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Thesis Objectives 

 

The research reported in the present thesis provides an interdisciplinary 

framework for explaining the molecular behaviour of chemical structures as 

well as their impacts at the level of biological systems using concepts from 

chemistry and biology-biochemistry.  

The purpose of the study was to explain and comprehend how the 

molecular structures differ and to classify the examined compounds based on 

their similarities. To achieve the optimized molecular structures several 

approaches were considered: multiple linear regression models, the 

eigenproblem application, factorial study, iterative algorithms, and geometry 

optimization calculations were performed using a variety of techniques 

(Hartree-Fock Methods, Semiempirical Methods, Density Functional Theory, 

Molecular Mechanics).  

In order to understand how these strategies, relate to one another and 

choose which to apply in various situations, the study set out to analyse these 

methods. 

After every part of our research, statistical analysis was performed to 

validate our results (principal component analysis, cluster analysis, analysis of 

variance, other data mining methods) and to compare the similarities of various 

approaches. 
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Chapter I - Introduction 
1. Structure of chemical compounds 

A chemical compound's structural formula is a graphical representation of the 
molecular structure that indicates how the atoms are grouped in three dimensions (Figure 1). 

  

Figure 1. Schematic illustration of the L-Alanine molecule 2D(a) and 3D(b) forms 
(PubChem Database, Accessed on 17.04.2023) 

There is a very clear relationship between the chemical compound properties and 
their structure, in that the properties are determined by the structure, and certain structural 
aspects can be inferred from the evaluation and interpretation of the properties (Figure 2). 

 
Figure 2. Structure/Property relationship 

Different types of geometrical symmetry can be seen in molecules. Geometrical 
symmetry in molecules refers to the symmetrical arrangement of atoms and bonds in a 
molecule. It is determined by the presence of symmetry elements such as rotation axes, 
reflection planes, inversion centres, and improper rotation axes. 

A graph, G = G (V, E) is a pair of two sets: V = V(G), a finite nonempty set of N 
points (vertices) and E = E(G), the set of Q unordered pairs of different points of V. 

Two vertices are adjacent if they are connected by an edge, and every pair of points 
represents a line (edge). When two separate edges intersect at a single point, they are said to 
be adjacent edges. Many times, the hydrogen atoms are left out (Diudea el al., 2002).  

Structure Properties
Determination	

Information/Construction	

a	 b	
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There are several different types of graphs, some examples of them are represented 
below (Figure 3): 

 
Digraph 

 
Multigraph 

 
Cycle Graph 

 
Tree G 

 
Star G 

 
Path G 

Figure 3. Examples of some graph representations  

  A molecular graph with the atoms as its vertices and the covalent bonds as its edges 
can be used to describe the structural formula of a chemical molecule. 

2. Molecular similarity 

The identification of various models can be facilitated by the similarity of two 
chemical structures (Doucet and Weber, 1996). Other techniques are needed to calculate how 
similar different molecular structures are to one another (Bender and Glen, 2004). 

The procedure of evaluating molecular similarity is used to evaluate the structural 
characteristics of two or more molecules. It is a critical stage in the development and design 
of new drugs since it helps in the identification of possible drug candidates based on 
similarities to existing active substances. 

There are various techniques for evaluating molecular similarity, such as: 2D 
fingerprint-based methods (uses 2D molecular fingerprints to compare the structural features 
of molecules); 3D shape-based methods (uses the 3D shape of molecules to compare their 
structural features); machine learning-based methods (uses machine learning algorithms) 
(Stumpfe and Bajorath, 2011). 

A measure of how much a pair of molecules' properties match is called molecular 
similarity. Numerous molecular characteristics, such as shape, electron density, electrostatic 
potential, lipophilicity, and refractivity can all be calculated (Allen et al., 2001). 
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For already-running programs, searching the database for the needed structure could 
take many days (Kolodny et al., 2005). Finding more useable answers may be made easiest 
by using new algorithms (Dong et al., 2018). 

This is done using a variety of models, some molecular descriptors (Todeschini and 
Consonni, 2000), such topological indices, and/or regression analysis (Bolboacǎ and 
Jäntschi, 2013).  

Chemical structures can be categorized using some similarity criteria thanks to 
topological characterization. Some fundamental statistics form the basis of the regression 
analysis. 

3. Quantitative Structure-activity/Quantitative Structure-property 
relationship (QSAR/QSPR) 

As a mathematical tool for quantitatively characterizing the relationship between 
chemical structure and biological activity/property for a specific set of molecules, the 
concept of QSAR/QSPR arose in 1937. (Reynolds et.al 1992; Hammet 1937). 

Studies of the relationships between a structure's properties have a number of 
advantages. The equations produced from a structure-property investigation, for instance, 
can be used to estimate the unmeasured properties of related substances. The equations can 
be used to derive a more fundamental understanding of the roles that particular structural 
elements play in determining qualities.  

After gaining this understanding, the data can be used to create fictitious structures 
that could have high property values. The structure-property equations can also be used to 
verify the accuracy of property values that have already been reported in the literature, some 
of which might have been measured or reported inaccurately (Nelson and Seybold, 2001). 

The data collection, the selection of the variables, the building of the model, and the 
validation assessment are usually the four common stages used in QSAR/QSPR. (Golbraikh 
and Tropsha, 2000) (Figure 4). 
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Figure 4. Example of the processes in QSAR/QSPR 

Additionally, there are new initiatives in the QSAR literature aimed at the following 
problems: using conformal predictions, ascertain the degree of trust in predictions made 
using QSAR models; evaluate the flexibility of data sets to determine whether it is possible 
to create robust models; creating interpretable QSAR models that biologists and medicinal 
chemists may employ in practice; ensuring QSAR models can be replicated so that other 
research teams can use or expand on published models (Nantasenamat, 2020). 

Quantitative structure-activity-property linkages, or mathematical approaches able to 
detect and quantify the relationship between chemical structure and activity/property, are 
used when the activity or property is a quantitative (linear models) or qualitative (non-linear 
models) variable (Godarzi et al. 2012). Various molecular descriptors collect the structural 
information (Jäntschi, 2005). 

The process entails defining the peptide structure at the sequence level using amino 
acid descriptors (AADs) and associating it with observations using machine learning 
methods (MLMs). The output is a variety of quantitative regression models. These models 
are used to build new peptides with desired characteristics and to explain the structural 
elements that generalize known peptide properties to unknown samples (Lin et al., 2023). 

Chemical similarity tries to quantify how similar two different molecules are to one 
another or to a certain feature. The similarity principle, which argues that similar compounds 
should have similar activities and attributes, is the basis for similarity assessment 
applications in the toxicology and pharmaceutical domains, which aim to predict the toxicity 
of chemicals.  
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4. Molecular optimization 

It is possible to optimize the geometry of molecules using ab initio methods, 
semiempirical methods (to solve the Schrödinger equation with some approximations and 
describe the electron properties of atoms and molecules), and empirical force field methods 
(molecular mechanics, a quicker but less expensive method that can provide exceptional 
structural parameters)(Abegg and Ha, 1974). 

The use of Slater type bases sets or Gaussian orbitals to represent the wave function 
was pioneered by John A. People (Pople, 1999). He chose a combination of approaches and 
data sets, defined models, and contrasted the analyses' experimental findings.  

Calculations of atomic and molecular wavefunctions frequently use atomic orbitals 
of the Gaussian type (Figure 5). They contributed to the development of the Gaussian 
programs, one of the most widely used computational chemistry software packages. 

 
Figure 5. a. Assessment of Slater- and Gaussian-type orbitals; b. Schematic evaluation of the 

STO-1G, STO-2G, and STO-3G levels' results for a 1s Slater function's least-squares fit (Perlt, 2021). 

In fact, it takes less time to compute several GTOs and combine them to represent an 
orbital than it does to compute a single STO. This is the rationale behind the widespread use 
of GTO combinations to represent STOs, which subsequently explains AOs. 

The basis sets indicated by the sign "*" are the polarization basis sets, which contain 
the d orbitals. The 6-31G** basis is a further improvement, adding a set of p orbitals to each 
hydrogen in the 6-31G* basis set (Banerjee and Ramalingam, 2015).  

If no basis set acronym is provided, STO-3G basis will be used. The basis sets STO-
3G, 3-21G, 6-21G, and 6-31G are a few examples. The standard * or ** notation can likewise 
be used to request single first polarization functions. 6-31G* (or 6-31G(d)) is 6-31G with 
additional d polarization functions on non-hydrogen atoms; 6-31G** (or 6-31G(d, p)) is 6-
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31G* plus p polarization functions for hydrogen. The + and ++ diffuse functions are 
obtainable with some basis sets. 6-31+G is 6-31G plus diffuse s and p functions for non-
hydrogen atoms; 6-31++G also has diffuse functions for hydrogen.  

Which basis set to employ depends on the calculation's goal and the molecules being 
examined. The agreement with experimental data is not always guaranteed, even with a large 
basis set (Petersson et al., 1998). 

Various approaches to the comparison of the basis sets (Zheng et al., 2005; Scuseria, 
1992) concur that even though they are comparable, they cannot be generalized. Several 
suggestions can be found in these publications and simply by reviewing the Gaussian09 
lessons, including (Tomberg, 2013; Hill, 2012): 

Ø a larger basis set is not necessarily better (ex: cc-pVQZ is excessive for 
Hartree-Fock) 

Ø STO-3G should be applied only to very vast systems. 
Ø usually cc-pVDZ is comparable or worse than 6-31G(d,p). 
Ø usually cc-pVTZ is improved than 6-311G(d,p) or alike. 
Ø Ab initio approaches settle relatively slowly. 

These next bases sets are roughly corresponded to one another: 
Ø 6-31G ≈ cc-pVDZ 
Ø 6-311G ≈ aug-cc-pVDZ 
Ø 6-31+G(d) ≈ cc-pVTZ 
Ø 6-311+G(d) ≈ aug-cc-pVTZ 
Ø 6-31++G(d,p) ≈ cc-pVQZ 
Ø 6-311++G(d,p) ≈ aug-cc-pVQZ 

Functional cluster analysis (FCA), a different strategy, could be used to analyse 
multidimensional functional datasets utilizing orthonormalized Gaussian basis functions 
(Kayano et al., 2010). 

The most typical answer is to complement experimental data with the best available 
ab initio data (from molecular orbital or density functional calculations). The ability to 
compare locations on a PES that are far from symmetry structures by straight calculation as 
opposed to attempting to understand vibrational spectra is a good aspect of employing 
theoretical data (Schlegel, 2003). 
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Personal contributions 

Chapter II - Censored data in research calculations 
1. Introduction 

In this research, it was created an iterative method that can locate the most probable 
phenolic content values that are lacking (predictive power) after conducting the studies. 

The investigations of the phenolic and flavonoid compounds due to their antioxidant 
activity are the subject of many research studies (Some examples are Wojdyło et al., 2007; 
Yang et al., 2013; Ivanov et al., 2014; Aryal et al., 2019; etc.). 

This transparency is important for the interpretation and replication of the results. 
The next representations are some examples of datasets with missing values: 

Ø HPLC analysis of polyphenols content in ethanol extracts of five Bulgarian Fumaria 
Species the ‘nd’ abbreviation stands for ‘not detected’ in Table 1 (Ivanov et al., 2014): 

Table 1.  Polyphenols content 

 

Ø Contents of Phenolic Compounds in Currant (Ribes spp.) Berries; the ‘nd’ 
abbreviation stands for ‘not detected’ in Table 2 (Yang et al., 2013): 
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Table 2.  Contents of Phenolic Compounds 

  
 These are just a couple of examples for results with missing data, but several studies 
face the problem for different reasons. 

The results presented by Wojdyło et al., 2007, our input data, with the missing places 
are given in Table S3 (Supplementary material section). 

The outcomes of a quantitative examination of the 32 plants' main phenolic 
components are shown in Table S1 (Bálint and Jäntschi, 2019). The standard deviations 
calculated following the study are related to the mean values (Table 3). 

Table 3. Outlier and average χ2 value for the plant Acorus calamus. 
Acorus calamus χ2 (Outlier) Value χ2 (Average) Value 

ABTS 4.6788 0.1057 
DPPH 4.8017 0.1045 
FRAP 4.8000 0.0989 

2. Methodology 

The Jäntschi (2012) approach was adjusted and changed to fit our experimental 
results. All calculations were performed using custom *.php programs.  

The Chi-square (χ2) test was used to examine the connection between four chemical 
compounds (caffeic acid, p-coumaric acid, ferulic acid, and neochlorogenic acid) and their 
antioxidant activity (Bálint and Jäntschi, 2019). 

The working algorithm is represented below (Figure 6):  
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Figure 6. Working algorithm 

 
The working algorithm: 
The procedures used in our examination of the missing data were as follows: (Fig. 6):  

Ø Step 1: Check to see if the connection between antioxidant activity and phenol 
content is linear using the experimental data. 

Ø Step 2: Three options were taken into account. The algorithm's first stage included 
the introduction of the experimental values. 

Ø Step 3: Using the coefficients to create estimates in the first cycle of the linear 
regression analysis. 

Ø Step 4: With approximated values, fill in the blanks. 
Ø Step 5: Reiteration:  

Ø Acquire (new) probable values. 
Ø Estimate χ2 using observed and expected values.  
Ø Addition in the absent places the (new) expected values. 

Ø Step 6: Until the value of χ2 is not considerably changed (e.g. convergence) 
These steps were taken in order to fill in the gaps in the contingency tables based on the 

structure of the phenolic component and its antioxidant activity. 
The algorithm cycles are represented graphically in Figure 7. The different colour 

combinations imply that the values in the empty spaces have been changed (in red).  
A comprehensive set of estimates, predicted values, and χ2 computations are also 

included in each cycle. Changes in data in missing areas are indicated by different colours; 

Stop  

Cont inue  

Step  1:  Ob tain  the  es tim ate s  

using line ar regre ss ion  

analys is .  

Step  2:  F i ll  in  the  
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these changes attain their ultimate values in Cycle n, after χ2 has not considerably altered 
from Cycle n-1. 

 

Figure 7. Predicting the values that are absent through time. 

Each value in the columns has an impact on each value in the rows, according to the 
basic premise of the hypothesis (Bálint and Jäntschi, 2019). 

Correlation coefficients were determined (Pearson, Spearman, semi-quantitative, see 
below) after the blank columns were filled in. The Pearson's quantitative and Spearman's 
rank qualitative coefficients combine to form the semi-quantitative coefficient. 

The degree of the monotonic non-linear inference was measured using these 
coefficients (such as sigmoidal extremal deviations). 

3. Results and Discussion 

The acquired data were subjected to correlation analysis in order to determine which 
phenolic compound influences the antioxidant activity after the missing values were filled 
in the contingency table. The statistical study was necessary due to the fact that each phenolic 
acid makes a unique contribution to the antioxidant capacity. The following table contains 
the findings of the correlation analysis. 

Because the TEAC (total equivalent antioxidant capacity) experimental values χ2 were 
outliers, they were not used in the future calculations. Due to its outlier χ2 results (Table 3 - 
see above), the investigational data from the plant Acorus calamus was omitted. The link 
between the four phenolic acids and the antioxidant activities of the remaining plants was 
examined. 

The values for the observed experimental results (obs. ), the estimated values that filled 
in the gaps, and the expected values (exp.) resulting from the regression are shown in Table 
S4 (Supplementary Material section). The results of the analysis after the data have been 
adjusted logarithmically are shown by the values (Bálint and Jäntschi, 2019). 
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Because both the experimental data and the pre-set values are progressing in the same 
route, it should be noted that the values of each plant are comparable. The findings are 
inconclusive on whether phenolic acid accurately predicts antioxidant activity. Each 
substance plays a part in how its effect is delivered. 

Correlation analysis was performed after the results were gathered to determine which 
phenolic component influenced the antioxidant activity.  

Table 4 (see below) contains the correlation coefficients. 
Table 4. Correlation coefficients were calculated. 

 
Pearson’s quantitative correlation and 

significance levels from Student’s t 

 ABTS DPPH FRAP 
ABTS - 0.774 0.758 
DPPH 4.881∙10−26 - 0.669 
FRAP 1.837∙10−24 1.858∙10−17 - 

 
Spearman’s qualitative correlation and 

significance levels from Student’s t 

 ABTS DPPH FRAP 
ABTS - 0.774 0.754 
DPPH 3.333∙10−26 - 0.668 
FRAP 3.049∙10−24 1.637∙10−17 - 

 
Semi-quantitative correlation and significance 

levels from Student’s t 

 ABTS DPPH FRAP 
ABTS - 0.774 0.756 
DPPH 4.033∙10−26 - 0.669 
FRAP 2.369∙10−24 1.744∙10−17 - 

They showed that there was little distinction amid Pearson's and Spearman's correlation 
coefficients. Both are almost equally important. The sole distinction is that Spearman's 
correlation employs ranks rather than Pearson's x and y values. 

The correlation coefficients in the previous table showed a significant link between 
the outcomes. In this case, the average value of 0.75 showed that there is a linear increase in 
the relationship between the variables. The coefficients can take values between -1 and +1.  

The variables have a statistically significant linear relationship, according to the 
Student's t-test. Each correlation coefficient describes the link between two variables and 
explains a measure of association between them. Every coefficient change in the same way 
when the variation between them is not large. 

When missing values are not missing at random (MNAR), the χ2 test can be used to 
analyse the data. The missing values in this instance can be connected to the value itself or 
to other dataset variables. The χ2 test can be used to assess whether there is a statistically 
meaning connection between the missing data and the other variables by comparing the 
distribution of missing values across several groups of variables (Agresti, 2007). 
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Following the algorithm's execution, the relationship between χ2 and iteration was 
also examined. This demonstrated, much like the statistical analysis, how closely related the 
variables are. The following Figure 8 displays the evolution of χ2 as a function of iteration.      

The resulting values of the χ2 quick met to a minimum after implying the procedure 
on the experimental data set after different numbers of cycles. 

 
Figure 8. χ2 as function of iteration 

Within a few iterations, the minimum was attained. The procedure was stopped at the 
12th iteration for ABTS, the 10th iteration for DPPH, and the 11th iteration for FRAP 
values utilized in calculations due to a non-significant alteration between subsequent χ2 
results (Bálint and Jäntschi, 2019). 

By estimating the predicted frequencies of the missing data using the observed 
frequencies in the available data, the χ2 test can also be used to impute missing values. The 
term "chi-squared imputation" refers to this method. The χ2 test can then be used to 
ascertain whether the missing data are connected to the other variable in that situation 
(McDonald, 2014). 

The goodness of fit of computational models to experimental data, such as that from 
molecular docking and binding investigations, is assessed using the χ2 test. Additionally, 
it is employed to determine how similar various molecules are to one another and to 
optimize the computational model's parameters. 

In the scientific literature, it was noted that there were more ways to fill the 
contingency table (is a specific type of matrix-style table that shows the variables 
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multivariate frequency distribution), such as Monte Carlo techniques. Most Monte Carlo 
simulations start out by proposing a minor random change to a setup repeatedly (Walter 
and Barkema, 2015).  

The Bootstrap method, one of the Monte Carlo techniques, would work with our 
collection of data. By selecting a random variety of sets, from the data set, bootstrapping 
tries to mimic the impact of utilizing a larger data set. Some of the data in each randomly 
chosen set will appear more than once, while other data will not be present at all (Tropsha, 
2006). This method is very similar to our approach. 

The results from the Monte Carlo methods, when taken into account, would not 
provide any new information based on the variables. The Bootstrap approach also has the 
drawback of ignoring known variables, even when there is a linear association amongst 
them.  

With our proposed method, the contingency table is initially populated, and then the 
variables are processed by the χ2. The table is repeatedly populated using the Monte Carlo 
methods, changing the initial variables. 

On the same subject, numerous studies (Wojdyło et al., 2007; Aaby et. al, 2004) 
produced complex and varied results. The determined compounds differ in terms of 
geometry and symmetry as well as properties. Finding the best choice is the key to solving 
the censored data issue. Since it provides the quickest route to the problem's resolution, we 
employed our methods to fill the contingency table. 

Numerous scientific areas use the preceding algorithm when displaying missing data 
from studies (Ivanova et al., 2005; Luo et al., 2004).  

Clinical trials and epidemiological research frequently use censored data. They occur 
in large-scale research where the occurrence is often linked to an illness, infection, or other 
failure (Yen et al., 1995; Arnao, 2000). The promptness and quickness of the algorithm are 
essential to the originality of our work. 

4. Conclusions 

On a contingency table with breaches (missing data), our algorithm demonstrated its 
ability to function. The χ2 statistic is minimized in the procedure.  

All the investigated datasets show a linear connection. The results from all three 
techniques—ABTS, DPPH, and FRAP—used to assess antioxidant capability were 
equivalent. Based on experimental results and literature reviews, this is what is anticipated. 
The projected values for the empty spaces match the results of the experiment.  
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Chapter III - Similarity evaluation using the characteristic 

polynomial function 
1. Introduction 

Protein representations either use characterizations that are insensitive to the amino 
acid ordering that has been chosen or methods that treat any presumed amino acid 
assignment as strictly equivalent. 

The matrix eigenvalues and coefficients of the characteristic polynomial are the two 
most frequent matrices invariants. The total of the matrix elements above the main diagonal, 
has been utilized as a molecular descriptor in chemical applications. The characteristic 
polynomial's eigenvalues and coefficients, both of which naturally form an ordered 
sequence, result in additional invariants that are provided as an ordered sequence (Randic et 
al., 2008). 

We obtain a pool of polynomials and a pool of compound features following the 
computations on the 10 amino acids (Supplementary Material - Table S1). The goal is to 
develop a program that uses polynomials to relate the structures to the properties. 

This polynomial can be used to calculate various molecular descriptors, such as the 
Wiener index (Todeschini and Consonni, 2000) and the Randic index (Randic, 1975), which 
are used to evaluate the topological similarity between molecules. 

2. Methodology 

Calculating the eigenvalues of the related matrices is necessary to determine the 
characteristic polynomial equations for each of the 10 essential amino acids. 

The matrices used to represent amino acids can be obtained from a variety of structural 
or chemical features, such as the atoms' three-dimensional (3D) coordinates or the side 
chains' electronic structure. Following the creation of the matrices, the characteristic 
polynomial equation was found using conventional linear algebra methods. 

The amino acids presented before are basic compounds in biological systems. The goal 
was to determine whether the differently labelled chemical structures really differ. All the 
structures were collected from PubChem databases and choose them based on their 
complexity and number of isomers (PubChem Database). 

Following the selection, the next algorithm was used: 
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Ø Step 1: collect of all amino acid structures with the same molecular weight 
from the PubChem databases. 

Ø Step 2: convert the .sdf structures to .hin files with a home-made *php 
program. 

Ø Step 3: enter the .hin files to the program from http://l.academicdirect.org to 
calculate the characteristic polynomial matrixes, after the next path:  

Ø enter the site mentioned above → Fundamentals → Graphs → 
polynomials → a_characteristic_polynomial_in. 

Ø Step 4: collect of the equations from the matrixes given by the program. 
Ø Step 5: analyse the collected equations (sorting, clustering) 
Ø Step 6: discuss of the obtained data.  

We selected 10 out of 20 essential amino acids based on the chemical structure: 
alanine, glycine, valine, leucine, isoleucine, lysine, serine, threonine, aspartate and 
glutamate.  

3. Results and Discussion 

The data was sorted after the amino acid analysis and after getting the characteristic 
polynomial equations. The equations derived from the characteristic polynomial matrices 
describing the similarity between the molecules are provided in Table 5 below. 

Table 5. Characteristic polynomial equations calculated 
Amino Acids ChP Equations 
Glycine_ZW_5257127 
Glycine_750 

=+1X10-9X8+21X6-12X4 
=+1X10-9X8+23X6-19X4+4X2 

Alanin_D_71080 
Alanin_DL_602 
Alanin_L_5950 
Alanin_Beta_239 

=+1X13-12X11+47X9-73X7+40X5-6X3 
=+1X13-12X11+47X9-73X7+40X5-6X3 
=+1X13-12X11+47X9-73X7+40X5-6X3 
=+1X13-12X11+47X9-73X7+44X5-8X3 

Serine_D_ZW_6857549 
Serine_ZW_6857552 
Serine_D_71077 
Serine_DL_617 
Serine_L_5951 

=+1X14-13X12+56X10-97X8+62X6-12X4 
=+1X14-13X12+56X10-97X8+62X6-12X4 
=+1X14-13X12+58X10-112X8+95X6-34X4+4X2 
=+1X14-13X12+58X10-112X8+95X6-34X4+4X2 
=+1X14-13X12+58X10-112X8+95X6-34X4+4X2 

Aspartate_D_83887 
Aspartate_DL_424 
Aspartate_L_5960 

=+1X16-15X14+82X12-209X10+262X8-157X6+42X4-4X2 
=+1X16-15X14+82X12-209X10+262X8-157X6+42X4-4X2 
=+1X16-15X14+82X12-209X10+262X8-157X6+42X4-4X2 

Threonine_D_ZW_6995277 =+1X17-16X15+92X13-238X11+281X9-132X7+18X5 



SIMILARITY-BASED ESTIMATIONS AND ASSOCIATIONS OF CHEMICAL PROPERTIES/ACTIVITIES 

  
 

Page| 22 
 

Threonine_L_ZW_6971019 
Threonine_D_69435 
Threonine_D_allo_90624 
Threonine_DL_205 
Threonine_L_6288 
Threonine_L_allo_99289 

=+1X17-16X15+92X13-238X11+281X9-132X7+18X5 
=+1X17-16X15+94X13-259X11+353X9-229X7+64X5-6X3 
=+1X17-16X15+94X13-259X11+353X9-229X7+64X5-6X3 
=+1X17-16X15+94X13-259X11+353X9-229X7+64X5-6X3 
=+1X17-16X15+94X13-259X11+353X9-229X7+64X5-6X3 
=+1X17-16X15+94X13-259X11+353X9-229X7+64X5-6X3 

Glutamate_Hy_4525487 =+1X18-17X16+106X14-305X12+418X10-248X8+48X6 
Valine_2S_6971018 
Valine_D_ZW_6971095 
Valine_3amino_2760933 
Valine_D_iso_6971276 
Valine_L_iso_2724877 
Valine_D_71563 
 
Valine_DL_1182 
 
Valine_L_6287 

=+1X19-18X17+120X15-372X13+543X11-324X9+54X7 
=+1X19-18X17+120X15-372X13+543X11-324X9+54X7 
=+1X19-18X17+122X15-397X13+641X11-461X9+96X7 
=+1X19-18X17+122X15-397X13+646X11-483X9+120X7 
=+1X19-18X17+122X15-397X13+646X11-483X9+120X7 
=+1X19-18X17+122X15-397X13+649X11-507X9+168X7-18X5 
=+1X19-18X17+122X15-397X13+649X11-507X9+168X7-18X5 
=+1X19-18X17+122X15-397X13+649X11-507X9+168X7-18X5 

Glutamate_D_23327 
 
Glutamate_DL_611 
 
Glutamate_L_33032 

=+1X19-18X17+124X15-422X13+766X11-746X9+376X7-
90X5+8X3 
=+1X19-18X17+124X15-422X13+766X11-746X9+376X7-
90X5+8X3 
=+1X19-18X17+124X15-422X13+766X11-746X9+376X7-
90X5+8X3 

Leucine_ZW_7045798 =+1X22-21X20+171X18-690X16+1458X14-1545X12+702X10-
108X8 

Isoleucine_L_zw_7043901 =+1X22-21X20+171X18-690X16+1458X14-1560X12+738X10-
108X8 

Leucine_D_tert_6950340 
 
Leucine_DL_tert_306131 
 
Leucine_L_tert_164608 
 
Leucine_D_439524 
 
Leucine_DL_857 
 
Leucine_L_6106 

=+1X22-21X20+173X18-721X16+1615X14-1878X12+981X10-
162X8 
=+1X22-21X20+173X18-721X16+1615X14-1878X12+981X10-
162X8 
=+1X22-21X20+173X18-721X16+1615X14-1878X12+981X10-
162X8 
=+1X22-21X20+173X18-721X16+1633X14-1998X12+1239X10-
354X8+36X6 
=+1X22-21X20+173X18-721X16+1633X14-1998X12+1239X10-
354X8+36X6 
=+1X22-21X20+173X18-721X16+1633X14-1998X12+1239X10-
354X8+36X6 

Isoleucine_D_76551 
 

=+1X22-21X20+173X18-721X16+1633X14-2010X12+1272X10-
366X8+36X6 
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Isoleucine_D_alloiso_94206 
 
Isoleucine_DL_791 
 
Isoleucine_L_6306 
 
Isoleucine_L_alloiso_99288 
 
Isoleucine_poly_5351546 

=+1X22-21X20+173X18-721X16+1633X14-2010X12+1272X10-
366X8+36X6 
=+1X22-21X20+173X18-721X16+1633X14-2010X12+1272X10-
366X8+36X6 
=+1X22-21X20+173X18-721X16+1633X14-2010X12+1272X10-
366X8+36X6 
=+1X22-21X20+173X18-721X16+1633X14-2010X12+1272X10-
366X8+36X6 
=+1X22-21X20+173X18-721X16+1633X14-2010X12+1272X10-
366X8+36X6 

Leucine_D_nor_456468 =+1X22-21X20+173X18-721X16+1642X14-2061X12+1368X10-
432X8+48X6 

Lysine_beta_392 
 
Lysine_D_beta_10931575 
 
Lysine_L_beta_439417 
 
 
Lysine_D_57449 
 
Lysine_DL_866 
 
Lysine_L_5962 
 
Lysine_L_ZW_5962 

=+1X24-23X22+213X20-1033X18+2866X16-4675X14+4442X12-
2348X10+624X8-64X6 
=+1X24-23X22+213X20-1033X18+2866X16-4675X14+4442X12-
2348X10+624X8-64X6 
=+1X24-23X22+213X20-1033X18+2866X16-4675X14+4442X12-
2348X10+624X8-64X6 
=+1X24-23X22+213X20-1033X18+2868X16-4689X14+4476X12-
2388X10+640X8-64X6 
=+1X24-23X22+213X20-1033X18+2868X16-4689X14+4476X12-
2388X10+640X8-64X6 
=+1X24-23X22+213X20-1033X18+2868X16-4689X14+4476X12-
2388X10+640X8-64X6 
=+1X24-23X22+213X20-1033X18+2868X16-4689X14+4476X12-
2388X10+640X8-64X6 

 
 The findings showed that around 95% of the conformers of the various amino acids 
are identical. Most of the time, the modification happens between the zwitterion and other 
conformers, but occasionally, different variations can be seen.  

Following the data sorting process, the zones "mix" and it becomes apparent that 
leucine, isoleucine, and a type of glutamate are segregated from other conformers. Their 
distinctive polynomial equations complement other molecules or conformers more 
effectively. 

The characteristic polynomial is the same for two comparable matrices. Contrarily, this 
is not always the case: two matrices with the same characteristic polynomial do not 
necessarily have to be identical. 

It's important to remember that the characteristic polynomial might not be the best way 
to compare amino acids. It is mostly used to calculate eigenvalues, which are mathematical 
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characteristics of a matrix that might not have a clear biological or chemical meaning. For 
researching amino acid characteristics and interactions, other methods might be more 
suitable, including comparing amino acid sequences or structure similarity analysis. 

Pan (2012) investigated the circumstances under which identical matrices of two 
characteristic polynomials can resemble one another. He concluded that: if the two n-order 
matrices (A and B) in the amount ground F have characteristic polynomials that are identical, 
have n single roots, and are identical to A and B; set A and B as two n-order square matrices 
in the field F, as a result, A and B are comparable. If the requirement (that the distinctive 
roots of A and B are in F) can be met. 

In the study of Garcia-Planas (2021), due to their scientific applications, pairs of 
matrices under similarity are taken into consideration. The primary objective of that work is 
to create connections between the confined geometry surrounding one point and the local 
geometry surrounding another point, using the characteristic polynomial associated with 
each matrix of the pair. 

4. Conclusions 
The study determined the distinctive polynomial equations for the 10 essential amino 

acids using a matrix formed from the 3D structure of the amino acids.  
It was discovered that each amino acid has an own distinctive polynomial equation 

that could be utilized to distinguish between amino acids. 
The study's goal was to compare the structures of the 10 essential amino acids 

according to their characteristic polynomial function derived.  
The characteristic polynomial has been used in the comparison of molecular 

structures in general, as it provides a unique representation of the structure that is invariant 
under various transformations. We can state for the fact that there are no appreciable 
differences among the conformers that were examined. 
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Chapter IV - Similarity evaluation using the Gaussian09 

Software package. 
1. Introduction 

The Schrödinger equation's solution is the key issue in electronic structure theory. 
With a few exceptions, like the hydrogen atom, it is a many-body problem, meaning that 
numerical solutions must be calculated. The wave function is enlarged in relations of a basis 
set for this use. A natural place to start in molecular quantum chemistry is with basis sets 
derived from atom centred orbitals. 

Because of this, plane waves are a fairly common choice for these systems' basis 
functions. However, local basis functions are also commonly employed (Perlt, 2021). 

Finding the best optimization strategy for scientific computations is really difficult 
because there are so many different base sets and optimization techniques. 

After consulting the specific literature, the following research questions were 
formulated: 

1. The bigger the bases, the better? 
2. Which bases set family is the best? Is it possible to find one? 
3. Do we obtain different outcomes if we employ two separate basis sets from different 

families? 
4. Can they be correlated in any way? 
5. Does the difference depend on the molecule or the bases set? 

The goal of the study was to examine 39 optimization techniques to discover their 
relationships and choose the best one to apply in various situations (Bálint and Jäntschi, 
2021).  

To compare the similarity of various approaches, cluster analysis, correlation 
analysis, statistical analysis (ANOVA), and principal component analysis (PCA) were 
carried out. 
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Figure 9. Representation of the main components of the analysis 

The computations were performed using a computational chemistry software 
program called Gaussian09, which in general is used to simulate chemical systems and 
calculate their electrical structures.  

Gaussian09 contain various electronic structure models, such as post-Hartree-Fock 
techniques, Density Functional Theory, and Hartree-Fock approaches; a range of basis sets 
that let users decide how accurate and expensive their calculations should be; the capacity 
to carry out transition state searches and geometry optimization and a lot more features 
(Bálint and Jäntschi, 2021).  

2. Methodology 

 The 20 essential amino acids analysed (Supplementary Material – Table S1 and S2) 
can be isomers, enantiomers, and conformers among other forms. Most of these chemicals 
have the same chirality in biological systems, and the majority of amino acids are 
levorotatory (L) rather than dextrorotatory (D). Geometry optimizations were carried out on 
the structures using the L conformer of these compounds (Table 6). 
 
 
 

Best optimization 
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Molecular 
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Table 6. Geometry optimization methods used in the calculations. 
Gaussian Optimization Methods 

1. Semiempirical 
Methods (Default Spin) 

Ø Parameterized Model 6 - PM6 (opt-pm6) 
Ø Austin Model 1 - AM1 (opt-am1) 
Ø Parameterized Model 3 - PM3 (opt-pm3) 
Ø Parameterized Model 3 (Molecular Mechanics 
correction) - PM3MM (opt-pm3mm) 
Ø Pairwise Distance Directed Gaussian function - 
PDDG (opt-pddg) 
Ø Complete Neglect of Differential Overlap – 
CNDO (opt-cndo) 
Ø  Intermediate Neglect of Differential Overlap – 
INDO (opt-indo) 

2. Density Functional 
Theory (Default Spin) 

Ø Becke(three-parameter)-Lee-Yang-Parr 
(functional) - B3LYP (opt-b3lyp-sto-3g; opt-b3lyp-3-
21g; opt-b3lyp-6-31g; opt-b3lyp-6-311g; opt-b3lyp-cc-
pvdz;) 
Ø Local Spin Density Approximation - LSDA (opt-
lsda-3-21g; opt-lsda-sto-3g; opt-lsda-cc-pvdz; opt-lsda-
6-311g; opt-lsda-6-31g;) 
Ø Perdew–Burke-Ernzerhof (functional) – 
PBEPBE (opt-pbepbe-sto-3g) 
Ø BVP86 (opt-bvp86-sto-3g; opt-bvp86-3-21g; 
opt-bvp86-6-31g; opt-bvp86-6-311g;) 
Ø B3PW91 (opt-b3pw91-sto-3g; opt-b3pw91-6-
31g; opt-b3pw91-6-311g;) 

3. Møller–Plesset 
perturbation theory  

Ø MP2 (opt-mp2-sto-3g; opt-mp2-3-21g; opt-mp2-
6-31g; opt-mp2-6-311g; opt-mp2-cc-pvdz;) 

4.  Coupled-cluster 
theory 

Ø Coupled Cluster single-double – CCSD (opt-
ccsd-sto-3g) 

5. Molecular Mechanics 
(Default Spin)  

Ø Universal Force Field - UFF (opt-uff) 
Ø Dreiding (opt-dreiding) 

6. Hartree-Fock 
(Default Spin) 

Ø STO-3G (opt-hf-sto-3g) 
Ø 3-21G (opt-hf-3-21g) 
Ø 3-21G* (opt-hf-3-21g*) 
Ø 6-31G (opt-hf-6-31g) 
Ø 6-311G (opt-hf-6-311g) 
Ø CC-pvdz (opt-hf-cc-pvdz) 
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A group of molecular descriptors (FMPI- Fragmental Matrix Property Indices) 
(Jäntschi and Bolboaca, 2016) to assess the level of similarity between the methods were 
also created following the Gaussian09 program's calculations based on the 39 methods 
chosen before (Bálint and Jäntschi, 2021).  

As shown, after Figure 10, we obtained the three-dimensional (3D) structures of the 
20 amino acids (L conformers) from PubChem databases (.sdf files) and used the Gaussian09 
program to analyse them after the following protocol: 

Ø Step 1: Insert the downloaded PubChem .sdf files to the Gaussian09 package. 
Ø Step 2: Convert the file in .gjf file format (the input file format for the 

database) 
Ø Step 3: Examine the amino acids after the next instruction is entered in the 

program:  
Ø Calculate → Gaussian09 Calculation Setup → Job type 

(Optimization) → Method (Ground State) → Set the chosen method (HF, 
DFT, etc…) → Submit the job (Figure 10) 

Ø Step 4: Also, we created a .bcf file to automatize the optimization process. 
Ø Step 5: Run the computations by selecting each Gaussian09 Geometry 

Optimization Method in turn from the Calculation Setup menu (Figure 10) 
Ø Step 6: Save the .out file (the output file format for the program) after each 

calculation. 

 
Figure 10. The algorithm of the main workflow 
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 The molecular descriptors (FMPI) were generated and .hin files from the .out and 
.sdf files using a custom *php software.  

The Statistica program performed the statistical analysis once we got 90720 
descriptors for each amino acid analysed. 

A PCA, Clustering analysis, ANOVA and Correlation analysis were carried out. The 
literature framework provides a thorough description of the PCA.  

Each statistical analysis that was used has a common objective from several angles. 
The expected results were as its follows: 

Ø To obtain specific results for every optimized molecule. 
Ø To get the molecular descriptor family for every method applied. 
Ø To obtain statistical results for the methods applied. 
Ø To find the greatest Molecular Optimization method to practice in certain conditions 

based on the molecular descriptors obtained. 

3. Results and Discussion 

The number of molecules or variables (descriptors) in the initial data set, whichever 
is lower, is the number of principal components that can be estimated.  

To fully describe all of the variance in the data, all of the principal components must 
typically be taken into account. Due to correlations between the initial variables, many data 
sets only need a small number of principal components to describe a sizable portion of the 
variation. 

The variables from the entire data set are combined linearly to form each principal 
component. 3.538.080 descriptors total, 90720 descriptors per component and technique, 
were examined (Bálint and Jäntschi, 2021). 

The results of the PCA examination showed that the principal components (Figure 
11) accurately represented the variation in our enormous amount of data by explaining 
99.8851% of it. 

The first and second components are displayed in the following figure (Figure 11) as 
the outcome of the PCA analysis. 



SIMILARITY-BASED ESTIMATIONS AND ASSOCIATIONS OF CHEMICAL PROPERTIES/ACTIVITIES 

  
 

Page| 30 
 

 
Figure 11. The explained variation (R2X) and the predictive variation (Q2X) of the PCA 

elements 
 
The highest eigenvalue is associated with the first principal component, which 

accounts for the greatest proportion of the variance; The second most significant eigenvalue 
is linked to the second principal component, and so on. The eigenvalues display the 
proportion of variance that each major component contributes to. 

The first component explains the most variance overall (71.25%) in the studied data. 
The maximum variation (14.9%) not covered by the first component is covered by the second 
component. After the first two, the third constituent also explains the greatest variance 
(6.51%). 

The R²X uses values between 0 and 1 to describe predictive accuracy. A principal 
component's R²X increases with its relevance. Simply put, the explained variance (R2Xadj) 
is the explained variance R²X with the degrees of freedom taken into account. 

Cross-validation is frequently used to present the quality evaluation, goodness of 
prediction (Q2) statistic, which provides a qualitative measure of consistency between the 
predicted and original data. The value of Q2 rises as supplementary variables are included in 
the PCA analysis. Large values of Q2 suggest that the analysis was meaningful and pertinent. 

The following loading plots display the coefficients for each of the descriptors in the 
various main components. This demonstrates how each descriptor contributes differently to 
the various main components (Bálint and Jäntschi, 2021). 
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A loading plot showing the distribution of component 1 versus component 2 is shown 
in the following figure (Figure 12). The plot suggests that similar techniques are in fact 
clustered together.  

The primary components' spatial orientation is also determined by the loadings. The 
vectors for loading are p1 and p2.  

 
Figure 12. Score plot displaying the distribution of the techniques in the p1 and p2 main 

components. 
In our case, the first three factors accounted for the majority of the data. The previous 

graphic displays a loading plot that compares the distribution of component 3 to component 
2 (Figure 13). 

If it’s taken into account how similar they are, the methods classification in various 
categories—Semiempirical, Density Functional Theory, Molecular Mechanics, Møller-
Plesset perturbation theory, Coupled-cluster theory, and Hartree-Fock—differ from the 
Materials and Methods section.  

Based on how closely the approaches resembled one another, the data were divided 
into various categories. Results from the PCA and cluster analysis were equivalent. 
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Figure 13. Score plot displaying the distribution of the approaches in the principal 

components p2 and p3. 
The Euclidean distances among the 39 approaches under comparison are displayed 

in the cluster analysis dendrogram (Figure 14). The closest neighbour or single linkage 
method is one of the most straightforward hierarchical clustering techniques (Bálint and 
Jäntschi, 2021). 

Due to the size of the data set (3.538.080 variables), the Euclidian distance between 
the approaches is extremely high. The adjustment of the linkage distance on the Y-axis was 
picked in order to compare different approaches. The linkage distances (Dlink) divided by 
the maximum linkage distance (Dmax) are represented by (Dlink/Dmax) *100. 

The chosen basis sets affect how comparable the optimization techniques are. A 
classification into several groups can be made when the PCA and clustering analysis findings 
have been obtained.  

The differences between optimization techniques are negligible, and tree clustering 
revealed their connection. They ought to be chosen from distinct groups for a thorough 
investigation in order to obtain various conclusions from various viewpoints. 

Hybrid approaches are used by several research for their analysis since they produce 
better outcomes (Scott and Radom, 1996; Batra et al., 1996; Russ et al., 2004).  
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Figure 14. Clustering results 

Although many more techniques have subsequently been introduced in 
computational chemistry, Davidson and Feller (Davidson and Feller, 1988) in 1988 
portrayed a few principles on which a collection of the basis sets may be made.  

Because different theoretical frameworks and molecular properties have different 
basis set requirements, various computer architectures and algorithms have different 
efficiency requirements, and the desired accuracy depends on the application, it is not 
practical to develop a single "optimal" basis set (Bálint and Jäntschi, 2021).  
  Cramer (2002) showed how split-valence basis sets evolved over time, starting with 
the most popular split-valence basis sets like 3-21G, 6-21G, 4-31G, 6-31G, and 6-311G and 
ending with more recent instances like cc-pCVDZ, cc-pCVTZ, etc.  

It is clear from associating all the sets of assessments that it is much harder to predict 
with precision the geometries of second-row element-containing molecules than it is for 
simpler organics (Dunning, 1989). 

 For instance, it was discovered that PM3 outperforms AM1 when applied to these 
species (Stewart, 1989). The DFT approaches also have inherent drawbacks, including 
inconsistent trends and high error accuracy (Jensen, 2012). 



SIMILARITY-BASED ESTIMATIONS AND ASSOCIATIONS OF CHEMICAL PROPERTIES/ACTIVITIES 

  
 

Page| 34 
 

 With the spread of current methodologies, the search for the "optimal" combinations 
of methods and basis sets that statistically produce positive findings for a certain collection 
of molecules and attributes has been more pronounced. 

In molecular modelling and drug design, energy minimization and geometry 
optimization are crucial techniques. Inaccurate molecular descriptors directly correlate with 
ineffective energy minimization and/or geometry optimization (Jäntschi, 2011). 

The findings that we got after applying Cluster and PCA on each subgroup are as 
follows. 

 

Figure 15. Score plot displaying the distribution of the approaches in the principal 
components p1 and p2 

The results were divided into many subgroups because a relatively large data set was 
deployed, which makes the results more understandable(Bálint and Jäntschi, 2021). 

The results can be classified into three primary groups: pm6, pm3mm, pm3, pddg; 
am1; indo and cndo. It should be sufficient to describe our data using a single technique from 
each group, in conclusion. 
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Figure 16. Clustering results 

Due to the greater dataset this time, the statistical analysis for the Density Functional 
Theory approaches appears a little different. Most of the approaches that were examined 
belonged to this family. 

Figures 17 and 18 show how the DFT approaches are comparable to one another 
while also showing several 'outlier' methods. The methods can be categorized into 4 main 
groups and 3 smaller groupings of methodologies. 

 
Figure 17. Score plot display of the distribution of the approaches in the principal 

components p1 and p2 
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Figure 18. Clustering results 

 

Figure 19. Score plot displaying the distribution of the approaches in the principal 
component p1 
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Figure 20. Clustering results 

One primary component was found using Møller-Plesset perturbation theory 
methods (Figure 19). One (mp2-3-21g) and the remaining base sets make up one of the two 
primary groups into which the methods are separated (Figure 20). 

 
Figure 21. Score plot displaying the distribution of the approaches in the principal 

components p1 and p2 
Hartree-Fock Methods are considered the most widely used among the optimization 

calculations. Based on our analysis 2 principal components (Figure 21) an also 2 main groups 
were identified (Figure 22). 
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Figure 22. Clustering results 

Due to the small dataset, they represented, the other approaches that are a part of the 
Coupled-cluster theory and Molecular Mechanics could not be individually analysed.  

If just one method (CCSD) were examined in Coupled-cluster theory and two 
methods (UFF, Dreiding) in Molecular Mechanics theory separately, no one revealed a 
statistically significant result. They are considered in the initial analysis, which examines 
each and every technique.  

It was implemented an alternative statistical examination: The Single Factor 
ANOVA test (Table 7). The input values for the test were the molecular descriptors obtained 
for all 39 methods tested (Bálint and Jäntschi, 2021). 
Table 7. ANOVA test results 

 
To establish whether there is a variation amid the groups on a certain variable, an 

ANOVA is conducted. According to the estimated molecular descriptors, the null hypothesis 
indicates that there is no discernible difference between the procedures analysed. 

The F-statistic value (0.405) is the percentage of the variance between groups to the 
variance within groups, and a larger F-value indicates greater differences between groups. 
In this case, the variance was indicated within the groups analysed. 
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If the p-value is 0.9995, it indicates that the possibility of gaining a result as extreme 
as the observed result, assuming that the null hypothesis is true, is very high. The observed 
differences between groups are therefore likely to be the result of chance and not statistically 
significant, to put it another way. 

Since the p-value is 0.9995 > 0.05, we accept the null hypothesis and conclude that 
the differences between the approaches are not appreciably different. According to Table’s 
9 ANOVA results, the null hypothesis cannot be ruled out. 

In correlation analysis, the values of two variables are compared to see if, and if so, 
how strongly and in which direction, they are related. The correlation coefficient is the 
statistic used to measure the degree of association between two variables. It ranges from -1 
to +1, where a value of -1 indicates a perfect negative correlation (when one variable 
increases, the other decreases), 0 indicates no correlation, and a value of +1 indicates a 
perfect positive correlation (when one variable increases, the other also increases). 

The correlation coefficients were also calculated between the methods analysed. In the 
following sections the correlations are presented. 

It's essential to keep in mind that correlation does not imply causation in all cases. One 
variable does not necessarily cause the other just because two variables are connected. The 
relationship between the two variables may be influenced by additional factors. 

The next tables (Table 8-13) present the correlation between the Density Functional 
Theory methods, Semiempirical Methods, Møller–Plesset perturbation theory, Molecular 
Mechanics and Hartree-Fock Methods. Correlation between basis sets refers to the degree 
of agreement between the results obtained from different basis sets. 

Due to the extremely large data set, the correlation analysis had to be split into multiple 
analyses. In each major category previously mentioned, the correlation is done within the 
sub-methods. 

The correlation coefficients calculated for every method indicate a strong relationship 
between the methods analysed. This is in line with the other statistical results obtained for 
this data set. 

This can provide insights into the underlying mechanisms that govern chemical 
reactions and can help to design or optimize new materials with desired properties. In 
addition, correlation analysis can be used to identify important features or variables that 
contribute to the properties of interest, which can be useful for developing predictive models 
or designing new experiments. 
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Table 8. Density functional theory part 1 
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Table 9. Density functional theory part 2 

Table 10. Semiempirical methods   

Table 11. Møller–Plesset Methods  

 mp2-3-21g mp2-6-311g mp2-6-31g mp2-cc-pvdz mp2-sto-
3g 

mp2-3-21g 1     

mp2-6-311g 0,895 1    

mp2-6-31g 0,897 0,997 1   

mp2-cc-pvdz 0,892 0,994 0,995 1  

mp2-sto-3g 0,893 0,992 0,995 0,997 1 

Table 12. Molecular Mechanics methods  
dreiding uff 

dreiding 1 
 

uff 0,634 1 

 lsda-6-
311g 

lsda-6-
31g 

lsda-cc-
pvdz 

pbepbe-
sto-3g 

b3lyp-
3-21g 

b3lyp-
sto-3g 

lsda-3-
21g 

lsda-
sto-3g 

lsda-6-
311g 1        

lsda-6-
31g 0,995 1       

lsda-cc-
pvdz 0,999 0,996 1      

pbepbe-
sto-3g 0,891 0,885 0,890 1     

b3lyp-3-
21g 0,713 0,710 0,713 0,806 1    

b3lyp-
sto-3g 0,714 0,711 0,714 0,807 0,999 1   

lsda-3-
21g 0,504 0,518 0,508 0,600 0,857 0,856 1  

lsda-sto-
3g 0,400 0,418 0,411 0,426 0,534 0,537 0,689 1 

 cndo indo am1 pddg pm3 pm3mm pm6 
cndo 1       

indo 0,997 1      

am1 0,652 0,660 1     

pddg 0,534 0,539 0,656 1    

pm3 0,536 0,541 0,657 0,999 1   

pm3mm 0,539 0,545 0,657 0,999 0,999 1  

pm6 0,535 0,541 0,659 0,999 0,999 0,999 1 
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Table 13. Hartree-Fock Methods  
hf-6-311g hf-cc-pvdz hf-3-21g hf-3-21g- hf-6-31g hf-sto-3g 

hf-6-311g 1 
     

hf-cc-pvdz 0,999 1 
    

hf-3-21g 0,423 0,424 1 
   

hf-3-21g- 0,421 0,423 0,999 1 
  

hf-6-31g 0,422 0,423 0,999 0,999 1 
 

hf-sto-3g 0,421 0,422 0,999 0,999 0,999 1 

The correlation analysis can be applied within the different methods to understand 
the relationship between different properties of molecules or materials.  

Is used to explore the relationship between molecular descriptors, such as electronic 
energies and atomic charges, and chemical reactivity or other physical or chemical 
properties.  

The bigger the sample size, further reliable and accurate the correlation coefficient 
will be. A relatively small number of samples may result in a prediction of the actual 
correlation that is less precise. 

This may be seen in comparison between MM methods, where just two methods were 
compared, and DFT approaches, where a vast dataset was intended to be analysed. 

Determining the correlation between Gaussian methods is an important aspect of 
computational chemistry research. It can help researchers to select the most fitting method 
for a specific application, as well as to assess the reliability and accuracy of the results 
obtained from different methods.  

However, the correlation between Gaussian methods does not necessarily imply that 
one method is better than the other, as each technique has its own assets and flaws. 

Knowing how one method relates to another is essential for selecting the optimum 
geometry optimization technique to employ in various circumstances. Due to the fact that 
they produce results that are almost identical, two procedures that are similar should be 
excluded from the analysis. 

To answer the research questions from the problem statement section, it can be stated 
the following (Bálint and Jäntschi, 2021): 

Ø The basis set's size does not accurately represent how widely it can be used. 
Ø There are just a few basis sets that fit our dataset; it is impossible to determine 

the optimal bases set. 
Ø If we use different basis sets from different findings, we will get outcomes that 

vary, but we must be cautious to choose them correctly. 
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Ø It is possible to group and correlate the optimization techniques. 
The proper application of various selection and optimization procedures determines 

the differences in the outcomes. 

4. Conclusion 

The analysis findings of the study provide insights into the relationships and 
correlations among different approaches used in the research. We examined a total of 39 
methods and reclassified them based on their characteristics and applicability. This 
reclassification helped in better understanding and selecting the appropriate base sets for 
different study areas. 

By analysing the relationships and correlations among the methods, the researchers 
gained valuable information about their similarities and differences. This understanding 
allowed them to identify the strengths and limitations of each method and determine their 
suitability for specific research areas or applications. 

The reclassification of the methods provided a more organized framework for 
selecting the appropriate base sets. Base sets are important in computational chemistry and 
quantum mechanics as they form the foundation for calculations and simulations. By 
matching the characteristics and requirements of the study areas with the specific base sets, 
researchers can enhance the accuracy and reliability of their results. 

Overall, this analysis and reclassification process helped in streamlining the selection 
of base sets for different study areas, facilitating more efficient and effective research in 
those fields. 
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Chapter V – Applications of geometry optimization techniques 
Case Study - Factorial analysis of nanostructures 

1. Introduction 

A dodecahedron-shaped cage made of carbon atoms makes up the four-layered 
dodecahedrane, a hypothetical carbon allotrope. It has four layers of carbon atoms, each of 
which has 20 atoms arranged in a regular pentagonal pattern. This is why it is referred to as 
being "four-layered" (Cao et al., 2020). 

Analysis of the relationship between the dodecahedron's atom types and their 
characteristics can reveal important details about the variety and stability of the resulting 
structures. This is the reason why they are subjected to numerous studies in this field 
(Jäntschi et al., 2016). 

In this case study, the aim was to examine how various factors and their interactions 
impact ten calculated properties of a class of dodecahedrane congeners. The molecules were 
viewed as four-layered structures, as shown in Figure 28.  

The study also looked into the effect of forming each layer with either carbon, boron, or 
nitrogen. To achieve these objectives, a theoretical study was conducted using a full 
factorial design. The goal was to identify and understand the significant factors that 
influence the properties of interest (Jäntschi et al., 2016). 

2. Methodology 

Initially, the cages were created using the software HyperChem (in the beginning, PM3 
was used to optimize the geometry).  

Using Spartan software package, the cages geometrical design was improved with the 
HF method, a 3-21G basis set (Hartree, 1928) and then by MPM (Møller Chr Plesset, 1934) 
until the next order (MP2) with a 6-31G* basis set (Jäntschi et al., 2016).  
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Figure 22. Four layered dodecahedrane 

Ø Geometry optimization: PM3 and Moller-Plesset (MP2) with a 6-31G* basis 
set. 

Ø Property calculations (volume, surface area, ovality, HOMO, LUMO, 
polarizability, dipole moment, entropy, enthalpy, energy).  

Ø Full factorial analysis (detect groups of equivalent and irrelevant factors; 
examine main effects and interaction effects). 

Following geometry optimization, MP2 calculations were utilized to determine the 
features employed for the full factorial analysis. 

In the context of exploring the relationship between features taken from compound 
structures and various qualities, a factor analysis involved testing all possible combinations 
of the features (independent variables) on the quality measures (response variables). 

3. Results and Discussion 

A solid explanatory model might have a correlation coefficient (R) close to 0.95, 
meaning that the factors can account for about 90% of the variance in the relevant attribute. 
As a result, the models with R > 0.95 underwent additional analysis (Jäntschi et al., 2016). 

It was determined which features are most strongly connected with the activity and how 
they interact by repeatedly altering the levels of each component and monitoring the 
subsequent activity. 

With one exception (energy), the analysis reveals that the number of components varies 
for various reference atoms. When carbon, boron, and nitrogen were taken into consideration 
as the reference atoms, the number of components needed to explain the variation in each 
feature was compared. Volume, surface area, ovality, HOMO, LUMO, polarizability, and 
entropy were the seven out of ten attributes for which it was discovered that the reference 
atom carbon required the fewest parameters to be taken into account. However, when carbon 



 

SIMILARITY-BASED ESTIMATIONS AND ASSOCIATIONS OF CHEMICAL PROPERTIES/ACTIVITIES 

  
 

Page| 46 
 

was the reference atom, the average number of components needed in the model with a 
correlation coefficient better than 0.95 was larger (Jäntschi et al., 2016). 

The study demonstrated that when characteristics and structural features are intended to 
be related for corresponding data in a population, data simplicity typically results in simpler 
models (Kelly, 2011), models with insufficient explanatory power (Kar and Arias-Estrada, 
2015). Therefore, in these situations, there is always a trade-off between growing the sample 
size and reducing model complexity. 

 The discovery of models with predictive abilities requires the validation of linear 
models (Gramatica, 2013), but this topic was outside the scope of our investigation and is 
not addressed in this work.  

The work described in this research concentrated on creating a full-factorial analysis for 
the exploration of the relationship among features taken from compound structures and 
various qualities (Jäntschi et al., 2016). 

Full-factorial strategies can be laborious and resource-intensive, especially when the 
number of features and levels is large. Yet, they offer several advantages over other 
experimental designs, such as allowing for the detection of higher-order interactions among 
the factors and providing a more complete picture of the relationship between the features 
and the response variables. 

4. Conclusion 

Despite the fact that 67% of the time, carbon was employed as the reference atom, the 
models that yielded the highest correlation coefficient were not always the most effective 
models all around. From the simplest models, which use boron as a reference, to the models 
that use carbon as a reference, the complexity of the models grows (convoluted models).  
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Chapter VI – Molecular alignment  
Case Study – Biochemical similarity of the selected proteins 

1. Introduction 

In molecular biology and biological chemistry, determining molecular structure is 
essential because a molecule's function is highly dependent on its 3D arrangement and 
geometry of molecules that complement one another. Understanding the nature of the 
structure and connections of biological networks is essential for arriving at a quantitative 
description of their functions. 

The use of computer tools has become increasingly significant in fields including 
molecular modelling, docking, and pharmaceutical drug creation. The mathematical 
computation techniques used to model geometric issues involving molecules as algebraic 
systems and the algorithms used to solve these systems are frequently examined (Emiris et 
al., 2005). There are several implementations of well-known and efficient techniques for 
calculating eigenvalues and eigenvectors available (Murrain and Pan, 2000).  

Luo et al. (2006), found that strong interactions between matrix components and 
eigenvalues cause the eigenvalues to strongly correlate, which results in eigenvalue 
fluctuations represented by the GOE (Gaussian orthogonal ensemble). 

This analysis (Joita et al., 2021) aimed to determine the optimal geometric arrangement 
of 20 chosen amino acids regarding one another. A development has been made to the earlier 
study that Jäntschi (Jäntschi, 2019) detailed. 

 The eigenproblem algorithm aligns the structures, then trilateration is employed to 
assign all of the previously striped atoms. 

2. Methodology 

Obtaining the optimal alignment for a molecule implies determining the most favourable 
alignment of the molecule in space relative to a reference frame or another molecule. The 
optimal alignment provides a way to compare and analyse the properties and characteristics 
of molecules based on their spatial arrangement and geometry. 

Finding the best alignment is crucial for predicting the characteristics and actions of 
molecules, such as their reactivity, binding affinity, and stability, in the context of 
computational chemistry and molecular modelling. In fields like drug development, 
materials science, and chemical engineering, this knowledge can be used to construct new 
molecules with the desired features. 
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The least value of the sum of the squares of the eigenvalues of the Cartesian distance 
matrix-whose eigenvalues are entirely imaginary since the matrix is antisymmetric-is 
determined to be a molecule's best alignment. 

The working algorithm scheme is presented below (Figure 23). 
The amino acids (downloaded from PubChem) are computed. In this case, glycine, which 

has the least heavy atoms, is used as the reference (Joița et al., 2021). 

 
Figure 23. Working algorithm 

Once the conditions have been achieved, the original eigenproblem method is executed 
to confirm that the program's starting point is a suitable original alignment. Then, all 
arrangements with fewer than a certain number of atoms are discovered. For each 
combination, eigenvalues are discovered without rotating the possibilities. 

ST sums are also compared up until the input variables are satisfied or all possibilities 
with at least three atoms are compared. Using the original eigenproblem procedure, 
structures are aligned, then subjected to trilateration and potentially helpful pi/2 rotations.  

The structures coordinates are adjusted such that they align with the coordinates of the 
reference structure. since the TM-score (Template Modeling score) compares the separations 
between the atoms in molecules. Final structures who perform well are exported. 
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3. Results and Discussion 

Since one of these rotations may need to produce a good superposition of the two amino 
acids, the mean values on each axis are calculated for a select few atoms from both structures. 
Higher scores indicate greater structural similarity. The final score goes from 0 to 1. 

The TM score was initially created to aid in the prediction and modelling of protein 
structures, but it has subsequently been used to address a variety of structural biology issues, 
such as protein structure comparison, protein-protein docking, and protein-ligand binding 
investigations. It is especially helpful for comparing structures that, while similar in general, 
may vary in minute details, such as loop regions or side-chain conformations (Zhang, 2005). 

Thirteen findings are single high-confidence alignments of the 19 amino acids that have 
been aligned to glycine, 11 of which have a high TM-score. The TM-score can be used to 
determine which of the remaining three (cysteine, lysine, and arginine) offers the greatest 
results out of two possible good ones (Joita et al., 2021). 

For output, a grade of 80% of the maximum score is permitted. This is necessary so that 
the best alignment, even though it doesn't have the greatest TM-score, is provided as a result. 

Viewing the selected structures and eliminating the ones that may have similar 
mathematical scores, but the incorrect atom types is another simple technique to choose from 
this group of candidates. Even better outcomes might be achieved by combining other 
scoring functions or other scoring mechanisms (Joita et al., 2021). 

The limiting criteria are relevant for the current comparison because 84% of the best 
alignments using glycine as a standard can be numerically indicated by a scoring function 
like the TM-score and 68% of these orientations are exported as single candidates. The 
scoring function that is currently provided is only useful for 58% of cysteine. A large 
database would show a reasonable way to select them and aid in machine learning training. 

The proper alignment was statistically identified by the TM-score 70% of the cases, on 
typical, after running the current method using the other amino acids as a reference. By 
evaluation, 15% more cases with similar scores can be clearly distinguished (Joita et al., 
2021). 

Full vectorization can speed up the current algorithm. To lessen the effects of partial 
report abilities and predefined theory-inspired functional shape, machine learning must be 
introduced to scoring functions. 

Instead of enforcing a rigid algorithm, these faults can be rectified by applying machine 
learning to capture traits that are challenging to predict because there are so many 
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unmeasured/unknown/undiscovered quantitative structure-activity relationships. There is an 
increasing amount of excellent structural and interaction data in the literature that machine 
learning can use. 

Sequence-based methods, structural alignment techniques, and hybrid techniques that 
incorporate sequence and structure data are all available for protein alignment in QSAR. 
ClustalW, MUSCLE, and PyMOL are a few of the software programs that are frequently 
used for protein alignment in QSAR (Saeys et al., 2007). 

4. Conclusion 

To establish the optimal geometric alignment of specific amino acids with regard to one 
another, an application of the eigenproblem was developed. 

Therefore, we can say that the ideal alignment is not a straight line. The near results of 
the same method can be taken into account. Even after a score algorithm has been run, we 
can infer that the alignment with the highest score is not always the best alignment. 

The number of rotations for which a scoring function is executed needs to be reduced 
with the existing method's parameters. Additionally, integrating various approaches might 
result in quicker outcomes. 
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General Conclusions and Future Perspective 
Each section's specific and overall conclusions were already provided in the 

corresponding chapters. Thus, the following paragraphs are devoted to providing a general 
conclusion to this thesis as well as some ideas for additional study. 

The modelling of inorganic and organic chemicals that led in the examination and 
description of their behaviour at the level of biological systems served as an illustration of 
their similarities. 

The fundamental understanding in the topic of molecular optimization has been 
developed throughout this thesis. The rationalization of experimental observations with 
energy calculations has led to an understanding of molecular modelling. On the other hand, 
reading through previous and current literature on theoretical and experimental studies has 
given me a broad perspective on this topic of research. 

The findings of this thesis demonstrate that computational chemical methods can be used 
to appropriately define molecular optimization strategies on the molecules under study. 

To comprehend the experimental findings and identify the key interactions between 
molecules, it will be important to evaluate structural models to accurately describe chemical 
conformation in the near future. 

It can be concluded that there is a substantial knowledge breach between the 
experimental and theoretical domains by working with experimental groups and examining 
the experimental literature. Particularly, repeated interpretations of experimental findings 
seem to be lacking theoretical support. To support many of the assertions stated in the 
literature, a lot of work still has to be done in the fundamental sciences from experimental 
and theoretical perspectives. 

This may influence the choice and selection of methods to be evaluated for optimisation 
reasons depending on the condition for which method is needed when viewed through the 
lens of similarity. 

The identification of molecular optimization methods that can later assist to better 
understand the molecular mechanisms is essential for further research. 

Finding the best for our needs is both simpler and tougher now that there are so many 
software programs and algorithms available due to advances in technology. For the objective 
of defining the concept of similarity, the structure/activity relationship research between the 
molecules in biological systems is crucial.  
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