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Introduction

The concept of a (von Neumann) regular ring was introduced by von Neumann in his famous

work [70] as an algebraic tool for studying certain lattices, which were useful in the coordinatiza-

tion of projective geometry. Since then, there have been many applications of them, in different

mathematical branches, such as algebra, functional analysis, differential equations, statistics,

probabilities or cryptography. An exhaustive presentation of von Neumann regular rings was

first given in Goodearl’s monograph [38].

Recall that a ring R is called von Neumann regular if every element a ∈ R is von Neumann

regular, i.e., there is an element b ∈ R, called an inner inverse or generalized inverse of a, such

that a = aba. The definition can be naturally extended to matrices over a ring R as follows:

an m × n-matrix A is called von Neumann regular if there is an n × m-matrix B such that

A = ABA, and in this case B is called an inner inverse or generalized inverse of A. The inner

inverse of a matrix has immediate applications in solving linear systems Ax = b, when A is

singular or rectangular. If the system has a solution y and A is von Neumann regular with an

inner inverse B, then x = Bb is a solution, as Ax = ABb = ABAy = Ay = b (e.g., see [12]).

A classical theorem of von Neumann states that every matrix over a von Neumann regular

ring is still von Neumann regular and, in particular, every matrix over a field is von Neumann

regular. The problem of characterizing von Neumann regular matrices and their generalized

inverses over commutative rings was raised by Bhaskara Rao [13] and, in this direction we

mention, among many other papers, the works of Bapat, Bhaskara Rao and Prasad [10], Prasad

[65], Lam and Swan [49], and the monographs by Ben-Israel and Greville [12] and Bhaskara Rao

[14], which contain several important characterizations. This problem has useful applications

to control theory, systems theory in polynomial matrices as well as operator algebras (e.g. see

[14]).

Von Neumann regularity has a categorical generalization given by Dăscălescu, Năstăsescu,

Tudorache and Dăuş [33] as follows: for two objects M and N of an arbitrary category, N

is called M -regular if every morphism f : M → N is regular in the sense that there is a

morphism g : N → M such that f = fgf . Regular morphisms in the category of modules have

been considered by Kasch and Mader [43]. Recently, regular objects and morphisms in abelian

categories have also been studied by Crivei and Kör [32] and Crivei, Koşan and Yildirim [31].

These raised our interest in a further investigation of von Neumann regularity for matri-

ces and its related notions of strong regularity and outer regularity, which will be all studied

throughout the present work. The thesis is structured in four chapters and an appendix, which

will be described in what follows.

Our interest in the first chapter has been to find a practical criterion for checking von
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2 INTRODUCTION

Neumann regularity of matrices over certain commutative rings as well as for counting them in

some finite cases. Our approach can be related to the work of Lam and Swan [49], who gave

a characterization of von Neumann regular square matrices over commutative rings in terms

of their associated determinantal ideals. In Theorem 1.2.1 we prove that if A is a non-zero

m× n-matrix with determinantal rank t over a commutative ring such that A has an invertible

t×t-submatrix A′, then A is von Neumann regular, and an inner inverse of A can be constructed

by using the inverse of A′. Conversely, in Theorem 1.3.2, under certain conditions on the ring

R, if A is a non-zero von Neumann regular m×n-matrix with determinantal rank t over a local

commutative ring R, then A has an invertible t × t-submatrix. In Theorem 1.3.3, we deduce

that, under certain conditions, an m× n-matrix over a local commutative ring is von Neumann

regular if and only if its determinantal and McCoy ranks coincide. Based on the above results,

we establish Theorem 1.4.2, which gives an intrinsic characterization of a non-zero m×n-matrix

A with determinantal rank ρ(A) = t over a local commutative ring to be von Neumann regular,

namely A must have an invertible t× t-submatrix. The existence of an invertible t× t-submatrix

of A is equivalent to the existence of a unit in the tth compound matrix Ct(A) of A, which

consists of all t× t-minors of A.

We also derive consequences to arbitrary commutative rings and products of local com-

mutative rings. In Theorem 1.5.1 we determine the number of von Neumann regular m × n-

matrices over a local finite ring R with maximal ideal M such that |R/M | = |Fq| = q as∑min(m,n)
t=0 |M |t(m+n−t)r(m,n, q, t), where r(m,n, q, t) is the number of m × n-matrices over a

field Fq having determinantal rank t. As applications, we count von Neumann regular m × n-

matrices over rings of residue classes Zl and over group algebras Fq[Zl] (Corollary 1.5.3), where

Fq is a field with q elements whose characteristic divides l. Finally, we discuss von Neumann

regular matrices over formal triangular matrix rings and we give the characterization Theorem

1.6.1.

An important subclass of von Neumann regular rings [70] consists of strongly regular rings,

which were introduced by Arens and Kaplansky [6] and have been studied in ring theory. This

is the topic of the second chapter of the thesis. A ring R with identity is called strongly regular

if for every a ∈ R there is b ∈ R such that a = a2b, and this definition turns out to be left-right

symmetric. Restricting it to elements, a ∈ R is called strongly regular if there is b ∈ R such

that a = a2b = ba2, and in this case b is called a strong inner (or strong generalized) inverse of

a. For general properties of strongly regular rings we refer to [38]. The above definitions may

also be given for matrices over some ring R: an n×n-matrix A is called strongly regular if there

is an n × n-matrix B such that A = A2B = BA2. Note that matrices over fields need not be

strongly regular, as it is the case with von Neumann regularity, so the problem of characterizing

strongly regular matrices does already make sense over fields.

We point out that the definitions of von Neumann regular and strongly regular matrices

are not intrinsic, but depend on the existence of other matrices with the required properties.

Practical applications might involve checking von Neumann regularity or strong regularity of

matrices of large size, and this becomes a time-consuming computational problem. Hence it

is of interest to have intrinsic characterizations of such properties. In this direction, a natural

question is whether a strongly regular matrix with determinantal rank t over a local commutative

ring may also be characterized in terms of some property of its associated tth compound matrix.
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In the second chapter we answer this in the affirmative. We first establish a more general

result over an arbitrary commutative ring R by using the reduced Cayley-Hamilton Theorem

(Theorem 2.1.1). For a non-zero matrix A ∈ Mn(R) with determinantal rank t, we prove that

if A is strongly regular, then the trace Tr(Ct(A)) of its tth compound matrix does not belong

to the radical of R, while if Tr(Ct(A)) is a unit of R, then A is strongly regular (Theorem

2.1.3). In particular, this implies that a non-zero matrix A with determinantal rank t over a

local commutative ring R is strongly regular if and only if the sum of its diagonal t× t-minors

is a unit in R, or equivalently, the trace of its tth compound matrix is a unit in R. Moreover, in

this case we construct a strong inner inverse of A as B = −c−1
t (At−1 + c1A

t−2 + · · · + ct−1In),

where ck = (−1)kTr(Ck(A)) for every k ∈ {1, . . . , n} (Theorem 2.1.5).

This result has consequences to direct products of local commutative rings and group algebras

(e.g., see Corollary 2.2.3). It allows us in Theorem 2.3.1 to count strongly regular matrices over

local finite rings. In particular, the number of strongly regular n× n-matrices of determinantal

rank t over R is given by |GLn(R)|
|GLn−t(R)| . We also deduce counting results over rings of residue classes

Zl and over some group algebras Fq[G] (Theorem 2.4.1), where Fq is a field with q elements and

G is a group with l elements. Then we deal with strong inner inverses and strong reflexive

inverses in arbitrary rings, and we show in Theorem 2.5.2 that if a and b are strongly regular

elements of a semiprime ring R having disjoint sets of inner inverses S(a) and S(b) respectively,

then S(a) ⊆ S(b) if and only if b2 = ab = ba. Finally, we characterize strongly regular matrices

over formal triangular matrix rings (Theorem 2.6.1).

As a natural extension of our research, in chapter three we continued with the study of outer

inverses. An element b in a ring R is called an outer inverse of a ∈ R if bab = b, which definition

can also be applied to matrices: an n×m-matrix B is called an outer inverse of an m×n-matrix

A if BAB = B. If A is a von Neumann regular m×n-matrix with inner inverse n×m-matrix B,

then it is well known and easy to see that BAB is an outer inverse of A. Clearly, if A is non-zero

von Neumann regular, then it has a non-zero outer inverse. In the first two chapters of our

thesis, we have established some intrinsic characterizations of (strongly) von Neumann regular

matrices over commutative rings as well as some related counting results. Now we consider the

more general class of matrices having non-zero outer inverses over arbitrary rings, and we look

for some intrinsic descriptions of such matrices.

We first analyze matrices having non-zero outer inverse in the general case of an arbitrary

ring. Thus, we prove that the existence of an entry having a non-zero outer inverse ensures

that the matrix A has a non-zero outer inverse, which in turn implies that A must have an

entry outside the Jacobson radical of the ring (Theorem 3.1.1). We show that these conditions

are equivalent and they provide a constructive criterion for matrices having a non-zero outer

inverse in the case of a large class of rings, namely the class of semiperfect rings. Examples of

semiperfect rings include local rings, one-sided artinian rings, semiprimary rings and one-sided

perfect rings. Our construction successively considers local rings, direct products of local rings

(Theorem 3.2.2), and finally, semiperfect rings (Theorem 3.3.1). During the process, we show

a result of possible independent interest, namely that elements having a non-zero outer inverse

lift modulo one-sided ideals of exchange rings (Theorem 3.1.4 and Corollary 3.1.5).

We also count matrices having a non-zero outer inverse over finite semiperfect rings and

finite commutative rings (Proposition 3.4.1), and we give several applications to rings of residue
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classes, products of Galois rings, quaternion rings over rings of residue classes and finite group

algebras. Such results may also have applications to cryptography, by describing and counting

the elements of the key space of some cryptosystems, in a similar way as for von Neumann regular

matrices, e.g., see the key exchange protocol and the public key encryption with keyword search

scheme from [56]. Finally, we characterize matrices having outer inverses over formal triangular

matrix rings (Theorem 3.5.1).

Having studied the concepts of von Neumann regular matrices, strongly regular matrices and

matrices having a non-zero outer inverse, in our fourth and last chapter of our thesis we derive

applications to some generalizations of these. One such generalization is called a von Neumann

local matrix, which is a matrix A ∈ Mn(R) such that A or In − A is von Neumann regular.

This is inspired by the corresponding ring-theoretic concept introduced by Contessa [29]. In

this direction, in Theorem 4.1.3, we deduce that A is von Neumann local, with ρ(A) = t and

ρ(In−A) = s, if and only if Ct(A) or Cs(In−A) is von Neumann regular. We also upscale such

results to direct products of arbitrary rings (or local commutative rings) (e.g., Theorem 4.1.6).

A specialization of the notion of von Neumann local matrix is that of strongly von Neumann

local matrix, which is an n × n-matrix A such that A or In − A is strongly regular. We show

in Corollary 4.2.2 that there is a rich supply of such matrices, since for every A ∈ Mn(R) over

a commutative ring R with ρ(A) = t, Ct(A) is strongly von Neumann local. A characterization

of these matrices over a commutative ring R is given in Theorem 4.2.3 by Ct(A) or Cs(In −A)

being strongly regular, where t = ρ(A) amd s = ρ(In −A). Generalizing further the concept of

von Neumann local matrix, we consider the notion of outer von Neumann local matrix, which is

a matrix A ∈ Mn(R) such that A or In −A has a non-zero outer inverse. We prove in Theorem

4.3.1 that every A ∈ Mn(R) over an arbitrary semiperfect ring R is outer von Neumann local.

When R is an arbitrary local ring, then A ∈ Mn(R) is outer von Neumann local if and only if A

or In −A has one of the following properties: it has an invertible entry, or it has an entry with

a non-zero outer inverse, or it does not have elements in the Jacobson radical of R (Theorem

4.3.3).

Finally, as we have all these intrinsic characterizations for von Neumann regular, strongly

regular and outer regular matrices, developing algorithms for checking those properties for some

matrices may be useful. Thus, in the appendix of our thesis, we illustrate some efficient algo-

rithms for matrices over rings of residue classes, along with their implementations in Python

and some relevant higher order examples computed with them.

Except for the cited results, all other results in our thesis are our original work and included

in our papers [15, 23, 24, 25, 26, 27]. Five of the papers have been published in the jour-

nals Linear and Multilinear Algebra, Linear Algebra and Its Applications, Electronic Journal of

Linear Algebra and Mathematica. Also, the main results of the thesis were presented in three

conferences.

Words cannot express my gratitude to my professor for his invaluable patience, moral and in-

tellectual help and feedback. I also could not have undertaken this journey without my guidance

committee, who generously provided knowledge and expertise.



Chapter 1

Von Neumann regular matrices

We give a constructive sufficient condition for a matrix over a commutative ring to be von

Neumann regular, and we show that it is also necessary over certain local rings. Specifically,

under some hypothesis on the ring R, we prove that a matrix A over a local commutative ring

R is von Neumann regular if and only if A has an invertible ρ(A)× ρ(A)-submatrix, where ρ(A)

is the determinantal rank of A. We deduce consequences to (products of local) commutative

rings, and we determine the number of von Neumann regular matrices over some finite rings of

residue classes and group algebras. We also discuss von Neumann regular matrices over formal

triangular matrix rings. Except for the cited results, all other results are original and are mostly

included in our papers [15, 24].

1.1 Preliminaries

Let us recall some terminology on (von Neumann regular) matrices over commutative rings

following some classical sources, such as [12, 14, 18, 38].

Throughout the chapter m,n ≥ 2 will be two integers, and R will be a commutative ring

with identity. We denote by Mm,n(R) the set of all m× n-matrices over R, and by Mn(R) the

set of all n×n-matrices over R. Let A ∈ Mm,n(R). Given subsets I = {i1, . . . , ik} ⊆ {1, . . . ,m}
with i1 < · · · < ik and J = {j1, . . . , jl} ⊆ {1, . . . , n} with j1 < · · · < jl, we denote by AI,J

the submatrix of A whose rows and columns are indexed by the sets I and J respectively. For

each k ∈ {1, . . . ,min(m,n)}, the kth compound matrix of A is defined as the matrix Ck(A) ∈
Mm′,n′(R), where m′ =

(
m
k

)
and n′ =

(
n
k

)
, consisting of the k × k-minors of A, where for every

I ′ = {i′1, . . . , i′k} with i′1 < · · · < i′k and J ′ = {j′1, . . . , j′k} with j′1 < · · · < j′k, the (I ′, J ′) entry of

Ck(A) is det(AI′,J ′).

For each k ∈ {1, . . . , r = min(m,n)}, Dk(A) will denote the ideal of R generated by all

k × k-minors of A (i.e., all entries of the compound matrix Ck(A)), and will be called the kth

determinantal ideal of A. We have the following ascending chain of ideals in R: Dr(A) ⊆
Dr−1(A) ⊆ · · · ⊆ D2(A) ⊆ D1(A) ⊆ D0(A) = R.

The McCoy rank of A, denoted by rk(A), is defined as the largest k ∈ {0, . . . , r} for which

the determinantal ideal Dk(A) is faithful, that is: rk(A) = max{k ∈ {0, . . . , r} | AnnR(Dk(A)) =

(0)}. In other words, the McCoy rank of A = (aij) ∈ Mm,n(R) is zero if there is a non-zero c ∈ R

such that caij = 0 for every i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} and, otherwise, the greatest positive

5



6 CHAPTER 1. VON NEUMANN REGULAR MATRICES

integer k with the property that if c ∈ R is such that cdet(A′) = 0 for every k× k-submatrix A′

of A, then c = 0.

The determinantal rank of a non-zero A ∈ Mm,n(R), denoted by ρ(A), will be the maximal

order of a submatrix of A with non-zero determinant. The determinantal rank of the zero matrix

will be zero. For every A ∈ Mm,n(R), one has rk(A) ≤ ρ(A), but in general the determinantal

rank and the McCoy rank of a matrix are different.

A ring R is called local if it has a unique maximal right ideal. We denote by rad(R) the

Jacobson radical of R, that is, the intersection of its maximal right ideals, and by U(R) the set

of units of R.

1.2 Sufficient conditions

We begin with a sufficient condition for an m×n-matrix over a commutative ring to be von

Neumann regular, which is of practical interest.

Theorem 1.2.1. Let A ∈ Mm,n(R) be a non-zero matrix with ρ(A) = t. If A has a submatrix

AI,J ∈ U(Mt(R)) for some I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n}, then A is von Neumann regular.

Moreover, an inner inverse of A is the matrix B ∈ Mn,m(R), where BJ,I = A−1
I,J and the other

entries of B are zero.

We illustrate Theorem 1.2.1 as follows.

Example 1.2.2. The matrix A =

0 2 2 6

2 1 1 1

3 1 1 0

 ∈ M3,4(Z) has ρ(A) = rk(A) = 2. Let

I = {2, 3} and J = {1, 3}. Then det(AI,J) = −1 is invertible in Z. Hence A is von Neumann

regular by Theorem 1.2.1, and an inner inverse B of A may be constructed by taking BJ,I =

A−1
I,J =

(
−1 1

3 −2

)
, and then B =


0 −1 1

0 0 0

0 3 −2

0 0 0

 ∈ M4,3(Z).

One may also use the following extension of [14, Theorem 5.3] in order to give an immediate

alternative proof of Theorem 1.2.1.

Theorem 1.2.3. Let A = (aij) ∈ Mm,n(R) be such that ρ(A) = t. Denote ∆ = {(I, J) | I ⊆
{1, . . . ,m}, J ⊆ {1, . . . , n}, |I| = |J | = t}. Consider the statements:

(o) There exists (I, J) ∈ ∆ such that det(AI,J) ∈ U(R).

(i) There is a family (cJ,I)(I,J)∈∆ of elements of R such that
∑

(I,J)∈∆ det(AI,J)cJ,I = 1.

(ii) There is a family (cJ,J)(I,J)∈∆ of elements of R such that
(∑

(I,J)∈∆ det(AI,J)cJ,I

)
akl = akl

for every k ∈ {1, . . . ,m} and l ∈ {1, . . . , n}.

(iii) A is von Neumann regular.

(iv) Ct(A) is von Neumann regular.
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(v) There exists a family (cJ,I)(I,J)∈∆ of elements of R such that

det(AK,L)
(∑

(I,J)∈∆ det(AI,J)cJ,I

)
= det(AK,L) for every (K,L) ∈ ∆.

(vi) There exists a family (cJ,I)(I,J)∈∆ of elements of R such that
∑

(I,J)∈∆ det(AI,J)cJ,I is a

non-zero idempotent.

Then (o) =⇒ (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (v) =⇒ (vi). If R is a local ring, then all

statements are equivalent.

In the case of certain rings we may deduce another sufficient condition for a matrix to be von

Neumann regular. Recall that a ring R has finite uniform dimension if there is a finite direct

sum of uniform ideals of R which is essential in R. Also, recall that a ring R is called morphic

if R/Ra ∼= AnnR(a) for every a ∈ R, or equivalently, for every a ∈ R, there is b ∈ R such that

Ra = AnnR(b) and Rb = AnnR(a) [59].

Corollary 1.2.4. Let R be a local ring that satisfies one of the following conditions:

(i) Every element of R is either a unit or nilpotent.

(ii) R has finite uniform dimension and every element of R is either a unit or a zero divisor.

(iii) R is a morphic ring.

Let A ∈ Mm,n(R) be such that ρ(A) = rk(A). Then A is von Neumann regular.

1.3 A necessary condition

The converse of Theorem 1.2.1 does not hold in general, as we may see next.

Example 1.3.1. Following [49, Example 3.3 (C)], consider A =

 1 1 0

2 5 2

−2 −8 −4

 ∈ M3(Z),

which has ρ(A) = 2. Then A is von Neumann regular, but it does not have any invertible

2× 2-submatrix.

In what follows we are interested in finding some conditions under which the converse of

Theorem 1.2.1 is true, in the same time having in mind to obtain some characterization of von

Neumann regular matrices with some significant computational consequences.

Theorem 1.3.2. Let R be local, and let A ∈ Mm,n(R) be a non-zero matrix with ρ(A) = t. If

A is von Neumann regular, then A has an invertible t× t-submatrix.

It is well known that rk(A) ≤ ρ(A) for every A ∈ Mm,n(R), and the equality holds when R

is a field. Theorem 1.3.2 gives another instance of the equality of the two ranks.

Corollary 1.3.3. Let R be local, and let A ∈ Mm,n(R) be von Neumann regular. Then ρ(A) =

rk(A).
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1.4 Characterizations

First, let us note that [61, Chapter 4, Theorem 18] of Northcott (in the language of finite

free modules), [14, Theorem 7.19] of Bhaskara Rao and [49, Theorem 3.2] of Lam and Swan

provide necessary and sufficient conditions for a matrix over a commutative ring to be von

Neumann regular. We state their result as follows and we give an alternative proof for one of

the implications.

Theorem 1.4.1. A matrix A ∈ Mm,n(R) is von Neumann regular if and only if for each

k ∈ {1, . . . ,min(m,n)}, Dk(A) is generated by an idempotent.

Theorems 1.2.1 and 1.3.2 and their Corollaries 1.2.4 and 1.3.3 yield the following character-

ization of von Neumann regular m× n-matrices over a local commutative ring.

Theorem 1.4.2. Let R be local, and let A ∈ Mm,n(R). Then the following are equivalent:

(1) A is von Neumann regular.

(2) A is either zero or A has an invertible ρ(A)× ρ(A)-submatrix.

If R satisfies (i), (ii) or (iii) from Corollary 1.2.4, then they are further equivalent to:

(3) ρ(A) = rk(A).

Recall that A ∈ Mm,n(R) will be denoted by Ap when viewed over the localization Rp of R

at a prime ideal p. We have the following consequence of Theorem 1.4.2.

Theorem 1.4.3. Let A ∈ Mm,n(R). Consider the statements:

(1) A is von Neumann regular.

(2) For every prime (maximal) ideal p of R, Ap ∈ Mm,n(Rp) is either zero or has an invertible

ρ(Ap)× ρ(Ap)-submatrix.

Then (1) =⇒ (2).

If Rp satisfies (i), (ii) or (iii) from Corollary 1.2.4 for every prime (maximal) ideal p of R,

then (2) is further equivalent to:

(3) For every prime (maximal) ideal p of R, ρ(Ap) = rk(Ap).

Theorem 1.4.2 may be extended to m×n-matrices over products of local commutative rings.

It is well known and easy to see that von Neumann regularity is well behaved with respect to

direct products.

Corollary 1.4.4. Let R =
∏

k∈K Rk be a direct product of local commutative rings, and let

0m,n ̸= A ∈ Mm,n(R). For every k ∈ K, denote by hk : Mm,n(R) → Mm,n(Rk) the canonical

projection. Then the following are equivalent:

(1) A is von Neumann regular.

(2) For every k ∈ K, either hk(A) = 0m,n or hk(A) has an invertible tk × tk-submatrix, where

tk = ρ(hk(A)).
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If Rk satisfies (i), (ii) or (iii) from Corollary 1.2.4 for every k ∈ K, then they are further

equivalent to:

(3) For every k ∈ K, ρ(hk(A)) = rk(hk(A)).

Recall that a ring R is called semiperfect if R/rad(R) is semisimple artinian and idempotents

lift modulo rad(R). A commutative ring is semiperfect if and only if it is a finite direct product

of commutative local rings [46, Theorem 23.11]. Hence the above corollary is applicable to any

commutative semiperfect ring. In particular, it applies to any finite commutative ring, because

every such ring is a finite direct product of local finite commutative rings (e.g., see [52, Theorem

(VI.2)], hence it is semiperfect.

Theorem 1.4.5. Let R =
∏

k∈K Rk be a direct product of local commutative rings. Let A ∈
Mm,n(R) with ρ(A) = t. Then A is von Neumann regular if and only if Ct(A) is von Neumann

regular.

1.5 Counting von Neumann regular matrices

Von Neumann regular elements in rings of residue classes were characterized by Morgado [54],

and their number has been determined by Alkam, Osba [3] and Tóth [69]. Also, Castillo-Ramirez

and Gadouleau have determined the number of von Neumann regular elements of certain group

algebras in their study of von Neumann cellular automata [19]. As applications of Theorem

1.4.2 we generalize the cited results to matrices over such rings, and we determine the numbers

of von Neumann regular m×n-matrices over rings of residue classes Zl and over group algebras

Fq[Zl], where Fq is a field such that its characteristic char(Fq) divides l. In fact, we prove a

more general result and we deduce these numbers as particular cases.

Denote by r(m,n, q, t) the number of m × n-matrices over a field Fq with q elements

having (determinantal) rank t ∈ {0, . . . ,min(m,n)}. Then r(m,n, q, 0) = 1 and for every

t ∈ {1, . . . ,min(m,n)} we have:

r(m,n, q, t) =
(qm − 1)(qm − q) · · · (qm − qt−1)(qn − 1)(qn − q) · · · (qn − qt−1)

(qt − 1)(qt − q) · · · (qt − qt−1)

by [55, 1.7].

Theorem 1.5.1. Let R be a local finite ring with maximal ideal M such that |R/M | = |Fq| = q.

Then the number of von Neumann regular m× n-matrices over R is

V (Mm,n(R)) =

min(m,n)∑
t=0

|M |t(m+n−t)r(m,n, q, t).

Having in mind that von Neumann regularity behaves well with respect to direct products, we

have at once the following corollary, which is furthermore applicable to commutative semiperfect

rings.

Corollary 1.5.2. Let R =
∏s

k=1Rk be a direct product of local commutative finite rings Rk

with maximal ideals Mk such that |Rk/Mk| = |Fqk | = qk for every k ∈ K. Then the number of
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von Neumann regular m× n-matrices over R is

V (Mm,n(R)) =
s∏

k=1

min(m,n)∑
t=0

|Mk|t(m+n−t)r(m,n, qk, t).

Now consider group algebras Fq[G], where Fq is a field with q elements and G = Zl.

Corollary 1.5.3. Let l ≥ 2 be an integer and let Fq be a finite field with q elements such

that char(Fq) divides l. Let xl − 1 = p1(x)
r1 · · · ps(x)rs for some distinct irreducible polynomials

p1(x), . . . , ps(x) ∈ Fq[x] with degrees d1, . . . , ds respectively, and positive integers r1, . . . , rs. Then

the number of von Neumann regular m× n-matrices over the group algebra Fq[Zl] is

V (Mm,n(Fq[Zl])) =

s∏
k=1

min(m,n)∑
t=0

q
(rk−1)t(m+n−t)
k r(m,n, qk, t),

where for every k ∈ {1, . . . , s} we have qk = qdk .

In the end of this section we deal with the following question: if a matrix over a finite ring

is von Neumann regular, then how many inner inverses and how many reflexive inverses does it

have? Recall that a matrix is von Neumann regular if and only if it has an inner inverse if and

only if it has a reflexive inverse. But we shall see that, for a given von Neumann regular matrix,

the number of its inner inverses might be different of the number of its reflexive inverses.

Let us denote by I(A) and Ref(A) the sets of all inner inverses and all reflexive inverses of

a von Neumann regular matrix A respectively.

Theorem 1.5.4. Let R be a finite local ring with maximal ideal M such that |R/M | = |Fq| = q.

Consider the natural ring homomorphism p : R → R/M and the induced R-module homomor-

phism h : Mm,n(R) → Mm,n(R/M), h((aij)) = (aij +M). Let A ∈ Mm,n(R) be a von Neumann

regular matrix with ρ(A) = t.

Then the number of inner inverses of A is |I(A)| = |M |mn−t2 · |I(h(A))| = |R|mn−t2, and

the number of reflexive inverses of A is |Ref(A)| = |M |t(m+n−2t) · |Ref(h(A))| = |R|t(m+n−2t).

Corollary 1.5.5. Let R =
∏s

k=1Rk be a direct product of local commutative finite rings. Let

A ∈ Mm,n(R) be a von Neumann regular matrix with ρ(A) = t. Then the number of inner

inverses of A is |I(A)| =
∏s

k=1 |Rk|mn−t2 and the number of reflexive inverses of A is |Ref(A)| =∏s
k=1 |Rk|t(m+n−2t).

1.6 Von Neumann regular formal triangular matrix rings

Let us see the behaviour of von Neumann regularity with respect to formal triangular matrix

rings. In the introduction of the paper [39] it is claimed that the authors will prove such a result,

but it does not appear in the main part of that paper, and we have not been able to find it

somewhere else in the literature. For arbitrary rings R and S and an R-S-bimodule M , the

formal triangular matrix ring is defined by(
R M

0 S

)
=

{(
r x

0 s

)∣∣∣r ∈ R, x ∈ M, s ∈ S

}
,

which is a ring with respect to the usual addition and multiplication of matrices.
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Theorem 1.6.1. Let R and S be arbitrary rings and let M be an R-S-bimodule. Then(
a1 x

0 a2

)
∈

(
R M

0 S

)
is von Neumann regular if and only if a1 ∈ R and a2 ∈ S are von

Neumann regular and x ∈ a1M +Ma2.

Using Theorem 1.6.1 we may immediately count von Neumann regular elements of formal

triangular matrix rings.

Theorem 1.6.2. Let R and S be finite arbitrary rings, and let M be a finite R-S-bimodule. Let

vnr(R) = {r1, . . . , rk} and vnr(S) = {s1, . . . , sl} be the sets of von Neumann regular elements

of R and S respectively. Then the number of von Neumann regular matrices in

(
R M

0 S

)
is∑

(i,j)∈{1,...,k}×{1,...,l} |riM +Msj |.



Chapter 2

Strongly regular matrices

We prove a necessary condition and a sufficient condition for an n×n-matrix A with determi-

nantal rank ρ(A) = t over an arbitrary commutative ring to be (von Neumann) strongly regular

in terms of the trace of its tth compound matrix Ct(A). In particular, a non-zero n× n-matrix

A with ρ(A) = t over a local commutative ring R is strongly regular if and only if Tr(Ct(A)) is

a unit in R, and in this case we construct a strong inner inverse of A. We derive applications

to direct products of local commutative rings and group algebras. We count strongly regular

matrices over some finite rings of residue classes and group algebras. We also discuss strong

inner inverses and strong reflexive inverses in arbitrary rings as well as strong regular matrices

over formal triangular matrix rings. Except for the cited results, all other results are original

and are mostly included in our papers [23, 27].

2.1 Characterizations

For general terminology on matrices over commutative rings the reader is referred to the

classical sources [12, 14, 18, 38]. We only recall some concepts which are essential in our work.

Throughout the chapter n ≥ 2 will be an integer, and R will be a commutative ring with

identity. Also, GLn(R) is the group of all n × n-matrices whose determinants are units of R.

The characteristic polynomial of A will be pA(λ) = λn + c1λ
n−1 + · · · + cn−1λ + cn, where

ck = (−1)kTr(Ck(A)) for every k ∈ {1, . . . , n}.
We start with a reduced version of the Cayley-Hamilton Theorem for matrices over commu-

tative rings, which will be useful for proving our characterization of non-zero strongly regular

matrices. In the case of matrices over the field C of complex numbers it was first proved by

Segercrantz [68], and then by Hwang [42, Theorem 1]. The latter proof clearly holds for matrices

over an arbitrary field. One of the proofs of the Cayley-Hamilton Theorem over a commutative

ring R uses its reduction to the case of a field, or even to C (e.g., see [53, p. 32] and [28, Theo-

rem 3.4] and the details therein). For the reduced Cayley-Hamilton Theorem we use the same

idea, which is more generally applicable to universal identities, and we sketch it in what follows.

Theorem 2.1.1. Let A ∈ Mn(R) with ρ(A) = t. Then At+1 + c1A
t + · · ·+ ctA = 0n.

Remark 2.1.2. Theorem 2.1.1 is relevant for t < n− 1, since for t ≥ n− 1 the above identity

can be obtained from the Cayley-Hamilton Theorem.

12
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Now we are ready to present one of the main results of the chapter.

Theorem 2.1.3. Let A ∈ Mn(R) be a non-zero matrix with ρ(A) = t.

(i) If A is strongly regular, then ct /∈ rad(R).

(ii) If ct ∈ U(R), then A is strongly regular, and a strong inner inverse of A is

B = −c−1
t (At−1 + c1A

t−2 + · · ·+ ct−1In).

Let us give a first illustrating example.

Example 2.1.4. (1) Let A =

7 2 8

6 5 3

0 10 6

 ∈ M3(Z12). By Theorem 2.1.3, A is strongly regular,

and a strong inner inverse of A is B = −c−1
2 (A + c1I3) = −5(A − Tr(A)I3) = 7(A − 6I3) =7 2 8

6 5 9

0 10 0

.

(2) Let A =

(
0 0

1 0

)
∈ M2(Z4). By Theorems 1.4.2 and 2.1.3, A is von Neumann regular,

but not strongly regular.

In the case of a local commutative ring we give a characterization theorem of (non-zero)

strongly regular matrices.

Theorem 2.1.5. Let R be local and let A ∈ Mn(R) be a non-zero matrix with ρ(A) = t. Then

A is strongly regular if and only if ct ∈ U(R). In this case, a strong inner inverse of A is

B = −c−1
t (At−1 + c1A

t−2 + · · ·+ ct−1In).

2.2 Transfer of strong regular property

Let us first see how strong regularity of a matrix of determinantal rank t compares with

strong regularity of its tth compound matrix.

Theorem 2.2.1. Let A ∈ Mn(R) with ρ(A) = t. Consider the statements:

(i) A is strongly regular.

(ii) Ct(A) is strongly regular.

Then (i) =⇒ (ii). If R is a local ring, then (i) ⇐⇒ (ii).

Our characterization of strongly regular non-zero matrices over local commutative rings

from Theorem 2.1.5 may also be applied in conjunction with localizations at prime ideals of

arbitrary commutative rings in order to decide whether or not a non-zero matrix over an arbitrary

commutative ring is strongly regular. We may immediately deduce the following consequence of

Theorem 2.1.5. Recall that a matrix A ∈ Mn(R) will be denoted by Ap when viewed over the

localization Rp of R at a prime ideal p.
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Theorem 2.2.2. Let A ∈ Mm,n(R). If A is strongly regular, then for every prime (maximal)

ideal p of R, Ap ∈ Mm,n(Rp) is either zero or it has ct ∈ U(Rp), where t = ρ(Ap).

Theorem 2.1.5 may be extended to n×n-matrices over products of local commutative rings as

follows. We obtain the following corollary, which may be applied to any semiperfect commutative

ring, and in particular to any finite commutative ring.

Corollary 2.2.3. Let R =
∏

k∈K Rk be a direct product of local commutative rings, and let

0n ̸= A ∈ Mn(R). For every k ∈ K, denote by hk : Mn(R) → Mn(Rk) the canonical projection.

Then the following are equivalent:

(1) A is strongly regular.

(2) For every k ∈ K, we have either hk(A) = 0n or ρ(hk(A)) = tk ≥ 1 and ctk =

(−1)kTr(Ctk(hk(A))) ∈ U(Rk).

We have seen in Theorem 2.2.1 that an n× n-matrix A with ρ(A) = t over a local ring R is

strongly regular if and only if so is its compound matrix Ct(A). We may extended this result to

matrices over direct products of local rings.

Theorem 2.2.4. Let R =
∏

k∈K Rk be a direct product of local commutative rings. Let A =

(aij) ∈ Mn(R) with ρ(A) = t. Then A is strongly regular if and only if Ct(A) is strongly regular.

Recall that any commutative semiperfect ring is a finite direct product of commutative local

rings. Now we have the following corollary.

Corollary 2.2.5. Let R be a commutative semiperfect ring, and let A ∈ Mn(R) with ρ(A) = t.

Then A is strongly regular if and only if Ct(A) is strongly regular.

2.3 Counting strongly regular matrices

In this section we count strongly regular matrices over finite rings, deduce some related

formulas, and give an application to rings of residue classes. Apart from their direct interest,

such results may also have implications to the theory of cellular automata [19] or to cryptography,

where von Neumann regular matrices may be used in some key exchange protocols and public

key encryptions with keyword search scheme [56]. Similarly, strongly regular matrices may serve

as key space of some cryptosystems, and determining its size is an important problem.

Now let us count the strongly regular matrices over a local commutative finite ring. As usual,

Fq denotes a field with q elements.

Theorem 2.3.1. Let R be a local finite ring with maximal ideal M such that |R/M | = |Fq| = q.

Then the number of strongly regular n× n-matrices of determinantal rank t over R is

V St(Mn(R)) =
|GLn(R)|
|GLn−t(R)|

= |M |t(2n−t)qt(n−t)(qn − 1)(qn − q) · · · (qn − qt−1).

Hence the number of strongly regular n×n-matrices over R is V S(Mn(R)) =
∑n

i=0 V St(Mn(R)).
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In the next result we relate the numbers V St(Mn(R)) of strongly regular and Vt(Mn(R)) of

von Neumann regular n × n-matrices of rank t over a local finite commutative ring with other

relevant numbers. Also, r(n, n, q, t) denotes the number of n× n-matrices of rank t over a field

Fq with q elements. For every k ∈ {0, . . . , n}, denote by(
n

k

)
q

=
(qn − 1)(qn − q) · · · (qn − qt−1)

(qt − 1)(qt − q) · · · (qt − qt−1)

the Gaussian binomial coefficient, which counts the number of k-dimensional subspaces of an

n-dimensional vector space over Fq. It is well known that
(
n
k

)
q
=
(

n
n−k

)
q
.

Proposition 2.3.2. Let R be a local finite ring with maximal ideal M such that |R/M | = |Fq| =
q, and let t ∈ {0, . . . , n}. Then:

(1) V St(Mn(R)) = |M |t(2n−t)
∏t−1

k=0 V S1(Mn−k(Fq)).

(2) V St(Mn(R)) = |M |t(2n−t)qt(n−t)
(
n
t

)−1

q
r(n, n, q, t) = qt(n−t)

(
n
t

)−1

q
Vt(Mn(R)).

Since von Neumann strong regularity behaves well with respect to direct products, we have

at once the following corollary.

Corollary 2.3.3. Let R =
∏s

k=1Rk be a direct product of local commutative finite rings Rk

with maximal ideals Mk such that |Rk/Mk| = |Fqk | = qk for every k ∈ K. Then the number of

strongly regular n× n-matrices over R is

V S(Mn(R)) =
s∏

k=1

n∑
t=0

|Mk|t(2n−t)q
t(n−t)
k (qnk − 1)(qnk − qk) · · · (qnk − qt−1

k ).

We finally discuss the following question: if a matrix over a finite ring is strongly regular,

then how many strong inner inverses does it have?

Let us denote by S(A) the set of all strong inner inverses of a strongly regular matrix A.

Theorem 2.3.4. Let R be a finite local ring with maximal ideal M such that |R/M | = |Fq| = q.

Consider the natural ring homomorphism p : R → R/M and the induced R-module homomor-

phism h : Mn(R) → Mn(R/M), h((aij)) = (aij +M). Let A ∈ Mn(R) be a strongly regular ma-

trix. Then the number of strong inner inverses of A is |S(A)| = |M |(n−t)2 · |S(h(A))| = |R|(n−t)2.

Corollary 2.3.5. Let R =
∏s

k=1Rk be a direct product of local commutative finite rings. Let

A ∈ Mn(R) be a strongly regular matrix with ρ(A) = t. Then the number of strong inner inverses

of A is |S(A)| =
∏s

k=1 |Rk|(n−t)2.

2.4 Counting strongly regular matrices over group algebras

Consider a semisimple group algebra Fq[G], where Fq is a field with q elements and G is

a group with l elements. By Maschke’s Theorem, the group algebra Fq[G] is semisimple if

and only if char(Fq) does not divide l. In this case, the Wedderburn-Artin Theorem yields an

isomorphism of Fq-algebras: Fq[G] ∼=
⊕s

k=1Mnk
(Dk) for some positive integers n1, . . . , ns and

finite fields D1, . . . , Ds [64, Theorem 3.4.9]. Note that |G| =
∑s

k=1 n
2
kdk, where dk = [Dk : Fq]



16 CHAPTER 2. STRONGLY REGULAR MATRICES

is the degree of the field extension Dk over Fq for every k ∈ {1, . . . , s}. In what follows we use

the notation qk = |Dk| = qdk and mk = nnk for every k ∈ {1, . . . , s}.
We have seen that a matrix over a field need not be strongly regular, although it is always

von Neumann regular. In this section we are interested in counting strongly regular elements

of Fq[G] as well as strongly regular n × n-matrices over Fq[G], sometimes even if Fq[G] is not

semisimple.

Theorem 2.4.1. Let G be a group with l elements and let Fq be a field with q elements such that

char(Fq) does not divide l. Consider an isomorphism Fq[G] ∼=
⊕s

k=1Mnk
(Dk) of Fq-algebras

with the above notation. Then:

(1) the number of strongly regular elements of Fq[G] is

V S(Fq[G]) =

s∏
k=1

nk∑
t=0

q
t(nk−t)
k (qnk

k − 1)(qnk
k − qk) · · · (qnk

k − qt−1
k ).

(2) the number of strongly regular n× n-matrices over Fq[G] is

V S(Mn(Fq[G])) =

s∏
k=1

mk∑
t=0

q
t(mk−t)
k (qmk

k − 1)(qmk
k − qk) · · · (qmk

k − qt−1
k ).

Next we consider a semisimple group algebra Fq[G], where Fq is a field with q elements

and G is an abelian group with l elements. Then in the above Wedderburn decomposition

Fq[G] ∼=
⊕s

k=1Mnk
(Dk) all nk’s are one, and all fields Dk are field extensions of Fq by some

primitive roots of unity. More precisely, the Perlis-Walker Theorem [64, Theorem 3.5.4] yields

an isomorphism of Fq-algebras: Fq[G] ∼=
⊕

d|l adFq(ζd), where ζd is a primitive root of unity of

order d, ed = [Fq(ζd) : Fq], nd is the number of elements of order d of G, ad = nd
ed
, and adFq(ζd)

denotes the direct sum of ad different fields all of which are isomorphic to the field extension

Fq(ζd) of Fq. Note that |Fq(ζd)| = qed . In what follows we will use this notation.

Since all summands from the Perlis-Walker decomposition of the commutative algebra Fq[G]

are fields, all elements of Fq[G] are von Neumann (strongly) regular. So we only count strongly

regular n× n-matrices over Fq[G].

Theorem 2.4.2. Let G be an abelian group with l elements and let Fq be a field with q elements

such that char(Fq) does not divide l. Consider an isomorphism Fq[G] ∼=
⊕

d|l adFq(ζd) of Fq-

algebras. Then the number of strongly regular n× n-matrices over Fq[G] is

V S(Mn(Fq[G])) =
∏
d|l

(
n∑

t=0

qedt(n−t)(qedn − 1)(qedn − qed) · · · (qedn − qed(t−1))

)ad

.

Finally, we consider a group algebra Fq[G], where Fq is a field with q elements and G is a

cyclic group with l elements, that is, G ∼= Zl. Unlike the other cases, we will be able to give a

formula for counting strongly regular n× n-matrices over Fq[G] even if the group algebra Fq[G]

is not semisimple.

Theorem 2.4.3. Let l ≥ 2 be an integer and let Fq be a finite field with q elements. Write

xl − 1 = p1(x)
r1 · · · ps(x)rs for some distinct irreducible polynomials p1(x), . . . , ps(x) ∈ Fq[x]
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with degrees d1, . . . , ds respectively, and positive integers r1, . . . , rs. Then the number of strongly

regular n× n-matrices over the group algebra Fq[Zl] is

V S(Mn(Fq[Zl])) =
s∏

k=1

n∑
t=0

q
(rk−1)t(2n−t)
k q

t(n−t)
k (qnk − 1)(qnk − qk) · · · (qnk − qt−1

k ),

where qk = qdk for every k ∈ {1, . . . , s}.

When G is a finite cyclic group and the group algebra Fq[G] is semisimple, we have a

simplification of Theorem 2.4.3 as well as an alternative point of view using field extensions of

Fq by some primitive roots of unity, which matches Theorem 2.4.2.

Corollary 2.4.4. Let l ≥ 2 be an integer and let Fq be a field with q elements such that char(Fq)

does not divide l. Consider isomorphisms of Fq-algebras Fq[Zl] ∼= Fq[x]/(x
l−1) ∼=

⊕
d|l adFq(ζd),

where xl − 1 = p1(x) · · · ps(x) for some distinct irreducible polynomials p1(x), . . . , ps(x) ∈ Fq[x]

with degrees d1, . . . , ds respectively, ζd is a primitive root of unity of order d, ed = [Fq(ζd) : Fq],

ϕ(d) is Euler’s totient function, ad = ϕ(d)
ed

,and adFq(ζd) denotes the direct sum of ad different

fields all of which are isomorphic to the field extension Fq(ζd) of Fq. Then the number of strongly

regular n× n-matrices over the group algebra Fq[Zl] is

V S(Mn(Fq[Zl])) =

s∏
k=1

n∑
t=0

qdkt(n−t)(qdkn − 1)(qdkn − qdk) · · · (qdkn − qdk(t−1))

=
∏
d|l

(
n∑

t=0

qedt(n−t)(qedn − 1)(qedn − qed) · · · (qedn − qed(t−1))

)ad

.

2.5 Strong inner and strong reflexive inverses

Throughout this section, the ring R is not necessarily commutative. Hence the following

results are applicable to matrix rings.

Recall that an element a ∈ R is called strongly regular if a ∈ a2R ∩ Ra2 (e.g., see [8, 58]).

As noted by Azumaya [8, Lemma 1], if a is strongly regular with a = a2u = va2 for some

u, v ∈ R, then there is a (unique) element w ∈ R such that a = a2w = wa2 and aw = wa,

namely w = au2 = v2a . Hence a ∈ R is strongly regular if and only if there is w ∈ R such that

a = a2w = wa2 and aw = wa, and in this case w is called a strong inner (or strong generalized)

inverse of a. An element u ∈ R is called a strong reflexive inverse of a ∈ R if u is a strong inner

inverse of a and a is a strong inner inverse of u. Note also that R is strongly regular if and only

if each element of R has a unique reflexive inverse [67, Proposition 3.4].

We denote by S(a) the set of strong inner inverses, and by SRef(a) the set of strong reflexive

inverses of a ∈ R.

Khurana, Lam and Nielsen studied the lifting property of von Neumann regular elements

[44, Theorem 4.2]. We discuss the same problem in the case of strongly regular elements.

Theorem 2.5.1. Let I be an ideal of a ring R and let x ∈ R be strongly regular modulo I. Then

the following are equivalent:

(1) The element x lifts strongly regularly modulo I.
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(2) The element x lifts strongly regularly modulo I and if y is a strong inner inverse of x modulo

I, then y + I lifts to a strong inner inverse of any given strongly regular lift of x+ I.

(3) If x, y are strong reflexive inverses modulo I, then they lift modulo I to strongly reflexive

inverses. (In fact, y + I lifts to a strong reflexive inverse of any given strongly regular lift

of x+ I).

An interesting problem on generalized inverses of ring elements is to relate elements in terms

of their sets of generalized inverses. In this direction we mention the work of Alahmadi, Jain and

Leroy [2], and Lee [50, 51], who studied inner and reflexive inverses in semiprime rings. In what

follows we consider the case of strong inner inverses and strong reflexive inverses in semiprime

rings.

Recall that R is called a semiprime ring if for every a ∈ R such that aRa = 0, one has a = 0.

For instance, every von Neumann regular ring is semiprime. Also, every reduced ring (i.e., a

ring with no non-zero nilpotent elements) is semiprime.

Theorem 2.5.2. Let R be a semiprime ring, and let a, b ∈ R be strongly regular elements such

that S(a) ∩ S(b) ̸= ∅. Then S(a) ⊆ S(b) if and only if b2 = ab = ba.

Corollary 2.5.3. Let R be a semiprime ring, and let a, b ∈ R be strongly regular elements such

that S(a) ∩ S(b) ̸= ∅. Then S(a) = S(b) if and only if a = b.

Theorem 2.5.4. Let R be a semiprime ring, and let a, b ∈ R be strongly regular elements. Then

SRef(a) ∩ SRef(b) ̸= ∅ if and only if a = b.

2.6 Strongly regular formal triangular matrix rings

In this section we study how strong regularity behaves with respect to formal triangular

matrix rings.

Theorem 2.6.1. Let R and S be arbitrary rings and let M be an R-S-bimodule. Then(
a1 x

0 a2

)
∈

(
R M

0 S

)
is strongly regular if and only if a1 ∈ R and a2 ∈ S are strongly regular

and x ∈ a1M +Ma2.

Using Theorem 2.6.1 we may immediately count strongly regular elements of formal trian-

gular matrix rings.

Theorem 2.6.2. Let R and S be finite arbitrary rings, and let M be a finite R-S-bimodule.

Let svnr(R) = {r1, . . . , rk} and svnr(S) = {s1, . . . , sl} be the sets of strongly regular ele-

ments of R and S respectively. Then the number of strongly regular matrices in

(
R M

0 S

)
is
∑

(i,j)∈{1,...,k}×{1,...,l} |riM +Msj |.
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Matrices having a non-zero outer

inverse

It is well known that every non-zero von Neumann regular m×n-matrix A over an arbitrary

ring has a non-zero outer inverse n × m-matrix B in the sense that B = BAB. Generalizing

previous work on von Neumann regular matrices, in this chapter the matrices having non-zero

outer inverses over semiperfect rings are characterized as the matrices having some entry outside

the Jacobson radical of R. Such matrices over finite semiperfect rings and finite commutative

rings are counted, and several applications are given. We also discuss outer inverses of formal

triangular matrix rings. Except for the cited results, all other results are original and are mostly

included in our paper [25].

3.1 Arbitrary rings

Throughout the chapter m,n ≥ 1 will be integers, and R will be a ring with identity.

We analyze matrices having a non-zero outer inverse by considering first the general case of

an arbitrary ring. We have already seen that every non-zero von Neumann regular matrix has a

non-zero outer inverse. Now we may relate the existence of a non-zero outer inverse of a matrix

with two other conditions as follows.

Theorem 3.1.1. Let A = (aij) ∈ Mm,n(R). Consider the following statements:

(i) There exists some aij having a non-zero outer inverse.

(ii) A has a non-zero outer inverse.

(iii) A /∈ Mm,n(rad(R)).

Then (i)=⇒(ii)=⇒(iii).

In the next subsections we will study when the statements of Theorem 3.1.1 are equivalent.

Example 3.1.2. The matrix A =

0 2 2

0 2 0

1 1 1

 ∈ M3(Z4) has a non-zero outer inverse by

Theorem 3.1.1, because A has an invertible entry. For instance, since the (3,1)-entry of A is 1,

19
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a non-zero outer inverse of A is B =

0 0 1

0 0 0

0 0 0

 ∈ M3(Z4) by Theorem 3.1.1. But A is not von

Neumann regular.

The following concept will be useful.

Definition 3.1.3. Let I be a one-sided ideal of R. We say that elements having a non-zero

outer inverse lift modulo I, if whenever x+ I ∈ R/I has a non-zero outer inverse in R/I, there

is an element a ∈ R having a non-zero outer inverse in R such that x− a ∈ I.

Recall that a one-sided ideal I of R is called strongly lifting if whenever x2 − x ∈ I for some

x ∈ R (i.e., x is idempotent modulo I), there is an idempotent e ∈ xR such that e − x ∈ I

[60]. Note that this property is left-right symmetric, and the Jacobson radical J of a ring is a

strongly lifting ideal provided idempotents lift modulo J .

We extend [44, Theorem 4.9] from von Neumann regular elements to elements having a

non-zero outer inverse.

Theorem 3.1.4. Let I be a strongly lifting right ideal of R. Then elements having a non-zero

outer inverse lift modulo I.

Recall that a ring R is called an exchange ring (or a suitable ring) if there is an idempotent

e ∈ R such that e− x ∈ (x2 − x)R, and this concept is left-right symmetric [57].

We have some useful consequence of Theorem 3.1.4 in the case of exchange rings and, in

particular, von Neumann regular rings, π-regular rings or semiperfect rings, the latter being the

case of interest for us.

Corollary 3.1.5. Let I be a one-sided ideal of an exchange ring R. Then elements having a

non-zero outer inverse lift modulo I.

3.2 Transfer of non-zero outer inverses

We consider a first case when all statements of Theorem 3.1.1 are equivalent.

Theorem 3.2.1. Let R be local and let A = (aij) ∈ Mm,n(R). Then the following are equivalent:

(i) There exists some aij ∈ U(R).

(ii) There exists some aij having a non-zero outer inverse.

(iii) A has a non-zero outer inverse.

(iv) A /∈ Mm,n(rad(R)).

In this case, a non-zero outer inverse of A is the matrix B ∈ Mn,m(R) having all entries zero,

except for the entry (j, i), which is a (non-zero outer) inverse of aij.

Theorem 3.2.1 may be extended to m × n-matrices over direct products of local rings as

follows. Unlike the cases of strong inner inverses or inner inverses, A ∈ Mm,n(R) has a non-zero

outer inverse if and only if its projection hk(A) has a non-zero outer inverse for some k ∈ K.

Now we obtain the following result.
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Theorem 3.2.2. Let s be a positive integer, let R = R1 × · · · × Rs be a direct product of local

rings, and let A = (aij) ∈ Mm,n(R). Then the following are equivalent:

(i) There exists some aij having a non-zero outer inverse.

(ii) A has a non-zero outer inverse.

(iii) A /∈ Mm,n(rad(R)).

In this case, a non-zero outer inverse of A is the matrix B ∈ Mn,m(R) having all entries zero,

except for the entry (j, i), which is a non-zero outer inverse of aij.

3.3 Semiperfect rings

Having prepared the necessary tools, in this section we extend our results to semiperfect

rings. If R is a commutative semiperfect ring, then it is well known that it is a finite direct

product of commutative local rings, hence Theorem 3.2.2 is directly applicable. Let us see that

a similar result is valid for arbitrary semiperfect rings as well.

Theorem 3.3.1. Let R be a semiperfect ring. Then the following are equivalent for A = (aij) ∈
Mm,n(R):

(i) There exists some aij having a non-zero outer inverse.

(ii) A has a non-zero outer inverse.

(iii) A /∈ Mm,n(rad(R)).

In this case, a non-zero outer inverse of A is the matrix B ∈ Mn,m(R) having all entries zero,

except for the entry (j, i), which is a non-zero outer inverse of aij.

In general Theorem 3.3.1 does not hold for semilocal rings, as the following example shows.

Recall that a ring R is called semilocal if R/rad(R) is semisimple artinian. It is clear by the

definitions that every semiperfect ring is semilocal.

Example 3.3.2. Consider the localizations Z(p) and Z(q) of the ring of integers to some distinct

primes p and q. Then the ring R = Z(p) ∩ Z(q) is a semilocal ring with two maximal ideals (p)

and (q) generated by p and q respectively, because

R/rad(R) = R/(pq) ∼= R/(p)×R/(q).

But R is not semiperfect, because idempotents do not lift modulo rad(R). Note that x = a
b ∈ R

has a non-zero outer inverse if and only if x ∈ U(R) if and only if a and pq are relatively prime.

Now let us choose p = 3 and q = 5, hence R = Z(3) ∩ Z(5). Let A =

(
3 5

5 9

)
∈ M2(R).

No entry of A has a non-zero outer inverse, but A is invertible, and thus it has a non-zero

outer inverse, namely A−1 = 1
2

(
9 −5

−5 3

)
∈ M2(R). Also, A′ =

(
3 0

0 0

)
∈ M2(R) and

A′ /∈ M2(rad(R)) = M2(15R), but it is easily seen that A′ has no non-zero outer inverse.
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Now we may see how the property having a non-zero outer inverse transfers from a matrix

of determinantal rank t to its tth compound matrix.

Theorem 3.3.3. Let A = (aij) ∈ Mm,n(R) with ρ(A) = t. Consider the statements:

(i) A has a non-zero outer inverse.

(ii) Ct(A) has a non-zero outer inverse.

Then (i) =⇒ (ii). If R is a semiperfect ring, then (i) ⇐⇒ (ii).

Since every commutative semiperfect ring is a finite direct product of commutative local

rings, we immediately have the following corollary.

Corollary 3.3.4. Let R be a commutative semiperfect ring, and let A ∈ Mm,n(R) with ρ(A) = t.

Then A has a non-zero outer inverse if and only if Ct(A) has a non-zero outer inverse.

3.4 Counting matrices having non-zero outer inverses

For a finite semiperfect ring, Theorem 3.3.1 allows us to easily determine the number of

m×n-matrices over R having a non-zero outer inverse, which will be denoted by V O(Mm,n(R)).

Proposition 3.4.1. Let R be commutative semiperfect, say R = R1 × · · · × Rs for some local

finite commutative rings. Then:

V O(Mm,n(R)) =
s∏

k=1

|Mm,n(Rk)| −
s∏

k=1

|Mm,n(rad(Rk))|.

Next we count matrices having a non-zero outer inverse over some finite group algebras

Fq[G], where Fq is a field with q elements and G is a group with l elements.

Proposition 3.4.2. Let G be a group with l elements, and let Fq be a field with q elements such

that char(Fq) does not divide l. Then:

(i) V O(Mm,n(Fq[G])) =
∏s

k=1 q
mnn2

k
k − 1.

(ii) If G is abelian, then V O(Mm,n(Fq[G])) =
∏s

k=1 q
mnedad − 1.

Finally, we consider the more interesting case of a cyclic group G with l elements, that is,

G ∼= Zl. This time we have a formula for the number of m × n-matrices over Fq[G] having a

non-zero outer inverse even if the group algebra Fq[G] is not semisimple.

Proposition 3.4.3. Let l ≥ 2 be an integer and let Fq be a finite field with q elements. Write

xl−1 = p1(x)
r1 · · · ps(x)rs for some distinct irreducible polynomials p1(x), . . . , ps(x) ∈ Fq[x] with

degrees d1, . . . , ds respectively, and positive integers r1, . . . , rs. Then:

V O(Mm,n(Fq[Zl])) =
s∏

k=1

qrkmn
k −

s∏
k=1

q
(rk−1)mn
k ,

where qk = qdk for every k ∈ {1, . . . , s}.
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3.5 Outer inverses of formal triangular matrix rings

In this section we see how the property of having an outer inverse behaves with respect to

formal triangular matrix rings.

Theorem 3.5.1. Let R and S be arbitrary rings and let M be an R-S-bimodule. Then(
a1 x

0 a2

)
∈

(
R M

0 S

)
has an outer inverse

(
b1 y

0 b2

)
∈

(
R M

0 S

)
if and only if a1 ∈ R

has outer inverse b1 ∈ R and a2 ∈ S has outer inverse b2 ∈ S. Moreover,

(
b1 y

0 b2

)
is non-zero

if and only if at least one of b1 and b2 is non-zero.

Using Theorem 3.5.1 we may immediately count matrices having a non-zero outer inverse in

formal triangular matrix rings.

Theorem 3.5.2. Let R and S be finite arbitrary rings, and let M be a finite R-S-bimodule.

Let ovnr(R) and ovnr(S) be the sets of elements of R and S having a non-zero outer inverse

respectively. Then the number of matrices in

(
R M

0 S

)
having a non-zero outer inverse is

|R| · |S| · |M | − (|R| − |ovnr(R)|) · (|S| − |ovnr(S)|) · |M |.
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Applications

We use our previous results on von Neumann regular matrices, strongly regular matrices and

matrices having a non-zero outer inverse to derive applications to some generalizations of these

concepts, called von Neumann local, strongly von Neumann local and outer von Neumann local

matrices. Among other properties, we show that the tth compound matrix of every matrix of

determinantal rank t over a commutative local ring is strongly von Neumann local, and every

matrix over an arbitrary semiperfect ring is outer von Neumann local. Except for the cited

results, all other results are original and are mostly included in our paper [26].

4.1 Von Neumann local matrices

Contessa [29] introduced von Neumann local rings as the rings R with the property that a

or 1 − a is von Neumann regular for every a ∈ R. Clearly, every von Neumann regular ring

and every local ring is von Neumann local. Also, every von Neumann local ring is an exchange

ring. Von Neumann local rings have been also studied by Abu Osba, Henriksen and Alkam [1],

and Anderson and Badawi [4], which specialized their definition to elements. Thus, an element

a ∈ R is called von Neumann local if a or 1 − a is von Neumann regular. Clearly, every von

Neumann regular element is von Neumann local.

In particular, a matrix A ∈ Mn(R) is von Neumann local if A or In − A is von Neumann

regular. We show that there is a rich supply of von Neumann local matrices.

Theorem 4.1.1. Let R be a commutative local ring, and let A ∈ Mn(R) with ρ(A) ≤ 1. Then

A is von Neumann local.

Corollary 4.1.2. Let R be a commutative local ring, and let A ∈ Mn(R) with ρ(A) = t. Then

Ct(A) is von Neumann local.

Using our characterizations of von Neumann regular matrices, we may immediately deduce

corresponding characterizations of von Neumann local matrices.

Theorem 4.1.3. Let R be a commutative local ring, and let A ∈ Mn(R) with ρ(A) = t and

ρ(In −A) = s. Then the following are equivalent:

(1) A is von Neumann local.

24
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(2) Ct(A) or Cs(In −A) is von Neumann regular.

(3) A = 0n or A has an invertible t × t-submatrix or A = In or In − A has an invertible

s× s-submatrix.

Next we characterize von Neumann local 2 × 2-matrices over commutative local rings only

in terms of determinants.

Theorem 4.1.4. Let R be a commutative local ring, and let A ∈ M2(R). Then the following

are equivalent:

(1) A is von Neumann local.

(2) det(A) ∈ U(R) ∪ {0} or det(I2 −A) ∈ U(R) ∪ {0}.

If R is not a field, then they are further equivalent to:

(3) det(A) /∈ rad(R) \ {0} or det(I2 −A) /∈ rad(R) \ {0}.

(4) det(A) ∈ U(R) ∪ {0} or 1− Tr(A) ∈ U(R).

Example 4.1.5. The matrix A =

(
0 0

0 2

)
∈ M2(Z4) is von Neumann local (since I2 − A is

invertible), but not von Neumann regular by Theorem 1.4.2.

Unlike the case of von Neumann regularity, the property of being von Neumann local is

not well behaved with respect to direct products (e.g., see [1, p.2644]). By [1, Theorem 3.1], a

direct product R =
∏

k∈K Rk is von Neumann local if and only if there is l ∈ K such that Rl

is von Neumann local and Rk is von Neumann regular for every k ∈ K \ {l}. Next we state

an element-wise version of this result, whose commutative version was given by Anderson and

Badawi [4, Theorem 5.1]. Let us denote by vnr(R) (respectively vnl(R)) the set of von Neumann

regular (respectively von Neumann local) elements of a ring R.

Theorem 4.1.6. Let R =
∏

k∈K Rk be a direct product of arbitrary rings. Then vnl(R) =∏
k∈K vnl(Rk) if and only if vnl(Rk) = vnr(Rk) for all but at most one k ∈ K. In particular, R

is a von Neumann local ring if and only if there is at most one k ∈ K such that Rk is not von

Neumann regular, but Rk is von Neumann local.

4.2 Strongly von Neumann local matrices

We consider a specialization of the notion of von Neumann local element of a ring. Thus, an

element a ∈ R is called strongly von Neumann local if a or 1−a is strongly regular. Clearly, every

strongly regular element is strongly von Neumann local, and every strongly von Neumann local

element is von Neumann local. In particular, a matrix A ∈ Mn(R) is strongly von Neumann

local if A or In − A is strongly regular. Note that our concept of strongly von Neumann local

element is different of the one with the same name from [1].

Next we improve some results from von Neumann local matrices.
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Theorem 4.2.1. Let R be a commutative local ring, and let A ∈ Mn(R) with ρ(A) ≤ 1. Then

A is strongly von Neumann local.

Corollary 4.2.2. Let R be a commutative local ring, and let A ∈ Mn(R) with ρ(A) = t. Then

Ct(A) is strongly von Neumann local.

Our previous results on strongly regular matrices may be immediately applied to derive

corresponding properties of strongly von Neumann local matrices.

Theorem 4.2.3. Let R be a commutative local ring, and let A ∈ Mn(R) with ρ(A) = t and

ρ(In −A) = s. Then the following are equivalent:

(1) A is strongly von Neumann local.

(2) Ct(A) or Cs(In −A) is strongly regular.

(3) A = 0n or ct ∈ U(R) or A = In or ds ∈ U(R), where ct = (−1)tTr(Ct(A)) and ds =

(−1)sTr(Cs(In −A)).

Next we show that von Neumann local and strongly von Neumann local matrices coincide

in this case of 2× 2-matrices over commutative local rings..

Theorem 4.2.4. Let R be a commutative local ring, and let A ∈ M2(R). Then A is strongly

von Neumann local if and only if A is von Neumann local.

Example 4.2.5. By Theorem 4.2.4, in order to find an example of a von Neumann local matrix

which is not strongly von Neumann local over a commutative local ring we need to look for some

matrix having a larger size than 2× 2. Let us take

A =

0 0 0

0 0 1

1 0 3

 ∈ M3(Z4).

Since ρ(A) = 2 and A has an invertible 2× 2-submatrix, A is von Neumann regular by Theorem

1.4.2, and consequently, A is von Neumann local. Since the sum of diagonal 2× 2-submatrices

of A is 0, A is not strongly regular by Theorem 2.1.5. Now consider

I3 −A =

1 0 0

0 1 3

3 0 2

 .

Since ρ(I3 − A) = 3 and det(I3 − A) = 2 /∈ U(Z4), I3 − A is not strongly regular by Theorem

2.1.5, and consequently, A is not strongly von Neumann local.

We have already seen that in general the property of being von Neumann local is not well

behaved with respect to direct products, and we have given Theorem 4.1.6. Now we deal with

the similar problem for strongly von Neumann local elements in an arbitrary ring R. Let us

denote by svnr(R) (respectively svnl(R)) the set of strongly regular (respectively strongly von

Neumann local) elements of R.

Theorem 4.2.6. Let R =
∏

k∈K Rk be a direct product of arbitrary rings. Then svnl(R) =∏
k∈K svnl(Rk) if and only if svnl(Rk) = svnr(Rk) for all but at most one k ∈ K. In particular,

R is a strongly von Neumann local ring if and only if there is at most one k ∈ K such that Rk

is not strongly regular, but Rk is strongly von Neumann local.
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4.3 Outer von Neumann local matrices

Generalizing von Neumann local elements of a ring, an element a ∈ R is called outer von

Neumann local if a or 1 − a has a non-zero outer inverse. An element having a non-zero outer

inverse will also be called an outer von Neumann regular element. Clearly, every outer von

Neumann regular is outer von Neumann local, and every von Neumann local element is outer

von Neumann local. In particular, a matrix A ∈ Mn(R) is outer von Neumann local if A or

In −A is outer von Neumann regular.

In Theorem 3.3.1 we have given a characterization of matrices having a non-zero outer inverse

over semiperfect rings. We may use it to obtain the following result.

Theorem 4.3.1. Let R be a semiperfect ring. Then every matrix A = (aij) ∈ Mn(R) is outer

von Neumann local.

Example 4.3.2. (1) Let us first give an example of an outer von Neumann local matrix over a

non-semiperfect ring. Consider the semilocal ring R = Z(2)∩Z(3) (which is not semiperfect), and

the matrix A =

(
3 0

0 0

)
∈ M2(R). Direct calculations show that A does not have a non-zero

outer inverse. But we have B(I2−A)B = B for B =

(
1 1

3 3

)
∈ M2(R), hence I2−A =

(
−2 0

0 1

)
has a non-zero outer inverse, and consequently, A is outer von Neumann local.

(2) The above matrix A also gives an example of an outer von Neumann local matrix which

is not von Neumann local. Indeed, direct calculations show that neither A nor I2 − A is von

Neumann regular (or note that the first determinantal ideals of A and I2 −A are not generated

by an idempotent and use Theorem 1.4.1). Hence A is not von Neumann local.

Theorem 4.3.3. Let R be an arbitrary local ring and let A ∈ Mn(R). Then the following are

equivalent:

(1) A is outer von Nemann local.

(2) A or In −A has an invertible entry.

(3) A or In −A has an entry with a non-zero outer inverse.

(4) A /∈ Mn(rad(R)) or In −A /∈ Mn(rad(R)).

Finally, let us see how the property of being outer von Neumann local behaves with respect to

direct products. Let us denote by ovnr(R) (respectively ovnl(R)) the set of outer von Neumann

regular (respectively outer von Neumann local) elements of a ring R.

Theorem 4.3.4. Let R =
∏

k∈K Rk be a direct product of arbitrary rings. Then (ak)k∈K ∈
ovnl(R) if and only if there is j ∈ K such that aj ∈ ovnl(Rj).



Appendix

The definitions of a von Neumann regular, strongly regular or outer regular matrix need

finding a suitable matrix B satisfying some property related to A. In this way, the verifications of

strong regularity, von Neumann regularity or outer regularity by definitions are time-consuming,

the critical part being the enumeration of possible candidates for B. In contrast, our results

offer intrinsic characterizations of these three notions, which can be developed into much more

efficient algorithms. We illustrate them for matrices over rings of residue classes.

The algorithms for strongly von Neumann local and von Neumann local matrices over rings

of residue classes are easily derived from these three basic ones. We have seen that every matrix

over a ring of residue classes is outer von Neumann local.

By using our algorithms, higher order examples may be easily obtained.
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