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Abstract
The main goal of the thesis is to theoretically investigate the quantum transport processes

present in quantum dot-based nanodevices and to study the optical properties of spherical quan-

tum dots. The first Chapter of the thesis is an introductory section which focuses on a brief

discussion of basic concepts related to the topics. The second Chapter of the thesis proposes an

experimentally feasible nanojunction in which a quantum dot is integrated in a semiconducting-

superconducting heterostructure hosting Majorana bound states in the presence of an optical

phonon mode. A threading magnetic flux is used to manipulate the Majorana-induced phonon-

assisted quantum tunneling. Our findings can serve as a promising guide in Majorana detection

experiments. The next Chapter of the thesis focuses on a detailed theoretical study of quan-

tum transport in a setup consisting of two graphene electrodes between which a quantum dot

is interposed under the effect of the magnetic field. The proposed system can provide an ideal

platform for the investigation of many-body quantum phenomena, such as the Kondo effect, and

can be regarded as a reference for the development of graphene-based nanoelectronic devices.

The last part of the thesis focuses on the theoretical study of linear and nonlinear optical prop-

erties of a spherical semiconductor quantum dot in which the quantum confinement is due to an

inversely quadratic Hellmann potential within the effective mass approximation. The proposed

setup could be further utilized to boost the development of novel quantum dot-based optoelec-

tronic devices.

Keywords: quantum transport, quantum dots, Majorana bound states, electron-phonon in-

teraction, optical phonons, graphene, Kondo effect, absorption coefficient, refractive index

changes.
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Chapter 1

Theoretical Background

1.1 Introduction to Low-Dimensional Systems. Quantum Dots

and Kondo Effect

In the development of electronic components, it is necessary to take into account the quan-

tum phenomena occurring in nanoscale devices and to study them theoretically. A system is

nanoscale if the characteristic size of the transport region is smaller than the electron phase-

coherence length but it is comparable with the de Broglie wavelength of the electron and exhibits

discrete energy spectrum [1, 2]. Quantum dots (QDs) are small confined regions of dimensions

comparable with the electron de Broglie wavelength, considered as zero-dimensional objects,

are embedded between semi-infinite electrodes which play the role of electron reservoirs as it is

shown in Figure 1.1(a). The dot tunnel couples to the left (right) lead with coupling ΓL(R). The

motion of electrons is restricted in all spatial directions, and thus they occupy discrete energy

levels in the QD, which can be probed in transport measurements via macroscopic electrodes.

The confinement induced energy levels can be controlled via changing the potential character-

istics. The total QD spectrum is a result of the confinement induced and the charge quantization

generated energy spectrum [3]. Figure 1.1(b) illustrates an experimental realization of a QD

fabricated in GaAs semiconductor heterostructure [5].

Figure 1.1: Schematic representation of a quantum dot (QD) coupled to left and right electrodes via
tunnel junctions with couplings ΓL and ΓR, respectively. The gate electrode is capacitively attached to
the QD. Figure based on [3, 4]. (b) Scanning Electron Microscopy image of a QD [5].
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CHAPTER 1. THEORETICAL BACKGROUND

As known, the electrical resistance of metals (e.g., Cu, Au) decreases when the temperature

is lowered and further decrease in temperature leads to the saturation of resistivity [6, 7]. A

group of metals (e.g., Al, Nb) may abruptly lose all their electrical resistance at a critical tem-

perature when undergoing a phase transition from the conducting to a superconducting state. It

has been observed that when magnetic atoms (e.g., Mn, Cr) are added to nonmagnetic metals,

the electrical resistance starts to increase as the temperature further decreases, without exhibit-

ing a phase transition. The temperature at which the electrical resistivity begins to grow again

is called the Kondo temperature. The effect was first explained by Kondo, considering an-

tiferromagnetic coupling between magnetic impurities and a sea of conduction electrons [8].

Antiferromagnetic exchange between the spin of leads’ electrons and the QD spin is realized

by a second-order spin-flip cotunneling process for which the initial and final states of QD have

different spin orientations. This results in opening of an additional transport channel at the

Fermi energy by forming a resonance [9]. The peak emerging at the Fermi level in the density

of states is called Kondo resonance. Contrary to bulk metals where the Kondo effect emerges as

a lnT divergence of the resistivity [Figure 1.2(a)], in QDs it shows up as a lnT dependence of

the linear conductance [Figure 1.2(b)]. The Kondo effect was first experimentally demonstrated

in GaAs-based QDs [5, 10, 11].

Figure 1.2: (a) The logarithmic dependence of resistivity R on temperature T in bulk metals. (b) The
logarithmic dependence of conductance G on temperature T in QDs where G0 = 2e2/h is the conduc-
tance quantum. Figures adapted from [9].
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CHAPTER 1. THEORETICAL BACKGROUND

1.2 Introduction to the Majorana Fermions and Majorana

Bound States

Majorana recognized in 1937 that the Dirac equation can be represented in terms of real

wavefunctions [12] which entails an important consequence, a particle described by a real wave-

function is its own antiparticle. The particles that fulfill this condition are charge-neutral, called

Majorana fermions (MFs). Due to the fact that the Majorana equation has the same mathemat-

ical structure as the Bogoliubov-de Gennes equation which describes the quasiparticle excita-

tions in superconductors (SCs), thus MFs can be searched in SCs. MFs in SCs are midgap ex-

citations with zero-energy (E = 0) for spinless fermions, called Majorana zero modes (MZMs)

or equivalently Majorana bound states (MBSs). The MFs in condensed matter can be created as

zero-energy excitations in spinless or p-wave SCs with spin-triplet pairing [13, 14]. The finger-

prints of MBSs were first seen in transport measurements in such heterostructures as a zero-bias

anomaly in differential conductance map [15]. We briefly discuss two models which allow to

create MBSs in topological SCs: the Kitaev model [16] and the Oreg-Lutchyn model [17, 18].

The Kitaev model [16] involves spinless electrons deposited on the surface of a p-wave

superconducting lattice with N finite sites. Note that the same lattice site is occupied by one

spinless electron due to the Pauli exclusion. Due to the fact that any complex fermion can be

split into two MFs, thus the chain of N complex fermions can be represented in terms of 2N

MFs. When the coupling between MFs localized on neighboring lattice sites is stronger than

the coupling strength between the Majoranas from the same lattice sites, the first and last MFs

are decoupled from the chain of 2N MFs. These two unpaired MFs are completely localized at

the edges of the lattice and correspond to a single fermion mode which is delocalized between

the two ends of the chain. These Majorana end modes are the Majorana bound states (MBSs).

This phase is called topologically nontrivial [19].

Since p-wave SCs with spin-triplet pairing form the category of unconventional SCs, they

appear rarely in the nature and thus they should be replaced by other realizations in experi-

ments [19, 20]. It has been established that a possible experimental realization of the Kitaev

one-dimensional lattice chain model is obtained when depositing a semiconducting nanowire

with strong spin-orbit coupling (eg., InAs, InSb), as shown in Figure 1.3, in proximity of a con-

3



CHAPTER 1. THEORETICAL BACKGROUND

ventional s-wave SC (eg., Al, Nb) in an external magnetic field [17, 18]. The proposed system is

called Oreg-Lutchyn model. When the relation h >
√
|∆|2 + µ2 between Zeeman energy (h),

the proximity induced superconducting gap (∆) and chemical potential of nanowire (µ) is ful-

filled, the system can be mapped into the Kitaev model by hosting at its ends MBSs [21]. In this

case the semiconductor nanowire is transformed into a topological superconducting nanowire

(TSNW), a setup usually called in literature Majorana nanowire [19]. In a finite system with

size L, the two Majorana wavefunctions overlap leading to a hybridization of MZMs character-

ized by the overlap energy εM ∝ e−L/ξ where ξ is the superconducting coherence length [19].

Figure 1.3: A TSNW as a result of a proximity of a semiconducting nanowire with strong spin-orbit
coupling of strength α (represented in green) with an s-wave superconductor (represented in gray) in
the presence of a magnetic field ( ~B). The Majorana modes appear at the opposite ends of the TSNW
(represented in orange) that overlap for a finite L length nanowire. Figure adapted from [13, 14, 19, 21].

The MBSs appear as a pair of spatially separated localized edge modes in topological SCs

which can store information as a nonlocal regular fermionic state. The existence of MBSs is not

influenced by local perturbations and, in general, they are protected from quantum decoherence.

1.3 Graphene

Graphene is a two-dimensional crystal for which the sp2 hybridized carbon atoms condense

in a hexagonal lattice structure which can be viewed as a triangular lattice with two carbon

atoms per unit cell [22]. The graphene as monolayer graphite was first theoretically predicted

more than a half century ago [23] and isolated experimentally for almost two decades [24].

Graphene owns high electron mobility, good thermal conductivity, unique mechanical and opti-
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CHAPTER 1. THEORETICAL BACKGROUND

cal properties [25] which makes it a suitable platform for many applications such as fabrication

of electronic sensors [26], optoelectronic [27] or energy storage devices [28]. The reciprocal lat-

tice of monolayer graphene contains high symmetry crystallographic points, K and K ′, located

at the corners of the first Brillouin zone, which, are also called Dirac points.

The band structure of graphene can be determined within a tight-binding approximation and

near the Dirac points the energy dispersion is E±(q) ≈ ±~vF |~q | with vF ≈ 106 m/s being

the graphene Fermi velocity where the sign +/− refers to the conduction/valance band. They

touch each other at the Dirac points [22]. The energy dispersion of graphene at the Dirac

points is linear in momentum [as seen in Figure 1.4(a)] presenting no energy gap [29]. The

charge carriers in graphene are called massless Dirac fermions. For an undoped graphene,

the Fermi level is located at the Dirac point where the electron and hole bands touch each

other in the momentum space. The density of states (DOS) ρ(E), near the Dirac points, is

ρ(E) = gsgv|E|/2π~2v2F where gs = 2 and gv = 2 are the valley and spin degeneracy [30].

Figure 1.4(b) illustrates the DOS near the Dirac point and for a full bandwidth.

Figure 1.4: (a) Band structure E(kx, ky) of graphene. (b) DOS ρ(E) of a monolayer graphene near the
Dirac point and over a full energy domain (inset). Figures adapted from [22, 29].
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Chapter 2

Probing Majorana Bound States via Quantum Dots

in the Presence of Electron-Phonon Interaction

2.1 Motivation

The discovery of Majorana bound states (MBSs) have opened a new research area in the

condensed matter community. The most commonly employed scheme to probe MBSs in a

topological superconducting nanowire (TSNW) consists of the coupling of MBSs to a quantum

dot (QD), which is then coupled to normal leads [31, 32]. The signature of MBSs is seen

in the linear conductance measured through the dot [32]. Namely, when a noninteracting QD

connects to a nanowire which is in its topological superconducting phase, the presence of MBSs

manifests in the reduction of linear conductance peak to e2/2h. Over the last few years, various

QD-TSNW structures have been theoretically proposed in order to detect the fingerprints of

Majoranas via transport properties, such as conductance [33–35], thermal conductance [36, 37]

and Fano resonance [38, 39]. Over the past decade, a plethora of experimental realizations on

the detection of Majorana signatures via transport measurements have been reported by using

devices based on normal lead-superconductor (SC) junctions [15, 40] or different QD-TSNW

configurations [41, 42]. In particular, a couple of theoretical studies have addressed the phonon-

assisted transport mechanisms at MZMs [43–47].

The aim of this Chapter is to propose a realistic, experimentally feasibly setup, that can

probe MBSs via transport measurements. We show that the characteristic signatures expected

from Majorana modes are significantly modified in the presence of electron-phonon interaction

(EPI).

2.2 Theoretical Model

The system consists of a dot which is connected to two Majoranas hosted by the ends of

a TSNW. The QD-TSNW configuration forms a loop structure that is threaded by an external
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CHAPTER 2. PROBING MAJORANA BOUND STATES VIA QUANTUM DOTS

magnetic flux Φ, as it is illustrated in Figure 2.1. Thus, the transport properties of the nano-

junction can be manipulated when tuning the magnetic flux. To investigate the effect of the EPI

on transport properties, we consider that the localized electron in the dot interacts with a single

long-wave optical phonon mode. The system is modeled by the Hamiltonian [32, 34, 38, 48]

H =
∑
α,k

εαk c
†
αkcαk + iεMγ1γ2 + ~ω0a

†a+ εdd
†d+ β(a+ a†)d†d

+
[
(λ1d− λ∗1d†)γ1 + i(λ2d+ λ∗2d

†)γ2
]

+
∑
α,k

(
Vαkc

†
αkd+ V ∗αkd

†cαk
)
.

(2.1)

The first term of Eq. (2.1) describes the motion of free electrons in both electrodes where cαk

(c†αk) denotes the annihilation (creation) operator for a noninteracting electron with momentum

k in the normal lead α [where α ≡ left (L), and right (R)] and µα denotes the chemical potential

in lead α. The electrodes are at the same temperature, Tα = T . The second term in Eq. (2.1)

characterizes the coupling between the two Majoranas (denoted by γ1 and γ2), hosted by the

opposite ends of the TSNW loop via εM Majorana overlap energy. The third term in Eq. (2.1),

represents the longitudinal optical phonon mode with a†(a) phonon creation (annihilation) op-

erator and ~ω0 phonon energy. The phonon distribution is Nph = 1/(e~ω0/kBT − 1) (in the

following ~ = kB = 1). The fourth term in Eq. (2.1) describes the single-level QD where

Figure 2.1: Schematic representation of a QD attached to two MBSs, denoted by Majorana operators γ1
and γ2, via coupling strengths λ1 and λ2, hosted by the ends of a TSNW. The QD-TSNW setup forms a
loop structure which is threaded by a tunable magnetic flux Φ. The QD is connected to left (L) and right
(R) metallic electrodes via coupling strengths ΓL and ΓR, respectively. The chemical potential in lead
L(R) is denoted by µL(R). The QD level is tuned by the gate voltage Vg applied to the gate electrode. The
QD electron interacts with an optical phonon mode of frequency ω0 via the electron-phonon coupling
strength β.

7



CHAPTER 2. PROBING MAJORANA BOUND STATES VIA QUANTUM DOTS

εd is the dot energy and d†(d) stands for the fermionic creation (annihilation) operator for dot

electrons. The next term of Eq. (2.1) characterizes the interaction between the dot electron

and optical phonon mode via electron-phonon coupling strength β. The next term in Eq. (2.1)

models the coupling of the dot to the Majoranas via coupling strengths λ1 = |λ1|eiφ/4 and

λ2 = |λ2|e−iφ/4 [38] where the magnetic flux phase is defined as φ = πΦ/Φ0 = 2 arg(λ1/λ2)

and Φ0 = h/2e represents the magnetic flux quantum. The last term of Eq. (2.1) describes

the coupling between the dot electron and free electrons in normal leads via tunneling am-

plitudes Vαk. The Majorana operators γ1 and γ2 are replaced with regular fermion operators,

γ1 = (f † + f)/
√

2 and γ2 = i(f † − f)/
√

2, respectively.

In the framework of nonequilibrium Green’s function formalism, the current flowing from

the α normal lead to the QD is given by the relation [49–51]:

Iα =
ie

h

∫
dε
{
Γα(ε)

[
fα(ε)[Gr

d(ε)−Ga
d(ε)] + G<

d (ε)
]}

11
, (2.2)

where G
r(a)
d (ε), G

<(>)
d (ε), Γα(ε) and fα(ε) are the retarded (advanced), lesser (greater) Green’s

function matrices of the dot, QD-lead coupling matrix and Fermi-Dirac distribution matrix for

electrode α represented in the Nambu space. Note that the Kirchhoff’s law IS + IL + IR = 0

is fulfilled [51]. In the subgap regime, |eV | < ∆, the current Iα can be further decomposed

as Iα = IETα + ILARα + ICARα where IETα , ILARα and ICARα are the currents generated in the

electron tunneling (ET), local and crossed Andreev reflection (LAR and CAR) processes. The

ET process manifests in the transmission of an electron from one electrode to the other one.

The LAR process refers to the tunneling of one electron/hole from one electrode into the SC via

one MZM after that it is reflected as a hole/electron in the same electrode. In a CAR process a

pair of MZMs connects to two normal electrodes in which one electron/hole from one electrode

tunnels into the superconducting material via one MZM and then it tunnels out as a hole/electron

via the other MZM at the other electrode [52]. Assuming electron-hole symmetry in QD-lead

couplings Γeα = Γhα = Γ and µL = −µR = eV/2 with µS = 0 in SC, the total current through

the dot reads

I =
ie

2h
Γ

∫
dε
[
f eL(ε)− f eR(ε)

]
[G>

d (ε)−G<
d (ε)]11. (2.3)

To calculate G
<(>)
d (ε), we employed the canonical transformation which allows us to elim-

inate the electron-phonon coupling term in Hamiltonian given by Eq. (2.1). The application

8



CHAPTER 2. PROBING MAJORANA BOUND STATES VIA QUANTUM DOTS

of canonical transformation leads to a new transformed Hamiltonian, decoupled into a phonon

and an electron part, and to renormalization of the QD energy, dot-leads and dot-MBSs cou-

plings ε̃d = εd − gω0, Γ̃α = Γαe
−g(2Nph+1) and λ̃j = λje

−g(Nph+1/2) with g = (β/ω0)
2. The

greater and lesser Green’s functions are expressed as G>
d (ε) =

∑∞
p=−∞ LpG̃>

d (ε − pω0) and

G<
d (ε) =

∑∞
p=−∞ LpG̃<

d (ε+ pω0) where Lp denotes the Franck-Condon factor [48]. To deter-

mine the dressed lesser (greater) Green’s functions, G̃
<(>)
d , we applied the Keldysh equation,

G̃
<(>)
d = G̃r

dΣ̃
<(>)G̃a

d, where Σ̃<(>) is dressed lesser (greater) self-energy. The elements of re-

tarded Green’s function matrix G̃r
d have been determined by employing the equation of motion

technique [53]. Knowing G
<(>)
d (ε), all the transport properties of QD can be explored. The

detailed calculations can be found in our work [54].

2.3 Results and Discussion

In this Section, we present the main results for transport properties of the QD-MZMs system

in both the absence and the presence of EPI within several experimentally relevant parameter

regimes. The superconducting gap ∆ in typical experimental setups is on the order of 250 µeV

for TSNWs [15]. The values of QD-leads Γ and QD-MBSs |λj| couplings are on the order of

a few µeV [33]. In calculation, we measured all energies in units of Γ. The electron-phonon

coupling strength and phonon energy are chosen as β = 2.5 Γ and ω0 = 5 Γ, respectively.

2.3.1 Results in absence of electron-phonon interaction

In this Section, we study the behavior of linear (G) and differential (dI/dV ) conductance

when varying the system parameters in the absence of EPI. To understand the influence of

biasing on the periodicity of dI/dV in magnetic flux phase φ, we introduce µL = qeV and µR =

(q−1)eV with µL−µR = eV and 0 ≤ q ≤ 1. We show in Figures 2.2(a) and (b) the results for

zero-temperature total differential conductance dIL/dV against the magnetic flux phase φ for

nonoverlapping (εM = 0) and overlapping (εM 6= 0) MBSs. Figure 2.2(c) illustrates the CAR

component of the zero-temperature total differential conductance, dICARL /dV . The dot level is

not tuned, εd = 0. We observe that dIL/dV exhibits a 2π-periodic function in φ for εM = 0 and

remains unchanged when altering the system biasing. When εM 6= 0, the periodicity of dIL/dV

can be 2π and 4π depending on how the QD biasing is chosen. The CAR processes contribution

9



CHAPTER 2. PROBING MAJORANA BOUND STATES VIA QUANTUM DOTS

Figure 2.2: dIL/dV versus φ with: (a) εM = 0 Γ and (b) εM = 0.3 Γ. (c) dICARL /dV versus φ where
the solid (dashed) lines correspond to εM = 0.3 Γ (εM = 0 Γ). The QD is biased for different µL = qeV

values with eV = 0.28 Γ and µL − µR = eV , |λ1| = |λ2| = 0.3 ΓR, εd = 0 Γ and T = 0 Γ.

to dIL/dV is finite except the case when µL = −µR = eV/2. Note that the periodicity of

differential and linear conductances are not affected by a possible asymmetry arising in the dot-

lead couplings (ΓL 6= ΓR). This further indicates that the conductance periodicity would be a

robust signature in experiments.

In the following, we focus on the µL = −µR = eV/2 case when only the ET and LAR

processes contribute to the linear and differential conductances. We explore the ET and LAR

components of the zero-temperature linear conductance G when the coupling |λ2| is varied with

fixed |λ1|. The results are shown in Figure 2.3(a) for G with its ET (GET ) and LAR (GLAR)

components versus magnetic flux phase φ for overlap energy εM = 0 when the QD energy

is εd = 0. We observe that GET and GLAR oscillate with a period of 2π with amplitudes

GET = GLAR = e2/4h and G reaches the e2/2h value, independent of the finite values of

|λ2|. Note that the zero-temperature linear conductances are independent of the values of dot

energy εd. When εM 6= 0, G is composed from the ET conductance, G ≈ GET , and it presents

Figure 2.3: (a) G versus φ for εM = 0 Γ. The left and right insets refer to the results for the ET (GET )
and LAR (GLAR) components of G, as a function of φ. (b) G versus φ for εM = 0.3 Γ. The coupling
|λ1| = 0.3 Γ is fixed and the coupling |λ2| is varied at εd = 0 Γ and T = 0 Γ.

10
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a 2π periodicity in φ at εd = 0 [see Figure 2.3(b)]. Contrary to the nonoverlapping Majoranas

case, the maxima of G for hybridized MBSs reach the value e2/h.

To further study the behavior of G in the regime εd 6= 0 and εM 6= 0, the zero-temperature

total linear conductance G ≈ GET is plotted in Figure 2.4 as a function of magnetic flux phase

φ and dot energy εd when the coupling strength |λ1| is fixed and the coupling |λ2| is varied. In

the case of εd = 0, the linear conductance has a 2π periodicity as a function of φ. When the dot

energy εd 6= 0, G exhibits a 4π periodicity in φ, independent of the finite values of QD-MBS

coupling |λ2|. Note that the differential conductance shows a 2π periodicity in magnetic flux

phase φ for εM = 0 regardless the QD level εd tuning. For hybridized MBSs, the 2π periodicity

of dI/dV in φ transforms to a 4π one when the dot energy εd is finite, εd 6= 0.

Figure 2.4: G versus φ and εd at T = 0 Γ with εM = 0.3 Γ and fixed coupling |λ1| = 0.3 Γ at different
|λ2| couplings: (a) |λ2| = 0.1 Γ, (b) |λ2| = 0.3 Γ, (c) |λ2| = 0.5 Γ and (d) |λ2| = 1 Γ.

2.3.2 Results in presence of electron-phonon interaction

In this Section, we analyze the influence of EPI on the transport characteristics of the QD-

MBS system. We plot in Figure 2.5 the linear conductance G versus magnetic flux phase φ at

zero and a finite temperature for QD energy εd = 0, in the cases β = 0 and β 6= 0, for nonover-

lapping and overlapping MBSs. We find that the zero-temperature linear conductance does not

depend on the electron-phonon coupling strength β for nonoverlapping MBSs in agreement

with the results for a QD attached to one MBS with EPI [45]. The linear conductance preserves

its 2π periodicity in the presence of EPI for εM = 0. In the case of β 6= 0 with εM 6= 0, G

depends on the QD level and β both at zero and nonzero temperatures. At εM 6= 0, the 2π

periodicity of linear conductance as a function of φ changes to 4π under EPI which is attributed

to the finite renormalized QD energy ε̃d. Note that that the influence of the EPI on linear con-

11
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Figure 2.5: G versus φ for different values of β for: (a) εM = 0 Γ and (b) εM = 0.3 Γ. The rest of
parameters are: |λ1| = |λ2| = 0.3 Γ and εd = 0 Γ.

ductance can be eliminated with a good approximation at ε̃d = 0 when tuning the QD level

to εd = β2/ω0. In summary, when EPI is introduced, the periodicity of G as a function of φ

switches between 2π and 4π values when changing ε̃d through the dot level εd or EPI strength

β for hybridized MBSs.

In Figures 2.6(a) and (b) the differential conductance dI/dV versus magnetic flux phase φ

is plotted at zero temperature for εM = 0 and εM 6= 0, with different β values at couplings

|λ1| = |λ2| and dot energy εd = 0 with a given value of the bias voltage eV . In the case

of β = 0, dI/dV shows a 2π periodicity in magnetic flux phase φ for unhybridized MZMs.

We observe that by varying β, a transition between 2π and π in the periodicity of dI/dV for

nonoverlapping and between 2π and 4π for overlapping MBSs can be achieved. Figures 2.6(c)

and (d) show the results for dI/dV versus φ at zero temperature, in the absence and presence

of EPI, when the dot level is tuned εd 6= 0, for εM = 0 and εM 6= 0, with |λ1| = |λ2| when

β and eV are fixed. We can see that when the dot level meets εd = β2/ω0, the renormalized

QD energy vanishes ε̃d = 0, resulting in the suppression of the EPI effect on the periodicity of

dI/dV . Thus, the periodicity of differential conductance alters when tuning the QD level εd.

We hope that our findings clear up the expected behavior for MBS fingerprints in transport

experiments where EPI plays a central role.

12
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Figure 2.6: (a), (b) dI/dV versus φ for different values of β at εd = 0 Γ and (c), (d) dI/dV versus φ
at different dot energies εd, with and without EPI (ε̃d = εd − β2/ω0), where the solid (dashed) lines
correspond to β = 2.5 Γ (β = 0 Γ) with eV = 0.28 Γ, |λ1| = |λ2| = 0.3 Γ and T = 0 Γ. The overlap
energy is: (a), (c) εM = 0 Γ and (b), (d) εM = 0.3 Γ.
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Chapter 3

Nonequilibrium Kondo Physics of a Quantum Dot

Connected to Graphene Leads in the Presence of

Magnetic Fields

3.1 Motivation

The discovery of graphene [24] has extended the existing research areas and allowed the de-

velopment of novel quantum nanodevices based on graphene [55] which reveal unique physical

properties [22]. Such quantum devices are nanojunctions whose implementation can based on

the coupling of quantum dots (QDs) to much larger systems like metallic [49, 50], ferromag-

netic [56], or graphene leads [57–59]. The choice of electrodes can significantly influence the

transport properties of the QD-based setup. The Kondo effect in QDs connected to normal leads

has been extensively analyzed theoretically by using the Anderson impurity model within the

equation of motion (EOM) framework [50, 60]. There have been many experimental efforts to

confirm the Kondo effect in such systems [10, 61]. The effect of magnetic adatoms on physical

properties of graphene has been theoretically investigated in the literature [62, 63]. Details on

the experimental investigation of Kondo effect in graphene induced by lattice vacancies or mag-

netic adatoms via transport characteristics have been reported elsewhere [64, 65]. Up to now,

a couple of theoretical works have been addressed in the literature to analyze thermoelectric

characteristics of QDs connected to graphene systems [57–59].

The aim of this Chapter is to investigate the nonequilibrium Kondo-type transport in an

QD with finite Coulomb energy attached to graphene leads for which the dot is threaded by a

magnetic field.

3.2 Theoretical Model

We consider a QD coupled to two leads realized from monolayer graphene as it is illustrated

14
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in Figure 3.1. The system is modeled by the Hamiltonian [57–59, 63]:

H =
∑
α,s,σ

∫ +kc

−kc
dk εk c

†
αskσcαskσ +

∑
σ

εdσd
†
σdσ + Und↑nd↓

+
∑
α,s,σ

∫ +kc

−kc
dk
{
Vαsσ(k)c†αskσdσ + [Vαsσ(k)]∗d†σcαskσ

}
.

(3.1)

The first term in (3.1) models the massless Dirac fermions in the leads where c†αskσ(cαskσ)

is the creation (annihilation) operator for massless Dirac fermions with momentum k and spin

σ in the graphene lead α [α ≡ left (L) and right (R)]. In addition, s stands for the valley

index and εk = ~vFk denotes the linear energy dispersion relation for massless Dirac fermions

in graphene where the graphene Fermi velocity is vF . The graphene leads are at the same

temperatures, Tα = T . We define a momentum cutoff kc such that the linear dispersion relation

to be fulfilled, whereD = ~vFkc being the energy cutoff. The second term in Eq. (3.1) describes

the QD where εdσ = εd + σ∆εd/2 represents the spin-dependent QD energy level with σ = +1

for spin up (↑) electrons and σ̄ = −1 for spin down (↓) electrons. Here, ∆εd = |g|µBB is the

Zeeman splitting where g and µB are the Landé factor and the Bohr magneton, respectively.

The notation dσ (d†σ) stands for the fermionic annihilation (creation) operator for an electron

in the dot. The dot level can be tuned via the voltage applied to the gate electrode. The next

term in Eq. (3.1) refers to the repulsion interaction of QD electrons with Coulomb energy U .

Here, ndσ = d†σdσ represents the occupation number operator for dot electrons with spin σ. The

last term in relation (3.1) models the coupling of the localized electrons in QD to the graphene

Figure 3.1: Schematic representation of a QD connected to left (L) and right (R) monolayer graphene
leads with chemical potentials (µL and µR). Here, Γα(ε) stands for the coupling strength between the
QD and α graphene lead. The spin-independent QD energy level εd is tuned by the gate voltage Vg via
the gate electrode.
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electrodes via tunneling amplitude Vαsσ(k).

The total spin-dependent current flowing through the QD can be expressed as [49, 50]:

Iσ =
e

~

∫ +D

−D
dε

ΓL(ε)ΓR(ε)

ΓL(ε) + ΓR(ε)

[
fL(ε)− fR(ε)

]
ρdσ(ε), (3.2)

where ρdσ(ε) = −ImGr
dσ(ε)/π is the DOS of QD for electrons with spin σ, Gr

dσ(ε) and

Γα(ε) = 2πη|ε|θ(D − |ε|) stand for the retarded Green’s function of the QD and coupling

strength between the dot and α graphene lead with η being a dimensionless coupling param-

eter. Here, fα(ε) is the Fermi-Dirac distribution function for massless Dirac fermions in α

graphene lead characterized by the µα chemical potential. The total DOS and total differential

conductance are expressed as ρd(ε) =
∑

σ ρdσ(ε) and dI/dV =
∑

σ dIσ/dV , respectively. By

knowing the retarded Green’s function of the dot, all the transport properties of graphene-based

QD device can be explored. To calculate Gr
dσ(ε), we have used the EOM technique [53] com-

bined with the broadly applied Lacroix’s decoupling scheme [53]. The higher-order correlation

functions appearing in the retarded Green’s function have been determined within the frame-

work of the Meir approximation [49]. The detailed computations regarding the retarded Green’s

function are presented in our article [66].

We found that the Kondo temperature vanishes at the Dirac point near the particle-hole

symmetric point in the QD. In addition, away from the particle-hole symmetric point, the Kondo

temperature remains finite even at the Dirac point which result is in agreement with numerical

renormalization group calculations in the finite U limit [67]. Based on previous studies [68, 69],

it can be established that the correct behavior of the Kondo temperature as a function of chemical

potential is still not completely clarified even in the U →∞ limit for graphene-based systems.

Additional analyses are needed to understand the behavior of Kondo temperature, also in the

case of finite U . Note that a more correct estimation of the Kondo temperature needs self-

consistent calculations rather then the non-self-consistent technique proposed by Meir et al. [49]

and instead of using the Lacroix approximation [53], a more accurate decoupling scheme [60]

is required.
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3.3 Results and Discussion

In this Section, we present the main results performed for the QD-graphene nanodevice.

To simplify the calculations, we used the energy cutoff D of graphene leads as the energy unit

with D ≈ 7 eV a reasonable value for graphene [59, 62]. The QD is realized from a GaAs

heterostructure with system parameters presented in our paper [66].

We plot the DOS of QD for a finite Coulomb energyU = 0.069D at three different values of

the temperature T in the absence of magnetic field in Figure 3.2(a). We observe that the Kondo

peaks emerge in the spectrum at the chemical potential of left (ε ≈ µL) and right (ε ≈ µR)

leads. The Kondo resonances have a sharp lineshape at low temperatures and their magnitude

decreases with the increase of temperature. At high temperatures, the Kondo peaks are totally

washed out, in agreement with the results obtained previously for QDs connected to normal

leads [50, 70]. In addition, beside the strongly temperature-dependent Kondo peaks, two broad-

ened resonances show up in the DOS corresponding to resonant transmissions through the dot.

Figure 3.2(b) illustrates the results of the total DOS with finite Coulomb energy U = 0.069D

at temperature T = 5 · 10−6D in the presence of an external magnetic field. The magnetic field

results in a splitting of Kondo peaks appearing initially at ε = µα into two peaks with reduced

amplitudes. The Kondo resonances are shifted by the Zeeman splitting from their nonmagnetic

positions given by the chemical potentials to the higher energies for electrons with spin ↑ and to

the lower energies for electrons with spin ↓. This behavior of the Kondo peaks is in agreement

with the results of [50] for a QD coupled to normal leads in the presence of magnetic fields. It

Figure 3.2: The nonequilibrium DOS of QD at different values of: (a) temperature T at ∆εd = 0D and
(b) Zeeman splitting ∆εd at T = 5 ·10−6D with U = 0.069D, µL = 25 ·10−3D, µR = −9.5 ·10−3D,
η = 0.02 and εd = −0.022D.
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is important to note that the DOS of QD vanishes at ε = 0 independently of the spin orientation.

Furthermore, the Kondo resonances do not emerge in the DOS when the chemical potential in

leads is pinned at the Dirac point, i.e., µα = 0, in agreement with the results obtained for an

adatom placed on a graphene surface with U →∞ [71].

The numerical results for the differential conductance dI/dV through a strongly interacting

QD (U →∞) as a function of applied bias voltage eV are shown in Figure 3.3(a) for different

values of the temperature T in the absence of magnetic fields. The zero-bias peak develops

in the differential conductance at low temperatures when the difference in chemical potentials

matches the Zeeman splitting, i.e., eV = ∆µ = ∆εd = 0, which represents a resonant trans-

mission through the dot. The lineshape of Kondo peak strongly depends on temperature T and

bias voltage eV . At low temperatures, the zero-bias peak has a sharper and narrow lineshape

and with the grow in temperature, the amplitude of resonance reduces and broadens. The mag-

nitude of the peak takes its maximum value at eV = 0 and it quickly drops when the bias

voltage eV deviates from eV = 0. Figure 3.3(b) shows the numerical results for the differential

conductance dI/dV against the bias voltage eV for different Zeeman splitting values ∆εd and

at a fixed temperature value T = 5 · 10−6D. We observe that the applied magnetic field on

QD leads to the splitting of zero-bias peak into two resonances with reduced amplitudes. Our

results show a similar behavior with those systems composed from QDs connected to metallic

electrodes threaded by magnetic fields [50].

We hope that the proposed QD-graphene system illustrated in Figure 3.1 will allow an ex-

perimental verification of our findings which can contribute significantly to the enlarging of the

knowledge in graphene-based nanoelectronics.

Figure 3.3: (a) dI/dV versus eV at different values of: (a) temperature T at ∆εd = 0D and (b) Zeeman
splitting ∆εd at T = 5 · 10−6D with U →∞, µR = −0.022D, η = 0.015 and εd = −0.068D.
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Chapter 4

Optical Properties of Spherical Quantum Dots: Ap-

plication of the Inversely Quadratic Hellmann Po-

tential

4.1 Motivation

The presence of quantum confinement in low-dimensional nanostructures could produce

nonlinear optical effects, which are relevant in the development of optoelectronic devices, such

as solar cells [72] and light-emitting diodes [73]. The theoretical studies in the literature indicate

that the shape of spatial confinement potential for the motion of charge carriers in QDs plays an

important role in the determination of optical properties of QDs [74–77]. The optical properties

of low-dimensional semiconductor nanostructures such as quantum wells, quantum wires and

QDs have been experimentally investigated in the literature [78–80].

The aim of this Chapter is to theoretically investigate the optical properties of a spherical

QD in which the spatial confinement of charge carriers is modeled by the inversely quadratic

Hellmann (IQH) potential. We discuss in detail the influence of the characteristic size of QD,

confinement potential parameter and incident optical intensity on the absorption coefficient and

on the refractive index changes in the case of a two-level QD system.

4.2 Theoretical Model

In our model, we approximate the spatial confinement for the motion of an electron in a

spherically symmetric QD with an IQH potential, which, within Taylor series, is expressed

as [81]:

V (r) ≈ V0

[
1

2
− 2

R0

r
+

(
R0

r

)2 ]
, (4.1)

where R0 and V0 are the characteristics size of QD and a potential parameter, respectively.

Within the framework of effective-mass approximation, the time-independent Schrödinger equa-
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tion of the system, in spherical coordinates, is separable into radial and orbital equation. The

solutions of last one are given by the spherical harmonics, while, the radial equation has been

solved by using the parametric Nikiforov-Uvarov method [82, 83].

Knowing the energy levels of the QD with the corresponding wavefunctions, the optical

properties of the system can be analyzed. We have considered a two-level QD system irradi-

ated by light and studied the behavior of optical absorption coefficient and relative changes in

refractive index by varying R0, V0 and optical intensity I . The optical absorption coefficient

α(ω) is expressed a sum of first-order (linear) α(1)(ω) and third-order nonlinear α(3)(ω) optical

absorption coefficients, α(ω) ≈ α(1)(ω) + α(3)(ω). Similarly, the relative changes in refractive

index is a sum of first-order (linear) ∆n(1)(ω)/nr and third-order nonlinear ∆n(3)(ω)/nr terms,

∆n(ω)/nr = ∆n(1)(ω)/nr + ∆n(3)(ω)/nr [75].

4.3 Results and Discussion

In this Section, we present the main results on the optical properties of a QD realized from

a GaAs heterostructure with system parameters presented in our paper [81].

We plot the linear α(1)(ω), third-order nonlinear α(3)(ω) and total α(ω) absorption coeffi-

cients as a function of photon energy ~ω in Figure 4.1(a) when the dot characteristic size R0 is

varied and the potential parameter V0 is fixed and in Figure 4.1(b) when V0 is tuned and R0 is

fixed at a given optical intensity I . We observe that α(1)(ω) and α(ω) reach maximum values

while α(3) presents a minimum at photon energy equals the energy difference between the two

levels, ~ω = E21. The maximum of α(1)(ω) and α(ω) as well as the minimum of α(3)(ω) are

shifted to the lower energies when the QD characteristic sizeR0 is increasing [Figure 4.1(a)]. In

Figure 4.1: α(1)(ω) (dashed line), α(3)(ω) (dotted line) and α(ω) (solid line) versus ~ω for different
values of: (a) R0 at V0 = 224.46 meV and (b) V0 at R0 = 4 nm with I = 8 · 108 W/m2.
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the case when V0 is varied andR0 is fixed, the position of α(1)(ω) and α(ω) maxima, or the min-

imum of α(3)(ω) are shifted to the higher energy values with the increase of V0 [Figure 4.1(b)].

We plot ∆n(1)(ω)/nr, ∆n(3)(ω)/nr and ∆n(ω)/nr as a function of ~ω in Figure 4.2(a)-(c)

when the QD characteristic size R0 is varied at a constant V0 and in Figure 4.2(d)-(f) when

V0 is varied at a given R0 and optical intensity I . We see that ∆n(1)(ω)/nr, ∆n(3)(ω)/nr

and ∆n(ω)/nr intersect the zero value where the incident photon energy equals the energy

difference between the levels, ~ω = E21. The position of intersection point shifts to lower

energies with the increase of dot characteristic size R0 at a fixed V0 [Figure 4.2(a)-(c)]. When

R0 takes a constant value and the magnitude of V0 is varied [Figure 4.2(d)-(f)], the intersection

point of refractive index changes shift to higher energies with the increase of V0.

We note that the increased incident optical intensity suppresses the amplitude of absorption

coefficients and refractive index changes showing no effect on the position of their correspond-

ing resonances or matching points.

Figure 4.2: (a) ∆n(1)(ω)/nr, (b) ∆n(3)(ω)/nr, (c) ∆n(ω)/nr versus ~ω at different values of R0 at
V0 = 224.46 meV and (d) ∆n(1)(ω)/nr, (e) ∆n(3)(ω)/nr, (f) ∆n(ω)/nr versus ~ω at different values
of V0 at R0 = 4 nm with I = 8 · 108 W/m2.
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Conclusions and Outlook

The present thesis focuses on theoretical investigation of transport properties of different

quantum dot (QD) nanodevices, based on topological superconducting nanowires (TSNW) or

graphene. More precisely, we have studied the Majorana bound state (MBS) induced transport

characteristics for a realistic QD system interacting with an optical phonon mode. The Kondo

effect in an interacting QD attached to graphene leads has been investigated. In particular,

the optical properties of spherical semiconductor QDs have been discussed where the spatial

confinement is approximated with an inverse quadratic Hellmann (IQH) potential.

Chapter 1 of the thesis addresses a short discussion of quantum transport in low-dimensional

systems such as QDs by presenting the Kondo effect. We have shortly reviewed the Majorana

fermions, MBSs and the electronic properties of graphene. The last part of Chapter 1 of the

thesis further describes the main phenomena characterizing the optical properties of two-level

quantum systems realized in semiconductor QDs.

Chapter 2 of the thesis addresses theoretical study of transport properties of a Majorana

circuit formed by two MBSs attached to a QD in the presence of electron-phonon interaction

(EPI). The QD-MBSs ring structure is threaded by a tunable magnetic flux, which leads to

manipulate the transport properties of the device. The interaction of the dot electron with an op-

tical phonon mode results in phonon-assisted transport processes. The transport current flowing

through the system has been determined using the nonequilibrium Green’s function technique

combined with a canonical transformation. We have found that the zero-temperature linear con-

ductance exhibits a 2π periodicity in magnetic flux phase, and is immune to the presence of EPI,

to changes in QD energy level, and finite values of dot-MZMs coupling for unhybridized Ma-

joranas. The 2π periodicity of conductance transforms into 4π when the QD energy is nonzero

or introducing EPI in the system for hybridized Majoranas. We have obtained that in the pres-

ence of EPI the periodicity of the differential conductance as a function of magnetic flux phase

overgoes a transition from 2π to π for unhybridized Majoranas, and from 2π to 4π for overlap-

ping MZMs, by changing the electron-phonon coupling strength. In particular, we have shown

that the periodicity of differential and linear conductance remains unchanged also for an asym-

metrically attached QD system in the absence of EPI which would facilitate the experimental
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verification. The influence of EPI on transport current of a device where the QD connects only

to one MBS has been also studied in detail. The device geometries discussed in this Chapter,

should be experimentally feasible by taking into consideration the recent advances in nanotech-

nology [41, 42]. The results obtained here can hopefully serve as a guide for MBS-detection

experimental measurements by using QDs. In the future, we would like to explore the transport

properties of a more realistic device involving the coupling of a Majorana nanowire to a QD in

the presence of EPI where the dot is asymmetrically connected to normal leads.

Chapter 3 of the thesis addresses a theoretical investigation of the nonequilibrium Kondo

effect in a QD attached to two monolayer graphene leads when a magnetic field is applied to

the QD. The retarded Green’s function has been determined by using the equation of motion

method within the Lacroix decoupling scheme [53] and Meir approximation [49]. We have

deduced formulas for the Kondo temperature for different doppings of the graphene leads. The

applied magnetic field leads to the splitting of the Kondo resonances that are destroyed at high

temperatures. The zero-bias peak in differential conductance does not emerge when the leads’

chemical potentials are pinned at the Dirac point. We hope that our findings can serve as a guide

for the experimental verification of the Kondo effect in such QD-graphene systems proposed

here by enlarging the knowledge in graphene-based nanoelectronics. In the future, we would

like to determine the Green’s function of the dot within a more precise decoupling scheme [60]

beyond the Lacroix one [53] by employing self-consistent calculations instead of the Meir ap-

proximation [49]. The resulting Green’s function can be a promising candidate to the analytical

approximation of an improved formula for the Kondo temperature.

Chapter 4 of the thesis addresses a theoretical analysis of the linear and nonlinear optical

properties of a two-level spherical QD realized in a GaAs semiconductor heterostructure. The

spatial confinement for electrons has been approximated with an IQH potential. The eigensolu-

tions of the radial Schrödinger equation have been found by applying the parametric Nikiforov-

Uvarov method [82, 83]. We have found that the position of the resonances in the spectrum

of optical absorption coefficients and the intersection point of refractive index changes can be

shifted by varying the characteristic size of the dot or the potential parameter. We have ob-

tained that the increasing light intensity suppresses the amplitude of absorption coefficients and

refractive index changes. In the future, we plan to extend the investigation on the influence of

external hydrostatic pressure and temperature on the optical properties of spherical QDs.
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[54] L. Máthé, D. Sticlet, and L. P. Zârbo, Phys. Rev. B 105, 155409 (2022).

[55] H. Sun, L. Wu, W. Wei, and X. Qu, Mater. Today 16, 433 (2013).

[56] J. Martinek, Y. Utsumi, H. Imamura, J. Barnaś, S. Maekawa, J. König, and G. Schön,
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