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Introduction 

Clinical spectroscopy is an emerging research field that aims to translate the use of optical 

spectroscopy into the clinical setting for the benefit of patients. This includes improving patient 

diagnosis and assessing prognosis. There is a need for new diagnostic tools in the clinical setting as 

alternatives to current techniques that are time-consuming and costly. This drives researchers to 

push the boundaries of this field, especially for diseases that are difficult or impossible to cure, such 

as cancer. 

Raman spectroscopy, particularly the technique known as Surface-enhanced Raman spectroscopy, 

has become increasingly popular in the medical field because of its ability to detect small amounts of 

substances and its flexibility. However, its implementation in clinical settings has been hindered by a 

a lack of clear guidelines, regulatory challenges, and the fact that studies to test its effectiveness 

have typically been done with small numbers of samples. 

The current PhD project's goal is not to discover new SERS bands in biofluid spectra or to create new 

methods for collecting SERS spectra in clinical settings, but rather to improve the way spectra are 

analyzed. It's important to note that the majority of data analyzed in this thesis come from SERS 

spectra collected in a clinical setting using a portable Raman spectrometer. 

Chapter 1 

The first chapter presents the theoretical background of SERS and a short overview of machine 

learning approaches for spectra analysis. Surface Enhanced Raman Scattering (SERS) is a powerful 

technique that is used to amplify the Raman scattering signal from molecules adsorbed on a surface. 

The signal enhancement is usually orders of magnitude larger than that obtained in conventional 

Raman scattering, making it possible to detect even very weak signals. The enhancement of the 

Raman scattering signal is caused either by the enhancement of the electric field at the surface of a 

metal, typically gold or silver or by the charge transfer between the metal and the molecule that is 

adsorbed onto the metallic structure. The electromagnetic theory explains the SERS enhancement as 

a result of the plasmons oscillations creating an enhanced electromagnetic field surrounding the 

metallic structure which interacts with the molecule found in the proximity of the metal. Plasmons 

are the eigenmodes of collective oscillations of the quasi-free electrons in metals. 
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The diameter of the nanoparticles is lower than the penetration depth of electromagnetic waves in 

metals. Thus, the electromagnetic wave oscillates ’through’ metal and move the quasi-free electrons 

to a pole of the nanoparticle (Figure 1).  

 

Figure 1. Dipole excitation in a nanometric metal sphere. 

The lattice ions from the other pole of the nanoparticle, which have a partly positive charge action as 

a restoring force for the quasi-free electrons. Therefore, the electrons will oscillate between the two 

poles, as a result of the incident electromagnetic field and the restoring force from the lattice ions 

[1]. The resonance condition is met at the frequency where the transition between metal 

transparency and absorption of the electromagnetic wave happens. The plasmon oscillation at 

resonant condition creates an electromagnetic field surrounding the nanoparticle (𝐸𝑆𝑃𝑅), which will 

cumulate with the incident electromagnetic field, leading to an enhancement of the electormagnetic 

field. The field intensity decreases with the distance to the surface of the metal and is dependent of 

the diameter of the nanoparticle (2r), the distance from nanoparticle (d) and the dielectric constant 

of the nanoparticle (ɛ) and the environment (ɛ0). 

𝐸𝑆𝑃𝑅 = 𝑟3 ɛ−ɛ0

ɛ+2ɛ0
𝐸0

1

(𝑟+𝑑)3  (1) 

Hence, the molecules must be in the proximity of the nanoparticles in order to ‚feel’ the 

electromagnetic enhancement.  

The chemical enhancement presumes that a charge transfer between the metal and the molecule 

occurs (Figure 2)[2]. The chemical mechanism involves two types of interactions between the 

molecule and the substrate: physisorption and chemisorption [3]. Physisorption involves a weak van 

der Waals interaction between the molecule and the metal substrate without changing the energy 

levels of the molecule. Chemisorption consists in the formation of a molecule–metal assembly 

through the hybridization of the metal and molecular orbitals of the adsorbed molecule. Bonding 

and nonbonding states are formed. The SERS effect consists of resonant electronic transfer between 

the highest occupied molecular orbitals (HOMO) and the lowest unoccupied molecular orbitals 

(LUMO) of the metal-adsorbed complex [4]. The chemical effect explains the preferential 

enhancement of antisymmetric modes of molecules adsorbed on the metal surface. 
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Figure 2. Charge transfer between silver nanoparticles and a molecule adsorbate onto the silver 

surface. 

The adsorption of molecules onto metallic substrates can happen spontaneously or be promoted by 

specific ions. The spontaneous adsorption is specific for molecules with high affinity for the metal 

surface, such as molecule containing thiol groups that show a high affinity for the surface of noble 

metallic structures. However, not all molecules have a strong attraction to metal surfaces, and 

therefore will not adsorb under any conditions. In recent years, it has been discovered that certain 

ions can promote the adsorption of such molecules onto silver nanoparticle surfaces and lead to a 

significant increase in the Raman scattering signal [5]. For example, the SERS spectra of anionic 

molecule such as salicylic acid, fumaric acid is observed after the addition of Ca2+, Mg2+ to a mixture 

of organic acids and silver nanoparticles [6]. However, the mechanism behind the influence of Ca2+ 

or Mg2+ to the SERS spectra of anionic molecules is not fully understood. In turn, Cl-, Br- or I- promote 

the adsorption of cationic molecules such as Nile Blue, Methylene Blue, Crystal Violet etc. An 

analysis of the reduction of Methylene Blue in the presence of silver nanoparticles and halide ions 

showed that the variation of the Fermi level of silver nanoparticles in the presence of halide ions 

promotes charge transfer between the nanoparticles and the molecule adsorbed onto the metallic 

surface. [7] 

The electromagnetic theory is unable to account for the absence of SERS enhancement in substances 

such as water, nanoparticles, and surfactants, while the chemical effect cannot account for the 

magnitude of the SERS enhancement factor. As a result, it is believed that the SERS effect is a 

combination of these two effects. The chemical theory describes the requirement for molecules to 

adsorb onto metallic structures, while the electromagnetic theory provides a quantitative measure 

of the SERS effect. 

Moreover, the first chapter introduces the hallmarks of cancer detected by SERS: purine 

metabolites, proteins and carotenoids. The promising results of SERS liquid biopsy stem from the 

fact that the levels of purine metabolites, proteins and carotenoids are informative of the cellular 

turnover rate, inflammation, and oxidative stress, respectively. These processes are disrupted in 

virtually any disease, from cancer to autoimmune maladies. Purine metabolites are a class of 
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molecules resulting from the catabolysis of purine nitrogen bases (adenine and guanine), starting 

from inosine, hypoxanthine, xanthine and the end product uric acid (Figure 3). In contrast, the 

pyrimidine nitrogen bases (thymine, cytosine and uracil) are broken down to water and carbon 

dioxide [8]. 

 

Figure 3. A simple representation of the purine metabolism pathway. 

I also present some fundamental concepts regarding the machine learning (ML) algorithms used for 

analyzing the SERS spectra of biofluids. The central idea of ML is that an algorithm which gained 

experience for a specific task (by learning from a dataset named training set) should perform well (or 

at least similar compared to training set) on a new, previously unseen input called test set. The task 

is the classification problem which will be accomplished with a certain performance measured by 

performance metrics. To resolve a task, the ML classifiers learn from the training group by extracting 

the relevant features, thresholds or densities. The experience is applied onto a new dataset to be 

evaluated. The performance of the ML models can be tuned by changing the error thresholds, or the 

function involved in the discrimination, by changing the hyperparameters of the models. The 

hyperparameters are settings that can be tuned to control the ML models behaviour. The choice of 

the ML and of the hyperparameters is a trial and error process. The performance metrics of ML with 

different hyperparameters are determined on a validation set, different from the training set and 

test set. Why do we need three different data sets?  
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I mentioned that ML is defined by three important steps: experience gaining, which implies to learn 

a specific pattern from a training set; changing the hyperparameters we focus on a specific task; the 

accomplishment of the task is analysed in the validation group; and finally to analyse the 

performance of the trained ML inclined to a specific task (optimized for the problem raised) we 

analyse the accuracy of the model on a test group. The training and test sets should be independent 

of each other, but with identically distributions [9]. The big differences in the training and test errors 

lead to under fitting when the training error is high or overfitting when the test error is significantly 

lower than the training error. By changing the hyperparametres or choosing the optimal model we 

can reduce the risk of overfitting or under fitting.  

The differences between the ML algorithms employed in this thesis are represented by the 

mathematical criteria utilized to categorize the data set into two groups. Prior to classification 

algorithms, data dimensionality is reduced using for example, Principal Component Analysis (PCA), 

an unsupervised algorithm which finds the vectors that stand for the highest variance within data 

set. Next, supervised methods that also consider the category of each sample extract the essential 

features to differentiate the classes/groups. Linear Discriminant Analysis (LDA) finds the vectors that 

minimize the variance within each group and maximize the distance between the groups, and 

represents the data on these vectors. In the new representation space, a line that best separates the 

groups is sought. Moving from a line that best separates the groups (for example LDA) to a more 

complex boundary such as a plan, we will talk about Support Vector Machine (SVM). SVM relies on 

the transformation of the features into points in an n-dimensional space and finding a hyperplane 

that would separate the classes. When the classes are not linearly separable in the initial space, data 

are transformed into a new space with higher dimensionality using a kernel function (linear, 

polynomial or more complex transformation). For any data set there is a kernel function which 

allows the data to be linearly separable [10]. However, adding new dimensions to the data set 

increases the risk of overfitting.  

In the new space a line is searched, that separates the classes. The model looks for a boundary line, 

for which the distance between it and the nearest point in each class is maximal. Thus, SVM focuses 

on the samples at the margin of each class, named support vectors. 

Logistic Regression (LR) is the most used statistical techniques for binary medical outcomes [11]. LR 

fits a Sigmoid function (Equation 2) to the data, actually to the weighted sum of the input features (a 

linear combination of the input features). The Sigmoid function (a S sharped curve) takes values 

between 0 and 1. For each sample we get a probability (ranging from 0 to 1) for a sample to 

correspond in class 0 or class 1. The prediction class is made based on the odds, a probability less 

than 0.5 will target the samples as being class 0, while a probability greater than 0.5 will predict class 
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1. One of the most important aspects in LR is that you can see the importance of each feature in the 

classification of the outcome. 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) =
1

1+𝑒−𝑥   (2) 

The training of LR model implies getting the right weights/coefficients for each feature. Multiple 

interactions are implied to test the coefficients until the best fit of odds is obtained. Once the 

optimal coefficients are found, the conditional probabilities for each observation can be calculated, 

logged, and summed together to yield a predicted probability. The relationship between the 

variables and the outcome can be linearly related via logarithmic odds, which is a bit more flexible 

than a linear relationship. 

Random Forest (RF) contains multiple uncorrelated decision trees (DTs), which are simple classifiers, 

selecting a set of if-then-else conditions to categorize. Each tree analyse different randomly selected 

sub-sets from the data set and extracts the features that maximize the discrimination of the groups. 

To be more explicit, a random vector is sampled independently on each tree. The final decision is a 

vote based on the output of each decision tree. Bagging is the ensemble technique used by Random 

Forest that chooses a random sample from the data set. Hence, each model is generated from the 

samples provided by the original data with replacement, known as row sampling. This row sampling 

step with replacement is called bootstrap with each model being trained independently. The 

hyperparameters that can be tuned in RF are the number of trees, meaning that the number of 

different decision paths can be changed. With increasing the number of trees, the performance of 

the model on the training group is increased but with the cost of overfitting. 

The main advantage of RF is that is it robust to outliers and noisy data [12] and the samples need no 

prior pre-processing. Moreover, the risk of overfitting is reduced [13]. The use of ML models in the 

Raman spectroscopy was developed from the early 90s, when ANNs were employed to determine 

the composition of materials based on their vibrational spectra. The authors highlighted that the 

hyperparameters and spectra pre-processing play an important role in the ML result [14]. ML 

algorithm such as RF is not influence by the pre-processing methods, reducing the direct implications 

of the people [15]. The minimal user intervention is favourable for the translation of SERS to clinical 

application. However, RF need a large dataset to be trained [11] and may not always be adapted to 

spectral data due to ‘the topology of its constituent classification trees’[16]. 

Gaussian Naïve Bayes (GNB) algorithms are based on the Bayes theorem, assuming strong 

independence between features, and provide a simple, yet highly functional, joint condition of 
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probabilistic classification method. Bayes theorem calculates the probability of something to 

happen, knowing that something else has already occurred.  

GNB calculates the probability of an event (feature) to happen for each hypothesis (belong to a 

target/class). A product of all the probabilities is calculated and the hypothesis is accepted or 

rejected based on the final probability value. The target/class with the highest probability will be the 

predicted output. The assumption that GNB makes is that the features are uncorrelated and the data 

are normally distributed. GNB have no hyperparameters to be tuned and are simple and rapid 

classifiers. kNN is a nonparametric learning model, that assumes that the similar objects are in close 

proximity in the initial space [17]. The distances between k nearest neighbours are used to 

determine which class is the closest to the unknown sample. The distance between two samples is 

not necessarily to be the physical distance, a Euclidian distance. Different equations for the 

calculation of the distance between two neighbours can be employed to fit the task. Together with 

the equation, the number of neighbours which are evaluated for each sample can be tuned. Since all 

the samples are mapped when the distances between the neighbours are calculated, outliers 

influence the kNN model.  

Chapter 2 

The common analysis methods of the studies included in this thesis are discussed in chapter 2.  

Chapter 3 

The chapter 3 highlights the results of this thesis, being divided in four main subchapters that 

focuses onto the choice of the optimal biofluid for SERS analysis, the applications of SERS urine 

biopsy in clinical setting and the improvement of the machine learning approaches for spectral 

analysis. 

The subchapter 3.1 focuses on the assignment of SERS signals in serum and urine samples and a 

comparison of the two biofluids in terms of SERS spectral characteristics and performance for cancer 

screening. SERS spectroscopy is commonly used to analyze biofluids, with urine being a particularly 

useful sample. When comparing the performance of serum and urine in breast cancer screening, I 

found that urine SERS biopsy had a slightly higher accuracy in distinguishing between patients and 

controls. Both urine and serum have similar SERS spectra of purine metabolites, and these 

similarities suggest that using urine samples analyzed by SERS as a tool for cancer screening or 

diagnosis could be effective. 

Urine and serum SERS spectra show striking similarities, the major contribution in the both spectra 

being attributed to purine metabolites (Figure 4).  
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Figure 4. Similarities between SERS spectra of urine, serum and a mixture of uric acid, hypoxanthine 

and xanthine.[18] 

For the assignment of the SERS bands, SERS spectra of pure solution of uric acid, hypoxanthine, 

xanthine, creatinine and urea were acquired (Figure 5).  

 

Figure 5. The SERS spectra of pure solution of 10-4 M uric acid, 10-4 M hypoxanthine, 10-4 M xanthine, 

10-4 M creatinine and 10-2 M urea. 
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The discussion is based on the normal concentrations of the metabolites in the serum and urine and 

the SERS band assignment presented in Table 1. 

Table 1. Normal metabolite concentrations and tentative assignment of the SERS bands of serum 

and urine samples.[18] 

Metabolite 
Serum 
level (µM) 
[19] 

Urine level 
(µmol/mmol 
creatinine) [19] 

SERS bands assignment (cm-1) 

Serum Urine 
Serum and 
urine 

Ergothioneine 0.84  ̶  1.52  482 [20]   

Uric acid 200  ̶  420  100  ̶  800  592, 637, 1260, 
1368, 1686  

 499, 533, 
725 811, 
886, 1136, 
1206  

Urea 4000  ̶ 8000 6000  ̶ 30000  700  

Creatinine 25  ̶  100   575, 1420, 
1459 [21] 

 

Hypoxanthine 8  ̶  14  1.8   ̶ 24.1  740, 1450, 1686 958  725, 1093  

Xanthine 0.5   ̶ 2  0  ̶  30  1368, 1686 1250   

Carotenoids   1150, 1520 [22]   

Among purine metabolites, uric acid has the highest concentration in the biofluids (Table 1. Normal 

metabolite concentrations and tentative assignment of the SERS bands of serum and urine 

samples.Table 1) and therefore uric acid is responsible for the SERS spectral backbone of the 

biofluids (SERS band at 637, 811, 889, 1130 and 1207 cm-1). However, its contribution is more 

pronounced in the serum SERS spectra compared to urine SERS spectra. Although the normal 

concentration of uric acid in serum is lower than in urine, the SERS intensities of uric acid bands in 

serum are higher than in urine. We explain this negative correlation by the pH dependency of the 

SERS signal of uric acid (pKa value 5.4). For this purpose, the SERS spectra of a mixture of three 

purine metabolites (uric acid, hypoxanthine, xanthine at 10-4 M concentrations) were measured at 

pH 5 and 7, pH values that are close to the pH of urine and serum (Figure 6). At acidic pH the SERS 

bands characteristic to uric acid are less intense compared to neutral pH, most probably because 

protonate uric acid shows a lower affinity for the metal surface. 
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Figure 6. SERS spectra of a mixture of 0.1 mM uric acid, 0.1 mM xanthine, 0.1 mM hypoxanthine at 

pH 5, pH 6 and pH 7. [23] 

The doublet at 724 and 740 cm-1 is usually attributed to hypoxanthine (Figure 5), another purine 

metabolite, although the 724 SERS band is also present in the SERS spectrum of uric acid (albeit 

contributing weakly) [24]. The SERS bands at 1368 and 1686 cm-1 could not be assigned to only one 

metabolite since these are observed in the SERS spectra of uric acid, xanthine and hypoxanthine as 

well.  

Besides similarities assigned to uric acid and hypoxanthine SERS band, there are three main 

differences between serum and urine SERS spectra. SERS spectra of serum display usually a Raman 

shoulder around 1150 cm-1 and a specific band at 1520 cm-1, attributed to carotenoids, but only 

when the spectra are acquired under resonant conditions [25]. In our case, the SERS spectra were 

acquired with the 532 nm excitation laser, which fulfils the Raman pre-resonance conditions for 

carotenoids. As in the case of purine metabolites, carotenoids have been suggested as possible 

cancer markers due to their antioxidant character, their level in serum reflecting the antioxidant 

capacity of the organism. However, carotenoids are not specific to one type of disorder, and can be 

easily influenced by the nutrition. Thus, its detection in serum does not play an important role in the 

cancer screening based on SERS liquid biopsy.  
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Moreover, the SERS spectra of serum also contained a band at 482 cm-1, characteristic of 

ergothioneine [20], a dietary amino acid. Ergothioneine could only be detected in serum because of 

the low excretion in urine [26].  

In addition, SERS spectra of urine are also dominated by bands attributed to creatinine at 575, 1421 

and 1453 cm-1 [21]. The SERS bands of creatinine are even more pronounced when the urine sample 

is dried. Knowing the creatinine concentration of urine is highly valuable in quantifying protein 

concentration in urine samples (e.g. patients with renal dysfunction). Since the SERS-based 

quantification of proteins in urine samples was proved before, for concentrations as low as 3 µg/mL 

[27], theoretically it might be possible to also compute the creatinine to protein ratio only from SERS 

spectra, this ratio is more valuable for clinicians since creatinine is used to normalize the proteinuria.  

Since the spectral information is similar in urine and serum, the choice of the biofluid is made based 

on the accessibility. Moreover, urine, which is collected through a non-invasive method, shows 

slightly higher classification accuracy for breast cancer screening based on SERS spectroscopy and 

ML models.  

Subchapters 3.2 and 3.3 show the performance of urine SERS analysis combined with ML classifiers 

in screening and support tool for cancer by presenting two application of SERS urine biopsy in 

bladder and prostate cancer diagnosis. By tuning the parameter of the ML classifiers, SERS urine 

biopsy can be used either as an emerging test for cancer screening or support tool diagnosis.  

Within these subchapters, I highlight the potential of urine SERS biopsy as screening method for 

bladder cancer, reaching classification accuracies ranging between 78-87% depending of the 

classifier involved. SERS urine biopsy has previously been shown to be an effective screening tool for 

a variety of cancers. However, my research has also shown that by incorporating complementary 

information such as microRNA, the accuracy of classifying bladder cancer and controls can be 

improved. By combining SERS with a complementary technique such as microRNA the classification 

accuracy is increased to 86-97% (Figure 7).  
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Figure 7. Receiver operating characteristic (ROC) curves for the classification accuracy yielded by 

SERS alone and the combination of the SERS and miRNA using three supervised classification 

algorithms (naïve Bayes (A), logistic regression (B), and random forest (C)). 

As for the prostate cancer, SERS reached a classification accuracy of 80.95%, with sensitivity of 80% 

and a specificity of 81.81% (Table 2). 

Table 2. The performance metrics for the machine learning classifiers applied to PC1 and PC2 on the 

validation group consisting on the SERS spectra of urine from 21 patients with PCa and BPH. 

Classifier AUC CA F1 Precision Recall Specificity 

SVM 0.945 0.762 0.759 0.788 0.762 0.774 

Random Forest 0.904 0.857 0.857 0.861 0.857 0.861 

Naïve Bayes 0.840 0.714 0.714 0.714 0.714 0.713 

kNN 0.927 0.762 0.755 0.782 0.762 0.747 

Logistic 
Regression 

0.945 0.857 0.856 0.859 0.857 0.852 

When transitioning from using SERS urine biopsy as a screening tool, which aims for balanced 

specificity and sensitivity, to a support tool, where the goal is to ensure no true positive patients are 

missed, SERS urine biopsy has been found to be useful as a support tool to reduce the number of 

unnecessary biopsies in patients with clinically suspected prostate cancer. I have demonstrated that 

by fine-tuning a machine learning classifier, 100% sensitivity can be achieved for patients with 

Prostate Imaging-Reporting and Data System (PI-RADS) 3 lesions (patients for whom the clinical 

recommendation for biopsy is equivocal) at the cost of reduced specificity from 81.81% for the 

screening tool to 41.67% for the support tool. This result suggests that using this setup, 10 out of 24 

patients could have been saved from unnecessary prostate biopsies.  
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Table 3. The threshold and the Specificity of the ML algorithms applied on training set such that 

100% Sensitivity is achieved. 

ML Threshold Sensitivity Specificity 

SVM 0.22 1.00 0.630 

Random Forest 0.42 1.00 0.815 

Naïve Bayes 0.23 1.00 0.481 

kNN 0.51 1.00 0.510 

Logistic Regression 0.08 1.00 0.556 

I want to stress out that in this study external validation was used, the reliability of the results being 

sustained by the similarity classification accuracies being reached in both training (Table 3) and 

validation steps (Table 4). 

Table 4. Performance of the ML ensemble based on the majority-voting rule. Confusion matrix of the 

test data set for the classification of patients with PI-RADS 3, with histologically proven prostate 

adenocarcinoma (PCa) and patients with benign prostate hyperplasia (BPH). 

 Sample Predicted 

A
ct

u
al

 

 PCa BPH 

PCa 10 0 

BPH 14 10 

SERS serum biopsy combined with an ensemble of ML classifiers assessed a sensitivity of 100% and a 

specificity of 41.67% for the stratification of PCa and BPH samples.  

The subchapter 3.4 focuses onto the models employed on the SERS spectra of biofluids. The need of 

Principal Component Analysis (the most widely used ML tool in the clinical applications of SERS) is 

questioned in subchapters 3.4.1 and 3.4.2.  

Instead of focusing on the accuracy of classifying samples, in subchapter 3.4 the research shifts to 

refining the algorithms used for analyzing SERS spectra. Specifically, it examines the need for using 

Principal Component Analysis (PCA) as a preprocessing step before applying machine learning 

classification models. The majority of ML classifiers rely on a dimensionality reduction technique 

that provides orthogonal features, regardless of whether it significantly improves classification 

accuracy. Additionally, it is also revealed that by applying a t-test feature selection algorithm on the 

principal components and feeding only the most discriminant information to the machine learning 

classifiers, the accuracy of classification can be improved. Moreover, not all the Principal 

Components (PCs) contain discriminant information, since PCA is an unsupervised technique. I show 
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that the classification accuracy can be increased by extracting the PCs that stand for the 

discrimination of classes out of the PCs that contain maximum of the initial information without 

adding redundant data by analysing a SERS data set consisting of SERS spectra of serum from n=23 

renal cancer (RCC) and n=27 control (CTRL) patients.  

PCA was applied to the SERS spectra of serum of RCC and CTRL patients to reduce data 

dimensionality and analyse the significant features that cluster the RCC and CTRL groups. The first 9 

PCs were kept for further analysis, which explained 98% of the variance in the initial dataset (Figure 

8). 

 

Figure 8. The cumulative (dark yellow) and component (red) explained variance for the first 19 

PCs.[28] 

The differences of score values of the 9 PCs between the RCC and CTRL groups were tested by 

Student’s t-test. The scores of PC2 and PC6 showed statistically significant differences between the 

two groups (p<0.05). The score plot for PC2 and PC6 showed a clear tendency of clustering of the 

two groups. 

To test the performance of SERS profiling as a screening tool for RCC, three ML algorithms were used 

(GNB, LR and RF). First we used as input the first 9 PCs and calculated the performance metrics of 

the ML algorithm to classify RCC and CTRL (Table 5), using random sampling cross-validation. The ML 

algorithm applied to the first 9 PCs yielded classification accuracies in the range of 60-67%. The 

number of PCs was chosen based on the cumulative explained variance; so that we kept most of the 
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initial information (9 PCs explained 98% from the initial variance-Figure 8), without adding 

redundant data.  

Table 5. The diagnostic ability to distinguish renal cell carcinoma and control group patients with 

three classification algorithms (naïve Bayes, logistic regression, and random forest) run on the first 9 

PCs, which explain 98% of initial variance. 

ML model AUC CA F1 Precision Recall 

Naïve Bayes 0.74 0.63 0.63 0.63 0.63 

Logistic regression 0.58 0.60 0.60 0.60 0.60 

Random forest 0.71 0.67 0.66 0.67 0.67 

The same ML were employed using as input features only the two PCs that are different distributed 

in the RCC and CTRL groups, PC2 and PC6. The performance metrics of the three classifiers after 

random-sampling cross-validation are presented in Table 6. By reducing the information from the 

first 9 PCs (98% of the variance in the data set), to PC2 and PC6 (17.2% of the variance in the data 

set), the classification accuracies increased from 60-67% to 76-86%. The trend was not specific to a 

certain ML model, but all the models performed better when an extraction feature algorithm was 

applied prior to the classification model. PC2 (explains 14,2% of information) and PC6 (explains 3% of 

information) were chosen based on t-test feature selection with Mann-Whitney correction (data did 

not pass the normality test).  

Table 6. The diagnostic ability to distinguish renal cell carcinoma and control group patients with 

three classification algorithms (naïve Bayes, logistic regression, and random forest) using as input 

features PC2 and PC6.  

ML model AUC CA F1 Precision Recall 

Naïve Bayes 0.91 0.86 0.86 0.86 0.86 

Logistic regression 0.83 0.76 0.76 0.76 0.76 

Random forest 0.84 0.80 0.79 0.80 0.80 

Figure 9 presents the ROC curves of the ML algorithms applied to classify RCC and CTRL samples 

based on the SERS spectra of serum. As observed, the area under the curve in all ML algorithms is 

grater when only PC2 and PC6 are used as input, compared to all the first 9PCs.  
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Figure 9. The receiver operating characteristic (ROC) curves for the classification accuracy yielded by 

SERS analysis of serum from renal cancer and control patients using three supervised classification 

algorithms (Naïve Bayes, logistic regression, and random forest). (A) The first 9 PCs were input 

variables and (B) PC2 and PC6 were input variables. 

In subchapter 3.4.3, I investigated more thoroughly the contribution of purine metabolites, 

creatinine and urea to the SERS spectra. Knowing that most of the spectral information in biofluids 

SERS is coming from purine metabolites, creatinine, and urea. The SERS spectra of the biofluids were 

projected into a lower-dimensional subspace defined by the spectra of those pure metabolites. The 

sample's scores on each metabolite (uric acid, hypoxanthine, xanthine, creatinine, and urea) were 

then used to build classification models to differentiate cancer patients and controls, thus allows 

identifying the specific contribution of each metabolite to the results. 

To be able to correlate the classification of cancer and controls based on the SERS spectra of biofluid 

with a medical outcome, I calculated the similarities between the SERS spectra of biofluids and the 

SERS spectra of pure solution of uric acid, hypoxanthine, xanthine, creatinine and urea. The score of 

each sample onto the new vectors representing the uric acid, hypoxanthine, xanthine, and creatinine 

and urea contribution was used to classify the patients.  

We applied the model on a dataset of SERS spectra from serum from patients with prostate cancer 

(n=30) and controls (n=20). The normality of the data distribution was tested using D’Agostino 

Pearson test and data did not pass the normality test. Thus, t-test with Mann-Whitney correction 

was applied to test de differences in the distribution of metabolites vectors in cancer and control 

groups.  

The scores on uric acid (p=0.001), hypoxanthine (p=0.017) and urea (0.003) were different between 

cancer and controls, while for xanthine (p=0.89) and creatinine (0.73) no significance was found.  
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The overall classification accuracy of prostate and control patients reached an AUC of the ROC curve 

of 69% (p=0.02) (Figure 10). A linear combination of the three significant components (uric acid, 

hypoxanthine and urea) was calculated with equal weights and a ROC curve analysis was applied to 

test the overall classification accuracy of the model for the classification of prostate and control 

patients. 

 

Figure 10. Receiver operating characteristic curve of the classification of prostate cancer and control 

patients based on the projection of the SERS serum samples on uric acid, hypoxanthine and urea 

vectors. 

The classification accuracy is similar with the classification accuracy of ML models when PCA was 

applied. The ML classifiers applied to the first 19PCs which contained al 96.8% of the variance in the 

data set reached a classification accuracy of 64-71%. Only by applying feature selection technique 

(PC1 and PC2 had discrimination power) the accuracy was slightly increased to 63-77%, which 

surpasses the result presented above. However, in this case we know exactly the contributors to the 

classification.  

The multivariate analysis based on machine learning analysis and statistical test have the risk of 

overfitting, especially when the number of samples is small. The excessive use of ML in every 

decision in the spectra processing steps is not always justified. Misconceptions about statistics and 

data analysis and their misinterpretation and application lead to the lack of reproducibility of many 

findings [29]. When the differences between the groups are evident and univariate, simple methods 

can be used to classify the models, why do we have to resort to complex algorithms that risk 

overfitting?  

In subchapter 3.4.4, I aim to compare the performance of multivariate classification based on SERS 

spectra of serum to a univariate statistical model for cancer screening based on the 740/725 cm-1 

SERS bands ratio, which was correlated with the variation of the uric acid and hypoxanthine. The 
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univariate model was validated on a variety of cancer types, from previously published data, 

measured on different Raman spectrometers across a time span of about two years. 

Visually analysing the SERS spectra and loading plots resulted from the PCs with discriminant power 

it can be observed that the major discrepancy between cancer and controls is the doublet at 725 and 

740 cm-1. Thus, I tested a univariate analysis tool based on the ratio between the contribution of uric 

acid and hypoxanthine (740/725 cm-1 SERS bands) to classify the cancer and control patients on nine 

already published SERS serum biopsy data sets. Similar classification accuracies for six studies were 

obtained when using the univariate analysis compared to a complex ML classifier.  

A zoom-in into the 710-760 cm-1 spectral region of SERS spectra of serum is shown in Figure 11A-F 

for colorectal (CRC), prostate (PC), breast (BC), lung (LC), oral (OR) and ovarian (OV) cancer, together 

with the control group from each study. The negative correlation of the 740 and 725 cm-1 SERS band 

is observed for all the above-mentioned studies, regardless of the type of cancer, Raman equipment 

or the acquisition parameters. The results of the cancer screening by the ratio of 740 and 725 cm-1 

SERS band are presented as AUC in FigureG. The classification accuracy of the univariate model is 

between 67% for lung cancer and 95% for ovarian cancer. Interestingly, in some cases the univariate 

analysis yielded a similar accuracy compared to the multivariate analysis, highlighting the fact that 

some SERS spectral regions are actually adding to the classification error instead of improving the 

classification power. For example, Moisoiu et. al. reported for ovarian cancer an accuracy of 94.8% 

and 92.15% for oral cancer when using multivariate analysis (PCA-LDA algorithm) [30]. The 

univariate analysis of the same spectra reaches a similar accuracy of 92% for oral cancer and 95% for 

ovarian cancer [30]. In contrast, for lung cancer [30], prostate cancer [31], breast cancer [18] and 

colorectal cancer (paper in preparation) the multivariate analysis yielded a better classification of 

the cancer and control groups. Lung cancer and controls were classified with an accuracy of 85.75% 

when PCA-LDA model 5-folds cross-validated was used and an accuracy of 67% when univariate 

analysis was applied [30]. The PCA-LDA model applied for prostate cancer reached an accuracy of 

90%, while the univariate model had an accuracy of 76% [31]. In the case of breast cancer, univariate 

model yields lower accuracy compared to LDA (73% compared to 83%), but higher than other 

machine learning classifiers (decision tree, Naive Bayes, Support vector machine, random forest), 

which discriminate BC from CTRL with accuracies between 61 and 72% [18]. For colorectal cancer, LR 

showed a classification accuracy of 75.75% (data not shown). A similar performance of 70% was 

assessed by the univariate model.  
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Figure 11. Univariate cancer diagnosis based on the SERS intensities at 725 cm-1 and 740 cm-1. (A-F) 

Mean SERS spectra of cancer group (colorectal- CRC, prostate - PR, breast-BC, lung-LC, oral-OR and 

ovarian-OV cancer) and control group of each study. (G) AUC and optimal threshold for ROC curve 

built on 740/725 cm-1 SERS intensity ratio for each study. 

To strength the idea that the ratio between the 740 and 725 cm-1 SERS band reflects an imbalance in 

uric acid and hypoxanthine concentration, we acquired SERS spectra of mixtures of hypoxanthine, 

xanthine and uric acid, which are known to be the major contributors to the SERS spectra of serum. 

For this, we kept the concentration of xanthine and hypoxanthine constant and vary the uric acid 

concentration. As observed in the Figure 12 the 740/725 cm-1 intensity is lower with higher uric acid 

concentration. A similar spectral change is observed when comparing controls with cancer mean 

SERS spectrum (Figure 11A-F).  
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Figure 12. SERS spectra of a mixture of 0.1 mM hypoxanthine, 0.1 mM xanthine and uric acid ranging 

from 0.01 to 1 mM and the ratio of 740/725 cm-1 SERS band. 

These results are highly interesting since they could allow the detection of cancer samples simply 

based on the SERS intensity of two peaks. Moreover, as opposed to complex machine learning 

algorithms, the univariate discrimination is highly interpretable. In other words, we can pinpoint 

exactly the metabolic differences (hypoxanthine and uric acid) which give rise to the SERS spectral 

differences, and use those differences for classification. In addition, the validation of the model 

needs lower number of samples compared to the validation of machine learning models. 
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Final conclusions 

The visual and mathematical analysis used in this thesis shows that the major contribution to SERS-

based diagnosis is the imbalance between hypoxanthine and uric acid in biofluids. Since the 

translation of SERS into clinical settings lacks an SOP, this thesis briefly describes a workflow 

recommendation for SERS liquid biopsy. Starting from the acquisition of the SERS spectra, urine was 

found to be the optimal biofluid for SERS-based cancer screening; since the processing of spectra is 

an important factor in machine learning approaches, I showed that it is necessary to reduce the 

spectral data to orthogonal features/variables, out of which only the features with discriminating 

power should be kept; classifiers fed with the extracted features should be employed to predict 

previously unseen data for a rigours evaluation of SERS liquid biopsy performance. However, to be 

more confident in the component leading to class prediction, the data dimensionality reduction 

technique can be constrained to known metabolites (uric acid, hypoxanthine, xanthine, creatinine 

and urea) that are further used for sample classification. As an outlook, a combination of the 

projection of the SERS spectra on purine metabolites, creatinine and urea and the residues resulted 

from this reduction technique could help in the medical interpretation of cancer screening based on 

SERS liquid biopsy.  

I analysed the performance of SERS urine biopsy in cancer screening and as clinical support tool 

where the decision based on the actual clinical techniques (such as blood biomarkers, MRI etc.) are 

equivocal. The classification accuracy over 80% attained for prostate cancer and benign prostate 

pathologies patients, based on urine SERS spectra, and of 71-84% for bladder cancer and control 

patients validated previous literature results and recommends SERS urine biopsy for cancer 

screening of various malignancies.  

To increase the classification accuracy, SERS urine biopsy can be combined with complementary 

techniques, such as microRNA. I showed that by combining the two techniques the classification 

accuracy of bladder cancer and control patients was increased by up to 9%.  

Further, I described a new support tool for biopsy decision management of equivocal PI-RADS 3 

lesions, based on SERS urine biopsy, which provides 100% sensitivity when validated on an external 

data set (previously unseen data). However, I gained maximum sensitivity (a medical requirement 

for a cancer support tool) in the detriment of specificity, which dropped down from 81.81% to 41%. 

Yet, based on the specificity value, SERS urine biopsy can target 10 from 24 BPH patients, preventing 

them of unnecessary biopsies. 

Regarding spectra analysis, PCA is still necessary in the data mining approaches applied to SERS 

spectra, since most of the ML classifiers ask the input features to be orthogonal (which is not the 
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case for SERS spectral features). However, improvement can be made by extracting the Principal 

Components with discrimination power out of the PCs that cover the total variability in the SERS 

data sets. One way to extract the relevant PCs is using t-test feature extraction, which increases the 

classification accuracy of prostate cancer based on the SERS spectra of serum with 10-20%.  

I developed a dimensionality reduction technique specific for SERS spectra of biofluids. To this 

regard, I projected the SERS spectra of serum onto vectors characteristic to the SERS spectra of uric 

acid, hypoxanthine, xanthine, creatinine and urea. I tested the differences between the metabolite 

scores of prostate cancer and control patients, and observed that uric acid, hypoxanthine and urea 

are responsible for the differences between the SERS spectra of prostate cancer and controls. The 

classification accuracy of prostate and control patients based on the equal contribution of uric acid, 

hypoxanthine and urea reached a classification accuracy of 69%, a value similar to the classification 

accuracy assessed by the ML classifiers applied on the PCs. Though, I observed that there is 

information in the spectra that is not correlated with uric acid, hypoxanthine, xanthine, creatinine 

and urea. This information highlights the minor contributors that could have importance in cancer 

screening based on SERS liquid biopsy.  

Observing the recurrent pattern of the negative correlation of hypoxanthine and uric acid in the 

SERS spectra comparisons between cancer and control patients, we analysed the ratio between the 

hypoxanthine (725 and 740 cm-1 SERS band) and uric acid (725 cm-1 SERS band) expression. We 

highlighted that a univariate model based on the 725/740 cm-1 ratio can compete with the 

multivariate ML classifier.  

I hope that these clinical spectroscopy studies contribute to the translation of SERS into the clinical 

setting, as support tool for diagnostics, and as rapid and cost effective screening method for cancer. 
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