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1. Introduction 

1.1. Motivation and background 

Greenhouse gases (GHGs) are necessary for life to exist on earth as they produce the greenhouse effect, 

which helps the planet retain the heat from the sun and causing the surface to naturally warm, however, 

when the GHG concentrations rise excessively additional heat gets trapped leading to the increase of global 

temperature [1]. 

The three main anthropogenic GHGs are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) 

with varying contribution levels towards global warming. The atmospheric concentrations of GHGs have 

reached all-time highs in 2019 for CO2 (410 ppm), CH4 (1866 ppb), as well as N2O (332 ppb) as depicted 

in Figure 1.1. These have contributed to an increase in global surface temperature of about 1.1 ℃ compared 

to values in 1850-1900 [2].  

 

 

Figure 1.1 Increase of GHG concentrations in the atmosphere [2] 

It is also important to take note of the GHG emission sources and activities that contribute to emissions 

on a global scale, coupled with the type of gases related to each activity, presented in Figure 1.6 for 2019. 
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The energy sector accounts for almost 76% of total emissions with electricity and heat production as the 

largest share of 31.8%. The International Energy Agency (IEA) [3] determined that in 2019, despite a 1.3% 

decrease in CO2 emissions from power production, the power sector was still the main source of these 

emissions, accounting for 41% of all energy-related CO2 emissions [4]. 

Wastewater emissions encompass all of the major GHGs as the accumulation of organic matter and 

residuals from plants, animals, humans, and the waste produced by them decomposes resulting in emissions 

of carbon dioxide, methane, as well as nitrous oxide [5,6]. Wastewater is attributed 1.3% of global GHG 

emissions and around 1% of the worldwide energy consumption. As a consequence, there has been an 

increase in popularity in the study of their energy consumption and GHG emissions. 

Municipal wastewater treatment has frequently been carried out in an unsustainable manner, with 

significant energy demands, resulting in a substantial impact on climate change. The quantity and quality 

of influent wastewater as well as the treatment method have a significant impact on the WWTPs energy 

demand [7]. The quantity of global wastewater production is undergoing a constant growth due to the 

growth of the human population and the quickening pace of industrialization [8], and is expected to reach 

an increase of 51% by 2050 in comparison with current levels [9]. At the same time, the increasingly stricter 

regulations regarding effluent quality led to the development and application of more advanced treatment 

technologies, however, these also increased the plant’s energy demand [10]. As the majority of the energy 

originates form non-renewable sources, more than 70% of the worldwide energy production in 2022, its 

generation is accompanied by significant emissions [11]. 

The research of WWTP control technologies in view of GHG emission reduction gains significance 

considering international agreements, especially in the case of urban plants that encounter steadily growing 

flow rate of influent while striving to meet GHG reduction goals. Lowering energy demand and GHG 

emissions in WWTPs may be accomplished by optimizing energy efficiency in terms of structure and 

equipment, energy recovery processes, technical procedures, and cost management. It is clear that adopting 

a more energy-efficient strategy may reduce both operational costs and energy demand [12]. 

1.2. Models commonly used in the WWTP field of study 

Activated sludge process modelling is now often used in the design and operation of WWTPs. It is 

necessary to take numerous factors into consideration when simulating the activated sludge systems, which 

encompasses processes like carbon oxidation, nitrification and denitrification. The first aim was to develop 

a model with minimum of complexity, which resulted in the Activated Sludge Model No. 1, also known as 

ASM1. When the knowledge on the underlying processes of the biological phosphorus removal grew, the 

Task Group integrated both the biological nitrogen removal and biological phosphorus removal into a new 
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model, the Activated Sludge Model No. 2 (ASM2). The ASM2 model was expanded to the Activated 

Sludge Model No. 2d (ASM2d) with the inclusion of denitrifying PAOs. The most recent modelling 

platform, the Activated sludge Model No. 3, was developed with the potential of tracking internal storage 

compounds, that are crucial to organisms' metabolisms [13]. 

1.2.1. Activated Sludge Model No. 1 

The Task Group embraced the idea of switching functions to toggle the process rate equations on and 

off as the environmental conditions are modified. This was especially important for processes that were 

reliant on the sort of available electron acceptor, as biological processes depend on heterotrophic or 

autotrophic bacteria. This phenomenon can be described by incorporating a dissolved oxygen switch into 

the process rate equations, as presented in Eq. (1.1). 

𝑆𝑂

𝐾𝑂+𝑆𝑂
 (1.1) 

where SO represents the dissolved oxygen level. 

In this manner, by assigning a relatively smaller value to Ko the switching function's value is close to 

unity for moderate dissolved oxygen (DO) concentrations but drops to zero as the DO concentration reaches 

zero. A similar approach can be adopted for processes that require the absence of dissolved oxygen through 

a switching function in the form shown in Eq. (1.2). 

𝐾𝑂

𝐾𝑂+𝑆𝑂
 (1.2) 

Another important aspect of the model is that the organic matter present in wastewater was subdivided 

into a number of categories, as well as the fact that both the mass balances and concentrations were based 

on chemical oxygen demand (COD) units. This unit was selected from the three measures commonly 

utilized, i.e., biological oxygen demand (BOD), total organic carbon, and COD, as it was considered to 

offer a connection not only between the biomass and oxygen consumption, but also to the electron 

equivalents in the substrate. 

The very first distinction between types of organic matter can be made based on their biodegradability. 

A non-biodegradable material passes through unaltered when entering an activated sludge system due to it 

being biologically inert. Further subdivision can be made taking into account the physical state of the matter, 

which can be soluble or particulate. The inert soluble matter is noted as SI and its concentration in the 

effluent remains unchanged compared to the influent concentration. The suspended counterpart, XI, is 

eliminated from the system as sludge waste after being entangled in the activated sludge. Similarly, 

biodegradable organic matter can also be divided into readily biodegradable and slowly biodegradable 
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parts. In order to ease the modelling process, the readily biodegradable part, noted as SS, is considered 

soluble, while the slowly biodegradable matter (XS) is taken as particulate. 

Heterotrophic biomass (XB,H) is produced in either anoxic or aerobic circumstances by growth on the 

readily biodegradable substrate and is considered to halt under anaerobic conditions. Loss of biomass due 

to decay is also incorporated in the model taking into account death, predation, lysis, and endogenous 

metabolism. This process is considered to result in slowly biodegradable substrate and other particulate 

matter, XP, that do not take part in further biological processes. 

Similar to carbonaceous matter, nitrogenous matter in wastewater may also be broken down into two 

categories: non-biodegradable and biodegradable, each with further subcategories. The particulate part of 

the non-biodegradable nitrogen compounds is linked to the non-biodegradable particulate COD, while the 

soluble category was chosen not be detailed in the model due to its minor amount. In terms of the 

biodegradable nitrogenous matter, this can be further divided into: ammonia (SNH), i.e., the free compound 

as well as its salts; soluble organic nitrogen, noted as SND; and particulate organic nitrogen, XND. 

Heterotrophic bacteria interact with the soluble organic nitrogen and transform it into ammonia nitrogen. 

Ammonia nitrogen is then used as an energy source for autotrophic nitrifying bacteria as well as a source 

of nitrogen for the synthesis of heterotrophic biomass. For the sake of simplicity, it is assumed that the 

autotrophic conversion of ammonia nitrogen to nitrate nitrogen is a one-step process that demands oxygen. 

Figure 1.3 illustrates, the complex interactions of the system components modelled as 8 processes in the 

ASM1. 
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Figure 1.2 General scheme of the ASM1 

1.2.2. Activated Sludge Model No. 2d 

To take into consideration the notion that phosphorus accumulating organisms (PAOs) may utilise cell-

internal organic storage products for denitrification, two more processes were introduced. ASM2d features 

denitrifying PAOs, in contrast to ASM2 which limited the growth of PAOs to only aerobic circumstances.  

ASM2 includes poly-phosphates, a portion of the activated sludge that is crucial for the operation of 

the activated sludge system but does not exert any COD, in contrast to ASM1, which was based solely on 

COD for all particulate organic material and the total concentration of the activated sludge. This leads to 

the potential for total suspended solids (TSS) inclusion in the model. Additionally, TSS permits the 

incorporation of mineral particulate solids in the influent to treatment facilities as well as the creation of 

such particles in the context of phosphorus precipitation. 

Compared to the 8 processes that were taken into account for the development of ASM1, the ASM2d 

incorporates a total of 21 processes, which are briefly described below.  

The hydrolysis reactions do, in fact, depend on the electron acceptor present, and as such three processes 

were differentiated in order to fully describe the hydrolysis process: 

1. Aerobic hydrolysis of slowly biodegradable substrate, which occurs under aerobic conditions. 

2. Anoxic hydrolysis of slowly biodegradable substrate that takes places in anoxic circumstances. 
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Anaerobic hydrolysis of slowly biodegradable substrate which describes the hydrolysis process in an 

anaerobic environment. 

The hydrolysis of the slowly biodegradable substrate, the aerobic degradation of the fermentation 

products and the substrates (aerobic growth), the anoxic oxidation of the fermentable organics (SF) and 

fermentation products (SA), the reduction of nitrate SNO3 (denitrification), and the anaerobic fermentation 

of the fermentable organics to fermentation products are all carried out by the heterotrophic organisms. 

These organisms are also susceptible to lysis and degradation. 

4. and 5. Heterotrophic organisms develop aerobically on fermentable substrates and fermentation 

products. The two degradable organic substrates SF and SA are consumed in these two processes, that were 

considered parallel processes. 

6. and 7. The heterotrophic organisms undergo anoxic growth on fermentable substrates and on 

fermentation products accompanied by denitrification. These are comparable to the two aerobic growth 

processes, however nitrate, SNO3, is needed as the electron acceptor as opposed to oxygen. 

8. Fermentation of heterotrophic organisms that is supposed to proceed in anaerobic conditions in 

which fermentation products SA are obtained from the readily biodegradable substrate SF. 

9. Lysis of heterotrophic organisms in which all decay and loss processes are considered that relate to 

the heterotrophic organisms. 

The phosphorus-accumulating organisms (XPAO) are known to have the ability to store phosphorus as 

poly-phosphate XPP. The capability of certain phosphorus-accumulating organisms, or PAO, to denitrify 

has been demonstrated, contrary to earlier assumptions that they couldn't. This major objection, that PAO 

considerably contribute to denitrification, which is not specified in ASM2, has been addressed with the 

advent of ASM2d. In this model (ASM2d) it is considered that processes involving PAO occur in both 

aerobic and anoxic circumstances. However, their growth is limited to the cell internal organic materials 

(XPHA). 

10. In order to store cell external fermentation products SA in the form of cell internal organic storage 

material XPHA, it is hypothesized that PAO may release phosphate, SPO4, from poly-phosphate, XPP, and use 

the energy that becomes available from XPP's hydrolysis. 

11. and 12. Polyphosphate is stored in both aerobic and anoxic conditions. Energy for the PAO can be 

obtained from the aerobic or anoxic respiration of XPHA in order to store ortho-phosphate, SPO4, in the form 

of cell internal polyphosphates, XPP. 

13. and 14. Growth of phosphorus-accumulating organisms under anoxic and aerobic conditions. These 

organisms are thought to only grow by use of the cell internal organic storage products (XPHA). It is 

reasonable to suppose that the organisms utilize ortho-phosphate, SPO4, as a nutrient for the synthesis of 

biomass since phosphorus is continually produced by the lysis of XPP. 
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15., 16. and 17. All PAO fractions are lost or decay as a result of death, endogenous respiration, or 

maintenance. 

In terms of the nitrification process, the transformation of ammonium to nitrate is considered to occur 

directly, in a one-step process while nitrite, as the intermediate compound, is not taken into account as a 

component for the model. 

18. The nitrifying organisms grow in aerobic environment by consuming ammonium as nutrient and 

substrate resulting in the production of nitrates. This nitrification process also reduces the alkalinity. 

19. The lysis of nitrifiers is modelled analogously to the lysis of heterotrophic organisms and to ASM1. 

The last two processes integrated in the ASM2d describe the chemical precipitation of phosphates. In 

biological nutrient removal systems, naturally occurring metals in the wastewater, e.g., such as Ca2+, and 

the high concentration of released soluble ortho-phosphate, SPO4, may cause phosphorus to chemically 

precipitate (e.g., as apatite or calcium phosphate). Another widely used method for removing phosphorus 

is simultaneous precipitation of phosphorus with the addition of iron or aluminium salts. Biological 

phosphorus removal may be combined with simultaneous precipitation if the carbon to phosphorus ratio is 

unfavourably low. 

20. And 21. The basis of the precipitation model is the presumption that precipitation and redissolution 

are opposing processes that, at steady state, are in balance with each other as described in the equilibrium 

reaction Eq. (1.1). 

𝑋𝑀𝑒𝑂𝐻 + 𝑆𝑃𝑂4 ↔ 𝑋𝑀𝑒𝑃 (1.1) 

The following reaction rates may be applied in order to model the precipitation and redissolution processes: 

𝑟𝑎𝑡𝑒20 = 𝑘𝑃𝑅𝐸 ∙ 𝑆𝑃𝑂4 ∙ 𝑋𝑀𝑒𝑂𝐻 (1.2) 

𝑟𝑎𝑡𝑒21 = 𝑘𝑅𝐸𝐷 ∙ 𝑋𝑀𝑒𝑃 (1.3) 

In case the processes are in equilibrium, the equilibrium constant may be written as: 

𝐾𝑒𝑞 =
𝑆𝑃𝑂4∙𝑋𝑀𝑒𝑂𝐻

𝑋𝑀𝑒𝑃
 (1.4) 

1.3. Artificial neural network models [14] 

Artificial neural networks are parallel distributed processors made up of basic processing units called 

neurons that are modelled after the natural neural systems. ANNs fall under the category of machine 

learning models that have high generalization and learning capabilities for a range of classification, 

prediction, and modelling tasks [15]. 

The basic building block of an artificial neural network, i.e., the neuron, is illustrated in a general form 

in Figure 1.4. The input data (p) is conveyed by a connection which multiplies it by a weight (w). The bias 

(b), which has a constant value of 1, is then added to the product of the previous multiplication to form the 
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net input (n). The net input is further transmitted to become the argument of a transfer function (f), that is 

usually a step function or some sort of sigmoid function, which produces the output of the neuron (a). 

 

 

Figure 1.3 Schematic of a neuron with bias 

The neuron can also have several inputs at the same time, or a vector of input data. In this case each of 

the inputs is transmitted through a separate connection with its own distinct weight as illustrated in Figure 

1.4. As such, the net input will be calculated as the dot product of the weights and inputs also shown in Eq. 

(1.5). 

𝑛 = 𝑤1,1𝑝1 + 𝑤1,2𝑝2 + ⋯ + 𝑤1,𝑁𝑝𝑁 + 𝑏 (1.5) 

where N is the number of elements in the input vector. 

 

 

Figure 1.4 Representation of a neuron with multiple inputs 

Several neurons can be employed in order to create a layer of neurons. An artificial neural network is 

made up of one or more layers like the one illustrated in Figure 1.5. The number of neurons in the layer is 

noted by L, and it can be observed that in case of multiple layers the input information is transmitted through 

a weight matrix with L rows and N columns. The indices in the matrix show the source and destination of 

the information, i.e., from element N to neuron L. In this case, it can be seen that the layer of neurons will 

provide a vector of outputs consisting of L elements. 
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Figure 1.5 Illustration of a neuron layer 

As previously mentioned, an ANN can be created by connecting multiple such layers of neurons, e.g., 

the three-layer network presented in Figure 1.6. In this case a notation will be added to all the architecture 

elements in order to keep track of which layer they belong to. This allows for each layer to be treated as a 

separate single-layer network. The final layers where the outputs of the ANN are computed is usually 

referred to as the output layer, whereas the others are known as hidden layers. The first two layers (Layer 

1 and Layer 2) of the illustrated ANN are hidden layers, while the last layer (Layer 3) is the output layer. 

 

Figure 1.6 Architecture of a three-layer ANN 
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1.4. Goal and objectives 

The scope of this thesis is the assessment and optimization of the performance of various wastewater 

treatment technologies and strategies applied to the energy intensive urban wastewater treatment processes 

by employment of artificial intelligence (AI) techniques, aiming for potential energy efficiency 

improvements, cost and GHG emissions reduction. The following is a list of the objectives to be met in 

order to accomplish the intended goals: 

1. A thorough review of the literature to grasp the current state of research and state-of-the-art 

technologies. 

2. Development of AI models for various wastewater treatment plant configurations and control 

strategies in order to obtain a swiftly operating model that can be further employed in 

optimization of the wastewater treatment process in terms of environmental and economic 

improvements.  

3. Optimization of AI model fidelity through the study of the model architecture, in the case of 

artificial neural networks (ANNs), by searching for the best hyperparameter values via both 

full factorial and genetic algorithm optimization processes. 

4. Simulation and optimization of existing and proposed control strategies related to energy 

efficiency, GHG emissions, effluent quality, and overall cost taking into account several 

WWTP system configurations by the use of the developed AI models. 

5. Development of ANN models for detection and identification of sensor fault types aimed at the 

DO sensor in order to ensure the proper operation of the WWTP by avoiding degradation in 

effluent quality or increase in energy consumption due to the prompt detection and 

identification of defects. 

WWTPs account for 1-2% of overall GHG emissions with an upward trajectory [16], leading to an 

increase in attention on the subject of global warming [17]. Of the three main gases the biological treatment 

is responsible for the majority of CH4 and N2O emissions, while the non-biogenic CO2 emissions are related 

to the plant’s energy consumption and chemical use [18]. Regarding the biogenic CO2 emissions, these are 

not to be taken into consideration for the GHG emission inventories [19] although this could lead to under-

estimation of GHG emissions from WWTPs [20]. The biological treatment can also reach energy 

consumption of 50% to 70% of the WWTPs energy demand, in case of plants in China [5]. At the same 

time, the largest share of the plant carbon footprint, i.e., up to 78.4%, can be attributed to N2O emissions 

[21]. As such, the denitrification process, namely the aeration process, plays an essential role in the optimal 

operation of the WWTP and the studies on the influence of DO on plant operation have grown in popularity 

[22]. 
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Another important aspect in maintaining a sustainable operation is the sensor malfunctions as these 

bring forth enormous disruptions in process control and energy efficiency [23]. These sensor faults may 

arise as a result of harsh environmental conditions, electrical failure, or even incorrect calibration [24], and 

their timely detection is essential in mitigating the potential impact of these malfunctions and in maintaining 

process integrity [25]. 

The amount of wastewater is expected to grow concurrently with the population and economy, while 

standards for the effluent waters are expected to become more stringent that would also lead to an increase 

in GHG emissions [26]. Taking all of the above into consideration, the following case studies were selected: 

1. Recycle rate flowrate optimization for WWTP waterline 

2. Control loop setpoint optimization for WWTP waterline 

3. Air flowrate optimization for WWTP waterline 

4. Seasonal DO setpoint optimization for full scale WWTP 

5. Detection and identification of DO sensor fault types 
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2. WWTP simulation and performance assessment methods 

A benchmark simulation environment was needed to be defined for simulation-based evaluation of the 

proposed strategies for the WWTPs. The development of the benchmarks pursued to combine simplicity 

with reality and conventional standards. The purpose of these simulation models was that, once validated, 

the proposed control strategy could be employed and evaluated by a well-defined set of criteria. Over the 

years several such Benchmark Simulation Models (BSMs) were developed. 

2.1. WWTP simulation with BSM1 

The first benchmark simulator considers a relatively simple plant layout focused entirely on the water-

line of the WWTP (Figure 2.1). The system consists of a five-compartment bioreactor with anoxic-oxic 

configuration employing the ASM1 for the modelling of process variables, also known as AO, followed by 

a secondary settler (clarifier) modelled using the double-exponential settling velocity function proposed by 

Takács et al. [59]. Of the five reactors the first two are considered the anoxic reactor, while the latter three 

reactors are aerated via compressed air. This is one of the common approaches for biological nutrient 

removal combining the nitrification and predenitrification processes, which is also frequently employed at 

full-scale WWTPs. For the description of the biological processes taking place in the reactors the ASM1 

was adopted. 

 

 

Figure 2.1 BSM1 plant general overview 

Although the BSM1 provides a commonly adopted approach to wastewater treatment systems and lays 

the groundwork for a realistic description of a full-scale WWTP, not all plants employ the presented 
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method. This is also the case at the local municipal plant, where an A2O or anaerobic-anoxic-oxic layout is 

employed for the bioreactors. The anoxic-aerobic method utilized in the BSM1 layout enables the plant to 

meet stringent COD and total nitrogen removal requirements, whereas the A2O strategy is designed for 

fulfilling not only carbon and total nitrogen regulation limits, but also other nutrient removal requirements 

which are not considered in the classic ASM1 model such as total phosphorous. In terms of plant layout, 

the difference between the methods is the connection of the internal recycle stream. It can be observed that 

in the BSM1 layout both recycle streams are connected to the influent wastewater, while in the case of an 

A2O treatment method the internal recycle streams connects between the first and second bioreactor (Figure 

2.2). 

 

 

Figure 2.2 General overview of WWTP employing A2O treatment method 

When trying to adapt and calibrate the BSM1 based on data from the local municipal WWTP rather 

than the slight modification to the plant layout, the calibration of stoichiometric and kinetic parameters 

describing the biological processes poses a much greater challenge. The impressive work of calibrating the 

BSM1 model was achieved by a fellow PhD student, Melinda Simon-Várhelyi, and further information on 

this topic can be found in their research [27]. 

Relating to the control utilized in the BSM1 layout it can be observed that two PI control loops are 

employed. The first regulates the nitrates and nitrites concentration in the effluent of the second reactor by 

manipulating flowrate of the internal recycle stream based on the nitrates and nitrites concentration in the 

effluent of the second reactor. While the second control loop is responsible for the dissolved oxygen level 

in the effluent of the fifth bioreactor by acting on the air flow going to the latter three reactors based on the 

dissolved oxygen level in the effluent of the fifth bioreactor. 
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2.2. WWTP simulation with BSM2 

The Benchmark Simulation Model No. 2 was developed with the concept of a long-term and plant-

wide model. This was a necessary extension as one of the shortcomings of the BSM1 was that a thorough 

long-term evaluation of the plant operation or different control strategies required a longer evaluation 

period. The BSM1 plant configuration was updated with wastewater pre-treatment in the water-line and 

with the sludge-line processes including anaerobic digestion. The extended evaluation period allows for a 

more in-depth assessment of plant operation and control strategies by allowing the processes with slow 

dynamics to also be considered. 

The BSM2 includes a primary clarifier situated before the activated sludge reactors which is described 

by the Otterpohl model [28]. In order to model a full-scale WWTP, the BSM2 model also contains a sludge 

thickener, an anaerobic digester, a dewatering system, and a storage tank as can be observed in Figure 2.3. 

 

 

Figure 2.3 Schematic representation of the BSM2 plant 

2.3. Matlab/Simulink 

Matlab is both a programming language and numerical computation environment, which offers tools 

for algorithm implementations, manipulation of matrices and also various plotting possibilities of functions 

and data. Simulink is a block diagram programming environment which is integrated with Matlab, and 
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among its numerous applications its main uses are modelling and simulation of dynamic systems, and 

continuous test and verification systems. 

In most cases Matlab and Simulink are employed together allowing the combination of text-based and 

graphical programming for the development and simulation of envisioned systems. This is achieved by 

incorporating algorithms created in Matlab into Simulink model blocks that can be used alongside the 

default blocks available in the library, and at the end of the simulation the results can be exported to Matlab 

workspace for further use. In order to implement an algorithm aimed to build a process model and to add it 

as a Simulink model it has to be structured into an S-function. System-functions or S-functions represent a 

powerful method to augment the Simulink environment. A template has to be used when implementing an 

algorithm to reach the general form of an S-function. This general form of the S-function defines the blocks 

behaviour in each of the simulation steps that are initialization, update, derivatives computation, update of 

states and outputs, and termination. Figure 2.4 illustrates a Simulink block consisting of sets of input, states, 

parameters and output variables/sets. 

 

Figure 2.4 Representation of a Simulink block  

2.4. WWTP operation evaluation 

Data analysis is mandatory to assess the performance and potential of WWTP operation strategies. The 

BSM technical reports describe evaluation methods that were designed to combine the large amount of 

output data into a few geographically independent composite terms [29]. These criteria make the objective 

and simple comparison of the impact of various operation strategies possible. The composite terms 

described below were employed for operation evaluation in all of the case studies presented in Chapter 3, 

namely the effluent quality index, aeration energy, and pumping energy. 

The effluent quality index (EQI) (kg pollution unit/day, kgPU/d) evaluates the daily released mass of 

pollutants by taking into account the effluent values of TSS (PUTSS), COD (PUCOD), BOD (PUBOD), total 

Kjeldahl nitrogen (TKN) (PUTKN), nitrate and nitrite (NO) concentration (PUNO) and by also considering 

the effluent flow rate (Qe) as shown in Eq. (2.1). 

𝐸𝑄𝐼 =
1

1000∙𝑇
∙ ∫ [𝑃𝑈𝑇𝑆𝑆(𝑡) + 𝑃𝑈𝐶𝑂𝐷(𝑡) + 𝑃𝑈𝐵𝑂𝐷(𝑡) + 𝑃𝑈𝑇𝐾𝑁(𝑡) + 𝑃𝑈𝑁𝑂(𝑡)] ∙ 𝑄𝑒(𝑡)𝑑𝑡

𝑡𝑛

𝑡𝑖
 (2.1) 

The calculation of the aeration energy index AE (kWh/d) takes into account the oxygen transfer 

coefficient (KLa), the volumes of the aeration tanks (V) and the saturated oxygen concentration (SOsat). 

𝐴𝐸 =  
𝑆𝑂𝑠𝑎𝑡

1.8∙1000∙𝑇
∙ ∫ ∑ 𝑉 ∙ 𝐾𝐿𝑎(𝑡)𝑑𝑡

𝑡𝑛

𝑡𝑖
 (2.2) 
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While the pumping energy index PE (kWh/d) is computed based on the internal recycle flowrate (nitrates 

recycle) (QNR), the external recycle flowrate (return activated sludge recycle) (QRAS) and the flowrate of 

waste (QW). These values are averaged over the period of observation T (from ti to tn). 

𝑃𝐸 =
1

𝑇
∙ ∫ [0.004 ∙ 𝑄𝑁𝑅(𝑡) + 0.008 ∙ 𝑄𝑅𝐴𝑆(𝑡) + 0.05 ∙ 𝑄𝑤(𝑡)]𝑑𝑡

𝑡𝑛

𝑡𝑖
 (2.3) 

2.5. ANN modelling and evaluation 

2.5.1. Studied artificial neural network types 

Multiple ANN types were investigated in order to determine the most suitable network for predictions. 

Throughout the case studies four types, that can be categorized in two classes, of ANNs were explored to 

discover the most appropriate one, in terms of training time and prediction accuracy assessment criteria. 

One of the classes was the nonlinear autoregressive network with exogenous inputs (NARX), while the 

other was the class based on the use of radial basis functions simply called the Radial Basis Function (RBF) 

networks.  

The tapped delay line block between the ANN model time-series inputs and the first hidden layer is 

used in the design of the NARX type of feed-forward neural network to provide the ANN models a strong 

memory feature characteristic. This line enables the prediction of the target variable value at the proximate 

sampling moment of time using data from previous time moments in case of both the input and the target 

datasets. 

The four types of considered ANNs were: the “open” structure of the NARX class also known as Time 

Delay Neural Network (TDNN); the “closed” NARX structure, usually referred to as Recurrent Neural 

Network (RNN); and the Radial Basis Neural Network (RBNN) and Generalized Regression Neural 

Network (GRNN) that are part of the RBF class. These four types were selected as NARX type networks 

that are well-known for their use in time series modelling, and as RBF type ANNs, i.e., RBNN and GRNN 

that have also been effectively utilized in time series prediction studies [30]. 

TDNNs type comprises the feed-forward neural network with a tapped delay line block between the 

inputs and the first hidden layer which enables the networks to operate with data from previous time 

moments. RNNs are built similarly to the TDNNs mentioned previously. The tapped delay line is also 

present in these networks. In this case the output values are directly connected by feedback from the 

network’s own previously computed outputs. 

RBNNs were developed with two layers: a hidden layer called radial basis layer as the first layer, and 

a linear output layer as the second. As the default RBNN does not contain the tapped delay line in its 

architecture, the function of such a line was replicated by manually adding the data from previous time 
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moments as input to the network. The GRNNs, similarly to the RBNNs, had two layers in their construction. 

For the GRNN models, the time delay was also manually added. The first layer operates similarly to the 

first layer in RBNNs, while the second layer –known as the special linear layer– represents the difference 

between the two ANN types. 

2.5.2. ANN evaluation criteria 

It is imperative for the best designed and trained ANN models to be selected for further use. In order 

to achieve this, their performance has to be assessed. For this purpose, a total of three criteria were used. 

The first is the coefficient of determination (R2), which has an ideal value of 1, measures how well can the 

model outcomes predict by assessing the goodness-of-fit between the predicted and targeted values. The 

calculation of this criterion is shown in Eq. (2.4). 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑥𝑖)2𝑁

𝑖=1

∑ (𝑦𝑎−𝑦𝑖)2𝑁
𝑖=1

 (2.4) 

where ya is the average value of the target data, yi is the desired output at data point i, xi is the model output 

at data point i, and N is the number of observations. 

The second criterion used in the assessment of ANN models was the mean squared errors (MSE), which 

calculates the squared errors between each targeted and predicted pair of values and provides the average 

of these squared errors. The MSE is calculated as follows: 

𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑦𝑖 − 𝑥𝑖)2𝑁

𝑖=1   (2.5) 

The last criterion, the mean absolute percentage error (MAPE). This criterion's value is the average of 

the absolute percentage errors between the targeted and predicted values, with the absolute errors' division 

to the targeted value used to convert them to percentages. The MAPE criterion was computed based on Eq. 

(2.6). 

𝑀𝐴𝑃𝐸 =
∑

|𝑦𝑖−𝑥𝑖|

𝑦𝑖

𝑁
𝑖=1

𝑁
100 (2.6) 
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3. WWTP operation enhancement investigated cases 

3.1. Optimization of WWTP waterline recycle flowrates 

In the first case study a control system consisting of the DO control loop was considered for the 

automated control of the air flowrate in the bioreactors. The return activated sludge and nitrate recycling 

streams were controlled as a given ratio to the influent flowrate (Fig. 3.1.), which is a commonly adopted 

approach in facilities lacking the NO control loop. The current study aimed to develop accurate neural 

network dynamic models, by exploring four types of ANN architectures, that are further used in the 

optimization of the recycle flowrates and thus the WWTP operation. The main steps of the presented 

research are:  

• Data generation using a mathematical model based on ASM1 and calibrated on plant data. 

• ANN development and selection of most accurate ANN models for the novel approach of directly 

modelling the WWTP performance indices. 

• Optimization of the control system gains that manipulate the nitrate recycling and the return 

activated sludge flowrates in a specified ratio to the WWTP influent flowrate, based on an objective 

function which considers environmental and energy performance indices. 

The layout of the municipal WWTP used as case study is presented in Figure 3.1. It has an anaerobic-

anoxic-oxic (A2O) configuration and uses a feedback control loop for plant aeration, while the two 

recirculation flowrates are determined by multiplying the inlet flowrate with separate gain factors [31]. The 

feedback control loop is responsible for the nitrification process by controlling the DO level in the aerated 

reactors and manipulating the air flowrate [32]. A 7 days period that was representative for the whole dataset 

was selected and used for different recirculation gain simulation scenarios. 

All four network types presented in Section 2.5.1 were investigated with the aim of finding the most 

suitable network to be used for predictions. The inputs of the studied ANNs consist in the past and present 

values of the following influent variables: COD, (NH4
+ +NH3) nitrogen concentration, volumetric flow (Q), 

temperature, and the two gain factors (K1 and K2). Additionally, depending on the type of network (single 

output - MISO or multiple output – MIMO), the ANN input also contains the past values of the increments 

(from one sampling time to the next one) of one or more performance indices. The performance indices 

were calculated as described by equations (2.1), (2.2), and (2.3). 
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Figure 3.1 Schematic representation of studied WWTP and its control system 

The decision variables for the current problem were the two gain factors controlling the external and 

internal recycle flowrates. Both MISO and MIMO model structures were further employed for the 

optimization of a 7-day period scenario with the following objective function: 

𝑓𝑚𝑖𝑛 = 𝐴𝐸 + 8 ∙ 𝐸𝑄 + 𝑃𝐸  (3.1) 

The best networks of each topology obtained from the trial-and-error process were used for prediction 

of a 7 days long period, considering a not yet seen scenario of ANN inputs. The MAPE values and other 

ANN performance results, obtained with the selected best networks, are presented in Table 3.1. 

Table 3.1 Test and prediction results for the best MISO and MIMO networks 

ANN 

type 
Transfer functions Output  Testing Prediction 

Avg. 

training 

time (s) 

  
Hidden 

layer 1 

Hidden 

layer 2 
  R2 MSE R2 MSE MAPE   

TDNN logsig tansig ΔAE/MISO 1 2.27E+04 0.99 1.05E+05 1.19 5.7 

RNN logsig - ΔEQ/MISO 1 2.52E+04 0.89 1.41E+06 3.50 600 

RNN logsig - ΔPE/MISO 1 3.66E+02 0.99 5.00E+02 0.85 30 

RNN logsig logsig All/MIMO 1 5.31E+04 0.99 5.11E+05 2.39 52 

 

The previously presented best trained networks were further used for the optimization of the standard 

scenario spanning over 7 days. The optimization results are presented in . All of the model structures 

reduced the nitrates gain from the actual operational practice (reference case) value of 0.8 value to a value 

around 0.62. 

K1 

K2 
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Table 3.2 Optimization results 

  

Nitrates 

gain 

(K2) 

Activated 

sludge 

gain (K1) 

AE 

(kWh/d) 

EQ 

(kgPU/d) 

PE 

(kWh/d) 

Optimization 

time (s) 

Reference 

case 
0.80 1.00 1.76E+04 1.67E+04 1.26E+03 - 

Analytical 0.65 0.80 1.71E+04 1.66E+04 1.03E+03 16724 

MIMO 0.62 1.07 1.71E+04 1.68E+04 1.12E+03 0.97 

MISO 0.60 0.99 1.70E+04 1.68E+04 1.07E+03 2.24 

 

By analysing prediction accuracy and optimization results of the developed ANN models for WWTP 

operation improvement by internal and external recycle flowrate optimization, it can be concluded: 

• The optimizations conducted for a 7-day time period showed that the performance indices AE 

and PE were successfully predicted with the small MAPE values of about 1%. 

• The optimal solutions found by both ANN model structures resulted in the reduction of the two 

performance indices compared to the reference case. 

• An important advantage was observed at the computation time for the optimization task, 

between using the ANNs (0.97 and 2.24 seconds) versus the analytical model (16724 seconds) 

for optimization. 

3.2. Optimization of WWTP waterline control loop setpoints 

The second case study investigated the optimization of the control system that had both the DO and 

NO automatic control systems. This current work consisted in a thorough ANN development directly 

predicting the WWTP performance indices, and aimed to find the most suitable type, design, and training 

methodology of the ANNs for building of highly accurate dynamic models. They were further used in the 

WWTP operation optimization for finding the best setpoint values of the main control loops responsible for 

the carbon oxidation, nitrification, and denitrification essential WWTP sub-processes (Figure 3.5). The 

main steps of the presented work are: 

• Generation of two representative data sets, one smaller (screening) and one larger, using the 

calibrated analytical model and the design of experiments algorithms, with the aim of collecting 

a minimum but rich enough set of data for achieving an effective and efficient training 

procedure. 

• Based on the small screening dataset, the selection of the best performing ANN structure and 

type was performed by evaluating the prediction accuracy and time requirements for training 
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four types of ANN models aiming to describe the WWTP dynamic behaviour of the effluent 

quality variables. 

• Based on the screening step results and using the larger dataset a new training and selection of 

the highest-performing ANN type and architecture was carried out for building new ANN 

models, able to accurately describe the performance indices of the WWTP, and considering 

their further use in the optimization step. 

• Optimization of the WWTP operation based on the best performing ANN models that predict 

the WWTP energy and effluent quality indices, to find the most favourable setpoint values for 

the Dissolved Oxygen and Nitrate and Nitrite concentration control loops. 

Plant data was collected from the WWTP influent and process variables measurements, considering a 

sampling period of 30 minutes and for a period of 22 days. The layout of the municipal WWTP used as 

case study is presented in Figure 3.2. 

 

 

Figure 3.2 Schematic of studied WWTP layout and its control system 

The current study employed all of the presented ANN types mentioned in Section 2.5, and the considered 

network hyperparameters were almost identical to the ones studied in the previous case study. For the new 

batch of networks, the influence of the length of the tapped delay line time-horizon on the ANN prediction 

accuracy and training duration was also investigated. Values between 12 and 100 were considered for this 

ANN model parameter. 

A period of 7 days was selected for the optimization process. The most efficient ANNs for predicting 

the WWTP indices were selected, both for the MISO and the MIMO structures, in order to find the optimal 

setpoints for the control loops (NOref and DOref) considering the ranges presented in Table 3.3 and the 

objective function presented in Eq. (3.2). 

𝑓𝑚𝑖𝑛 = 𝐴𝐸 + 4 ∙ 𝐸𝑄 + 𝑃𝐸 (3.2) 
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Table 3.3 Range of values for the control loops setpoints 

Variable min max 

NOref (mg N/L) 0.005 0.02 

DOref (mg O2/L) 1 3 

 

The best models for each output feature at the screening step are presented in Table 3.4. These types of 

models were further considered in the final selection step, where the larger dataset was utilized in their 

development and the trade-off between prediction accuracy and training time was considered by increasing 

the time horizon of the tapped delay line. The obtained results are presented in Table 3.5. 

Table 3.4 Testing and prediction results of best networks for each output feature at the screening step 

ANN 

type 
Transfer functions Output Testing 

Prediction 

(Second testing) 

Avg. 

training 

time (s) 

 Hidden 

layer 1 

Hidden 

layer 2 
 R2 MSE R2 MSE  

GRNN radbas - TSS 0.89 1.81E-02 0.54 2.90E-01 0.074 

TDNN tansig - COD 1.00 7.92E-04 0.77 2.42E-01 0.56 

RNN logsig tansig BOD 0.88 2.97E-04 0.72 1.82E-02 202 

TDNN tansig logsig TKN 1.00 6.31E-05 0.87 1.14E-02 0.48 

GRNN radbas - NO 0.96 1.13E-02 0.77 1.07E-01 0.071 

RBNN radbas - All 0.99 2.43E+07 0.98 2.82E+07 4.8 

RBNN radbas - EQ 1.00 4.53E+04 0.76 1.84E+07 2.3 

 

The results of the optimization performed with the ANN models highlighted in Table 3.5 for the control 

loop setpoints, computation time, and values of the performance indices obtained with the optimal setpoints 

are presented in Table 3.6. 

The following conclusions were be drawn by assessing the two-step ANN model development and 

optimization results: 

• The screening step revealed that networks trained directly with the EQ as single output variable 

presented higher potential for making effective predictions, and RNN networks with two hidden 

layers were the least promising. 

• The increase in length of the tapped delay line showed positive influence on the accuracy of 

RBNNs, while TDNNs showed a nonuniform response. 

• The optimization of control loop setpoints led to the enhancement of WWTP operation by a 

decrease of 1303 kWh/day in terms of energy consumption and a decrease of 324 kgPU/day in 

terms of effluent quality index. 
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• The MIMO ANN model performed the optimization task about 180 times faster when compared 

to the analytical model based optimization. 

Table 3.5 Influence of varying the tapped delay line horizon length on the prediction accuracy and 

training time at the ANN final selection step 

ANN type Output Delay horizon R2 MSE 
MAPE 

(%) 
Training time (s) 

RBNN AE 12 0.95 2.06E+05 1.79 100 

RBNN AE 25 0.95 1.62E+05 1.54 190 

RBNN AE 50 0.97 9.37E+04 1.27 700 

RBNN AE 100 0.96 1.16E+05 1.33 2300 

TDNN EQ 12 0.97 3.92E+05 3.09 130 

TDNN EQ 25 0.94 1.38E+06 5.36 170 

TDNN EQ 50 0.92 8.40E+05 4.20 180 

TDNN EQ 100 0.98 3.73E+05 2.57 550 

TDNN PE 12 0.98 8.66E+02 1.51 31 

TDNN PE 25 0.84 5.95E+03 4.04 34 

TDNN PE 50 0.98 7.21E+02 1.58 56 

TDNN PE 100 0.98 1.10E+03 1.76 330 

RBNN All 12 0.99 3.48E+05 2.91 71 

RBNN All 25 1.00 3.42E+05 2.99 150 

RBNN All 50 1.00 2.28E+05 2.37 500 

RBNN All 100 1.00 2.62E+05 2.64 2600 

 

Table 3.6 Optimization results with the best ANN and FPM used for AE, EQ, and PE computation 

Model 
NO setpoint 

(mg N/L) 

DO 

setpoint 

(mg O2/L) 

AE 

(kWh/day) 

EQ 

(kgPU/day) 

PE 

(kWh/day) 

Optimization 

time (min) 

Base case 1.00E-02 2.000 17646 16575 1381 - 

FPM 5.00E-03 1.422 16218 16243 1351 423 

3 MISO ANN 5.00E-03 1.251 15899 16357 1427 2.04 

MIMO ANN 5.50E-03 1.487 16366 16251 1358 2.34 
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3.3. Optimization of WWTP air flowrate distribution 

The third case study investigated the optimization of the airflow distribution to the aerated reactors. 

This study aims to find optimal aeration parameters (i.e., three gain factors steering the air flowrate distribution) 

for an operation strategy of the aeration unit-process conducting to an optimized distribution of air flow to the 

aerated bioreactor, and to evaluate it in terms of energy consumption, effluent quality, and GHG emissions. In 

the current study GHG emissions were considered for the biological reactors and associated settlers of the water 

line, as they represent the most important source of GHGs. The computation of the optimal operation 

parameters for the proposed aeration strategy was relying on the predictions of the WWTP energy performance 

indices, effluent quality, and GHG emissions using dynamic hybrid intelligent models developed on the basis 

of simulated datasets. These dynamic neural network NARX models, for which the optimal topology was 

searched for by means of GA will be further referred to as GA-NARX. To the authors’ knowledge, there are 

no studies associated with hybrid intelligent modelling based on GA optimized NARX models, aimed at 

simulation of the WWTP processes. Furthermore, the dynamic modelling of GHG emissions in WWTPs by 

means of ANN models is also a novelty of the present work. The main steps of the current study were:  

• Generation of the representative dataset by using the calibrated analytical model of the municipal 

WWTP considered as case study, and by taking into account the specifically and multiple designed 

scenarios of operational parameters. 

• Development of GA-NARX methodology for searching the optimal ANN topology in terms of 

structure of NARX network at training, number of hidden layers (NHL), number of neurons in 

each hidden layer (NNeHL), and transfer functions (TFs). 

• Employment of the ANN developed models in a multi-objective optimization step for finding the 

optimal operational aeration parameters. 

Testing the optimal operational parameters on the analytical model and comparison of energy 

consumption, effluent quality, and GHG emissions performance with the standard WWTP operation. 

An analytical model based on Activated Sludge Model No. 1 was utilized for the generation of the 

dataset required for the development of GA-NARX models. For each of the aerated reactors the air flowrate 

can be distributed unevenly using three gain factors (G1-G3), as can be observed in Figure 3.3. 
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Figure 3.3 Schematic representation of the studied WWTP 

Population-based algorithms, such as GAs provide appropriate means for finding the global optimum 

in the ANN architecture optimization [33]. ANN models with 1 or 2 hidden layers were considered, with 

NNeHL between 2 and 15. TFs at each hidden layer were chosen as a logsig or a tansig function. 

Evaluation of the GHG emissions was performed at the water line level of the WWTP, considering 

both on-site and off-site emissions of CO2 and N2O, as described in equations (3.3)-(3.7). The assessment 

of the on-site CO2 emissions was calculated in (kg CO2/m3 WW), based on the relationship described in 

Eq. (3.3) [34]. 

𝑃𝐶𝑂2,𝑜𝑛−𝑠𝑖𝑡𝑒 = (0.99 · (1 − 𝑌𝐻) · 𝜂𝐴𝑆𝑃 · 𝑏𝐶𝑂𝐷 + 1.03 · 𝑌𝐻 · 𝜂𝐴𝑆𝑃 · 𝑏𝐶𝑂𝐷 ·
𝑘𝑑,𝐻·𝑀𝐶𝑅𝑇

1+𝑘𝑑,𝐻·𝑀𝐶𝑅𝑇
) (3.3) 

here, 0.99 (kg CO2 eq./kg COD) is the emission factor corresponding to organic compounds, YH is the 

heterotrophic biomass yield in (mass VSS/mass COD), ηASP refers to the removal of biodegradable COD 

(bCOD) in the activated sludge reactors, 1.03 (kg CO2 eq./kg COD) is an emission factor in relation to the 

activated sludge biomass, kd,H is the decay rate for heterotrophic biomass with a value of 0.3 (d-1) [35], and 

MCRT is the mean cell retention time, taken as 15 days for the current municipal WWTP case. 

The on-site N2O emissions (kg N2O/m3 WW) were estimated using the following formula: 

𝑃𝑁2𝑂,𝑜𝑛−𝑠𝑖𝑡𝑒 = 𝐸𝐹𝑁2𝑂 ∙ ∆𝑇𝑁 (3.4) 

where 𝐸𝐹𝑁2𝑂 is the emission factor (kg N2O/kg N) with the value of 0.005, related to N2O production based 

on influent N loading [36], and ΔTN is the specific difference of TN mass between WWTP influent and 

effluent (kg N/m3 WW). 

In the off-site CO2 emissions (kg CO2/m3 WW), the following relationship was used, based on [37]: 

𝑃𝐶𝑂2,𝑜𝑓𝑓−𝑠𝑖𝑡𝑒 =
(𝑘𝑃𝐺·𝑒𝐷)

𝑄𝑖
  (3.5) 
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where kPG is the emission factor per unit of generated energy to be consumed in the WWTP, its value was 

taken as 0.323 (kg CO2 eq./kWh) which is the reported GHG emission intensity of electricity generation 

for Romania in 2021 [38], eD (kWh/d) is the energy demand which was calculated as the sum of the aeration 

and pumping energies (AE+PE), and Qi is the influent flowrate. The AE and PE indices were computed 

based on the methods discussed in Chapter 2 [35]. 

Off-site N2O emissions were considered due to the biological degradation in the downstream systems 

of the WWTP, resulting in additional N2O release. The following equation describes these emissions: 

𝑃𝑁2𝑂,𝑜𝑓𝑓−𝑠𝑖𝑡𝑒 =  𝑁𝑒 ·  𝐸𝐹𝑒 (3.6) 

where Ne is the load of N discharged into the receiving water body, and EFe is the emission factor of N2O 

from the wastewater discharged with a value of 7.857∙10-3 (kg N2O/kg N) [39]. 

Total GHG emissions was calculated as CO2 equivalent emissions, based on Eq. (3.7). 

𝐺𝐻𝐺 = 𝑃𝐶𝑂2,𝑜𝑛−𝑠𝑖𝑡𝑒 + 𝑃𝐶𝑂2,𝑜𝑓𝑓−𝑠𝑖𝑡𝑒 + 𝐺𝑊𝑃𝑁2𝑂 ∙ (𝑃𝑁2𝑂,𝑜𝑛−𝑠𝑖𝑡𝑒 + 𝑃𝑁2𝑂,𝑜𝑓𝑓−𝑠𝑖𝑡𝑒) (3.7) 

The value for 𝐺𝑊𝑃𝑁2𝑂 was taken as 298 [40] to convert emissions in (kg CO2 eq./m3 WW) unit. 

The optimal values of the gain factors determining the distribution of air in the three aerated bioreactors 

were searched for by taking into account a 7 days duration scenario. The first two of the three objective 

functions (fmin i, i=1-3) took into account the energy consumption and GHG emissions of the WWTP as 

shown in Eqs. (3.10)-(3.11). 

𝑓𝑚𝑖𝑛,1 = 𝑒𝐷 (3.8) 

𝑓𝑚𝑖𝑛,2 = 𝐺𝐻𝐺 (3.9) 

For the objective function concerning effluent quality two distinct cases were considered.  

In Case 1 the third objective function was considered equal to the ANN predicted EQ: 

𝑓𝑚𝑖𝑛,3 = 𝐸𝑄 (3.10) 

In Case 2 the EQ was computed based on Eq. (2.4), meaning that 6 distinct GA-NARX models were 

developed to predict the individual concentrations of the 5 different chemical indicators and the effluent 

flowrate. The third objective function in Case 2 took into account these individual concentrations and a 

penalty was applied if the considered limits were not respected (Eq. (3.11)). 

𝑓𝑚𝑖𝑛,3 = {
𝐸𝑄 

𝐸𝑄 ∙ (1.1 + 0.9 ∙
𝑡𝑝

𝑇
) 

 
𝑖𝑓 𝐶𝑂𝐷 ≤ 125 & 𝑇𝑁 ≤ 10 & 𝐵𝑂𝐷 ≤ 25

   𝑖𝑓 𝐶𝑂𝐷 > 125 𝑜𝑟 𝑇𝑁 > 10 𝑜𝑟 𝐵𝑂𝐷 > 25
 (3.11) 

The optimal network hyperparameters and MAPE results for the prediction scenario are shown in Table 

3.7. 
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Table 3.7 GA-NARX model hyperparameters and prediction results 

Output Structure Architecture 
Transfer 

function(s) 

MAPEprediction 

(%) 

AE open in-15-out logsig 1.23 

BODe open in-12-13-out tansig-tansig 1.14 

CODe closed in-11-11-out tansig-tansig 11.1 

EQ closed in-13-11-out tansig-logsig 21.5 

GHG open in-14-10-out tansig-logsig 1.24 

NOe closed in-14-11-out tansig-logsig 10.8 

PE open in-15-15-out tansig-logsig 4.81 

TKNe open in-13-15-out tansig-tansig 6.27 

TSSe open in-15-12-out logsig-tansig 16.2 

Qe closed in-6-13-out tansig-logsig 0.0457 

 

The optimization result, a Pareto front, from the first optimization case is presented in two 2D graphics 

instead of a single 3D illustration, shown in Figure 3.4. The location of the three best solutions were also 

pinpointed with arrows on the graphics. 

 

Figure 3.4 Pareto front in Optimization Case 1 shown as: a) GHG emissions v.s. energy consumption 

indices, and b) GHG emissions v.s. effluent quality indices 

The Pareto front results obtained in Optimization Case 2 are presented in Figure 3.5, similarly to the 

first optimization case. 
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Figure 3.5 Pareto front in Optimization Case 2 shown as: a) GHG emissions v.s. energy consumption 

indices, and b) GHG emissions v.s. effluent quality indices 

The three most promising airflow distribution settings, obtained from both optimization cases, were 

evaluated by implementing them WWTP first principle extensive model, these results are summarized in 

Table 3.8. 

Table 3.8 WWTP optimized operation performance results 

Case 
Point 

number G1 G2 G3 

Energy 

consumption 
GHG emissions 

Effluent 

quality 
  (kWh/d) (kg CO2 eq./m3 WW) (kgPU/d) 

Base Case  1.000 1.000 1.000 2.025E+04 0.31437 1.479E+04 

Optimization 

Case 1 

No. 1 0.8000 0.6000 0.4000 1.984E+04 0.31350 1.465E+04 

No. 3 0.8000 0.6000 0.4304 1.992E+04 0.31366 1.463E+04 

No. 16 0.9092 0.6086 0.4311 1.987E+04 0.31357 1.462E+04 

Optimization 

Case 2 

No. 2 0.8000 0.6000 0.4299 1.992E+04 0.31366 1.463E+04 

No. 10 0.8142 0.6001 0.4286 1.991E+04 0.31364 1.463E+04 

No. 18 0.8000 0.6000 0.4105 1.987E+04 0.31355 1.464E+04 

 

The two best optimized cases (Optimization Case 1 number 1 and number 16) were investigated and 

compared to the Base Case in greater detail, shown in Figure 3.6. 
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Figure 3.6 Contributions to effluent quality and GHG emissions for: a) Base Case, b) Optimization Case 

1 number 1, and c) Optimization Case 1 number 16 
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3.4. Seasonal DO setpoint optimization for full scale WWTP 

In this fourth case study the whole WWTP was assessed, not only the water-line processes but also the 

sludge ones, when compared to the previous case studies. Moreover, a seasonal modelling approach was 

adopted as the processes are influenced by the seasonal conditions thus a separate model is required for 

each period of the year in order to obtain precise models. Similarly to the previous case study, GA were 

employed in the search of optimal architectures for the ANN models. 

The goal of the current study was to address the WWTP seasonal operation optimization taking into 

account most of the intrinsic biological processes by considering the complex ASM2d and using its dynamic 

ANN based modelling.  

The first novelty of the present work consists in the assessment of effluent quality and plant GHG 

emissions by ANN models, directly correlating the influent and aeration control related variables to the 

WWTP performance indices. The second one addresses the optimization based on genetic algorithms of 

the dynamic artificial neural networks, with the final aim of WWTP seasonal operation optimization. The 

proposed method for ANN model development consists of employing GA in order to find the optimal 

NARX hyperparameters, models referred to as GA-NARX. The main steps of the study were: 

• Generate, select and pre-process seasonal data for ANN model training. 

• Optimize the NARX hyperparameters using GA and find accurate GA-NARX models for the 

prediction of plant performance indices. 

• Use the ANN trained models to optimize with Pareto front the seasonal operation performance 

of the WWTP by computing the Dissolved Oxygen setpoint of the essential control loop 

responsible for the aeration. 

• Assess performance of the WWTP with optimized setpoints for improving effluent quality and 

reduce GHG emissions. 

Building ANN models substantially relies on the used database and greatly affects the outcome and 

efficiency of the training process. The current study was performed with simulated data sets, which were 

obtained by using the Benchmark Simulation Model no. 2 (BSM2), and according to the general 

characteristics defined in the associated technical report [29]. The utilized model was an extended version 

of the BSM2 that also describes P, S and Fe transformations, details of which can be found in [41,42]. From 

the 609 days of BSM2 dynamic inputs, a one-year period was chosen starting from day 45 and 

encompassing a total of 364 days. The training data were collected from simulations ran with these 364 

days, using 15 minutes sample time of the influent dynamics. All of the seasons were considered to be 91 

days long, and the 364 days of data was equally split into 4 parts as shown in Figure 3.7. 
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Figure 3.7 Influent temperature changes during the BSM2 609 days dataset and selection of seasonal data 

In order to also account for pollution due to P released to the receiving water bodies, an extended 

version of the EQ criteria was adopted, as described by Eq. (3.12) [42].   

𝐸𝑄 =
1

1000∙𝑡𝑠
∙ ∫ [𝑃𝑈𝑇𝑆𝑆(𝑡) + 𝑃𝑈𝐶𝑂𝐷(𝑡) + 𝑃𝑈𝐵𝑂𝐷5

(𝑡) + 𝑃𝑈𝑇𝐾𝑁(𝑡) + 𝑃𝑈𝑁𝑂(𝑡) + 𝑃𝑈𝑃𝑖𝑛𝑜𝑟𝑔
(𝑡) +

𝑡𝑖+1

𝑡𝑖

𝑃𝑈𝑃𝑜𝑟𝑔
(𝑡)] ∙ 𝑄𝑒(𝑡)𝑑𝑡 (3.12) 

The effluent quality index assesses the mass of pollutants discharged on a daily basis by considering 

the effluent values of total suspended solids (PUTSS), chemical oxygen demand (PUCOD), biological oxygen 

demand (𝑃𝑈𝐵𝑂𝐷5
), total Kjeldahl nitrogen (PUTKN), nitrate and nitrite nitrogen (PUNO), inorganic P 

(𝑃𝑈𝑃𝑖𝑛𝑜𝑟𝑔
), organic P (𝑃𝑈𝑃𝑜𝑟𝑔

), and by taking into account the effluent flowrate (Qe). The calculation of EQ 

and its components was performed as described in [42]. 

The emissions (kg CO2 eq./d) released due to the aerobic biological processes, were assessed based on 

the relationship described in Eq. (3.13) [34]. 

𝑃𝐶𝑂2,𝐴𝐵𝑃 = (0.99 · (1 − 𝑌𝐻) · 𝜂𝐴𝑆𝑃 · 𝑏𝐶𝑂𝐷 + 1.03 · 𝑌𝐻 · 𝜂𝐴𝑆𝑃 · 𝑏𝐶𝑂𝐷 ·
𝑘𝑑,𝐻·𝑀𝐶𝑅𝑇

1+𝑘𝑑,𝐻·𝑀𝐶𝑅𝑇
) ∙ 𝑄𝑖 (3.13) 

here, 0.99 (kg CO2 eq./kg COD) is the emission factor corresponding to organic compounds, YH is the 

heterotrophic biomass yield in (mass VSS/mass COD) with a value of 0.625, ηASP refers to the removal of 

bCOD in the activated sludge reactors, 1.03 (kg CO2 eq./kg COD) is an emission factor in relation to the 
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activated sludge biomass, kd,H is the decay rate for heterotrophic biomass with a value of 0.28 (d-1), MCRT 

is the mean cell residence time, equal to 15 days, and Qi is the plant influent flowrate (m3/d). 

The CO2 equivalent (kg CO2 eq./d) of the N2O produced in the aerobic biological processes 

(nitrification and denitrification) was calculated as described by Eq. (3.14), considering a N2O production 

equal to 0.5% of the N loading in the influent [36,39]. 

𝑃𝑁2𝑂,𝐴𝐵𝑃 = 𝑄𝑖 ∙ 𝑁𝑡𝑜𝑡𝑎𝑙,𝑖 ∙ 0.005 ∙ 𝐺𝑊𝑃𝑁2𝑂 (3.14) 

The CO2 production from the use of produced methane was calculated with the assumption that 99% 

of it is combusted in a gas engine, while the remaining 1% leaks to the atmosphere [36]. The methane 

production was calculated based on [43], while the produced CO2 was computed based on the oxidation 

reaction stoichiometry, as described in Eq. (3.15). 

𝑃𝐶𝑂2,𝐶𝐻4
= 0.99 ∙ 𝑀𝑃 ∙

44

16
 (3.15) 

here, MP is the mass flowrate of produced methane (kg CH4/d). 

The CO2 equivalent of the leaked methane was calculated as follows: 

𝑃𝐶𝐻4
= 0.01 ∙ 𝑀𝑃 ∙ 𝐺𝑊𝑃𝐶𝐻4

 (3.16) 

where 𝐺𝑊𝑃𝐶𝐻4
 is the global warming potential relative to CO2 for CH4, with a value of 28 [19]. 

The net energy consumption (kWh/d) for the WWTP was calculated as the difference between the daily 

energy demand and energy recovery. Equations (3.17)-(3.19) present the calculation method for GHG 

emissions due to energy consumption, energy demand, and energy recovery, respectively. 

𝑃𝐶𝑂2,𝑒𝑛𝑒𝑟𝑔𝑦 = (𝑒𝐷 − 𝑒𝑅) ∙ 𝐸𝐹𝑒𝑛𝑒𝑟𝑔𝑦 (3.17) 

𝑒𝐷 = 𝐴𝐸 + 𝑃𝐸 + 𝑀𝐸 + 𝐻𝐸𝑛𝑒𝑡 (3.18) 

𝑒𝑅 = 0.99 ∙ 6 ∙ 𝑀𝑃 (3.19) 

here, EFenergy is the GHG emission intensity of electricity generation for EU level in the year 2021 with a 

value of 0.275 kg CO2 eq./kWh [147], 0.99 is the factor related to the leakage assumption of the produced 

methane. The calculation of the AE, PE, ME, HEnet, MP components were performed as described in [43] 

with a slight difference in the HEnet calculation, where the 0.99 factor was also taken into account for the 

generated heat. 

The GHG emission due to sludge disposal to landfills was calculated as the CO2 (kg CO2/d) generated 

from the combustion of biogas in landfills, as shown in Eq. (3.20) [36,44]. 

𝑃𝐶𝑂2,𝑙𝑎𝑛𝑑𝑓 =
110

113
∙ 𝑊𝑆,𝑙𝑎𝑛𝑑𝑓 +

40

113
∙

44

16
∙ 𝑊𝑆,𝑙𝑎𝑛𝑑𝑓 (3.20) 

where WS,landf is the amount of disposed sludge to landfills (kg VS/d). 

The CO2 equivalent (kg CO2 eq./d) of the N2O produced by biological degradation in the downstream 

system of the WWTP was calculated by Eq. (3.21) [39]. 

𝑃𝑁2𝑂,𝑑𝑜𝑤𝑛𝑠 =
44

28
∙ 0.005 ∙ 𝑁𝑡𝑜𝑡𝑎𝑙,𝑒 ∙ 𝐺𝑊𝑃𝑁2𝑂 (3.21) 
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here, 44/28∙0.005 is the emission factor for N2O emissions from the treated wastewater (kg N2O/kg N), 

and Ntotal,e is the total mass flowrate of N in the effluent (kg N/d). 

The best performing GA-NARX models were employed in an optimization task to determine the 

optimal setpoint value of the DO control loop for the dissolved oxygen in effluent of the second aerated 

bioreactor considering the core 30-day time period in case of each of the four seasons. The EQ and GHG 

emissions predictions of the GA-NARX models were used as the two parts of the objective function in a 

multi-objective optimization task based on GA. 

The resulting most favourable solutions emerged from the optimization task of the DO setpoint were 

tested by dynamic simulation on the mathematical model. For a thorough evaluation of the optimized 

WWTP operation, the operational cost index (OCI) was also calculated for both the optimized and base 

case. The OCI describes the operation of the wastewater treatment process by relating it to cost factors. It 

is calculated as a weighted sum of the costs in the WWTP and is described in Eq. (3.23). 

𝑂𝐶𝐼 = 3 ∙ 𝑆𝑃 + 3 ∙ 𝐸𝐶 + 𝑒𝐷 − 𝑒𝑅 (3.23) 

The metrics taken into consideration when selecting the most accurate ANN model for further use were 

the MSE, MAPE, and R2. Two separate scenarios were investigated considering the definition of the most 

accurate model. In the first case (Case 1), the model was saved if all three of the evaluation metrics 

outperformed the previously obtained best results. In the second case (Case 2), the network was saved when 

any of the three metrics presented better results than the previous top result of that metric. 

The most performant networks modelling EQ displayed R2 values ranging from 0.9930 to 0.9950. 

While in the case of MAPE values, these were situated between 3.53% and 4.25%. Regarding the GA-

NARX modelling GHG emissions, the resulted ranges for these values were 0.9867 to 0.9872 and 2.79% 

to 2.88% for R2 and MAPE, respectively. The accuracy of the developed ANN models was found similar 

to values reported in literature. 

The optimal DO settings selected for testing on the 30-day periods from each seasonal dataset are 

associated to the points highlighted with a red circle in Figure 3.8. The values obtained from the Pareto 

fronts that were tested by dynamic simulation on the mathematical model were: 1.373 mg O2/L for the 

winter, 1.911 mg O2/L for spring, 1.553 mg O2/L for summer, and 1.837 mg O2/L for the autumn season. 

Each of the aforementioned values were applied as setpoints to the DO controller for the core 30-day test 

period of each season. The EQ, GHG emissions, and OCI obtained by implementing these setpoints were 

compared to the results of the base case. These results are presented in Table 3.9. The relative differences 

(Relative diff.) between the base and optimized cases were also calculated to better display the amount of 

change and incentives that the optimized case brought relative to the base case. 
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Figure 3.8 Pareto fronts and selected solutions for testing on seasonal data from: a) winter, b) spring, c) 

summer, and d) autumn 

The OCI values for the optimized cases presented improvements for all seasonal data with values 

ranging between 0.25% and 0.90%. Similar to GHG, this index is also influenced through the change in 

energy consumption brought by the lower DO setpoint values. As a result of operation optimization, the 

simultaneous decrease in both EQ and OCI was achieved for all seasonal data, signifying that a more 

performant treatment process was achieved in terms of kg PU per OCI units. Overall, the results indicated 

that the different seasonal scenarios require distinct settings to achieve an improved WWTP operation. 

It is also important to note that the computer processing time and computation resources for the multi-

objective optimization task was greatly reduced due to the use of GA-NARX models. The time necessary 

to finish the multi-objective optimization procedure by reaching the considered fixed generations limit was 

around 600 seconds. Concurrently, a single simulation of the 30-day time period using the first principle 

mathematical model took more than 630 seconds, using the same computational power. Assuming that the 

same optimization employing the first principle mathematical model for objective function computation 

would need the same number of iterations to finish, it would obtain results in four orders of magnitude 

higher processing time. In other words, the search of the optimal setting for a 30-day scenario would require 

close to 73 days of computation when the first principle model is used, while the same optimization task is 

performed by the developed GA-NARX models in 10 minutes.

a) b) 

c) d) 
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Table 3.9 EQ, GHG, and OCI results obtained from the base and optimized cases 

Case 

Winter Spring Summer Autumn 

EQ GHG OCI EQ GHG OCI EQ GHG OCI EQ GHG OCI 

kg PU/d kg CO2 eq./d - kg PU/d kg CO2 eq./d - kg PU/d kg CO2 eq./d - kg PU/d kg CO2 eq./d - 

Base case 13158 16819 9256 12555 16584 9544 13034 16713 10384 12961 16950 10275 

Optimized 12252 16804 9226 12355 16571 9518 11299 16646 10290 12375 16926 10249 

Relative diff. (%) -6.88 -0.09 -0.33 -1.60 -0.08 -0.26 -13.31 -0.40 -0.90 -4.52 -0.14 -0.25 
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4. Detection and identification of DO sensor fault types via ANN models 

AI techniques have been aimed to perform sensor fault detection and error type diagnosis in a variety 

of fields. They were proven to be an effective tool, intended to target various implementations in WWTPs 

for. One fault diagnosis using ANNs was successfully applied to sludge bulking measurements with the 

intention of ensuring process safety and WWTP effluent quality. The developed model could differentiate 

five types of sludge bulking faults [45]. However, artificial neural networks were scarcely applied to the 

identification of the WWTP sensor faults, but their potential is significant. 

The scope of the current study was to design, train and test the performance of an ANN based tool that 

is capable of detection and identification of seven types of Dissolved Oxygen sensor faults. The novelty 

consists in the application of proposed ANN diagnosis tool for the municipal A2O configuration WWTP, 

having implemented the two main control loops, one for nitrification and another for denitrification (Figure 

3.2). 

The data implied by the development of the ANN fault identification tool were obtained using a 

previously calibrated first-principle Activated Sludge Model no.1 of the WWTP considered as case study. 

Seven types of sensor faults were simulated for the Dissolved Oxygen sensor: bias, also known as shift or 

off-set of the signal; complete failure, which can be maximum or minimum and occurs when the measured 

value is either the highest or the lowest value of the sensor calibration range; drift, which is an irregularly 

varying deviation in time of the measured value, compared to the true DO one; fixed value, when the DO 

signal value is constant; loss of accuracy, meaning that the value provided by the sensor is affected by 

imprecision around the true value; wrong gain, known also as a typical calibration error [46]. 

The dataset was divided in the following parts when the Levenberg-Marquardt training algorithm was 

employed: 70% for training, 15% for validation, and 15% for testing. The training results showed good 

results, with the exception of the highest obtained confusion value of 58.7%, due to the confusion between 

the complete failure maximum (class 3) and fixed value (class 6) fault types, characterized by comparable 

effects. 

In comparison to the first training approach, the classification performed by the second trained ANN 

that used the Bayesian regularization algorithm showed better results. Results obtained for the testing data 

set are presented in Figure 4.1. This method of training did not require a validation dataset. Consequently, 

85% of the data were used for training, while the remaining 15% constituted the testing dataset. In terms of 

training, the highest confusion value was of 1.1% in case of the wrong gain fault, where out of 1920 data 

points only 21 were classified as other fault classes. 
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Figure 4.1 Confusion matrix of the testing dataset for ANN trained with Bayesian regularization 

algorithm 

The correct identification of the fault type may take different time periods, depending on the fault type. 

Predominantly, the classification network quickly and correctly identified the different fault types. These 

time periods of the firmly correct identification are: 3 hours for bias, 2.5 hours in case of complete fail 

maximum, 2.5 hours at complete fail minimum, 3 hours for drift, 3.5 hours for fixed, 4 hours at loss of 

accuracy, and the longest identification of 11 hours in case of wrong gain also shown in Figure 4.2. 
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Figure 4.2 Classification of the testing dataset for loss of accuracy type of DO sensor fault 
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5. Concluding remarks 

The research performed in the current thesis focused on improving the operation of the wastewater 

treatment plant. A key aspect of the studies was the development of accurate ANN models in order for these 

to be utilized in either optimization (Chapter 3) or fault detection and identification tasks (Chapter 4). The 

wastewater treatment process was evaluated in terms of GHG emissions, energy consumption, effluent 

quality, and overall cost. 

Section 3.1 focused on the optimization of recycle flowrates that influence the biological nutrient 

removal processes in a setting when the system does not have control loops. First of all, a previously 

developed Matlab/Simulink model calibrated on real plant data was employed to generate the dataset for 

the development of four types of ANN models. These were designed to directly output the WWTP 

evaluation criteria without further need for calculations. The input features of these models consisted of the 

influent and plant operation parameters. A full factorial design was employed to find the best network 

architectures for both MISO and MIMO models. The models were validated on a separate dataset which 

was not utilized in their training and their performance was compared to models found in the literature. 

This development process resulted in ANN models that showed nearly optimal values in terms of R2 values 

and highly satisfactory MAPE values, which ranged from 0.89 to 0.99 and 0.85 to 3.50, respectively. 

This was followed by the implementation of the best ANN models in the optimization task where two 

gain factors were searched for that influence the flow rates of the internal and external recycle streams 

taking into account a 7-day scenario. In this case study the weighted sum of the aeration energy, pumping 

energy, and effluent quality represented the objective function. The results were tested on the Simulink 

model and compared to the reference case and the optimization when the mathematical model was used. 

The optimal values found by the ANNs showed that energy consumption could be reduced by 4.2% 

although the effluent quality slightly worsened. The values found using the mathematical model itself could 

be considered superior as the energy demand was reduced by nearly the same amount accompanied by a 

marginal improvement in effluent quality. However, the optimization process with the ANN models was 

four orders of magnitude shorter, demonstrating promising potential in real-time applications. 

Section 3.2 presents the optimization of control loop setpoints concerning the two control loops acting 

on the flowrates of the internal and external recycle streams. A similar approach was adopted in terms of 

data generation and ANN model development, i.e., four types of ANNs were considered that modelled the 

energy and effluent quality indices based on influent and plant operation parameters, in case of both MISO 

and MIMO structures. In addition, this study investigated the influence of the input delay on the accuracy 

of developed neural networks. This hyperparameter is essential in dynamic modeling and was seldom 

discussed in the literature, especially in WWTP modelling applications. The optimization of this 
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hyperparameter led to improvements in the networks’ accuracy from a range of 1.51 to 3.09 to a range of 

1.27 to 2.57 in terms of MAPE values, and from values between 0.95 and 1.00 to values between 0.97 to 

1.00 when looking at R2 results. 

These improved ANN models were employed in the optimization of the two control loops for a week-

long scenario. The objective function was once more defined as a weighted sum of the three WWTP 

performance indices. The optimization task was also performed by the use of the mathematical model, and 

the results were put into comparison with the ones obtained by the ANN models and a reference case. The 

solutions found by the ANN structures and the first-principle model were very similar. However, this time 

the neural networks outperformed the classic approach with improvements of 8.9% and 2% with respect to 

energy consumption and effluent quality, while they were also faster by around 200 times. 

Section 3.3 discusses the optimization of a novel strategy pertaining to the distribution of air flowrate 

in the aerated bioreactor. The uneven distribution of compressed air is proposed in order to facilitate the 

rate of the biological processes at the beginning of the aerated bioreactor. In this study, the WWTP operation 

was evaluated in terms of energy efficiency, effluent quality, as well as GHG emissions. MISO structures 

were taken into account for the two types of NARX that were considered, but the development of ANN 

models also included a novel approach, i.e., an optimization task performed by GA for the purpose of 

finding the most appropriate architectures to model not only the performance indices, but various effluent 

concentrations as well as the WWTP’s emissions. The use of neural networks to model the GHG emissions 

was yet to be investigated in this field of study. The emissions took into account both on-site and off-site 

emissions for CO2 and N2O gases. The accuracy of obtained GA-NARX models varied from 0.05 to 21.5 

MAPE values, when presented with a new set of input data. 

The best GA-NARX models were utilized in two multi-objective optimization tasks of a 7-day scenario, 

searching for the best aeration gain factors when the objective functions of the multi-objective optimization 

were the energy consumption, effluent quality, and energy consumption. The first optimization case 

employed the models for the performance indices and GHG emissions, whereas the second optimization 

case used the models for effluent concentrations, energy indices, and GHG emissions. At the same time, 

the second optimization case took into account the local regulations for pollutant concentrations in the 

effluent and penalties were issued for solutions that did not respect these. The two optimization tasks 

resulted in a Pareto front each, both containing 18 possible scenarios for the three aeration gain factors. 

These were ranked, and the best three from each front were tested on the mathematical model and compared 

to the reference scenario. Energy demand and GHG emission were both reduced by up to 2%, while effluent 

quality was also improved by up to 1.1%. Investigation of the EQ and GHG contributions of the different 

sources revealed that the improvement of EQ can be attributed mostly to the lowering of TKN levels, while 
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the reduction in GHG emission can be assigned to the off-site CO2 emissions due to a decrease in energy 

consumption, validating the proposed operation strategy. 

Section 3.4 focused on a recently introduced notion of seasonal modelling of the WWTP and coupled 

it with multi-objective optimization of the dissolved oxygen control loop setpoint for a full-scale WWTP. 

The study presented in this section utilized an extended version of the BSM2 for data generation, while the 

previously discussed GA-NARX methodology was applied for ANN model development, however the 

optimized hyperparameters were extended with the training algorithm for which the three most commonly 

employed in this field of study were considered. The networks had 13 input features consisting of influent 

and operation parameters and predicted the effluent quality and GHG emissions of the WWTP. In this case, 

CH4 emissions were also taken into consideration. The ANN model testing results showed a performance 

range of 0.987 to 0.995 in terms of R2, while the values for MAPE situated between 2.79 and 4.25. 

The optimal DO setting was searched for a 30-day time period taking into account effluent quality and 

GHG emissions as the two objectives for the multi-objective optimization task. The optimization was 

performed for all four seasons offering a set of 18 possible solutions for each season, known as a Pareto 

front. The solution considered as best was tested on the mathematical model and compared to the reference 

case. The DO values for the seasons ranged from 1.373 to 1.911 mg O2/L, the implementation of these 

improved effluent quality by up to 13.3% and also slightly reduced GHG emissions by less than 1%. These 

enhancements of the WWTP operation were also accompanied by reduction of the overall cost by almost 

1%. The reduction in emissions were attributed to the reduction in energy consumption which is due to the 

lower DO setpoints than the reference value. The optimization task utilizing the GA-NARX models finished 

in a matter of minutes, while the same task would have taken more than 30 days for the 30-day scenario, 

i.e., a four orders of magnitude difference. The neural network models showcased their promising potential 

for various application purposes such as support for decision-making or model-based control of WWTP 

operation. 

Chapter 4 presents the investigation of ANN models as soft tools for detection and identification of DO 

sensor faults. Similar soft tools were investigated in the literature, however were yet to be applied in case 

of wastewater treatment plants. Seven fault types were considered in the study, and the calibrated 

Matlab/Simulink model was utilized for data generation purposes. The networks were developed using 20 

input features encompassing influent variables and concentration of several species from the secondary 

clarifier’s bottom effluent, while the objective of the network was to classify the operation of the sensor 

into one of 8 categories, i.e., normal functioning and the seven fault types. A trial-and-error process was 

employed to find for the best performing neural network model by searching for optimal the architecture 

and training algorithm. The considered training methods were the Levenberg-Marquardt and Bayesian 

regularization algorithms. 
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The most accurate network developed with each training algorithm was tested with a new set of input 

data. Both ANN models had outstanding performances looking at the detection of fault types, the network 

trained with Levenberg-Marquardt algorithm showed a confusion percentage of 0%, indicating that the 

classification was correct in 100% of the cases, similarly, the network trained with Bayesian regularization 

also performed impeccably with 0% confusion. The differences between the networks were revealed at the 

identification of fault types, where the ANN trained with Levenberg-Marquardt algorithm gravely confused 

two types of errors with each resulting in confusion rates of 44.2% and 41.3% for the two, while it had an 

overall accuracy of 85.7%. On the other hand, the neural network trained with Bayesian regularization 

demonstrated a much higher degree of accuracy, with the largest confusion value of 1.3% for an individual 

class and an almost ideal overall accuracy of 99.5%. At the same time, the correct identification of the fault 

types was performed in a matter of hours since the beginning of the faulty behaviour. The developed ANN 

shows promise in utilization for the precise monitoring of processes at the WWTP, supporting their safe 

and effective operation. 

Future work may focus on connecting together aspects of the several studies for an overall optimization 

of the WWTP operation or on broadening the present investigations to include other types of data-driven 

models as well as other operation strategies. 
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