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ABSTRACT 

The implicit learning deficit (IL) autism (ASD) hypothesis assumes that these individuals have 

problems in social interactions because they fail to unconsciously (implicitly) learn regularities 

from their environment. In the first chapter, we discuss data showing that individuals with ASD 

compensate for this deficit by consciously learning regularities in IL tasks. We further suggest that 

this compensatory processing is less efficient when operating with complex surface stimuli. The 

methodological objective is to create IL paradigms with increased external validity for social 

functioning. The theoretical objective is to determine whether autistic traits predict deficits in IL 

of cognitive structures instantiated by socio-emotionally relevant surface stimuli. In the third 

chapter, we will present our own line of research. In the three studies, we attempted to increase the 

external validity for social functioning of well-known research paradigms; specifically, the Serial 

Reaction Times Task -study 1; Dynamic Systems Control Task - study 2; Artificial Grammar 

Learning (AGL) task – in study 3. In contrast to the literature on this topic, we observed that the 

level of autistic traits predicts a deficit in the acquisition of cognitive structures instantiated by 

socio-emotional stimuli, in the AGL task. This result will be interpreted as evidence that 

individuals with high autistic traits show a tendency to use compensatory processing when 

completing the AGL task. The final chapter outlines future directions for developing an expanded  

cognitive model of social deficits in ASD. 

Keywords: unconscious cognitive processes; implicit learning; autism spectrum disorders; 

compensatory cognitive processing; external validity; social functioning 
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1 THEORETICAL BACKGROUND1 

1.1 Overview of the Theoretical Background 

According to the DSM 5 (American Psychiatric Association, 2013), persons diagnosed with ASD 

are characterized by social communication impairments in multiple contexts and restrictive, 

repetitive patterns of behavior interests or activities. We start this summary by briefly presenting 

the overarching arguments that constitute the conceptual scaffolding of our work that is placed in 

the larger field of cognitive-behavioral research focused on ASD. Thus, in THEORETICAL 

BACKGROUND, we acknowledged that even nowadays, ASDs continue to be a great challenge 

for cognitive scientists; and that this is because many of the disorder`s mechanisms still elude 

scientific enquiry. It is, nevertheless, a common desiderate that a more nuanced understanding of 

the cognitive features which generate the ASD symptomatology will inform the design of more 

efficient interventions. Accordingly, a marked deficit in social cognition seems to be a core deficit 

in ASD however, the underlying cognitive processes which might determine-it are still 

insufficiently understood (Travers et al., 2010). 

 Since the seminal work of Reber (1967), numerous scholars provided evidence suggesting that 

human learning can be placed on an implicit – explicit continuum. IL is thus defined as a cognitive 

process which enables the non-intentional acquisition of regularities and covariances from the 

 
1 Parts of this chapter were published as:  

Costea, A. R. (2018). Can Compensatory Processing Account for the Performance of Individuals with Autism 

Spectrum Disorders in Implicit Learning Tasks? A Focused Mini-Review. Studia Universitatis Babes-Bolyai-

Psychologia-Paedagogia, 63(2), 5-25. 

Costea, A. R., Jurchiș, R., Visu-Petra, L., Cleeremans, A., Norman, E., & Opre, A. (2022). Implicit and explicit 

learning of socio-emotional information in a dynamic interaction with a virtual avatar. Psychological 

research, 1-18. 

Pamparău, C., Costea, A., Jurchiș, R., Vatavu, R. D., & Opre, A. (2022, May). Experimental Evaluation of Implicit 

and Explicit Learning of Abstract Regularities Following Socio-Emotional Interactions in Mixed Reality. In 

2022 International Conference on Development and Application Systems (DAS) (pp. 150-154). IEEE. 
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environment. The acquired knowledge is often unavailable to awareness or intentional control but, 

as indicated by behavioral change, it reaches some form of mental representation (Cleeremans et 

al., 1998; Cleeremans & Jimenez, 2002; Reber, 1967, 1989, 1993). In this context, research 

suggests that implicitly learned information serves as a cognitive substrate which supports the 

feelings of intuition (Mealor & Dienes, 2013). Moreover, implicitly learned information is 

regarded by some authors (Lieberman, 2000; Norman & Price, 2012; Raab & Johnson, 2008) as a 

cognitive substrate of both social intuition and social cognition. Lieberman (2000) suggests that 

social intuition involves making rapid judgments about the emotions, personality, intentions, 

attitudes, and skills of others; the author further notes that such “judgments are often based on the 

perception of sequences of various forms of nonverbal cues, including subtle facial expressions, 

body postures, and nonverbal gestures’ (Liberman, 2000, p. 111). 

Given that individuals diagnosed with an ASD manifest an observable social intuition deficit, 

researchers investigated if a suboptimal functioning of IL could account for it. The current 

literature on the topic provides mixed results. Thus, Foti et al. (2015) conducted a meta-analytic 

review. The authors identified 11 studies examining the functioning of IL in individuals with an 

ASD by using five standard experimental paradigms and concluded that “individuals with ASD 

can learn implicitly, supporting the hypothesis that implicit learning deficits do not represent a 

core feature in ASDs” (Foti et al. 2015, p. 8). However, in the paragraphs below we will address 

two comments concerning this conclusion. 

First, because they combined all research methods in a single meta-analysis (in a one-size-fits-all 

manner), Foti et al. (2015) assume that IL is a general capacity. However, this assumption is at 

odds with a consistent corpus of empirical findings. The extant literature on the boundary 
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conditions for IL clearly shows that we cannot implicitly extract regularities from all categories of 

stimuli to the same extent. For instance, participants with TD automatically learn a task-irrelevant 

artificial grammar when it is instantiated by evolutionary relevant stimuli (human faces), but not 

when it is instantiated by evolutionary irrelevant stimuli - buildings (Eitam et al., 2014), but see 

also Dienes and Altmann (1997); Jiménez et al. (2020) or Scott and Dienes (2010) for further 

evidence on the dependency of IL on the characteristics of the surface stimuli. Closer to the social 

domain, Ziori and Dienes (2015) found that an artificial grammar was learned less when it 

structured sequences of faces (56% classification accuracy), compared to the same grammar that 

structured letter strings (64% accuracy; Dienes & Scott, 2005b). In a direct comparison, Norman 

and Price (2012) found less learning of an artificial grammar that structured sequences of body 

postures compared to the same grammar when it structured letter sequences (53% vs 58% 

classification accuracy). Further evidence comes the related field of statistical language learning, 

which is often assumed to occur, partially, implicitly. Li et al. (2022) have found that young adults 

with a high level of autistic traits are able to extract statistical regularities from non-social auditory 

input (pure tones), but not from socially relevant auditory input (Chinese disyllables), bringing 

further support for the stimulus-dependent operation of implicit/statistical learning. 

Second, Foti et al. (2015) reach the conclusion that individuals with ASD can learn implicitly 

because they failed to gather evidence showing that they cannot – instead, as we have discussed in 

the subsection titled “Error! Reference source not found.” the absence of evidence for an effect d

oes not equal with having evidence of absence for the respective effect – this inference bias further 

legitimates our research proposal.  
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Accordingly, despite the lack of behavioral evidence supporting the IL deficit in ASD hypothesis, 

this thesis assumes a compensatory processing framework (see Livingston & Happé, 2017). 

Briefly, according to this framework, compensatory processing occurs when a typical behavioral 

functioning (or performance in a cognitive task) is achieved through the recruitment of additional 

cognitive and/or neurobiological resources which are not normally recruited by individuals with 

TD. After reviewing literature suggesting that individuals with ASD compensate in some Theory 

of mind, Reasoning, and Category learning tasks, we analyzed evidence of compensatory 

processing in the IL research. In this sense, a series of more recent investigations provide 

contrasting evidences with the conclusion of Foti et al. (2015). For instance, Zwart et al. (2017) 

recorded the brain activity while individuals with ASDs or TD completed a standard IL paradigm. 

Their behavioral data indicated a lack of between-groups differences however, 

electroencephalographic data indicated that the TD group’s learning style was mostly incidental 

(as indexed by an increased N2b component) and, in contrast, the ASD group’s learning style was 

mostly intentional (as it was highlighted by an increased P3 component). Authors suggest that the 

intact behavioral performance of individuals with ASD was sustained by – as we interpret - a 

compensatory strategy (i.e., the intentional learning style) and while this processing style is an 

effective in simple/artificial tasks, it may “adversely affect learning in complex social situations” 

(Zwart, et al., 2017, p. 9) or more naturalistic tasks.  

We assume that, if present, an IL deficit in ASD would play a central role especially in the learning 

of socially relevant information, where – because of their perceptual complexity – the potential 

compensatory processing strategies might cease being effective. Very important to note is the fact 

that none of the studies included in the meta-analysis of Foti et al. (2015) investigated IL in a 

socially relevant context. Based on the above-mentioned scientific data, we emphasized that in 
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order to formulate stronger conclusions, researchers should optimize the ecological validity for 

social functioning of the experimental tasks intended to assess the functioning of IL in ASD. Few 

studies in the literature present such research tools that can reliably assess the IL of socially 

relevant information. In this context, we will next introduce our chief objectives. 

1.2 Objectives of the thesis 

1.2.1 The methodological objective 

We aim to develop instrumental vehicles that are able to induce learning and reliably 

assess its implicit-explicit nature while employing socially relevant surface stimuli under 

the form of emotional facial expressions.  

1.2.2 The theoretical objective 

We aim to assess if participants’ levels of autistic traits can predict a deficit in the – implicit 

and explicit – acquisition of knowledge from our socially relevant IL tasks. 

To follow the methodological and the theoretical objectives, in this thesis, we conducted a number 

of six individual experiments that are grouped in three studies.  

2 ORIGINAL RESEARCH CONTRIBUTIONS2 

2.1 Overview of the Studies 

We are now going to present our original research that constitutes our attempt to pursue the above-

mentioned objectives. Specifically, in this doctoral work, we have assumed the development of 

 
2 Parts of this chapter were published as:  
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experimental tasks that were intended to assess the IL of cognitive structures instantiated by socio-

emotional components. Each of the three experimental studies that will be presented in this chapter 

will focus on adapting to induce implicit social learning of one of the mainstream IL experimental 

paradigms that were presented in Section Error! Reference source not found., “Error! Re

ference source not found.”, namely; The SRT task (study 1), the DSC task (Study 2 with 

experiments 2a, 2b, 2c and 2d) and finally the AGL task (Study 3). Whenever these modified 

paradigms will induce IL, we will also assess the relationship between participants’ learning 

performance and their level of autistic traits (by using both NHST and Bayesian tests). 

2.2 Study 1. The Relation Between Autistic Traits and the Implicit and Explicit Learning 

in a (Socio-Emotional) Serial Reaction Time [(s-e)SRT] Task  

2.2.1 Introduction  

In the present study, we intend to take a tentative step toward the design and construction of a more 

ecological paradigm for studying IL in an emotionally relevant context. Because, on the one hand, 

it employs surface stimuli under the form of emotional facial expressions and because, on the other 

 
Costea, A. R. (2018). The relationship between implicit learning of cognitive structures with socio-emotional 

components and subthreshold autistic traits. Journal of Evidence-Based Psychotherapies, 18(2), 131-141. 

Costea, A. R., Jurchiș, R., Visu-Petra, L., Cleeremans, A., Norman, E., & Opre, A. (2022). Implicit and explicit 

learning of socio-emotional information in a dynamic interaction with a virtual avatar. Psychological 

research, 1-18. 

Pamparău, C., Costea, A., Jurchiș, R., Vatavu, R. D., & Opre, A. (2022, May). Experimental Evaluation of Implicit 

and Explicit Learning of Abstract Regularities Following Socio-Emotional Interactions in Mixed Reality. In 

2022 International Conference on Development and Application Systems (DAS) (pp. 150-154). IEEE. 

Pamparau, C., Vatavu, R.-D., Costea, A. R., Jurchis, R., & Opre, A. (2021). XR4ISL: Enabling Psychology 

Experiments in Extended Reality for Studying the Phenomenon of Implicit Social Learning. 20th 

International Conference on Mobile and Ubiquitous Multimedia, 195–197. 

Pamparău, C., Vatavu, R.-D., Costea, A. R., Jurchiş, R., & Opre, A. (2021). MR4ISL: A Mixed Reality System for 

Psychological Experiments Focused on Social Learning and Social Interactions. Companion of the 2021 

ACM SIGCHI Symposium on Engineering Interactive Computing Systems, 26–31. 

https://doi.org/10.1145/3459926.3464762 
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hand, is an adaptation of the classical SRT task (Nissen & Bullemer, 1987), our task is dubbed the 

socio-emotional Serial Reaction Time (s-e)SRT task. 

2.2.1.1 Objectives  

First, our methodological objective is to investigate if abstract knowledge of a complex second-

order conditioning sequence of facial emotional expressions can be learned implicitly. We 

hypothesize that: 

• (H1) Participants will learn the social contingencies embedded in the (s-e)SRT task; 

• (H2) Learning will be implicit (i.e., participants completing a task with complex 

contingencies will not have the ability to intentionally control the acquired knowledge).  

Second, our theoretical objective is to investigate the link the autistic traits and the implicit and 

explicit learning of cognitive structures instantiated by socio-emotional components in the (s-

e)SRT task. Thus, we hypothesize that: 

• (H3): the level of autistic traits will negatively predict participants’ ability to - implicitly 

and explicitly - acquire structural knowledge from our (s-e)SRT task. 

2.2.2 Method  

2.2.2.1 Participants 

We estimated our sample size based on the power needed to test H3, because it has a smaller 

expected effect size than that of H1 or H2. Fifty-four participants would be sufficient to test H1 

and H2, according to Fu et al. (2010). However - importantly, concerning the power needed to test 

H3 - because we tested if participants’ level of autistic traits negatively predicted their ability to 
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acquire structural knowledge from our (s-e)SRT task by recruiting participants from the general 

population, we expected this effect to be small. Thus, our power analysis indicated that a simple 

linear regression with a small effect size f2 = 0,02 would be statistically significant at an α of 0,05 

with a statistical power of 1-β = .80 in a sample of 395 participants. Crucially, for reasons that will 

be discussed in Section 2.2.3.2 “H1: Evidence of learning”, the data collection process was stopped 

after 52 (45 women, mage = 21 years, sd = 3.15) undergraduate students recruited from Babeș-

Bolyai university participated in the experiment.  

2.2.2.2 Self-report instruments 

The Subthreshold Autistic Traits Questionnaire (SATQ; Kanne et al., 2012) is a 24-item 

screening questionnaire with answers given on 4-point Likert scales. This instrument was chosen 

because, unlike some other measures of ASD screening (e.g., The Autism Spectrum Quotient AQ; 

Baron-Cohen et al., 2001), the  SATQ was specifically constructed to assess the presence of 

subthreshold autistic traits in the general population (Kanne et al., 2012). For this study, we 

translated the instrument into Romanian and subjected it to a retroversion procedure; the resulting 

items are listed in Supplementary material Error! Reference source not found.. The translated v

ersion revealed good split-half reliability properties (Chronbach's α = 0.75; 95% CI = .66 - .82). 

2.2.2.3 Apparatus 

The cinematic 3D design of the stimuli (the human avatar with dynamic facial cues) were designed 

in iClone (3D Animation Software for Character Animator | IClone, n.d.) according to the 

guidelines provided by the Facial Action Coding System FACS (Ekman et al., 2002). The 

experiment was coded in PsychoPy (Peirce et al., 2019) and ran on Windows computers.  



 

 

12 
 Table of Contents 

2.2.2.4 Task 

2.2.2.4.1 The Acquisition phase:  

In our version of the task, the letters were replaced with videos of dynamic facial emotional 

expressions. On each trial, a cinematic virtual 3D human avatar dynamically morphed from a 

neutral pose into a preset emotional facial expression instantiating either Fear, Joy, Disgust, or 

Surprise – for a graphic representation of these emotional facial expressions, see Figure 1 below. 

 

Figure 1. The surface stimuli used in this study; from left to right, the emotional facial 

expressions represent states instantiating: Joy, Sadness, Surprise, and Disgust.  

Unknown to the participants, the transition of facial emotional expressions followed the two 

second-order conditioning sequences (SOC) taken from Fu et al. (2010). As, instead of letters, we 

used videos of facial emotional expressions, the letter ‘D’ was replaced by ‘Fear’; the letter ‘F’ 

by ‘Joy’; ‘K’ by ‘Disgust’ and ‘J’ by ‘Surprise’. The resulting structures for the two SOC 

sequences are presented in Table 1 below.  

Table 1. The structure of the emotional SOC sequences 

SOC 1 Surprise – Disgust – Joy – Surprise – Sadness – Joy – 

Sadness – Disgust – Surprise – Joy – Disgust - Sadness 
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SOC 2 Surprise - Disgust - Sadness - Joy - Disgust - Surprise - 

Sadness - Disgust - Joy - Sadness - Surprise - Joy 

 

A potential limitation of IL experiments that apply the SRT task is that participants might not 

extract abstract knowledge but mere motor sequences of responses (Bischoff-Grethe et al., 2004; 

Meier & Cock, 2010; but, for a different perspective, see Grafton et al., 1998). We control for this 

potential vulnerability by asking participants to press the spacebar (as quickly and as accurately as 

possible) in response to only one target facial expression of the four. For instance, in block one 

participants were instructed to press the spacebar only when the avatar’s facial expression is that 

of “Joy”; in block two, only when the avatar’s facial expression is that of ‘Surprise’, etc. 

Throughout the acquisition phase, all four facial expressions were independently targeted in two 

blocks. Crucially, if participants develop abstract representations of the acquisition SOC, we 

expect that they will be able to automatically predict the appearance of the target facial expression 

based on the SOC structure and consequently improve their RTs across the acquisition trials. 

The acquisition phase consisted of of 768 trials; however, participants responded to one target 

facial expression / block; therefore, their RTs were measured in only 192 trials. The passive trials 

automatically transitioned after 2000 milliseconds. Our stimuli followed the acquisition SOC for 

87.5% trials and the transfer SOC for the remainder of 12.5% trials. Half of the participants 

completed the acquisition phase with SOC1 as the acquisition sequence and SOC2 as the transfer 

sequence, while the other half completed the acquisition phase conversely. Each block started at a 

random point in the learning sequence. Thirty seconds of rest breaks occurred between every two 

blocks. Response latencies were measured from the onset of the fixation cross to a correct key 
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press. We operationalize learning as the difference in RTs between the acquisition and the transfer 

sequences. The description of the methods to assess the implicit/explicit status of learning will be 

discussed in the next subsection.  

2.2.2.4.2 The Test phase:  

After the completion of the acquisition phase of the (s-e)SRT task, participants were informed that 

the stimuli followed specific rules but, their actual conditional relations remained undisclosed to 

them. An adapted version of the Process Dissociation Procedure (PDP) (Destrebecqz & 

Cleeremans, 2001; Jacoby, 1991) was used to evaluate the nature of the judgement knowledge. 

Furthermore, subjective measures of awareness were used to evaluate the implicit – explicit 

character of the acquired structural knowledge. Their response options were adapted based on 

Dienes and Scott (2005b).  

2.2.2.5 Procedure 

Participants were initially invited to give their informed consent; then, they completed the 

acquisition phase of the (s-e)SRT task; following this activity, they completed the Test phase 

(comprised of the PDP and subjective response basis attributions); lastly, they completed an 

electronic version of the Subthreshold Autistic Traits Questionnaire (SATQ; Kanne et al., 2012).  
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2.2.3 Results  

2.2.3.1 The operationalization of the variables for data analysis 

• Sequence learning: Evidence of learning was considered if the RTs of the acquisition 

sequence will decrease significantly more than the RTs of the transfer sequence as the task 

progresses.  

• Unconscious judgement knowledge: We will draw the conclusion that participants had 

acquired unconscious judgement knowledge from the task in the situation in which they 

will not be able to generate a significantly lower number of triplets identical with the 

acquisition sequence in the Exclusion task than in the Inclusion task.  

• Unconscious structural knowledge: The existence of unconscious structural knowledge is 

inferred if, in trials in which participants use implicit attributions (i.e., Guess and Intuition), 

they are able to accurately use their judgement knowledge (i.e., by including significantly 

more responses that conform to the acquisition sequence in inclusion than in exclusion; 

see, e.g., Fu et al., 2010, 2018). 

• The levels of autistic traits: is indexed by participants’ scores on the SATQ.  

2.2.3.2 H1: Evidence of learning 

A within-subject ANOVA, with block (1-8) and sequence (acquisition vs. transfer) as independent 

variables yielded a significant effect of block F(7.357) = 48.536, p < .001, η2
p = .488. This suggests 

that participants improved their RTs as the task progressed (see  
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Figure 2 below). However, the effect of sequence was not significant F(1, 51) = 1.298, p = .260, 

η2
p = .025. This suggests that participants did not respond faster the acquisition than the transfer 

sequence.  

 

Figure 2. Represents the RTs for the acquisition sequence and the transfer sequence across the 

training blocks. The error bars represent 95% CI.  

2.2.3.3 H2: Evidence of IL 

The testing of the second hypothesis was prevented by the lack of evidence suggesting that learning 

occurred in the task. 

2.2.3.4 H3: The relations between autistic traits and learning in the (s-e)SRT task 

Due to the fact that we were unable to show that the task induced learning, the testing of H3 would 

not be theoretically meaningful.  
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2.2.4 Discussion and bridge to the next study 

In this chapter, we detailed our – for now, unsuccessful - efforts to develop an experimental task 

that increases the ecological / external validity for social functioning on the basis of the SRT task. 

In short, we failed to observe evidence that this task induces implicit or explicit learning. Because 

of this result, and motivated by the relative artificiality of the way in which participants interact 

with our task, we will next motivate our second study.  

Specifically, one of the present study’s limitations is related to the artificial interactions between 

the participants and the task. Put differently, in our implementation, participants responded to a 

predetermined SOC sequence. The sequence remained unchanged, regardless of participants’ RTs. 

This characteristic differentiates our task from the manner in which IL processes likely contribute 

to our day-to-day functioning. In brief, here we suggest that if we intend to evaluate IL with a high 

degree of external validity for social functioning, this goal, by itself, obliges us to construct 

evaluation contexts (i.e., experimental paradigms) that maximally resemble the manner in which 

this process likely operates in real life. Motivated by this objective, in the next section, we will 

present our efforts to develop an IL instrument that immerses participants in a dynamic interaction 

with the task (such as it happens in natural social interactions), that is, the Dynamic systems control 

task (Berry & Broadbent, 1995) 
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2.3 Study 2. The Relation Between Autistic Traits and the Implicit and Explicit Learning 

in a Realistic (Socio-Emotional) Dynamic Systems Control [(s-e)DSC] Task 

2.3.1 General Introduction 

We capitalize on several recent developments from the fields of Cognitive Psychology, in implicit 

cognition research - and Computer Science, in Mixed Reality and natural user interfaces based on 

gesture and voice input, to maximize our external validity for social functioning in the assessment 

of IL. By assuming an iterative approach, “Study 2a: The Construction of the (s-e)DSC Task in 

2D” will develop and test the task in a 2D environment; Afterward, studies 2b and 2c will 

implement it in an Augmented Reality (AR) setup. The results that will be presented in this last 

study will enable study 2d to assess the relationship between participants levels of autistic traits 

and their IL functioning, as assessed by their performance on our socially relevant, Mixed Reality 

task [AR4(s-e)DSC].  

2.3.2 Study 2a: The Construction of the (s-e)DSC Task in 2D 

2.3.2.1 Introduction 

We start from the observation that in both real-life and experimental environments, information is 

being exchanged in loops. Specifically, in most cases of real-life interaction, an individual's 

behavior determines or encourages a response from the social environment; in addition, the 

individual typically reacts again to the response of the social environment, thus perpetuating a loop 

of information exchange. Similarly, in experimental contexts, a participant's behavior determines 

a response from the research paradigm (e.g., advancing to the next stimulus), to which the 

participant typically reacts again, thereby perpetuating a loop of informational exchange.  
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However, the loops through which information is exchanged in most IL tasks are fundamentally 

different from those in which information is exchanged in social environments. Specifically, in the 

real-world environment, if an individual behaves in different manners, s/he should expect different 

responses, that is, information is being exchanged via feedback-driven interactive loops (Becchio 

et al., 2010). On the contrary, in most IL paradigms, participants respond to overly complex, 

predefined sequences of stimuli which, crucially, do not adapt in reaction to their responses – i.e., 

information is being exchanged via non-interactive loops. For instance, in the acquisition phase of 

the AGL task, participants are exposed to a predetermined list of letter strings; there is no 

modulation in the behavior of the task or of the stimuli as a consequence of participant’s behavior. 

Here, we emphasize that an instrument that aims to assess the role of IL in social interactions – 

besides using socially relevant surface stimuli - should also simulate the dynamic, feedback-driven 

manner in which information is being exchanged in such environments. One example of such a 

method is the classic Dynamic Systems Control (DSC) task (Berry & Broadbent, 1984, 1995) – 

which was initially presented in Subsection Error! Reference source not found. of this thesis. 

We suggest that while Berry and Broadbent's (1984)  task implements interactive loops of 

informational exchange, its use of linguistic labels as surface stimuli keeps it abstract in a way that 

severely limits its relevance to the social domain. 

2.3.2.1.1 Objectives and hypotheses 

The main objective of this study was to determine whether IL can be involved in the acquisition 

of the complex regularities present in a situation involving dynamic interaction with a life-like 

virtual agent. Based on the previous DSC studies (e.g., Dienes & Fahey, 1998), our hypotheses 

were that: 
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• (H1) participants will acquire the regularity; 

• (H2) they will possess accurate judgement knowledge; 

• (H3) their accurate judgement knowledge will be based both on unconscious structural 

knowledge and on conscious structural knowledge.  

2.3.2.2 Method  

2.3.2.2.1 Participants 

Because it has a smaller expected effect size than that of H1 and H2, we determined our sample 

size considering the statistical power needed to test H3. We expected a small to medium effect size 

for the unconscious learning effect stipulated by H3, based on previous studies that used similar 

methods to measure conscious and unconscious knowledge (e.g., Fu et al., 2010, 2018). Our power 

analysis indicated that a one-tailed test can detect a potential difference between two paired means 

(i.e., within-subjects design) that has an effect size of Cohen’s dz = 0.3 with a statistical power of 

1-β = .8 in a sample of 71 participants. Note that for the other hypotheses, we expected large or 

medium to large effect sizes (for H1, a dz = 0.798 based on Dienes & Fahey, 1998; for H2, a η2
p = 

.329, based on Fu et al., 2010; for the conscious learning effect stipulated by H3, a dz = 0.67, based 

on Fu et al., 2010), and 71 participants provided a statistical power > 99% for all these effects. 

Therefore, we aimed for a sample size of at least 71, but, as participants were rewarded with partial 

course credit, a higher number of persons enrolled. A total of 115 first-year undergraduate students 

in psychology from the Babeș-Bolyai University, (99 female, mage = 19.74, sd = 1.27) participated 

in this research.  
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2.3.2.2.2 Apparatus 

The stimuli were designed with iClone Version 7.2 (3D Animation Software for Character 

Animator | IClone, n.d.) the JavaScript experiment was coded in PsychoPy / PsychoJs (Peirce et 

al., 2019) and ran on the Pavlovia.org servers (Pavlovia, n.d.).  

2.3.2.2.3 The task 

In a within-group design, we used a two-step task with a learning phase and an awareness test 

phase. In the learning phase, participants were presented with a socially relevant environment that 

made it possible to quantify the on-line acquisition of knowledge. In the awareness test phase, we 

assessed the implicit/explicit status of the acquired knowledge.  

The stimuli and materials 

Participants interacted with a cinematic virtual avatar that could display a range of seven emotional 

facial expressions (see Error! Reference source not found.) and transitioned from one facial e

xpression to the next in a fluid motion comprised in fixed intervals of 30 frames, each lasting 500 

milliseconds, see Figure 3 below. 
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Figure 3 The seven facial expressions used in this study

The learning phase 

Participants were informed that they will interact with a fictional character from an unknown 

culture who is able to display only a limited number of facial expressions and is unable to regulate 

his facial expressions. They were further instructed that the avatar attends an important task in 

which he must not express intense facial expressions - neither positive nor negative - and that their 

task is to assist him in regulating his emotions, aiming to get him into the Neutral state as many 

times as possible. Crucially, undisclosed to participants, their interaction with the avatar was 

mediated by a complex rule, that will be detailed in the subsection below.  

 The abstract rule 

To describe our implementation of the equation, it is first necessary to present the fact that each of 

the avatar’s 7 possible facial expressions, as well as each of the participants’ seven possible 

response options were assigned a constant position within a looped numerical sequence; for a 

graphical representation, see the Figure 4 below. The starting point of the sequence was set on 

position 0 (i.e., Intense anger) however, transitions within the sequence could be made in both a 
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clockwise and an anticlockwise direction. Participants were not directly exposed to, or made aware 

of, the existence of this sequence.  

 

Figure 4. The abstract looped numerical sequence. It depicts both the avatar’s possible facial 

expressions and the participants’ possible response options. Intense anger = position 0, 

Moderate anger = position 1, Low anger = position 2, the Neutral state = position 3, Low joy = 

position 4, Moderate joy = position 5 and, Intense joy = position 6. 

To determine the avatar’s facial expression on any given trial (i.e., Av. Exp.t), the task was 

programmed to compute the equation “Av. Exp.t = 0 + [Av. Exp.t-1 + (Av. Exp.t-1 - P. Resp. t-1)]” 

where, “Av. Exp.t” denotes the Avatar’s expression in the current trial; “0” represents the starting 

point of the stimulus set; “Av. Exp.t-1” represents the Avatar’s expression in the previous trial and 

“P. Resp.t-1” represents the Participant’s response in the previous trial.  

The result of the equation indicated the direction and length of the pathway that the task moved 

within the looped sequence - starting from position 0 - to select the avatar’s facial expression in 

the current trial. The task was programed to move within the sequence in a clockwise direction if 

the result was a positive number and vice versa if the result was a negative number. Participants 
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were instructed to regulate the avatar’s facial expression in the Neutral state as many times as 

possible. Thus, all instances in which “Av.Exp.t = 0 + 3” or, “Av.Exp.t = 0 – 4” were considered 

On-target trials because, according to these results, the avatar will morph into the Neutral facial 

expression. For a possible interaction sequence between a participant and the task across the first 

three trials of a block, see the Table 2 below. 

Table 2. Simulates how the equation mediates the interaction between a participant’s responses 

and the avatar’s facial expressions 

Event 

order 

Event description Equation  

1 Avatar’s expression in trial 1 is Intense anger Av. Exp.t1 = 0 [i.e., Intense anger] 

2 If participants’ response in trial 1 is Neutral P. Resp.t1 = 3 [i.e., Neutral] 

3 Computation of the required change in 

position 

 

 

 

Changet2 = 0 + [Av. Exp.t1 + (Av. Exp.t1 - 

P. Rresp.t1)] 

Changet2 = 0 + [0 + (0 – 3)] 

Changet2 = 0 + [0 + (– 3)] 

Changet2 = 0 + (-3) 

4 The location moves three positions 

counterclockwise, starting from zero 

Changet2 = -3 

5 Outcome: Avatar’s expression in trial 2 is 

low joy 

Av. Exp.t2 = 4 [i.e., Low joy] 

 

6 If participants’ response in trial 2 is intense 

joy 

P. Resp.t2 = 6 [i.e., Intense joy] 

7 Computation of the new state by the 

algorithm  

 

 

 

Changet3 = 0 + [Av. Exp.t2 + (Av. Exp.t2 - 

P. Resp.t2)] 

Changet3 = 0 + [4 + (4 – 6)] 

Changet3 = 0 + [4 + (– 2)] 

Changet3 = 0 + 2 

8 The location moves two positions clockwise, 

starting from zero 

Changet3 = +2  
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9 Outcome: Avatar’s expression in trial 3 is 

low anger 

Av. Exp.t3 = 2 [i.e., Low anger] 

10 If participants’ response in trial 3 is moderate 

anger 

 

P. Resp.t3 = 1 [Moderate anger] 

11 Computation of the new state by the 

algorithm  

 

 

 

Changet4 = 0 + [Av. Exp.t3 + (Av. Exp.t3 - 

P. Resp.t3)] 

Changet4 = 0 + [2 + (2 – 1)] 

Changet4 = 0 + [2 + (1)] 

Changet4 = 0 + 3 

12 The location moves three positions 

clockwise, starting from zero 

Changet4 = +3  

13 Outcome: Avatar’s expression in trial 4 is 

Neutral 

Av. Exp.t4 = 3 [i.e., Neutral] 

 

Note. The table describes the events from three consecutive trials. Av. Exp.tx – the avatar’s 

expression in trial x. P. Resp.tx – participants’ response in trial x; Changetx – the change in position 

within the looped sequence, required for reaching the avatar’s state in trial x 

Noteworthy, our task has no specific input – specific output mapping; therefore, task habituation 

cannot explain performance improvements. The learning phase was structured as a self-paced 

seven alternative forced choice task (7AFC) and consisted of 300 trials divided to ten equal blocks, 

with 30 seconds rest breaks between each of them.  

The awareness test phase 

The main goal of this phase was to determine whether participants had acquired accurate 

unconscious and conscious knowledge about the equation (structural knowledge). To this end, we 

employed an extensively used subjective measure of awareness, called knowledge attribution 

(Dienes & Scott, 2005a; Fu et al., 2010, 2018; Norman et al., 2011, 2016, 2019; Waroquier et al., 
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2020) which was used in the context of a Process Dissociation Procedure (PDP; Jacoby, 1991; 

Destrebecqz & Cleeremans, 2001).  

The avatar’s seven facial expressions were randomly presented twice in both the inclusion and the 

exclusion tasks. If participants regulated the avatar to the target state on significantly more trials 

in inclusion vs. exclusion, we would conclude that they had acquired accurate judgement 

knowledge. Participants were required to indicate the subjective attribution of their response after 

each trial of the PDP. Under the form of a 4-alternative forced choice (4AFC) with Guess, 

Intuition, Rules, and Memory as response options. The Guess and Intuition response options denote 

that participants attribute their answer to unconscious structural knowledge (hereinafter implicit 

attributions) whereas the Rules and Memory response options denote that participants attribute 

their answer to conscious structural knowledge (hereinafter, explicit attributions). Participants 

were presented with explanations of these response options after each trial of the PDP (see Table 

3 below) and were asked to choose the option that they think best describes what they relied on 

when they gave the previous answer.  

Table 3. Definition of the Self-reported decision strategies 

Guess Your answer had no basis whatsoever. You could have just as well flipped a coin to 
decide. 

Intuition You felt that your answer was correct, but you have no idea why you felt this. That 
is, you had a feeling that by responding with that facial expression, you were 
regulating John in the Neutral state - but you do not know what that impression was 
based on. 

Rules Your answer was based on a rule (or on a fragment of a rule) that you know 
consciously, and you can describe if we ask. 

Memory Your answer was based on the fact that you consciously remember that by 
responding with that facial expression you were bringing John in the Neutral state. 
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In the following section, we present the specific sequence of instructions and tasks that were 

administered to the participants. 

2.3.2.2.4 Procedure 

In brief, participants were first asked to give their written informed consent prior to completing 

the experimental activities. Second, they were asked for their demographic information. Third, 

they completed the learning phase and, fourth, they completed the awareness test phase. The entire 

experiment lasted around 25 minutes. After the awareness test phase was completed, participants 

were thanked for their involvement in this research and were given the contact information of the 

principal investigator to address their potential questions. 

2.3.2.3 Results 

2.3.2.3.1 The operationalization of the variables for data analysis 

• Learning: Evidence of learning was considered if the number of On-target trials increased 

with practice (i.e., as the task progressed). 

• Unconscious judgement knowledge: We will draw the conclusion that participants had 

acquired unconscious judgement knowledge from the task in the situation in which they 

will not be able to generate a significantly lower number of On-target trials in the 

Exclusion than in the Inclusion task.  

• Unconscious structural knowledge: The existence of accurate unconscious structural 

knowledge is inferred if, in trials in which participants use implicit attributions (i.e., 

Guess and Intuition), they are able to accurately use their judgement knowledge (i.e., by 
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including significantly more responses that conform to the learned equation in inclusion 

than in exclusion; cf., e.g., Fu et al., 2010, 2018). 

In the following, we will first analyze whether participants acquired knowledge of the regularity. 

Then, we analyze whether they possess accurate judgement knowledge. Last, we assess whether 

their accurate judgement knowledge is based both on unconscious structural knowledge and on 

conscious structural knowledge. 

2.3.2.3.2 (H1) Evidence of learning 

The raw dataset generated for this study is available on the Center for Open Science repository 

(osf.io/q9bac). If participants acquired knowledge from the task, we would expect an increase of 

the number of On-target trials as the task progressed. A one-way repeated measures ANOVA 

revealed a significant effect of Block (1-10, within-subjects) on the number of On-target trials, 

F(9,114) = 38.33, p < .001, η2
p = .252. A follow up repeated measures t-test indicated that 

participants generated significantly more On-target trials in the 10th acquisition block (mproportion 

= .309, sd = .198) than in the 1st acquisition block (mprop. = .135, sd = .106), t(114) = -9.05, p < 

.001, Cohen’s d = 0.84. Altogether, these results clearly show that learning had occurred during 

the task (see the Figure 5, below).  
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Figure 5. The mean proportion of On-target trials (I.e., the trials in which participants managed 

to bring the emotional facial expression of the avatar in the Neutral state) generated across the 

acquisition blocks. Error bars depict 95% CIs. 

 

2.3.2.3.3 (H2) Evidence for accurate judgement knowledge 

To determine whether participants possessed accurate judgement knowledge, we compared the 

number of On-target trials from the inclusion task with those from the exclusion task. Thus, a 

mixed ANOVA assessed the effects of Instruction (within-subjects: inclusion vs. exclusion) and 

task order (between-subjects: inclusion–exclusion vs. exclusion–inclusion) on the number of On-

target trials generated in the test phase. We found a significant Instruction effect, F(1, 113) = 

107.01, p < .001, η2
p = .486, indicating that participants generated significantly more On-target 

trials in the inclusion (mprop. = .357, sd = .220) than the exclusion (mprop. = .104, sd = .098) task. 

We failed to detect either a significant Task order effect, F(1, 113) = .61, p = .435, η2
p = .005, or 
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a significant Instruction by Task order interaction effect F(1, 113) = .07 p = .794, η2
p = .005. These 

results suggest that participants acquired accurate judgement knowledge from the task.  

2.3.2.3.4 (H3) Evidence for accurate conscious and unconscious structural knowledge 

After having established that participants possessed accurate judgement knowledge, we now 

analyze to what extent it is based on unconscious and/or on conscious structural knowledge. 

Following established analytical strategies in IL research (Norman & Price, 2012; Ziori & Dienes, 

2015), we combined the Guess and Intuition response attributions to create Implicit attributions 

scores, and the Rules and Memory attributions to create the Explicit attributions scores. Roughly 

half of the total responses were based on Implicit attributions (in inclusion, mprop. = .528, sd = .306 

and in exclusion, mprop. = .465, sd = .368) and the other half were based on Explicit attributions (in 

inclusion, mprop. = .472, sd = .306 and in exclusion, mprop. = .535, sd = .368). 

We then analyzed the accuracy of participants’ judgement knowledge depending on the 

conscious/unconscious status of their structural knowledge. First, we assessed whether participants 

had accurate judgement knowledge when they reported that their responses were based on explicit 

structural knowledge. For responses based on Explicit attributions, a paired sample t test indicated 

that participants generated significantly more On-target trials in the inclusion (mprop. = .558, sd = 

.347) than the exclusion task (mprop. = .072, sd = .114), t(96) =13.02, p < .001, d = 1.32. The 

analyses above indicate that participants had accurate judgement knowledge on trials where they 

reported relying on conscious structural knowledge.  

We then assessed whether participants had accurate judgement knowledge when they reported that 

their responses were based on unconscious structural knowledge. For responses based on Implicit 
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attributions, a paired sample t test indicated that participants generated significantly more On-

target trials in the inclusion (mprop. = .200, sd = .209) than the exclusion task (mprop. = .130, sd = 

.156), t(87) = 2.88, p = .006,  dz = 0.31. Collectively, the analyses indicate that participants had 

accurate judgement knowledge on trials where they reported relying on unconscious structural 

knowledge – when they reported basing their answers on an intuition or, even when they indicated 

that they had chosen them at random. 

2.3.2.4 Discussion and bridge to the next study 

The present study is one of the first to propose a task for assessing the role of IL in interactive 

situations with socially relevant surface stimuli. Furthermore, by employing one of the most 

versatile measures of awareness that was used in the DSC research up until this point, we provide 

evidence that, similar with other well-established IL tasks (e.g., the AGL and SRT task), our (s-

e)DSC task indeed produces implicit knowledge, along with a significant amount of explicit 

knowledge”. In the paragraph below, we will offer a conceptual “bridge” – that is intended to 

connect the results presented in this study, to the foundation of the next one.  

In order to investigate the relationship between participants’ ability to implicitly learn social 

information and their level of autistic traits, we first need to develop a task that assesses IL in a 

manner that is as similar as possible to the way in which this process is supposed to function in 

real-life environments. To this end, the development of our version of the (s-e)DSC task is a 

notable contribution. However, it still preserves a significant sense of artificiality. Specifically, as 

opposed to the how we exchange information in real-life social interactions (i.e., spoken language, 

gestures, etc.), in the current version of the task, participants interacted with the avatar by means 

of mouse clicks. Furthermore, the sense of artificiality was also preserved in the current task as the 
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virtual avatar was represented as a miniature on a computer screen, thus diverging with the size of 

the real-life social partners. Fortunately, recent developments from the computer sciences offer a 

plethora of tools to address both of these limitations and thus, increase the external validity of our 

task even further. In sum, by capitalizing on the results presented in Study 2a, the purpose of the 

Study 2b was to develop a version of the (s-e)DSC task in an immersive environment that 

resembles natural social interactions and enables participants to engage in the interaction with the 

avatar by using naturally occurring means of communication such as language and gesture making. 

2.3.3 Study 2b: The Implementation of the (s-e)DSC task in Augmented Reality (Pilot 1) 

2.3.3.1 Introduction  

Our chief goal for this chapter was to develop a research tool, able to assess the functioning of IL 

upon socially relevant surface stimuli in a manner that is as close as possible to a genuine social 

interaction. For this reason, we undertook an interdisciplinary approach, and constructed our 

research paradigm in augmented reality (AR). The product of this development project will bear 

the name Augmented Reality for (socio-emotional) Dynamic Systems Control [AR4(s-e)DSC] 

task. Besides the specifications that were discussed in Study 2a, this task will also attempt to satisfy 

two additional requirements, as follows: 

• RQ1: Display a naturalistic presence of a social partner. As discussed above, there are 

relatively few IL paradigms that employ socially relevant stimuli. Moreover, in virtually 

all currently available research, testing is performed using standard PC displays - which 

hardly mimic social interactions in real environments. In contrast, we are going to 

maximize the external validity of our MR4ISL model by creating a Mixed Reality 
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experience in which participants will interact with a dynamic, photorealistic human 

character at real scale. 

• RQ2: Allow naturalistic means of interacting with the virtual partner. In most of the 

currently available assessment instruments, participants respond by means of WIMP-like 

interactions (i.e., user interfaces composed of windows, icons, menus, and pointing) - 

again, departing from the manner in which information is being exchanged in the real social 

environment. In contrast, our MR4ISL model will be equipped with speech processing 

capabilities and participants will be able to interact with the virtual interlocutor by voice 

input. 

2.3.3.1.1 Hypotheses 

Similarly with Study 2a, here we hypothesized that: 

• (H1) participants will learn the social contingencies embedded in the task; 

• (H2) learning will be implicit (i.e., participants will perform better than would be expected 

at the chance level even when they will declare knowledge unawareness).  

2.3.3.2 Methods 

2.3.3.2.1 Participants 

To determine the sample size needed to test H1, we looked at the learning effect of Study 2a. 

There, we observed that participants generated significantly more On-target trials in the 10th 

acquisition block (mproportion = .309, sd = .198) than in the 1st acquisition block (mprop. = .135, sd = 

.106), t(114) = -9.05, p < .001, Cohen’s d = 0.84. Thus, our power analysis indicated that a one-
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tailed test can detect a potential difference between two paired means (i.e., within-subjects design) 

that has an effect size of Cohen’s dz = 0.84 with a statistical power of 1-β = .80 and an α = .05 in 

a sample of 11 participants.  

Second, the sample size needed to test H2 was also based on our results from Study 2a. There, we 

observed an unconscious learning effect of Cohen’s d of 0.24. Thus, our power analysis indicated 

that a sample of 109 participants would be needed to test for this effect with a statistical power of 

1-β = .80 and an α = .05. However, for reasons that will be discussed in subsection 0, the data 

collection process was stopped after 60 (m.age = 19.8; sd = 0.81) psychology undergraduate 

students underwent this research in exchange for partial course credits.  

2.3.3.2.2 Apparatus 

We implemented MR4ISL 2.0 using the second-generation Microsoft HoloLens HMD with an 

ARMv8 architecture, 65GB UFS 2.1 flash and 4GB LPDDR4x DRAM memory and running 

Windows 10. We used Visual Studio 2019, Unity3D, Windows Software Development Kit for 

Windows 10 and Universal Windows Platform (UWP). Gesture recognition and voice commands 

were implemented with the technology built into the HoloLens SDK. The source code of our 

application is accessible for download at: http://www.eed.usv.ro/mintviz/projects/ISELMIR/.  

http://www.eed.usv.ro/mintviz/projects/ISELMIR/
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2.3.3.2.3 The task 

The training phase 

The purpose of this phase was to teach participants to interact with the holograms. First, to deploy 

the task, participants were instructed to pronounce the voice command “Go!”. Then, the participant 

was asked to look at their hands and notice their augmented version see the Figure 6 below.  

 

Figure 6. A screenshot of the MR4ISL application running on the HoloLens mixed reality 

headset, depicting a participant's real and virtual hands. 

Next, the participant was informed that the blue spheres placed above the index fingers would have 

to touch the holograms in order to interact with them. As illustrated in Figure 7, five blue cubes 

numbered 1 to 5 appeared on the scene. The participant was tasked to make them disappear by 

touching them in ascending order. 
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Figure 7. A view of a participant's hands as they go through the training phase of the 

experiment. 

The Acquisition phase 

This experiment followed the logic of Experiment 2a. Differently however, here, the cover story was that 

we investigate how colors help people regulate their emotions. Participants were informed that Kevin – 

their virtual partner - will change his emotional state only as a reaction to the colors that he is being 

shown and, that their most important task is to figure out Kevin’s preferences for colors aiming to 

regulate and maintain him in a calm emotional state in as many trials as possible. The acquisition 

task consisted in 10 blocks of 30 trials, and the interaction between participants and the task was 

mediated by the same abstract set of rules as the ones implemented in Study 2a. The succession of 

emotional facial expressions that were presented to the participants can be observed in Figure 8 below.  

 

Figure 8. The range of emotional facial expressions that can be displayed by the avatar during 

the experiment. 

The test phase 

Participants responded to a task consisting of 28 generation trials. On each, they were presented 

with one of Kevin's seven facial expressions and asked to indicate a response that would regulate 

his facial expression in the neutral state. Once the response was given, we evaluated the 

implicit/explicit nature of the structural knowledge which sustained that decision by taking 

subjective measures of awareness (Dienes & Scott, 2005; Scott & Dienes, 2008). The response 

options (Guess, Intuition, Rules, and Memory) appeared alongside their definitions (see Table 3) 
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in the center of the visual field in a scene emptied of any other graphic elements. Participants 

pronounced their response option. 

2.3.3.2.4 Procedure 

Initially, participants gave their written informed consent. The procedure started with the training 

phase, continuing with the acquisition phase, and finalizing with the testing phase. 

2.3.3.3 Results 

2.3.3.3.1 The operationalization of the variables for data analysis 

• Learning: Evidence of learning was considered if the number of On-target trials increased 

with practice (i.e., as the task progressed). 

• Unconscious structural knowledge: The existence of unconscious structural knowledge 

is inferred if, in trials in which participants use implicit attributions (i.e., Guess and 

Intuition), they are able to generate significantly more On-target trials than would be 

expected at the chance level. 

• Conscious structural knowledge: The existence of conscious structural knowledge is 

inferred if, in trials in which participants use explicit attributions (i.e., Rules and Memory), 

they are able to generate significantly more On-target trials than would be expected at the 

chance level. 

2.3.3.3.2 H1. Evidence of learning 

A one-way, repeated measures analysis of variance (one way ANOVA) revealed a significant 

effect of practice on the number of On-target trials, F(9, 59) = 2.04, p = .033, η2
p =.023, indicating 
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that participants improved their ability to control the avatar’s emotional state as the task progressed 

(see Figure 9 below).  

 

Figure 9. Depicts the average proportion of On-target trials (i.e., responses that regulated the 

avatar to the Neutral state), generated over the acquisition blocks. Error bars depict 95% Cis.  

 

2.3.3.3.3 H2) Evidence of IL 

Responses attributed to Guess, and Intuition were collapsed to create implicit attribution scores; 

responses attributed to Rules and Memory were collapsed to create explicit attribution scorers. To 

analyze the type of learning that was induced by our task, we compare the responses based on 

implicit or explicit response attributions with the accuracy that would be expected at the chance 

level. For this, we initially need to determine the chance level. Specifically, given that in each trial 

of the generation task, participants had 7 response options of which only one was correct, the 

chance level is set at .142. A one-sample t test indicated that responses attributed to conscious 

response bases (i.e., Rules and Memory) were significantly above chance level, t(55) = 5.57, p 
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<.001, d = −0.744. This result indicates that participants acquired a significant amount of explicit 

knowledge from the task. However, contrary to our expectation, another one sample t test indicated 

that responses attributed to unconscious structural bases (i.e., Guess and Intuition), were not 

significantly above chance level, t(56) = −1.95, p = .97, d = − 0.258, B h(0,.029) = 0.16. This result 

shows that participants did not acquire unconscious knowledge from the task. 

2.3.3.4 Discussion 

In this implementation, participants interacted with a holographic animated avatar that could 

display various facial expressions. Participants were informed that the study was investigating the 

manner in which colors help people regulate their emotions; and that their task is to get the avatar 

to display a neutral facial expression in as many trials as possible. Unbeknownst to them, a 

complex regularity mediated their interaction. The task induced only a minimal amount of explicit 

learning and – very importantly – failed to induce IL. To achieve our goals, it is necessary to 

continue developing the experimental design of the AR4(s-e)DSC task so that it will induce IL. 

The updated version of it, and our extended rationale for updating-it, will be presented in the 

experiment below.  

2.3.4 Study 2c: The Development of the AR4(s-e)DSC Task (Pilot v.2.0) 

2.3.4.1 Introduction 

The results of Study 2b are surprising because it employed a very similar method with the one 

presented in Study 2a yet failed to induce IL. The differences in participants’ response options 

were identified as a potential factor that could account for these different results. Specifically, in 

the first version (Study 2a, which successfully produced IL) participants interacted with the avatar 
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by indicating different facial expressions. In other words, they responded to facial expressions with 

other facial expressions. In contrast, in the second experiment (Study 2b) participants responded 

by choosing a specific color. 

Changing the way in which the participant responded (through indicating a color vs. a facial 

expression), likely primed different strategies and cognitive processes. More precisely, colors, in 

the context of a social interaction, do not carry inherent, intrinsic meaning. For example, there is 

no a priori reason to differentiate between the color yellow and the color green in the context of 

realistic social interactions. Conversely, the emotional tonality of our responses is naturally, in the 

ecological environment, relevant to the responses we will receive from the interaction partners. 

So, it is possible that, having to make a series of arbitrary associations between colors and 

expressions of the avatar, the participants resorted to explicit, analytical strategies for encoding 

these associations – for example, to have explicitly tested hypotheses related to the correct answers 

and to have relied predominantly on explicit memory for the retention of these responses. 

Motivated by our intriguing results and based on the previous arguments, we decided to edit 

participant response options and make them more similar to the ones of the Study 2a and re-run 

the study in AR. 

2.3.4.1.1 Hypotheses 

• (H1) participants will learn the social contingencies embedded in the task; 

• (H2) learning will be implicit (i.e., participants will perform better than would be expected 

at the chance level even when they will declare knowledge unawareness).  
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2.3.4.2 Methods 

2.3.4.2.1 Participants 

We estimated our sample size based on the same logic that was used in Study 2b. The data 

acquisition process was stopped after thirty undergraduate psychology students (mage = 19.54 years 

sd = 0.83) participated in exchange for partial course credits.  

2.3.4.2.2 Apparatus  

The apparatus used in this study is identical with the one described in Study 2b. 

2.3.4.2.3 The task 

The training, acquisition and test phases respected the same methodological specifications as the 

one described in Study 2b. Differently, here, to facilitate the acquisition of implicit knowledge, we 

adopted the cover story and response options of Study 2a and implemented in the Augmented 

Reality environment of Study 2b, see Figure 10 below.  

 

Figure 10. The animated avatar used in both implementations of the experimental model. In the 

initial implementation (left side), participants had the task of interacting with the avatar by 

showing it one of the displayed colors. In the improved implementation of the model (right side), 
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participants could interact with the avatar by showing it one emotional facial expression at a 

time 

2.3.4.2.4 Procedure 

The procedure of this experiment was identical with the one of Study 2b.  

2.3.4.3 Results 

2.3.4.3.1 The operationalization of the variables for data analysis 

The operationalization of the variables was exactly the same with the one presented in Study 2b.  

2.3.4.3.2 H1: Evidence of learning 

A repeated measures ANOVA revealed a significant effect of practice on the number of trials in 

which participants were able to regulate the facial expression of the avatar in the target state 

F(9,252) = 7.68, p < .001, η 2
p = 0.215. Also, consistent with our predictions, a within-subjects t-

test detected that participants regulated the avatar's facial expression to the target state in 

significantly more trials in the 10th acquisition block (m = 9.45) than in the first acquisition block 

(m = 4.38): t(28)= 4.24, p < .001, d = 0.79. These results indicate a learning process in which 

participants improved their ability to control the avatar's emotional state as the task progressed 

(see Figure 11 below).  
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Figure 11. Depicts the average proportion of On-target trials (i.e., responses that regulated the 

avatar to the Neutral state), generated over the 10 acquisition blocks. Error bars represent 95% 

CIs. 

2.3.4.3.3 H2: Evidence of IL 

Consistent with how we proceed in the previous two experiments, for each participant we 

aggregated test phase responses that were attributed to guessing and intuition to create implicit 

attribution scores. Similarly, we aggregated responses attributed to rules and memory to create 

explicit attribution scores. We observed that 48.8% of responses were assigned to implicit response 

bases, while 50.2% were assigned to explicit response bases. 

A one sample t-test indicated that responses assigned to conscious response bases (rules and 

memory) were significantly more accurate than would have been expected at the chance level, 

t(28) = 6.94, p < 0.001, d = 1.289. This result indicates that participants acquired a significant 

amount of explicit structural knowledge from the task. Furthermore, a second one sample t-test 

indicated that the accuracy of responses attributed to unconscious structural bases (guess and 
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intuition) was also significantly higher than the one that would have been expected at the chance 

level, t(28) = 3.32, p = 0.001, d = 0.62. This result indicates that, in addition to a significant amount 

of conscious structural knowledge, participants also acquired unconscious structural knowledge 

from the task; in other words, we can confirm that this knowledge improved their performance in 

the test phase in the absence of subjective awareness. 

2.3.4.4 Discussion and bridge to the next study 

In the current study, we developed a research instrument which evaluates the IL of cognitive 

structures instantiated by socially relevant surface stimuli in augmented reality. Participants 

interacted with a holographic avatar and were able to gradually increase their ability to control the 

interaction even in the circumstances in which they were not aware of the rules that structured it.  

On a final note (for this experiment), given that the current model of the task was able to induce 

both implicit and explicit learning, we can continue with our investigative approach and assess the 

relationships between the level of autistic traits and ISL. For this purpose, we carried out a separate 

study, as will be detailed in the subsections below. 

2.3.5 Study 2d: The Relation Between Autistic Traits and Learning in the AR4(s-e)DSC 

task 

2.3.5.1 Introduction 

Over the last three experiments, we developed a research instrument which successfully induced 

learning of cognitive structures instantiated by socio emotionally relevant surface stimuli in an 
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augmented reality setup – this experimental paradigm will allow us to pursue our theoretical 

objective for the present study:  

2.3.5.1.1 Objective and hypotheses 

We aim to assess the relationship between autistic traits and the implicit and explicit learning of 

cognitive structures instantiated by socio-emotional components in the AR4(s-e)DSC task. Thus, 

we hypothesized that: 

• H1: participants will learn the social contingencies embedded in the task; 

• H2: learning will be implicit (i.e., participants will perform better than would be expected 

at the chance level even when they will declare knowledge unawareness). 

• H3: participants’ levels of autistic traits will negatively predict their ability to - implicitly 

and explicitly - acquire structural knowledge from our AR4(s)DSC task. 

2.3.5.2 Method 

2.3.5.2.1 Participants 

To test these hypotheses, we set-up a Bayesian stopping rule, terminating the data collection 

process as soon as we observed good enough evidence for the third experimental hypothesis (if B 

< 3) or for its null model (if B < 0.33). This decision was taken after we have collected 122 datasets.  
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2.3.5.2.2 Self-report instruments 

Ritvo Autism and Asperger Diagnostic Scale (RAADS-14), is a 14-item screening questionnaire 

which measures the presence of symptoms on the autism spectrum (Eriksson et al., 2013). Our 

retroverted version revealed acceptable psychometric properties (Chronbach's α = 0.65).  

2.3.5.2.3 Apparatus 

We used two Microsoft HoloLens 2 headsets running the MR4ISL 2.0 application, respectively 

two laptops to administer the questionnaires that measured autistic traits. 

2.3.5.2.4 The task 

We measured the IL performance by using the previously developed mixed reality application (for 

details, see  

Study 2c: ) 

2.3.5.2.5 Procedure 

After offering their informed consent, participants completed the ISL measurement task using the 

MR4ISL app. As detailed in the previous experiment, participants first went through a 

familiarization/training phase, then an acquisition/learning phase, in which they regulated the 

emotional state of the avatar by indicating an emotional expression. In the test phase, participants 

were instructed to regulate the state of the avatar, while also reporting the level of awareness of 

the knowledge that allowed them to do so - by choosing one of the response basis attribution 

options of: Guess, Intuition, Rules or, Memory. After completing the AR4(s-e)DSC task, 

participants completed the RAADS-14, which assessed the level of their autistic traits. 
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2.3.5.3 Results 

2.3.5.3.1 The operationalization of the variables of data analysis 

For this project, we implemented a within-group quasi-experimental design with repeated 

measures. Next, we specify the operationalization of our variables; 

• The amount of task-induced learning: indexed by the number of trials in which 

participants were able to adjust the avatar to the neutral state during the acquisition phase.  

• Explicit learning: indexed by the difference between participants' accuracy in the test 

phase and chance level in trials in which they indicated that they based their responses on 

explicit decision strategies (rules and memory).  

• IL: indexed by the difference between participants' accuracy in the test phase and chance 

level on trials in which they indicated that they based their responses on implicit decision 

strategies (guessing and intuition). 

• The level of autistic traits: indexed by the total score obtained following the application 

of the RAADS-14 questionnaire. 

2.3.5.3.2 H1: Evidence of learning 

A repeated measures ANOVA revealed a significant effect of practice on the number of On-target 

trials F(121, 9) = 28.48, p < .001, η 2
p = 0.19. Also, a preplanned within-subjects t-test detected 

that participants regulated the avatar's facial expression to the target state in significantly more 

trials in the 10th acquisition block (m = 8.75; sd = 6.06) than in the first acquisition block (m = 

3.98; sd = 2.85): t(121)= 8.14, p < .001, d = 0.73. Consistent with the results obtained in  
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Study 2c: these results indicate that participants engaged in a learning process in which they 

improved their ability to control the avatar's emotional state as the task progressed (see  

Figure 12 below).  

 

Figure 12. Depicts the average proportion of On-target trials (i.e., responses that regulated the 

avatar to the Neutral state), generated over the acquisition blocks. Error bars represent 95% CIs. 

2.3.5.3.3 H2: Evidence of IL 

Participants had a level of accuracy above chance when they reported that they relied on 

subjectively implicit response bases (m = .18, sd = .159), t(117) = 2.63, p = .004, d = 0.242, as 

well as when they reported that they relied on subjectively explicit response bases, (m = .452, sd 

= .278), t(119) = 12.22, p < .001, d = 1.12  
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2.3.5.3.4 H3: The relations between autistic traits and learning in the AR4(s-e)DSC task 

We performed a simple linear regression with participants’ RAADS-14 scores as IV and their 

overall accuracy in the test phase as DV. The model was not significant, R2 = 0.000, F(1, 135) = 

0.061, p = .806. We found good enough evidence against a deficit associated with participants 

levels of autistic traits: b = -0.055%, SE = 0.223, t = -0.246, p = .806, B N (1.02: 0.51) = 0.092. Put 

differently, we found that a 1-point increase in the RAADS-14 score is associated with a 0.06% 

decrease in participants accuracy in the test phase; however crucially, this relationship was not 

statistically significant and, furthermore, our Bayesian analyses revealed that our data are 0.09 

times more likely to support the alternative than the null hypothesis – by convention, this base 

factor is regarded as providing good enough evidence for accepting the null hypothesis. 

2.3.5.4 Discussion and Bridge to the next study 

The results of our experiment confirm that the AR4(s-e)DSC application induces and can reliably 

measure implicit and explicit social learning. Importantly for the aims of this thesis, we collected 

data indicating the absence of an association between the level of autistic traits and IL of socio-

emotional information. To interpret these results, we suggest that performance in the DSC can be 

sustained by executive functions such as planning and working memory - because the very 

structure of this task allows for explicit hypothesis testing. The participant can voluntarily and 

consciously plan a certain response, which will turn out to be correct or not depending on the 

obtained feedback. Further, if the feedback indicates that the answer was correct, the participant 

can voluntarily choose to retain these answers (i.e., mappings between his response and the state 

of the dynamic system) for future interactions.  
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Motivated by our results and the suggestion above, we will next proceed to test the possible 

association between the functioning of IL and the levels of autistic traits in a research paradigm 

that – because it does not provide on-line feedback - does not allow for as many compensatory 

processing - that is, a socio-emotionally relevant (s-e)AGL task. 

2.4 Study 3: The Relation Between Autistic Traits and the Implicit and Explicit Learning 

in a (Socio-Emotional) Artificial Grammar Learning (s-e)AGL Task 

2.4.1 Introduction 

We suggested that a potential reason for which we did not observe our hypothesized effect in the 

previous study has to do with the very essence of the DSC task. Specifically, because participants 

interact with a live agent, they receive on-line feedback on their performance; In turn, this feedback 

is likely to offer the knowledge base for conscious hypothesis testing, supporting an optimal task 

performance in the case of both individuals with high or low levels of autistic traits. We suggested 

that the chances to observe a potential IL deficit in individuals with elevated levels of autistic traits 

would increase in a task that does not offer participants live feedback on their performance – such 

a task is the AGL paradigm. This last suggestion sets the context to formulate our objectives for 

the current study.  

In the present study we aim to provide a preliminary investigation of the relationship 

between autistic traits and the implicit and explicit learning of cognitive structures instantiated by 

socio-emotional components in a (socio-emotional) Artificial Grammar Learning [(s-e)AGL] task. 

To this end, we hypothesize that:  

• H1: participants will learn the social contingencies embedded in the task; 
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• H2: learning will be implicit (i.e., participants will perform better than would be expected 

at the chance level even when they will declare knowledge unawareness). 

• H3: participants level of autistic traits will negatively predict their ability to - implicitly 

and explicitly - acquire structural knowledge from our (s-e)AGL task. 

2.4.2 Methods 

2.4.2.1 Participants 

We ceased the data collection after we observed good enough evidence for (if B > 3) or against (if 

B < 0.33) for H3. In the present investigation, the stopping rule was satisfied after we have 

collected data from a total number of 282 participants (210 = female, 1 = prefer not to say; overall 

mage = 19.43, sd = 3.35).  

2.4.2.2 Self-report instruments 

The Subthreshold Autistic Traits Questionnaire (SATQ; Kanne, Wang, & Christ, 2012) is a 

self-report questionnaire where each of the 24 items is rated on a four-points Likert scale. In our 

sample, SATQ had an acceptable quotient of internal consistency (Crombach’s α = 0.71); 

participants’ mscore = 23.85 (sd = 8.26). 

2.4.2.3 Apparatus 

The stimuli used in the off-line version of the experiment were taken from the NimStim database 

(Tottenham et al., 2009), and the experiment was programmed in OpenSesame (Mathôt et al., 

2012). Because our agreement for using the NimStim stimuli prohibited us to display them over 

the internet, for the on-line version of the experiment, we selected a different set of emotional 
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facial expressions from Lundqvist et al. (1998) and the experiment was programed with Gorilla.sc 

(Anwyl-Irvine et al., 2020). For a graphic representation of the surface stimuli that were employed 

by the two versions of the task, see Figure 13 below.  

 

Figure 13. Depicts the emotional facial expressions taken from NimStim (Tottenham et al., 2009) 

and used in the off-line task (top row) respectively the emotional facial expressions taken from 

the KDEF (Lundqvist et al., 1998) and used in the on-line version of the task (bottom row). 

 

2.4.2.4 The task 

2.4.2.4.1 The acquisition phase 

We constructed our version of the (s-e)AGL task by adapting the letter strings from experiment 2 

of Scott and Dienes (2008). For a graphical representation of the original grammar, see a 

reconstruction in Figure 14 below.  
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Figure 14. Depicts a graphical representation of the two acquisition grammars that were used in 

this study.   

In our version of the task, letters were replaced by images of facial emotional expressions, thus, X 

was replaced by “Fear”, “M” by “Joy”, “R” by “Disgust”, “T” by “Calm”, “V” by “Anger” (for a 

graphic representation of a string, see Figure 15 below). 

  

Figure 15. Depicts a gramatical string constructed on the basis of Grammar A.  

Participants were exposed to 15 strings of facial expressions which appeared consecutively on the 

display. Each covered approximately 34 millimetres in width and 52 millimetres in height. Strings 

were between 5 and 9 facial expressions in length. Each string was repeated four times and stayed 

on the screen for 12 seconds. Participants were instructed to memorise the strings and were not 

informed of the presence of any underlying grammatical structure. Roughly half of the participants 

completed the acquisition phase with strings following Grammar A and, for counterbalancing 

purposes, the other half completed the acquisition phase with strings following Grammar B.  
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2.4.2.4.2 The test phase  

After completing the acquisition phase, participants were then informed that they will be presented  

a random succession of 20 strings which respected grammar A and 20 strings which respected 

grammar B. For each string, they had to indicate whether or not it follows the rules from the 

previous phase. Following each response, we took subjective measures of awareness by asking 

participants to choose one of the options below: 

Table 4. Definitions of response basis given to participants 

Guess You have no basis whatsoever for your response. You could have as well 

flipped a coin to decide. 

Intuition You feel that your response is correct, but you don’t know why it is correct. 

That is, you have an impression, a feeling, that the string obeys the rules or 

that it doesn’t obey the rules, but you don’t know what the basis of this feeling 

is. 

Familiarity You answered based on the fact that the string – or a part of it – is familiar (if 

you responded YES), or unfamiliar (if you responded NO), but you have no 

idea why it is familiar or unfamiliar for you. 

Rules Your response is based on a certain rule (or fragments of rules) that you have 

learned consciously and that you could describe, if you would be asked to. 

Remembering Your response is based on the fact that you consciously remember having seen 

this string, or fragments of it, earlier (if you responded YES); or you 

consciously remember not having seen the string or fragments of it (if you 

responded NO). 

Note. Definitions are similar adaptations based on the work of Dienes and Scott (2005), 

2.4.2.5 Procedure 

Participants were initially asked to give their informed consent. Subsequently, they completed the 

computerised version of the (s-e)AGL task (starting with the acquisition phase and finishing with 

the test phase). Lastly, they completed the SATQ. 
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2.4.3 Results 

2.4.3.1 H1: Evidence of learning 

A one sample t test revealed that participant’s accuracy in the test phase (m = 60.38%, sd = 12.198) 

was significantly higher than the one expected at chance (i.e., 50%), t(281) = 14.3,  p < .001, d = 

0.85 offering strong evidence that overall learning occurred in the task. 

2.4.3.2 H2: Evidence of IL 

A one sample t test revealed that participants’ accuracy for the trials where they indicated explicit 

response bases - i.e., responses based on Rules and Remembering attributions – (m = 65.86 sd = 

22.68) was significantly higher than chance level, t(253) = 11.14,  p < .001, d = 0.7, suggesting 

that explicit learning occurred in the task. Also, a one sample t test revealed that participants’ 

accuracy for the trials where they indicated unconscious response bases - i.e., responses based on 

Guess, Intuition and Familiarity attributions – (m = 57.88% sd = 13.24) was significantly higher 

than the one expected at the chance level, t(278) = 9.95,  p < .001, d = 0.595, offering solid ground 

to argue that IL also occurred in the task.  

2.4.3.3 H3: The relation between the autistic traits and learning in the (s-e)AGL task 

The distribution of priors for testing this hypothesis was estimated by employing the Ratio-of-

scales heuristic (Dienes, 2019). According to its rationale, we determined that our maximum 

regression slope can be modelled as: (100 – 50) / (72 – 0) = 0.7. Thus, similarly with the manner 

in which we proceeded in the previous study, for our purposes, we model a normal distribution 
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with the mean of half the maximum regression slope and a standard deviation as half of the mean. 

Finally, our Bayes factor was noted as B N(-0.35: 0.175). 

First, we performed a simple linear regression with participants’ SATQ scores as IV and their 

overall accuracy in the test phase as DV. The model was significant, R2 = 0.018, F(1, 280) = 4.997, 

p = .026. We found good evidence for a deficit associated with participants levels of autistic traits: 

b = -0.2%, SE = 0.087, t = -2.24, p = .026, BN(0.35: 0.175) = 3.98. Hence, we found that a 1-point 

increase in the SATQ score predicts a decrease of 0.2% in participants test phase accuracy. 

Moreover, our Bayesian analyses revealed that our data are almost 4 times more likely to support 

the alternative than the null hypothesis. By convention, this Bayes factor is good enough evidence 

to accept the experimental hypothesis.  

Crucially, because we did obtain evidence of a learning deficit associated with autistic traits, in 

the next lines we will analyse how varied levels of autistic traits differently affect implicit and 

explicit processing strategies. Thus, we performed a second, simple linear regression with 

participants’ SATQ scores as IV and their accuracy on implicit structural knowledge in the test 

phase as DV. The model was not significant, R2 = 0.002, F(1, 277) = 0.45, p = .502. We found 

good enough evidence against a deficit associated with participants levels of autistic traits: b = -

0.07%, SE = 0.098, t = -0.672, p = .502, BN(0.35: 0.175) = 0.215. Hence, we found that a 1-point 

increase in the SATQ score is associated with a 0.07% decrease in participants accuracy in the test 

phase on implicit structural knowledge; however crucially, this relationship was not statistically 

significant and, furthermore, our Bayesian analyses revealed that our data are only 0.2 times more 

likely to support the alternative than the null hypothesis – by convention, this Bayes factor is 

regarded as providing good enough evidence for accepting the null hypothesis. 
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Finally, we performed a third, simple linear regression with participants’ SATQ scores as IV and 

their accuracy on explicit structural knowledge in the test phase as DV. In the frequentist approach, 

the model was not significant, R2  = 0.011, F(1, 252) = 2.92, p = .089. However crucially, in a 

Bayesian approach, we found good enough evidence for a deficit associated with participants 

levels of autistic traits: b = -0.3%, SE = 0.178, t = -1.708, p = .089, BN(0.35: 0.175) = 3.01. Hence, we 

found that a 1-point increase in the SATQ score is associated with a 0.3% decrease in participants 

accuracy in the test phase on the basis of explicit structural knowledge. Furthermore, our Bayesian 

analyses revealed that our data are 3 times more likely to support the alternative than the null 

hypothesis. By convention, this is good enough evidence to accept the alternative hypothesis.  

2.4.4 Discussion 

In this study, we aimed to assess the relationship between the ability to implicitly and explicitly 

learn cognitive structures instantiated by socio-emotional components and the level of autistic 

traits in individuals from the general population. To assess participants’ levels of autistic traits, we 

administered a translated version of the SATQ (Kanne et al., 2012). To induce implicit and explicit 

learning of socioemotional components we modified a standard version of the AGL task.  

Our results indicate that the (s-e)AGL task induced both implicit and explicit learning. Concerning 

our theoretically relevant objective, our results confirmed our hypothesis. Specifically, in stark 

contrast compared to the findings from the literature, we found that a 1-point increase on the SATQ 

is associated with a 0.2% decrease on the overall test phase accuracy. We accepted the alternative 

hypothesis as our Bayesian analyses indicated that the collected data is 4 times more probable 

under it than under the null hypothesis. The fact that we collected evidence suggesting that, even 

in the general population, autistic traits predict a learning deficit in our version of the tasks, is 
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interpreted as a significant finding because it fundaments expectations that this effect size would 

be substantially higher in clinical samples.  

The scientific community holds that individuals with ASD do not have an IL deficit largely on the 

basis of evidence which failed to show a difference in the overall learning effect between 

individuals with and without an ASD (c.f., Foti et al., 2015). However, because our results 

massively contradict the mainstream conclusion of the literature, we set out to investigate the 

source of this deficit in a finer grained manner. Specifically, our analyses indicated that an increase 

level of autistic traits does not predict a decrease in the test phase on the basis of implicit structural 

knowledge. Instead, key, we found that a 1-point increase on the SATQ predicts a 0.3% decrease 

in the test phase accuracy on the basis of explicit structural knowledge. We interpret this result as 

participants with increased levels of autistic traits exhibiting a more pronounced tendency to rely 

on false rules than participants with lower levels of autistic traits. This interpretation is consistent 

both with the IL literature at large and, in particular, with a compensatory processing account of 

learning. 

2.4.4.1 Conclusion    

Two-hundred-and-eighty-two participants underwent the (s-e)AGL task in which letters were 

replaced by emotional facial expressions.  Participants acquired knowledge of the underling 

grammar, both explicitly and implicitly. Furthermore, their level of autistic traits (as assessed by a 

translated version of the SATQ) negatively predicted their overall accuracy in the test phase. 

Interestingly, this accuracy deficit seems to be caused by an unsuccessful compensatory processing 

strategy – by directing explicit learning processes over content that would probably be acquired 

better implicitly 
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3 GENERAL DISCUSSION AND CONCLUSIONS3 

3.1 An Overall Perspective on our Results Evaluating the Relation Between Autistic 

Traits and the Ability to Implicitly and Explicitly Acquire Cognitive Structures 

Instantiated by Socio-Emotional Components. 

In Study 2, Experiment 2d we confirmed that the level of autistic traits does not predict 

participants’ ability to implicitly or explicitly acquire knowledge from the AR4(s-e)DSC task. 

However, Study 3 reached a radically different conclusion in that our evidence confirmed that the 

level of autistic traits does predict an impairment in participants’ ability to acquire knowledge from 

the (s-e)AGL task and furthermore, that this impairment is caused by their responses based on 

explicit decision strategies. The next paragraph is intended to integrate our apparently 

incompatible results in a more coherent perspective.  

We start from the fact that IL is not a unitary construct. As previously suggested (Gebauer & 

Mackintosh, 2007; Salthouse et al., 1999), it is likely that implicit and explicit acquisition of 

knowledge in the AGL paradigm is supported by different cognitive processes than the implicit 

and explicit acquisition of knowledge in the DSC task. We further suggest that these different 
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constraints on the cognitive system determines that individuals with increased levels of autistic 

traits can engage in compensatory processing in some tasks, but not in others. Put differently, IL 

tasks that use complex socio-emotionally relevant surface stimuli, but give live performance 

feedback [such as the AR4(s-e)DSC], allow to all participants – including to those with more 

elevated levels of autistic traits – to engage in a learning style characterized by deliberate 

hypothesis testing. Case in point, the participant can voluntarily and consciously plan a certain 

response, which will turn out to be correct or not depending on the feedback that s/he receives. 

Further, if the feedback indicates that the answer was correct, the participant can voluntarily choose 

to retain these answers for future interactions. Thus, individuals with higher autistic traits could 

compensate for a potential deficit in the AR4(s-e)DSC by an increased engagement of conscious 

hypothesis testing processes. However, when a task employs complex, socio-emotionally relevant 

surface stimuli and, crucially, does not display live performance feedback – such as the (s-e)AGL, 

the learning deficit of individuals with increased levels of autistic traits becomes apparent. We 

speculate that this is because their natural tendency to engage in a learning process based on 

explicit hypothesis testing cannot iteratively improve their performance in the absence of feedback. 

On a final note, it seems that, just by evaluating the relationship between the subthreshold autistic 

traits and the implicit and explicit learning of socio emotional components we started to confirm 

the suggestion formulated by Zwart et al. (2017), that even individuals with increased autistic traits 

seem to be “too eager to learn”. We interpret this eagerness as a compensatory learning strategy 

under the form of explicit hypothesis testing that indeed seems to “adversely affect learning in 

complex social situations” (Zwart, et al., 2017, p. 9). 

In the introductory chapter we stressed that, while we are interested in developing clinical 

applications for individuals on the autistic spectrum, the focus of the work constituting this thesis 
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falls on the methodological contributions. Now, after we have presented and discussed our original 

research, we feel that some potential investigative directions will give the reader a general sense 

of how this work could progress to more applied topics for the ASD – we deal with this in the 

subsection below. 

3.2 Implications for Future Research 

If the IL deficit in ASD hypothesis will receive more substantial support in samples composed of 

individuals with a clinical diagnosis of an ASD, this line of research has the potential to shed some 

light on the cognitive mechanisms which might explain part of the social cognition impairments 

in ASD. More specifically, this line of research could help integrate findings on the abnormal 

sensory processing (Crane et al., 2009; Marco et al., 2011) with findings on the deficits in implicit 

theory of mind (Baron‐Cohen et al., 1985; Senju, 2012; Senju et al., 2009; White et al., 2011) in a 

more comprehensive cognitive model which might explain a significant part of the social 

difficulties of individuals with ASDs.   

3.3 An Overall Perspective on Our Contributions 

Here, we attempt to emphasize our contributions by following the silver lining of our thesis. 

Accordingly, we start by presenting our contribution from the first chapter. Thus, from a theoretical 

standpoint, the scientific literature began to shift away from viewing ASD as a group of disorders 

characterized by a series of deficits and toward viewing individuals with this disorder as being 

neurodiverse (Lewin & Akhtar, 2021). Anecdotally, this idea can be illustrated by viewing these 

individuals as being different, and not as having a deficit. However, despite the fact that his 

perspective started to gain traction in in recent years, numerous research domains still investigate 
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ASD in terms of their ‘deficits’. In fact, even the investigative niche of evaluating the functioning 

of IL in ASD still operates from this vantage point. To the best of our knowledge, our published 

work from the theoretical chapter (Costea, 2018a) is the first scientific work to conceptualize the 

functioning of IL in ASD through a compensatory processing framework.  

Moving further to the first experiment of this thesis, we remind the reader that here we attempted 

to develop the (s-e)SRT task. To the best of our knowledge, this is the first study to employ surface 

stimuli under the form of kinematic, realistic, facial expressions, bringing our research one step 

closer to the habitual mode of processing this information in the real social environment. 

The second study has a number of contributions. First, experiment 2a is the first DSC study to 

employ trial by trial subjective measures of awareness (i.e., response attributions and the PDP); 

thereby, offering a more precise perspective on the way in which explicit knowledge, as well as 

implicit knowledge, contribute to task performance in this paradigm. This contribution was 

extensively presented in our publication, (Costea et al., 2022). Second, by capitalizing on the 

results presented in Study 2a, the purpose of the Study 2b and 2c was to develop a version of the 

(s-e)DSC task in an immersive environment that resembles natural social contexts and enables 

participants to engage in an interactive learning context with a realistic human scaled avatar. Thus, 

to the best of our knowledge, out AR4(s-e)DSC task is the first experimental paradigm that 

successfully induced implicit and explicit learning in mixed reality. It is also, to the best of our 

knowledge, the first task to bypass traditional means of data collection (i.e., mouse clicks and key 

presses) and instead implement naturally occurring means of communication such as speech 

recognition and gesture making. These contributions were presented in our publications, Pamparău 

et al., (2021a; 2021b and 2022). Experiment 2d is the first study to conclusively show that the level 
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of autistic traits does not predict an IL impairment in the DSC task. Especially when coupled with 

our findings from the third study, this finding becomes important in generating a more holistic 

perspective on the types of tasks in which individuals with ASD might engage in compensatory 

processing.  

The third study, as presented in Costea (2018b) is the first experimental investigation to show that 

autistic traits can predict a learning deficit in the AGL task. Furthermore, besides providing results 

that are incompatible with the mainstream conclusion of the literature on the functioning of IL in 

ASD, this investigation offers tentative support to the compensatory processing framework in the 

relationship between IL and autistic traits.  Finally, we conclude by suggesting that our findings 

could foster novel research avenues into the role that IL might play in different conditions 

characterized by atypical social functioning, as presented in our publication, Jurchiș et al. (2022). 

In the subsection below we will attempt to draw our general conclusions. 

3.4 General Conclusion 

The overarching objective of the present thesis was to advance our knowledge of a potential IL 

deficit in ASD. In this regard, we began an ongoing multistage research project. In it, we first 

managed to adapt several classical IL task, so as to induce IL of socio-emotional regularities. Using 

these paradigms, we then found evidence for the absence of a predictive relationship between 

subclinical levels of autistic traits and IL assessed with a task that offered opportunities for using 

explicit learning strategies – i.e., the AR4(s-e)DSC task. However, we found evidence that autistic 

traits predict a learning deficit when the task better stimulated incidental, implicit, acquisition – 

the (s-e)AGL task. The results provide preliminary evidence for the hypothesis of a deficit in 

implicit social learning in ASD. Building on these findings, we proposed several future research 
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directions for progressing at the clinical level and testing an extended cognitive model of the social 

impairments in ASD. 
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