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Abstract

This thesis explores the common characteristics shared by complex systems, such as galax-

ies, natural food chains, and social communities, that are nurtured by the immeasurable

amount of interactions between their atomic entities. While scientific frameworks have tra-

ditionally focused on analyzing smaller components of systems to understand the whole,

this approach may result in overlooking important patterns and losing the big picture. To

address this gap, our study makes use of the Complex Networks Theory as a framework

able to examine the correlations between patterns of interconnections, or network motifs,

and other components of varying scales present in the topology of the complex networks

modeled from real-world systems. Our study suggests that network motifs could be a key

variable for understanding the evolution and dynamics of complex systems. Based on our

empirical evidence, we developed a new null-model that can generate random networks

with motifs with a high accuracy and precision. This model is expected to have a significant

impact on network motif analysis, providing researchers with a better understanding of how

patterns emerge in real-world complex systems.
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Chapter 1

Introduction

What do a galaxy, a natural food chain, a social community, or other complex systems have

in common? Although they are different, these structures share common characteristics by

an evaluative dynamic nursed by the immeasurable amount of interactions existing between

the entities they contain. Knowing that for each action, there is an equal and opposite

reaction, the interactions are what give life to systems apparent static at first glance.

Being surrounded by an immense quantity of stimuli, our brain observed that filtering

the information or paying awareness only to specific interactions can be more than enough

to ensure the effectiveness of its daily activities [2, 24]. Moreover, by making use of

abstraction, our brain can reuse information associated with patterns observed in specific

systems in new and unknown systems later encountered [41].

Although unnatural to how our brain was used to perceive the world, our race evolved

a scientific framework based on a common analytical approach of splitting the problem

into smaller conundrums - divide et impera [11]. It is quite common now, even more

since the popularity gain by statistics, to associate a global characteristic to a system by

analyzing the most atomic components of its own. Although such an approach is simpler to

follow and more comfortable to generalize proofs, it is not necessarily accurate as analyzing

individually smaller components of a system one is in danger of losing the big picture.

Without any willingness to neglect the benefits brought by such analytical methodology,

which significantly boosted the process of understanding the world, literature presents the

need for more robust frameworks that are capable of understanding the apparent chaos as

it is and not making order in it. Understanding the importance of patterns and how our

brain perceives the world around us, an intriguing question arises: can the patterns be a

missing variable in understanding the evolution of complex systems and their dynamics?

By dynamic, we understand the non-linear mathematical behavior of a complex system over
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a certain period [14]. Our work is willing to represent an empirical study of correlations

between the properties of these patterns and other components of different scales 1. We

intend to use this empirical evidence as a foundation for a new null-model that can generate

random networks with a specific concentration of motifs.

1.1 Motivation

We found network theory as a robust enough framework to serve as a tool for the research

we intend to conduct. The mechanism approached by this field is to encode the entities and

the interactions between them as topological structures represented as graphs, composed by

nodes and edges. What makes these mathematical objects so powerful is that they encapsu-

late in their underlying graph the contextual information offered by the modeled real-world

system. This means that each edge will have a meaning, and it is explainable by understand-

ing a real-world dynamic [8]. Metaphorically, we can say that each complex network has a

story.

The interdisciplinary applicability of network theory makes it such an elegant frame-

work, emerging notions from physics, mathematics, computer science, biology, and many

others. Statistics are used as a mechanism of quantifying properties of the topological

spaces, as it can offer the analytical approach to study the essential components of the

networks: the nodes. The study of these fundamental components has formulated a large

number of microscale properties from which we can remind a few of them: nodes degree,

clustering coefficient [44], assortativity degree [36] or power-law exponent [6]. Fundamen-

tal properties of Stability Theory of dynamical systems [9, 18] were used as the argument

to sustain the focus of the study on microscale properties in complex networks. This ar-

gument states that a dynamic triggered in a complex system by a given perturbation at the

macroscale will eventually converge to its smallest structural components, encoding in these

microscale components the results of the macro dynamic [4, 15]. Hence, knowing that ac-

tion at a global scale is persisted at the local scale was a robust argument for continuing a

microscale-based research.

Applying this convergence principle in a reversed engineering manner, the studies were

extended to a macroscale analysis. In this type of examination, the microscale properties are

correlated with macroscale network dynamics. The literature recalls the real-world networks

that are characterized by the famous theory of six degrees of separation [5], namely small-

world networks. These networks tend to form clusters with short paths between every two

1scale (micro, meso, macro) found in complex systems - a telescopic perspective of the analyzed structures
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nodes of the network, which makes them robust structures without any trade-off in the

performance of information flow between its members [38]. Other remarkable networks

studied in the literature are sparse networks, which are most of the real-world networks

governed by a power-law degree distribution [40] or random networks - structures generated

using probability theory to help the study of real-world networks [34]. All these properties

are quantifying the relationship of the nodes with their neighbors, as it can be observed in

the analytical principle of divide et impera.

Although the accepted analytical framework [19, 20, 23, 42] can be considered reliable

and came with answers to many questions proposed by researchers, something is missing

in the big picture. We consider that the convergence from macro to microlayers 2 and its

impact in the in-between layer (meso) are topics not studied sufficient, which require a

better emphasis in the current analytical framework of the complex networks. Motivated by

the existence of applications that study the importance of mesoscale structures in domain-

oriented contexts (biology, ecology or sociology) [1, 26, 39, 47] in respect to the other

layers of the network, macro, respectively micro, we consider the mesoscale structures as

bridges between the macro and microscale analysis, the missing key in solving the equation

of the dynamical convergence from macro to microlayers. Such an approach could lead

to a universal framework that could imply better precision of the dynamics of the complex

networks surrounding us.

Our focus is on improving existing approaches of understanding complex networks by

not following a simple analytical method but trying to observe these topological spaces in

their entire complexity and beauty.

The state-of-the-art presents various mesoscale structures such as communities - groups

of nodes which are more densely connected than the rest of the network [10], block models

- decomposed functional classes of entities within a complex network [17], or modules

- community-like components with specific contextual roles [16]. These structures are

widely studied in applications addressing problems from fields such as Biology, Physics, or

Social Sciences [3, 12, 13, 21, 35, 35, 43, 43], most of the times presented as stand-alone

components and not correlated with properties of components found on different scales.

Wharrie et al. [46] studied how the presence of triangles is an essential factor in the

evolution of communities - raising awareness on the existence of a relationship between the

structures of a given network. Starting from their valuable results, our work is willing to

follow a similar principle by presenting an empirical study proposing more detailed research

of the correlations between all layers of a complex network - macro, meso, and micro.

2layer (micro, meso, macro) - structural segmentation level of the networks
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As a first step in the pursuit of this goal, in our proposal we are willing to have a re-

search focused on the study of mesoscale properties named network motifs - patterns of

interconnections which can occur in significantly higher numbers in complex networks than

in randomized networks which hold the same degree of distribution as the first network.

Considering their nature of existence, network motifs will always have behind them contex-

tual reasoning brought by the dynamics of the network.

Learning from nature’s wisdom and understanding strong network motifs contributing

to the dynamics of the network, we consider them a perfect candidate as a first step in the

direction of our cross-layer analysis. This thesis proposes an experimental analysis of the

correlation between the properties of microscale components and the existence of network

motifs, respectively, the existence of network motifs and the properties of macroscale struc-

tures. The results obtained will emphasize how the existence of these mesoscale structures

can help to discretize types of networks in ones with a more complex source of informa-

tion. This experiment is also willing to empirically validate the convergence of the dynamic

flows between all layers of the complex networks, having network motifs as a bridge in the

dynamic convergence from macro to microlayers.

By introducing the study of network motifs as possible components facilitating the con-

vergence mechanism, we intend to strengthen existing conclusions about the micro, meso

and macro-layers dynamic previously analyzed through the perspective of modular struc-

tures such as triangles [46].

Applied to fields where connections between structures or components play an essential

role, this study can help further understand molecular, self-assembly, protein-based cellular

adaptation, or social interactions.

Using the results of the experiments focused on describing the convergence mechanism,

as this thesis’s final resolution, we propose a network generator model to generate random

networks that contain motifs. Such a model would be an original contribution to the models

existing in the literature that currently do not explicitly consider the evolution of network

motifs in the random networks they generate. Considering the uncommonness of real-world

networks evolving network motifs, such a model would be a valuable tool for generating

synthetic networks for experiments that need large network samples with motifs, improving

the quality of the studies and their applications.

1.2 Thesis structure

The thesis is structured in 9 chapters as following:
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• Chapter I - Introduction presents a general picture of the theory of complex net-

works and its state-of-the-art applications, with a particular focus on network motifs.

The Motivation section outlines the main objective of the thesis which is to propose a

new null-model able to generate synthetic networks that contain network motifs and

the necessary steps to achieve it, highlighting the potential significance and impact in

complex networks research, leading to a deeper understand of their intricate dynam-

ics.

• Chapter II - Theoretical insights provides a comprehensive examination of the his-

torical background of Complex Networks Theory (CNT), elucidating the scale view-

point of network topology through Stability Theory and detailing the distinct proper-

ties of each layer at the micro, meso, and macro levels. This chapter serves as a robust

theoretical foundation to aid in the comprehension of the subsequent chapters’ studies

and experiments.

• Chapter III - Parallel acceleration of subgraph enumeration in the process of

network motif detection addresses the challenge of performance in identifying net-

work motifs, known to be an NP problem. Despite the existence of several algorithms

attempting to solve this problem, no perfect approach exists in terms of time perfor-

mance. The chapter proposes a redesign of the ESU algorithm, which utilizes parallel

programming with process-driven and thread-driven models.

• Chapter IV - Articulation Points and Isolated Communities: Catalysts for Net-

work Motif Evolution reports on a research study aimed at investigating the poten-

tial relationship between articulation points and network motifs in complex networks.

The analysis was conducted on a variety of real-world networks to determine the co-

existence of these two properties and shed light on the topological features that may

contribute to the development and evolution of network motifs.

• Chapter V - Unraveling the relationship between micro-level topological prop-

erties and the propagation of motifs in network topologies builds upon previous

research presented in Chapter IV which established a strong correlation between ar-

ticulation points and meso-level network motifs. The current study extends this by

investigating the relationship between micro-level topological properties and the ap-

pearance of motifs. By using network properties, the study aims to gain insight into

the mechanisms underlying the appearance of motifs and how network dynamics

propagate through its structures.
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• Chapter VI - Prediction of network motifs existence in Complex Networks de-

scribes a novel approach to predict the existence of network motifs in complex net-

works using Artificial Intelligence (AI) models. This method uses the topological

properties identified in Chapters IV and V as facilitators for the evolution of network

motifs and trains AI models to determine if a given complex network contains motifs.

The aim of this approach is to serve as a pre-processing step to save time in motif

detection, which is known to be an NP-complete problem, by using the proposed AI

model for prediction.

• Chapter VII - The study of the empirical evidence of dynamic convergence exist-

ing between complex networks’ layers presents an analytical framework that unifies

the findings of previous chapters by demonstrating the existence of dynamic conver-

gence between layers of complex networks. The framework shows that the existence

of network motifs is directly related to a variety of microscale and macroscale prop-

erties, providing evidence of a macro-meso-micro convergence. The ultimate goal of

this work is to propose a null-model capable of generating synthetic networks with

network motifs in a controllable manner, and this framework aims to facilitate the

achievement of this goal.

• Chapter VIII - Generating Random Complex Networks with network motifs us-

ing Evolutionary Algorithm-based null model proposes a new null-model that gen-

erates random networks containing motifs based on a series of micro-scale properties.

The chapter builds on previous research that established a correlation between net-

work motifs and various micro- and macro-scale properties of network topology. The

proposed null-model, and the end goal of this thesis, aims to facilitate further study of

network motifs by providing a way to generate synthetic networks for experimental

purposes.

• Chapter IX - Conclusions summarizes the findings and contributions of the previous

chapters, highlighting their originality and potential benefits for the research commu-

nity. It also identifies areas for future work to enhance the proposed null-model.

1.3 Original contributions

Throughout the course of this thesis, which aims to propose a null model capable of generat-

ing random networks with network motifs, several theoretical and experimental studies were
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conducted. These studies not only validated research questions and hypotheses but also led

to a number of original contributions to the current state-of-the-art through a methodology

focused on gathering empirical evidence via statistical significance:

• A detailed comparison between the state-of-the-art algorithms for extracting network

motifs in terms of performance and scalability [29].

• Proposing a new parallel model that makes use of parallel and distributed program-

ming to significantly improve the running time of an existing algorithm used to extract

network motifs [29]. This parallel model will be used as a primary tool for motif de-

tection in the experiments described in Chapters IV, V, VI, VII, and VIII.

• Proving empirically that articulation points will occur with a higher degree of proba-

bility in real-world networks than in randomized networks [32].

• Proving that articulation points through their isolated communities that they link are

prone to evolve network motifs [32].

• Proving the altruistic behavior of the ants in the social networks, they are part of

centrality measures and other network properties [27].

• Proving the performance of information flow in ant colonies, as optimal short paths

between any two ants, and validating the small-world characteristic of the networks

modeled from their social interactions [27].

• Revealing a structural overlap between the top nodes detected by centrality measures

at network level respectively community level [25].

• Performing a comprehensive study over a large set of micro respectively macro scale

properties that revealed a significant correlation between Local Clustering Coefficient

and Assortativity Degree and the existence of network motifs, leading to the conclu-

sion that network topologies evolving high values for these two properties will be

prone to contain network motifs [30]. The results obtained served as a foundation for

the experiments described in Chapters VI, VII, and VII.

• Proposing of classification model that can predict if a network contains or not network

motifs based on its topological properties. This approach serves as a time-saving pre-

processing step for the state-of-the-art solutions used to detect motifs [31].



8 Introduction

• Formalizing an analytical framework that can prove that the convergence of a specific

dynamic between the network’s layers leads to the materialization of network motifs.

This study was accompanied by an experiment that validated the possibility of con-

trolling the evolution network motifs in random networks [33] and serves as empirical

proof for the null model proposed in Chapter VIII.

• Proposing a null model architecture based on Evolutionary Algorithms that generate

random networks with motifs based on a series of parameters which includes the two

most impacting topological properties identified as factors of triggering the conver-

gence between network’s layers that stabilize in network motifs: Clustering Coeffi-

cient and Assortativity Degree [28].



Chapter 2

Theoretical insights

This chapter covers all the theoretical concepts that will be used in the following chapters,

going through the history of Complex Network Theory as it emerged from Graph Theory.

The examination of a network topology is conducted across diverse scales—micro,

meso, and macro. Microscale properties quantify measurements representing characteristics

of the most fundamental components of the network, nodes, or edges. In graph and network

theory, these properties vary in complexity from metrics that reveal a simple count to more

complicated metrics that compute different distributions [7, 8, 22, 36, 37, 44].(E.g., node

degree, local clustering coefficient, assortativity degree, etc.). On the other hand, mesoscale

properties are focused on studying complex network samples of nodes with the interactions

between them. The studies revealed that specific groups of nodes interact in distinctive

ways that lead to remarkable properties. Mesoscale structures like communities or network

motifs are used in applications from various fields to extrapolate theories about real-world

complex network dynamics. Especially in social sciences, communities are represented in

the literature as the fundamental and important structures in the evolution of a social system

[35, 43]. Finally, macroscale properties describe the behavior of a network as a whole trying

to identify and classify the network’s topologies under categories with common microscale

properties.

The scale perspective of Complex Networks analysis will be used as a theoretical foun-

dation for all experiments that will be presented in the following chapters.



Chapter 3

Parallel acceleration of subgraph

enumeration in the process of network

motif detection

Network motifs bring a great interest to many fields, because they are a perfect candidate

to speed up the applied research in the understanding of complex networks dynamics. One

of the biggest problems raised in the process of finding these motifs is the performance.

Starting from splitting the initial network into subgraphs to the subgraphs clusterization,

each algorithm used addresses an NP problem. Hence there are many algorithms that are

trying to solve network motifs discovery, however there is no perfect approach talking from

a time performance perspective, but only solutions that are faster than others.

In this chapter we describe a redesign of one of the most competitive algorithms for

subgraphs enumeration found in the literature called ESU [45]. In the proposed approach

a given network can be processed by using parallel programming, either with a process-

driven model, or a hybrid one (process-driven and thread-driven). Finally, the existing and

proposed models are compared using benchmark graphs, revealing competitive results.

The results were published in paper [29] and represent an original contribution to the ex-

isting state-of-the-art algorithms used to extract network motifs by significantly improving

the running waiting time and not affecting the accuracy of the results.

Moreover, we consider the results proposed in this chapter as being complementary with

all other experiments we led as it represented an indispensable tool we used to extract motifs

from the networks we studied in the main research track.



Chapter 4

Articulation Points and Isolated

Communities: Catalysts for Network

Motif Evolution

Complex networks are powerful mechanisms one can use to model real-world networks as

topological spaces. The beauty of these structures is provided by the infinite degree of anal-

ysis one is allowed to do using them. Biologically it is almost impossible for the human

mind to comprehend the behaviour of these systems, but when modelled as complex net-

works different properties of the network topology can reveal precious information. Starting

from the two key properties of the participants in a complex network and the relations be-

tween them, one can derive further properties that reflect specific behaviours for entities or

groups of entities.

Examples of these further remarkable properties include entities which create unique

bridges between two or more communities (known as articulation points) or the appearance

of patterns of interconnections between entities (known as Network Motifs).

In this chapter it is presented a study on the co-existence of these two properties, artic-

ulation points and network motifs, and how their appearance is correlated, by using results

obtained in analysing a variety of real-world networks.

The results of this experiment were published in paper [32] and represent a first step in

our research project that is willing to prove that meso-structures such as network motifs are

key components facilitating the dynamic propagation between network layers.



Chapter 5

Unraveling the relationship between

micro-level topological properties and

the propagation of motifs in network

topologies

Based on the evidence found in our previous studies presented in Chapter 4, which revealed

a significant correlation between the existence of articulation points and meso-level compo-

nents such as network motifs, in this chapter we will extend this study by presenting analyt-

ical research between a consistent set of micro-level topological properties from Graph and

Complex Networks Theory and the appearance of the motifs. The purpose of this study is

to use network properties to provide a better understanding of how and why network motifs

appear, learning how the dynamic of a network is propagated through its structures.

The results presented in this chapter were published in paper [30]. They represent an

original contribution in understanding what micro-level properties are indicators to the exis-

tence of network motifs. With these results, we can unify the co-existence of various micro

and meso-level structures, namely network motifs, and continue studying the co-existence

of network motifs with macro-level properties that will bring us to the final step of present-

ing a complete picture of the convergence phenomena happening in network topologies.



Chapter 6

Prediction of network motifs existence in

Complex Networks

Properties of complex networks represent a powerful set of tools that can be used to study

the complex behaviour of these systems of interconnections. They can vary from proper-

ties represented as simplistic metrics (number of edges and nodes) to properties that reflect

complex information of the connection between entities part of the network (assortativity

degree, density or clustering coefficient). Such a topological property that has valuable

implications on the study of the networks dynamics are network motifs - patterns of in-

terconnections found in real-world networks. Knowing that one of the biggest issue with

network motifs discovery is its algorithmic NP-complete nature, in this chapter we present

a method to detect if a network is prone or not to generate motifs by making use of its topo-

logical properties while training various classification models. This approach wants to serve

as a time saving pre-processing step for the state-of-the-art solutions used to detect motifs

in Complex networks.

The results and the model proposed were published in paper [31] and they represent an

original contribution to the optimization of the processes used to extract network motifs.

Similar to the improvements presented in Chapter 3, the results described in this chapter

represent a complementary work to our main research track as it facilitates the waiting time

implied in our experiments for motifs extraction.



Chapter 7

The study of the empirical evidence of

dynamic convergence existing between

complex networks’ layers

As often described in the narative of this thesis, Complex Networks theory represents a

powerful tool to model real-world systems as graphs with non-trivial topological features.

Static by their definition, complex networks are limited to be the reflection or the snapshot

of the dynamical systems they encode in a given moment. Frankly, studies show that the net-

work preserves the characteristics of the dynamic flow between various structures evolved

at different scales: micro, meso, and macro, respectively.

Considering that micro components will end by encapsulating any stability state initiated

by a perturbation of the macroscale, the most popular framework used to analyze complex

networks associates in a reverse-engineering manner properties of the micro-scale compo-

nents with global network characteristics. Although the principle of convergence is widely

agreed upon, we consider the transition from micro to macro one not studied enough, and

the highlighting of an in-between layer being necessary exemplifies the convergence mech-

anism better. Our work is willing to improve existing approaches of understanding the in-

tricate beauty behind network dynamics by embracing the chaos they evolve and not order

it using inflexible analytical mechanisms. We formulate a series of research questions that

are willing to demonstrate that the existence of a mesoscale structure, namely network mo-

tifs, is connected with a variety of microscale, respectively, macroscale properties - hence

strengthening the proof of macro-meso-micro convergence.

Our approach could provide a substantial improvement in the models used to understand

molecular self-assembly, protein-based cellular adaptation, social interactions, and many
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other fields, where connections between structures or components play an essential role.

The research presented in this chapter was published in the paper [33] and it outlines a

comprehensive an original analysis framework that ultimately aims the proposal of a null-

model for the evolution of network motifs in networks. This analytical framework is based

on the principle of causalization of topological properties, which foster the existence of

motifs. The results of this analysis represent a significant contribution to the field of network

science and provide a valuable resource for future research.



Chapter 8

Generating Random Complex Networks

with network motifs using Evolutionary

Algorithm-based null model

As discussed in the previous chapter, the existence of network motifs is mainly attributed

to the apparent chaotical behavior of the atoms in the systems that the networks are model-

ing, behavior that emerges in patterns that will be encoded in the network. Motifs were not

formalized as structures due to their rarity but only explained through their contextual ap-

pearance in the networks. The series of experiments described in the previous chapters are

part of the goal of explaining the dynamics of network motifs and they have demonstrated

a correlation between the presence of network motifs and various micro- and macro-scale

properties of the network topology. This chapter introduces a novel null model architec-

ture that employs Evolutionary Algorithms (EA) to generate random networks containing

motifs. The proposed architecture is characterized by a set of parameters, including the

Clustering Coefficient and Assortativity Degree, which have been identified as key factors

in triggering the convergence between network layers leading to the emergence of network

motifs. Such a model has the potential of significantly improve the study of network motifs

by generating any number of synthetic networks that can serve as experimental material for

the community of researchers.

This chapter presents the results of our research submitted in [28], which conclude with

the proposal of a null-model that controls the evolution of synthetic networks with network

motifs using Evolutionary algorithms. This proposal is the crowning achievement of our

extended research efforts described throughout this thesis.
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Conclusions and future work

The pursuit of finding solutions to challenges in life requires curiosity and the willingness

to explore uncharted territories. Such an endeavor can be both beautiful and demanding,

and discovering solutions can bring a sense of unparalleled satisfaction. The roadmap of

this thesis reflects such an attitude and the author considers himself fortunate to have been

able to engage in the pursuit of new knowledge - a dream he had cherished since childhood.

Although the primary objective was well-defined, unexpected findings along the way con-

tributed to the author’s personal and professional growth. As the saying goes, "the wiser

you become, the more questions you have," and staying focused on the roadmap presented

a logistical challenge that was overcome with the guidance of the author’s supervisor and

mentors - to whom he is grateful.

In conclusion, this thesis marks the beginning of a new phase of research. It has been

a fulfilling journey, and we are delighted to present the results in the form of a captivating

story. As a network enthusiast, we firmly believe that every network has a story to tell, and

this thesis is a testament to that belief. Through the review of thousands of networks, this

work validated research questions, supported hypotheses, and demonstrated experiments.

The findings of this thesis have contributed to the understanding of complex networks, and

we are eager to continue exploring new questions and discovering more stories.

The objective of our research was to investigate the evolution of network motifs and

explore the feasibility of controlling their formation. Network motifs are infrequent in real-

world systems due to their specific dynamics, making them valuable indicators for under-

standing complex networks. However, their rarity has impeded the development of universal

laws governing their existence, thereby presenting significant challenges to their study. Our

research therefore required us to explore unknown territory, acknowledging that there would

be times when we would not have access to established solutions or answers.
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The initial step of this research project involved an investigation of tools for identifying

network motifs. Specifically, we explored various algorithms commonly used for determin-

ing if a group of nodes and edges can be classified as a motif. Our study revealed that the

algorithms had poor performance due to the NP-hard nature of the motif extraction prob-

lem. This posed a significant challenge for our research project, as we would need to run

the algorithms numerous times, resulting in unacceptably long waiting times for the results

needed for our analysis. To address the performance issue of motif extraction algorithms,

a reliable and efficient process was developed prior to conducting the desired analysis. A

parallelized version of the ESU algorithm was introduced and presented as a substantially

improved solution in comparison to other approaches (Chapter 3). The development of this

algorithm was a significant accomplishment that not only served the goal of the research

project but also benefited the larger research community in the field of complex networks.

The research continued with the collection of a diverse dataset of networks from various

domains and sizes to ensure a balanced dataset for analysis. Alongside the extraction of

motifs from these networks, we also collected their topological properties (Chapter 2) to

investigate potential correlations with the presence of motifs. The parallelized ESU algo-

rithm proved to be a significant time-saver, allowing us to efficiently gather a comprehensive

dataset in a surprisingly short period.

Following the principles of dynamical convergence from the Stability Theory, we devel-

oped a set of research questions to guide our experiments. These questions were centered

around the atoms or nodes of the system, as they encode the dynamics that converge to them

and eventually settle into a new state. We used this approach to formulate a hypothesis ex-

plaining why and how nodes and edges appear or disappear in complex networks, providing

an overarching explanation for the evolution of motifs. According to our hypothesis, when

a specific event occurs in a system, the atoms behave in a way that creates structures guided

by the event’s dynamics. From the perspective of a modeled system as a network, this is

encoded as nodes having specific edges, which are detected as network motifs.

Building upon the theoretical insights obtained from our analysis, we conducted a series

of statistical tests to investigate the relationship between the extracted topological proper-

ties of the networks and the presence of motifs. The resulting complex statistical analysis

provided answers to all of the research questions we had formulated, confirming our conver-

gence hypothesis. Our findings revealed that a set of topological properties exhibit a strong

correlation with the existence of motifs in the network.

We started by investigating the correlation between the presence of Articulation Points

(AP) in a network and the existence of network motifs. AP nodes are critical bridges be-
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tween two or more communities and play a significant role in facilitating information flow

between them. Through a series of experiments presented in Chapter 4, we demonstrated

that APs have a controllability property, which enables them to propagate specific dynamics

to the communities they control while isolating them from others. This leads to a rapid evo-

lution of motifs in those networks. Our findings have important implications, particularly

in social networks, where APs are often influential people who can induce ideologies in

the communities they lead. This has a dangerous application, especially in social networks,

where APs are usually influential people and can induce ideologies in the communities that

they lead.

The other two topological properties highly associated with the presence of network

motifs were assortativity degree (ρ) and local clustering coefficient (CCl), owing to their

ability to encode specific network behaviors. ρ is a measure that indicates whether nodes

in a network are more likely to be connected to other nodes with the same degree, which

is comparable to people in a community being more likely to have friends who are equally

popular. This particular behavior is highly specific and explains the emergence of certain

motifs during the process of forming links between nodes of the same degree. Local clus-

tering coefficient (CCl) is another topological property that is highly correlated with the

existence of network motifs. It indicates the tendency of nodes in a network to form tightly

interconnected groups or clusters. This behavior provides a favorable environment for the

evolution of motifs among the nodes within the same cluster, particularly if they tend to link

with nodes of similar degrees following the ρ principles of preferential attachment.

After obtaining the results of the analysis, we proposed a comprehensive framework that

confirmed the convergence properties from Stability Theory in complex networks, thereby

achieving our initial objective of comprehending the evolution of network motifs in such

networks (Chapter 7). Furthermore, based on these outcomes, we suggested a new tool that

simplifies the extraction of motifs as a preprocessing step. The task of extracting topological

properties from complex networks is significantly faster than extracting motifs, even with

the use of parallelization. Since specific topological properties and their values have been

shown to indicate the presence of motifs in networks, we propose training a series of AI-

based models that can predict the presence or absence of motifs in a network based on its

topological properties. In this way, it is possible to determine from an early stage whether

the network is worth processing using the trained AI-based model as a recommender system.

Of note, one of the trained models achieved outstanding performance, detecting the presence

or absence of motifs with over 95% accuracy (Chapter 5).

Despite the promising results obtained from our previous analyses, gave birth to a new
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more supreme goal. We identified a research gap in the current state-of-the-art literature,

specifically the absence of a null-model that can generate networks containing motifs. While

existing null-models aim to generate specific network types using stochastic methods to add

links between nodes until a desired property is met, none address the challenge of creating

networks that contain motifs. We believed that the algorithmic approach used by most

null-models in the literature, which aims to simulate a synthetic behavior, contradicts the

natural environment required for motifs to exist. As a result, we developed a new null-

model architecture based on an Evolutionary Algorithm (EA) that can evolve networks to

replicate the continuous dynamics of a real-world system and able to generate complex

networks containing motifs. The EA component aimed to optimize ρ and CCl properties

simultaneously and to devise a more realistic mechanism to add edges to the network, a

crucial factor for motif existence. We controlled the proposed null-model using a set of

parameters based on a novel fitness function, which we introduced for the first time in the

literature. The experiment described in Chapter 8 showed that the proposed architecture

was reliable, as it generated networks with strong motifs. This contribution represents an

important addition to the literature, with potential implications for future research in this

field.

In future work, we consider the study of coexistence dynamics between network motifs

and other meso-scale topological structures, such as communities or chains. This explo-

ration holds the potential to unveil nuanced behaviors in the evolution of network motifs’

controllability. Leveraging these structures could enhance the precision of the existing null-

model introduced in Chapter 8, enabling the design of a mechanism for regulating motif size

and not only their existence. Additionally, we plan to explore diverse null-model architec-

tures, such as stochastic block models or deep generative models, and conduct comparative

analyses. This approach promises to unlock further avenues for controlling motif evolution

in generated networks.

In conclusion, while we acknowledge that no work can ever be considered completely

finished, we are confident that our research has contributed significantly to the field of com-

plex network analysis. Throughout this journey, we have proposed a series of results inno-

vative to the state-of-the-art and opened up new research tracks and considered suggestions

for improvement at the end of each chapter, with the hope of inspiring young researchers to

continue pushing the boundaries of knowledge. Looking back on our achievements, we take

pride in the completeness of the thesis and we are excited to see how the result will impact

future research in this area.
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