

c
≤ A (x̃)

B (x̃)
≤ λ̃+

ε

c
. (1.21)

According to Theorem 4.4.2, λ̃ differs from infD A/B with at most ε/c
and x̃ is a 2ε/c approximation minimum point of infD A/B.

Next we attempt to see the way in which the functional A/B reaches the

value λ̃. To this aim we need a topological structure on D, the continuity of
A and B, and a compactness condition.

Theorem 3.2.3. Assume, in addition, that D is a metric space, A and B
are continuous on D and the following compactness condition holds:

(C) any sequence (yk) of elements of D for which the sequence
(A (yk) /B (yk)) is convergent has a convergent subsequence in D.

Then there exists a point x̃ ∈ {xk} (either a term or an accumulation
point of the sequence (xk) generated by the approximation Dinkerbach’s algo-

rithm) such that λ̃ = A (x̃) /B (x̃) .
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3.3 Dinkelbach algorithm with errors de-

creasing to zero

In the previous section we studied Dinkelbach’s algorithm with a fixed error
ε > 0. In what follows, we establish that if the error εk, accepted at any
step, decreases to zero, then the algorithm converges to (λ∗, x̃), where λ∗ is
the infimum of A/B and that is reached under the compactness assumption
stated in 3.2.3. The modified algorithm reads as follows:

Algorithm 3.3.1 (Dinkelbach algorithm with errors decreasing to zero).

Step 0 (initialization) Take any point x0 ∈ D, calculate λ0 = A(x0)
B(x0)

and
set k = 1.

Step k (cycle step for k ≥ 1) Find a point xk ∈ D such that

A (xk)− λk−1B (xk) ≤ inf
D

(A− λk−1B) + εk, (1.22)

calculate

λk = min

{
A (xk)

B (xk)
, λk−1

}
and perform Step k + 1.

Theorem 3.3.2. If λ̃ = limλk and x̃ ∈ D is a point such that

A (x̃)− λ̃B (x̃) ≤ inf
D

(
A− λ̃B

)
+ ε,

then we have

λ̃ = λ∗ = inf
D

A

B
(1.23)

and
A (x̃)

B (x̃)
≤ inf

D

A

B
+

ε

c
.

We note that the result in Theorem 3.2.3 remains valid in this context as
well. More precisely we have:

Theorem 3.3.3. Under the assumptions of Theorem 3.2.3, if (λk) and (xk)
are the sequences given by Dinkelbach algorithm with error decreasing to zero
and λ∗ = limλk, then there exists a point x∗ ∈ {xk} (either a term or an
accumulation point of the sequence (xk)) such that

λ∗ =
A (x∗)

B (x∗)
= min

D

A

B
.

In addition, we have that

inf
D

(A− λkB) → inf
D

(A− λ∗B) = 0 as k → ∞. (1.24)
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3.4 Dinkelbach-Ekeland approximation algo-

rithm

Our next goal is to fulfil the Palais-Smale compactness condition (assumption
(C) from Theorem 3.2.3) for noncompact sets D. We get closer to this desire
if we can ensure additional properties on the sequence (xk). In order to achive
this, we will present a modified version of Dinkelbach’s algorithm by making
use of Ekeland’s variational principle to generate the points of the sequence
(xk). To this aim, let (X, | · |) be a Banach space and A,B : X → R two C1

functionals such that A is bounded from below and B satisfies

0 < c ≤ B (x) ≤ C for all x ∈ X.

Let us also consider that (εk) is a decreasing sequence of positive real
numbers. Then the Dinkelbach-Ekeland algorithm description follows below:

Algorithm 3.4.1 (Dinkelbach-Ekeland algorithm).

Step 0 (initialization) Take any point x0 ∈ X, calculate λ0 =
A (x0)

B (x0)
and

set k = 1.

Step k (cycle step for k ≥ 1) By using Ekeland’s principle, we find a
point xk ∈ X such that

A(xk)− λk−1B(xk) ≤ inf
X
(A− λk−1B) + εk, (1.25)

|A′(xk)− λk−1B
′(xk)| ≤ εk

then calculate

λk = min

{
A (xk)

B (xk)
, λk−1

}
and perform Step k + 1.

Theorem 3.4.2. Under the above assumptions, if (λk) and (xk) are the

sequences given by the algorithm and λ̃ = limλk, then

A(xk)− λ̃B(xk) → inf
X

(
A− λ̃B

)
and A′(xk)− λ̃B′(xk) → 0. (1.26)

If in addition the functional A − λ̃B satisfies the (PS) condition, then
there exists a point x∗ ∈ {xk} (either a term or an accumulation point of the
sequence (xk)) such that

λ̃ = λ∗ =
A (x∗)

B (x∗)
= min

X

A

B
.
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3.5 Sufficient conditions for the (PS) require-

ment

In the final section of this chapter, we deliver some sufficient conditions
under which a functional F satisfies the (PS) condition. They require some
topological properties on F ′ that are well-known in nonlinear analysis.

Lemma 3.5.1. Let (X, |·|) be a Hilbert space and F : X → R a C1 functional
having the following two properties:

(i) any sequence (xk) for which (F (xk)) converges is bounded;

(ii) the operator N := I − F ′ is completely continuous.

Then F satisfies the (PS) condition.

A stronger topological condition on F ′ guarantees that any sequence (xk)
satisfying F ′ (xk) → 0 is entirely convergent (F satisfies strongly the (PS)
condition).

Lemma 3.5.2. Let (X, |·|) be a Hilbert space and F : X → R a C1 functional
such that

(ii*) the operator N = I − F ′ is a contraction on X.

Then F strongly satisfies the (PS) condition.

Returning to functionals of the form A−λB, as in our Dinkelbach-Ekeland
algorithm, the following result can be established.

Proposition 3.5.3. Let (X, | · |) be a Hilbert space, A,B : X → R be C1

functionals such there exist the constants c, C with 0 < c ≤ B ≤ C. Then
the following statements hold:

(a) If A is coercive and the operators I−A′ and B′ are completely continuous,
then for each λ ∈ R, the functional A−λB satisfies the (PS) condition.

(b) If the operators I−A′ and B′ are LA- respectively LB-Lipschitz continu-
ous with LA < 1, then the functional A−λB satisfies strongly the (PS)
condition for every λ with |λ| < (1− LA) /LB.

As far as the Dinkelbach-Ekeland algorithm is concerned, we have the
following final result on its convergence.
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Theorem 3.5.4. Let (X, | · |) be a Hilbert space, the conditions of Theorem
3.4.2 hold, (λk) and (xk) be the sequences given by Algorithm 3.4.1, and

λ̃ = limλk.

(a) If A is coercive and the operators I−A′ and B′ are completely continuous,
then there exists a point x∗ ∈ {xk} (either a term or an accumulation
point of the sequence (xk)) such that

λ̃ = λ∗ =
A (x∗)

B (x∗)
= min

X

A

B
. (1.27)

(b) If the operators I −A′ and B′ are LA- respectively LB-Lipschitz contin-
uous with LA < 1 and

max {λ0,−λ−1} <
1− LA

LB

, (1.28)

where λ−1 = infX A/B, then the sequence (xk) converges to some x∗

and (1.27) holds.
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Chapter 4
Componentwise Dinkelbach

algorithms for fractional problems

The demand for computational algorithms to address fractional optimiza-
tion problems arises from a wide array of practical scenarios. These contexts
frequently involve situations where the objective revolves around optimizing
a performance metric that is expressed as a ratio, as evidenced in the re-
search conducted by Shen and Yu [75, 76], Elbenani and Ferland [21], and
the references therein. Consequently, these problems carry substantial rel-
evance across various fields, encompassing economics, industrial planning,
medical strategy development and related domains. Similar challenges are
also encountered in diverse mathematical domains, such as graph theory and
game theory, as evidenced by the research of Stancu-Minasian [79], Stancu-
Minasian and Tigan [80] and the references therein. In this section of the
thesis, we present a Dinkelbach-type algorithm designed to compute partial
minimizers for fractional optimization problems.

The chapter is divided into four sections. Section 4.1 introduces our
general framework and provides the background necessary for the reader to
familiarize themselves with fractional optimization problems where the ob-
jective function involved (a ratio of two functions) is defined on the Cartesian
product of two real normed spaces, namely X and Y . The section also clearly
defines the objective of this part of the thesis: determining the so-called par-
tial minimizers. These are points in X × Y with the property that one of
their variables minimizes the objective function when the other variable is
held constant.

In Section 4.2 we demonstrate some results concerning the relationship
between global minimizers and partial minimizers (Proposition 4.2.1) in real
normed spaces. Additionally, we investigate the distinct case when A(x, y)
and B(x, y) have separate variables and show that in this framework the
partial minimizer coincides with the global minimizer (Proposition 4.2.2).

40



Chapter 4. Componentwise Dinkelbach algorithms for fractional problems

Another analogous result with the first one, related to the context of finite-
dimensional Euclidean spaces, is also presented towards the conclusion of
this section.

In Section 4.3, we commence by introducing the original Dinkelbach al-
gorithm (Algorithm 4.3.1), which is applied to objective functions depending
on two variables. Subsequently, we present our componentwise variant of the
algorithm (Algorithm 4.3.2) and provide an in-depth exploration of the asso-
ciated drawbacks. Furthermore, we address practical measures to effectively
alleviate these limitations.

Ultimately, the last Section 4.4 is devoted to the convergence of our al-
gorithm. The section demonstrates that introducing additional assumptions
concerning the spaces and functions involved – such as Lipschitz-type conti-
nuity, partial Fréchet differentiability, and coercivity – provides a foundation
for determining adequate conditions for Algorithm 4.3.2 to converge towards
a partial minimizer.

The results of this part of the thesis were published in the paper Günther,
Orzan and Precup [36].

4.1 The optimization problem

In the first section of this chapter, we will describe the general optimiza-
tion problem of interest in order to clearly delineate the distinction between
the standard problem of finding minimizers for fractional functionals and
our specific framework. With the aim of accomplishing this, let us consider
throughout the entire chapter that (X, |·|X) and (Y, |·|Y ) are two real normed
spaces, D1 ⊆ X, D2 ⊆ Y are nonempty sets and A,B : D1 × D2 → R are
functions such that A is bounded from below and there exist c, C ∈ R such
that

0 < c ≤ B (x, y) ≤ C for all (x, y) ∈ D1 ×D2.

The general fractional optimization problem we are interested in is given by

A (x, y)

B (x, y)
−→ min

(x,y)∈D1×D2

. (P )

In problem (P ), one is usually searching for points (x∗, y∗) ∈ D1 ×D2 such
that

A (x∗, y∗)

B (x∗, y∗)
= min

(x,y)∈D1×D2

A (x, y)

B (x, y)
,

which means that (x∗, y∗) is a global minimizer. In contrast to this standard
approach, we switch our focus on the problem of finding points (x∗, y∗) of
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D1 ×D2 with the property that

A(x∗, y∗)

B(x∗, y∗)
= min

x∈D1

A(x, y∗)

B(x, y∗)
, (1.29)

A(x∗, y∗)

B(x∗, y∗)
= min

y∈D2

A(x∗, y )

B(x∗, y )
. (1.30)

Points satisfying (1.29) and (1.30) are called partial minimizers for problem
(P ).

When dealing with fractional optimization problems, one famous method
for computing global minimizers is the Dinkelbach algorithm (see Dinkelbach
[20] and the references Crouzeix and Ferland [15, 16], Orzan and Precup [62],
Ródenas, López and Verastegui [69], Shi [77] and Tammer [81]).

In order to obtain partial minimizers, we use a modified version of the
Dinkelbach algorithm, which relies on solving at each iteration step two para-
metric problems of the following type

A(x, y)− λB(x, y) → min
x∈D1

, (Py(λ))

A(x, y)− λB(x, y) → min
y∈D2

, (Px(λ))

where λ ∈ R is a parameter. Our algorithmic procedure generates
three sequences (λk), (xk) and (yk), where xk is a solution of the problem
(Pyk−1

(λk−1)), yk is a solution of (Pxk
(λk−1)) and

λk =
A(xk, yk)

B(xk, yk)
.

Under some appropriate conditions on the fractional optimization problem,
the convergence of the sequences is ensured and we obtain that the point
(x∗, y∗), where x∗ and y∗ are the limits of (xk) and (yk), is a partial minimizer

of A
B
, while the limit of (λk) equals the value

A(x∗, y∗)

B(x∗, y∗)
.

4.2 Relationships between global minimizers

and partial minimizers

In the subsequent section, we outline the connections between global min-
imizers, partial minimizers, and critical points. Specifically, we prove that
under certain conditions on the objective function, partial minimizers co-
incide with global minimizers. Furthermore, we investigate the scenario in
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which functions A and B involved in the fractional problem have seperate
variables. Eventually, we deliver a result in the same spirit as the previous
ones for the particular framework of finite dimensional Euclidean spaces.

Proposition 4.2.1. Let X and Y be two real normed spaces and function
f : X × Y → R. Then:

1◦ Any global minimizer of f is a partial minimizer, but the converse
implication is not generally true, even in the case when the function is
convex.

2◦ If f is a C1 Fréchet differentiable function, then any partial minimizer
is a critical point.

3◦ If f is convex, then (x, y) is a global minimizer if and only if the origin
belongs to the subdifferential of f at (x, y) , i.e., 0 ∈ ∂f (x, y) . In par-
ticular, if f is convex and C1 Fréchet differentiable, then any partial
minimizer is a global minimizer.

The next result comes as a sufficient condition under which the partial

minimizer points are global minimizers, for a fractional function
A

B
.

Proposition 4.2.2. If A,B : D1 × D2 → R have separate variables in the
sense that

A (x, y) = A1 (x) + A2 (y) , B (x, y) = B1 (x) +B2 (y)

then any partial minimizer is a global minimizer of the ratio A (x, y) /B (x, y).

Remark 9. In the particular case of finite dimensional Euclidean spaces, the
following relationships can be established between global minimizers, partial
minimizers and critical points for our fractional optimization problem.

Proposition 4.2.3. Assume that D1 ⊆ Rq, D2 ⊆ Rp are nonempty, open
and convex sets, A,B : D1×D2 → R are two Fréchet differentiable functions,
B is positive. Consider the following assertions:

1◦ (x∗, y∗) is a global minimizer of A
B
.

2◦ (x∗, y∗) is a partial minimizer of A
B
.

3◦ (x∗, y∗) is a critical point of A
B
, i.e., ∇A

B
(x∗, y∗) = 0.

Then 1◦ =⇒ 2◦ =⇒ 3◦. If at least one of the following assumptions holds
true:

(i) A is convex and B is affine,

(ii) A is non-negative and convex, and B is concave,

then 1◦ ⇐⇒ 2◦ ⇐⇒ 3◦.
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4.3 The componentwise Dinkelbach algo-

rithm

In this section, we will present the componentwise Dinkelbach algorithm, de-
signed to compute partial minimizers for fractional optimization problems.
We begin by restating the original Dinkelbach algorithm, which is applied to

objective functions of the form
A

B
and depends on two variables. This review

will provide us with a clearer comprehension of our subsequent componen-
twise algorithm. We also contextualize some of the weaknesses inherent to
our algorithm and offer practical suggestions to mitigate these limitations.

Algorithm 4.3.1 (Dinkelbach’s algorithm).

Step 0 (initialization) Take any point (x0, y0) ∈ D1 ×D2, calculate

λ0 :=
A (x0, y0)

B (x0, y0)

and set k = 1.

Step k (cycle step for k ≥ 1) Find a point (xk, yk) ∈ D1 ×D2 such that

A (xk, yk)− λk−1B (xk, yk) = min
D1×D2

(A− λk−1B) ,

calculate

λk =
A (xk, yk)

B (xk, yk)

and perform Step k + 1.

Remark 10. It is known that, under certain assumptions on the objective
function, both sequences (xk) and (yk) generated by the Dinkelbach algorithm
are convergent to x∗ and y∗, and the point (x∗, y∗) is a global minimizer of
A/B on D1 ×D2 (see Dinkelbach [20]).

We are going to give now our modified version of the Dinkelbach algorithm
for computing partial minimizers of fractional optimization problems.

Algorithm 4.3.2 (Componentwise Dinkelbach algorithm).

Step 0 (initialization) Take any point (x0, y0) ∈ D1 ×D2, calculate

λ0 :=
A (x0, y0)

B (x0, y0)

and set k = 1.
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Step k (cycle step) Find a point xk ∈ D1 such that

min
x∈D1

[A(·, yk−1)− λk−1B(·, yk−1)] = A(xk, yk−1)− λk−1B(xk, yk−1),

(1.31)
then find yk ∈ D2 such that

min
y∈D2

[A(xk, ·)− λk−1B(xk, ·)] = A(xk, yk)− λk−1B(xk, yk), (1.32)

next calculate

λk :=
A(xk, yk)

B(xk, yk)
(1.33)

and perform Step k + 1.

Proposition 4.3.3. The minimization problems given by (1.31) and (1.32)
have solutions if any of the following conditions is fulfilled:

(a) D1, D2 are compact sets, A is is lower semicontinuous (l.s.c.) in each
variable and B is continuous in each variable.

(b) D1 = X and D2 = Y are finite-dimensional normed spaces, A is l.s.c.
in each variable, coercive in x (i.e., lim|x|X→∞ A(x, y) = ∞ for every
y ∈ Y ), coercive in y (i.e., lim|y|Y →∞ A(x, y) = ∞ for every x ∈ X) and
B is continuous in each variable.

(c) D1 = X, D2 = Y are reflexive Banach spaces, A is both l.s.c. and
convex in each variable, coercive in x, coercive in y and nonnegative,
whereas B is both upper semicontinuous and concave in each variable.

4.4 Convergence of the componentwise

Dinkelbach algorithm

The final part of this chapter offers a series of results concerning the conver-
gence of our algorithm. It is shown that further assumptions on the involved
spaces and functions, such as Lipschitz-type continuity, partial Fréchet dif-
ferentiability, and coercivity, enable us to establish sufficient conditions for
the convergence of Algorithm 4.3.2 to a partial minimizer.

The next theorem demonstrates the convergence of the sequence (λk)
given by our Algorithm 4.3.2.

Theorem 4.4.1. The sequence (λk) given by Algorithm 4.3.2 is nonincreas-
ing and convergent to a real number λ∗.
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Theorem 4.4.2. Assume that D1, D2 are closed subsets of the normed spaces
X and Y, respectively, the operators A and B are continuous, and

xk → x∗, yk → y∗. (1.34)

Then the following assertions hold true:

(a) One has

λ∗ =
A(x∗, y∗)

B(x∗, y∗)
.

(b) Denoting

mk,1 := A(xk, yk−1)−λk−1B(xk, yk−1), mk,2 := A(xk, yk)−λk−1B(xk, yk),

one has
lim
k→∞

mk,1 = lim
k→∞

mk,2 = 0.

(c) (x∗, y∗) is a partial minimizer on D1 ×D2 of A (x, y) /B (x, y) .

In our way to ensure that condition (1.34) takes place, we first proceed
to guarantee the boundedness of one of the sequences (xk) and (yk). To this
aim, we are going to assume that D1 = X, D2 = Y are entire normed spaces
and the following hypothesis holds true:

(H1) The functional A(x, y) is coercive in x uniformly w.r.t. y, i.e., for any
M > 0, there is lM > 0 such that A(x, y) ≥ M for |x|X ≥ lM and all
y ∈ Y.

Proposition 4.4.3. Under assumption (H1), the sequence (xk) is bounded.

In the following part of the section we proceed with the essential step of
ensuring the convergence of the sequences (xk), (yk), which will conclude the
convergence of our Algorithm 4.3.2. In order to achieve this, we consider that
X and Y are Hilbert spaces, D1 = X, D2 = Y and A, B are C1 functionals
with their partial (Fréchet) derivatives (see, e.g., Precup [66]) satisfying some
Lipschitz continuity or monotonicity conditions related to their derivatives.

We denote by A′
x, A

′
y, B

′
x and B′

y the partial Fréchet derivatives of A and
B, and we assume that

(H2) The derivatives B′
x and B′

y are bounded on X × Y.
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Now we define the operators

N11(x, y) := c1x− A′
x(x, y), N12(x, y) := c1y − A′

y(x, y),

N21(x, y) := c2x−B′
x(x, y), N22(x, y) := c2y −B′

y(x, y),

where
c1 ≥ max{1, λ0}+ λ0c2 and c2 > 0. (1.35)

Furthermore we also assume that

(H3) There exist some positive constants aij, bij ∈ R, i, j ∈ {1, 2}, such that

|N11(x, y)−N11(x̄, ȳ)|X ≤ a11|x− x̄|X + a12|y − ȳ|Y ,
|N12(x, y)−N12(x̄, ȳ)|Y ≤ a21|x− x̄|X + a22|y − ȳ|Y ,
|N21(x, y)−N21(x̄, ȳ)|X ≤ b11|x− x̄|X + b12|y − ȳ|Y ,
|N22(x, y)−N22(x̄, ȳ)|Y ≤ b21|x− x̄|X + b22|y − ȳ|Y

for all x, x̄ ∈ X and y, ȳ ∈ Y.

We denote

c11 := a11 + b11, c12 := a12 + b12, c21 := a21 + b21, c22 := a22 + b22,

a :=
c12c21

(1− c11)(1− c22)

and we assume that

(H4) c11 < 1, c22 < 1 and a < 1.

We now present a sufficient condition for the convergence of the sequences
(xk) and (yk), reminiscent of Banach’s fixed point theorem.

Theorem 4.4.4. Under the assumptions (H1)-(H4), the sequences (xk) and
(yk) are convergent.

Remark 11. Taking into account Theorem 4.4.2, under the assumptions of
Theorem 4.4.4, if x∗ and y∗ are the limits of the sequences (xk) and (yk)
given by the componentwise Dinkelbach algorithm, then (x∗, y∗) is a partial
minimizer for A(x, y)/B(x, y).
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[83] Tammer C, Zălinescu C. Lipschitz properties of the scalarization func-
tion and applications. Optimization. 2010;59:305–319.

[84] Tan DH. A note on multivalued affine mappings. Studia Univ. Babeş-
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