BABES-BOLYAI UNIVERSITY
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

NEW RESULTS IN GEOMETRIC FUNCTION
THEORY OF ONE COMPLEX VARIABLE

Ph.D. Thesis - Summary

TRADITIO NOSTRA
UNACUM EUROPAE

VIRTUTIBUS SPLENDET

Scientific advisor:
Prof. Univ. Dr. Salagean Grigore Stefan

Ph.D. student:
Szatmari (cas. Gavrig) Eszter

Cluj-Napoca
2023



Acknowledgements

I would like to express my gratitude to my scientific advisor, professor dr.
Salagean Grigore Stefan, for his guidance, suggestions and precious ideas

during my Ph.D. studies.

I would like also to thank the help and the valuable comments of the

guidance committee members.

Finally, but not least I am thankful to my family for all their support.



Keywords

analytic function, univalent function, starlike function, gamma-starlike
function of order alpha, convex function, close-to-convex function, mero-
morphic function, functions with varying arguments, bi-univalent func-
tions, m-fold symmetric functions, composition of functions, convolution,
extreme points, differential subordination, Salagean derivative, Ruscheweyh
derivative, fractional operator, fractional differintegral operator, Salagean
integral operator, Bernardi integral operator, integro-differential opera-
tor, coefficient estimates, Fekete-Szegd inequalities, Hankel determinant,
arithmetic mean, geometric mean, harmonic mean, Chebyshev polynomi-

als, Poisson distribution series.

Mathematics Subject Classification 2020: 30C45, 30C50, 30C80.



Contents

Introduction 1

1 Definitions and preliminary results

1.1
1.2

1.3
1.4
1.5

Basic definitions and results from the theory of univalent functions . . 8
Classes of functions . . . . . . . . . . . ... ... ... ... 10

1.2.1 The Carathéodory class. The Schwarz functions class. Subor-

dination . . . . . ... 10
1.2.2  Starlike, convex and close-to-convex functions . . . . . . . .. 12
1.2.3 Classes of functions related to starlikeness and convexity . . . 13
Differential subordinations . . . . . . . ... ... ... L. 16
Subclassses of meromorphic functions . . . . . .. ... ... ... 19
Differential and integral operators . . . . . . . . .. .. ... ... .. 20

2 New results on analytic or meromorphic functions obtained by using

some operators 25
2.1 The fractional operator D™ . . . . . ..o oo 26
2.1.1  On a class of analytic functions defined by the operator D™ . 26

2.2

2.3

2.1.2  Differential subordinations obtained by using the operator D™ 28
2.1.3 Some properties of analytic functions otained by using the op-
erator DY™ . . Lo 33

2.1.4 Coefficient bounds and Fekete-Szeg6 problem for some classes

of analytic functions defined by using the operator DY™ . . . . 43
On a class of meromorphic functions defined by using the operator D"
and some integral operators . . . . .. ... ... A7
The operator .@;\g” ............................ 49

2.3.1 On a class of analytic functions defined by the operator 9&\5" 51
2.3.2  Differential subordinations obtained by using the operator @2;” 51



2.4 Inclusion relations of analytic functions associated with Poisson distri-
bution series and Salagean operator D™ . . . . . . ... .. ... ... 53
2.5 Differential subordinations obtained by using generalized Salagean integro-

differential operator £%; . . . . . . .. ... 56

3 New results on some classes of analytic functions related to starlike-
ness and convexity 59
3.1 Differential subordinations and Pythagorean means . . . . . .. . .. 59
3.2 Coefficient estimates and Fekete-Szeg6 inequality for a class of analytic

functions satisfying subordinate condition associated with Chebyshev
polynomials . . . . . .. .. Lo 62
3.3 Coefficient estimates and Fekete-Szegd inequalities for a new subclass

of m-fold symmetric bi-univalent functions satisfying subordinate con-

ditions . . . . . .. 65
3.4 The second Hankel determinant for gamma-starlike functions of order
alpha . . . . . 73

4 Certain class of analytic functions with varying arguments defined

by the convolution of Salagean and Ruscheweyh derivative 75
Conclusions and future research directions 79

Bibliography 80

i



Introduction

The geometric function theory is a branch of complex analysis, which studies the
geometric properties of analytic functions. The first significant works in the geomet-
ric function theory of one complex variable appeared at the beginning of the XXth
century. P. Koebe with the work published in the year 1907 ( [68]), attracted the at-
tention of the researchers on the study of univalent functions. Further it was obtained
an important result, the area theorem, by T. Gronwall ( [47]), and by L. Bieberbach
( [16,17]). L. Bieberbach also obtained a bound for the absolute value of the coeffi-
cient ay of a univalent function ( [17]) and stated the famous hypothesis regarding in
general the coefficient a,, where n = 2,3,... (see Conjecture 1.1.1), which was just
proved in the year 1984, by L. De Branges ( [30]). L. Bieberbach in [17] also obtained
a sharp bound for the absolute value of the expression a3 — a3 for a univalent function.

After the publication of these results, the research directions have become more
and more varied. Several famous mathematicians studied and made important con-
tributions in this field. In Romania stood out with their remarkable results romanian
mathematicians, like G. Calugareanu and P. T. Mocanu. G. Calugareanu in [21,22]
obtained necessary and sufficient conditions for univalency of an holomorphic func-
tion in a disk centered in origin. P. T. Mocanu in [88] established a relation between
starlike and convex functions, introducing alpha-convex functions. A revolutionary
method, the differential subordinations method (or the admissible functions method)
was obtained by S. S. Miller and P. T. Mocanu in [83,84]. Using this method a lot
of previously known results could be proved more easily, and many new results were
subsequently obtained.

Among numerous treatises and monographs devoted to complex analysis, re-
spectively to geometric function theory of one or more complex variables, we mention
those of P. T. Mocanu, G. §. Salagean and T. Bulboaca [92], S. S. Miller and P. T.
Mocanu [85], I. Graham and G. Kohr [46], C. Pommerenke [108], P. L. Duren [32], G.
Kohr and P. T. Mocanu [70], P. Hamburg, P. T. Mocanu and N. Negoescu [50], P. T.
Mocanu, D. Breaz, G. I. Oros and Gh. Oros [91], G. §. Salagean [118], G. Kohr [69],



G. Kohr and P. Liczberski [71], P. Curt [29], T. Bulboaca [18], A. W. Goodman [42],
L. V. Ahlfors [2], D. J. Hallenbeck and T. H. MacGregor [49].

In this thesis, the researches that are part of the Cluj-Napoca school of math-
ematics on the geometric function theory of one complex variable are continued and
some results are obtained that extend other results obtained by mathematicians from
our country and from other countries. Classes of analytic, meromorphic, respectively
bi-univalent functions are studied, some of them being defined using operators. Re-
sults related to differential subordinations are also obtained. The thesis is structured
in four chapters.

In the first chapter, both notions and basic results from the geometric function
theory are presented, as well as special classes of functions, the differential subordi-
nations method, respectively differential and integral operators. I have tried to make
a presentation in a unitary form, and at the same time to highlight the definitions
and results used in the following chapters.

Thus, in Section 1.1, basic notions related to univalent and meromorphic functions
are presented. Bieberbach’s conjecture regarding the estimation of the coefficients of
a univalent function, respectively de Brange’s theorem, the Fekete-Szeg6 inequality
for univalent functions, an univalence criterion for an analytic function, the property
regarding the existing bijection relation between the class of univalent functions and
a subclass of the class of meromorphic functions are stated.

In Section 1.2, different classes of functions are presented, such as the Carathéodory
class, the class of Schwarz functions, the class of starlike, convex, close-to-convex,
alpha-convex, gamma-starlike, starlike of order «, convex of order o, gamma-starlike
of order alpha, strongly starlike of order 7, strongly convex of order ~, d-uniformly
convex, d-uniformly starlike functions, as well as other classes of functions associ-
ated with starlikeness and convexity. Properties are also stated for some of these
classes, such as coefficient estimates, Fekete-Szeg6 inequalities, conditions for an an-
alytic function to belong to a certain class.

In Section 1.3 the differential subordinations method (or the admissible functions
method) is described.

In Section 1.4, the classes of starlike and convex meromorphic functions are presented.
Necessary and sufficient conditions for starlikeness and convexity of meromorphic
functions are stated.

In Section 1.5, operators are presented, such as the Salagean differential operator D",
the Saligean integral operator Z", the Ruscheweyh operator R*, the fractional differ-

integral operator 2, the fractional operator D}", the Al-Oboudi differential operator



Dy, the generalized Salagean integral operator Z3 defined by J. Patel, the Bernardi
integral operator L.
With the exception of Remark 1.5.7, Remark 1.5.9 and Remark 1.5.11, the chap-
ter does not contain original results. The mentioned remarks can be found in the
work [129].

In the second chapter, results are obtained on analytic or meromorphic func-
tions using operators.
In Section 2.1, different results are obtained using the fractional operator D", which
is the composition of the fractional differintegral operator 2}, the Saldgean operator
D" and the Ruscheweyh operator R”.
In Subsection 2.1.1 a class of analytic functions defined by this operator is introduced.
Inclusion relations between different subclasses of the class are obtained, conditions
for belonging to the class of the convolution of two analytic functions are also ob-
tained, the convexity of the class is proved, extreme points of the class and other
properties of the class are obtained. With the exception of Theorem 2.1.1, the results
in this subsection are original and can be found in the paper [129], paper published
in the Mediterranean Journal of Mathematics, an ISI rated journal with the impact
factor 1.305.
In the other subsections, differential subordinations are investigated, geometric prop-
erties of analytic functions, coefficients bounds and Fekete-Szegd inequalities for
classes of analytic functions are obtained. All the results in these subsections are
obtained using the fractional operator DY". With the exception of Lemma 2.1.1,
Corollary 2.1.5, Corollary 2.1.6, Corollary 2.1.7, Corollary 2.1.8, Corollary 2.1.9 and
Corollary 2.1.10, the results in these subsections are original and can be found in the
papers [39, 130, 131].
Most of the results in this section are generalizations of results previously obtained
by other mathematicians.
In Section 2.2, a class of meromorphic functions defined by using a fractional oper-
ator defined in a similar way to the operator DY" is introduced. Inclusion relations
between some subclasses of the class and conditions for belonging to the class of some
integral operators are obtained. The obtained results are generalizations of some
results obtained by other mathematicians. With the exception of Lemma 2.2.1, the
results in this section are original and can be found in the work [37].
In Section 2.3 a new operator is defined, which generalizes several operators intro-
duced by other mathematicians. The new operator is defined using the operators

0}, D", R”. A class of analytic functions is introduced using the new operator and



the properties of this class are obtained. Using this operator differential subordina-
tions are also investigated. The results in this section are original and are presented
in the work [133].
In Section 2.4, inclusion relations are obtained between the d-uniformly convex, o-
uniformly starlike function classes, the classes S5,C, and the class US(n, a), class
defined by using the Salagean differential operator D™. These inclusion relations are
associated with Poisson distribution series. With the exception of the Theorem 2.4.1,
the results in this section are original and can be found in the work [36].
In Section 2.5, the generalized Salagean integro-differential operator is introduced,
using the Al-Oboudi differential operator D§ and the generalized Salagean integral
operator Z3'. This operator generalizes the operator introduced by A. O. P4ll-Szabé
in the work [104]. Differential subordinations are investigated and known results are
generalized. The results in this section are original and are presented in the paper [38].
In the third chapter, various results on some classes of analytic functions asso-
ciated with starlikeness and convexity are obtained.
In Section 3.1, various differential subordinations involving arithmetic, geometric, re-
spectively harmonic means of the expressions p(z) and p(z) + % are generalized.
A starlikeness criterion and a strongly starlikeness of order 6 criterion for analytic
functions are obtained. With the exception of the Lemma 3.1.1, the results in this
section are original and can be found in the work [35], work published in Mathemat-
ica Slovaca, an ISI rated journal with the impact factor 0.996. In the work [73] the
authors generalized the results from this section.
In Section 3.2, after the presentation of the Chebyshev polynomials, coefficient es-
timates, respectively a Fekete-Szeg6 inequality for a class of analytic functions that
satisfy a subordination condition associated to Chebyshev polynomials are obtained.
The obtained results are generalizations of known results. With the exception of
Corollary 3.2.1, Corollary 3.2.2 and Corollary 3.2.3, the results in this section are
original and can be found in the paper [132]. The authors of the works [54], [124]
generalized the results from this section.
In Section 3.3, bi-univalent functions, m-fold symmetric functions are presented. Co-
efficient estimates and the Fekete-Szego inequality are obtained for a new subclass of
m-fold symmetric bi-univalent functions which satisfy subordination conditions. The
obtained results generalize other known results. With the exception of the Corollary
3.3.9, the results in this section are original and can be found in the work [41].
In Section 3.4, a bound for the second Hankel determinant for gamma-starlike func-

tions of order alpha is obtained, in the case 0 < v < 1. The obtained result extends



the bounds for the second Hankel determinant for other classes of functions. Some of
these results were obtained by other mathematicians. The results in this section are
original and are presented in the work [40].

In the last chapter, a new operator obtained by the convolution of the Salagean
operator D™ and the Ruscheweyh operator R" is defined and a class of analytic
functions with varying arguments defined by this operator is introduced. The image
properties of this class through the Bernardi operator are also studied. The results
from this chapter are original and they are presented in the work [106].

The bibliography of this Ph.D. thesis contains a number of 147 titles, 13 of
which are signed by the author, 4 being in collaboration, and 2 being published in
ISI rated journals with impact factor.

The original results presented in the thesis, are contained in the following pa-
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Chapter 1

Definitions and preliminary results

We begin with some notions and results from the geometric function theory. We
present first the class of univalent functions, the class of meromorphic functions, the
Carathéodory class, Schwarz functions class, the notion of subordination. We present
various classes of univalent functions, such as starlike functions, convex functions,
close-to-convex functions and classes of functions related to starlikeness and convexity.
In the next section, the differential subordinations method is described. Subclasses
of meromorphic functions are also presented. The final section is dedicated to some

differential and integral operators.

1.1 Basic definitions and results from the theory
of univalent functions

We denote the complex plane by C, and the open disk of center zy € C and radius
r >0 by U(z,r),
U(zp,m) ={2€C:|z— 2] <1}

We denote the open disk U(0,r) by U,, and the unit disk U by U.
Let H(U) denote the class of analytic functions in . For a € C and n € N* =
{1,2,...}, let

Hla,n] ={f e HU): f(2) = a+ apz" + ap 12"+ ...},

and
An={feHU): f(z) =2+ ap 12" +...},

with A; = A. So, the series expansion of a function f € A is of the form

f2)=z+4+az*+az*+..., z€el. (1.1)



Definition 1.1.1. /92, p. 1] An analytic function in a domain D we say it is univalent

in this domain if it is injective in D.

We will denote by S the class of univalent functions in U, normalized by the
conditions f(0) = 0 and f’(0) = 1. The series expansion of a function f € S is of the
form (1.1).

Conjecture 1.1.1. (Bieberbach’s conjecture) [92, Conjecture 1.2.1, p. 6] If the
function f(z) = z + ag2® + ... belongs to the class S, then |a,| <n,n=23,....

Bieberbach’s conjecture was proved by L. de Branges in 1984, using Lowner’s
method.

Theorem 1.1.1. [17] If the function f(z) = z+a2® +azz®+... belongs to the class
S, then |az — a3| < 1. The result is sharp.

One of the most simple univalence criteria is given by the following theorem ob-

tained by K. Noshiro [95], S. Warschawski [145] and J. Wolff [146].

Theorem 1.1.2. [92, Theorem 4.5.1, p. 86] If the function f is analytic in the convex
domain D C C and if there exists a number v € R such that

R[e"f'(2)] >0, zeD,
then the function f is univalent in D.

We denote by ¥ the class of functions ¢ meromorphic with a simple pole £ = oo,

univalent in U~ = {£ € C : || > 1}, which have the Laurent series expansion of
the form
aq (7%
90(5):€+0z0+?+“'+5—n—|—..., |§|>1. (1.2)
Let

Yo={p€eX:p({) #0,{ €U }.

Property 1.1.1. [92, Property 1.1.2, p. 2] There exists a bijection between the classes

S and Xy, so class X i1s "wnder” than class S.

Remark 1.1.1. /92, p. 3] It is observed that if p € 3 and ¢ € C\ ¢(U™), then the

function

fR)=—F—=2+(c—)®+..., z€U

has the property f € S.



1.2 Classes of functions

1.2.1 The Carathéodory class. The Schwarz functions class.
Subordination

Definition 1.2.1. /92, Definition 3.1.1, p. 35] The Carathéodory class is defined by
P={peHU):p0)=1Rp(z) >0,z €U}.

Remark 1.2.1. The series expansion of a function p € P s of the form
p(z) = 1+Zpkzk, zelU. (1.3)
k=1

Example 1.2.1. /92, p. 35] The function p(z) = % € P, because it maps U onto
the right-half plane {w : Rw > 0}.

Theorem 1.2.1. [80] Let p1(z) =1+ 12 + o2 + -+ € P. Then

—4v+2, v<0
lco — vt < 4 2, 0<rv<l1
4 — 2, v>1.
When v < 0 orv > 1, equality holds if and only if p1(z) is ifj

If 0 < v < 1, then equality holds if and only if pi(z) is }Z; or one of its rotations.

or one of its rotations.

Inequality becomes equality when v = 0 if and only if

1 1 \1+z (1 1.\1-z
—(=+2A Y 0<A<1
Pi(z) (2+2)1—z+(2 2>1+z’ =A=

or one of its rotations. While for v = 1, equality holds if and only if p1(z) is the

reciprocal of one of the functions such that equality holds in the case of v = 0.

Remark 1.2.2. [80] It is also possible to obtain a result of the same form as that of
Theorem 1.2.1. Thus, for 0 < v < 1 the following inequalities hold:

lco —vel| +v|eiP <2, 0<v<

DO | —

and
<v<l.

N | —

e — v + (L= ver <2,

Result of the same type with Theorem 1.2.1 can be found in [111]:

10



Lemma 1.2.1. [111] If p1(2) = 1 + c12 + co2* + ... is a function with positive real
part, then
lcg — ve?| < 2max{1; [2v — 1|}.

The result is sharp for the function py(z) = ﬁzz orp1(z) = }fz

Theorem 1.2.2. [108] If p € P is of the form (1.3), then
Ipn] <2, neN*

and

2
<2_|p2| _
- 2

2
'p2_%

Theorem 1.2.3. [79] Let p € P be of the form (1.3). Then there exist x,z € C with
|z| <1 and |z| <1 such that

2ps = pi + x(4 — p),

dps = p} +2(4 — phpiz — p1(4 — p})a® + 2(4 — p7)(1 — |z]?)=.

Definition 1.2.2. /92, Definition 3.1.1, p. 35] The Schwarz functions class is defined

by
B={¢peHU):$(0)=0,|0(z) <1,z €U}.

Theorem 1.2.4. [65] Let the Schwarz function w be given by
w(z) = w1z +we2® w2 +..., z€U. (1.4)

Then
jwi| <1, |wy — twi] <1+ ([t] = 1)|un[* < max{1, [¢]},

where t € C.

Definition 1.2.3. /85, p. 4] Let f, F € H(U). The function f is said to be subordi-
nate to ', written f < F, or f(z) < F(z), if there exists a Schwarz function w, such
that f(z) = Flw(z)],z € U.

Remark 1.2.3. [85, p.4] If F is univalent, then f < F if and only if f(0) = F(0)
and f(U) C F(U).

11



1.2.2 Starlike, convex and close-to-convex functions

Definition 1.2.4. [92, Definition 4.1.1, p. 49] Let the function f € H(U) with
f(0) = 0. We say that the function f is starlike in U with respect to the origin (or,
simply, starlike) if the function f is univalent in U and f(U) is a starlike domain

with respect to the origin.

Theorem 1.2.5. [92, Theorem 4.1.2, p. 49] Let the function f € H(U) with f(0) = 0.
Then the function f is starlike if and only if f'(0) # 0 and

2 ()
f(2)

Definition 1.2.5. [92, Definition 4.1.3, p. 53] We will note with S* the class of the

functions f € A which are starlike (and normalized) in the unit disk, i. e.

2f'(z)

f(z)

Remark 1.2.4. /92, Remark 4.1.1, p. 53] If f € A, using the language of subordi-

nations, we have

>0, zel.

S*z{fEA:?R

>O,ZGZ/I}.

z2f'(2) . 1+z
f(2) 1—2
Definition 1.2.6. /85, p. 8/ A domain D in C is said to be convez if the line segment

joining any two points of D lies entirely in D.

fe§ —=

Definition 1.2.7. [85, p. 8] The convex hull of a set E in C is the intersection of
all convex sets containing E. This smallest convex set containing E will be denoted
by coF.

Lemma 1.2.2. [{] If p(z) is analytic in U, p(0) = 1 and R(p(z)) > 3,2 € U, then
for any function F analytic in U, the function p x F' takes its values in the convex
hull of F(U).

Definition 1.2.8. [92, Definition 4.2.1, p. 55] The function f € H(U) is called
convez function inU (or, simply, convex) if f is univalent in U and f(U) is a convex

domain.

Theorem 1.2.6. [92, Theorem 4.2.1, p. 56] Let the function f € H(U). Then the
function f is convex if and only if f'(0) # 0 and

2f”(2)
f'(2)

R +1>0, zel.

12



Theorem 1.2.7. (Alexander’s duality theorem) [9] The function f is convez in
U if and only if the function F(z) = zf'(z) is starlike in U.

Definition 1.2.9. [92, Definition 4.2.2, p. 58/ We will denote by K the class of

functions f € A which are convez (and normalized) in the unit disk U, i. e.
zf"(2)
f'(2)
Definition 1.2.10. /92, Definition 4.6.1, p. 90] The function f € H(U) is called

close-to-convex if there exists a function ¢ convex in U, such that

7(:)
o)

K={feA:R +1>0,z€U}.

>0, zeU.

1.2.3 Classes of functions related to starlikeness and convex-
ity
The well-known class of alpha-convex functions, introduced by P. T. Mocanu in

1969 (see [88]) is a transition between starlike and convex functions.

Definition 1.2.11. /85, p.10] The class of alpha-convex functions is defined by
M, ={feA:RJ(a, f;2) > 0},

where

J(o, fi2)=(1— a)ZJ{;S) + a(zjjég) + 1),

for a € R.

Remark 1.2.5. My= 8" and M; =K.

The notion of gamma-starlike functions was introduced by Z. Lewandowski et al
(see [77]) in 1974.

Definition 1.2.12. [77] The class of y-starlike functions is defined by

EVZ{feA:%£<7>f;Z)>O}7

L(y,f;2) = (%;))H(Z]{TS) " 1)7’

where

for v € R.

Remark 1.2.6. £, = S8* and L, = K.
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Definition 1.2.13. [113] The class of starlike functions of order o contains analytic
functions in U, satisfying the conditions f(0) =0, f'(0) # 0 and

zf'(2)
e

>a, z€U,

where 0 < a < 1.

Definition 1.2.14. [113] The class of convex functions of order a contains analytic
functions in U, satisfying the conditions f'(0) # 0 and

B2 ) o se

where 0 < a < 1.

These classes were introduced by M. S. Robertson and are denoted by S*(«),
respectively KC(a).

Definition 1.2.15. [40] Let f € A be given by (1.1), and let v € R,0 < a < 1. Then
f e L,(a), called the class of gamma-starlike functions of order alpha if and only if

%KM)”CMZ) + 1” Sa, zel. (1.5)

f(2) f'(2)
Remark 1.2.7. Ly(a) = S*(a), L1(a) = K(a) and L,(0) = L,.

The following two classes of functions were studied by P. T. Mocanu and M.
Nunokawa (see [89,90,96]).

Definition 1.2.16. Let 0 < v < 1. A function f € A is called strongly starlike of
< Z% zeU.

order v if
org (Zf ’(Z))
f(z) 2
A function f € A is called strongly convex of order v if

z2f"(2) T
arg(1+ f’(z)>‘<§% zeU.

Let Q be the class of functions ¢ € P such that ¢(U) is convex and symmetrical

with respect to the real axis.

Definition 1.2.17. [67,80] For some ¢ € Q, let the classes S*(¢), K(¢p) and C(p, 1))
be defined, respectively, by

S*(¢):{f:feA,%S)<¢(z),zeu},
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2f"(z)
K(¢p) = {f feAl+ ) <¢()zeu}
and
e HORIN
Clo,9) = {f.feA,he/C<¢>,h,(z) =< (2), eu}.

Remark 1.2.8. Note that f € K(¢) if and only if zf' € S*(¢), and f € C(¢,0) if
and only if g € S*(¢¥) such that Zgé')z) < ¢(z) inlU.

Definition 1.2.18. [62] A function f of the form (1.1) is said to be §-uniformly

convex in U, if it satisfies the following condition:
ld%@) 2f"(2)
RI1+——~5] >0
( f'(2) f'(2)
The class of all §-uniformly convex functions are denoted by d —UCV, studied by
S. Kanas and A. Wisniowska [62].

. 8>0.

Theorem 1.2.8. [62] Let f € A. If for some §,0 < § < oo, the inequality

> 1
> k(k 1)

h(k = Dlax] < 575
k=2

holds, then f € 6 —UCY. The number m can not be increased.

Definition 1.2.19. [63] A function f of the form (1.1) belongs to the class 6 — ST,
iof it satisfies the following condition
2f'(2)

") >

This class is also studied by S. Kanas and A. Wisniowska [63].

—~1], §>0.

Theorem 1.2.9. [63] If for a function of the form (1.1) the condition

> k(o olax <1

k=2

holds true for some 0,0 < § < oo, then f € 6 — ST.

The result is sharp with equality for the function f(z) = z — WI;)%.

Remark 1.2.9. For 6 =0 the classes § —UCV and 6 — ST are reduced to the classes
of convex and starlike functions studied by M. S. Robertson and for d = 1 these classes

are reduced to the classes of uniformly convex and uniformly starlike functions studied

by A. W. Goodman [/3,44].
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Definition 1.2.20. [109] The classes S and Cy are defined by

S_{feAzﬁé?—1<AJEUA>O}
and ()
z
{feA 702) <>\,zeu,)\>0}.

Remark 1.2.10. We have,
f(z) el <= zf'(z) € S5, A > 0.

Theorem 1.2.10. [109] If for a function of the form (1.1) the condition
> (k+A—1)lax] < A
k=2

holds true for some A\, \ > 0, then f € S5.

1.3 Differential subordinations

Definition 1.3.1. /85, p. 15] Let Q and A be any sets in C, let p be analytic in the
unit disk U with p(0) = a and let (r,s,t;2) : C3 xU — C. If

{¥(p(2), 20 (2), 2°p"(2); 2) |z €U} C Q = p(U) C A, (1.6)
then v 1s called admissible function.

Remark 1.3.1. /85, p. 15, 16] If A is a simply connected domain containing the
point a and A # C, then there is a conformal mapping q of U onto A such that

q(0) = a. In this case (1.6) can be rewritten as

{(p(2), 20/ (2), 2°p"(2); 2)|z € U} CQ = p(2) < q(2).

If Q is also a simply connected domain and Q2 # C, then there is a conformal
mapping h of U onto Q such that h(0) = ¥(a,0,0;0). If in addition, the function
¥(p(2), 20/ (2), 220" (2); 2) is analytic in U, then (1.6) can be rewritten as

Y(p(2), 2p/(2), 2" (2);:2) < h(z) = p(2) < q(2).
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Definition 1.3.2. /85, p. 16] Let ¢ : C3 x U — C and let h be univalent in U. If p

is analytic in U and satisfies the (second-order) differential subordination
»(p(2), 20/ (2), 2p"(2); 2) < h(2), (1.7)

then p is called a solution of the differential subordination. The univalent function g
1s called a dominant of the solutions of the differential subordination, or more simply
a dominant, if p < q for all p satisfying (1.7). A dominant § that satisfies ¢ < q for
all dominants q of (1.7) is said to be the best dominant of (1.7). (Note that the best

dominant is unique up to a rotation of U ).

Definition 1.3.3. /85, Definition 2.2b, p.21] We denote by Q the set of functions q

that are analytic and injective on U \ E(q), where
E(q) = {C cou : lin}q(z) = oo},
and are such that ¢'(¢) # 0 for ¢ € U\ E(q).

Lemma 1.3.1. /85, Lemma 2.2d, p.24] Let q € Q, with q(0) = a, and let p(z) =
a+ a,z" + ... be analytic in U with p(z) Z a and n > 1. If p is not subordinate to
q, then there exist points zg = roe'® € U and (y € OU \ E(q), and an m >n > 1 for
which p(Uy,) C q(U),

p(20) = q(Go),

209’ (20) = mGoq' (Co),
zop” (20) {Coqﬂ(ﬁo) }
R————+1>mR|——F"=+1].
P'(20) 7' (Co)
Definition 1.3.4. /85, Case 1, p.33] Let k be a positive integer, a € C with |a|] <
M, M > 0. The class of admissible functions Vi[M,al, consists of those functions

W C3 x U — C that satisfy the admissibility condition:

[w(r,s,t;2)| > M, z€l,

where
r= Me",
M}M—Eew‘Q i
5= mwe )
t |M — ae®|?
R-4+1>m—
s e M2 — |a|?’

0 cR and m > k.
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Theorem 1.3.1. /85, Theorem 2.3 h, (ii), p. 34] Let p € Hla,k|. If b € Vi[M, al,
then
‘@/J(p(z),zp’(z),z2p”(z);z)‘ <M — ‘p(z)‘ < M.

Definition 1.3.5. [85, Case 2, p. 34] Let k be a positive integer, a € C with fa > 0.
The class of admissible functions Wila] consists of those functions ¢ : C* x U — C

that satisfy the admissibility condition:
Reb(pi, o, 1+ iv;2) <0, z €U,

where p,o, v € R,
_ _kla—ip|
7=79 R
Theorem 1.3.2. /85, Theorem 2.3 i, (ii), p. 35] Let p € Hla, k|. If v € Ui[a], then

,o0+ 1 <0.

RY(p(z), 2p'(2), 2" (2);2) > 0 = Rp(z) > 0.

Lemma 1.3.2. [83] Let ¢(u,v) be a complex valued function, ¢ : D — C,D C C?,
and let w = wuy + iug,v = vy + ivy. Suppose that the function ¢(u,v) satisfies the
following conditions:

(i) ¢(u,v) is continuous in D,

(ii) (1,0) € D and R(¢(1,0)) > 0,

(111) R(o(iug,v1)) < 0 for all (lug,v1) € D such that vy < —(tug).

Let p(z) = 1+ p1z + pe2® + ... be regular in U such that (p(z),zp/(z)) € D for all
zel. If

R((p(2),2p'(2))) > 0, z€lU,
then R(p(z)) >0,z € U.
Remark 1.3.2. The function ¢(u,v) is a particular case of an admissible function of

the same type as the one in the Definition 1.3.5, and the conclusion is from Theorem
1.3.2.

Theorem 1.3.3. [85, Theorem 3.1b, p.71] Let h be convex inU, with h(0) = a, v # 0
and Ry > 0. If p € Hla,n| and

then
p(2) < q(z) < h(z),
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where

q(z) = —3

T /h(t)tl—ldt.
0
The function q is convex and is the best (a,n)-dominant.

Lemma 1.3.3. [92, Lemma 13.5.1, p.419] Let q be a convex function in U and let
h(z) = q(2) + mazq (),

where o > 0 and m is a positive integer. If p € H[q(0), m] and
p(2) + azp'(z) < h(2),

then
p(2) < q(2),

and this result is sharp.

1.4 Subclassses of meromorphic functions

Let the function ¢ of the form (1.2) be a meromorphic function in Y~ = {{ € C, :
|€] > 1}, with a simple pole £ = co. We denote the set C\ ¢(U~) by E(¢).

Definition 1.4.1. [92, Definition 4.8.1, p. 102] We say that the function ¢ of the
form (1.2) is a starlike function in U~ if ¢ is univalent in U~ and the set E(p) is

starlike with respect to the origin.

Definition 1.4.2. [92, Definition 4.8.3, p. 103] Let the function g(z) = L + ag +
a1z +...,0 < |z] <1, be a meromorphic function inU* = {z:0 < |z| < 1}. We say
that the function g is starlike in U* if the function p(§) = g(%),g € U™ 1is starlike in
u-.

Theorem 1.4.1. [92, Theorem 4.8.1, p. 103] Let g(z) = 1+ ap+arz+...,2 € U* be
a meromorphic function in U with g(z) # 0,z € U*. Then the function g is starlike
m U if and only if g is univalent in U* and

/
3%(— %9 <Z>) S0, zeu
9(2)
Definition 1.4.3. [92, Definition 4.8.4, p. 104] We say that the function ¢ of the

form (1.2) is a convex function in U™ if ¢ is univalent in U~ and the set E(yp) is

conver.
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Theorem 1.4.2. [92, Theorem 4.8.2, p. 104] Let g(z) = 1+ ap+ouz + ...,z € U
be a meromorphic function in U with g(z) # 0,z € U*. Then the function g is convex

U if and only if g is univalent in U* and

§R< - (Zgg((;)') + 1)) >0, zelU

1.5 Differential and integral operators

A convolution (or a Hadamard product) ” 7 between two functions f,g € A of

the form f(2) =2+ Y. ap12" and g(2) = 2 + > by 12", 2 € U is defined by
k=1 k=1

F) e g(2) = (Fr0)(2) = 2+ 3 dpabeaz™
k=1
Definition 1.5.1. [117] For f € A, the Salagean differential operator D™ of order n,
neN=1{0,1,2,...}, is defined by
D°f(2) = f(2),

D'f(z) = Df(2) = zf'(2),
D f(z) = D(D"f(z)), neN-

Remark 1.5.1. [117] The series expression of the operator D™ for the function f € A
of the form (1.1) is given by

D"f(z) =2+ Z(k + 1) "agp1 25, neN.

k=1

Definition 1.5.2. [117] For f € A, the Salagean integral operator I™ of order n,
n € N is defined by

T f(2) /f ttde,
I"f(2) = Z(Z"" f(2)).

Remark 1.5.2. [117] The series expression of the operator I™ for the function f € A
of the form (1.1) is given by

' f(z Zk—’“
k=
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Definition 1.5.3. [115] The Ruscheweyh operator R* : A — A, A > —1, is defined
by
A o z
RYf(z) = A=)
and for A\ € N this operator is defined by

(221 f(2)W
R)\f(z): ( /\f'( )) 7

Remark 1.5.3. [115] The series expression of Ruscheweyh operator for f € A of the
form (1.1) is given by

* f(z), z€lU,

z€eU.

o~ D(k+1+2) k1
= }: A>-—1,z2€lU
~T(A+1)0 N R

and T" is the familiar gamma function.
The following operators were defined by S. Owa [101].

Definition 1.5.4. [101] The fractional integral operator D;* of order u,u > 0, for
the function f € A is defined by

z

D" f(z) = F(lﬂ) / G i<:))1—udt’ zelU,

where the multiplicity of (z — t)*~! is removed by requiring log(z —t) to be real when
z—t>0.

Also, the fractional derivative operator D? is defined of order \,\ > 0, for the
function f € A by

1 f(t)
D)\f<z): F(l/\dzf( dt OS/\<1

4D "f() n<A<n+1

, néeN,

where the multiplicity of (z —t)™ is understood similarly.
The following operator was defined by S. Owa and H. M. Srivastava [102].

Definition 1.5.5. [102] The fractional differintegral operator Q) : A — A, —oco <
A < 2, is defined by

QD f(2)=T2-NDXf(2), z€lU,

where D) f(z) is the fractional integral of order A, —oco < X\ < 0, and a fractional
derivative of order \,0 < \ < 2.

21



Remark 1.5.4. [102] The series expression of the operator Q) for the function f € A
of the form (1.1) is given by

I'(k+2)
+Z k;—|—2 N a1 25, —co< A< 2,2€U.

P. Sharma, R. K. Raina and G. §. Salagean [120] defined the operator D{™ as

Definition 1.5.6. [120] The fractional operator DY" : A — A for —oo < A <
2,v > —1,n € N is the composition of fractional differintegral operator, the Salagean

operator and the Ruscheweyh operator.
Remark 1.5.5. [120]

DO f(2), v=20
(1= DI f(2) + 32D (), v A0
Remark 1.5.6. [120] The series expression of DY" f(z) for f € A of the form (1.1)

15 given by

DTﬂ@zRTWEﬂ@={ (18)

:z—{—z k:+1) Lagyr 28, (1.9)
=1
—00 < A< 2,v > —1,n € N,z € U, where the symbol (), denotes the usual

Pochhammer symbol, for v € C, defined by

-1 =0 TG+ _
(7)]9_{7(7_‘_1)...(’}/—}—]{_1)’ keN- () veC\Z.

Remark 1.5.7. [129] Using the definition of the operator DY", respectively the rela-

tion (1.9), we observe that

RYQ —
DY f(z) = RVDMQ f(z) = { (Dynf(lf)( y Z#g (1.10)
and
v,n _ vyn A _ RVan( ) )\:O
DA“”_RDQJ@‘{lmVJU @y, Aot O

Remark 1.5.8. [120] The fractional operator Dy° is precisely the Ruscheweyh deriva-
tive operator RY of order v,v > —1, and D?\’O 18 the fractional differintegral operator
Q) of order X\, —oco < X < 2, while D)™ = D" and Dy ™" = D"t are the Sdldgean

operators, respectively, of order n and n+1, n € N.
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Remark 1.5.9. [129] The fractional operator D™ is the Sdldgean operator D"*2.

Remark 1.5.10. [120] The operator D™ satisfies the following identity:

v

DY) =

DY f(z) +

— (DY f(2))' (112)

where —oco < A < 2,v > —1,n e N.

Remark 1.5.11. [129] Making use of (1.10) and (1.11), we obtain that the operator

D™ satisfies the following identities:
DY f(2) = (DY £(2)) (1.13)

where —oo < A < 2,v > —1,n €N,

and
v,n A v,n 1
Dy f(2) = BEEEDY )\D)\ f(z) + -

where —oco < A< 1,v > —1,n €N,

2(DY"f(2))', (1.14)

Definition 1.5.7. [4] For a function f € A, >0 and n € N, the Al-Oboudi differ-
ential operator DY f is defined by

Dsf(2) = f(2),

D5 f(z) = (1= 6)f(2) + 6zf'(2) = Dsf(2),
Djf(z) =Ds(Dy ' f(2)), ze€U.

Remark 1.5.12. D} is a linear operator and for f € A,

f(Z) =z+ Zakzk7
k=2

we have -
D5 f(2) :z—l—z [1+(k—1)(5}nakzk, zelU (1.15)
k=2
and
Dyt f(z) = (1 - 8)Dpf(2) +02(Dyf(2)), zeU. (1.16)

For § =1, we obtain the Salagean differential operator (see Definition 1.5.1).

Remark 1.5.13. Differentiating (1.16), we obtain
(DT f(2)) = (Dyf(2) +02(D}f(2))", zel. (1.17)
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Definition 1.5.8. [103] For a function f € A,6 >0 and n € N, the operator I} f is

defined by
T3 f(2) = f(=),
I f(2) = %zli/o 52 f(t)dt = T f(2),
"f(2) =TT (), s el

Remark 1.5.14. If f € A and f(2) = 2 + > 2", then
k=2

;f(z):Z+Z|:Wl_1)5} Clkzk, zeU

k=2

and
02(Lf(2)) =T () = (1 =0T f(2), z€el.

For 6 =1, we obtain the Salagean integral operator (see Definition 1.5.2).

Remark 1.5.15. Using (1.19), we have

(T2 £(2) = (T2 f(2)) +02(T7H f(2))", zel.

(1.18)

(1.19)

(1.20)

Definition 1.5.9. [92, p. 384] We define the Bernardi integral operator L.: A — A

C

Lof(z) = tlfozf(t)tcldt, 6> 1.

z
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Chapter 2

New results on analytic or
meromorphic functions obtained
by using some operators

The results in this chapter are obtained by using some operators.

In Section 2.1, we obtain various results using the fractional operator DY". A
class of analytic functions defined by this operator is introduced. Inclusion relations,
convolution property, extreme points of the class and other results are given. Differ-
ential subordinations are investigated and geometric properties of analytic functions
are obtained. In the last subsection, coefficient bounds and Fekete-Szegd inequalities
are obtained for some classes of analytic functions, involving the fractional operator
D™

In Section 2.2, a class of meromorphic functions defined by using a fractional
operator is introduced. Some inclusion relations and other properties of the class are
investigated.

In Section 2.3, a new operator is defined. A certain subclass of analytic func-
tions is also introduced using the new operator, and some properties of this class are
obtained. Some differential subordinations using the new operator are also investi-
gated.

In Section 2.4, we obtain some inclusion relations between the classes of o-
uniformly convex functions, o-uniformly starlike functions, respectively the class US (n, «),
defined in a similar way as the another two, using the Salagean operator.

In Section 2.5, we introduce a generalized Salagean integro-differential operator,
using the Al-Oboudi differential operator D§ and the generalized Salagean integral
operator Z3. Differential subordinations are investigated and some previously known

results are generalized.

25



2.1 The fractional operator D}"

In this section, some results using the fractional operator D" defined by (1.8) and
(1.9) are obtained.

2.1.1 On a class of analytic functions defined by the operator
vn
]D)/\
Definition 2.1.1. [129] Let f € A. We say that the function f is in the class RY" (),
where 0 < a<1,—oco< A< 2,v>—1,n€N, if f satisfies the condition

R(DY"f(2) >a, z€lU. (2.1)

In our investigation, we shall need the following definition and theorem:

Definition 2.1.2. [}/ A sequence ag,aq, ..., ay, ... of nonnegative numbers is called
a convex null sequence if a, — 0 asn — oo andag—a; > a1 —as > -+ > ap—Apiq >
> 0.

The following theorem due to L. Fejér [34] is also used by F. M. Al-Oboudi [4].

Theorem 2.1.1. [34] Let {cr}32, be a convexr null sequence. Then the function

p(z) =L+ > azF, 2z €U is analytic and Rp(z) > 0 in U.
k=1

Theorem 2.1.2. [129] R (o) € RY™(a).

Remark 2.1.1. [129] Theorem 2.1.2 can be expressed in the following form:

1
v+1

?R((]D)K"f(z))' + z(DY" (z))”) >a = RDY"f(2) >

If we take v =1 — X\ in Theorem 2.1.2, we obtain the following result.

Corollary 2.1.1. [129] If f€e A,—co <A< 2,n €N and 0 < a < 1, then

4-A n " 1
D) s

%[(an<z>>'+ 2(D"f(2))"] >

= R[(D"f(2)) +2(D"f(2))"] > a,
where z € U and D" is the Salagean operator defined in the Definition 1.5.1.

Example 2.1.1. [129] Taking n = 0 in Corollary 2.1.1, we have:

1
2—-A

2 —

%(f’(z) + izf”(z) + fo’”(z)) >a = R(f'(z)+z2f"(2) >a, z€l.
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Theorem 2.1.3. [129] RY" "' (a) C RY™(a).

Remark 2.1.2. [129] Theorem 2.1.3 can be expressed in the following form:
R((DY"f(2)) +2(DY"f(2))") > a = RD{"f(2)) > a.

Theorem 2.1.4. [129] RYY (o) C RY" (), for —oo < A < 1.

Remark 2.1.3. [129] Theorem 2.1.4 can be expressed in the following form:

R((OFFG) + 25O ) > o = RO > a

Theorem 2.1.5. [129] Let f € RY"(a) and g € K, where K denotes the class of
convez functions. Then f* g € RY"(a).

Theorem 2.1.6. [129] The set RY™ () is convex.

Theorem 2.1.7. [129] The extreme points of RY" () are

f()—Z—l-Ql—aZ n+2y+1) g r =1,z €U. (2.2)
k=1

Corollary 2.1.2. [129] Let f € R{"(«). Then

2(1 — a)(2 — A

< k>1.
|ak+1| = (k—i- 1)n+2(l/—|— ]-)k;’ =
The result is sharp.
Corollary 2.1.3. [129] Let f € RY"(«). Then
C 2(1 —a)(2 — Ay k+1
reT |z =
= (k+ 1) 2(v + 1), 1

1—a — Nk o
k~|—1 1/+1)

.zl =

The result is sharp.

Theorem 2.1.8. [129] Let f € RY™"(a). Then f € RY™(B), where

1

Bz?a—1+2(1—a)(u+1)/

0

v

t+1

dt.

If we take A = 0, = 1 in Theorem 2.1.8, we obtain the following result.
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Corollary 2.1.4. [129] If f € A,n € N, then
R|(Df(2)) +2:(D" f(2)) + 32 (D"F(2))"] > a

= R(D"f(2)) +2(D"f(2))"] > b,

where z € U, B =3 —2a —4(1 — a)In2 and D" is the Salagean operator defined in
the Definition 1.5.1.

Remark 2.1.4. [129] Using the result of Corollary 2.1.4, we obtain > «a. So,
Theorem 2.1.8 gives us a better result than Theorem 2.1.2.

Example 2.1.2. [129] If we take o = % in Corollary 2.1.4, we obtain:

R|(D"f(2)) +2:(D" f(2)" + 52D ()" | >

A~ w

3
— R[(D"f(2)) + 2(D"f(2))"] > 5 n2, zel.
Remark 2.1.5. [129] If we take A = 1,v = 0,n = 0,a = 3 in Theorem 2.1.8, we
obtain the following result obtained in [28]:

RIf'(2) +32f"(2) + 22f"(2)] > % = R[f'(2) +2f"(2)] >In2, zeU.

Theorem 2.1.9. [129] Let f € RY" (o). Then f € RY™(S), where
f=20—14+2(a—1)In2.

Theorem 2.1.10. [129] Let f € RYY (a), —oo < A < 1. Then f € RY"(B), where

1

B:2a—1+2(1—a)(1—)\)/

0

t—>\
t+1

dt.

2.1.2 Differential subordinations obtained by using the op-
erator D}

Theorem 2.1.11. [130] Let g be a convex function, g(0) =1 and let h be a function

such that .
hz) —
()= 9(2) + 72

If f € A verifies the differential subordination

d(z), v>-1

(DY f(2) < A=), (2:3)
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then
(DX f(2))" < g(2)
and the result s sharp.

Taking A = n = 0 in Theorem 2.1.11 we obtain the following result, which is a

particular case of Theorem 2.3 from [97].

Corollary 2.1.5. [97] Let g be a convez function, g(0) = 1 and let h be a function
such that

h(=) = 9(2) + —20'(2).

If f € A verifies the differential subordination
(R11(2)) < h(z),
then
(R"f(2))" < 9(2)

and the result is sharp.

Theorem 2.1.12. [130] Let g be a convex function, g(0) = 1 and let h be a function
such that

h(z) = g(z) + - )\zg’(z), —00o <A< L
If f € A verifies the differential subordination
(D52 f(2))" =< A(z2), (2.4)

then
(DX"f(2))" < g(2)

and the result is sharp.

Theorem 2.1.13. [130] Let g be a convex function, g(0) =1 and let h be a function
such that

h(z) = g(z) + 24/ (2).
If f € A verifies the differential subordination
(DY f(2))" < h(z), (2.5)

then
(DX"f(2))" < g(2)

and the result is sharp.
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Taking A = v = 0 in Theorem 2.1.13 we obtain the following result, which is a

particular case of Theorem 2 from [98]:

Corollary 2.1.6. [98] Let g be a convez function, g(0) = 1 and let h be a function
such that

h(z) = g(2) + 24'(2).
If f € A verifies the differential subordination

(D" f(2)) < A=),

then
(D" f(2))" < g(2)

and the result is sharp.

Taking A = 0 and v = n in Theorem 2.1.12 or in Theorem 2.1.13 we obtain the

following result from [7]:

Corollary 2.1.7. [7] Let g be a convex function such that g(0) = 1 and let h be a
function such that

h(z) =g(2)+2¢'(z), z€U.
If n € N and the following differential subordination holds

1 iin n
_DOH’ Hf(z) +

2 n+1Z(D0’ f(2))" < h(z), zel,

then

!

(]D)g’”f(z)) <g(2), zelU

and this result is sharp.

Theorem 2.1.14. [130] Let g be a convex function, g(0) =1 and let h be a function
such that

h(z) =g(2)+2¢'(2), z€U.

If f € A verifies the differential subordination
(DY"f(2)) < h(2), z€U, (2.6)

then

and the result is sharp.
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Taking A = v = 0 in Theorem 2.1.14 we obtain the following result, which is a

particular case of Theorem 4 from [98]:

Corollary 2.1.8. [98] Let g be a convex function such that g(0) = 1 and let h be a

function such that
h(z) = g(2) + 24'(2).
If f € A verifies the differential subordination
(D"f(2)) < h(2), z€U,
then
D" f(2)

z

<9(z), zel

and this result is sharp.

Taking A = n = 0 in Theorem 2.1.14 we obtain the following result which is a

particular case of Theorem 2.5 from [97]:

Corollary 2.1.9. [97] Let g be a convez function, g(0) = 1 and let h be a function
such that

h(z) = g(2) + 29'(2).
If f € A verifies the differential subordination
(R f(2)) < h(z), =2€U,
then
R"f(z)

z

< 9(2)

and the result is sharp.
Taking A = 0 and v = n in Theorem 2.1.14 we obtain the following result from [7]:

Corollary 2.1.10. [7] Let g be a convex function, g(0) = 1 and let h be a function
such that

h(z) =g(z) +24'(2), zel.
If n € N, f € A verifies the differential subordination
(Dy"f(2)) < h(z), zelU,
then
Dy f(2)

. <g(z), zelU

and this result is sharp.

31



Theorem 2.1.15. [130] Let g be a convex function, g(0) =1 and let h be a function
such that
h(z) =g(z)+2¢'(2), zelU.

If f € A verifies the differential subordination

Z]DDVH’”f(z) !
(W) < h(Z), z €U, (27)
then ]D)l/+1 nf( )
N AV~
W < g(Z), zeUu

and the result is sharp.

Theorem 2.1.16. [130] Let g be a convex function, g(0) =1 and let h be a function
such that
h(z) =g(z)+2¢'(2), zelU.

If f € A verifies the differential subordination

<%) < Nh(z), zelU,—oco<A<1, (2.8)
then YT £(2)
a1t (2
W = g(z), zeU

and the result is sharp.

Theorem 2.1.17. [130] Let g be a convex function, g(0) =1 and let h be a function
such that
h(z) =g(2)+2¢'(2), ze€U.

If f € A verifies the differential subordination
zDK’"Hf(z) )/
o N < h(z s A U, 2.9
< DY"f(z) ) (29)

then
DY f(2)

RE) <g(2), zelU

and the result is sharp.
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2.1.3 Some properties of analytic functions otained by using
the operator D}"

Theorem 2.1.18. [131] Letv > —1,n e N,—co < A <2, M >1,m > 1,0 € R and
let ¢ : C* — C be an admissible function that satisfies the condition
’(b(Mew mMe®

10
PES TR )‘EM-

Also, let f € A with DY"f(2) # 0 and DY F(2) £ 0 for z €U\ {0}.
The inequality

(D5 f (=)’ z(Di“"f(z))’)
‘¢< DY f(2) ]DK-I—Lnf(Z) <M, zel (2.10)
implies /
% <M, z€elU. (2.11)
Vif(z

Remark 2.1.6. [131] Making use of (1.13), the inequalities (2.10) and (2.11) from
Theorem 2.1.18 become:

Di,n+1f<z> DKJrl,nJrlf(Z)) ‘ Iy
‘¢< DY () D) )|

and

e IR

DY"f(2)

Taking, respectively, v =n=A=0and v = A =0, n =1 in Theorem 2.1.18 we

obtain the following corollaries.

Corollary 2.1.11. [181] Let ¢ : C* — C be an admissible function that satisfies the
condition
|p(Me™,m+ Me”)| > M,

where M > 1,m > 1,0 € R, and let f € A, with f(z) # 0 and R'f(z) # 0 for
zeU\{0}.
The inequality

2f'(2) (R f(2)) )
’¢(f(2)’ RIF() ) <AMoeed
implies )
2f'(z
2) <M, zel.
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Corollary 2.1.12. [181] Let ¢ : C*> — C be an admissible function that satisfies the
condition

{(b(Mew,m + Mew){ > M,
where M > 1,m > 1,0 € R, and let [ € A, with D' f(z) # 0 and R'D' f(z) # 0 for
zeU\{0}.
The inequality

Z(le(z)), Z(Rlplf(z))/
’¢< Dif(z) = RIDf(2) >'<M, zelU
implies
Dif(2) <M, zel.

Theorem 2.1.19. [131] Let v > —1,n € N,—co < A < 2,p,0 € R and let ¢ : C* —

C be an admissible function that satisfies the condition

g

Ko (m’, + pi> <0,

v+ pi

where o < —L1(1 + p?). Also, let f € A with DY"f(z) # 0 and D" f(2) # 0 for
zeU\ {0}.
The inequality

/

Du,n ! Dqul,n
§)%(z( Vx’nf(z)) 72( VAan(z)) ) S0, zeu (2.12)
DY f(2) DY (2)
implies
2(Dy"(2)
R——n>— >0, zel. 2.13
e (213)
Remark 2.1.7. [131] The inequalities (2.12) and (2.13) from Theorem 2.1.19 can be
expressed:
Dv,n+1 DV+1,H+1
%Qb( Aun f(Z)’ Ay+1n f(Z)) >0
DY"f(2) 7 DY f(2)
and " )
DI/,TL f 2
N2 > 0.
DY f(2)

Taking, respectively, v =n=A=0and v = A= 0,n =1 in Theorem 2.1.19, we

obtain the following corollaries.
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Corollary 2.1.13. [151] Let ¢ : C* — C be an admissible function that satisfies the

condition
m(m, ° +m') <0,
pi
where p,o € R, < —2(1+ p?) and let f € A with f(2) # 0 and R f(z) # 0 for

2
zelU\ {0}.
The inequality

2f'(z) 2(RY(2)
w3 R )70 e

implies
()
f(2)
Remark 2.1.8. [131] Corollary 2.1.13 is a starlikeness criterion.

>0, zel.

Corollary 2.1.14. [131] Let ¢ : C* — C be an admissible function that satisfies the

condition
Ko (pi, 4 m’) <0,
pi
where p,o € R0 < —3(1+ p?) and let f € A with D*f(z) # 0 and R'D* f(z) # 0

for z e U\ {0}.
The inequality

2(D'f(2))" 2(R'D'f(2)) )
G e =n) EUBL
implies
(D'f(2)
%W >0, ze€el.

Remark 2.1.9. [131] Corollary 2.1.14 is a convezity criterion.

Taking ¥ (p(z), zp'(2)) = p(z) +5% in the proof of Theorem 2.1.18 and Theorem

2.1.19, we obtain the following corollaries.

Corollary 2.1.15. [181] Let v > —1,n € N,—o00 < A < 2, M > 1,6 € R and let
feAwithD{"f(2) #0 and DY f(2) # 0 for z € U\ {0}.

The inequality

Dy f(2)
D" f(2)

D" f ()
DY £ (2)

‘(1—5) +9 <M, zel

implies
‘DK’"“JC(@

7D <M, zel.
Dy f(z) ‘
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Corollary 2.1.16. [131] Let v > —1,n € N,—0c0 < A < 2,6 € R and let f € A with
DY f(2) # 0 and DTV f(2) # 0 for z € U\ {0}.
The inequality

DY f() | DY)

r (1 — 5) Dz,nf(z) DI;\’”—Hf(Z)

>0, zel

implies
D" f(2)
DY/ (2)
Theorem 2.1.20. [131] Let v > —1,n € N,—co < A <2, M >1,m > 1,0 € R and
let ¢ : C?> — C be an admissible function that satisfies the condition

>0, ze€elU.

‘qﬁ(Meie,m—i—Mew) > M.

Also, let f € A with D" f(2) # 0 and DY f(2) # 0 for z € U \ {0}.
The inequality

w10 )
M D) Dy )| S FeY (2.14)
implies /
% <M, zel. (2.15)
Vof(z

Remark 2.1.10. [131] The inequalities (2.14) and (2.15) from Theorem 2.1.20 can

be expressed:

<M

‘¢(D;’n+1f(2’) D;’n+2f(2))
DY"f(z) DY f(2)

and
‘DK’”“f(z)
DY f(2)
Theorem 2.1.21. [181] Let v > —1,n € N,—oco < A < 2,p,0 € R and let ¢ : C*> —

C be an admissible function that satisfies the condition

<

Ro (m', 74 ,oz'> <0,
Pl

where 0 < —L(1 + p?). Also, let f € A with DY"f(2) # 0 and DY" ' f(2) # 0 for
zeU\{0}.
The inequality

/

o (N 5

DY f(z) DALz )>O, zel (2.16)
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implies

2(D5"f(2))°
D" f(2)

Remark 2.1.11. [131] The inequalities (2.16) and (2.17) from Theorem 2.1.21 can

be expressed:

R >0, zel. (2.17)

m(%’jjf(z), DK’"“f(Z)) o
DX"f(2) "DX"f(2)
and
QDN ()
D{77(2)
Theorem 2.1.22. [131] Letv > —1,n e N,—co < A< 1,M >1,m > 1,0 € R and
let ¢ : C* — C be an admissible function that satisfies the condition
o mMe?
MM@ Tt Mo
Also, let [ € A with DY" f(2) # 0 and DYY, f(2) # 0 for z € U \ {0}.
The inequality

> 0.

+ Me”) ’ > M.

2(D3"f(2))" 2(D311(2)
‘¢( DY f(z) ]D)K’_;Elf(z) ) <M, zel (2.18)
implies ,
% <Mosel (219)

Remark 2.1.12. [131] The inequalities (2.18) and (2.19) from Theorem 2.1.22 can

be expressed:

<M

‘ ¢(DK’”“f(z) Diﬁ#ﬂz))
D" f(z) " DY F(2)

and
palC
DY" f(2)
Theorem 2.1.23. [131] Let v > —1,n € N,—oco < A < 1,p,0 € R and let ¢ : C* —

C be an admissible function that satisfies the condition

e (P% —\+ pi
where o < —1(1 + p?). Also, let f € A with DY"f(z) # 0 and DY, f(z) # 0 for
zeU\{0}.

The inequality

<

+pz’> <0,

m(Z(DK’"f(@)/ (D3 £ ()
D7) DERI)
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implies
v,n !
2(D5"f(2))
RATE
Remark 2.1.13. [131] The inequalities (2.20) and (2.21) from Theorem 2.1.23 can

be expressed:

R >0, zel. (2.21)

DY f(2) DK’”Tlf(Z))
Rop (2 a5 0
¢( DY f(z) DY) )

and .
DY f(2)

D" f(2)
Theorem 2.1.24. [131] Letv > —1,n e N,—co < A< 2, M >0,m > 1,0 € R and
let ¢ : C3 — C be an admissible function that satisfies the condition

> 0.

’gb(Mew,mMew,mMew + L) ‘ > M,

where R(Le=?) > (m — 1)mM. Also, let f € A.
The inequality

(D5 1051 ))| < b, s cu

implies
‘]D)K”f(z)| <M, zel.

Theorem 2.1.25. [131] Letv > —1,n e N,—co < A< 1,M >0,m > 1,0 € R and
let ¢ : C* — C be an admissible function that satisfies the condition

— )
’¢<Me’9, 1+;”Me”)‘zM.

Also, let f € A.
The inequality

]¢(D§’"f<z>,m>zﬁlf<z>) <M, seu

implies
IDY"f(2)| <M, zelU.

Theorem 2.1.26. [131] Letv > —1,n e NJ—co < A< 1, M >1,m > 1,0 € R and
let ¢ : C? — C be an admissible function that satisfies the condition

i0 i0 m
e, et (1+ =) )| 2
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Also, let f € A with DY" f(2) # 0 and DY, f(2) # 0 for z € U \ {0}.
The inequality

u—‘,—ln V+1n
f(z) Dy f(2)
gb( o <M, zel
‘ DY"f(z) " DY f(z)
implies
‘DK“’"f(z)
DY f(2)
Theorem 2.1.27. [151] Let v > —1,n € N,—oco < A < 1,p,0 € R and let ¢ : C*> —

C be an admissible function that satisfies the condition

‘<M, zel.

o
iy L Dl <0
¢(pz,pz+ (I/—i-l)pz'—u—)\) -
where o < —1(1 + p?). Also, let f € A with DY"f(z) # 0 and DY}, f(z) # 0 for
zeU\{0}.
The inequality

Du—l—l,nf( ) K—I—} nf( )>
Ro | -2 , == 0, U
oSty D) ) 70 2 E
implies X
DY f(2)
W >0, ze€l.

Theorem 2.1.28. [131] Letv > —1,n e N,—co < A <0, M >1,m > 1,0 € R and
let ¢ : C?> — C be an admissible function that satisfies the condition

‘¢>(Me"9,§(1 — (1= A)Me” —m))' > M.
Also, let [ € A with DY" f(2) # 0 and DYY, f(2) # 0 for z € U \ {0}.

The inequality ) )
S (2 Diﬁf z >’ M U
’¢<D””f(2) SRATE)

implies

]D)I/,?’L
‘—Hlf(z) <M, zel.

DY" f(2)
Theorem 2.1.29. [151] Let v > —1,n € N,—00 < A < 0,p,0 € R and let ¢ : C*> —

C be an admissible function that satisfies the condition

1
%gb(pi,x(l — (1= \)pi— %)) <0,
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where 0 < —1(1 + p?). Also, let f € A with DY"f(z) # 0 and DY, f(z) # 0 for
zeU\{0}.
The inequality

DY f(2) DY, f(2)
wo( Gt i) 20 s eu
DA’ f(z) ]D)X+1f(z)
implies D F(2)
§RA,,+Z >0, zel.
DY*f(2)

Theorem 2.1.30. [131] Letv > —1,n e N,—co < A< 2, M >1,m > 1,0 € R and
let ¢ : C* — C be an admissible function that satisfies the condition

‘gb(Mew, (1+m)Me™ (14 3m)Me? + L) ‘ > M,

where R(Le="?) > (m — 1)mM. Also, let f € A.
The inequality

S(BEIE) D) BERON| g
z z ’ 2z ’
implies
ID)Z/,TL
‘%(z)‘ <M, zel.

Theorem 2.1.31. [181] Let v > —1,n € N,—00 < A < 2,p,0,u,v € R, and let
¢ : C* — C be an admissible function that satisfies the condition

R (pi, pi + o, pi + 30 + p+iv) <0,

where 0 < —3(1 4 p?),0 + 1 < 0. Also, let f € A.
The inequality

Y )

z z

V,n v,n+1 v,n+2
%¢<D>\ Zf(Z) Dy f(z) Dy f(Z)) >0, zel

implies
DY f(z)
z

Theorem 2.1.32. [131] Letv > —1,n e N,—co < A< 1,M >1,m > 1,0 € R and
let ¢ : C* — C be an admissible function that satisfies the condition

‘¢<Mei9, (1 + %) Mei9> ’ > M.
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Also, let f € A.
The inequality

o DY"f(2) Dhiaf(2) <M, zelU
z z ’
implies
ID)Z/,TL
‘%(z) <M, zel.

Theorem 2.1.33. [131] Let v > —1,n € N,—co < A < 1,p,0 € R and let ¢ : C* —

C be an admissible ?UﬂCtiO’ﬂ that SatiSﬂGS the condition
.. o <
§];(25 oL, Pl + ——— 0
’ 1—A -
where o < —%(1 —|—p2) AZSO, let S A

The inequality
DV’TL DI/,TL
é)%qb( A Zf(z), A“Zﬂz)) >0, zelU

implies
SIS (2)
z
Theorem 2.1.34. [131] Letv > —1,n € N,—co < A< 2, M >1,m > 1,0 € R and

let ¢ : C?> — C be an admissible function that satisfies the condition

i0 i0 m
¢<Me ,Me (1+(1/+1)M6“9—1/))

Also, let f € A with D" f(2) # 0 and DY f(2) # 0 for z € U \ {0}.
The inequality

>0, zel.

> M.

]D)K—l—l,nf(z) DK—&—Ln—}—lf(Z) M u
¢ Dv" ) vn+t1 < ; S
N f(z) 0 DY (2)
implies
Dy f(2)
— | <M, zel.
‘ D" f(2)

Theorem 2.1.35. [131] Let v > —1,n € N,—0c0o < A < 2,p,0 € R and let ¢ : C* —

C be an admissible function that satisfies the condition

9 V<o
(v+Dpi—v) =7

where o < —1(1+ p?). Also, let f € A with DY"f(z) # 0 and DY f(2) # 0 for
zeU\ {0}.

The inequality

o (pi, pi +

DS f(2) DK“’"“f(z))
§R¢< D) ]D)K’”Hf(z) >0, zeld
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implies

ARG
DY(2)
Theorem 2.1.36. [131] Letv > —1,n e N,—co < A< 1,M >1,m > 1,0 € R and
let ¢ : C? — C be an admissible function that satisfies the condition

M Me (1 n > M.
’(b( e, ae ( +(1—)\)M619+1/+>\))‘_

Also, let f € A with DY"f(2) # 0 and DY f(2) £ 0 for z €U\ {0}.
The inequality

R >0, ze€l.

vif(z) DXL ()
(B st ) | <M =<
implies
‘—D%:%f(z) <M, zel.
DY f(2)
Theorem 2.1.37. [131] Let v > —1,n € N,—oco < A < 1,p,0 € R and let ¢ : C* —
C be an admissible function that satisfies the condition

g
o <
m(m’pH(l—A)pHH)\) =0,

where 0 < —L(1 + p?). Also, let f € A with DY"f(z) # 0 and D" f(2) # 0 for
zeU\{0}.
The inequality

1S (2) Kﬂ’”f(@)
%gb(ﬂ);”f( P ]D)KH’"f(z) >0, zel

mmplies

DY f(2)
DY"f(z)
Theorem 2.1.38. [181] Let v > —1,n e N,—co < A< 1,M >1,m > 1,0 € R and
let ¢ : C* — C be an admissible function that satisfies the condition

R >0, zel.

‘¢ (Mew, Me® (1 + > M.

m
(1= XN)Me? + X
Also, let f € A with D" f(2) # 0 and DY f(2) # 0 for z € U\ {0}.
The inequality

]D)I/n f Z) Dun—l-lf(z)
'qs(D?,tj Bl Dml )‘ <M, zelU
z A f(z)
implies
‘—Dﬁlf(z) <M, zelU
DY f(2) ’
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Theorem 2.1.39. [151] Let v > —1,n € N,—oco < A < 1,p,0 € R and let ¢ : C*> —

C be an admissible function that satisfies the condition
Rol| pt,pi + ———— ) <0

P, Pl
’ (1 - )\)02 + )\ -

where 0 < —L(1 + p?). Also, let f € A with DY"f(2) # 0 and DY"' f(2) # 0 for
zeU\{0}.
The inequality

Dy f(2) Diﬁlf(Z))
§R¢( D f2) ]D)K’”Hf(z) >0, zel

implies
]D)Killf (2)

")

>0, zel.
2.1.4 Coefficient bounds and Fekete-Szeg6 problem for some

classes of analytic functions defined by using the oper-
ator D}

H. M. Srivastava, P. Sharma, R. K. Raina [126] introduced the following function
classes by using the linear operator D™ defined by (1.8) for some 1,0 < n < 1 and
v > 0 and for some ¢ € Q (see page 14) as:

senle) = {srea = (CBIEL ) ol

e (n, 16, 10)) = {f S EAD g e S (W) (z<§§’n§§3> - n) < ¢<z>},

and

R (1,7, 6], [0]) = {f fEADIg €S (W),

1 DY) (DF() )
1—77((1 V)DK’”g(z) +7(11)3”9(2))’ 7’) =¥ )}'

Remark 2.1.14. [39] Forn= )\ =v =n =0 we obtain

S0°(0,[¢]) = S*(9),

Co" (0, [0], [¥]) = C (o, ),
the two classes being defined in Definition 1.2.17.

We shall use the following lemma to prove some of our results.
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Lemma 2.1.1. [66] Assume that n(z) = e;+eaz+. .. is analytic inU with |n(z)| < 1.
Then |e1]* + |es] < 1.

Theorem 2.1.40. [39] Let f € A be of the form (1.1). If the function f is in the
class Sy (n, [4]), then

k—1
(2= A HO (J+2(1—n)
< = . keN~
el < e G o
1+(1-2
Remark 2.1.15. [39] For A = v = n = 0,¢(z) = M,o < a <1, the

result of the Theorem 2.1.40 was obtained in [113].

Theorem 2.1.41. [39] Let ¢(z) = 1+ Byz+ By2?+. .., By, real numbers, k = 1,2, . ..
and By > 0. If f(z) given by (1.1) is in the class Sy"(n,[4]), then

(L=—n)(2-NB - By

( ,
23, O r2) [ EE o Nw D s
1—n)(2—-X)(3—X |
}GS—MC@ < ;3n7~7k>1((1/_|_1))((y+2§B17 , Zfo'l SH’SU2
1=mMZ-NB=N B .
223 (v + (v +2) | 252 gz o )\1)(1/ +0 ) = on

Further, if o1 < u < o3, then

2273 — N (v + 1) By YoB1 2

‘ Ma2’+3n+1(1_n)(2_>\)(y+2)31 _E+22n+1(3_)\)(y+1> |Cl2‘
(1=nE2-=NB=XN
S 2.3+ (v +2)
If o5 < < 04, then

221 (3 - N (v +1 B "B

‘as—ﬂa%|+3n+1(1 : X : = 2n+1 — “GQ‘Z
—nE2-Nv+2)Bi| B 223N (v+1)

1=—n)E2-NB—-A)
= 2.3 v+ D(w+2) "

where o 22n+1(3 )\)(V—i— 1)[ Bl —I—B (1 _ 77)]
e 3+ (1 —1)(2 — N (v + 2) B2 ’

2B =N (v + 1) [B> + By + Bi(1 —1)]
7 A1 -mE- N +2B

22741(3 — \)(v 4 1) [By + B(1 — )]
(1 -n2-Nwv+2)B7
Yo=1=n)[3"u2 =N +2) =23 - N)(r+1)].

O3 =

These results are sharp.
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Remark 2.1.16. [39] For A =v =n =n =0, the result of the Theorem 2.1.41 was
obtained in [80] and for A =v =0, in [{5].

Theorem 2.1.42. [39] Let ¢(z) = 1+ Byz+ Boz?+. .., By, real numbers, k= 1,2, . ..
and By > 0, and let f(z) be in the class Sy (n, [¢]). For a complex number v we have:

1-nmC-NEB-NB ) By Y0 B1
23 W+ (v +2) m“{L ‘§?+%M%&—»w+1ﬂ}

lag — pa3] <

where
Yo=(1=-nE"w2-Nw+2) -2 3 - (r+1)).

The result is sharp.

Theorem 2.1.43. [39] Let f € A be of the form (1.1). If the function f is in the
class Cy"(n, [#], [¢]), then

(2= Nk(1+ k(1 —n)

ke N
U+ Dptk+ it 2 "€

|ak+1‘ <

Theorem 2.1.44. [39] Let ¢(z) = 1 + Byz + Bez® + ... be analytic in U and let
P(z) = 1+ Ciz + Co2% + ... be univalent in U, Cy, real numbers, k = 1,2,... and
Cr>0. If f(2) = 24+ az® + azz® + - -- € CY"(n, [¢], [¥]), then

‘Clg - Ma§| S K(:u7/\7 v,n, 01702) + L(M7>\7 v,n,1, B17BQ7 C1)7

where
K(p, A\, v,n,Cy,Cy) =

( 2-NB-N c? |

22 . 3n+2(1/+ 1)(V+ 2)‘ 2= 22n(3 - )\1)(1/_‘_ 1)’70 ) Zf,u < oy
(2-NB-2) |

2.3 2(u + 1)(v+2) ifor < <oy,
(2-NB-N 2 |

(223" (v + 1)(v + 2)’ et e Tz

L(p, A\, v,n,n, By, By, Cy) =
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(<1_77)<2_>‘)(3 2 ‘041|01(2_>\)
R R
101U —n — — )
me|31| > 3 2(y + 1) (v + 2) (|Bl|_|B2—OéQBID
(1-=n)2-NEB—-N)|Bi| 3"2(2 = N (v + 2)| B PCF v |?
32(v + 1) (v + 2) 22041 — )3 = N)(v + 1)(|B1| — | B2 — a2 B}|)’
otherwise

__2%H4(3 N (v +1)(Cy — C + C?)
= 31712 — \) (v + 2)C2 ’
2B - N (v +1)(Co + Cy + CF)
72 = 312 — \) (v + 2)C2 ’
o = 322 —4)\)( v+2) 2nH(3 A 1 1),
b= 2A =B =N p(1=n)(2-A)
YT 3R (v 4 2) 2 (y 4 1)

321~ )(2 - N)(v +2)
92+4(3 — \)(v + 1)

Remark 2.1.17. [39] For A = v =n =mn =0, the result of the Theorem 2.1.44 was
obtained in [66].

Qg =

Theorem 2.1.45. [39] Let f € A be of the form (1.1). If the function f is in the
class RY™(n,0,[¢], [¥]), then

(2= Ne(L+ k(1 —n))
W+ ek + 1)

Theorem 2.1.46. [39] Let f € A given by (1.1). If the function f is in the class
,R’K,n(/rh 17 [¢]7 [¢]); th6n

|agi1| < , keN~

(2 = A)k(3k 4+ 3+ (1 — n)k(2k + 1))

3(v+ 1),k + 1)t ’
Theorem 2.1.47. [39] Let ¢(z) = 1+ Byz + Byz* + ... be analytic in U and let
P(z) = 1+ Ciz + Coz? + ... be univalent in U, Cy, real numbers, k = 1,2,... and
Cy>0. If f(2) = 2+ agz® + azz® + ... € RY" (0,7, 4], [¥]), then

ke N*.

’@k+1| <

|a3 - :uag| < M(Hﬂ )‘7 v,n, CYlacb) + N(N’v >‘a V,m, 1,7, BlaBQa Cl)a

where

M(,ua )‘7 v,n, 01702) -

46



([ 2-NB-X C?

_ <
2-NB-N .
<nu<
230t (v + 1) (v + 2) forsps<os,
2-NE- N o |
- >
(223 (v +1)(v + 2) 202+22n(3_>\)(y+1)'70 , =0

(M?A v,n,n", B17‘82701) =
2n+1(y+1)

(A= -MNB-H)

By — B}
3n+1(1+27)(y+1)(y+2| 2~ aaBi| +

|Bl|7

L C1(2 = Ay 20—=n)2-N)EB-N) 5
me’ Bl st ot 0w+ 9 <|Bl| - |5 _0‘231‘)
(1-n)@2=X)B=N|B] 3" (14 29) (2= N (v + 2)| Bi*C o |
(1429 (v + 1w +2) 22+ (1 —n)(3 = A)(v+ 1)(|Bi| — | B2 20’
L otherwise
2B - N (v + 1)(Cy — Gy + C})
1= 312 — \)(v + 2)C2 ’
oy — 22n+1(3 — /\)(V+ 1)(02 + Cl + C )
: )(

312 — M) (v + 2)C2 ’

% = 3" 2 = N (v +2) =273 = N (v + 1),

(1 =n)(1+37)B-A)  pd-=n2=X)

(1 +y)1+2y)(v+2) 2¢(1+7)(v+1)
_ 3" —n)(1+27)(2 - A)(v +2)

22n42(1 +9)2(3 = A)(v + 1)

o] =

2.2 On a class of meromorphic functions defined
by using the operator D{" and some integral
operators

Let ¥ denote the class of functions of the form

1 o0
z2)=—+ Z apz®,
R
which are analytic in U* = {z: 0 < |2]| < 1}.
Motivated by [120], we define the fractional operator Dy : ¥ — X, by

(v + 1Dk

CEE (k+2)" M ay2", (2.22)
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where —oo < A < 2,v > —1,n € N,z € U* and the symbol (v); denotes the
Pochhammer symbol, for v € C.
We note that the operator

o0

1
DY f(z) = 2 + Z(k + 2)"ay 2"
k=0

was introduced and studied in [138].

Remark 2.2.1. [37] The operator DY" satisfies the following identities:

DY f(2) = 2DV f(2) + z('DK’"f(z)),, (2.23)
2 1 /

Dy f(z) = Zj: D@+ (PR (2.24)
2—A 1 /

Diaf(z) = 7D ) + = )\Z(DK’nf(Z)) ) (2.25)

where —00 < A< 2,v > —1.n €N,
Definition 2.2.1. [37] A function f € 3 is said to be in the class SDY"(«) if it

satisfies
Du,n—l—lf(z)
R ﬁn——2)<—a, z €U, 2.26

(o7t (220

for some (0 < a<1),—co<A<2,v>—-1,neN.

To prove our results, we need the following lemma, known as Jack’s lemma. An
extension of this is the Jack-Miller-Mocanu Lemma [84,92].

Lemma 2.2.1. [51] Let the function w be regular and nonconstant in |z| < 1, with
w(0) = 0. If |w| attains its mazimum value on the circle |z| = r < 1 at a point z,

then we have zgw'(z9) = kw(2y), where k is a real number and k > 1.
To prove our results, we use the methods used in [24,138].
Theorem 2.2.1. [37] SD{" (o) € SD{"(a), n €N.
Remark 2.2.2. [37] Taking A =0 and v = 0, we obtain Theorem 2.1 from [138].

Using Lemma 1.3.2 instead of Lemma 2.2.1 we will obtain an improvement of
Theorem 2.2.1.

Theorem 2.2.2. [37] SDY" (o) € SDY™(B), for n € N, where

5+ 2a—4/(3-2a)* +8
= . 7

B (2.27)

and B € (o, 1).
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Remark 2.2.3. [37] Taking A = 0 and v = 0, we obtain a particular case of Theorem
2.5 from [5].

Theorem 2.2.3. [37] SD{*""(a) € SDY™(a), v > —1.
Theorem 2.2.4. [37] SDYY () C SDY"(a), —o00o<A<L.

Theorem 2.2.5. [37] Let f € ¥ satisfying the condition

Dl/,nJrlf(Z) 1 —«
R(=A_JE o) oy —T%  Leu,
(DX 7(2) ) “Ton—atre
neN —co<A<2,v>—1,¢>0, (2.28)

then

z

F(z) = = / t°f(t)dt € SDL"(a).

0

Remark 2.2.4. [37] Taking A =0 and v = 0, we obtain Theorem 2.2 from [138].

Theorem 2.2.6. [37/f € SDK’"(a) if and only if the integral operator F € SDY™ ' (a),
where F(z) = % [tf

0
Remark 2.2.5. [37] Taking A =0 and v = 0, we obtain Theorem 2.3 from [138].
Theorem 2.2.7. [5’7/f € SDV’"( ) if and only if the integral operator F € SD¥" (),

where F(z) = 445 ft”“f

Theorem 2.2.8. [37/f € SD”"( ) if and only if the integral operator I € SDY} (a),
where F(z

2.3 The operator @2;”

Definition 2.3.1. [133] Let —oo < A < 2,v > —1,n € N,a, § > 0. Denote by .@ig"
the operator given by 92‘;" A= A,

D" f(2) = (1 — a— B)RYD"f(2) + aR* QL f(2) + BD Q2 f(2),

for z € U, where the operators R”, D™ and ) are defined in Definition 1.5.3, Defi-
nition 1.5.1 and Definition 1.5.5, respectively.
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Remark 2.3.1. [133] RVD" f(z) is the composition of the Salagean operator and the
Ruscheweyh derivative, R*2 f(z) is the composition of fractional differintegral oper-
ator and the Ruscheweyh derivative, and D"Q)f(2) is the composition of fractional

differintegral operator and the Salagean operator.
Remark 2.3.2. [135] If f € A, f(2) = 2+ Y ap112", then
k=1

[e.9]

@;\Enf _Z+Z(1_a_ (V+1)k(k+1)n+1+OéE;+>1\)k(k'+1)+

(1) nt1 |
5(2 — i\)k (k + 1) + )ak+12k+ s (2.29)

forz e U.

Remark 2.3.3. [135] 204" f(2) = (1 — a— B)Dy" f(2) + oDy’ f(2) + BDY" f(2), for
z € U, where D™ is defined in (1.8).

Remark 2.3.4. [133] For a = 0 and 8 = 0, we obtain QA”" (2) = R'D"f(2),
where z € U.

For a =1 and 8 = 0, we obtain .@fé’"f(z) RYQXf(2), where z € U.

For =0 and 8 =1, we obtain 27" f(z) = D"Qf(2), where z € U.

For B =0 and v = 0, we obtain @2‘78 "f(z) = (1 = a)D"f(2) + aQ) f(2), where
zel.

For a« =0 and n = 0, we obtain .@ag’of(z) = (1= B)R"f(z) + B f(2), where
zel.

For a+f =1 and A = 0, we obtain 2" Tl (z) = (1= BYRVf(2) + BD"f(2),
where z € U.

For a+f = 1,A\ =0 and v = n, we obtain @f’_"é%f(z) = (1-pB)R"f(z) +
BD"f(z),z € U. This operator was introduced and studied in [6].

For a = f =n =0, we obtain @ag’of(z) =R"f(z), and for B =X =n =0, we
obtain .@Oyof( ) =RV f(2), where z € U.

For o = B =v =0, we obtain 9’\0" (z2) =D"f(2), and for a = X = v =0, we
obtain -@8,’2’"f( ) =D"f(z), where z € U.

For a =0 and A\ = v =1, we obtain .@&’é’nf(z) = D" f(2), where z € U.

Fora =1 and f =v =0, we obtain .@’\0" (2) = Q) f(2) and for a =n =0 and
B =1, we obtain .@’\Vof(z) = Q) f(2), where z € U.

For A =v =0, we obtain @3:2’"f(z) =(1—a)D"f(2) + af(z), where z € U.

For A =n =0, we obtain .@aoi/';’of(z) =(1—-B)R"f(2)+ Bf(z), where z € U.
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For v =n =0, we obtain .@i’g’of(z) = (1—a—08)f(2) + (a+ BN f(z), where
zeU.

For A\ =0 and v = 1, we obtain Qgénf(z) =1 —a-pB)D""f(z)+aD f(z) +
BD"f(z), where z € U.

For A =1 and v = 0, we obtain .@;Z%nf(z) =(1—a-B8)D"f(z) +aD'f(z) +
BD" L f(2), where z € U.

For A\ =v =1, we obtain @i}j”f(z) =(1—a)D"" f(2) + aD?f(z), where z € U.

For \ = v =n =0, we obtain .@g:%’of(z) = f(2), fora=p=v=n=0, we
obtain .@&g)’of(z) = f(z), fora =1 and A =v =0, we obtain @ﬁ’gmf(z) = f(z), and
for =1 and A =n =0, we obtain .@aozl{’of(z) = f(z), for z € U.

2.3.1 On a class of analytic functions defined by the operator

AU
D,

Definition 2.3.2. [183] Let f € A. We say that the function f is in the class
%2;”(5), where 0 <6 < 1,a,8>0,—00c < A< 2,v>—1,n €N, if f satisfies the
condition

R(Z"f(2)) >0, zel. (2.30)

Theorem 2.3.1. [133] Let f € %2;"(5) and g € K, where K denotes the class of
convez functions. Then f * g € 9?2;"(5)

Theorem 2.3.2. [133] The set %22"(5) is conver.

2.3.2 Differential subordinations obtained by using the op-
erator 2"

Theorem 2.3.3. [133] Let g be a convez function, g(0) = 1 and let h be a function
such that

h(z) =g(z)+2¢'(2), zelU.
If f € A verifies the differential subordination

(225" f(2)) < h(z), =€, (2.31)
then

D" (2)

. <g9(2), zel

and the result is sharp.
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Theorem 2.3.4. [133] Let g be a convez function, g(0) = 1 and let h be a function
such that
h(z) =g(z)+2¢'(2), zelU.

If f € A verifies the differential subordination

@A,V—&—l,n /
(Z@af—m) <h(z), zel, (2.32)
04,7,6’7 z
then ot
9 v+1n
a’fo(Z) <g(z), zelU
2,5 f(2)

and the result s sharp.

Theorem 2.3.5. [133] Let g be a convex function, g(0) = 1 and let h be a function
such that
h(z) =g(2)+2¢'(2), ze€U.

If f € A verifies the differential subordination

@A,V,n+l /
(Z@af—ﬁ) <h(z), zel, (2.33)
a:[; z
then -
@ UM
a’fo(Z) <g9(z), zel
2,5 (2)

and the result is sharp.

Theorem 2.3.6. [133] Let g be a convez function, g(0) = 0 and let h be a function
such that
h(z) =g(2)+2¢'(2), z€U.

If f € A verifies the differential subordination
D" F(2) + Do f(2) + (DD f(2) — 2oy £(2)) < h(z), z€U, (2.34)

then
D" f(2) < g(z), z€lU

and the result is sharp.

52



1 20 — 1
Theorem 2.3.7. [133] Let h(z) = M

n be a convex function in U, where
z
0<6<1. If f € A verifies the differential subordination

D" (@) + D" [ (2) + (DA f(2) = iy " f(2)) < hlz), 2 €U, (2.35)

then
205" f(2) < g(z), z€lU,

In(1
where g is given by g(z) =25 — 1+ 2(1 — 5)M, zeU.
z

The function g is convex and is the best dominant.

Theorem 2.3.8. [133] Let g be a convez function, g(0) = 1 and let h be a function
such that
h(z) =g(2)+2¢'(2), z€U.

If f € A verifies the differential subordination

1 v,n 1 v,n v,n
D5 () + a(D*2i (o) - 2" (=) < h(2), =€l (2.36)

z

then
(225" f(2)) < g(z), zeU

and the result is sharp.

1+ (26 —1)

Theorem 2.3.9. [133] Let h(z) = ® be a conves function in U, where

+z
0<d<1. If f e Awverifies the differential subordination

1 v,n 1 v,n v,n
Lo i)+ La(D Ay ) - B HE) <h). (237
then
(225" F(2)) < 9(2), z €U,
where g is given by g(z) =25 — 1+ 2(1 — 5)M, zeU.
z

The function g is convexr and is the best dominant.

2.4 Inclusion relations of analytic functions associ-
ated with Poisson distribution series and Salagean
operator D"

In this section, results using the Salagean differential operator D™ defined in Defi-

nition 1.5.1 are obtained.
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Using the Salagean operator, Kanas and Yuguchi [64] introduced the class
US(n,a) as

RN E AN
MS(n,a)—{fGA.ER( D f(2) )> D f(2) 1

It is easy to see that US(1,a) = a —UCY and US(0, ) = o« — ST.

Porwal [110] introduced Poisson distribution series as

> mk—l B
k=2

We consider the linear operator I(m) : A — A (see [122]) defined by

,QEO,ZGU}.

I(m)f = K(m,z) * —Z~I—Z apz®.

We establish some inclusion relations between the classes US(n, a), 6 —UCV and
0—ST.
We need the following result.

Theorem 2.4.1. [64] If f € US(n, «), then

(Pl)k L \
—11
where Py is the coefficient of z in the function
S 2(D" fr(2))
z) =1+ Pyt =220
Pi(2) ; k D fu(2)

where fi(z) is the extremal function for the class US(n, ), and the symbol (B)
represents the Pochhammer symbol, for § € C.

Theorem 2.4.2. [36] If m > 0, f € US(n, ) and the inequality
k-1

>\ mk! Plkl = m Plk;l m
(1490) T +Z A <e (2.38)
o —2

b

is satisfied, then I(m)f € § — ST.

Theorem 2.4.3. [36] If m > 0, f € US(n,a) and the inequality

k—l

1+5§; ]:;" 3 3+25§: T P““+§: m )kigem

=2 k:Q

is satisfied, then I(m)f € § —UCV.
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Theorem 2.4.4. [36] If m > 0, f € US(n,«) and the inequality

= omk! Plkl mF=t (P e
2 <
Z2k Tk Z k2l Tk 542

is satisfied, then I(m)f € § —UCV.

Theorem 2.4.5. [36] If m > 0, f € US(n,«) and the inequality

0 k—1

m Plkl mb1 Plkl m
22 T +)\Z F-TIT L < e (2.39)

is satisfied, then I(m)f € S5.

Theorem 2.4.6. [36] If m > 0, f € US(n,a) and the inequality

— mk” — mh! Pl k 1 —~ m" (P
2+ A) A < Xe™
; * 2; =) TRk g(k—l)!F(k)k”_ ¢
is satisfied, then I(m)f € Cy.
In the followings, we use the integal operator
=1 t
Glm, 2) = / Hm)f () 4
0 t
or equivalently
-1
m —-m
G(m,z) =z + Z ¢ apz®, (2.40)

defined in [122], and we obtain some inclusion relations for G(m, z) belonging to the
classes 6 —UCV, C\ and US(n, o).

Theorem 2.4.7. [36] If m > 0, f € US(n,a) then G(m,z) defined in (2.40) is in
d —UCY if (2.38) is satisfied.

Theorem 2.4.8. [36] If m > 0, f € US(n,a) and the inequality

& k—1 m
Z m plklg e
— (k—2)! T(k)k" ~ §+2

is satisfied, then G(m,z) € 6 —UCV .

Theorem 2.4.9. [36] If m > 0, f € US(n,a) and the inequality (2.39) is satisfied,
then G(m, z) € Cj.
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2.5 Differential subordinations obtained by using
generalized Salagean integro-differential oper-
ator L,

Many recently published works contain studies on integro-differential operators
(see [1,99,100,104]). In the paper [38] I generalized the operator from [104].

Definition 2.5.1. [38] Let n € N,6 > 0 and A > 0 with 0 # 232, For f € A, let

B 1
DY)

where the differential operator Dy f and the integral operator I3 f are given by Defi-

LY f(2) [(1=ND;f(2) + NIy f(2)], z€U, (2.41)

nition 1.5.7 and Definition 1.5.8, respectively.
Remark 2.5.1. [38] We have
Losf(2) = D5 f(2),
Lisf(2) = L5 f(2),
L3 f(2) = L3f(2) = f(2)

and

L5 f(2) = (L= ND"f(2) + AI"f(2) (see [104]).

Remark 2.5.2. [38] For f € A, f(z) = 2 + > ax2® by using (1.15) and (1.18), we
k=2

have

§5f(z):z+ﬁ§ [(1—/\)(1+(k—1)6)"

A
(14 (k—1)8)"

Theorem 2.5.1. [38] If0<a<1,f€eA,, me{1,2,3,...} and

+ ]akzk, z €U. (2.42)

/ (5 " "
R| (LY f(2)) +#W5Z((I§+lf(z)) + (Z3 f(2)) )} >a, z€U, (2.43)
then
R( t\Laf(z)), >, z€el,
where

1

21 —a) [ ton!
= =92q — 1 dt.
v=7la) =2 =14 =0 / 1+t

0
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Example 2.5.1. [38] Form = 1,\ = %,5 = %,n =0 and a = % we obtain that the
mequality

zeU,

: 2f"(z)\ _ 1
éR(f (z) + 5 > 5
implies

Rf'(z) >2—-2n2, zel.
Theorem 2.5.2. [38] Let q be a convex function, q(0) = 1 and let h be a function
such that

h(z) = q(z) + mdézq'(z),m e N*,§ >0, zeU.
If f € A, verifies the following subordination

Ad

(L3 (=) + SRS

52((13“ )" + (73 f(z))”) <h(z), zeU, (2.44)

then
(L3sf(2) = alz), zeU

and the result s sharp.
Remark 2.5.3. [38] Taking m =1 and 6 = 1, we obtain Theorem 3 from [104].
Remark 2.5.4. [38] Taking A = 0, we obtain Theorem 2.2 from [23].

Theorem 2.5.3. [38] Let q be a convex function, q(0) = 1 and let h be a function
such that
h(z) =q(z) + mzq'(z2), meN" zel.

If f € A, verifies the following subordination
(L3sf(2) < hl2), =€l (2.45)

then o
%@) <q(2), zelUu
and the result is sharp.
Remark 2.5.5. [38] Taking m =1 and 0 = 1, we obtain Theorem 1 from [104].

Remark 2.5.6. [38] Taking A = 0, we obtain Theorem 2.3 from [23].
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Theorem 2.5.4. [38] Let q be a convex function, q(0) = 1 and let h be a function

such that

h(z) = q(z) + mz¢'(z), meN' zel.

If f € A, verifies the following subordination

LG\ L
( £,/ ) ) A et

Ly f(2)
Ly f(2)

then
<q(z), zelU

and the result is sharp.

(2.46)

Remark 2.5.7. [38] Taking m =1 and 6 = 1, we obtain Theorem 2 from [104].

o8



Chapter 3

New results on some classes of
analytic functions related to
starlikeness and convexity

In this chapter, we obtain new results related to starlikeness and convexity.

In Section 3.1, several differential subordination results, involving arithmetic,
zp'(2)
p(2)
In Section 3.2, a new class of analytic functions satisfying subordinate condition

geometric and harmonic means of the expressions p(z) and p(z)+ are generalized.
associated with Chebyshev polynomials is defined. Coefficient estimates and Fekete-
Szegd inequality for this class are given.

In Section 3.3, a new subclass of m-fold symmetric bi-univalent functions is
introduced. Estimates of the Taylor-Maclaurin coefficients are obtained. Fekete-
Szegd functional problem for functions in this new subclass is also investigated.

In Section 3.4, we give upper bound for the second Hankel determinant for
gamma-starlike functions of oder «, for 0 <~ < 1. This result generalizes previously

obtained results for upper bounds of second Hankel determinants for various classes.

3.1 Differential subordinations and Pythagorean
means

The three "classic” means, i.e. the arithmetic mean, the geometric mean and
the harmonic mean are sometimes called Pythagorean means. All these means were
generalized by their weighted forms. A special case of them, is the convex weighted
mean.

Hence, for 0 < a < 1, we have
CWA(x1,12) = axry + (1 — a)zs,
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CWG(xy,20) = :c‘fa:%’o‘,

1 T1X2
CWH(m, ) = T T =

€2

arg + (1 — )y’

where CW A denotes the convex weighted arithmetic mean, CW G represents the
convex weighted geometric mean and C'W H is the convex weighted harmonic mean.
The Pythagorean means are frequently used in geometric function theory.

The well-known class of a-convex functions (see Definition 1.2.11) plays an impor-
tant role in this direction, being defined using the convex weighted arithmetic mean,
and at the same time being a transition between starlike and convex functions.

The class of gamma-starlike functions (see Definition 1.2.12) is defined in a similar
manner, using the convex weighted geometric mean.

There are many other works in geometric function theory, related to arithmetic
and geometric means (see for example [57-60, 75,125, 136]).

In geometric function theory, harmonic means are considered in a few works (see for
example [26,27,137]).

Differential subordinations involving both, convex weighted arithmetic means and
convex weighted geometric means were studied in [56], while differential subordi-
nations involving harmonic means in [61], respectively, convex weighted harmonic
means, recently, in [55].

In this section, we generalize some of these results.

The following lemma due to Nunokawa [96], is expressed in a different form. This

form is used in [56].

Lemma 3.1.1. [56] Let p € H(U) such that p(0) = 1,p(z) £ 1. If zo € U verifies the
equalities
T
|angp(z0)| = max{argp(2) : |2] < |20} = 03,

p(z) = (ix)",

then

s
27
2° 1

5 (7+3) ‘

Theorem 3.1.1. [35] Let p € H(U) such that p(0) = 1. Also, let a € [0;1],5 €

0;1],0 € [1;2],7 € [0;1] and 6 € (0; 1].
If

| arg[zop(20)]| = (0 +1)

|20 (20)] =

are (awz)P (-




then
|arg p(2)| < 9%, z€eU. (3.2)

Remark 3.1.1. [35] For =0, we obtain the result of Theorem 2.4, p. 128 in [56].

Remark 3.1.2. [35] For a =0 and v = 0, we have a particular case of the Theorem
2.5, p. 1726, obtained in [55].

Remark 3.1.3. /35] Fora =0, v =0 and § = %, we obtain the result of Theorem
2.7, p.1251 in [61].

Taking # = 1 in Theorem 3.1.1, we obtain the following result.

Corollary 3.1.1. [35] Let p € H(U) such that p(0) = 1. Also, let « € [0;1],5 €
[0;1],0 € [1;2] and vy € [0; 1].

If
zp'(2) 11—
p(2)]" [p(2) + 2
SCE(6)4[1»’)(»2“)]‘5+(1—04) | ; e )>0, zel,
B +1
p*(2)
then
Rp(z) >0, zel.
Considering convenient values for a, 3, in Corollary 3.1.1, we obtain the follow-
ings.

Remark 3.1.4. [35] For =0, we obtain the result of Theorem 2.3, p. 127 in [56].

Remark 3.1.5. [35] For a =0 and v = 0, we have a particular case of Theorem 2.4,
p. 1724, obtained in [55].

Remark 3.1.6. [35] Fora =0, v =0 and § = %, we obtain the result of Theorem
2.3, p.1247 [61].
Remark 3.1.7. [35] For a =0 and = 0, we get a result obtained in [78].

Remark 3.1.8. [35] For 6 =1, =0 and v = 0, we get a result obtained in [116].

Setting p(z) = ZJ{ES)

Corollary 3.1.2. [35] Let f € A and also let o € [0;1],5 € [0;1],0 € [1;2] and
v € [0;1].
If

in Corollary 3.1.1, we obtain the following result:

re] o
[f(Z)] [1+ f’(Z)]

>0, z€lU,

f(2)

%<a[Mr+(1—a)

f'(2) f(2)
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then

%(Z]{;i?) >0, ze€l.

Therefore [ is starlike in U.

Remark 3.1.9. [35] If we put o = 0 and 8 = 0 in Corollary 3.1.2, we obtain the
well known result that a-convex functions are starlike. This result has been proved in

various ways (see [86-88]).

Remark 3.1.10. [35] If we put § =1, 5 =0 and v = 0 in Corollary 3.1.2, we obtain
the well known result that y-starlike functions are starlike (see [77,78]).

Setting p(z) = % in Theorem 3.1.1, we obtain the following result:

Corollary 3.1.3. [35] Let f € A and also let o € [0;1], 5 € [0;1],6 € [1;2],v € [0;1]

and 0 € (0;1].
If
ra] ]
VIR N i B e
arg a[f(z)] +(1—a) - / <f-, z€el,
5(1 - Jf(())> +(1 - B)5!
then 72)
2f'(z 7r
arg ) 05, zel

Therefore f is strongly starlike of order 6 in U.

3.2 Coefficient estimates and Fekete-Szego inequal-
ity for a class of analytic functions satisfying
subordinate condition associated with Cheby-
shev polynomials

Chebyshev polynomials are of four kinds, but the most common are the Chebyshev

polynomials of the first kind,
T,(x) =cosnb, ze€[—1,1],

and the second kind,

Un(a) = S0 10 g,

sin 6
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where n denotes the polynomial degree and x = cos .
Applications of Chebyshev polynomials for analytic functions can be found in [11,13,
20, 33].

Let .
t) = ————
H(z 1) 1— 2tz + 22’
where t = cosf,0 € ( — %,%)
We have
=\ sin(n +1)0 9 EPNE
H(z,t) = 1—1—2,—0,2 =14 2cosfz + (3cos®f —sin“6)z" + ...
sin
1
L U2+ U2+, 2elle (5,1}, (3.3)
where _ .
U - sin(n arccost) ne N

Vioe
are the Chebyshev polynomials of second kind.

Furthermore, we know that
Un(t) = 2tU,,—1(t) — U,—2(t)
and
Ur(t) = 2t, Us(t) =4t — 1,....

In the followings, we define a new class of analytic functions, being motivated by

the following result:

Corollary 3.2.1. [56] Let f € A and also let « € [0,1],a € [0,1],0 € [1,2] and
pelo1]. If

T T R B

é)%(z;(/;)) >a, z€U,

then

so f s starlike of order a inU.
Definition 3.2.1. [132] We say that f € A of the form (1.1) belongs to F(H, «, 6, i)

if
([ - 2] [+ 2] ) e, o

the power is considered to have principal value, a € [0,1],6 € [1,2] and p € [0, 1].
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Taking a = § =t =1 and w(z) = z, we obtain the following example.

Example 3.2.1. [182] The function f(z) = <=eT= with the series expansion f(z) =

1—2z

z2+222 4+ 228+ -+ belongs to F(H,a, 6, ).

Remark 3.2.1. The result of the above example is obtained using the subordination

(3.4), in which we take « = § =t = 1 and w(z) = z. So, the subordination (3.4)

reduces to the equality Z]’:Eg) = 2; —2=, which results from a direct computation using

the function from the example.

Theorem 3.2.1. [132] Let f € A of the form (1.1) belong to the class F(H, a6, ).

Then
2t

Y G W 1

(3.5)
and for A € C

t

— 3| < 1
a5 = Aa| < ad + (1—a)(3 - 2p) max{ ’

o <2A(a5 +(1—a)(3—2u)
(a5 +(1—a)(2- u))Q

3 4 20z () 2 421
— . (3.6)

. ad+(1—a)(2—p)
2(ad + (1 —a)(2 —p)) 2t

Taking « =1 — 3,6 = 1 and u = 0 in Theorem 3.2.1, we obtain the following

result:

Corollary 3.2.2. [11] Let f € A of the form (1.1) satisfying the condition

/() ()
(“‘5) o+ )) s

where B € [0,1]. Then
2t

<
|a2|_1+5

and for A € C

2t(2>\(1+2ﬁ) 1438 ) A -1

(1+8)2 (1+p3)? ot

t
|a3 = Aa%‘ < _I_—wmax{l,

Taking o« = 0 in Theorem 3.2.1, we obtain the following result:

Corollary 3.2.3. [153] Let f € A of the form (1.1) satisfying the condition

(F5) (1+575) " <meeor
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where p € [0,1]. Then

and for A € C

2t(2)\(3— 2u) P +5u—8) A -1

t
— | < 1
s “2‘—3—2umax{’ @—n? " 22— p? 2t

}.

3.3 Coefficient estimates and Fekete-Szego inequal-
ities for a new subclass of m-fold symmetric bi-
univalent functions satisfying subordinate con-
ditions

Every function f € S has an inverse f~! defined by
fHfR) =2 zel

and

Y

-

fOUHw) =w  Jw| <ro(f);ro(f) =

where
fHw) = w — ayw?® + (2a3 — a3)w® — (5a3 — Sagas + ag)w* + . ...

A function f € A is said to be bi-univalent in U if both f(z) and f~!(z) are
univalent in &. The class of bi-univalent functions in U is denoted by o.
A function is said to be m-fold symmetric (see [107]) if it has the following nor-
malized form: .
f(z)=z+ Zamk+1zmk+l, meN, zel. (3.7)

k=1
The class of m-fold symmetric univalent functions, which are normalized by the above

series expansion (3.7), is denoted by S,,. The functions in the class S are one fold
symmetric. Analogous to the concept of m-fold symmetric univalent functions, is
defined the concept of m-fold symmetric bi-univalent functions. Each function f
in the class o generates an m-fold symmetric bi-univalent function for each positive
integer m. The normalized form of f is given in (3.7) and f~! is given in the followings.

g(w) =W — CLm—‘rlwm—’—1 + [(m + 1)a72n+1 - a2m+1} w?mtt

1
— [=(m+1)Bm+2)ad . — Bm+2)ami1a2mi1 + Ggmer | W+

2
(3.8)
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where f~' = g. The class of m-fold symmetric bi-univalent functions is denoted by
Om-
Recently, many authors investigated coefficient estimates and Fekete-Szeg6 functional
problem for subclasses of m-fold symmetric bi-univalent functions ( [3,8,12,14,15,19,
31,74,81,93,94,119, 127,128, 134,139-144)).

Huo Tang et al. [134] introduced the following subclasses of m-fold symmetric

bi-univalent functions.

Definition 3.3.1. [13/, Definition 1, p.1066] A function f(z), given by (3.7) , is
said to be in the class Hom(¢), if the following conditions are satisfied:

feom  [(z)=<0(z) and  g(w)<o(w),
where the function g(w) is defined by (3.8).

Definition 3.3.2. [13/, Definition 3, p. 1078/ A function f(z), given by (3.7), is
said to be in the class Mgy m (N, @) if the following conditions are satisfied:

2f'(z) 2f"(2)

feom =V 7

+>\(1+ ) =< ¢(2)

and

wg(w) wg' @)
1 A)mw>+AO*'¢w>><¢<*

where the function g(w) is defined by (3.8).

S. Altinkaya and S. Yalgin [10] introduced the following subclass of bi-univalent

functions.

Definition 3.3.3. [10] A function f € o is said to be in S;(\,¢),0 < X\ < 1, if the

following subordinations hold

2f'(2) + (2N = A) 2" (2)

T =) 2+ N =N of (5) + 202 —3A+ 1) [ (2) ¢(2)
and
wg' (w) + (20?2 = ) w?g” (w)
TN+ 2N - Nug () + @ -3+ Dg(w) )
where g = f~1.

Motivated by the definition of the above subclass of bi-univalent functions, we
introduce below a new subclass of m-fold symmetric bi-univalent functions in a similar

manner.
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Definition 3.3.4. [/1] A function f € o, is said to be in the class S,,, (N, @),
0 < X <1, if the following subordination conditions hold

of (2) + (A = A) 221" (2)

AA=A)z+ 2N =N 2f (2) + (2X2 = 3X + 1) f () < é(2)
and
wg' (w) + (20?2 = \) w?g” (w)
TO =W+ 2V - Nug () + @ -3+ g(w)
where g = f~1.

Remark 3.3.1. [/1]

2
3
7N
DO | =
ASS
N——
I
R
Q
=
=

SO'm (1’¢) Ma,m(17¢)7
Sor (N 9) =S, (N, 9).

In the followings, we introduce a function ¢ used in [134].

¢ is an analytic function with positive real part in the unit disk ¢/ such that
#(0) =1 and #'(0) >0

and ¢(U) is symmetric with respect to the real axis. This function has a series

expansion of the form:
¢(z) =1+ Biz+ Bo2® + B3z® +..., By >0.
Let u(z) and v(z) be two analytic functions in the unit disk & with
u(0) = v(0) =0,  max{[u(z)], [v(z)[} <1

and

u(2) = byp2™ + by 2™ 4 b 2™ L
v(w) = Cpw™ + Comw™ + capuw®™ 4 .. ..

We have the following inequalities (see [134])
1bm| < 1, |bom| < 1= |bml?, lem| <1 and |eam| < 1 — |em/*. (3.9)
By simple computations, are obtained the followings
d(u(2)) = 1+ Bibyp2™ + (Bibay + Bob?)2*™ + ..., 2] < 1, (3.10)
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and
d(v(w)) =1+ Biepw™ + (Bicom + Boc2 )w*™ + ..., |w| < 1. (3.11)

We begin by finding the estimates on the coefficients |am+1‘ and }a2m+1| for func-
tions in the class S, (A, @).

Theorem 3.3.1. [41] Let the function f(z), given by (3.7), be in the class S,,, (X, @).

Then
Byv2B
|| < e (3.12)
\/‘ (B(m + 1) — 2av) B} — 2a®Bs| + 2B;a?
and

|a2m+1‘ S
((|B(m+ 1) — av| + |ay]) By
1B(B(m +1) —2a7y)|

if 1Bl(m +1)[By| < (|8(m +1) — [+ [ar]) By

(18(m +1) = ay| + |an]) |(B(m + 1) — 2a) B} — 20°By| By + 20°|8|(m + 1)| Ba| By
1B(B(m + 1) = 2a7)|(|(B(m + 1) — 2a7) B} — 202B,| + 2B1a?) ’

if [Bl(m 4+ 1)|Ba| > (|[B(m +1) — av| + [av]) By
(3.13)
where

a=m+2X2m? — dm? — A\% + 4\,
B =2(m 4 4X*m? — 2Am? — 2)% + 2)),
v=(2A=1)((m+2)x -1).
Taking m = 1 in Theorem 3.3.1, we obtain the following corollary.

Corollary 3.3.1. [41] Let the function f(z), given by (3.7), be in the class Sy(\, ).

Then
BivV B,

\/‘ (5 — av)B% — O{QBQ‘ + Bia?

}UQ‘ <
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and

(126 — ay| + |ay|) By
2(8(8—av)]
if 28| Be] < (128 — ay| + |ay]) By

}@3} <
(126 — an| + |an]) | (B — a7) B} — o By| By + 20%|3|| Bs| By
2|B(B—047)’(‘(B—047)B%—oﬂBg}—I—Bloz2) ’

if 2|B]|Ba| > (|28 — av| + |ay|) By

where
a=1+3\—2)2

B =2(1+2)\?),
v=(2X—=1)(3\ —1).

Remark 3.3.2. [/1] The estimate for ‘az‘ asserted by Corollary 3.3.1 is obtained in
Theorem 1 in [10].

Taking A = 0 in Theorem 3.3.1, we obtain the following corollary.

Corollary 3.3.2. [/1] Let the function f(z), given by (3.7), be in the class My ,,,(0, ¢).

Then
BB,
’am+1| S
m/| Bt = Bu| + By
and 41
m
o2 By, if |Bs| < By
m

|a2m+1‘ S 9
(m+1)By(|Bf — Ba| + |Bsl)

2m2(|Bf — Bo| + By)

if | Ba| > By

Remark 3.3.3. [41] The results of Corollary 3.3.2 are obtained taking A = 0 in
Theorem 5 in [134].

Taking A = % in Theorem 3.3.1, we obtain the following corollary.

Corollary 3.3.3. [41] Let the function f(z), given by (3.7), be in the class Hym(®).

Then
BiV2B;
\/(m +1)(2(m + 1) By + | (2m + 1) B} — 2(m + 1) Ba|)

|am+1‘ S
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and

By .
By < B
2m + 1’ e
}a2m+1| < L +1)B? — +1)B,|B B
2(m + 1)°|Ba| By(2m + 1) + |(2m + 1) B} — 2(m + 1) Ba| B if |Ba| > By

2m+1)(J2m + 1)Bf — 2(m + 1)By| + 2B (m + 1))~

Remark 3.3.4. [/1] The estimate for ‘&m+1’ asserted by Corollary 3.5.3 is obtained
in Theorem 1 in [134].

Taking A = 1 in Theorem 3.3.1, we obtain the following corollary.

Corollary 3.3.4. [41] Let the function f(z), given by (3.7), be in the class My (1, ).

Then
| < BivE
m\/(m+1)(}Bf—(m+1)Bg\+Bl(m+1))
and B
Q—W;, if | Ba| < By
[azmaa| < B? 1)B,|B 1)|B,| B
|B? — (m +1)Bs| By + (m + 1)| B| B, if 1Bo| > By

2m?(| B} — (m + 1)Ba| + Bi(m + 1))

Remark 3.3.5. [41] The results of Corollary 3.53.4 are obtained taking A = 1 in
Theorem &5 in [134].

Next we shall solve the Fekete-Szeg6 problem for functions in the class S,,, (A, ¢).

Theorem 3.3.2. [41] Let the function f(z), given by (3.7), be in the class S,,, (X, ¢).
Also let 6 € R. Then

B 1
|F1|, fOT’O S ‘h(é)} < m

‘(lgm_;'_l — 6(l$n+1| S 1 s (314)
QBl‘h((S) ’ for |h(5)| > Tm

where
B%(m +1—26)

2[(ﬁ(m +1)— 2a7)B% — QOZQBQ} ’
a=m+2X2m? — Am? — 4\% + 4,

h(s) =

B =2(m + 4X*m? — 22m?* — 2)% 4+ 2)) #£ 0,

v=(2A=1)((m+2)x - 1).

70



Taking m = 1 in Theorem 3.3.2, we obtain the following corollary.

Corollary 3.3.5. [41] Let the function f(z), given by (3.7), be in the class Sy (A, ¢).
Also let 6 € R. Then

By 1
oo )22y for 0 < |n(9)] < 4202+ 1)
|as — da;| < 1 )

where
ho) Bi(1-9)
2[(12XM% — 2803 + 152 + 2\ + 1) B — (1 + 3\ — 2A2)2B,]

Taking 0 = 1 and 0 = 0 in Theorem 3.3.2, we have the following corollaries:

Corollary 3.3.6. [41] Let the function f(z), given by (3.7), be in the class S,,, (A, ¢).
Then

By 1
—, for 0 < |h(1)| < =

|a2m+1 _aq2n+1‘ < 18] | |1 21| )
2B |h(1)], for |h(1)| > ol

where
B?(m —1)

h(1) =
) 2[(B(m+1) — 20y) B} — 202By]’
a=m+2X*m? — dm? — 4\% + 4,

B =2(m+4X’m® — 2Am® — 2)* + 2)) # 0,
v=(2A-1)((m+2)A-1).

Corollary 3.3.7. [41] Let the function f(z), given by (3.7), be in the class S,,, (X, ¢).
Then

|a2m+1’ S
( Bl

B8l
B +1 —-08)+2 +1 +B8)—2
or B2 ¢ (_w;_<m ><152|a2 8) cw) y ((m ><w2|&2 f) =20 )

B}(m+1)
|(B(m + 1) — 20y) B} — 202 B,|’

jor B2 ¢ (_ (m+ 1)(I8] = B) +2ay B(m +1) — 2ay
B? 202 ’ 202
(Bl 1) =2 e 101+ ) =20
\ 202 ’ 20

71



where
a=m+2X2m? — dm? — A\% + 4\,

B =2(m+ 4 *m? — 22m? — 2)\% + 2)\) #£ 0,
y=02 1) ((m+2)A—1).
Taking A = 0 in Theorem 3.3.2, we obtain the following corollary.

Corollary 3.3.8. [/1] Let the function f(z), given by (3.7), be in the class My ,,,(0, ¢).
Also let 6 € R. Then
By 1

, 0<|h(o —_
231|h(5)|, for ‘h(5)‘ > im

where
_ Bf(m+1—26)

h(0) = .
)= 2 (B = By)
Remark 3.3.6. [/1] The result of Corollary 3.3.8 is obtained taking A = 0 in Theorem
6 in [134].

Taking A\ = %, Theorem 3.3.2 reduces to the corresponding result of Huo Tang et
al. [134].

Corollary 3.3.9. [134, Th. 2, p. 1070] Let the function f(z) , given by (3.7), be in
the class Hom(p). Also let 6 € R. Then

| a1 — 002, | < 2m + 1’ f07‘0§|h(5)|<—2(2m+1) |
QBl‘h((s)}, for !h(é)] > T T T

where
Bi(m+1—24)

h(d) = .
(¥) 2(m+1)[(2m + 1)B} — 2(m + 1) B,]
Taking A = 1 in Theorem 3.3.2, we obtain the following corollary:

Corollary 3.3.10. [41] Let the function f(z), given by (3.7), be in the class My m (1, ¢).
Also let 6 € R. Then

B, 1
o om(2m + 1) for 0 < [n(@)] < dm(2m + 1)
|a2m+1 5am+1‘ S )

where
Bi(m+1—24)

ho) = Am2(m + 1) [B? = (m+ 1)By]
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Remark 3.3.7. [/1] The result of Corollary 3.3.10 is obtained taking A = 1 in The-
orem 6 in [134).

3.4 The second Hankel determinant for gamma-
starlike functions of order alpha

The gth Hankel determinant for f € A, g > 1,n > 1 is defined as

Qp Apy1 - Qp4q—1
Ap+1 Qpyo - Aptq
an—l—q—l an+q T CLn—&—Qq—2
We consider
az asg 2
H2(2> = = Q204 — Q3.
as ay

There exist many papers concerning upper bounds for Hy(2) for several classes of
analytic functions (see for example [25,52,53,72,76,82,112,123,135,147]).

To prove the following theorem, we use the method used in [53].

Theorem 3.4.1. [40] Let f € L,(a),0 < v < 1,0 < a < 1, be of the form (1.1).

Then )
»(2), if v €10,€| and o = h(7)
or~y € (0,€) and o € [0, h(7))
G204 — a§| < or % >4 ) (3.15)
¢( f), otherwise
where

. _ (1—a)?(4p*+Bp*+C)
¥ 10,2 = R () = mameyiurzoraren

A=18]=3(1+9)2BA+y) (T +4y+ 1)+ 2(1 — a)y(—=7y* + 8y + 11)),
S =(1—a)*(37y° + 257* — 4593 — 3619% — 220y — 12)
+6(1 — ) (L+7)*7(=77* 4+ 8y + 11) + 3(1 +7)*(77* + 4y + 1),

B = 24y(1+79)*((1 — )(—=77% + 8y + 11) + 67(1 +7)),
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C = 144(1 + 7)*(1 + 3),

€ ~ 0.01471 is a solution of the equation —37~v* — 25373 — 603+? — 263y + 4 = 0,

hi[0,1] = R, h(y) =

. 575—1-1174—75’y3+18172+154'y+12—4('y+1)(2’y+1)\/3(’y+1)(—7’y5—2574—&—19072—1—557—‘,-3)

— 37752572 +4573+36172+2207+12

Taking v = 0 in Theorem 3.4.1, we have the following result obtained in [25,72,76].
Corollary 3.4.1. [{0] Let f € S*(«),0 < o < 1, be of the form (1.1). Then
|asas — a3] < (1 — ).

Taking v = 0 and = 0 in Theorem 3.4.1, we have the following result obtained
in [53].

Corollary 3.4.2. [40] Let f € S*, be of the form (1.1). Then
‘a2a4 — a§| <1
Taking v = 1 in Theorem 3.4.1, we have the following result obtained in [72].

Corollary 3.4.3. [40] Let f € K(«),0 < a < 1, be of the form (1.1). Then

, 36 — 360 + 170°
144(2 — 2a + a?)

|a2a4 — ag‘ <(l1-a)
Taking v = 1 and a = 0 in Theorem 3.4.1, we have the following result obtained
in [53].

Corollary 3.4.4. [40] Let f € KC, be of the form (1.1). Then

‘a2a4 — a§| < §

Taking o = 0 in Theorem 3.4.1, we have the following result.
Corollary 3.4.5. [40] Let f € L,,0 <~ <1, be of the form (1.1). Then
|asas — a3| <

(1674807342572 +142v+9)(1—7) : 3(147)? (=7 +147+11)
9(1+7)1(1+27)2(1437) ; 0 <y <€ or samm s raes—d > |

11275 47687*+22367°% +1700~2+372vy—4
(1427)2(1+37) (37y*+25373 4603724263y —4) ’

where € ~ 0.01471 is a solution of the equation —37y* — 2537 —6037? —263y+4 = 0.

otherwise
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Chapter 4

Certain class of analytic functions
with varying arguments defined by
the convolution of Salagean and
Ruscheweyh derivative

In this chapter, a new operator given by the convolution of the Salagean operator
D™ and the Ruscheweyh operator R™ is defined and a class of analytic functions with
varying arguments defined by this operator is introduced. The properties of the image

of this class through the Bernardi operator are also studied.

Definition 4.1. [106] Let n € N. Denote by DR" the operator given by the Hadamard
product (convolution) of the Salagean operator D™ and the Ruscheweyh operator R™,
DR": A— A,

z
1—=2

DR”f(z):D”( )*R"f(z), zeu.

Remark 4.1. [106] If f € A and f(z) =z + Zakzk, then

k=2

Definition 4.2. [106] For A > 0;—-1 < A < B < 150 < B < I;n € N let
P(n,\, A, B) denote the subclass of A which contain functions f(z) of the form (1.1)

such that
Az
(1= NDR" () + MDR™ () < o

5



Definition 4.3. [121] A function f of the form (1.1) is said to be in the class V (0y) if
f e Aandarg(ay) =0 Yk > 2. If 36 € R such that O+ (k—1)d = w(mod 2m),Vk >
2 then f is said to be in the class V(0y,d). The union of V (0, ) taken over all possible

sequences {0} and all possible real numbers § is denoted by V.
Let V P(n, A\, A, B) denote the subclass of V consisting of functions f(z) € P(n, A, A, B).

Theorem 4.1. [106] Let the function f be of the form (1.1) belonging to V. Then
f(z) € VP(n,\, A, B), if and only if

T(f) = k""'Cy(1+ B)lax| < B - A, (4.1)
k=2
where : b— 1)
n+k—1)
Ch=[Mn+1+Xk-1)(n+k+1)] CESICES
The extremal functions are:
B—-A .
f(z)=z+ etk k> 2.

kntlCy, (1 + B)

Corollary 4.1. [106] Let the function f be of the form (1.1) belonging to the class
VP(n,\ A, B). Then
lag| < b-4 k> 2
=i, 1+ By T
The result (4.1) is sharp for the functions
B—-A
k10, (1+ B)
Theorem 4.2. [106] Let the function f be of the form (1.1) belonging to the class
VP(n,\ A, B). Then
12 B—A
AT o, (11 B)

ew’“zk, k> 2.

f(z)=z+

B—A

2 < < 2
12| < |f(2)| < 2] + 27105 (1 + B) 4]
The result is sharp.

Corollary 4.2. [106] Let the function f be of the form (1.1) belonging to the class
A
VP(n,\, A, B). Then f(z) € U(0,71), where r; =1+

2010y (1+ B)
Theorem 4.3. [106] Let the function f be of the form (1.1) belonging to the class
VP(n,\ A, B). Then

B-A B-A

1—— 22 <) <1+——2 .
o, p A SRS e

The result is sharp.
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Corollary 4.3. [106] Let the function f be of the form (1.1) belonging to the class
B-A

VP(n, )\, A, B)- Then f’(Z) € U(O, T2>’ where vy =1+ o, (I + B)'

Theorem 4.4. [106] Let the function f be of the form (1.1) belonging to the class
VP(n,\ A, B), with arg(ay) = 0 where 0, = w,Yk > 2 . Define

fi(z) =z
and B_ A
. — k
felz) =2 0, (11 B)
Then f(z) € VP(n,\, A, B) if and only if f(2) can expressed by

k>2;zel.

f(z) = Zukfk(z), where p > 0 and Zuk = 1.
k=1

k=1
Corollary 4.4. [106] Let V Pr(n,\, A, B) = VP(n,\, A, B) NV (m,0). The extreme
points of VP.(n,\, A, B) are
B—-A A

- k>2 zel.
FC,(1+ B TS

fiz) =2 and fu(z) ==

If we combine theorem 4.4 with Silverman’s theorem 5 from [121] we get the

following corollary:

Corollary 4.5. [106] The closed convex hull of VP(n,\, A, B) is
cl co VP(n,\, A, B) = {f feA, Zk”“C’Ml%—B) lag| < B—A}.
k=2

The extreme points of ¢l co VP(n,\, A, B) are

., B-4
T 01+ B)

Theorem 4.5. [106] If f € VP(n,\,2a — 1, B) then L.f € VP(n,\,28 — 1, B),

where

E(cl co VP(n,\, A, B)) = { &EF el =1, k> 2} :

_ B+1+2a(c+1)

§=Blo) = T g 2

Q.

The result is sharp.
Theorem 4.6. [106] If f € VP(n,\, A, B) then L.f € VP(n,\, A*, B), where

B B+ A(c+1)
n c+ 2

A* > A.
The result is sharp.

7



Theorem 4.7. [106] If f € VP(n,\, A, B) then L.f € VP(n,\, A, B*),where

. AQQ+B)(c+2)+(B-A)(c+1)
B = sy B-A s -7

The result is sharp.
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Conclusions and future research
directions

In this thesis, classes of analytic, meromorphic, respectively bi-univalent func-
tions are studied, some of them being defined by using operators. There are also
results related to differential subordinations.

In what follows, we will present future research directions that can be approached
to expand the original results from the thesis, respectively to obtain new ones. The

following type of results could be obtained:

e various results using the operator from Section 2.1 for classes of functions with

negative coefficients;
e more results using the operators from Sections 2.2 and 2.5;

e inclusion relations of analytic functions associated with Poisson distribution

series, similar to those in Section 2.4, using other differential operators;

e other differential subordinations involving the Pythagorean means;
For example in the paper [73] the authors extended the results from [35] (Section
3.1 of this thesis).

e coefficient estimates and Fekete-Szeg6 inequalities for various classes of m-fold
symmetric, bi-univalent functions or associated with Chebyshev polynomials;
The results from Sections 3.2 and 3.3 can also be extended. The authors of the
works [54], [124] extended the results of [132] (Section 3.2 of this thesis).

e estimates of the second Hankel determinant for different classes of functions

defined by subordination.

Another field where interesting results can be obtained is that of harmonic univalent
functions, respectively harmonic meromorphic functions. Classes of harmonic func-
tions can be defined using the operators from the thesis and their properties can be
studied.
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