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Introduction

The aim of this thesis is to explore the use of unsupervised representation learning and
feature fusion techniques in order to improve the performance of supervised deep learning
approaches.

Deep Learning (DL) defines a general framework for training powerful neural network
models capable of learning high-level representations for the input data, by automatically
extracting the information relevant for a specific task [37]. Despite the fact that supervised
DL methods have achieved remarkable performance in numerous tasks, their success depends
on the availability of large, accurately annotated data sets. However, in many real world
settings, labelled data is scarce, noisy, or imbalanced, and therefore, the generalization of DL
methods can be significantly affected [16, 34, 82]. The unsupervised learning paradigm, on
the other hand, is able to learn information about the structure of the data without using
annotations. Therefore, it has the potential to provide a useful tool for complementing labels
and may subsequently enhance the performance of supervised models. Unsupervised repre-
sentation learning has emerged as one of the most important subfields of unsupervised DL. It
focuses on learning high-level representations that characterize the input samples and which
can be useful for downstream tasks [15, 34]. Widely studied representation learning mod-
els include various types of autoencoders, contrastive learning methods and self-supervised
language models [34, 52]. The study of the advantage brought by representation learning
in classification or regression tasks has been a topic of interest in the literature, the main
research directions focusing on pre-training [34, 77], anomaly detection models [18] or semi-
supervised techniques [28,48]. Through the models introduced in this thesis, we explored new
directions and identified new tasks in which unsupervised representation learning may benefit
supervised learning. Apart from the way in which representations are learned (through su-
pervised or unsupervised methods), the literature also studied methods for optimally fusing
the representations obtained from different components or branches of the models [27, 68].
Due to the close connection between the methods for learning and for fusing representations
and to their complementary nature, we explored the two topics in conjunction with each
other.

The first problem approached in our thesis consists of classification with noisy labels.
Learning robust models using data sets having incorrect labels is challenging. Nevertheless,
the problem has a major practical importance, originating from the fact that in real-world
settings the labelling process is prone to noise, either because of human mistakes or because
of incorrect automatic labelling [56, 79]. Since deep neural networks can learn to fit random
annotations [86], the development of algorithms that can generalize to new data instances
even if trained with unreliable or incorrect samples is essential. In this context, we developed
two methods which aimed to exploit unsupervised information from the data in order to
guide the supervised learning process.

Our first approach, TE-kNN [8], has the goal of identifying samples in a data set that are
likely to have correct labels. These selected samples are further used in the training of neural
networks. The proposed TE-kNN is similar to existing sample selection strategies which
compute an agreement score of a sample with its nearest neighbours in feature space for
each epoch. This score is further used to decide if that sample is correctly annotated [13,60].

8



INTRODUCTION 9

Unlike other approaches, TE-kNN adopts a temporal ensembling [50] strategy that takes into
account the scores previously obtained by the sample during training. In this context, we
investigated the benefit of an initialization scheme for the scores using the neighbours given
by an autoencoder trained on the data. We showed, through experiments on three image
data sets, that our method is superior to several related approaches, including the original
nearest neighbours strategy.

While effective in low or moderate noise regimes, sample selection approaches are not that
suitable for severe label noise settings, since the set of clean, selected labels is very small [67].
In order to address this noise scenario, we proposed a new regularization method, DIAG [11],
which leverages self-supervised contrastive learning with the aim of obtaining representations
that are less affected by label noise. The proposed procedure includes a new regularizer
that matches pairwise distances computed in the supervised feature space to the distances
obtained using a self-supervised model. Our approach was motivated by the intuition that
learning representations that agree with both supervised and self-supervised training regimes
should diminish the effect of incorrect annotations. Experiments performed on both synthetic
and realistic label noise pointed out that DIAG outperforms multiple literature approaches
on this task.

The two proposed methods are complementary and address different types of noise regimes.
While TE-kNN is more well suited for low and moderate-noise settings, the advantage brought
by DIAG is more pronounced in high noise contexts. With these two contributions, we aimed
to highlight the potential of representation learning in training neural networks using different
types and amounts of label noise.

The second direction followed in our research consisted of the study of two applied re-
search topics relevant for the field of natural sciences. We studied an important area from
biology, namely protein-protein interaction (PPI) prediction and one relevant topic from the
meteorological domain, represented by weather nowcasting, for which we hypothesized that
unsupervised representation learning and feature fusion could be explored in order to improve
the performance of supervised DL techniques.

Proteomics consists of the study of proteins, which are large molecules that influence all
the processes taking place in living organisms. The identification of PPIs is an important
problem in proteomics, having the potential to advance research in protein function prediction
and drug design. Since experimental methods for detecting PPIs are very complex and imply
high costs [69], there is a need for developing reliable computational approaches for this
task. The problem can be framed as a binary classification task in which the instances
are pairs of proteins. The interactome can also be viewed as a graph whose nodes are
represented by proteins and whose edges are given by interactions. A challenge for PPI
prediction methods is represented by the difficulty of accurately detecting interactions for
testing proteins that are not included in the training graph, as compared to the easier task
of identifying new interactions for previously encountered proteins [31, 47, 61]. Due to this
generalization problem, we focused on leveraging representation learning methods in order to
design PPI prediction models. Moreover, the PPI task can be seen as a classification problem
for pairs of samples, thus our second focus was on the development of better fusion techniques
for protein pairs.

In [23] we proposed an anomaly detection-inspired binary classification model, AutoPPI,
for identifying PPIs. The model trains two autoencoders: one on interacting proteins and
the other on non-interacting proteins, and detects the class of a pair of proteins using the
autoencoder which more accurately reconstructs the pair. In order to better reconstruct the
protein pairs, we designed two new siamese autoencoder architectures, which make use of
feature fusion modules. AutoPPI outperformed the majority of related work approaches on
the considered data sets (13 cases out of 16 comparisons).

Although AutoPPI provided good performance on the evaluated data sets, it has diffi-
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culties in predicting interactions for proteins which are not included in the training graph.
Our second approach [6] aimed to address this limitation by proposing a method based on
supervised autoencoders [44, 51]. These are neural networks that jointly optimize a classifi-
cation branch and a reconstruction branch, the latter adding a regularization effect to the
network [44, 51]. Our proposed approach is a two-stage classification method encompassing
a denoising pretraining stage and a joint, supervised autoencoder training stage. We showed
the good results obtained by our approach in comparison to multiple related work methods.

With our third approach, MM-StackEns [9], we aimed to further improve the performance
on unseen proteins by learning more comprehensive representations for characterizing PPI
networks. Unlike our first two approaches that use only protein sequences information, MM-
StackEns is an ensemble procedure consisting of two structurally different neural networks,
aimed at exploiting multimodality in PPI networks, namely a sequence component and a
graph component. Additionally, we leveraged self-supervised representation learning in the
context of PPI identification through embeddings learned using a deep pre-trained language
model. We showed that such embeddings can provide improved generalization for interactions
of out-of-graph proteins. Another contribution of this work is the design of a new feature
fusion module for protein pairs that can be easily integrated in both the sequence and graph
components of MM-StackEns. The proposed approach outperformed related work methods
in the great majority of evaluation scenarios. To summarize, this approach exploited both
feature fusion techniques as well as self-supervised representation learning in order to improve
the identification of PPIs.

The second application studied in this thesis is represented by weather nowcasting using
radar data. With the recent increase in severe weather phenomena, the ability to accurately
predict weather evolution is becoming of greater and greater importance. Radar reflectivity
is one of the products most commonly used by meteorologists for detecting weather phe-
nomena. Weather nowcasting can be viewed as a spatio-temporal prediction task in which
we aim to learn a mapping from a sequence of past radar values measurements to the mea-
surements corresponding to one or multiple time frames in the future [63]. Radar data is
high-dimensional and noisy, with errors caused by radar measurements that can detect var-
ious non-meteorological objects from the environment. In addition, meteorological data is
highly imbalanced, since severe events are rare [36]. Nevertheless, accurate prediction of such
extreme events is crucial for a weather forecasting system. Given the rich spatial structure
of the data, convolutional architectures are a very promising avenue of research in this field.
However, models trained with traditional loss functions tend to output blurry predictions [42].
These characteristics of the weather nowcasting problem motivated us to study feature fu-
sion techniques in designing convolutional architectures and to investigate the potential of
autoencoders in designing classification models and new loss functions.

In [25] we have introduced AutoNowP, which is an approach for the weather nowcasting
problem, modelled as a binary classification problem at the pixel-level. We learn to classify
whether a data point will have a value above or below a threshold using the neighbours of
the point at a previous timestamp. This model is similar to the AutoPPI method in terms of
training procedure and classification methodology. AutoNowP differs from AutoPPI in the
fact that it uses class-specialized loss functions for each autoencoder. This modification has
the goal of introducing an additional inductive bias for the two models, in a scenario in which
the inputs characterizing the two classes are very similar/overlapping. In addition, in this
study we evaluated the proposed model in an imbalanced setting. We compared AutoNowP
with several machine learning baselines using radar data from Romania and Norway and
outlined the competitive results obtained by our method.

Our second approach for weather nowcasting, NeXtNow [12], is a deeper convolutional
architecture, which aims to be more scalable than AutoNowP , by modelling the radar data at
the map-level instead of the pixel-level. The proposed model is a convolutional architecture
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built using ResNeXt blocks [83]. The study aimed to investigate whether feature fusion
operations as the one contained in ResNeXt blocks can be useful for weather nowcasting.
Our model was evaluated using radar data sets from both Romania and Norway.

While the previous two studies focused on the development of new models and architec-
tures, in our third study we shifted our attention towards the design of improved loss functions
with the goal of addressing the blurriness problem of DL weather nowcasting models. To this
end, we designed in [7] a new family of perceptual losses [46] using autoencoders as feature
extractors instead of the commonly used deep classifiers (eg: VGG) pre-trained on ImageNet.
Experiments on radar reflectivity data collected by MET Norway showed that our method is
able to provide sharper predictions than two classical loss functions, while achieving a small
improvement in terms of root-mean-square error. The proposed approach has the additional
advantage of being more lightweight than perceptual losses employing VGG networks.

The chosen applied topics both process imbalanced and noisy labels, which traditional su-
pervised methods struggle to effectively exploit. This motivated us to investigate approaches
based on representation learning and feature fusion. Moreover, by designing and applying
such methods in these two fields, we aimed to show the suitability of combining concepts
from supervised learning with unsupervised representation learning and feature fusion on
sequential data (proteins) and data having both spatial and temporal structure (weather
data).

The content of this thesis is structured as follows. Chapter 1 presents an overview of DL,
including the main building blocks used in designing our proposed models and an in-depth
literature review of the studied problems.

Chapter 2 presents our proposed approaches for improving classification models in the
presence of label noise using representation learning. Section 2.1 presents our first approach,
TE-kNN [8], which is a sample selection method. In Section 2.2, our DIAG [11] regular-
ization method aimed at improving the robustness of deep neural networks to label noise is
introduced.

Chapter 3 presents our original contributions in designing improved PPI prediction mod-
els using techniques from representation learning and feature fusion. Section 3.1 presents
our AutoPPI [23] approach, alongside the proposed siamese autoencoder architectures. In
Section 3.2 we detail our proposed approaches using supervised autoencoders for PPI predic-
tion [6] and evaluate their generalization to proteins outside the training graph. Section 3.3
presents our third contribution in the PPI prediction task, the MM-StackEns [9] multimodal
stacked generalization approach for PPI, alongside an extensive experimental evaluation of
the proposed model on multiple data sets and interaction types.

Chapter 4 contains our original contributions developed for designing nowcasting models.
Section 4.1 presents the AutoNowP binary classification model [25] built using autoencoders
and its potential in nowcasting tasks. The NeXtNow convolutional architecture [12] is
presented in Section 4.2 as an illustration of the usefulness of feature fusion techniques in
the nowcasting domain. Section 4.3 presents our approach for improving the visual quality
of predicted radar maps through designing autoencoder-based perceptual losses [7].

Finally, the last section outlines the conclusions of this thesis and directions of extending
the proposed models.

***
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Chapter 1

Background

This chapter presents an overview of the main theoretical aspects covering the DL models
used as components of the classification models developed in this thesis (Section 1.1). Sub-
sequently, the ML and DL approaches proposed in the literature for the applied problems
studied in our research, namely PPI prediction (Section 1.2) and weather nowcasting (Section
1.3), are reviewed.

1.1 Deep Learning: theoretical notions and building blocks

Deep learning is represented by the study of deep neural networks [37]. The manner in
which these models are trained is influenced by the learning paradigm that is being used.
In supervised learning, a model is trained with a collection of data-annotation pairs in order
to associate data instances to a discrete label (in classification problems) or a continuous
value (in regression problems) [37]. However, for most problems, a large data set having
high quality annotations is needed in order to properly learn this association between data
instances and their labels, which may not be feasible in many real world applications [34].

A different paradigm, which can discover patterns and structure in the input data without
using annotations is represented by unsupervised learning [37]. A subdomain of unsupervised
learning gaining significant attention recently is represented by the self-supervised learning
paradigm. The main characteristic of self-supervised learning is the fact that it generates a
pretext task starting from the available unlabelled data and trains a model on this pretext
task [34]. In the following, some of the main types of unsupervised representation learning
methods are briefly presented.

Autoencoders are neural networks which learn high-level representations for input samples
by being trained to reconstruct the instances using the learned representations. A denoising
autoencoder learns to recreate the input from a corrupted version of itself [37].

The contrastive learning framework comprises a series of self-supervised techniques that
obtain representations for data samples such that similar samples are clustered together,
while dissimilar ones are well separated. This is achieved by defining pairs of similar samples
using augmentations [21].

Another successful use of the self-supervised paradigm is represented by language models,
used to obtain word embeddings [34]. Recently, contextualized models, such as ELMo [62]
and BERT [29], have been introduced, which take into account the context (entire sentence)
of a word when computing its embedding. The pretext task which is typically defined is the
prediction of a token in a sequence given the previous tokens or the prediction of a masked
part of the sequence from the remaining sequence.

The representations learned in an unsupervised way through these models can be useful
in supervised contexts. The main directions pursued so far in the literature focused on
unsupervised pre-training, followed by supervised training. This can be performed either

12
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using the fixed learned features or by fine-tuning these representations on the target task
[33,34,69]. These approaches can be beneficial if we do not have many labelled instances for
the supervised task. Another important application is represented by anomaly detection [18],
for which autoencoders are frequently used. Joint supervised and unsupervised training
methods, which helped in preventing overfitting, have also been proposed [51].

A situation in which traditional supervised learning does not provide good generalization
and which is frequently encountered in practice is represented by the presence of incorrect
annotations, or label noise. Various approaches have been developed with the goal of reducing
the impact of incorrect annotations [67]. Motivated by the observation that deep learning
models tend to overfit noisy labels, regularization techniques have been studied [14,43,45,56,
70,82,88]. Another strategy for learning with label noise is represented by the identification
of samples which are most likely to be correct and then training using only these selected
samples [13,60].

1.2 Protein-Protein interaction prediction

The first applied task investigated in this thesis is represented by PPI prediction. Accurate
detection of PPIs can facilitate a better understanding of protein functions and biological
mechanisms [69].

Numerous machine learning approaches for determining PPIs from protein sequences have
been proposed. Earlier research focused on classical machine learning techniques [22, 38]. In
addition, neural networks have been studied [20,89]. A series of approaches have investigated
the usefulness of autoencoders as feature extractors in the context of PPI identification [69,
80,81]. Other pursued directions were represented by ensemble methods [19,54], graph neural
networks [57,85] and multimodal approaches [55,87].

Although the performance of PPI methods has constantly improved over the years, a
few works have pointed out the difference in performance encountered when testing PPI
approaches on pairs of proteins which are part of the training graph compared to the per-
formance obtained for pairs formed of previously unseen proteins [31, 57, 61]. With the aim
of providing a comprehensive evaluation protocol for PPI systems, Park and Marcotte [61]
proposed three methods of creating test sets: one in which both proteins in the pair have been
seen in the training phase, but in interactions with other proteins (denoted in their paper
as the C1 class), one in which only one protein has not been seen (C2-type interactions)
and one in which neither of the proteins appears in the training set interactions (C3 class).
Their study emphasized the need to include all three types of testing data sets when evalu-
ating PPI prediction methods, since in real-world scenarios only approximately 19.2% of the
interactions represent C1-type interactions, while C2 links amount for 49.2% and C3-type
interactions represent 31.6% [61].

1.3 Weather nowcasting

This section introduces the second application from the field of natural sciences that we
explored in this thesis, namely weather nowcasting.

Weather nowcasting is the prediction of the weather evolution for a short period of time
in the future, consisting of lead times of at most two to six hours. Being able to accurately
predict weather phenomena can be of crucial importance for human activity, especially in the
case of severe and rapidly changing weather events [1].

One of the main data sources for weather nowcasting is represented by radar reflectiv-
ity data, due to the known existent methods for estimating rainfall from reflectivity data.
Reflectivity is a product measured by radars periodically, which consists of numerical values
gathered for a disk corresponding to the geographical location surrounding the radar [36].
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Since the radar data has both spatial and temporal structure, which both play an im-
portant role in nowcasting, the problem can be modelled as a spatio-temporal prediction
task [64].

Various deep learning weather nowcasting methods have been proposed, which can be
broadly split in two categories, defined by the manner in which the temporal dimension is
being modelled. The first category of approaches makes use of fully convolutional networks
exclusively. The proposed models are based on U-Net [1,75], Xception [65], 3D convolutions
[40] or causal convolutions [17]. The second category of approaches consists of models based
on convolutional LSTMs (ConvLSTMs) [64,71,84] which represent customizations of LSTMs
suitable for modelling spatio-temporal data.

A general drawback of deep learning nowcasting models is the fact that they are not
able to accurately predict severe events, represented by high reflectivity values, because of
the high degree of data imbalance [36]. Another limitation observed by multiple studies
is that the predictions of weather nowcasting models tend to be much smoother and lose
detail in comparison to the original radar maps [42,74,76]. This issue is caused by pixel-wise
losses such as the Mean squared error (MSE), which assume that the data is sampled from
a Normal distribution [58]. The main directions pursued for improving the visual quality of
the predictions were the use of Generative Adversarial Networks [73] and perceptual losses
[76,78], as well as combinations of the two [42]. The idea behind perceptual losses is that of
computing a distance between the predicted and true image not directly in pixel space, but
in a feature space that distills higher level characteristics of the images, such as style, content
or textures [30].



Chapter 2

New approaches for classification
with noisy labels using
representation learning

The current chapter presents our contributions focused on developing new methods for
robust learning in the presence of noisy labels by leveraging unsupervised information in
the data. We propose two methods, TE-kNN (presented in Section 2.1) and DIAG (pre-
sented in Section 2.2), falling in the sample selection and regularization methods categories,
respectively, which are two of the most important research directions in learning with label
noise. The methods presented in this chapter are original contributions introduced in two
studies [8, 11].

2.1 Temporal ensembling deep k-nearest neighbours for learn-
ing with noisy labels

One of the prominent research directions for learning with noisy labels is represented by
sample selection methods, which aim to identify instances with correct annotations in order
to use only the selected, reliable samples during training [13,39]. A technique used in several
works for sample selection identifies clean samples as the instances which agree in terms of
label with their k nearest neighbours [13, 35, 60]. The neighbours are usually retrieved by
computing distances between the representations obtained from the penultimate layer in the
neural network [35, 60]. We argue, however, that considering only the neighbours obtained
for the current epoch can be sub-optimal, due to the incorrect annotations and the dynamics
of the training process which can lead to inaccurate neighbour sets.

For addressing this limitation, we proposed in [8] a deep k-NN sample selection method,
which adopts a temporal ensembling [50] procedure for computing the scores used for deciding
if a sample has a correct label. More specifically, our approach computes a weighted average
between previous scores of a sample and the score obtained during the current epoch, thus
benefiting from the model’s experience. We investigate two initializations for the scores: one
in which all initial scores are zero and one in which the initial scores are computed using the
neighbours given by an autoencoder trained on the data.

The experimental evaluation was performed on the SVHN [59], CIFAR-10 and CIFAR-100
[49] data sets using synthetically generated label noise. The results outlined the superiority
of our approach over several baselines, including the original k-NN strategy.
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2.2 Learning with label noise through pairwise distance agree-
ment between supervised and self-supervised representa-
tions

While sample selection methods are effective in low label noise settings, such approaches
would ignore the majority of the data in high noise regimes [67]. Thus, in [11], we proposed
a regularization method aimed primarily at improving the robustness of neural networks
trained with severe label noise. The intuition behind our proposed approach is that exploit-
ing unsupervised information about the structure of the input data through self-supervised
learning can be beneficial for supervised neural networks trained with noisy labels.

Our proposed method encourages a pairwise distance agreement between the supervised
embeddings of the samples in the batch and the corresponding embeddings obtained using
a self-supervised model. We hypothesized that learning representations which agree with
both supervised and self-supervised training regimes should diminish the effect of incorrect
annotations. The self-supervised model was represented by a contrastive learning model
trained on the data.

An analysis of the related work approaches on learning with label noise showed that our
approach is conceptually different from other literature approaches for learning with label
noise. Experiments were performed on data sets containing synthetic noise (CIFAR-10 and
CIFAR-100 [49]) and realistic noise (Animal-10N [66] and Food-101N [53]). The obtained
results highlighted the good performance of our method, which achieved an improvement of
up to 61.6% over the best competing method on severe label noise and of up to 1.8% for
moderate noise.

2.3 Conclusions

This chapter presented our proposed approaches using representation learning for classifi-
cation in the presence of noisy labels: a new sample selection method and a new regularizer.
Their effectiveness in comparison with related methods was shown on multiple image data
sets. We note however, that the developed approaches are general and could be applied to
different types of data sets as well.

As previously outlined, the two proposed methods are conceptually complementary. There-
fore, future work will study strategies for combining the two proposed approaches.



Chapter 3

Representation learning and feature
fusion for predicting
protein-protein interactions

This chapter presents our new approaches for the PPI task which make use of represen-
tation learning models, more specifically autoencoders and self-supervised language models.
The feature fusion modules that we proposed with the aim of better capturing patterns from
pairs of proteins are also described.

The models and experiments presented in this chapter have been published in [6, 9, 23].
The remaining of this chapter is organized as follows. Section 3.1 presents our AutoPPI

approach. Section 3.2 presents our proposed approach using supervised autoencoders for PPI
prediction. Section 3.3 introduces and details our third contribution in the PPI prediction
task, the MM-StackEns multimodal stacked generalization approach for PPI prediction.

3.1 AutoPPI : protein-protein interaction prediction using au-
toencoders

The first approach that we proposed for the task of PPI prediction is a sequence-based bi-
nary supervised classifier, AutoPPI, published in [23]. This classifier is an anomaly detection-
inspired [24,72] approach composed of two autoencoders used for learning the characteristics
of each of the two available classes: the class of proteins that interact and the class of proteins
that do not interact.

Due to the fact that we train autoencoders on pairs of proteins, we designed two new
architectures making use of intermediate fusion modules which are more suitable for paired
samples than classical architectures. The first proposed architecture has a shared structure
only for the encoder, while aiming to reconstruct the concatenated features of the two pro-
teins. The second proposed architecture has a siamese structure in both the encoder and
decoder.

An analysis of the literature highlighted that our approach is new in the PPI prediction
literature. We evaluated the proposed method using four public data sets belonging to
multiple species and the obtained results showed that AutoPPI is superior to the majority
of the related work methods on the considered data sets (wining in 81.25% of the comparisons
with the related work).
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3.2 Supervised autoencoders for predicting protein-protein
interactions

A limitation encountered for many PPI prediction models, including our AutoPPI is the
sub-optimal performance on C2 and C3 interactions (i.e. interactions containing one or two
proteins which are not part of the training graph).

In [6], we introduced a model aimed at addressing this limitation. The proposed method is
a two-stage approach based on supervised autoencoders. The first stage consists of pre-training
a denoising autoencoder on protein sequences. In the second stage, a classification network
is attached to the pre-trained encoder. The model simultaneously learns to predict the class
(interaction or non-interaction) associated to protein pairs and to reconstruct the two proteins
in the pair. The choice of a supervised autoencoder was motivated by the regularization effect
of adding a reconstruction branch observed in previous work [44,51]. Similarly, the denoising
pre-training stage has the goal of learning robust initial representations. To the best of our
knowledge, supervised autoencoders have not been used for PPI prediction so far.

We evaluated both the proposed approach and a classical supervised autoencoder on two
public data sets using different types of interactions (C1, C2 and C3) and showed that our
models obtained better results than multiple related work methods.

3.3 MM-StackEns: A multimodal ensemble method for pre-
dicting protein-protein interactions

Our third model, MM-StackEns, aims to improve upon the approaches presented in pre-
vious sections by narrowing the gap between the performance achieved for proteins inside the
training graph compared to those that are not included in the training graph.

The proposed approach, published in [9], is a multimodal ensemble learning method which
processes both sequence and graph information. The choice of a multimodal solution was mo-
tivated by the observation that processing single-source data, as in our previous approaches
(AutoPPI and the supervised autoencoders), may not fully capture the diverse information
present in available PPIs. We hypothesize that by aggregating the predictions obtained by
processing both amino acid and graph topology information, more informative predictions
can be obtained, due to the structural differences between the two models. While the graph
model exploits the neighbourhood information of a node in order to infer other possible neigh-
bours, the sequence component relies only on the sequence information of the two proteins in
the pair. The predictions given by the two models are combined in a two-layer stacked gener-
alization strategy that uses a Logistic Regression classifier. To improve individual models and
to account for the uncertainty present in the protein data, we proposed to learn probabilistic
representations for the proteins and we introduced a new feature fusion module for protein
pairs. Another contribution of this study is that of leveraging self-supervised representation
learning in the context of PPI identification, by using embeddings obtained via the ELMo
deep language model [41, 62], which was pretrained on large databases of protein sequences.
We experimentally showed that this input data representation is particularly beneficial for
predicting interactions of unseen proteins (i.e. for which no interactions have been encoun-
tered during training), as it outperforms classical protein representations computed using
physico-chemical descriptors.

A comprehensive comparison with related work methods on several intra-species and
inter-species data sets highlighted an improvement achieved by our MM-StackEns classifier
over multiple related work methods and its good performance on C2 and C3 interactions.
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3.4 Conclusions

This chapter presented our proposed models for the PPI prediction problem which take
advantage of unsupervised representation learning and feature fusion techniques. Our pro-
posed approaches were evaluated in a multitude of scenarios using various data sets and
interaction types.

Future work will investigate ways to incorporate components that discriminate between
classes in the training procedure of AutoPPI, since, currently, each autoencoder is trained
using a single class and it has only information characteristic to that class, but no information
that contrasts two distinct classes.

In the approach based on supervised autoencoders, we used architectures that reconstruct
independently the two proteins in a pair. Nevertheless, other architectures and reconstruction
schemes could be employed, such as the architectures proposed for AutoPPI, which aim to
model pairs of proteins and not individual sequences. Alternative possibilities are the use
of stochastic models or the design of learning schemes in which one protein from the pair is
used for reconstructing the other protein. These directions of research will be studied in the
future.

Regarding the MM-StackEns model, a possible improvement for the proteins represen-
tations can be brought by investigating newer deep language models pre-trained on protein
sequences, such as ProtBert, ProtAlbert or ProtT5 [32] instead of the ELMo representation.



Chapter 4

Representation learning and feature
fusion for weather nowcasting

This chapter presents our original contributions developed with the aim of leveraging
representation learning and feature fusion techniques in order to build new, improved deep
learning models for weather nowcasting.

The models and experiments presented in this chapter have been published in three papers
[7, 12,25].

The current chapter is structured as follows. Section 4.1 presents the AutoNowP binary
classification model. The NeXtNow nowcasting model is presented in Section 4.2. Section
4.3 details our approach for designing autoencoder-based perceptual losses.

4.1 AutoNowP : an approach using convolutional autoencoders
for radar reflectivity prediction

In [25], we proposed AutoNowP , an approach for nowcasting based on autoencoders. We
modelled the problem as a binary classification task in which we aimed to output whether
the reflectivity values at a location will be larger than a pre-specified threshold at a moment
in the future, given the reflectivity values measured by the radar at a previous time moment.
A binary output is relevant for weather nowcasting, since such thresholds correspond to
meteorological events of different intensities [26].

Few literature approaches focused on studying representation learning in the context of
weather nowcasting. In this work, we aimed to explore such a direction, by introducing
an approach for nowcasting using two autoencoders, each trained on the instances from a
different class. In order to encourage the two autoencoders to learn to reconstruct better the
reflectivity values having the same label as the class corresponding to that autoencoder, we
introduced a different weighted loss function for each of the two models. We opted for this
method in order to evaluate the usefulness of the characteristics learned by an autoencoder for
one class of reflectivity values in distinguishing between the two classes. Our proposed model
is similar to the model we introduced in [23] for PPI prediction, with the difference that for
AutoNowP , convolutional architectures were used in order to exploit the spatial structure of
the data and weighted loss functions were designed. Thus, with this contribution, we show
the potential of the autoencoder based approach previously used for PPI prediction [23] in
the weather nowcasting applied domain.

We evaluated our approach using radar data from Romania and Norway and outlined its
competitive performance.
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4.2 NeXtNow : a new convolutional architecture for weather
nowcasting

In [12], we investigated the potential of feature fusion methods for improving weather
nowcasting models, by introducing a new convolutional model for radar reflectivity prediction,
which makes use of ResNeXt blocks [83]. Our proposed model has an encoder–decoder
architecture that consists of ResNeXt blocks and simple convolutions, which maps one or
multiple past radar measurements to one or multiple future radar maps. Therefore, NeXtNow
is a customized version of ResNeXt for the short-term prediction of radar data. In addition,
in the study published in [12], an empirical analysis was performed with the aim of evaluating
the impact of using a larger temporal context, containing several time steps in the past, on
the performance of the model.

The NeXtNow model was evaluated using two data sets obtained from Romania and Nor-
way. The obtained results highlighted that NeXtNow outperformed, in the majority of cases,
a convolutional architecture [65] that was proposed for short-term radar data prediction.

4.3 Autoencoder-based perceptual losses for improving weather
nowcasting models

Our third proposed approach for weather nowcasting, introduced in [7], aimed at enhanc-
ing the visual quality of the radar maps predicted by DL models. Our proposed methodology
uses perceptual losses, which compute a distance between predicted and true images in a
feature space obtained using deep neural networks. Perceptual losses have previously been
investigated in the computer vision and nowcasting literature and are usually formed using
neural network classifiers (e.g. VGGs) pretrained on ImageNet [42, 76, 78]. However, while
features extracted by a VGG can accurately model natural RGB images, the extracted fea-
tures may not be ideal for radar data, which has different characteristics and appearance.
An additional disadvantage is given by the fact that VGGs are large-scale architectures.

In [7], we proposed an alternative for using deep pre-trained classifiers for extracting
the high level representations used in the computation of the perceptual losses. Instead,
we proposed to use convolutional autoencoders trained on the radar data. Our model is a
more lightweight architecture compared to the classical VGG and has the advantage of not
requiring any additional annotations or data. We showed that our model provides sharper
predictions than classical pixel-wise losses, while achieving a small improvement in terms of
root-mean-square error.

4.4 Conclusions

In this chapter, our approaches using representation learning and feature fusion for the
weather nowcasting problem have been presented. A classification model, a convolutional
architecture and a new type of loss function were proposed.

Future work will extend the evaluation of the three approaches in more challenging
weather nowcasting scenarios, involving predictions for longer time periods in the future
and covering larger geographical regions.

In addition, we plan to evaluate AutoNowP on nowcasting tasks which use different data
models. A possibility is to use AutoNowP in order to predict if a severe weather alert will be
issued at a future time step. Such a scenario would imply representing data instances as an
entire map covered by a radar, characterized by the radar reflectivity values for that region.

NeXtNow can be extended by including modules from our architecture inside recurrent
models. Additionally, more complex feature fusion techniques could be studied, such as



CHAPTER 4. REPRESENTATION LEARNING FOR WEATHER NOWCASTING 22

attentional modules [27]. Therefore, the NeXtNow model can constitute a starting point for
developing improved DL architectures for weather nowcasting.

Other directions of research will investigate the possibility of combining the proposed per-
ceptual losses with adversarial training techniques in order to further improve the sharpness
of the obtained predictions. In addition, future work will study the use of multiple feature
maps obtained from different layers of the autoencoders in the computation of the perceptual
loss. We note that even though we evaluated the proposed approach on radar reflectivity
prediction, the use of autoencoders as feature extractors is general and could be applied to
other image generation or prediction tasks.



Conclusions

This thesis had the main goal of investigating methods for improving supervised neural
network classifiers using techniques and ideas from unsupervised representation learning and
feature fusion. In particular, the problem of classification when having access to data sets
containing incorrect annotations was studied. A second goal of our research was to evaluate
the suitability and applicability of our proposed approaches in two research domains from the
natural sciences, which have the common characteristic of involving noisy and imbalanced
data and for which training a model using classical supervised techniques does not imply a
good generalization on the test set.

Chapter 2 presented our approaches for improving the performance of deep neural net-
works trained on data sets containing label noise. We presented a sample selection approach,
TE-kNN, which introduced a temporal ensembling procedure in order to compute more robust
sample scores and a regularizer, DIAG, which makes use of contrastive learning representa-
tions in order to guide the training of supervised models. The good performance of both
approaches and their superiority over multiple related work methods on data sets using syn-
thetic and realistic label noise was highlighted.

In Chapter 3 we presented our approaches for tackling the PPI prediction problem. The
three presented approaches included a classification model using autoencoders, AutoPPI,
alongside which two new siamese architectures were proposed. Our second approach uses
supervised autoencoders for PPI prediction and experiments on data sets with three levels
of difficulty for classifying interactions showed that the proposed models achieved good re-
sults in all evaluation scenarios. The third model, MM-StackEns, which was built on the
insights given by the first two approaches, further improved the generalization of PPI pre-
diction models with the final aim of narrowing the gap between the performance achieved
for proteins inside and outside the training graph. With this approach, we proposed to learn
more expressive representations for the protein pairs, through combining sequence and graph
modalities. In addition, we evaluated the performance improvement brought by the use of a
self-supervised language model for representing protein sequences and we introduced a new
feature fusion method for protein pairs. The proposed approach outperforms the great ma-
jority of related work approaches on multiple data sets. The AutoPPI and MM-StackEns
approaches explored both representation learning methods and feature fusion modules, high-
lighting the complementarity of the two directions.

Chapter 4 presented the models proposed in this thesis for the weather nowcasting prob-
lem. We introduced the AutoNowP autoencoder-based classification model for nowcasting.
Through developing this approach, we presented a unifying perspective on the two studied
applied domains from the field of natural sciences, by showing that autoencoders can be
used for developing effective classifiers in both the PPI prediction and weather nowcasting
tasks. Our second model, NeXtNow, was proposed with the aim of studying feature fusion
operations and their utility in nowcasting. Our third approach for weather nowcasting uses
autoencoders in designing perceptual losses which can help in making the outputs of DL now-
casting models less blurry. AutoNowP and NeXtNow were evaluated on radar data from
both Norway and Romania, while the last approach was evaluated on a data set covering a
geographical region from Norway.
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Through the developed approaches, the benefit that unsupervised representation learning
and feature fusion can bring to supervised learning methods was investigated in a variety of
contexts. From the point of view of the employed data, the two studied research problems
(PPI prediction and weather nowcasting) process data with diverse structure and character-
istics. From the perspective of the developed models, throughout this thesis, representation
learning and feature fusion methods have been used both in designing architectural compo-
nents or classification models and as a tool for creating new loss functions.

In addition to the future work directions outlined in individual chapters, another envisaged
research direction will aim to assess the generality and practical relevance of the methods
proposed in Chapter 2, by evaluating them on the PPI prediction and weather nowcasting
tasks.

In this thesis, the development of feature fusion modules was primarily concerned with
intermediate and late-fusion techniques. Nevertheless, additional directions of future work
could include the investigation of early-fusion strategies for both protein and meteorological
data. Another closely related extension of our work would be the study of feature fusion
techniques for multimodal data. MM-StackEns was our first step in this direction, but our
approach combined only the predictions of the models and did not fuse intermediate mul-
timodal representations. Such a direction is of interest, since PPIs can be characterized by
multiple types of information, such as protein structures, sequences or evolutionary informa-
tion [31], while in the meteorological domain, additional types of data (e.g. satellite images
or orographic data) could be used in conjunction with radar maps [36].

A research direction that was touched upon but not fully explored in our work is repre-
sented by learning with imbalanced data. Future work will focus on enhancing the perfor-
mance of our proposed approaches in such settings.

Another important aspect, from the point of view of using the models in real-world
settings, and which will be studied in the future consists of providing interpretability for the
predictions, in both PPI and weather nowcasting tasks.
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