Universitatea "Babeș-Bolyai" Cluj-Napoca Facultatea de Chimie și Inginerie Chimică

PhD Thesis Abstract

Synthesis and characterization of novel electron-rich phenothiazines

Autor:

Conducător științific:

Iani Sergiu Perețeanu

Prof. Dr. Luminița Silaghi-Dumitrescu

Referenți:

Președinte: Conf. Dr. Castelia Cristea ("Babeș-Bolyai" University Cluj-Napoca)

Prof. Dr. Luminița Silaghi-Dumitrescu ("Babeș-Bolyai" University Cluj-Napoca)

Prof. Dr. Thomas J. J. Müller (Heinrich-Heine Universität Düsseldorf)

Prof. Dr. Ing. Eleonora-Mihaela Ungureanu (Politehnica University of Bucharest)

Prof. Dr. Mircea Dărăbanțu ("Babeș-Bolyai" University Cluj-Napoca)

Cluj-Napoca, 29th of Noiembrie 2012

Universitatea "Babeș-Bolyai" Cluj-Napoca Facultatea de Chimie și Inginerie Chimică

PhD Thesis Abstract

Synthesis and characterization of novel electron-rich phenothiazines

Autor:

Conducător științific:

Iani Sergiu Perețeanu

Prof. Dr. Luminița Silaghi-Dumitrescu

Referenți:

Președinte: Conf. Dr. Castelia Cristea ("Babeș-Bolyai" University Cluj-Napoca)

Prof. Dr. Luminița Silaghi-Dumitrescu ("Babeș-Bolyai" University Cluj-Napoca)

Prof. Dr. Thomas J. J. Müller (Heinrich-Heine Universität Düsseldorf)

Prof. Dr. Ing. Eleonora-Mihaela Ungureanu (Politehnica University of Bucharest)

Prof. Dr. Mircea Dărăbanțu ("Babeș-Bolyai" University Cluj-Napoca)

Cluj-Napoca, 29 Noiembrie 2012

Table of Contents

1. Summary	7
2. Abstract	13
3. Introduction	19
4. General part	20
4.1. Phenothiazine chemistry	20
4.2. Aniline based compounds for material science	23
4.3. Diaza-crown ethers as chemosensors	25
4.4. The Buchwald-Hartwig coupling procedure	28
4.5. Original contributions	31
4.5.1. Electronrich 3,7-diaminophenothiazines	31
4.5.1.1. Synthesis of the diaminophenothiazine derivatives	31
4.5.1.2. Spectroscopic characterization	34
4.5.1.3. Electrochemical characterization	40
4.5.1.4. DFT modelling and correlations with measured data	48
4.5.2. Phenothiazine-diazacrown ethers	58
4.5.2.1. Synthesis of the phenothiazine-diazacrown ethers	58
4.5.2.2. Electrochemical characterization	61
4.5.2.3. Spectroscopic characterization	64
4.5.3. Electrochemical characterization of phenothiazinyl-porphyrins	71
4.5.4. Synthesis and DFT calculations of alkynylated phenothiazines	80
4.5.5. Microwaves assisted <i>N</i> -alkylation of phenothiazine	82

4	4.6.	Conclusions	. 85
5.	Exp	perimental part	. 87
Ę	5.1.	General considerations	. 87
Ę	5.2.	Synthesis of the precursors	. 89
	5.2	1. Synthesis of 10-hexyl-10 <i>H</i> -phenothiazine (2) ^[]	89
	5.2	2. Synthesis of 3,7-dibromo-10-hexyl-10 <i>H</i> -phenothiazine (3) ^{D}	90
	5.2	3. Synthesis of methyl 4-aminobenzoate (4a) ^[]	91
	5.2	4. Synthesis of 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane (4b) ^[]	92
Ę	5.3.	Synthesis of the diaminophenothiazine derivatives	. 93
	5.3	1. General procedure A	93
	5.3	2. Synthesis of <i>N³,N⁷</i> -bis(4-(<i>tert</i> -butyl)phenyl)-10-hexyl-10 <i>H</i> -phenothiazine-	3,7-
	dia	mine (5a)	93
	5.3	3. Synthesis of dimethyl 4,4'-((10-hexyl-10 <i>H</i> -phenothiazine-	3,7-
	diy	l)bis(azanediyl))dibenzoate (5b)	.94
	5.3. dim	4. Synthesis of <i>N¹,N¹'</i> -(10-hexyl-10 <i>H</i> -phenothiazine-3,7-diyl)bis(N4,	N4-
	53	5 Synthesis of 10 boxyl $N^3 N^7$ bis (4 mothoxynhonyl) 10 H phonothiazing	3J 27
	dia	mine (5d)	.96
	5.3	6. Synthesis of 3,7-di(9H-carbazol-9-yl)-10-hexyl-10 <i>H</i> -phenothiazine (5e)	.97
	5.3	7. Synthesis of 10-hexyl-3,7-di(pyrrolidin-1-yl)-10 <i>H</i> -phenothiazine (5f)	.98
	5.3	8. Synthesis of 10-hexyl- <i>N³,N³,N⁷,N⁷</i> -tetraphenyl-10 <i>H</i> -phenothiazine-3,7-diam	nine
	(5g) 99	
	5.3	9. Synthesis of 10-hexyl- <i>N³,N⁷,N⁷</i> , <i>N⁷</i> -tetrakis(4-methoxyphenyl)-10 <i>H</i> -phenothiaz	ine-
	3,7-	-diamine (5h)1	00
	5.3	10. Synthesis of 10-hexyl- <i>N</i> ³ , <i>N</i> ⁷ -dimethyl- <i>N</i> ³ , <i>N</i> ⁷ -diphenyl-10 <i>H</i> -phenothiazine-	3,7-
	dia	mine (5i)	01
	5.3. nh4	.11. Synthesis of 10-hexyl- <i>N³,N′</i> -bis(4-methoxyphenyl)- <i>N³,N′</i> -dimethyl-1	0H-
	P.1.4		

5.3.12. Synthesis of 10-hexyl-3,7-di(piperidin-1-yl)-10 <i>H</i> -phenothiazine (5k)	103
5.3.13. Synthesis of <i>N³,N³,N⁷,N⁷</i> -tetraethyl-10-hexyl-10 <i>H</i> -phenothiazine-3,7-0 104	liamine (5I)
5.4. Synthesis of the (mono)amino-(mono)brominated-phenothiazine deriva	t ives 105
5.4.1. General procedure B	105
5.4.2. Synthesis of 3-bromo-10-hexyl-7-(1-(4-methoxyphenyl)ethyl)-10 <i>H</i> -ph (6a) 105	enothiazine
5.4.3. Synthesis of methyl 4-((7-bromo-10-hexyl-10 <i>H</i> -phe yl)amino)benzoate (6b)	n othiazin-3- 106
5.5. Synthesis of the phenothiazine-diazacrown ethers	107
5.5.1. General procedure C	107
5.5.2. Synthesis of 7,16-bis(10-hexyl-10 <i>H</i> -phenothiazin-3-yl)-1,4,10,13-te diazacyclooctadecane (7a)	t raoxa-7,16- 108
5.5.3. Synthesis of 7,7'-(1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16- hexyl-N-(4-methoxyphenyl)-N-methyl-10 <i>H</i> -phenothiazin-3-amine) (7b)	- diyl)bis(10- 109
5.5.4. Synthesis of dimethyl 4,4'-((7,7'-(1,4,10,13-tetraoxa-7,16-diazacycloc	octadecane-
7,16-diyl)bis(10-hexyl-10H-phenothiazine-7,3-diyl))bis(azanediyl))dibenzoate	(7c) 110
5.6. Synthesis of ethynyl phenothiazine	111
5.6.1. Synthesis of 10-methyl-10 <i>H</i> -phenothiazine (10)	111
5.6.2. Synthesis of 3-bromo-10-methyl-10 <i>H</i> -phenothiazine (11)	111
5.6.3. Synthesis of 3-ethynyl-10-methyl-10 <i>H</i> -phenothiazine (12)	112
5.7. Synthesis of <i>N</i> -alkyl phenothiazines under microwave irradiation	113
5.7.1. General procedure D	113
5.7.2. Synthesis of 10-methyl-10 <i>H</i> -phenothiazine (10)	113
5.7.3. Synthesis of 10-ethyl-10 <i>H</i> -phenothiazine (13)	114
5.7.4. Synthesis of 10-isopropyl-10 <i>H</i> -phenothiazine (14)	115
Appendix (A)	116

A.1. List of synthesized compounds	116
A.2. List of abbreviations	
A.3. NMR spectra	123
A.4. Coordinates of the computed compounds	
A.5. List of scientific communications and publications	170
6. References	171

Cuvinte cheie: fenotiazine bogate în electroni, polianiline, amino-fenotiazine, cuplare *Buchwald-Hartwig*, diaza eteri coroană, voltametrie ciclică, calcule DFT, materiale pentru hole-transport, chemosenzori.

.

Abstract

Derivații de fenotiazină^[1] au fost folosiți intens în industria coloranților, ^[2] în farmacologie^{[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]} iar studiile recente se axează în principal pe aplicațiile lor în știința materialelor.^{[13],[14],[15]} Aceasta se datorează activității lor redox și predispoziției de a forma radicali cationici stabili.^[16]

Începând de la 10*H*-fenotiazina **1**,^[17] o gamă largă de *N*-amino-fenotiazine^[18] poate fi produsă în doar câțiva pași direcți (**Schema 1**). Pentru a îmbunătății solubilitatea, se introduc prin substituție nucleofilă substituenți *n*-hexil la atomul de azot al fenotiazinei deprotonate. După bromurare, **2** este convertit direct în 3,7-dibromo derivativul **3** prin substituție electrofilă aromatică.

Scheme 1: Sinteza generală a derivaților de amino-fenotiazină

Scheme 2: Sinteza di-amino fenotiazinelor 5 a - I

3,7-dibromo-10-hexil-10*H*-fenotiazina **3** este o materie primă deosebit de interesantă ce poate fi cuplată cu o serie largă de amine printr-o metodă de aminare *Buchwald-Hartwig* (**Schema 1 și Schema 2**).

Compușii **5 a – I** absorb în UV/Vis în zona cuprinsă între 316 nm și 348 nm și emit între 444 nm și 496 nm cu deplasări Stokes de 7000 până la 11000 cm⁻¹ (**Figura 1**). Randamentele cuantice variază între 0.1 și 19 %.

Rezultatele cele mai interesante provin din voltametria ciclică unde potențialul de oxidare al primei stări variază între 0 mV (pentru compușii **5f și 5l**) și 770 mV iar potențialul de oxidare al celei de-a doua stări variază între 360 mV și 1060 mV (**Figura 1**). Compușii **5e** și **5h** prezintă și o a treia stare de oxidare cvasi-reversibilă la 1250 mV respectiv 1210 mV.

Figure 1: Absorbția, emisia și ciclo-voltamograma compusului 5d

Compusul **5**I prezintă cea mai mare valoare a constantei de formare a *semichinonei* și anume 14.2×10⁸, ceea ce reprezintă o măsură a cantității de semichinonă formată (radicalul cation intermediar) înainte de apariția stării complet oxidate.^[19]

Calculele DFT^[20] realizate au arătat o bună corelare între energia HOMO și potențialele de oxidare ale primei stări, la fel și între diferența HOMO-LUMO și energia de absorbție din UV/Vis.

Scheme 3: Sinteza fenotiazinelor mono-bromurate-mono-aminate 6 a, b

Pornind tot de la fenotiazina dibromurată **3**, și utilizând o metodă modificată pentru cuplarea *Buchwald-Hartwig*, se pot obține fenotiazinele mono-bromurate-mono-aminate **6** (**Schema 3**). Acești compuși reprezintă intermediari deosebit de valoroși în sinteza de compuși nesimetrici.

Cu ajutorul compușilor mono-bromurați **6**, o nouă procedură de tip *Buchwald-Hartwig* a fost realizată pentru cuplarea acestora cu eterul diaza-18-coroană-6 **4b**. Astfel s-a obținut o nouă clasă de compuși, cea a fenotiazinelor bogate in electroni cuplate cu diaza-eteri coroană **7** (**Schema 4**).

Figure 2: Cyclo-voltamograma compusului 7b

Scheme 4: Sinteza fenotiazinelor cuplate cu diaza-eteri coroană 7 a - c

Compușii **7a** și **7b** prezintă două oxidări reversibile la 330 mV și 915 mV, respectiv 120 mV și 610 mV (**Figura 2**).

Maxima de absorbție în UV/Vis este situată la 321 nm pentru ambii produși iar emisiile la 464 nm și 461 nm cu randamente cuantice de 0.9 și 0.6 %.

Cuplarea metalelor (triflați de Ca, Zn, Mg, K și Na) a fost de asemenea realizată și determinată cu ajutorul măsurătorilor de absorbție și emisie din UV/Vis (**Figura 3**). Complecșii metalici ai compusului **7a** prezintă o ușoară deplasare hypsochromică de până la 8 nm pentru absorbție și de până la 21 nm pentru emisie cu o creștere a randamentelor cuantice de până la 2.3 %.

Aceiași complecși metalici ai **7b** prezintă tot o deplasare hypsochromică de până la 9 nm în spectrul de absorbție și o deplasare bathochromică de până la 8 nm la emisie cu randamente cuantice mărite până la 1 %.

Figure 3: Spectrele de absorbție și emisie ale compusului 7b cu diverse săruri metalice

În cazul complecșilor cu triflat de cupru, au apărut bande largi de absorbție în regiunea 400 - 550 nm și o dispariție a fluorescenței, datorate reducerii Cu^{II}.^[21]

Concluzii

O metodă pentru **di**-cuplarea de tip *Buchwald-Hartwig* a dibromo-fenotiazinei cu diverse amine primare, secundare, aromatice, ciclo-alifatice sau mixte a fost creată și 12 compuși noi sintetizați cu randamente între 15 % și 91 %; structurile acestor compuși au fost stabilite prin măsuratori de masă, RMN, analiză elementală și IR.

Caracterizarea spectroscopică a fost efectuată, ducând la deplasări Stokes între 7000 și 11000 cm⁻¹ și randamente cuantice de până la 19 %. Măsurătorile electrochimice au fost de asemenea satisfăcătoare cu potențialele de oxidare ale primei (de la 0 mV la 390 mV) și celei de a doua stări de oxidare (de la 524 mV la 813 mV) joase pentru 11 din 12 compuși. Modelarea moleculară la nivel DFT a fost realizată și toate măsurătorile practice au fost corelate la și susținute de aceste modele.

În concluzie, compușii nou sintetizați reprezintă foarte buni candidați pentru aplicații în știința materialelor.

O nouă metodă pentru **mono-**cuplarea *Buchwald-Hartwig* a dibromo-fenotiazinei cu diverse amine a fost creată și 2 produși noi sintetizați cu randamente între 37 % și 43 %. Aceste fenotiazine mono-bromurate-mono-aminate au fost mai departe cuplate cu succes la diaza eteri coroană obținându-se 2 noi compuși cu randamente de 22 %, respectiv 45 %. Toate structurile cmpușilor au fost stabilite prin analize de masă, RMN și IR.

Caracterizarea spectroscopică a condus la deplasări Stokes de la 9400 pînă la 9600 cm⁻¹ și randamente cuantice de 0.9 și 0.6 %. Măsurătorile electrochimice au arătat potențialele ale primei (330 mV și 120 mV), respectiv celei de a doua stări de oxidare (915 mV și 610 mV).

Complecșii metalici ai acestor compuși cu 6 metale au fost investigați prin măsurători de absorbție și emisie în UV/Vis. Maxima de absorbție a acestor complecși a prezentat o deplasare spre roșu de până la 9 nm pentru ambii compuși, în timp ce maxima de emisie a suferit o deplasare spre roșu de până la 20 nm pentru unul din compuși și o deplasare spre albastru pentru celaălalt de până la 8. Randamentele cuantice s-au majorat de la 0.9 până la 2.3 și de la 0.6 până la 1.

Astfel, nou sintetizații eteri coroană prezintă capacitatea de a complecsa metale și de a fi investigați în continuare ca și chemosenzori pentru metale.

Referințe bibliografice

- ¹ A. Bernthsen, *Liebigs Ann. Chem.* **1883**, 230, 73.
- ² C. Lauth, *Ber. deutsch. chem. Ges.* **1883**, *16*, 2896.
- ³ a) L. E. Swanson, D. A. Porter, J.W. Connelly *J. Am. Vet. Med. Assoc.* **1940**, *96*, 704-707. b)
 H. A. Oelbers, *Arznein. Forsch.* **1951**, *5* (II), 139-42.
- ⁴ F.L. Campbell, W. N. Sullivan, L.E. Smith, H. L. Haller, *J. Econ. Entomol.* **1934**, 27, 1176-85.
- ⁵ N. Motohashi, H. Sahaganni, F. Kurihara, L. Ferenczy, *Anticancer Res.*, **1992**, 12(4), 1207-1210.
- ⁶ N. Fujimoto, *Bull. Chem Soc. Japan* **1959**, *32*(3), 276-299.
- ⁷ A. Balestrieri, Arch. Intern. Pharmacodynamie **1955**, 100, 361-367.
- ⁸ a) R. Hazard, E. Corteggiani, A. Cornec, *Compt. Rend. Soc. Biol.* **1949**, *143*, 906-907. b) Y. Kase, T. Yuizonto, *Chem. Pharm. Bull.* **1959**, *7*, 378-382.
- ⁹ J. Tripod, Brit. J. Pharmacol. **1949**, 4, 323-328.
- ¹⁰ a) P. Viaud, *J. Pharm. Pharmacol.* **1954**, *6*, 361-389. b) K.Sakagami, H. Takahashi, I. Yoshida, *Anticancer Res.* **1995**, *15* (6B), 2907-2911.
- ¹¹ a) V. G. Longo, D. Bovet, *Farm. Sci. e Techn.* **1940**, *4*, 515-25. b) J. Mahaux, K. K. Kowalewski, J. Mahaux, K. K. Kowalewski, *Arch. Intern. Pharmacodynamie* **1949**, *80*, 464-469.
- ¹² A. H. Beckett, G. E. Navas, AJ. Hutt, *Xenobiotica* **1998**, *18* (1), 61-74.
- ¹³ K. Okada, T. Imakura, M. Oda, H. Murai, *J. Am. Chem. Soc.* **1996**, *118*, 3047-3048.
- ¹⁴ a) R. Duesing, G. Tapolski, T. J. Meyer, *J. Am. Chem. Soc.* **1990**, *112*, 5378. b) W. E. Jones,
 P. Chen, T. J. Meyer, *J. Am. Chem. Soc.* **1992**, *114*, 387. c) J. Daub, R. Engl, J. Kurzawa,
 S. E. Miller, S. Schneider, A. Stockmann, M. R. Wasielewski, *J. Phys. Chem. A* **2001**, *105*, 5655
- ¹⁵ M. Sailer, A. W. Franz, T. J. J. Müller, *Chem. Eur. J.*, **2008**, *14*, 2602.
- ¹⁶ a) A. Sighanbandhu, P. D. Robindon, J. H. Fang, W. E. Geiger, *Inorg. Chem.* **1975**, *14*, 318 323. b) T. Uchida, M. Ito, K. Kozawa, *Bull. Chem. Soc. Jpn.* **1983**, *56*, 577-582.
- ¹⁷ M. Sailer, A. W. Franz, T. J. J. Müller, *Chem. Eur. J.* 2008, *14*, 2602 2614.
- ¹⁸ a) J. P. Sadighi, J. G. Winter, T. W. Mackewitz, R. A. Singer, S. L. Buchwald, *Polym. Mat. Sci. Eng.* **1999**, *80*, 43; b) J. F. Hartwig, F. E. Goodson, J. Louie, S. Hauck, *Polym. Mat. Sci. Eng.* **1999**, *80*, 41. c) A. Begouin, S. Hesse, M. João, R. P. Queiroz, G. Kirsch, *Synthesis*

2005, *14*, 2373–2378; d) K. R. J. Thomas, J. T. Lin, Y.-T. Tao, C.-W. Ko, *J. Am. Chem. Soc.* **2001**, *123*, 9404-9411.

- ¹⁹ L. Michelis, *Chem. Rev.*, **1935**, *16*, 243-286.
- ²⁰ TURBOMOLE V6.3 2011, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from <u>http://www.turbomole.com</u>.
- ²⁰ A.J. Bard, R. Parsons, and J. Jordan, *Standard Potentials in Aqueous Solutions*, IUPAC (Marcel Dekker), New York, USA, 1985.

Prezentări de poster

- "Novel electronrich amino substituted phenothiazine derivatives with tunable electronic properties", <u>Iani S. Pereteanu</u>, Thomas J. J. Müller, poster presentat la ICPOC 21: 21st IUPAC Conference on Physical Organic Chemistry, 9 – 13 September 2012, Durham University, UK.
- "Synthesis and DFT calculations of Alkynylated Phenothiazines", <u>Iani Pereteanu</u>, Luiza Gaina, Luminita Silaghi-Dumitrescu, poster presentat la Conferința Internatională MOLMOD – Molecular Modelling in Chemistry and Biochemistry, 28 Mai 2010, Cluj – Napoca, Romania.

Publicații

- L. Gaina, T. Dallos, C. Cristea, T. Lovasz, <u>I. Pereteanu</u>, M. Surducan, L. Silaghi-Dumitrescu, "Microwaves assisted *N*-alkylation of phenothiazine", *Studia Universitatis Babes-Bolyai,Chemia*, **2010**, *2*, 97 – 102.
- manuscripts still in progress.