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Applications of the Local Growth and Global Reset (LGGR) model for
socio-economic and biological problems

Abstract

The internal dynamics of complex systems emerge from the interaction of numer-
ous components guided by characteristic rules of the system. Biological, economic,
and social systems, in particular, exhibit these inherent interactions among their nu-
merous components. A particular type of frequently observed dynamics is one that is
defined by unidirectional growth and probabilistic reset processes. Due to the emerg-
ing complexity, the study of such systems necessitates the proper tools of analysis.

This thesis provides a comprehensive overview and analysis of real-world phe-
nomena through the lens of a mean-field approach founded on a master equation, the
Local Growth and Global Reset (LGGR) model. A central objective is to offer a ped-
agogical presentation, by providing a detailed overview of general master equations,
and Markov processes, and establishing the mathematical foundation for later applica-
tions of the LGGR model. The study encompasses four modeling investigations, each
applied to phenomena observed in socio-economic and biological systems. The socio-
economic section of the thesis explores wealth distributions in leading countries and a
small Romanian commune. The first study analyzes individual wealth distribution in
the United States, Russia, and France. The model captures wealth dynamics, including
negative values, and outperforms existing models. The second study applies the LGGR
model to wealth distribution in a Transylvanian commune, revealing shifts across dif-
ferent economic systems and contrasting wealth distribution patterns during commu-
nism and the free-market era. A third study, which is still focused on socio-economic
systems, explores the dynamics of lottery jackpots. Analyzing six lotteries, the LGGR
model captures the emergent evolution of Jackpot values influenced by player behav-
ior, lottery rules, and probabilistic reset rates. The final study steps into the realm of
biological systems, examining diversity patterns in tree sizes within deciduous wooded
environments. Confirming the Gamma distribution for specific deciduous species, the
model demonstrates statistical universality across taxa and ecosystems.

To conclude, the thesis demonstrates the versatility of the LGGR model in un-
derstanding complex phenomena across socio-economic and biological systems. The
success in modeling diverse phenomena suggests its potential for wide applicability in
various scientific fields.

Keywords: complex systems, local growth, global reset, socio-economic phenomena,
biological diversity
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Chapter 1

Introduction

The landscape of physics has undergone significant evolution over the past two cen-
turies, with physicists increasingly tackling complex systems that defy conventional
intuition [1–4]. This shift toward confronting complexity has led to a strong interdisci-
plinary character within the field, spanning biology [5], chemistry [6], economics [7],
and social sciences [8]. At the core of physics lies the mission to elucidate the fun-
damental principles governing matter and energy behavior, often achieved through
mathematical modeling. The study of intricate systems has prompted the develop-
ment of elegant mathematical models, particularly in understanding probabilistic phe-
nomena. For instance, the discovery of Brownian motion by Robert Brown in 1827
sparked interest in probabilistic intricacies underlying seemingly chaotic phenom-
ena [9]. Einstein, Schmoluchowski, and Langevin were among the first to successfully
model Brownian motion, paving the way for the Fokker-Planck equation and subse-
quent evolutionary equations describing probabilistic system evolution [10]. Amidst
various modeling paradigms, the phenomenological master equation approach has
emerged as a central player in statistical physics, describing systems governed by prob-
abilistic dynamic processes [10]. Einstein, Furry, and Feller, among others, applied
master equations to diverse phenomena, including black-body radiation, electron pas-
sage through materials, and population dynamics [10, 11]. While the framework of
master equations became widely known in statistical physics, the term "master equa-
tion" was first used in 1940 by Nordsieck et al [12] Since then, master equations have
been extensively applied across research domains, offering profound insights into in-
tricate systems’ probabilistic evolution [13].

1.1 The general form of the master equation

In case when the system has a finite number of discrete inner states and the elements
of the system can jump from state to state probabilistically and independently of each
other in time, the change of the probability Pn(t) taking the continuous limit of the
time parameter (∆t → 0) is given by Equation 1.1. That is the general form of the
continuous time, discrete state-space master equation. To give some examples, these
states could represent different positions, energy levels, or other characteristics of the
system.

dPn(t)

dt
=

∑
{m}

[wm,nPm(t)− wn,mPn(t)]. (1.1)

where Pn(t) denotes the occupation probability of state n at time moment t, while
wn,m stands for the directed transition rate (probability over unit time) between the
two states m and n. The transition rates wn,m, in this case, are independent of time.

1



Chapter 1 | Introduction

Figure 1.1: Shematic representation of the dynamics described by the discrete master
equation (Equation 1.1).

The dynamics described by Equation 1.1 is illustrated in Figure 1.1. The collection of
transition rates forms a transition matrix Wn,m, which encodes the dynamics of the
system. The occupation probability is simply given by the fraction of the system’s
elements being in state n divided by the total number of elements. Therefore the prob-
ability distribution Pn(t), is normalized:

∑
{n} Pn(t) = 1.

The master equation can be written in continuous state-space limit as well when
the system has infinitely many states. In this case Equation 1.1 transforms into an
integro-differencial equation written in the form of Equation 1.2 [14].

∂ρ(x, t)

∂t
=

∫ ∞

−∞
[w(x, y)ρ(y, t)− w(y, x)ρ(x, t)]dy, (1.2)

In the continuous case, however, instead of the time evolution of the Pn(t) occupation
probability, the time evolution of the ρ(x, t) probability density function is defined
by the evolutionary Equation 1.2. The transition rates w(x, y), are independent of
time in this case as well. The probability density function also has to be normalized:∫∞
−∞ ρ(x, t)dx = 1.

The widely applicable nature of the master equations arises from the flexibility
in defining the transition matrixWn,m. This flexibility, however, is limited by the fact
that in the case when the studied system has a large number of states (Equation 1.1), or
the transition rates have complex forms (Equation 1.2), the master equation becomes
analytically intractable. Hence, there are analytical solutions available in only a very
limited number of instances.

1.1 Markov processes

When discussing master equations, it is crucial to also introduce Markov processes,
as they are closely related. Markov processes, introduced by Andrey Markov in the
early 20th century, serve as the foundation for systems employing master equations.
A Markov process is characterized by its memoryless property, where the next state of
the system depends solely on its current state. If one describes the time evolution of
the system through discrete states (x0, x1, x2, . . . xn, . . . ) that can be reached sequen-
tially, then the Markov property can be described using the conditional probability
P (xn∥xn−1, ..., x0) that the state xn is reached throughout the states x0, x1, ..., xn−1:

2



P (xn, t∥xn−1, t−∆t, ..., x0, 0) = P (xn, t∥xn−1, t−∆t). The conditional probability
P (xn, t∥xn−1, t − ∆t), however, corresponds to the transition probability per unit
time (∆t) to jump from state xn−1 to xn, which corresponds to the wn,n−1 transi-
tion rate from state xn−1 to xn appearing in the master equation, Equation 1.1. Thus,
the memoryless property of transitions is inherently present within the master equa-
tion. Markov processes often assume stationarity, where the probability distribution
of relevant quantities remains constant over time: dPn(t)

dt = 0. This stationary dis-
tribution, derived from the transition rates and probabilities offers valuable insights
into the system’s dynamics. Reversible Markov processes represent a special cate-
gory where dynamics are both stationary and satisfy the detailed balance condition
(wn,m · Pm = wm,n · Pn). This condition ensures equilibrium dynamics, where the
forward and reverse processes exhibit equivalent stationary probability distributions.
Ergodicity, an essential property of Markov chains, encompasses both aperiodicity
(for each state of the system it holds that there is no such finite number k > 1, rep-
resenting the number of steps for which the probability of returning to state xi is 1:
P (k)(xi∥xi) = 1) and irreducibility (the possibility of reaching any state of the system
from any other state). A Markov chain is ergodic if it lacks periodic states and is irre-
ducible, allowing for the existence of a unique stationary distribution over its possible
states.

Chapter 2

The Local Growth and Global Reset (LGGR) process

(a)

(b)

Figure 2.1: The sketch of the growth and reset process (a) for the simple mechanism
with a positive reset rate; (b) when the reset rate can be both positive and negative
(γn < 0 if n < r, and γn > 0 for n > r).

In this chapter, we present a particular class of master equations that consists of
a unidirectional growth process characterized by the growth rate σn (or σ(x) in the
continuous case) and a resetting process, characterized by the reset rate γn (or γ(x))

3



Chapter 2 | The Local Growth and Global Reset (LGGR) process

to the ground state denoted as n = 0, which ensures the possibility of stationary
dynamics. As a result of the broken symmetry, the detailed balance condition is not
satisfied, turning the dynamics into a non-reversible Markov process. The sketch of
this dynamics is represented in Figure 2.1a. The model is known as the Local Growth
and Global Reset (LGGR) model, denoted by the encapsulating processes, or it is com-
monly recognized as the Biró-Néda model, named after its developers [15, 16]. The
dynamics involving persistent growth followed by resetting is a recurring pattern in
numerous physical, biological, social, and economic phenomena. In these complex
systems the intricacy of the dynamics gives rise to diverse probability distributions
of the characteristic quantity. The most commonly observed distributions are charac-
terized by power-law tails, which emerge as a consequence of a form of preferential
behavior within the underlying dynamics. However, this type of dynamics is not lim-
ited to generating such fat-tailed distributions. By appropriately choosing the forms
of the growth and reset kernel functions, a wide array of other distribution types can
be analytically derived [16].

In most real-world systems our interest lies in demonstrating the systems in equi-
librium. Therefore, we aim to model the stationary fluctuations that result in the char-
acteristic, stationary distribution P s

n (ρs(x)).

The transition rates (wm,n) (meaning here n the starting state and m being the
destination of the transition) corresponding to the discrete growth and reset processes
are defined as: wm,n = σnδm,n+1 + γnδm,0. Utilizing the general form of the master
equation (Equation 1.1) together with these transition rates one obtains the form of
the master equation corresponding to the discrete state-space LGGR process given by
Equation 2.1.

dPn(t)

dt
= σn−1Pn−1(t) + ⟨γ⟩(t)δn,0 − (σn + γn)Pn(t). (2.1)

Assuming the stationary limit (the left hand size of Equation 2.1 becomes 0: dPn(t)
dt = 0)

the Pn probability can be calculated as the following formula [15]:

Pn = P0
σ0
σn

e
−

∑n
i=0 ln(1+

σi
γi

)
. (2.2)

When the relevant quantity characterizing the elements of the system changes
continuously the resulting form of the evolution equation determines now the time
evolution of the probability density function ρ(x, t):

∂ρ(x, t)

∂t
= − ∂

∂x
[σ(x)ρ(x, t)]− γ(x)ρ(x, t) + ⟨γ(x)⟩(t)δ(x). (2.3)

The mean value of the reset rate ⟨γ(x)⟩(t) is calculated using the probability density
function ρ(x, t): ⟨γ⟩(t) =

∫∞
0 γ(x)ρ(x, t)dx. The normalization of the probability

density function
∫∞
0 ρ(x, t)dx = 1 is ensured by the refeeding of the system with

new entities at the ground state x = 0 through the ⟨γ(x)⟩(t)δ(x) component. In
the stationary condition, the solution of Equation 2.3 gives the general form of the
stationary probability density function ρs(x) (Equation 2.4).

ρs(x) =
σ(0)ρs(0)

σ(x)
e
−

x∫
0

γ(u)
σ(u)

du
, (2.4)

4



This is the continuous correspondent of Equation 2.2. In most cases when dealing
with real-world phenomena, the studied quantity is quasi-continuous (i.e. income,
wealth, size of individuals in biological systems, ...). Thus in these cases, we root back
to Equation 2.4 for calculating the system’s characteristic distribution. The stationary
solutions presented in Equations 2.2 and 2.4 exhibit a high degree of universality, as
they depend exclusively on the forms of the σn (σ(x)) and γn (γ(x)) functions [16–19].
The reset rate γ(x) allows for the differentiation of two unique dynamical scenarios.
The simplest scenario occurs when the reset rate γ(x) is positive for all values of x (and
for n in case of discrete state space, γn). This behavior is illustrated in Figure 2.1a. A
more complex dynamic scenario arises when the reset rate γ(x) (γn) can be positive
or negative depending on the value of x (xn). The second scenario considering the
state-dependent "smart reset" rate proved to be more flexible for applications. This
behavior is illustrated in Figure 2.1b.

An alternative way to expand the evolutionary equation is by accounting for sce-
narios where the number of elements changes multiplicatively over time: dNtotal(t)

dt =
κNtotal(t). By introducing such dilution into the master equation, a new reset-like
term emerges.

dPn(t)

dt
= σn−1Pn−1(t)− σnPn(t)− (γn + κ)Pn(t) + δn,0⟨γ⟩(t). (2.5)

In the continuous state space, the corresponding partial differential equation to Equa-
tion 2.5 is expressed in the following form:

∂ρ(x, t)

∂t
= − ∂

∂x
[σ(x)ρ(x, t)]− (γ(x) + κ)ρ(x, t) + ⟨γ(x)⟩(t)δ(x). (2.6)

In the stationary state, the general form of the probability density function for x > 0
also depends on the κ dilution rate:

ρs(x) =
C

σ(x)
e
−

∫
{x}

(γ(u)+κ)
σ(u)

du
, (2.7)

where C is the normalization constant.

Chapter 3

Distribution of wealth in the society

3.1 Introduction to social inequality based on wealth

Social inequalities refer to the widespread discrepancies in the allocation of resources,
opportunities, and privileges among individuals or groups within a given society. One
common and vital quantity for measuring these inequalities is wealth, which encom-
passes all types of property that an individual owns. Such inequalities have always
been present in society, even in historical times, regardless of the type of administrative
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system [20]. Although quantitative evidence of wealth inequality can be found in the
literature, in all cases, when the goal is to measure wealth, it is approximated through
various methods that rely on different proxies [21]. Vilfredo Pareto, a renowned italian
sociologist, delivered the initial empirical and qualitative description of wealth distri-
bution in the late 19th century. His discoveries exposed a distinct heavy-tailed power-
law trend in cumulative wealth distribution [22]. The well-known Pareto principle is
also connected to his observations. According to the Pareto principle, a p fraction of
the society owns 1−p fraction of the total wealth distributed among the society. In the
time of Pareto, the value of p was approximately 0.2, meaning that 20% of the society
owned 80% of the total wealth.

Beginning in the last decade of the 20th century, a new field of interdisciplinary
science, called econo-physics, emerged, blending elements from both physics and eco-
nomics. Several models were designed to describe in a unified manner the whole range
of the wealth distributions [18, 23–25]. Nonetheless, even with the collaboration be-
tween physicists and economists, as far as our knowledge goes, a comprehensivemodel
for describing social inequalities has not been developed until recent times [18, 19, 23,
26].

A general approach, for describing the dynamics of economic systems is based on
master equations, which are the evolution equations of a given system in the proba-
bility space [18]. In this thesis, we present a modeling framework based on the LGGR
model that proved to be suitable for filling this gap in the toolbox for modeling inequal-
ities. For applying the LGGRmodel to model socio-economic systems, we consider the
following assumptions to be valid for the society as well: (1) we assume that the direct
interactions on the network can be approximated by a mean-field interaction captured
within the growth (σ(x)) and reset (γ(x)) rates; (2)e assume that all individuals are
identical, and no differentiation can be made.

3.1 Experimental study and challenges

Good quality data is necessary for designing mathematical models that would be able
to explain the causality behind the phenomenon. Nowadays, due to easy access to the
internet, an immeasurable amount of digitized financial data for different countries is
available [27, 28]. The monitored socio-economic measures are in general considered
both for individuals and groups of individuals (families, organizations, settlements,
etc.) as well [29–31]. The distribution of these may vary depending on whether it is
considered for individuals or groups of people. So it is in the case of wealth data as
well. Wealth cannot be measured using a simple quantity, since it might be composed
of multiple components. With the increasing complexity of the society, it became
nearly impossible to do an exhaustive mapping of it. Sampling procedures for wealth
tend to be inaccurate, the available wealth data commonly involves estimations and
annual surveys [28]. Sampling can be very dangerous because the chosen samples
do not necessarily represent properly the entire group they belong to. An illustrative
representation of sampling and its deficiency is illustrated in Figure 3.1. So it is quite
a challenge to find representative data characterizing ensembles of individuals.

6
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Figure 3.1: Illustration of ensemble sampling deficiency.

Chapter 4

Wealth in modern societies
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Figure 4.1: Ilustration of the three regions of the wealth distribution.

Nowadays the distribution of wealth has been closely monitored by governmen-
tal statistical offices and numerous organizations [27, 32], providing accurate wealth
data. It is important to note that in modern societies, in the case of wealth, negative
values are possible as well, meaning depts. We differentiate three regions based on
the wealth distribution’s shape, as illustrated in Figure 4.1. The first region is an in-
creasing exponential region at negative and very small wealth values. The middle part
of the wealth distribution is an exponential region with a negative trend. The upper-
most part of the wealth distribution follows a power law-like decaying trend. In the
relevant literature however, the first region is not identified as a separate region, since
dept is not considered in the distribution [23, 26]. In the literature, instead of the part
that we consider the middle, exponentially decaying region, a Boltzmann-Gibbs-like
distribution is considered [23, 26]. The other shortcoming of the existing models is
that they demonstrate the two regions separately. The main ambition of our work was
to design an analytically tractable, dynamical model that is suitable for demonstrating
the observed wealth distribution in its integrity (negative and positive regions of the
experimental wealth data).

The focus of this section is on applying the LGGR model to depict the stationary

7



Chapter 4 |Wealth in modern societies

wealth distribution in the USA, Russia, and France at the beginning of the 21st century.
We assume that the dynamics of wealth is in a quasi-equilibrium condition based on the
following two circumstances: (1) the long enough existence of free-market economy in
these countries for the past few decades; and (2) the substantial size of these economies,
ensuring their resilience to minor fluctuations in the global economy.

The linearly increasing growth rate (σ(x)) can be considered for wealth, consistent
with the preferential wealth accumulation phenomenon. This growth rate, expressed
by the first line of Equation 4.1, indicates positive growth within the [−g,∞) interval
(g being a positive constant). Financial growth begins primarily at low wealth values
and concludes at higher wealth levels. Hence, the reset rate (γ(x)) should be negative
for low and for negative wealth and saturate at a positive value for high wealth values,
preventing the possibility of infinite wealth. Such a reset rate can be formulated as the
second line of Equation 4.1.

σ(x) = l · (x+ g)

γ(x) = l ·
(
s− v

x+ g

)
, (s, v ∈ R+).

(4.1)

Considering these forms of growth and reset rates, we calculate the form of the
stationary probability density function given by the LGGR model (Equation 2.4). We
rescaled the x variable with its expected value (y = x/⟨x⟩) calculated analytically
from the stationary probability distribution function ρs(x). The obtained form of the
renormalized probability distribution function ρs(y):

ρ(y)s =
c (c+ 1)s (s− 1)s

Γ(s)
e
− (c+1)(s−1)

1+c y (1 + c y)−1−s. (4.2)

where c = v/[g(s− 1)]− 1.

The rescaling of the probability density function to be normalized when the ex-
pected value ⟨y⟩ = 1 is practical not only because it allows us to cancel out a parameter
but also because it facilitates visual comparison of probability distribution functions
obtained for different countries (refer to Figure 4.2).

4.1 Validating the model for the USA, Russia, and France

Wealth-related data was obtained from theWorld Inequality Database (WID) [28]. Our
study utilized data from multiple years for the United States of America, Russia, and
France. The data supplied is presented as cumulative percentile fractions representing
the population and their corresponding wealth in the local currency of the countries.
From these cumulative distributions, we derived the normalized wealth distributions.
We computed the Probability Density Function (PDF) for normalized wealth, where
wealth values were rescaled with the average wealth ⟨Z⟩ of each respective year, ex-
pressed as z = Z/⟨Z⟩. Employing this approach resulted in the collapse of wealth
distributions for both countries, the USA and Russia, across various years onto a uni-
fied curve. This collapse of the PDFs allowed the calculation of the average wealth
distribution for both countries.

Both distributions (USA and Russia) exhibit strikingly similar trends, allowing for
a more comprehensive comparison when their averaged patterns are overlaid on a
shared graph, Figure 4.2. Figure 4.2 indicates a reasonably accurate fitting for the en-

8



4.1. VALIDATING THE MODEL FOR THE USA, RUSSIA, AND FRANCE
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Figure 4.2: Comparison of the distribution function of the normalized relative wealth
(z = Z/⟨Z⟩) from the USA and Russia (represented with dots) and the probability
density function given by the LGGR model in the form of Equation 4.2 (continuous
black line). The experimental distributions are the averaged distributions over the
considered years. The negative region of the distributions is represented on log-normal
scale (a), while the positive region is represented on log-log scale (b).

tire wealth spectrum using parameters s = 1.4 and c = 6.5 within Equation 4.2, the
analytical form of the probability density function. Interestingly, despite the signifi-
cantly different economic histories of the USA and Russia, the distribution of relative
personal wealth exhibits a universal trend.
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Figure 4.3: (a) Comparison of the experimental probability density functions (aver-
aged over multiple years) of the relative wealth values (z = Z/⟨Z⟩) from the USA,
Russia, and France. (b) Comparisons between the best fits generated by the LGGR
model (Equations 4.2) and the Bouchaud and Mezard model [24] to the experimental
wealth distribution for France.

We extended the analysis to the wealth distribution of France [28], it became ev-
ident that this trend does not universally apply, as shown in Figure 4.3a. The wealth
distribution for France suggests a higher equality among the population compared to
the USA and Russia, indicated by the faster decay of the wealth probability distribu-
tion function presented in Figure 4.3a. For France, similarly to the USA and Russia, the
distributions calculated for different years collapse. In the French dataset, there are no
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Chapter 4 |Wealth in modern societies

recorded instances of negative wealth, so only the positive wealth region (z > 0) is
plotted on a log-log scale in Figure 4.3.

We also compared ourmodeling results with a generally acceptedmodel for wealth
distributions, the Mezard-Bouchaud model [24]. Our model shows better alignment
with experimental data in the region of small wealth regions. This is alos illustrated
in Figure 4.3b.

4.2 Remarks on the kernel functions

To test the preferential growth rate, we examined the wealth growth of the top 15
wealthiest individuals consistently featured in the Forbes list from 2001 to 2019. We
tracked the wealth Zi(t) of each individual in each year t, relative to their wealth in
2001, denoted as rZi(t) = Zi(t)/Zi(2001). The average increase rZ(t) = ⟨rZi(t)⟩{i}
over time is illustrated in Figure 4.4a using log-normal scales. The seemingly linear
pattern (black curve) observed in Figure 4.4a supports the exponential trend in wealth
growth: rZ(t) ≈ exp[−0.075 · (t− 2001)].
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Figure 4.4: (a) The logarithmic y-axis depicts the exponential growth trend of the
averaged rescaled wealth, rZ(t), among the world’s wealthiest individuals from 2001
to 2020. The transparent curves in the background represent the wealth growth of the
15 richest individuals separately. (b) Changes per unit time in the population fraction
within a unit wealth interval (n(z) = N(z, z + dz)/dz) around z as a consequence of
the smart reset process (see Equation 4.2). The model parameters correspond to those
obtained from the fitting of the experimental density functions in Figure 4.3 (s = 1.4

and c = 6.5).

We lack experimental data to substantiate the chosen kernel function for the reset
rate. Nevertheless, based on the reset kernel function and the form of the PDF from
Equation 4.2, we can calculate the changes per unit time in the population fraction
within a unit wealth interval (n(z) = N(z, z+dz)/dz) using the dn(z)

dt ∝ −γ(z) ρs(z)
product.

We used the fit parameters appropriate for fitting the experimental wealth distri-
butions in Figure 4.3 (s = 1.4 and c = 6.5), and plot the product of the reset rate and
the probability density function multiplied by −1 (−γ(z) · ρ(z)) in Figure 4.4b. We
observe that most individuals initiate their wealth dynamics within the range of small
and negative values (γ(z) ρ(z) > 0), significantly lower than the average wealth in
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society (z < 0.2 · ⟨z⟩). By the time when they exit the system (positive reset rate),
their wealth is in general higher. This aligns well with our common experiences in
everyday life.

4.3 General discussions and conclusions

Our aimwas to create a comprehensivemathematical formula that encapsulateswealth
distribution across all categories, including negative values representing debts. We ob-
served that preferential growth (Equation 4.1) is substantiated by the wealth dynamics
of top billionaires. Our assumed smart reset rate (Equation 4.1) aligns with real-world
observations where younger individuals typically start with debts or low wealth (neg-
ative reset rate), progressing to higher wealth categories over time. This perspective
reinforces our belief that the rates we have employed suitably address the dynamics of
wealth within the society using a mean-field approach. The good agreement between
the collected data with the probability density function given by Equation 4.2 shows
that this model provides a strong representation of wealth distributions observed in
contemporary societies. The probability density function resulting from our model
possesses two main advantages relative to the Bouchaud and Mezard approach: (1) it
accommodates negative wealth values (debts); (2) with its two free parameters (Equa-
tion 4.2), allows for a refined fit for the low wealth region. Our analysis unveiled unex-
pected similarities between wealth distributions in the historically distinct economies
of the USA and Russia. The observation that the rescaled wealth distribution collapsed
for the USA and Russia but not for France suggests that there is no singular universal
trend in wealth distributions across different countries, despite apparent similarities.

Chapter 5

Wealth distribution within a small community

5.1 Owerview and motivation of the study

In the preceding section, our focus was on examining social inequalities by analyzing
wealth distribution at the scale of large countries (USA, Russia, France). In this section,
we shift our focus backward, delving into a smaller human society comprising around
a thousand households. Here, our aim is to once again model social inequalities by
measuring wealth. For the work presented in this section, we accessed an exhaus-
tive wealth database from a small Romanian commune, Comuna Sâncraiu (Kalotaszen-
tkirály). The database has been digitized from ownership and taxation records stored
at the local authorities of Sâncraiu commune, Romania. As an extension of our prior
work, we explore various time periods that represent distinct systems of authority.
The database contains information from three distinct years: 1961, 1989, and 2021. In
1961, it captures the period just before collectivization, marking the time when lands
previously allocated to peasants by the communists post-1947 were once more collec-
tivized. The year 1989 marked the culmination of the communist regime in Romania,
while 2021 represents the present, encapsulating over three decades since the fall of
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Chapter 5 |Wealth distribution within a small community

communism and reflecting the effects of the transition to a free-market economy in
Romanian communes.

In this work, we demonstrate the applicability of the LGGR model for a relatively
small society. Furthermore, by having data from three different economic ages of Ro-
mania, we are able to compare the population of this commune from the point of view
of social inequality. In order to do this we compare the applied growth and reset rates
in the LGGR framework and also compute the Lorenz curves, Pareto points, and the
Gini indices for all three years [26].

5.2 Collected wealth data

Anonymized records on household wealth were obtained, from the local authorities
of Sancraiu (in Hungarian: Kalotaszentkirály-Zentelke) commune, through an agree-
ment between Babeş-Bolyai University of Cluj-Napoca. The population of the com-
mune shows a decreasing trend over the approximately last 70 years. The 1956 census
counted 3557 inhabitants [33]. 36 years later, the 1992 census listed 2053 individu-
als [33], while the commune’s current population stands at 1628 inhabitants according
to the 2011 census survay. In terms of households in 1961, there were 1133 households,
for 1989, this number decreased to 921. While in 2021, the number of taxpayers was
1595. The information regarding wealth components for 1961 and 1989 was extracted
from anonymous agricultural registers maintained by the mayor’s office. These regis-
ters contain comprehensive information about every household, documenting the land
owned, the size of the house and auxiliary buildings, as well as the count of livestock
owned by each household. Given the commune’s historical reliance on agriculture,
it can be assumed that these records held the majority of a household’s assets before
1990. The data for 2021 were sourced from an anonymized taxation database specifi-
cally detailing land and building information.

To estimate the total wealth of a single household i, we computed a linear com-
bination of all recorded valuables as defined by Equation 5.1. To create an unbiased
proxy, we employed ten sets of weighting factors to estimate total wealth, assuming
the actual value lies between the minimum and maximum estimated values. This esti-
mation expresses wealth in an arbitrary quantity (in the figures we denote it as [a.u.]),
rendering it incomparable across different studied years.

Wi =
∑
{j}

Mj,i · Pj , (5.1)

where j represents the valuable categories, and Pj denotes the corresponding weight-
ing coefficient. ThePj weighting factors fulfill the normalization condition:

∑
{j} Pj =

1.

To provide a better overview of the applied estimation method and support the as-
sumed realistic nature of the weighting parameters, we calculated the percentile com-
position of the total wealth of the commune. This calculation considered the valuable
components included in the households’ wealth estimation. The percentile share of a
single valuable category from the total wealth possessed by the entire commune can
be calculated as follows:

S(j) =
Pj

∑
{i}Mj,i∑

{i}Wi
· 100 [%], (5.2)

where i represents the summing over the households, while j indexes the different
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5.2. COLLECTED WEALTH DATA

Figure 5.1: The panels from the left column illustrate the composition of the com-
mune’s total wealth in (a) 1961, (c) 1989, and (e) 2021. The shares of the different
categories (S(X)) are calculated based on Equation 5.2. The panels from the left col-
umn illustrate experimental probability density for wealth in (b) 1961, (d) 1989, and
(f) 2021. Error bars are obtained by combining the results of the different weight pa-
rameter sets. Wealth values are given in arbitrary units (a.u.) as it is explained in
Section 5.2. The theoretical distributions (continuous lines) defined by Equations 5.4
(b, d) and 5.4 (f) are fitted to the averaged experimental distributions (black dots). The
fitting parameters appear in the legend of the figures.

valuable categories. For each valuable j and every set of considered weighting factors
Pj , we calculate the quantities S(j) and visually represent them for each year under
study. In Figures 5.1a,c,e, we represent the percentile composition of the communes
total wealth (calculated based on Equation 5.2) in the tree analyzed years. The different
wealth components are listed in the figures. The shaded areas at the borders of different
colors represent the uncertainty induced by the differences between theweighting sets.
The relatively large thickness of these diffuse transition areas in the figure suggests
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Chapter 5 |Wealth distribution within a small community

that the chosen weighting sets cover a considerably different set of estimationmethods
ensuring the robustness of the estimation. Additionally, we compute the experimental
wealth distributions from the estimated household wealth for each set of weighting
parameters. In Figures 5.1b,d,f, we represent the bin means and extreme points (on
both axes) with dots and error bars.

5.3 Wealth distributions through the LGGR model

Considering that the initial two years (1961 and 1989) mark the end of distinct socio-
economic conditions, and the most recent year, 2021, signifies a situation that emerged
as a result of 32 years of a free-market economy after the collapse of communism, we
confidently infer that the distribution of household wealth has attained stationarity. In
the data processed in this chapter, there is no negative wealth. This somewhat simpli-
fies themodeling of the estimatedwealth distributions. By the definition of the realistic
kernel functions for the growth and the reset the computation of the stationary prob-
ability density functions based on Equation 2.4 is possible. Subsequently, we fine-tune
the model parameters to achieve a satisfactory alignment between the experimental
data and the model.

Wealth distribution in controlled economic system: 1961 and 1989

In communism, economic growth was facilitated, but it was also moderated by the
government. Taking into account these facts we approximated the economic growth
of the households with a constant value (σ(x) = k) meaning that the evolution of
wealth is not dependent on the actual wealth of the household.

Regarding the reset rate, we consider again the fact that the economic wellness of
the population was controlled by the government. Based on the ideology of commu-
nism, there was an ideal average of wealth characterizing the society and the goal of
the government was, to maintain the financial equilibrium within the society. In order
to achieve such a scenario in the LGGR framework, we opted for a linear reset rate
that is shifted relative to the 0 wealth value with a constant: γ(x) = x− r. This sim-
ple function takes negative values for wealth (x) below r and it becomes positive for
x > r, ensuring a smart reset scenario, illustrated in Figure 2.1a. This ensures that new
families are appearing with less wealth than r and when they become richer than this
optimal wellness it becomes probable for them to lose their wealth or exit the system.

Considering these rates, the stationary solution of the LGGR model (Equation 2.4)
leads to a normal distribution that is normalized on the [0,∞) interval (Equation 5.3),
since negative wealth is not present in the data.

ρs1(x) =

√
2

kπ
e−

r2

2k e
−x(x−2r)

2k

[
erf( r√

2k
) + 1

]−1

, (5.3)

where erf() denotes the error-function (erf(x) = 2√
π

∫ x
0 e−t2dt). The maxima of this

normal distribution is at the value of the parameter r, which is in agreement with
the explanation given before regarding the existence of an ideal wealthiness in com-
munism. The probability density function defined by Equation 5.3 is appropriate for
fitting both experimental wealth distributions from 1961 and 1989. For 196, the exper-
iment and theoretical wealth distributions are presented in Figure 5.1b, while for 1989
in Figure 5.1d. In both cases, the fit parameters are listed in the legends of the figure.
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5.4. SOCIAL INEQUALITY BASED ON KNOWN MEASURES

Wealth distribution in the free market: 2021

In the free-market economy, financial growth can also be presumed preferential:
σ(x) = x+β. Considering only positive wealth within the system, the simplest option
for the reset rate is to assume it is constant: γ(x) = γ. This implies that regardless of a
taxpayer’s wealth, the probability of being reset within a given time window remains
the same. These forms of the rates (using here again Equation 2.4) lead to a Tsallis-
Pareto type stationary probability density function defined by Equation 5.4.

ρs2(x) =
γ

β
(1 +

x

β
)−1−γ , (5.4)

The visual comparison of the theoretical and experimentally estimated wealth distri-
butions is presented in Figure 5.1f.

5.4 Social inequality based on known measures
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Figure 5.2: Lorenz curves, both experimental and theoretical, for the years 1961, 1989,
and 2021. The shaded area represents the range covered by the experimental outcomes
across various weight parameter sets. The theoretical curves, derived from the fitted
distributions, are depicted by solid bold lines.

First, we computed the Lorenz curves [34] for each studied year based on both
the theoretical curves and the experimental wealth distributions. Figure 5.2 depicts
the Lorentz curves corresponding to the analyzed years. The Lorenz curves built from
the modeled probability density functions considering the established optimal fitting
parameters are indicated with solid lines. The regions bounded by the extremes of the
experimentally observed Lorenz curves, corresponding to various weight parameters,
are shaded with the respective colors. The theoretical Lorenz curves align well with
the experimental ones, just like the wealth distribution functions. We calculated the
Pareto point values and the Gini indices from both the experimental wealth data and
the theoretical distributions. We established intervals for the experimentally obtained
values for each of the three years, finding that the values derived from the modeled
curves fell within the defined intervals. The values of the experimental and theoretical
Pareto points and Gini indices are listed in Table 5.1.
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Year G P
Data Model Data Model

1961 [0.377;0.379] 0.378 [0.366;0.368] 0.367
1989 [0.304;0.315] 0.312 [0.390;0.395] 0.391
2021 [0.543;0.579] 0.552 [0.282;0.299] 0.298

Table 5.1: Inequality metrics across the examined years: the Gini coefficient (G) and
Pareto point (P ). Boundaries derived from the data using varying weight parameters
and the value extracted from the fitted probability density function.

5.5 Chapter summary

This study provides a second confirmation of the applicability of LGGR dynamics in
modeling wealth distribution within socio-economic systems. The distinctive aspect
of this research lies in applying this dynamics with different growth and reset rates to
different economic scenarios, proving the model’s effectiveness in both cases.

The experimentally and theoretically determined inequality indices exhibit sub-
stantial agreement (Figure 5.2), providing additional confirmation of the validity of
the proposed probability density functions from a different standpoint. The Gini and
Pareto measures’ values indicate minimal social inequalities during the communist
regime. In 1961, the Gini stood at approximately 0.38, dipping to 0.31 by 1989. How-
ever, with 32 years of a market economy in this region, the Gini rose significantly to
about 0.55. This suggests the current intensification of social inequalities. Besides
demonstrating the modeling capability of the LGGR model, we also provided valu-
able inequality data for a well-defined geographic region spanning different historical
periods of Romania. Conducting similar studies in diverse regions worldwide within
well-delimited communities might be also interesting.

Chapter 6

Stationary LGGR dynamics of Lotteries

6.1 Introduction

In this chapter, we present a study that is also strongly related to the field of social
and economic sciences, yet distinctly different from the preceding two topics. Global
forms of gambling, have reached such a high level of complexity that it is appropriate
to investigate them as complex systems. Lotteries, in general, are widely studied from
numerous viewpoints like mathematical, dealing with winning chances [35]; psycho-
logical, trying to explain the psychological motivation of playing [36]; economical,
tailoring their regulations to enhance state revenue [37]. However, it has not been the
focus of statistical physics, therefore this simple approach possesses novelty.

In lotteries, participants gain the chance to win a Jackpot prize by selecting a set
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6.2. MODEL APPLICABILITY AND JACKPOT VALUE TIME-SERIES DATA

of numbers within a specified range. The selection of winners is based on periodic
random number draws, usually taking place on a weekly or bi-weekly basis. In the
case where a ticket bears the same numbers as those drawn, the possessor becomes
the winner. In the event of no winner, the prize pool continues to grow through suc-
cessive draws until a winner is ultimately announced [35]. The Jackpot’s escalation
following successive unsuccessful draws contributes to higher Jackpot values, that nat-
urally attract more players to participate [38]. This leads to accelerated growth until
the Jackpot is won. Participants may qualify for smaller prizes if they match fewer
numbers than needed to win the Jackpot but still exceed a minimum threshold. Fund-
ing for these smaller prizes, depending on the specific lottery rules, may originate from
either a portion of the Jackpot prize pool or be covered by a designated percentage of
the weekly sales.

Although the rules may seem simple, the combination of player behavior, the ran-
dom nature, and additional rules of the game emerge into complex dynamics. The
growth and reset subprocesses can be clearly identified in Figure 6.1, which displays
a segment of the Jackpot value time-series for the Powerball lottery [39, 40]. The
depicted time series of Jackpot values entirely characterizes the dynamics. The dy-
namics governing lottery Jackpot values, align with the principles underpinning the
LGGR mean-field type dynamical model.
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Figure 6.1: Time-series data depicting the Jackpot prize for Powerball spanning from
March 2017 to July 2019 [40].

6.2 Model applicability and Jackpot value time-series data

Jackpot time-series data for six lotteries, each with distinct rule sets and player-pool
sizes, was collected and processed [39, 41–45]. We collected the complete time series
for each of the six lotteries from the launch of the game until the present. However, we
focused only on shorter time periods during which neither the rules nor the territory
had been altered.

We have listed in Table 6.1 the selected time periods for analysis and modeling, for
each of the six lotteries. We have also written in separate columns the chance of win-
ning the Jackpot and the rules that define each lottery: the number of numbers that
need to be chosen and the size of the set of selectable numbers. We also present the
size of the player pool and some statistical data regarding the mean Jackpot value, and
average time between consecutively winning the Jackpot. Additionally, alongside the
above-mentioned characteristics of the lotteries, we also list the value of the product
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Chapter 6 | Stationary LGGR dynamics of Lotteries

w = PJ ·Pop for each lottery in a separate column. This simple parameter might pro-
vide valuable information about the lottery. Some of the data sources for each lottery
are also listed in Table 6.1. For the Powerball and UK lotteries, the visual represen-
tation of the time series considered for modeling can be seen in the (A) sections of
Figure 6.2.

While modeling the distribution of Jackpot values in this study, we exclusively
refer to the distribution of the rescaled Jackpot values by the average value of the
Jackpot over time (J → x = J/⟨J⟩{t}). The LGGR model is applicable only to ergodic
Markov processes. Therefore, first, we demonstrate the ergodicity of the six introduced
time series. The stationarity of the studied time series, as manifested through the
convergence of the mean Jackpot value across an extending time window ⟨x(t)⟩t ≈ c,
is illustrated in sections (B) of Figure 6.2. Their aperiodic nature is demonstrated by the
absence of autocorrelation (ACF (s) = Corr(x(t), x(t + s))), as depicted in section
(C) of Figure 6.2. The same holds for the other four lotteries as well. Based on this
argumentation we consider the lotteries under investigation as ergodic.
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Figure 6.2: The time series plots of the studied lotteries are presented. Each row
corresponds to the following: (A) The time series plot of the lotteries within a stable
period, where rules and player pools remain constant. (B) The mean of the time series
⟨x(t)⟩t, accompanied by the convergence value. (C) The autocorrelation function of
the time series ACF (s) up to s days, along with a confidence interval with p ≤ 0.05.

6.3 Modeling the growth and reset dynamics

Weestablished themathematical form of the growth and reset kernel functions through
analysis of the experimental data. This approach confirms the internal coherence of
the proposed model.

The growth rate

The Jackpot’s value accumulates from a fraction of the sales (which is determined by
the number of sold tickets) between two consecutive draws. Additionally, as a natural
consequence of the Jackpot value on players, the higher the Jackpot, the more tickets
are bought by players. Hence, a preferentially increasing form of the growth ratewould
be natural to assume: σ(x) = a(1 + b · x).

To ensure the validity of such a multiplicative Jackpot growth, we have computed
the actual growth function (the average relative increase in Jackpot values between
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6.3. MODELING THE GROWTH AND RESET DYNAMICS

Lottery Period Format PJ (≈) Pop. (≈) ⟨ J ⟩ (≈) ⟨tJ⟩
[draws] (≈)

w (≈) Source

Powerball 08.05.2015-
02.15.2020

5/69 +
1/26

1/292 · 10−6 292.2·106 172.2M.$ 14 1 [39, 46]

Megamillions 06.22.2005-
01.31.2010

5/56 +
1/46

1/258 · 10−6 152.4·106 66.8M.$ 9 0.58 [42, 47]

Euromillions 01.12.2012-
09.01.2016

5/50 +
2/9

1/116 · 10−6 272.0·106 46.4M.€ 5 2.34 [41, 48]

Canada
lotto

03.03.2007-
02.27.2019

6/49 1/14 · 10−6 35.2 · 106 9.8M.$ 3 2.70 [44]

UK lotto 01.07.1995-
09.09.2023

6/49 1/14 · 10−6 62.5 · 106 3.4M.£ 2 4.80 [45]

Texas lotto 07.14.1994-
07.18.2000

6/50 1/17 · 10−6 18.9 · 106 12.6M.$ 4 1.12 [43, 49]

Table 6.1: The lotteries examined in this article, within timeframes of consistent rules.
The table includes information on the lottery format, the likelihood of winning with a
single ticket (PJ ), the potential maximumplayer population (Pop.), and some statistical
properties such as the mean value of the Jackpot (⟨J⟩) and the average time between
consecutive Jackpot wins (⟨tJ⟩). Additionally, the lottery parameter w, as discussed in
Section 6.2, is also provided. In the header, the symbol "≈" suggests that the values in
the column are only approximately accurate.

successive draws) based on the time-series data for each lottery. In Figure 6.3a, we
present the experimentally derived growth rate for the Powerball lottery. The uncer-
tainty associated with each data point’s position is indicated in the figure, demonstrat-
ing the standard deviation of the data in the respective bins along both axis. For each
lottery, we exclusively determine parameter values using data from the lower region
depicted in the graphs (experimental growth rates of other lotteries are included in the
thesis). The experimentally determined growth rate in Figure 6.3 supports the chosen
linear form for the growth kernel function.

The reset rate

There is a connection between the growth and reset rates through the number
of sold tickets. Calculating the reset probability γ(y) for a specific number of sold
tickets, denoted as y, requires accounting for the number of distinctively completed
lottery tickets. The number of sold tickets (y) is proportional to the increment of the
Jackpot value between consecutive draws, which is the growth rate itself: y = l ·σ(x),
where l is a positive parameter mapping the growth to the number of thickets. The
reset rate as a function of the Jackpot value is given by Equation 6.1.

γ(x) =
(
1− βe−κ(1+b x)

)
, (6.1)

with κ = l ·a ·α. The parameter l is hidden in κ. The connection between growth and
reset brings in two more model parameters: α (or κ = l · a · α) and β. The nature of
the reset process (conventional or smart) is controlled by the parameter β.

To experimentally calculate the reset rate we had enough data only for the Cana-
dian and UK lotteries. Figure 6.3b illustrates the experimentally determined reset rates
for the UK lotteries, plotted against the rescaled Jackpot x. We emphasize again that
the final few bins in these plots contain a small number of data entries, making this
section of the plot less reliable. To demonstrate the consistency, in Figure 6.3b we vi-
sually compare the experimental reset rates with Equation 6.1. The limited qualitative
agreement can be attributed to the poor quality of the data.
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Figure 6.3: (a) The experimental growth rate, denoted as σ(x) and expressed as a func-
tion of x = J/⟨J⟩{t}. The data averages are accompanied by error bars representing
the ensemble’s standard deviation. The chosen growth kernels (σ(x) = a(1 + b · x))
with the a and b parameter values used to fit the relative Jackpot distributions is pre-
sented alongside the experimental results. (b) A comparison between the experimen-
tal reset rate and its theoretical counterpart for the UK lotteries. The theoretical reset
rate is based on parameters obtained from fitting probability density functions and the
growth rates. The limited qualitative agreement can be attributed to the poor quality
of the data. We provide the number of data points, Ndata, utilized for calculating the
averages. This presentation aims to emphasize that the regions to the right of the red
vertical lines should not be considered reliable for statistical inference.

6.3 Statinary probability density function

Relying on the experimentally supported linear form of the growth rate and the de-
rived relation between the reset and growth rates, the analytical form of the stationary
probability density function:

ρs(x) = C (1 + b x)−λ−1eν Ei(−κ(1+b x)), (6.2)

where C is the normalization constant, and the parameters λ and ν are derived from
the parameters appearing in the growth and reset rates: λ = 1/(a · b), ν = β ·λ. Ei(x)

in the exponent is the Exponential Integral function, defined as Ei(x) = −
∞∫
−x

e−t

t dt.

When β = 1, the reset scenario is conventional (the reset rate is positive), happen-
ing always to s minimum Jackpot value x = J0. When β > 1 the reset rate can be
negative (for smaller x values) implying that, following the reset process, the growth
dynamics restarts with a Jackpot value x > J0. Such dynamics can be identified in the
case of the Canadian and UK lotteries. The shortcoming of the obtained form of ρs(x)
is that neither the normalization constant C nor the expected value of x can be ana-
lytically calculated. Therefore, when fitting the experimental data, the normalization
and rescaling to ⟨x⟩ = 1 of the probability density function need to be numerically
performed for fixed parameter values (a, b, κ, and β).

In Figure 6.4, we present the experimental distributions of the relative Jackpot
values (x/⟨x⟩) alongside the probability density function described by Equation 6.2.
The comparison between the experimental data and the stationary probability density
function obtained from the model reveals good qualitative agreement.
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Figure 6.4: The probability distribution at equilibrium for the Jackpot prizes ρs(x) as
a function of the relative Jackpot for the six examined lotteries.

6.4 Discussion and summary

Despite variations in lottery formats, the resulting dynamics of the collective system
involving players and the rules set by lottery associations are similar. The resulting
complex dynamics is the same as the one mathematically modeled by the LGGR ap-
proach. To select a linear growth rate, we validated our intuition using real-world data,
as illustrated in Figure 6.3. Additionally, the relation described in Equation 6.1 linking
growth and reset rates was qualitatively confirmed through the experimentally com-
puted reset rate (Figure 6.3b). Utilizing these rates, in the stationary limit, the LGGR
model generated a probability distribution function (Equation 6.2) that, with appropri-
ate parameters, aligns consistently with the computed probability density functions
of Jackpot values in all six lotteries under study. The fitting process of the data was
consistently conducted, taking into account both the experimental growth curves and
the obtained Jackpot distributions for each lottery separately. The goodness of fit for
the reset rates was not considered due to the limited amount of data available. The ob-
jective was not to achieve a perfect fit for the experimental Jackpot distributions and
the supporting data. Designing a perfect fit for the experimentally obtained probabil-
ity density functions is unfeasible given the limited availability of experimental data
and the dynamic nature of lottery rules, which change occasionally. Our objective
was to develop a statistical mean-field model that offers a consistent demonstration
of the stationary fluctuations of Jackpot values. A noteworthy aspect of this model is
its capacity to illustrate two distinct lottery dynamics: one characterized by a com-
plete reset (Euromillions, Powerball, Megamillions, Texas lottery) and the other by a
"smart-reset" (UK Lotto and Canadian Lotto) process.
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Chapter 7

Stationary LGGR dynamics in biological systems

7.1 Introduction and motivation of the study

Biological systems can be interpreted as complex systems, because of their numerous
components and the complex interactions between these. In the case of wood ecosys-
tems, the relevant quantity whose distribution is frequently studied is the size of the
trees, quantified as the Diameter at Breast Height (DBH). The fundamental ecological
processes present in all biological systems, that are shaping the macroscopic view of
woodland ecosystems, include tree growth, mortality, tree recruitment, and the diver-
sification of species [50, 51]. Most of the existing models in the literature consider
only the first two processes [50–52]. Although the time scale of the dynamics of wood
ecosystems is much slower than the one of financial systems, for example, this dynam-
ics is still the string that leaves its fingerprint on the view of such ecosystem. Thus,
even if equilibrium conditions (stationarity) take much more time to be reached, the
same modeling methodologies can be applied.

Considering the first three processes the analogy between the LGGR dynamics
and these is straightforward. The last process might be less obvious to understand
in the context of the LGGR dynamics, but the demonstration of its effect as a size-
independent reset process is deduced in Chapter 2. By considering old enough wood-
land ecosystems, we assume the applicability of the stationary limit of the LGGR
model. We considered modeling deciduous tree ecosystems of two different types:
semi-natural forests with mature trees and ancient wood-pastures. Both of the ecosys-
tems are geographically located in central Romania. We focused on three tree species
that are present in both of these ecosystems: Oak, Hornbeam, and Beech. Besides
the two ecosystems in Romania, to confirm the universal nature of our findings, we
analyzed data from comparable ecosystems in Hungary [53].

According to the literature, the distribution of tree sizes in deciduous forests is pri-
marily fitted by Gamma orWeibull distributions. Here, we introduce a mathematically
straightforward and coherent modeling method that offers robust theoretical support
for the validity of the Gamma distribution concerning tree stem diameters within these
woodland ecosystems. Our approach comprehensively integrates the four ecological
processes mentioned earlier. To highlight the contrast between size distributions of
trees in quasi-natural, andmature environments versus those in artificial wood ecosys-
tems where human influence is more pronounced and environmental conditions are
more homogeneous, we also analyzed data from Poplar tree plantations in eastern
Hungary. These measurements served a dual purpose. The first purpose is to illustrate
the contrast in tree size distribution between these controlled ecosystems, which had
not yet attained equilibrium state, and mature natural woodland environments where
a stationary tree-size distribution is presumed. The second purpose is to glean in-
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7.2. EXPERIMENTAL TREE-SIZE DISTRIBUTIONS

sights into the growth dynamics of genetically identical trees developing in controlled
settings.

In addition to the DBH datasets that we described above, we also had access to
auxiliary datasets from the United States National Park Service (NPS) [54], that we
utilized for revealing the form of the growth and reset functions.

7.2 Experimental tree-size distributions

Our databases contain exhaustive measurements of tree diameters at breast height,
forming eight tree size datasets [55]. Based on these datasets we computed the DBH
distributions for each species and ecosystems apart. In figure Figure 7.1, these DBH
distributions are shown. Based on this figure one can already notice the significant
difference between the DBH distributions in wood-pastures, forests, and plantations.

Scaling the DBH values with their respective average DBH (x → y = x
<x> ) led to

the collapse of the resulting distribution functions (lower panels of Figure 7.1). In nat-
ural ecosystems, this converging distribution follows the Gamma distribution, while
in plantations, it corresponds to the Normal distribution. This collapse of the DBH
distributions, unveils an intriguing universality across these environments, providing
valuable insights into their comparative dynamics.

7.3 Modeling through the LGGR framework

For modeling, we once again apply the LGGR modeling framework. As anticipated
in the section describing the experimental data, the studied semi-natural forests and
ancient wood-pasture environments, due to their long existence, are already in an
equilibrium state.

The growth rate

To determine the mathematical form of the growth rate, we utilized data from
the United States National Park Service [54]. The annual growth rate, identified from
tree ring diameters, was analyzed for three tree genera as depicted in Figure7.2a. The
averaged annual growth rate is plotted against DBH/⟨DBH⟩ (DBH measured ap-
proximately 1 m above the ground). A suitable mathematical representation of the
growth rate that aligns with the data:

σ(x) = d1
x

x+ b
, b ≥ 0, (7.1)

where d1 and b are positive constants. In Figure 7.2, the trend fitting the experimental
growth rate is defined by Equation 7.1.

The reset and diversification rates

Mortality and recruitment: Considering that the recruitment rate displays a sub-
stantial negative reset for smaller tree sizes and the mortality rate is a converging
function, taking positive values for greater tree sizes [56, 57], the combined impact of
these functions approximates an increasing but converging function.

Diversification: Through diversification, new young trees of various species ap-
pear to replace the dying old trees. Consequently, the number of trees belonging to
a species decreases multiplicatively. This multiplicative decrease in trees of a specific

23



Chapter 7 | Stationary LGGR dynamics in biological systems

Figure 7.1: Empirical probability density functions representing DBH distributions
are illustrated. In the (a) panel, the distributions for natural forests (blue) and wood-
pastures (orange) are presented alongside the Gamma fit obtained from the LGGR
model (refer to Equation 7.4). The (b) panel displays the DBH distribution within a
10-year-old (green) and a 15-year-old (red) Poplar plantation, both with closely aligned
ecological backgrounds. The experimental distributions are fittedwith Gaussian distri-
butions. The accompanying histogram-type plot serves as an additional visual aid, em-
phasizing differences in mean DBH values and showcasing the presence of empty bins.
The (c) and (d) panels illustrate the distributions of the relative DBH (x → y = x

<x> )
values. The (c) panel shows the DBH distribution in semi-natural woodlands (same
data as in panel (a)), while the (d) panel corresponds to the two plantations (same data
as in panel (b)).

species results in an exponential decline in its abundance over time. This exponential
decrease in the number of trees introduces a state-independent reset-like term (κ < 0)
in the evolutionary equation.

By combining the reset kernel motivated by the mortality and recruitment pro-
cesses with the negative diversification rate (κ), the resulting form of the reset rate
will be as follows:

γ(x) = f1
x− r

x+ b
+ κ ≡ d2

x− c

x+ b
, (7.2)

24



7.4. DISSCUSSIONS AND SUMMARY
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Figure 7.2: (a) The growth rate was inferred from tree ring width data, plotted on a
log-log scale against relative stem diameter at one meter above the ground for three
tree genera (specified in the legend). The dashed line represents the trend defined
by Equation 7.1, with the associated parameters displayed in the figure. Error bars
depict the standard error around the data points. (b) Alignment among the relative
size distribution of dead trees, and the product of the selected reset rate and the fitted
tree-size distribution. The histogram illustrates the size distribution of dead Oak trees
in surveyed national parks in the USA, with sizes rescaled by the mean. The fit is
defined asH · ρs(y)γ′(y), incorporating a constantH necessary for aligning with the
experimental histogram. The fit is determined by r = 0.22 and parameters estimated
from the experimental probability density function (Figure 7.1a). The data used here
was sourced from [54].

where:
c =

f1r − bκ

f1 + κ
> r > 0,

d2 = (f1 + κ) < f1 and d2 > 0.

(7.3)

In Equation 7.3 r, b and f1, are positive constants.

Stationary size distribution

With the consideration of the growth (Equation 7.1) and reset kernel (Equation 7.3)
functions, the form of the stationary probability density function already renormalized
to the mean DBH value (ρs(y)) is:

ρs(y) =
dc d

( c
(1−c)d)Γ[c d]

e−dyydc−1

(
y +

c

(1− c)d
− c

)
, (7.4)

where d = d2/d1. As depicted in Figure 7.1c, the probability density of the x/⟨x⟩
distribution in forests and wood-pastures aligns, displaying a close approximation to
the form given by Equation 7.4. The fitting parameters are listed in the legend of the
figure.

7.4 Disscussions and summary

With data concerning the size distribution of dead trees in various mature decidu-
ous forests, we can evaluate the adequacy of the proposed reset rate. Utilizing ρs(y)
(Equation 7.4), we anticipate that the shape of the distribution of dead trees’ sizes will
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resemble the product ρs(x) ·γ′(x), where γ′(x) is defined by Equation 7.3 when κ = 0.
To assess the validity of this reset rate, we utilized again data from [54], specifically
focusing on the diameter of dead trees (ρs(y) · γ′(y)). Figure 7.2b illustrates the Oak
species’ dead tree histogram. The dashed line represents a fit defined by ρs(y) · γ′(y),
with the parameters indicated in the legend. The best-fit parameters were determined
by minimizing the Root Mean Squared Logarithmic Error through iteration across a
fine grid within the parameter space. Equal consideration was given to fitting the
growth data (Figure 7.2a), the reset rate data (Figure 7.2b), and the DBH distribution
data (Figure 7.1a) when selecting the parameters. Simultaneously, we minimized the
Root Mean Squared Logarithmic Error for all three quantities.

Understanding the diversity patterns of tree sizes in natural deciduous wooded
environments is a complex challenge, requiring new data and realistic mathematical
models. Our contribution involves presenting fresh evidence to support the validity
of the Gamma distribution [58] in deciduous forests. We have analyzed comprehen-
sive measurement data for three tree taxa in distinct ecosystems. We have shown an
intriguing statistical universality. Once tree diameters are rescaled using the aver-
age diameter for each species within the ecosystem, all datasets merge into a unified
distribution. Observations from young poplar plantations indicate distinct size diver-
sity patterns, resembling a Normal distribution. Consequently, these results imply
the utilization of a Gamma-type fit of tree-size distribution as a potential indicator of
woodland naturalness and maturity. We chose a simpler analytically solvable model
with only two free parameters instead of a complex quantitative model with numerous
unknowns. Since our primary focus was not on delivering robust statistical analyses
but rather on crafting a methodically grounded analytical approach, our parameter
optimizations were directed toward ensuring the consistent determination of model
parameters within the framework. To strengthen confidence in the model, further
high-quality data collection is crucial.

Chapter 8

General summary

As a general summary let us repeat the main presented ideas and results of this thesis.
The present thesis contains four modeling studies of real-world phenomena observed
in socio-economic and biological systems. The connecting pillar of these four studies
is that for each of them, the Local Growth and Global reset model was applied. The
thesis also provides a pedagogical presentation of the LGGR model.

The second part of the thesis contains the modeling of phenomena from socio-
economic systems. Within this category, we presented the modeling of wealth distri-
butions in leading countries with relatively stable economies and also in a small com-
mune from Romania. The first study (Chapter 3) belonging to this topic deals with the
distribution of individual wealth in the United States of America, Russia, and France.
In the case of the USA and Russia, the presence of negative wealth in the data sug-
gests the existence of debt in these societies and also the precise nature of the dataset.
Our model fits the entire wealth spectrum, outperforming empirical data against the

26



Bouchaud and Mezard model, especially for small wealth values.

In the second study of this part of the thesis (Chapter 5) we applied the LGGR
model for modeling the wealth distribution in a small Transylvanian community. The
comprehensive analysis of wealth distribution patterns provides a revealing look at
economic dynamics over various periods: 1961 - beginning of the communism; 1989 -
the final year of communism; and 2021 - the present economic picture of the commune.
The study reveals the complexities of wealth distribution dynamics across different
economic systems. The collected empirical data validates the theoretical model and
provides concrete examples of economic shifts.

The third chapter, although still strongly related to socio-economic systems, dif-
fers significantly from the preceding two. In Chapter 6 we used the LGGR model for
describing the dynamics of lottery Jackpot values for six lotteries: Powerball, Megamil-
lions, Euromillions, Canadian lotto, UK lotto, and Texas lotto. The emergent evolution
of the Jackpot value is influenced by straightforward rules, player behavior that influ-
ences ticket sales, and a probabilistic reset rate triggered by occasional winnings. Con-
sidering the linear growth and an inherent growth-reset relation, the LGGRmodel gen-
erates a probability density function consistent with observed Jackpot distributions.

The last study (Chapter 7) steps out of the frame of socio-economics and targets
biological systems. It delves into the complex challenge of understanding diversity
patterns in tree sizes within natural deciduous wooded environments. Building on ex-
isting literature, we confirm that the diameter distribution of trees from specific decid-
uous species alignswith a Gamma distribution inmature natural forests. Incorporating
mechanisms guiding the evolution of tree populations, in simple mathematical forms
of growth and reset rates, the proposed model successfully captures this universal-
ity, suggesting consistent parameters across taxa and environments. Additionally, we
study young poplar plantations, noting distinct patterns resembling a Normal distri-
bution. This difference is attributed to the artificially created, quasi-identic conditions
of each tree and the immaturity of these plantations. We suggest future investigations
into growth, reset, and diversification dynamics in similar woodland environments.

The results presented here emphasize that the Local Growth and Global Reset
model provides a comprehensive framework for understanding phenomena observed
in socio-economic and also in biological systems.
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