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Introduction

The main goal of representation theory of finite dimensional associative algebras is to understand

the structure of finite dimensional module categories, in order to classify all indecomposable modules

of a given algebra and all morphisms between them, up to isomorphism. In this thesis we consider path

algebras over tame quivers and our aim is to study and describe as explicitly as possible the category

of indecomposable modules over the path algebra. This category is equivalent to the category of rep-

resentations of the quiver, which in many situations is easier to study, hence we will mainly focus on

describing the latter.

Given a quiver representation, we choose some bases for the vector spaces associated to the vertices

and consider the linear maps restricted to these basis elements. We define the coefficient quiver of this

representation, in which the vertices are the basis elements and we have an arrow between two vertices

if the matrix coefficient corresponding to these two basis elements is non-zero. Coefficient quivers were

considered by Crawley-Boevey to deal with matrix problems and representations of quivers (see [5]).

In [27] Ringel proved that every indecomposable exceptional module, i.e. one without self-

extensions, has appropriate bases, so that the coefficient quiver of its representation is a tree. This

means that these representations, called tree representations, can be exhibited using 0− 1 matrices, such

that the number of non-zero entries is d − 1, where d is the length of the module. One of the steps in

the proof involves a choice of basis, which seems to depend on the underlying field and Ringel posed

the question whether there exist tree representations that are independent of this choice of basis, hence

being field independent. In this thesis we answer this question in the positive, in the case of tame quivers

of type Ẽ6 and D̃m.

Ringel later gave a simpler proof of his result, using covering theory in [29]. He also conjectured in

[28] that if d is a positive root of the corresponding Kac-Moody root system, then there is an indecom-

posable tree module with dimension vector d, and in the wild hereditary case, if d is imaginary, then

there should be more than one isomorphism class of tree modules having the same dimension vector.

This conjecture was proven in the case of the n-Kronecker quiver, where n ≥ 3 by Weist in [40],

where he also gave an explicit construction of the coefficient quivers of the indecomposable tree mod-

ules. This is an extension of the results presented in his dissertation by Fahr, see [10], where he considers

3-Kronecker representations with dimension vectors (d, e), where d < e < 2d. Later, Weist proved the

existence of more than one isomorphism classes of indecomposable tree modules for every imaginary

Schur root in [41], where he also stated explicit methods on how to construct these tree modules.

In [11] Gabriel gave a full list of indecomposable representations for Dynkin quivers using 0 −

1-matrices. All the given representations, except 4 of them, were tree representations. This list of

tree representations was completed by Crawley-Boevey in [5]. Regarding the Euclidean case, Mróz

gave a full list of the indecomposable tree representations for the quiver D̃4 in [22]. His results were

later generalized by the author and Szántó, giving a full list of tree representations for indecomposable

preprojective and preinjective modules for the quiver D̃m over a closed field k, see [19]. We mention
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Introduction

that only one of the representations was proven to be indecomposable, all the others were checked by

computer for fixed values of n, thus the checking was not complete.

In [14] Kussin and Meltzer described a method to explicitly determine the indecomposable prepro-

jective and preinjective representations of D̃m and Ẽ6 over an arbitrary field, but these representations are

not tree representations in general. Later, in [13] Kȩdzierski and Meltzer generalized these results and

gave a method for calculating indecomposable preprojective and preinjective representations of Ẽ8 over

any field and all indecomposable representations for algebraically closed fields. However these methods

don’t result in tree representations in general.

Using a computer generated proof, the author of this these together with Lénárt and Szöllősi man-

aged to describe explicitly, in a field independent manner, all the exceptional tree representations in the

case of the canonically oriented Ẽ6 quiver in [17], thus answering the question raised by Ringel in the

positive. We also conjectured that every tree representation of a Euclidean quiver is field independent.

We later gave a complete and general list corresponding to the exceptional modules over the path

algebra of the canonically oriented Euclidean quiver D̃6 and a method to obtain tree representations for

exceptionals in the canonically oriented general case D̃m from that list, see [16].

This thesis is split into 4 chapters, having the following structure.

Chapter I contains the basic notions and definitions, along with some well-known results concerning

the representation theory or finite dimensional associative algebras, which we will use throughout the

remainder of the thesis. Our main references for this chapter were the books [35] and [36].

In Chapter II, based on the article [17] and its appendix [15] we present a complete and general list

of tree representations corresponding to the exceptional modules over the path algebra of the canonically

oriented Euclidean quiver ∆(Ẽ6). In Definition II.2.1 we introduce the notion of field independency for

modules and for short exact sequences. Lemmas II.2.2 and II.2.4 and Proposition II.2.3 constitute the

theoretical elements of the techniques used to prove the correctness of the tree representations presented

in Section II.3. We then present the outline of the methods used in obtaining field independent tree

representations of exceptional modules for the quiver ∆(Ẽ6). The main result of this chapter is Section

II.3, where we list field independent tree representations for every indecomposable exceptional module

over the path algebra of the quiver ∆(Ẽ6).

In Chapter III, based on the article [16] and its appendix [15], besides giving a complete list of

tree representation for the exceptional modules over the path algebra of the canonically oriented quiver

∆(D̃6), we also describe a method in Section III.2 for constructing tree representations for ∆(D̃m), where

m ≥ 4 using tree representations of ∆(D̃6).

Finally, in Chapter IV, based on the article [18] we verify computationally a conjecture on the

field independence of tree representations of Euclidean quivers of type D̃4, D̃5 and Ẽ6, with dimension

vector bounded by the minimal radical vector of the quiver. This includes a large class of exceptional

representations, in particular all the regular non-homogeneous exceptionals.

Some of the results of this thesis have been presented at various national and international confer-

ences.
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Chapter I

Preliminaries

In this chapter we introduce the basic notions, along with some well-known results concerning the

representation theory of associative algebras.

I.1 Quivers and modules

I.2 Auslander–Reiten theory

I.3 Finite and infinite representation type quivers

I.4 Extensions of quiver representations

I.5 Tree representations and Schofield sequences
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Chapter II

Tree representations of the quiver Ẽ6

In this chapter we will give a complete and general list of tree representations corresponding to

the exceptional modules over the path algebra of the canonically oriented Euclidean quiver Ẽ6. The

proof (involving induction and symbolic computation with block matrices) was partially generated by a

purposefully developed computer software and is available on arXiv as an appendix. All the representa-

tions listed remain valid over any base field, answering a question raised by Ringel in [27]. The results

presented here were published in the article [17] and its appendix [15].

II.1 Basic notions and definitions

Consider the canonically oriented Euclidean quiver of type Ẽ6, denoted from now on by ∆(Ẽ6),

having the following shape:

∆(Ẽ6) :

7

6

1 2 3 4 5

Therefore, we have ∆(Ẽ6)0 = {1, . . . , 7} for the set of vertices and ∆(Ẽ6)1 =

{(1, 2), (2, 3), (4, 3), (5, 4), (6, 3), (7, 6)} for the set of arrows.

The Euler and Tits form in this case is

〈x, y〉 =

7∑
i=1

xiyi − x1y2 − x2y3 − x4y3 − x5y4 − x6y3 − x7y6

q
∆(Ẽ6)(x) =

7∑
i=1

x2
i − x1x2 − x2x3 − x4x3 − x5x4 − x6x3 − x7x6

Note that the Tits form is independent of the orientation of the quiver and it is positive semi-definite

with radical Zδ, where δ = (1, 2, 3, 2, 1, 2, 1).

II.2 Proving the field independent tree module property

In this part we describe the method used to prove the tree module property for every representation

given in the lists in Section II.3 both from the theoretical and practical perspective. The method presented
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Chapter II. Tree representations of the quiver Ẽ6

here is general (in the sense that it could be applied to any tame quiver), so as stated before, Q denotes

an arbitrary tame quiver and k an arbitrary field.

We will use the “field independent” qualifier in relation to representations and short exact sequences

in the following precise manner:

Definition II.2.1. Let M ∈ mod kQ be an (exceptional) indecomposable module. We say that:

(1) The module M is field independent (exceptional) indecomposable if in the corresponding repre-

sentation M = (Mi,Mα) all the elements in the matrices Mα are either 0 or 1 and for any field k′

if we consider a module M′ ∈ mod k′Q such that dimM = dimM′ and every matrix M′α from the

corresponding representation M′ = (M′i ,M
′
α) is formally the same as Mα (for all arrows α), then

M′ is also (exceptional) indecomposable in mod k′Q.

(2) The module M has the field independent tree property if it is a tree module in mod kQ and it is also

a field independent (exceptional) indecomposable module (i.e. if we consider the corresponding

representation with formally the same matrices over any other field k′, we still get an exceptional

indecomposable tree module in mod k′Q).

(3) A short exact sequence of the form

0 Y Z X 0
f g

is field independent (with X,Y,Z ∈ mod kQ) if all the elements in the matrices of the represen-

tations X, Y and Z are either 0 or 1, all the elements in the matrices fi and gi of the embedding

f = ( fi)i∈Q0 respectively the projection g = (gi)i∈Q0 are either 0 or 1 or −1 and in any field k′ the

sequence 0 Y ′ Z′ X′ 0
f ′ g′

is also exact, where X′,Y ′,Z′ ∈ mod k′Q,

f ′ : Y ′ → Z′, g′ : Z′ → X′ correspond in order to X, Y , Z, f : Y → Z, g : Z → X with the

respective dimension vectors unchanged and with all matrices (both from the representations and

from the morphisms) being formally the same when considering them over k′ instead of k.

The following proposition and lemmas constitute the theoretical elements of the technique used to

prove the formulas in Section II.3 in a field independent way:

Lemma II.2.2. For a module M ∈ mod kQ we have M is exceptional indecomposable if and only if

dimk End(M) = 1 and dimM 6= δ.

Proposition II.2.3. Let X,Y, X′,Y ′ ∈ mod kQ be indecomposable modules. If M ∈ mod kQ such that

(a) there is an exceptional Z ∈ mod kQ such that (X,Y) and (X′,Y ′) are Schofield pairs associated to

Z,

(b) there exist two short exact sequences

0 Y M X 0
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II.2. Proving the field independent tree module property

and

0 Y ′ M X′ 0,

(c) X � X′ or Y � Y ′,

(d) dimk Ext1(X,Y) = dimk Ext1(X′,Y ′) = 1

then M is exceptional indecomposable.

Lemma II.2.4. Let X,Y,Z ∈ mod kQ and f = ( fi)i∈Q0 , g = (gi)i∈Q0 families of k-linear

maps fi : Yi −−−−→ Zi, gi : Zi −−−−→ Xi. Then there is a short exact sequence

0 Y Z X 0
f g

if and only if the following conditions hold (we identify the

maps fi and gi with their matrices in the canonical basis):

(a) the matrices fi (respectively gi) have maximal column (respectively row) ranks,

(b) ft(α)Yα = Zα fs(α) and gt(α)Zα = Xαgs(α), for all α ∈ Q1,

(c) gi fi = 0, for all i ∈ Q0,

(d) dimZ = dimX + dimY.

Lemma II.2.5. If X,Y ∈ mod kQ are indecomposable modules such that X is regular and Y is preprojec-

tive, or X is preinjective and Y is regular or both of them are preprojectives (or preinjectives) and there

is a path in the Auslander–Reiten quiver from the vertex corresponding to Y to the vertex corresponding

to X, then dimk Ext1(X,Y) = −〈dimX, dimY〉.

We are now ready to describe the process of proving the formulas from Section II.3.

The process of proving the field independent tree property

Suppose we have formulas defining families of matrices (M(n)
α )α∈Q1 depending on some n ∈ N. The

elements of the matrices M(n)
α are either 0 or 1, so they can be considered over an arbitrary field k. We

want to prove that the representation of the quiver Q given as M = M(n) = (M(n)
i ,M(n)

α ) has the field

independent tree property (where the dimension of each k-space M(n)
i is in accordance with the column

and row sizes of the matrices M(n)
α , thus the formulas also determine dimM). Suppose that dimM is

such that it coincides with the dimension vector of an exceptional indecomposable (see Lemma II.2.2).

Suppose also that the number of elements equal to 1 in the matrices M(n)
α is exactly `(M)−1. So, in order

to prove the field independent tree module property, we need only to show that M is field independent

indecomposable. We may use one of the following lines of reasoning:

(1) Prove that dimk End(M) = 1 in any field k and use Lemma II.2.2. This may be done by writing

the matrix A of the homogeneous system of linear equations defining End(M) and showing that

the corank of A is one (i.e. the solution space is one dimensional). In order to compute the rank

of A, it must be echelonized (brought to row echelon form) using elementary operations on rows
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Chapter II. Tree representations of the quiver Ẽ6

and/or columns in a “field independent way”. This means that every single elementary operation

used in the process of echelonizing A must be such that the elements in the resulting matrix are

either 0, 1 or −1 and the result is exactly the same if performed in any field k. For example if in

the case of the matrix

1 −1

1 1

 we perform the elementary row operation r2 ← r2 − r1, then we

get

1 −1

1 1

 r2←r2−r1
−−−−−−−→

1 −1

0 2

 if performed in R, or

1 −1

1 1

 r2←r2−r1
−−−−−−−→

1 −1

0 0

 if performed in

Z2. Hence it has different ranks if considered over different fields. A crucial element of this proof

is to ensure something like this never happens, but the result of every single elementary operation

performed is formally the same matrix, independently of the field it is considered in.

(2) Perform an induction on n, making use of Proposition II.2.3. First prove the formula for the

starting values of n using method (1) above (typically for n = 0, but the structure of the block

matrices depending on n might require to make additional proofs for small values of n). Then

suppose the formula gives field independent exceptional indecomposables M(n′) = (M(n′)
i ,M(n′)

α )

for all n′ < n. Find two pairs of modules (X,Y) and (X′,Y ′) conforming to all requirements of

Proposition II.2.3, such that any of these four representations is obtained either using formula M(n′)

for some n′ < n (or some permuted version of it) or some other formulas proved already to give

field independent exceptional indecomposables. If the quiver Q presents some symmetries, then

a permuted version of the formula M̃(n′) = (M̃(n′)
i , M̃(n′)

i→ j) may also be used in the induction step,

where (M̃(n′)
i )i∈Q0 = (M(n′)

σ(i))i∈Q0 and (M̃(n′)
i→ j)(i→ j)∈Q1 = (M(n′)

σ(i)→σ( j))(i→ j)∈Q1 for some permutationσ.

One has to construct here the two field independent short exact sequences of the form 0 → Y →

M(n) → X → 0 and 0→ Y ′ → M(n) → X′ → 0 in order to show their existence. Once the matrices

of the morphisms are constructed, Lemma II.2.4 can be used to prove that indeed these form short

exact sequences in any field k. We emphasize that conditions (a), (b) and (c) from Lemma II.2.4

must be verified in a “field independent way”: the rank of the matrices must be checked using field

independent echelonization as explained before, and the result of the matrix arithmetic operations

used in (b) and (c) must be formally the same, independently of the underlying field.

(3) Perform a direct proof, making use of Proposition II.2.3. Use two pairs of modules (X,Y) and

(X′,Y ′) conforming to all requirements of Proposition II.2.3, such that any of these four repre-

sentations are obtained by some formulas showed already to give field independent exceptional

indecomposables, and prove the existence of the two field independent short exact sequences

0 → Y → M(n) → X → 0 and 0 → Y ′ → M(n) → X′ → 0 by constructing them using Lemma

II.2.4 in the “field independent way”.

The proof process described is extremely cumbersome, time-consuming and error-prone if per-

formed by a human, therefore we have implemented a proof assistant software to help us in carrying

it out. The proof assistant can perform any of the steps (1), (2) or (3) based on some input given in a

LATEX file. The input data consists of the formulas (M(n)
α )α∈Q1 defining the representations and the choice

for the short exact sequences required in (2) and (3), together with the families of matrices defining
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II.2. Proving the field independent tree module property

the morphisms. All this data must be given in a LATEX document with a well-defined structure, in or-

der for the proof assistant to be able to parse it and extract the relevant information. The matrices are

given either as “usual matrices” (of fixed size, with elements equal to either 1, −1 or 0), or symbolic

block-matrices of variable size, depending on the parameter n ∈ N. Every block-matrix is built using the

following three types of blocks: zero block of size n1 × n2, the identity block In and a block denoted by

En having ones on the secondary diagonal and zeros everywhere else (note that E2
n = In in every field).

We have used the document processor LYX to edit the input document and export it to LATEX (in this way

ensuring a syntactically correct LATEX file).

These are the steps performed by the software:

• It reads and stores the data M(n) = (M(n)
i ,M(n)

α ) defining every representation of M(n).

• Computes the total number of elements equal to 1 in the matrices M(n)
α and compares it against

`(M(n)) to ensure their number is exactly `(M(n)) − 1.

• If instructed to perform along method (1), it computes the matrix A of the homogeneous system

of linear equations defining End(M(n)) and shows that it can be brought to echelon form by per-

forming exactly the same elementary operations resulting in exactly the same matrix (formally)

if considered in any field. In this way it ensures that the corank of A is one independently of the

field. Note that it can perform in this mode only with formulas where n has any given concrete

value.

• If instructed (and given sufficient data) it performs all checks required by methods (2) or (3) based

on Proposition II.2.3. First it checks in the list provided in [39] to see that both pairs (X,Y) and

(X′,Y ′) are Schofield pairs associated to the exceptional indecomposable Z ∈ mod kQ, such that

dimZ = dimM(n), then verifies conditions (c) and (d) from Proposition II.2.3. It is ensured that

the requirements of Lemma II.2.5 are met and condition (d) is validated. Finally, it ensures the

existence of two short exact sequences of the form 0 Y M(n) X 0
f g

and 0 Y ′ M(n) X′ 0
f ′ g′

by reading the matrices of the morphisms f ,

f ′, g and g′ and showing that every elementary operation and block-matrix arithmetic may be

performed in a field independent way in order to fulfill every requirement of Lemma II.2.4.

Every single operation performed by the proof assistant software is written to an output LATEX document

(this is the rather lengthy generated appendix, [15]). Everything (including the elementary operations

and the details of computing the block matrix sums and products) is output a detailed step-by-step

fashion as if written “by hand”. In this way one does not have to believe in the correctness of the

implementation, because the complete proof is “on paper” and every single step may be crosschecked

and verified by a human mathematician.

II.2.1 Notations

The matrices given in Section II.3 are written using blocks of various sizes. The row and column

size of blocks are given by expressions of the form an + b, where n ∈ N is a parameter, a is a given

8



Chapter II. Tree representations of the quiver Ẽ6

non-negative integer, b is a given integer. Every matrix here is composed either of identity blocks or

rectangular zero blocks. We denote the identity block simply by 1 and the zero block by 0. The row

and column sizes will be written as “decorations” along the border of the matrix, like in the following

example:



2n+2 2n+2

2n+2 1 0

n+1 0 0

2n+2 0 1
n 0 0


where this matrix is of size (6n+5)× (4n+4) and is composed of two identity blocks (each having 2n+2

rows and columns) and six zero blocks with various compatible sizes.

The matrices may be given using arithmetic expressions containing symbolic block-matrices and

identifiers referencing other matrices. Possible operations are: addition, direct sum defined as A ⊕ B =A 0

0 B

 and a special kind of “sum” denoted by � which adds the right hand side matrix into the upper

right corner of left hand side matrix. Formally: if A ∈ Mm,n(k) and B ∈ Mm′,n′(k) are matrices such that

m′ ≤ m and n′ ≤ n, then A � B = A +

0 B

0 0

, where

0 B

0 0

 ∈ Mm,n(k) is obtained by adding as many

zero columns to the left of B and as many zero rows beneath it to make the resulting matrix of the same

size as the matrix A. This operation is useful to insert nonzero elements into the upper right part of a

matrix obtained by direct sum.

Representations are given as families having similar block-matrices. For example P(6n + 4, 5) de-

notes such a family of representations (where n ∈ N). Sometimes one needs the previous or next value

of n when writing matrices in terms of others, therefore we need to substitute n. Substitution is denoted

like P(6n + 4, 5)[n 7→ n − 1], which in this case is the module P(6n − 2, 5) for any fixed value of n.

For a representation Z = (Zi,Zα) we only give the matrices Zα. For a module Z and an arrow α ∈ Q1

we denote the matrix Zα by MZ
α . In the case when we give all the matrices “by value” a representation

will be written like this (with di ∈ N for i ∈ Q0 and with the matrices MZ
α in this specific order):

dimZ = (d1, d2, d3, d4, d5, d6, d7)

Z =
(
MZ

1→2, MZ
2→3, MZ

4→3, MZ
5→4, MZ

6→3, MZ
7→6

)
.

There is another notation, when writing the matrices with expressions using the operations ⊕ and �,

referencing other matrices of representations. In this case there are always two other representations Y ,

X and a specific arrow α′ such that the matrices of Z can be given as MZ
α = MY

α ⊕ MX
α for all α 6= α′,

and MZ
α′ =

(
MY
α′ ⊕ MX

α′

)
� M for a matrix M containing exactly one element equal to 1 and all the other

elements being zero. Therefore we give the representation Z in the following form (specifying the matrix
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II.3. Tree representations of the quiver ∆(Ẽ6)

M):

dimZ = (d1, d2, d3, d4, d5, d6, d7)

MZ
α = MY

α ⊕ MX
α , for α 6= α′

MZ
α′ =

(
MY
α′ ⊕ MX

α′

)
� M.

For small values of n we may give some representations concretely (the general formula may work

only for n > 0 or n > 1 in some cases).

II.3 Tree representations of the quiver ∆(Ẽ6)

In this section we list the formulas describing the matrices of the representations corresponding to

exceptional modules: the preprojective indecomposables (Subsection II.3.1), the preinjective indecom-

posables (Section II.3.2) and the regular non-homogeneous indecomposables with dimension vector

below δ (Subsection II.3.3). For convenience, at the beginning of each of the following subsections,

we present a graphical representation of the corresponding part of the Auslander–Reiten quiver. Blue

arrows show the existence of a so-called irreducible monomorphism, while red arrows represent irre-

ducible epimorphisms between suitable indecomposable modules (for details see [3]).

In the case of preprojectives and preinjectives the representations can be grouped in families of the

form P(6n + r, i) respectively I(6n + r, i), where i ∈ {1, . . . , 7} and r ∈ {0, . . . , 5}. Representations belong-

ing to the same family have similar dimension vectors and matrices, depending only on the parameter

n ∈ N. The matrices listed here are rigorously proved to be correct in the appendix to this article ([15])

using the method described in Subsection II.2.

II.3.1 The preprojective indecomposable representations

The preprojective indecomposable modules correspond to the vertices of the preprojective part of

the Auslander–Reiten quiver, as shown in Figure II.1.

Due to the symmetry of the quiver ∆(Ẽ6) we give only the families of representations of the

form P(m, 1), P(m, 2) and P(m, 3). For all the other representations we can use the permutations

σ = (1, 5)(2, 4) and τ = (1, 7)(2, 6) to write them in terms of P(m, 1), P(m, 2) and P(m, 3) in the following

way (m ≥ 0):

dimP(m, 5) =
(
dσ(i)

)
i∈∆(Ẽ6)0

and dimP(m, 7) =
(
dτ(i)

)
i∈∆(Ẽ6)0

,

where dimP(m, 1) = (di)i∈∆(Ẽ6)0
,

dimP(m, 4) =
(
dσ(i)

)
i∈∆(Ẽ6)0

and dimP(m, 6) =
(
dτ(i)

)
i∈∆(Ẽ6)0

,

where dimP(m, 2) = (di)i∈∆(Ẽ6)0
for the dimension vectors, respectively

P(m, 5) =
(
Mσ(i)→σ( j)

)
(i→ j)∈∆(Ẽ6)1

and P(m, 7) =
(
Mτ(i)→τ( j)

)
(i→ j)∈∆(Ẽ6)1

,

10
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0
0

1 1 1 0 0

P(0, 1)

0
0

0 1 1 0 0

P(0, 2)

0
0

0 0 1 0 0

P(0, 3)

0
0

0 0 1 1 0

P(0, 4)

0
0

0 0 1 1 1

P(0, 5)

0
1

0 0 1 0 0

P(0, 6)

1
1

0 0 1 0 0

P(0, 7)

0
1

0 0 1 1 0

P(1, 1)

0
1

1 1 2 1 0

P(1, 2)

0
1

0 1 2 1 0

P(1, 3)

0
1

0 1 2 1 1

P(1, 4)

0
1

0 1 1 0 0

P(1, 5)

1
1

0 1 2 1 0

P(1, 6)

0
0

0 1 1 1 0

P(1, 7)

1
1

0 1 2 1 1

P(2, 1)

1
2

0 1 3 2 1

P(2, 2)

1
2

1 2 4 2 1

P(2, 3)

1
2

1 2 3 1 0

P(2, 4)

1
1

1 1 2 1 0

P(2, 5)

0
1

1 2 3 2 1

P(2, 6)

0
1

1 1 2 1 1

P(2, 7)

0
1

1 2 2 1 0

P(3, 1)

1
2

1 3 4 2 1

P(3, 2)

1
3

1 3 5 3 1

P(3, 3)

1
2

1 2 4 3 1

P(3, 4)

0
1

0 1 2 2 1

P(3, 5)

1
3

1 2 4 2 1

P(3, 6)

1
2

0 1 2 1 0

P(3, 7)

. . .

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

The preprojective part of the Auslander–Reiten quiver ∆(Ẽ6)

where P(m, 1) =
(
Mi→ j

)
(i→ j)∈∆(Ẽ6)1

,

P(m, 4) =
(
Mσ(i)→σ( j)

)
(i→ j)∈∆(Ẽ6)1

and P(m, 6) =
(
Mτ(i)→τ( j)

)
(i→ j)∈∆(Ẽ6)1

,

where P(m, 2) =
(
Mi→ j

)
(i→ j)∈∆(Ẽ6)1

for the matrices.

In what follows we list the tree representations for preprojective families of the form P(m, 1), P(m, 2)

and P(m, 3):

dimP(6n, 1) = (n + 1, 2n + 1, 3n + 1, 2n, n, 2n, n)

P(6n, 1) =

( 
n+1

n+1 1
n 0

,

2n+1

2n+1 1
n 0

,


2n

2n 1

n+1 0

 +


2n

n+1 0

2n 1

,


n

n 1
n 1

,


2n

n+1 0

2n 1

,


n

n 0
n 1

 )

dimP(6n + 1, 1) = (n, 2n, 3n + 1, 2n + 1, n, 2n + 1, n)

P(6n + 1, 1) =

( 
n

n 1
n 1

,


2n

2n 1

n+1 0

 +


2n

n+1 0

2n 1

,

2n+1

2n+1 1
n 0

,


n

n 1

n+1 0

,

2n+1

n 0

2n+1 1

,


n

n+1 0
n 1

 )

11
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dimP(6n + 2, 1) = (n, 2n + 1, 3n + 2, 2n + 1, n + 1, 2n + 1, n + 1)

P(6n + 2, 1) =

( 
n

n 1
n 1

1 0

,

2n+1

2n+1 1

n+1 0

 +


2n+1

n+1 0

2n+1 1

,

2n+1

2n+1 1

n+1 0

,

n+1

n+1 1
n 0

,

2n+1

n+1 0

2n+1 1

,

n+1

n 0

n+1 1

 )

dimP(6n + 3, 1) = (n + 1, 2n + 2, 3n + 2, 2n + 1, n, 2n + 1, n)

P(6n + 3, 1) =

( 
n+1

n+1 0

n+1 1

,

2n+2

n 0

2n+2 1

,

2n+1

2n+1 1

n+1 0

,


n

n 1

n+1 0

,

2n+1

2n+1 1

n+1 0

 +


2n+1

n+1 0

2n+1 1

,


n

n 1
n 1

1 0


)

dimP(6n + 4, 1) = (n + 1, 2n + 1, 3n + 3, 2n + 2, n + 1, 2n + 2, n + 1)

P(6n + 4, 1) =

( 
n+1

n+1 1
n 0

,

2n+1

2n+1 1

n+2 0

,

2n+2

2n+2 1

n+1 0

 +


2n+2

n+1 0

2n+2 1

,


n 1

n 1 0

1 0 1

1 0 0
n 1 0


,


2n+2

n+1 0

2n+2 1

,

n+1

n+1 0

n+1 1

 )

dimP(6n + 5, 1) = (n, 2n + 2, 3n + 3, 2n + 2, n + 1, 2n + 2, n + 1)

P(6n + 5, 1) =

( 
n

n 1

2 0
n 1

,

2n+2

2n+2 1

n+1 0

 +


2n+2

n+1 0

2n+2 1

,

2n+2

2n+2 1

n+1 0

,

n+1

n+1 1

n+1 0

,

2n+2

n+1 0

2n+2 1

,

n+1

n+1 0

n+1 1

 )

dimP(6n, 2) = (2n, 4n + 1, 6n + 1, 4n, 2n, 4n, 2n)

P(0, 2) =
(
0,

[
1
]
, 0, 0, 0, 0

)
MP(6n,2)
α = MP(6n+5,1)[n7→n−1]

α ⊕ MP(6n,1)
α , for α 6= (7→ 6)

MP(6n,2)
7→6 =

(
MP(6n+5,1)[n7→n−1]

7→6 ⊕ MP(6n,1)
7→6

)
�


1 n−1

n−1 0 0

1 1 0

, n > 0

dimP(6n + 1, 2) = (2n + 1, 4n + 1, 6n + 2, 4n + 1, 2n, 4n + 1, 2n)

P(1, 2) =

[1] ,
10

 ,
01

 , 0,
11

 , 0


MP(6n+1,2)
α = MP(6n,1)

α ⊕ MP(6n+1,1)
α , for α 6= (7→ 6)

12
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MP(6n+1,2)
7→6 =

(
MP(6n,1)

7→6 ⊕ MP(6n+1,1)
7→6

)
�


1 n−1

n−1 0 0

1 1 0
n 0 0

, n > 0

dimP(6n + 2, 2) = (2n, 4n + 1, 6n + 3, 4n + 2, 2n + 1, 4n + 2, 2n + 1)

MP(6n+2,2)
α = MP(6n+1,1)

α ⊕ MP(6n+2,1)
α , for α 6= (7→ 6)

MP(6n+2,2)
7→6 =

(
MP(6n+1,1)

7→6 ⊕ MP(6n+2,1)
7→6

)
�


1 n

n 0 0

1 1 0
n 0 0


dimP(6n + 3, 2) = (2n + 1, 4n + 3, 6n + 4, 4n + 2, 2n + 1, 4n + 2, 2n + 1)

P(3, 2) =



1

0

0

 ,

1 0 0

0 1 0

0 0 0

0 0 1


,


0 0

0 0

1 0

0 1


,

11
 ,


0 1

1 0

0 1

0 0


,

11



MP(6n+3,2)
α = MP(6n+2,1)

α ⊕ MP(6n+3,1)
α , for α 6= (7→ 6)

MP(6n+3,2)
7→6 =

(
MP(6n+2,1)

7→6 ⊕ MP(6n+3,1)
7→6

)
�


1 n−1

n−1 0 0

1 1 0

n+1 0 0

, n > 0

dimP(6n + 4, 2) = (2n + 2, 4n + 3, 6n + 5, 4n + 3, 2n + 1, 4n + 3, 2n + 1)

MP(6n+4,2)
α = MP(6n+3,1)

α ⊕ MP(6n+4,1)
α , for α 6= (7→ 6)

MP(6n+4,2)
7→6 =

(
MP(6n+3,1)

7→6 ⊕ MP(6n+4,1)
7→6

)
�


n 1

n 0 0

1 0 1
n 0 0


dimP(6n + 5, 2) = (2n + 1, 4n + 3, 6n + 6, 4n + 4, 2n + 2, 4n + 4, 2n + 2)

MP(6n+5,2)
α = MP(6n+3,5)

α ⊕ MP(6n,7)[n7→n+1]
α , for α 6= (1→ 2)

MP(6n+5,2)
1→2 =

(
MP(6n+3,5)

1→2 ⊕ MP(6n,7)[n7→n+1]
1→2

)
�


1 n

n 0 0

1 1 0
n 0 0


dimP(6n, 3) = (3n, 6n, 9n + 1, 6n, 3n, 6n, 3n)

P(0, 3) = (0, 0, 0, 0, 0, 0)
MP(6n,3)
α = MP(6n+5,2)[n7→n−1]

α ⊕ MP(6n,1)
α , for α 6= (7→ 6)

13
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MP(6n,3)
7→6 =

(
MP(6n+5,2)[n 7→n−1]

7→6 ⊕ MP(6n,1)
7→6

)
�


n−1 1

n−1 0 0

1 0 1

3n 0 0

, n > 0

dimP(6n + 1, 3) = (3n, 6n + 1, 9n + 2, 6n + 1, 3n, 6n + 1, 3n)

P(1, 3) =

0,
10

 ,
01

 , 0,
11

 , 0


MP(6n+1,3)
α = MP(6n,2)

α ⊕ MP(6n+1,1)
α , for α 6= (7→ 6)

MP(6n+1,3)
7→6 =

(
MP(6n,2)

7→6 ⊕ MP(6n+1,1)
7→6

)
�


1 n−1

3n−1 0 0

1 1 0
n 0 0

, n > 0

dimP(6n + 2, 3) = (3n + 1, 6n + 2, 9n + 4, 6n + 2, 3n + 1, 6n + 2, 3n + 1)

P(2, 3) =


10

 ,

1 0

0 0

0 0

0 1


,


0 0

1 0

0 1

0 1


,

10
 ,


0 1

0 1

1 0

0 1


,

10



MP(6n+2,3)
α = MP(6n+1,2)

α ⊕ MP(6n+2,1)
α , for α 6= (7→ 6)

MP(6n+2,3)
7→6 =

(
MP(6n+1,2)

7→6 ⊕ MP(6n+2,1)
7→6

)
�


1 n

3n 0 0

1 1 0
n 0 0

, n > 0

dimP(6n + 3, 3) = (3n + 1, 6n + 3, 9n + 5, 6n + 3, 3n + 1, 6n + 3, 3n + 1)

P(3, 3) =




1

0

0

 ,


0 0 0

1 0 0

0 1 0

0 0 0

0 0 1


,



1 0 0

0 0 0

0 0 0

0 1 0

0 0 1


,


0

1

1

 ,


1 0 0

0 0 1

0 1 0

0 0 1

0 0 0


,


1

1

1




MP(6n+3,3)
α = MP(6n+2,2)

α ⊕ MP(6n+3,1)
α , for α 6= (7→ 6)

MP(6n+3,3)
7→6 =

(
MP(6n+2,2)

7→6 ⊕ MP(6n+3,1)
7→6

)
�


1 n−1

3n 0 0

1 1 0

n+1 0 0

, n > 0

dimP(6n + 4, 3) = (3n + 2, 6n + 4, 9n + 7, 6n + 4, 3n + 2, 6n + 4, 3n + 2)

MP(6n+4,3)
α = MP(6n+3,2)

α ⊕ MP(6n+4,1)
α , for α 6= (7→ 6)
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MP(6n+4,3)
7→6 =

(
MP(6n+3,2)

7→6 ⊕ MP(6n+4,1)
7→6

)
�


n 1

3n+1 0 0

1 0 1
n 0 0


dimP(6n + 5, 3) = (3n + 2, 6n + 5, 9n + 8, 6n + 5, 3n + 2, 6n + 5, 3n + 2)

MP(6n+5,3)
α = MP(6n+3,5)

α ⊕ MP(6n+5,4)
α , for α 6= (2→ 3)

MP(6n+5,3)
2→3 =

(
MP(6n+3,5)

2→3 ⊕ MP(6n+5,4)
2→3

)
�


1 4n+3

3n+1 0 0

1 1 0



II.3.2 The preinjective indecomposable modules

The preinjective indecomposable modules correspond to the vertices of the preinjective part of the

Auslander–Reiten quiver, as shown in Figure II.2.

0
0

1 0 0 0 0

I(0, 1)

0
0

1 1 0 0 0

I(0, 2)

1
1

1 1 1 1 1

I(0, 3)

0
0

0 0 0 1 1

I(0, 4)

0
0
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I(0, 5)

1
1

0 0 0 0 0

I(0, 6)

1
0
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I(0, 7)
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0

0 1 0 0 0
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1
1
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I(1, 2)

1
2

1 2 2 2 1

I(1, 3)

1
1

1 1 1 1 0

I(1, 4)

0
0

0 0 0 1 0

I(1, 5)

0
1

1 1 1 1 1

I(1, 6)

0
1

0 0 0 0 0

I(1, 7)

1
1

0 0 1 1 1

I(2, 1)

1
2

1 1 2 2 1

I(2, 2)

2
3

2 3 4 3 2

I(2, 3)

1
2

1 2 2 1 1

I(2, 4)

1
1

1 1 1 0 0

I(2, 5)

1
1

1 2 2 2 1

I(2, 6)

0
0

1 1 1 1 1

I(2, 7)

0
1

1 1 1 1 0

I(3, 1)

1
2

2 3 3 2 1

I(3, 2)

2
4

2 4 5 4 2

I(3, 3)

1
2

1 2 3 3 2

I(3, 4)

0
1

0 1 1 1 1

I(3, 5)

2
3

1 2 3 2 1

I(3, 6)

1
1

0 1 1 1 0

I(3, 7)

. . .

. . .

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

The preinjective part of the Auslander–Reiten quiver
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II.3. Tree representations of the quiver ∆(Ẽ6)

Due to the symmetry of the quiver ∆(Ẽ6) we give only the families of representations of the form

I(m, 1), I(m, 2) and I(m, 3). For all the other representations we can use the permutations σ = (1, 5)(2, 4)

and τ = (1, 7)(2, 6) to write them in terms of I(m, 1), I(m, 2) and I(m, 3) in the following way (m ≥ 0):

dimI(m, 5) =
(
dσ(i)

)
i∈∆(Ẽ6)0

and dimI(m, 7) =
(
dτ(i)

)
i∈∆(Ẽ6)0

,

where dimI(m, 1) = (di)i∈∆(Ẽ6)0
,

dimI(m, 4) =
(
dσ(i)

)
i∈∆(Ẽ6)0

and dimI(m, 6) =
(
dτ(i)

)
i∈∆(Ẽ6)0

,

where dimI(m, 2) = (di)i∈∆(Ẽ6)0
for the dimension vectors, respectively

I(m, 5) =
(
Mσ(i)→σ( j)

)
(i→ j)∈∆(Ẽ6)1

and I(m, 7) =
(
Mτ(i)→τ( j)

)
(i→ j)∈∆(Ẽ6)1

,

where I(m, 1) =
(
Mi→ j

)
(i→ j)∈∆(Ẽ6)1

,

I(m, 4) =
(
Mσ(i)→σ( j)

)
(i→ j)∈∆(Ẽ6)1

and I(m, 6) =
(
Mτ(i)→τ( j)

)
(i→ j)∈∆(Ẽ6)1

,

where I(m, 2) =
(
Mi→ j

)
(i→ j)∈∆(Ẽ6)1

for the matrices.

In what follows we list the tree representations for preprojective families of the form I(m, 1), I(m, 2)

and I(m, 3):

dimI(6n, 1) = (n + 1, 2n, 3n, 2n, n, 2n, n)
I(0, 1) = (0, 0, 0, 0, 0, 0)

I(6n, 1) =

( 
n−1 2

n−1 1 0

2 0 1

n−1 1 0

,


2n

2n 1
n 0

 +


2n

n 0

2n 1

,


2n

2n 1
n 0

,


n

n 1
n 0

,


2n

n 0

2n 1

,


n

n 0
n 1

 ), n > 0

dimI(6n + 1, 1) = (n, 2n + 1, 3n, 2n, n, 2n, n)
I(1, 1) = (0, 0, 0, 0, 0, 0)

I(6n + 1, 1) =

( 
n

1 0
n 1
n 0

,

2n+1

2n+1 1

n−1 0

,


1 2n−1

1 1 0
n 0 0

2n−1 0 1

,


1 n−1

1 1 0

n−1 0 0

1 1 0

n−1 0 1


,


2n

2n 1
n 0

 +


1 2n−1

n+1 0 0

2n−1 0 1

,


1 n−1

1 0 0

1 1 0

n−1 0 1

n−1 0 1


)
, n > 0
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dimI(6n + 2, 1) = (n, 2n, 3n + 1, 2n + 1, n + 1, 2n + 1, n + 1)

I(6n + 2, 1) =

( 
n

n 1
n 1

,


2n

2n 1

n+1 0

 +


2n

n+1 0

2n 1

,

2n+1

2n+1 1
n 0

,

n+1

n+1 1
n 0

,

2n+1

n 0

2n+1 1

,

n+1

n 0

n+1 1

 )

dimI(6n + 3, 1) = (n + 1, 2n + 1, 3n + 1, 2n + 1, n, 2n + 1, n)

I(3, 1) =
([

1
]
,
[
1
]
,
[
1
]
, 0,

[
1
]
, 0

)

I(6n + 3, 1) =

( 
n+1

1 0

n+1 1

n−1 0

 +


n−1 2

n+2 0 0

n−1 1 0

,

2n+1

2n+1 1
n 0

 +


1 2n

n+1 0 0

2n 0 1

,


2n+1

2n+1 1
n 0

,


1 n−1

1 1 0

1 1 0

n−1 0 1
n 0 0


,


1 2n

1 1 0
n 0 0

2n 0 1

,


n

n+1 0
n 1

 ), n > 0

dimI(6n + 4, 1) = (n + 1, 2n + 2, 3n + 2, 2n + 1, n + 1, 2n + 1, n + 1)

I(6n + 4, 1) =

( 
n+1

n+1 1

n+1 0

,

2n+2

2n+2 1
n 0

,

2n+1

n+1 0

2n+1 1

,

n+1

n 0

n+1 1

,

2n+1

2n+1 1

n+1 0

 +


2n+1

n+1 0

2n+1 1

,


1 n

1 1 0
n 0 1
n 0 1


)

dimI(6n + 5, 1) = (n, 2n + 1, 3n + 2, 2n + 2, n + 1, 2n + 2, n + 1)

I(5, 1) =

0,
11

 ,
1 0

0 1

 ,
01

 ,
1 0

0 1

 ,
10




I(6n + 5, 1) =

( 
n

1 0
n 1
n 1

,

2n+1

2n+1 1

n+1 0

 +


1 2n

n+2 0 0

2n 0 1

,

2n+2

2n+2 1
n 0

,


1 n

1 1 0

1 1 0
n 0 1
n 0 0


,


1 2n+1

1 1 0
n 0 0

2n+1 0 1

,

n+1

n+1 0

n+1 1

 ),
n > 0

dimI(6n, 2) = (2n + 1, 4n + 1, 6n, 4n, 2n, 4n, 2n)

I(0, 2) =
([

1
]
, 0, 0, 0, 0, 0

)
MI(6n,2)
α = MI(6n+1,1)

α ⊕ MI(6n,1)
α , for α 6= (5→ 4)

17



II.3. Tree representations of the quiver ∆(Ẽ6)

MI(6n,2)
5→4 =

(
MI(6n+1,1)

5→4 ⊕ MI(6n,1)
5→4

)
�


1 n−1

1 1 0

2n−1 0 0

, n > 0

dimI(6n + 1, 2) = (2n, 4n + 1, 6n + 1, 4n + 1, 2n + 1, 4n + 1, 2n + 1)

I(1, 2) =
(
0,

[
1
]
,
[
1
]
,
[
1
]
,
[
1
]
,
[
1
])

MI(6n+1,2)
α = MI(6n+3,7)

α ⊕ MI(6n,5)
α , for α 6= (1→ 2)

MI(6n+1,2)
1→2 =

(
MI(6n+3,7)

1→2 ⊕ MI(6n,5)
1→2

)
�


1 n−1

1 1 0

2n 0 0

, n > 0

dimI(6n + 2, 2) = (2n + 1, 4n + 1, 6n + 2, 4n + 2, 2n + 1, 4n + 2, 2n + 1)

I(2, 2) =

[1] ,
01

 ,
1 0

0 1

 ,
10

 ,
1 0

0 1

 ,
11




MI(6n+2,2)
α = MI(6n+3,1)

α ⊕ MI(6n+2,1)
α , for α 6= (2→ 3)

MI(6n+2,2)
2→3 =

(
MI(6n+3,1)

2→3 ⊕ MI(6n+2,1)
2→3

)
�


1 2n−1

1 0 0

1 1 0

3n−1 0 0

, n > 0

dimI(6n + 3, 2) = (2n + 2, 4n + 3, 6n + 3, 4n + 2, 2n + 1, 4n + 2, 2n + 1)

MI(6n+3,2)
α = MI(6n+5,5)

α ⊕ MI(6n+2,7)
α , for α 6= (5→ 4)

MI(6n+3,2)
5→4 =

(
MI(6n+5,5)

5→4 ⊕ MI(6n+2,7)
5→4

)
�


1 n

1 1 0

2n 0 0


dimI(6n + 4, 2) = (2n + 1, 4n + 3, 6n + 4, 4n + 3, 2n + 2, 4n + 3, 2n + 2)

MI(6n+4,2)
α = MI(6n+5,1)

α ⊕ MI(6n+4,1)
α , for α 6= (5→ 4)

MI(6n+4,2)
5→4 =

(
MI(6n+5,1)

5→4 ⊕ MI(6n+4,1)
5→4

)
�


1 n

1 1 0

2n+1 0 0


dimI(6n + 5, 2) = (2n + 2, 4n + 3, 6n + 5, 4n + 4, 2n + 2, 4n + 4, 2n + 2)

MI(6n+5,2)
α = MI(6n+1,5)[n7→n+1]

α ⊕ MI(6n+4,7)
α , for α 6= (5→ 4)

MI(6n+5,2)
5→4 =

(
MI(6n+1,5)[n7→n+1]

5→4 ⊕ MI(6n+4,7)
5→4

)
�


1 n

1 1 0

2n+1 0 0
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dimI(6n, 3) = (3n + 1, 6n + 1, 9n + 1, 6n + 1, 3n + 1, 6n + 1, 3n + 1)

I(0, 3) =
([

1
]
,
[
1
]
,
[
1
]
,
[
1
]
,
[
1
]
,
[
1
])

MI(6n,3)
α = MI(6n+1,6)

α ⊕ MI(6n,7)
α , for α 6= (1→ 2)

MI(6n,3)
1→2 =

(
MI(6n+1,6)

1→2 ⊕ MI(6n,7)
1→2

)
�


n−1 1

1 0 1

3n+2 0 0

, n > 0

dimI(6n + 1, 3) = (3n + 1, 6n + 2, 9n + 2, 6n + 2, 3n + 1, 6n + 2, 3n + 1)

MI(6n+1,3)
α = MI(6n+3,1)

α ⊕ MI(6n+1,2)
α , for α 6= (6→ 3)

MI(6n+1,3)
6→3 =

(
MI(6n+3,1)

6→3 ⊕ MI(6n+1,2)
6→3

)
�


4n 1

1 0 1

3n 0 0


dimI(6n + 2, 3) = (3n + 2, 6n + 3, 9n + 4, 6n + 3, 3n + 2, 6n + 3, 3n + 2)

I(2, 3) =



1 0

0 1

0 0

 ,

1 0 0

0 0 1

0 1 0

0 0 0

 ,

1 0 0

0 1 0

0 0 0

0 0 1

 ,

1 0

1 0

0 1

 ,

0 0 0

1 0 0

0 1 0

0 0 1

 ,

1 0

1 1

0 1




MI(6n+2,3)
α = MI(6n+3,4)

α ⊕ MI(6n+2,5)
α , for α 6= (7→ 6)

MI(6n+2,3)
7→6 =

(
MI(6n+3,4)

7→6 ⊕ MI(6n+2,5)
7→6

)
�


n 1

1 0 1

4n+1 0 0

, n > 0

dimI(6n + 3, 3) = (3n + 2, 6n + 4, 9n + 5, 6n + 4, 3n + 2, 6n + 4, 3n + 2)

MI(6n+3,3)
α = MI(6n+5,1)

α ⊕ MI(6n+3,2)
α , for α 6= (2→ 3)

MI(6n+3,3)
2→3 =

(
MI(6n+5,1)

2→3 ⊕ MI(6n+3,2)
2→3

)
�


4n+2 1

1 0 1

3n+1 0 0


dimI(6n + 4, 3) = (3n + 3, 6n + 5, 9n + 7, 6n + 5, 3n + 3, 6n + 5, 3n + 3)

MI(6n+4,3)
α = MI(6n+5,6)

α ⊕ MI(6n+4,7)
α , for α 6= (2→ 3)

MI(6n+4,3)
2→3 =

(
MI(6n+5,6)

2→3 ⊕ MI(6n+4,7)
2→3

)
�


1 2n

1 1 0

7n 0 0


dimI(6n + 5, 3) = (3n + 3, 6n + 6, 9n + 8, 6n + 6, 3n + 3, 6n + 6, 3n + 3)

MI(6n+5,3)
α = MI(6n+1,1)[n7→n+1]

α ⊕ MI(6n+5,2)
α , for α 6= (7→ 6)

MI(6n+5,3)
7→6 =

(
MI(6n+1,1)[n7→n+1]

7→6 ⊕ MI(6n+5,2)
7→6

)
�


1 2n+1

1 1 0

2n+1 0 0
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II.3. Tree representations of the quiver ∆(Ẽ6)

II.3.3 The exceptional regular modules

There are only a finite number of exceptional regular modules. These are the non-homogeneous

indecomposable regulars with dimension vector falling below δ = (1, 2, 3, 2, 1, 2, 1), marked with green

in Figures II.3, II.4 and II.5. Note that dimRl
0(3) = dimRl

1(3) = dimRl′
∞(2) = δ, where l ∈ {1, 2, 3},

l′ ∈ {1, 2}.

Representations of regular simples of ∆(Ẽ6) are also given in [34], we include them here only for the

sake of completeness:

0
1

0 0 1 1 1

R1
0(1) 1

1
0 1 1 0 0

R2
0(1) 0

0
1 1 1 1 0

R3
0(1) 0

1
0 0 1 1 1

R1
0(1)

1
2

0 1 2 1 1

R1
0(2) 1

1
1 2 2 1 0

R2
0(2) 0

1
1 1 2 2 1

R3
0(2)

1
2

1 2 3 2 1

R3
0(3) 1

2
1 2 3 2 1

R1
0(3) 1

2
1 2 3 2 1

R2
0(3) 1

2
1 2 3 2 1

R3
0(3)

1
2

2 3 4 3 1

R3
0(4) 1

3
1 2 4 3 2

R1
0(4) 2

3
1 3 4 2 1

R2
0(4)

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

The regular non-homogeneous tube T ∆(Ẽ6)
0

dimR1
0(1) = (0, 0, 1, 1, 1, 1, 0),

R1
0(1) =

(
0, 0,

[
1
]
,
[
1
]
,
[
1
]
, 0

)
dimR2

0(1) = (0, 1, 1, 0, 0, 1, 1),

R2
0(1) =

(
0,

[
1
]
, 0, 0,

[
1
]
,
[
1
])

dimR3
0(1) = (1, 1, 1, 1, 0, 0, 0)

R3
0(1) =

([
1
]
,
[
1
]
,
[
1
]
, 0, 0, 0

)
dimR1

0(2) = (0, 1, 2, 1, 1, 2, 1),

R1
0(2) =

0,
01

 ,
10

 , [1] ,
1 0

0 1

 ,
11
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dimR2
0(2) = (1, 2, 2, 1, 0, 1, 1),

R2
0(2) =


01

 ,
1 0

0 1

 ,
11

 , 0,
10

 , [1]


dimR3
0(2) = (1, 1, 2, 2, 1, 1, 0),

R3
0(2) =

[1] ,
10

 ,
1 0

0 1

 ,
01

 ,
11

 , 0


1
1

0 0 1 1 0

R1
1(1) 0

0
0 1 1 1 1

R2
1(1) 0

1
1 1 1 0 0

R3
1(1) 1

1
0 0 1 1 0

R1
1(1)

1
1

0 1 2 2 1

R1
1(2) 0

1
1 2 2 1 1

R2
1(2) 1

2
1 1 2 1 0

R3
1(2)

1
2

1 2 3 2 1

R3
1(3) 1

2
1 2 3 2 1

R1
1(3) 1

2
1 2 3 2 1

R2
1(3) 1

2
1 2 3 2 1

R3
1(3)

1
3

2 3 4 2 1

R3
1(4) 2

3
1 2 4 3 1

R1
1(4) 1

2
1 3 4 3 2

R2
1(4)

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

The regular non-homogeneous tube T ∆(Ẽ6)
1

dimR1
1(1) = (0, 0, 1, 1, 0, 1, 1),

R1
1(1) =

(
0, 0,

[
1
]
, 0,

[
1
]
,
[
1
])

dimR2
1(1) = (0, 1, 1, 1, 1, 0, 0),

R2
1(1) =

(
0,

[
1
]
,
[
1
]
,
[
1
]
, 0, 0

)
dimR3

1(1) = (1, 1, 1, 0, 0, 1, 0),

R3
1(1) =

([
1
]
,
[
1
]
, 0, 0,

[
1
]
, 0

)
dimR1

1(2) = (0, 1, 2, 2, 1, 1, 1),

R1
1(2) =

0,
01

 ,
1 0

0 1

 ,
11

 ,
10

 , [1]
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dimR2
1(2) = (1, 2, 2, 1, 1, 1, 0),

R2
1(2) =


01

 ,
1 0

0 1

 ,
10

 , [1] ,
11

 , 0


dimR3
1(2) = (1, 1, 2, 1, 0, 2, 1),

R3
1(2) =

[1] ,
10

 ,
01

 , 0,
1 0

0 1

 ,
11




0
1

0 1 1 1 0
R1
∞(1) 1

1
1 1 2 1 1

R2
∞(1) 0

1
0 1 1 1 0

R1
∞(1)

1
2

1 2 3 2 1
R1
∞(2) 1

2
1 2 3 2 1

R2
∞(2)

2
3

2 3 5 3 2
R2
∞(3) 1

3
1 3 4 3 1

R1
∞(3) 2

3
2 3 5 3 2

R2
∞(3)

2
4

2 4 6 4 2
R2
∞(4) 2

4
2 4 6 4 2

R1
∞(4)

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

The regular non-homogeneous tube T ∆(Ẽ6)
∞

dimR1
∞(1) = (0, 1, 1, 1, 0, 1, 0),

R1
∞(1) =

(
0,

[
1
]
,
[
1
]
, 0,

[
1
]
, 0

)
dimR2

∞(1) = (1, 1, 2, 1, 1, 1, 1),

R2
∞(1) =

[1] ,
10

 ,
01

 , [1] ,
11

 , [1]
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Chapter III

Tree representations of the quiver D̃m

In this chapter we will give a complete and general list of tree representations corresponding to

the exceptional modules over the path algebra of the canonically oriented Euclidean quiver D̃m. The

proof (involving induction and symbolic computation with block matrices) was partially generated by a

purposefully developed computer software and is available on arXiv as an appendix. All the representa-

tions listed remain valid over any base field, answering a question raised by Ringel in [27]. The results

presented here were published in the article [16] and its appendix [15].

III.1 Basic notions and definitions

Consider the canonically oriented Euclidean quiver of type D̃m, denoted from now on by ∆(D̃6),

having the following shape:

2 3

5 6 · · · m m + 1

1 4

Therefore, we have ∆(D̃m)0 = {1, . . . ,m,m + 1} and since we have at most one arrow connecting two

different vertices, the set of arrows is the following:

∆(D̃m)1 = {(5→ 1), (5→ 2), (3→ m + 1), (4→ m + 1), (6→ 5), (7→ 6), . . . , (m + 1→ m)}.

The Tits form in this case is

q
∆(D̃m)(x) =

1
4

(2x1 − x5)2 + (2x2 − x5)2 + (xm+1 − 2x3)2 + (xm+1 − 2x4)2 + 2
m∑

i=5

(xi − xi+1)2

 .
Note that this is independent of the orientation of the quiver and it is positive semi-definite with

radical Zδ, where δ = (1, 1, 1, 1, 2, . . . , 2).

III.2 Constructing tree representations for ∆(D̃m) from trees of ∆(D̃6)

In this section we present an explicit method for solving the following problem: given an exceptional

root x in ∆(D̃m) where m ≥ 4, construct an (exceptional) tree representation M ∈ rep k∆(D̃m) such that
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III.2. Constructing tree representations for ∆(D̃m) from trees of ∆(D̃6)

dimM = x. Recall that a positive real root x is exceptional if ∂x 6= 0, or if ∂x = 0 then x < δ. Throughout

this section we denote the identity matrix by In (in case n = 0 we take I0 to be the null morphism).

We begin with two lemmas on the form of real roots of the quiver ∆(D̃m), where m ≥ 6.

Lemma III.2.1. Let x be a real root of the quiver ∆(D̃m). Then x has one of the following forms:

• x(1) = (x1, x2, x3, x4,

i times︷  ︸︸  ︷
a, . . . , a), where i = m − 3;

• x(2) = (x1, x2, x3, x4,

i times︷  ︸︸  ︷
a, . . . , a,

j times︷  ︸︸  ︷
b, . . . , b), where i, j ∈ N∗, i + j = m − 3 and a 6= b;

• x(3) = (x1, x2, x3, x4,

i times︷  ︸︸  ︷
a, . . . , a,

j times︷  ︸︸  ︷
b, . . . , b,

k times︷  ︸︸  ︷
a, . . . , a), where i, j, k ∈ N∗, i + j + k = m − 3 and a 6= b;

• x(4) = (x1, x2, x3, x4,

i times︷  ︸︸  ︷
a, . . . , a,

j times︷  ︸︸  ︷
b, . . . , b,

k times︷  ︸︸  ︷
c, . . . , c), where i, j, k ∈ N∗, i + j + k = m − 3 and a, b, c are

pairwise different.

Combining these four possibilities for x we get the following (alternative) form:

Lemma III.2.2. Let x be a real root of the quiver ∆(D̃m). Then x has the form x =

(x1, x2, x3, x4,

i times︷  ︸︸  ︷
a, . . . , a,

j times︷  ︸︸  ︷
b, . . . , b,

k times︷  ︸︸  ︷
c, . . . , c) with a, b and c not necessarily distinct, i, j, k ∈ N∗ and

i + j + k = m − 3.

Let us denote by Rm the set of exceptional roots over ∆(D̃m).

For m ≥ 7 we introduce pm : Rm → R6, where pm(x) = x′ with x ∈ Rm constructed according to the

following cases (as specified in Lemma III.2.1):

• if x = (x1, x2, x3, x4,

i times︷  ︸︸  ︷
a, . . . , a), where i = m − 3, then x′ = (x1, x2, x3, x4, a, a, a);

• if x = (x1, x2, x3, x4,

i times︷  ︸︸  ︷
a, . . . , a,

j times︷  ︸︸  ︷
b, . . . , b), where i, j ∈ N∗, i + j = m − 3 and a 6= b, then x′ =

(x1, x2, x3, x4, a, a, b) in case i ≥ 2, else x′ = (x1, x2, x3, x4, a, b, b);

• if x = (x1, x2, x3, x4,

i times︷  ︸︸  ︷
a, . . . , a,

j times︷  ︸︸  ︷
b, . . . , b,

k times︷  ︸︸  ︷
a, . . . , a), where i, j, k ∈ N∗, i + j + k = m − 3 and a 6= b,

then x′ = (x1, x2, x3, x4, a, b, a);

• if x = (x1, x2, x3, x4,

i times︷  ︸︸  ︷
a, . . . , a,

j times︷  ︸︸  ︷
b, . . . , b,

k times︷  ︸︸  ︷
c, . . . , c), where i, j, k ∈ N∗, i + j + k = m − 3 and a, b, c are

pairwise different, then x′ = (x1, x2, x3, x4, a, b, c).

Lemma III.2.3. For any m ≥ 7, the previously introduced pm : Rm → R6 is a well-defined surjective

function. Moreover, defects are also kept (i.e. for all x ∈ Rm, ∂k∆(D̃m)x = ∂k∆(D̃6)pm(x)).

In the following drawings the dotted arrows represent zero or more arrows of the form kd←−
Id

kd

(d ∈ {a, b, c}), connecting vertices with the same dimension, with suitable identity matrices associated

to them. We can state the following:
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Lemma III.2.4. Let m ≥ 7, x ∈ Rm (as in Lemma III.2.2), x′ = (x1, x2, x3, x4, a, b, c) ∈ R6 such that

pm(x) = x′ and two representations M = (Mα,Mi) ∈ rep k∆(D̃m) and M′ = (M′α,M
′
i ) ∈ rep k∆(D̃6) with

dimM = x and dimM′ = x′ having the following matrices:

M :

kx2 kx3

ka ka kb kb kc kc

kx1 kx4

A3

A1

A2

Ia A Ib B Ic

A4

and

M′ :

kx2 kx3

ka kb kc

kx1 kx4

A3A2

A1

A B

A4

Then M is exceptional if and only if M′ is exceptional.

In what follows, we are going to construct explicitly a function Tm : Rm → rep k∆(D̃m) such that

Tm(x) with dimTm(x) = x is a tree representation for any exceptional root x (m ≥ 4). In this context we

treat rep k∆(D̃m) as a set consisting of only “matrix representations” of Q, where a “matrix representa-

tion” is just a collection of matrices of compatible dimensions together with induced vector spaces of

the form ks, encoding a representation of Q.

Constructing tree representations of ∆(D̃6)

We begin with the m = 6 case, since by construction the lists given in Section III.4 define exactly

such a function T6. One can take any exceptional root x over ∆(D̃6), identify the corresponding family

of representations (based on ∂x and the general forms of the dimension vectors) and apply the right

formula for obtaining the matrices of the representations. So we can state the following:

Proposition III.2.5. For any exceptional root x over ∆(D̃6) the listed formulas in Section III.4 define a

function T6 : R6 → rep k∆(D̃6) with T6(x) a tree representation.

Constructing tree representations of ∆(D̃m), for m ≥ 7

For the m ≥ 7 case we define Tm : Rm → rep k∆(D̃m) as follows: for x ∈ Rm let Tm(x) = M where the

representation M ∈ rep k∆(D̃m) is constructed based on M′ = T6(pm(x)) ∈ rep k∆(D̃6); specific matrices

of the representation M are M5→1 = M′5→1, M5→2 = M′5→2, M3→(m+1) = M′3→7, M4→(m+1) = M′4→7; the

other matrices are given based on the possible forms of x (see Lemma III.2.1):

• if x = (x1, x2, x3, x4,

i times︷  ︸︸  ︷
a, . . . , a), where i = m − 3, then Mm→(m−1) = M′6→5, M(m+1)→m = M′7→6 and

for all other arrows assign identity matrices Ia;
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III.2. Constructing tree representations for ∆(D̃m) from trees of ∆(D̃6)

• if x = (x1, x2, x3, x4,

i times︷  ︸︸  ︷
a, . . . , a,

j times︷  ︸︸  ︷
b, . . . , b), where i, j ∈ N∗, i+ j = m−3 and a 6= b, then M(4+i)→(3+i) =

M′6→5, M(4+i+1)→(4+i) = M′7→6 in case i ≥ 2, else (if i = 1) M6→5 = M′6→5, M7→6 = M′7→6 – for all

other arrows assign compatible identity matrices (either Ia or Ib);

• if x = (x1, x2, x3, x4,

i times︷  ︸︸  ︷
a, . . . , a,

j times︷  ︸︸  ︷
b, . . . , b,

k times︷  ︸︸  ︷
a, . . . , a), where i, j, k ∈ N∗, i + j + k = m − 3 and a 6= b,

then M(4+i+1)→(4+i) = M′6→5, M(4+i+ j+1)→(4+i+ j) = M′7→6 and compatible identity matrices for all

other arrows;

• if x = (x1, x2, x3, x4,

i times︷  ︸︸  ︷
a, . . . , a,

j times︷  ︸︸  ︷
b, . . . , b,

k times︷  ︸︸  ︷
c, . . . , c), where i, j, k ∈ N∗, i + j + k = m − 3 and a, b, c

are pairwise different, then M(4+i+1)→(4+i) = M′6→5, M(4+i+ j+1)→(4+i+ j) = M′7→6 and compatible

identity matrices for all other arrows.

Proposition III.2.6. For m ≥ 7 the previously defined function Tm : Rm → rep k∆(D̃m) gives tree

representations for all exceptional roots, i.e. for any x ∈ Rm the representation Tm(x) ∈ rep k∆(D̃m) is a

tree representation.

Example III.2.7. Suppose we need a tree representation for the preprojective indecomposable

P(6, 7)
∆(D̃8) ∈ rep k∆(D̃8). We have that dimP(6, 7)

∆(D̃8) = (3, 3, 2, 2, 5, 5, 5, 4, 4) ∈ R8. We com-

pute its corresponding exceptional root over ∆(D̃6): p8(3, 3, 2, 2, 5, 5, 5, 4, 4) = (3, 3, 2, 2, 5, 5, 4) ∈ R6.

Due to Lemma III.2.3 we know that defects are kept by the function p8, so we have to search

for the corresponding representation among the list of preprojective families in Subsection III.4.1.

We identify the family P(8n + 4, 6)
∆(D̃6) with dimension vector of the form dimP(8n + 4, 6)

∆(D̃6) =

(4n + 3, 4n + 3, 4n + 2, 4n + 2, 8n + 5, 8n + 5, 8n + 4), which for n = 0 gives exactly our root. Using the

formula given there, we construct the tree representation of T6(p8(3, 3, 2, 2, 5, 5, 5, 4, 4)) = P(4, 6)
∆(D̃6).

P(4, 6)
∆(D̃6) :

k3 k2

k5 k5 k4

k3 k2

 0 0
1 0
0 0
0 1


( 1 1 0 0 0

0 0 0 1 0
0 0 1 0 1

)

( 0 1 0 0 0
1 0 0 0 1
0 0 1 1 0

)


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 1 0

0 0
0 1
0 0


As indicated, this representation may be constructed by first forming a direct sum of P(4, 1)

∆(D̃6) with

P(6, 2)
∆(D̃6) and then inserting the matrix block

[
0 0 0
0 0 1

]
into to upper right corner of the matrix associated

to the arrow (5→ 1), thus bringing in an extra element equal to one into the matrix.

Now we are ready to construct our initial representation T8(3, 3, 2, 2, 5, 5, 5, 4, 4) = P(6, 7)
∆(D̃8) using

the described method, by taking the matrices associated to the arrows (5 → 1), (5 → 2), (3 → 7),

(4 → 7), (6 → 5) and (7 → 6) from P(4, 6)
∆(D̃6), associating them to the arrows (5 → 1), (5 → 2),

(3 → 9), (4 → 9), (7 → 6) respectively (8 → 7) in P(6, 7)
∆(D̃8) and putting identity matrices on the

remaining arrows:
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k3 k2

P(6, 7)
∆(D̃8): k5 k5 k5 k4 k4

k3 k2

 0 0
1 0
0 0
0 1


( 1 1 0 0 0

0 0 0 1 0
0 0 1 0 1

)
( 0 1 0 0 0

1 0 0 0 1
0 0 1 1 0

)
I5


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


I4

 1 0
0 0
0 1
0 0


For the m = 4 and m = 5 cases we first state some analogous lemmas and then the explicit construc-

tion for T4 : R4 → rep k∆(D̃4) and T5 : R5 → rep k∆(D̃5).

For m = 4 we introduce i4 : R4 → R6, where i4(x1, x2, x3, x4, a) = (x1, x2, x3, x4, a, a, a) and for

m = 5 we introduce i5 : R5 → R6, where i5(x1, x2, x3, x4, a, b) = (x1, x2, x3, x4, a, a, b).

Lemma III.2.8. The previously defined i4 : R4 → R6 and i5 : R5 → R6 are well-defined injective

functions. Moreover, defects are also kept (i.e. for all x ∈ R4, ∂k∆(D̃4)x = ∂k∆(D̃6)i4(x) and for all x ∈ R5,

∂k∆(D̃5)x = ∂k∆(D̃6)i5(x)).

Lemma III.2.9. The following statements are true:

(a) Let x = (x1, x2, x3, x4, a) ∈ R4, i4(x) = x′ = (x1, x2, x3, x4, a, a, a) ∈ R6 and two representations

V ∈ rep k∆(D̃4) and V ′ ∈ rep k∆(D̃6) such that dimV = x and dimV ′ = x′ having the following

matrices:

V :

kx2 kx3

ka

kx1 kx4

A3

A2

A1

A4

and

V ′ :

kx2 kx3

ka ka ka

kx1 kx4

A3

A2

A1

Ia Ia

A4

Then V is exceptional if and only if V ′ is exceptional.

(b) Let x = (x1, x2, x3, x4, a, b) ∈ R5, i5(x) = x′ = (x1, x2, x3, x4, a, a, b) ∈ R6 and two representations

Z ∈ rep k∆(D̃5) and Z′ ∈ rep k∆(D̃6) such that dimZ = x and dimZ′ = x′ having the following

matrices:

Z :

kx2 kx3

ka kb

kx1 kx4

A3

A2

A1

A

A4

27



III.2. Constructing tree representations for ∆(D̃m) from trees of ∆(D̃6)

and

Z′ :

kx2 kx3

ka ka kb

kx1 kx4

A3

A2

A1

Ia A

A4

Then Z is exceptional if and only if Z′ is exceptional.

As one can see, the representations V ′,Z′ ∈ rep k∆(D̃6) are somewhat special, in the sense that they

must have identity matrices associated to arrows connecting vertices of equal dimension on the central

axis of the quiver. Upon inspection of the lists given in Section III.4 it can be seen that all representations

were constructed to fulfill this requirement. So we can state:

Lemma III.2.10. All the (exceptional) tree representations in the case ∆(D̃6) (listed in Section III.4)

have identity matrices associated to the arrows on the central axis, which connect vertices of equal

dimension.

Constructing tree representations of ∆(D̃4) and ∆(D̃5)

We are now ready to give the functions T4 : R4 → rep k∆(D̃4) and T5 : R5 → rep k∆(D̃5). For any

x ∈ R4 let T4(x) = V be constructed based on V ′ = T6(i4(x)) ∈ rep k∆(D̃6) in the following way:

V5→1 = V ′5→1, V5→2 = V ′5→2, V3→5 = V ′3→7 and V4→5 = V ′4→7. Similarly, For any x ∈ R5 let T5(x) = Z

be constructed based on Z′ = T6(i5(x)) ∈ rep k∆(D̃6) in the following way: Z5→1 = Z′5→1, Z5→2 = Z′5→2,

Z3→6 = Z′3→7, Z4→6 = Z′4→7 and Z6→5 = Z′7→6.

Proposition III.2.11. Using the previous definitions, the following is true:

(a) The function T4 : R4 → rep k∆(D̃4) gives tree representations for all exceptional roots, i.e. for

any x ∈ R4 the representation T4(x) ∈ rep k∆(D̃4) is a tree representation.

(b) The function T5 : R5 → rep k∆(D̃5) gives tree representations for all exceptional roots, i.e. for

any x ∈ R5 the representation T5(x) ∈ rep k∆(D̃5) is a tree representation.

Example III.2.12. Suppose we need a tree representation for the preinjective indecomposable

I(6, 4)
∆(D̃4) ∈ rep k∆(D̃4). We have that dimI(6, 4)

∆(D̃4) = (3, 3, 3, 4, 6) ∈ R4. We compute its corre-

sponding exceptional root over ∆(D̃6): i4(3, 3, 3, 4, 6) = (3, 3, 3, 4, 6, 6, 6) ∈ R6. Due to Lemma III.2.8

we know that defects are kept by the function i4, so we have to search for the corresponding representa-

tion among the list of preinjective families in Subsection III.4.2. We identify the family I(8n + 4, 4)
∆(D̃6)

– obtained from I(8n + 4, 3)
∆(D̃6) via the suitable permutation τ = (3, 4) as explained there – with dimen-

sion vector of the form dimI(8n + 4, 4)
∆(D̃6) = (2n + 1, 2n + 1, 2n + 1, 2n + 2, 4n + 2, 4n + 2, 4n + 2), which

for n = 1 gives exactly our root. Using the formula given there, we construct the tree representation of
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T6(i4(3, 3, 3, 4, 6)) = I(12, 6)
∆(D̃6).

I(12, 6)
∆(D̃6) :

k3 k3

k6 k6 k6

k3 k4


0 0 1
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0


( 1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0

)
( 0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

)


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1


Now we are ready to construct our initial representation T4(3, 3, 3, 4, 6) = I(6, 4)

∆(D̃4) using the

described method, by taking the matrices associated to the arrows (5 → 1), (5 → 2), (3 → 7) and

(4 → 7) from I(12, 6)
∆(D̃6) and associating them to the arrows (5 → 1), (5 → 2), (3 → 5), respectively

(4→ 5) in I(6, 4)
∆(D̃4).

I(6, 4)
∆(D̃4) :

k3 k3

k6

k3 k4


0 0 1
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0



( 0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

)

( 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

)


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1



III.3 Proving the field independent tree module property

In this section we give a short overview of the method used to prove the tree module property for

every representation given in the lists in Section III.4. The method presented here has been used already

in the case of the canonically oriented Ẽ6 in Chapter II.

Throughout this section we will use the “field independent” qualifier in relation to representations

and short exact sequences according to Definition II.2.1.

The technique used to obtain and prove the formulas in Section III.4 (in a field independent way)

consists of a mixture of computer experimentation using the computer algebra system GAP [2] followed

by a computer aided proof performed by a proof assistant software developed in the purely functional

programming language Clean [1], specifically for this purpose. The proof uses our prior knowledge on

the existence of certain Schofield sequences (see [39]) and it is based on Proposition II.2.3, proved in

Chapter II.

The formulas for the matrices listed in Section III.4 were obtained after extensive experimentation

and testing in GAP, working over small finite fields (for details see Remarks 8, 9 and 10 from [39]). Then

the “guessed” formulas were introduced into an input LATEX document which in turn was processed
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by the proof assistant. The computer aided proof is basically an induction on the dimensions of the

representations (detailed in Subsection 1.3 of [15]). For given input data (supposedly) defining short

exact sequences (the two different Schofield sequences required by Proposition II.2.3) the proof assistant

verifies using Lemma II.2.4 that indeed, two short exact sequences may be constructed using the given

matrices (in a field independent way). To complete the proof for the tree module property, it also counts

the total number of ones in matrices.

For some more details on the block-matrix arithmetic, rank computation and other steps performed

by the proof assistant software we refer to Section II.2 and to [15].

III.4 Tree representations of the quiver ∆(D̃6)

In this section we list the formulas describing the matrices of the representations corresponding

to exceptional modules: the preprojective indecomposables (Subsection III.4.1), the preinjective inde-

composables (Subsection III.4.2) and the regular non-homogeneous indecomposables with dimension

vector below δ (Subsection III.4.3). For convenience, at the beginning of each of the following subsec-

tions, we present a graphical representation of the corresponding part of the Auslander–Reiten quiver.

Blue arrows show the existence of a so-called irreducible monomorphism, while red arrows represent

irreducible epimorphisms between suitable indecomposable modules (for details see [3]).

In the case of preprojectives and preinjectives the representations can be grouped in families of the

form P(8n + r, i) respectively I(8n + r, i), where i ∈ {1, . . . , 7} and r ∈ {0, . . . , 7}. Representations belong-

ing to the same family have similar dimension vectors and matrices, depending only on the parameter

n ∈ N. The matrices listed are written using blocks of various sizes, with the same notation as in Sub-

section II.2.1. Every matrix is composed either of identity blocks or rectangular zero blocks. We denote

the identity block simply by 1 and the zero block by 0. For small values of n we may give some rep-

resentations concretely, when the general formula only works for n > 0. The formulas for the matrices

listed here are rigorously proved to be correct – i.e. they give a field independent tree representation of

the respective family in the sense of Definition II.2.1 [17]. The Appendix also contains a more detailed

presentation of some of the representations from the lists (e.g. matrices written out explicitly for small

values of n = 0, 1, 2, . . . ).

III.4.1 The preprojective indecomposable representations

The preprojective indecomposable modules correspond to the vertices of the preprojective part of

the Auslander–Reiten quiver, as shown in Figure III.1 (on the vertices we provide the dimension vectors

in the graphical form corresponding to the shape of D̃6).

Due to the symmetry of the quiver ∆(D̃6) we give only the families of representations of the form

P(s, 1), P(s, 3), P(s, 5), P(s, 6) and P(s, 7). For P(s, 2) and P(s, 4) we can use the permutations σ = (1, 2)

and τ = (3, 4) to write them in terms of P(s, 1) and P(s, 3) in the following way (s ≥ 0):

dimP(s, 2) =
(
dσ(i)

)
i∈∆(D̃6)0

, where dimP(s, 1) = (di)i∈∆(D̃6)0

30



Chapter III. Tree representations of the quiver D̃m

0 0
0 0 0

1 0

P(0, 1)

1 0
0 0 0

0 0

P(0, 2)

1 1
1 1 1

1 0

P(0, 3)

1 0
1 1 1

1 1

P(0, 4)

1 0
1 0 0

1 0

P(0, 5)

1 0
1 1 0

1 0

P(0, 6)

1 0
1 1 1

1 0

P(0, 7)

1 0
1 0 0

0 0

P(1, 1)

0 0
1 0 0

1 0

P(1, 2)

1 0
2 1 1

1 1

P(1, 3)

1 1
2 1 1

1 0

P(1, 4)

1 0
2 1 0

1 0

P(1, 5)

1 0
2 1 1

1 0

P(1, 6)

2 1
3 2 2

2 1

P(1, 7)

0 0
1 1 0

1 0

P(2, 1)

1 0
1 1 0

0 0

P(2, 2)

1 1
2 2 1

1 0

P(2, 3)

1 0
2 2 1

1 1

P(2, 4)

1 0
2 2 1

1 0

P(2, 5)

2 1
3 3 2

2 1

P(2, 6)

2 1
4 3 2

2 1

P(2, 7)

. . .

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

The preprojective part of the Auslander–Reiten quiver ∆(D̃6)

dimP(s, 4) =
(
dτ(i)

)
i∈∆(D̃6)0

, where dimP(s, 3) = (di)i∈∆(D̃6)0

for the dimension vectors, respectively

P(s, 2) =
(
Mσ(i)→σ( j)

)
(i→ j)∈∆(D̃6)1

, where P(s, 1) =
(
Mi→ j

)
(i→ j)∈∆(D̃6)1

P(s, 4) =
(
Mτ(i)→τ( j)

)
(i→ j)∈∆(D̃6)1

, where P(s, 3) =
(
Mi→ j

)
(i→ j)∈∆(D̃6)1

for the matrices.

In what follows we list the tree representations for preprojective families of the form P(s, 1), P(s, 3),

P(s, 5), P(s, 6) and P(s, 7):

dimP(8n, 1) = (2n + 1, 2n, 2n, 2n, 4n, 4n, 4n),
P(0, 1) = (0, 0, 0, 0, 0, 0) ,

P(8n, 1) =

( 
2n−1 1 1 2n−1

1 0 0 1 0
2n−1 1 0 0 1
1 0 1 0 0

,
[2n 2n

2n 1 1
]
,

[4n

4n 1
]
,

[4n

4n 1
]
,


2n

2n 0
2n 1

, 
2n

2n 1
2n 0

 ), n > 0;

dimP(8n + 1, 1) = (2n, 2n + 1, 2n, 2n, 4n + 1, 4n, 4n),

P(8n + 1, 1) =

( [2n 2n 1

2n 1 1 0
]
,


2n 1 2n

1 0 1 0
2n 1 0 1

, 
4n

4n 1
1 0

, [4n

4n 1
]
,


2n

2n 0
2n 1

, 
2n

2n 1
2n 0

 );
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dimP(8n + 2, 1) = (2n + 1, 2n, 2n, 2n, 4n + 1, 4n + 1, 4n),

P(8n + 2, 1) =

( 
2n 1 2n

1 0 1 0
2n 1 0 1

, [2n 2n 1

2n 1 1 0
]
,

[4n+1

4n+1 1
]
,


4n

4n 1
1 0

, 
2n

2n 0
2n 1

, 
2n

2n 1
2n 0

 );
dimP(8n + 3, 1) = (2n, 2n + 1, 2n, 2n, 4n + 1, 4n + 1, 4n + 1),

P(8n + 3, 1) =

( [2n 2n 1

2n 1 1 0
]
,


2n 1 2n

1 0 1 0
2n 1 0 1

, [4n+1

4n+1 1
]
,

[4n+1

4n+1 1
]
,


2n

2n 0
2n 1
1 0

,


2n

2n 1
2n+1 0

 );
dimP(8n + 4, 1) = (2n + 2, 2n + 1, 2n + 1, 2n + 1, 4n + 2, 4n + 2, 4n + 2),

P(8n + 4, 1) =

( 
2n 1 1 2n

1 0 0 1 0
2n 1 0 0 1
1 0 1 0 0

,
[2n+1 2n+1

2n+1 1 1
]
,

[4n+2

4n+2 1
]
,

[4n+2

4n+2 1
]
,


2n+1

2n+1 0
2n+1 1

, 
2n+1

2n+1 1
2n+1 0

 );
dimP(8n + 5, 1) = (2n + 1, 2n + 2, 2n + 1, 2n + 1, 4n + 3, 4n + 2, 4n + 2),

P(8n + 5, 1) =

( [2n+1 2n+1 1

2n+1 1 1 0
]
,


2n+1 1 2n+1

1 0 1 0
2n+1 1 0 1

, 
4n+2

4n+2 1
1 0

, [4n+2

4n+2 1
]
,


2n+1

2n+1 0
2n+1 1

, 
2n+1

2n+1 1
2n+1 0

 );
dimP(8n + 6, 1) = (2n + 2, 2n + 1, 2n + 1, 2n + 1, 4n + 3, 4n + 3, 4n + 2),

P(8n + 6, 1) =

( 
2n+1 1 2n+1

1 0 1 0
2n+1 1 0 1

, [2n+1 2n+1 1

2n+1 1 1 0
]
,

[4n+3

4n+3 1
]
,


4n+2

4n+2 1
1 0

, 
2n+1

2n+1 0
2n+1 1

, 
2n+1

2n+1 1
2n+1 0

 );
dimP(8n + 7, 1) = (2n + 1, 2n + 2, 2n + 1, 2n + 1, 4n + 3, 4n + 3, 4n + 3),

P(8n + 7, 1) =

( [2n+1 2n+1 1

2n+1 1 1 0
]
,


2n+1 1 2n+1

1 0 1 0
2n+1 1 0 1

, [4n+3

4n+3 1
]
,

[4n+3

4n+3 1
]
,


2n+1

2n+1 0
2n+1 1
1 0

,

2n+1

2n+1 1
2n+2 0

 );
dimP(8n, 3) = (2n + 1, 2n + 1, 2n + 1, 2n, 4n + 1, 4n + 1, 4n + 1),

P(0, 3) =
([

1
]
,
[
1
]
,
[
1
]
,
[
1
]
,
[
1
]
, 0

)
,

P(8n, 3) =

( 
2n−1 1 2n−1 1 1

1 0 1 0 0 0
2n−1 1 0 1 0 0
1 0 0 0 1 0

,

2n−1 2n−1 1 2

2n−1 1 1 0 0
2 0 0 0 1

,

[4n+1

4n+1 1
]
,

[4n+1

4n+1 1
]
,



2n−1 1 1

2n−1 0 0 0
2n−1 1 0 0
1 0 0 1
1 0 1 0
1 0 0 1


,



2n−1 1

2n−1 1 0
2n−1 0 0
1 0 1
1 0 1
1 0 0


)
, n > 0;
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dimP(8n + 1, 3) = (2n + 1, 2n + 1, 2n, 2n + 1, 4n + 2, 4n + 1, 4n + 1),

P(1, 3) =

[1 0
]
,
[
1 1

]
,

10
 , [1] , 0, [1] ,

P(8n + 1, 3) =

( 
2n−1 2n−1 1 1 1 1

2n−1 1 1 0 0 0 0
1 0 0 0 1 0 0
1 0 0 0 0 0 1

,

2n−1 1 2n−1 1 1 1

1 0 1 0 0 0 0
2n−1 1 0 1 0 0 0
1 0 0 0 1 1 0

,


4n 1

4n 1 0
1 0 0
1 0 1

,
[4n+1

4n+1 1
]
,



2n−1 1

2n−1 0 0
2n−1 1 0
1 0 1
1 0 1
1 0 0


,



2n−1 1 1

2n−1 1 0 0
1 0 0 1
2n−1 0 0 0
1 0 1 0
1 0 0 1


)
, n > 0;

dimP(8n + 2, 3) = (2n + 1, 2n + 1, 2n + 1, 2n, 4n + 2, 4n + 2, 4n + 1),

P(2, 3) =

[1 0
]
,
[
1 1

]
,

1 0
0 1

 , 10
 , [1] , 0 ,

P(8n + 2, 3) =

( 
2n−1 1 2n−1 1 2

1 0 1 0 0 0
2n−1 1 0 1 0 0
1 0 0 0 1 0

,

2n−1 2n−1 1 1 1 1

2n−1 1 1 0 0 0 0
1 0 0 0 1 1 0
1 0 0 0 0 0 1

,

[4n+2

4n+2 1
]
,


4n 1

4n 1 0
1 0 0
1 0 1

,


2n−1 1 1

2n−1 0 0 0
2n−1 1 0 0
1 0 0 1
1 0 1 0
1 0 0 1


,



2n−1 1

2n−1 1 0
2n−1 0 0
1 0 1
1 0 1
1 0 0


)
, n > 0;

dimP(8n + 3, 3) = (2n + 1, 2n + 1, 2n, 2n + 1, 4n + 2, 4n + 2, 4n + 2),

P(3, 3) =

[1 0
]
,
[
1 1

]
,

1 0
0 1

 , 1 0
0 1

 , 0, 10
 ,

P(8n + 3, 3) =

( 
2n−1 2n−1 1 1 1 1

2n−1 1 1 0 0 0 0
1 0 0 0 1 0 0
1 0 0 0 0 0 1

,

2n−1 1 2n−1 1 1 1

1 0 1 0 0 0 0
2n−1 1 0 1 0 0 0
1 0 0 0 1 1 0

,

[4n+2

4n+2 1
]
,

[4n+2

4n+2 1
]
,



2n−1 1

2n−1 0 0
2n−1 1 0
1 0 1
1 0 1
2 0 0


,



2n−1 1 1

2n−1 1 0 0
1 0 0 1
2n−1 0 0 0
1 0 1 0
1 0 0 0
1 0 0 1


)
, n > 0;
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dimP(8n + 4, 3) = (2n + 2, 2n + 2, 2n + 2, 2n + 1, 4n + 3, 4n + 3, 4n + 3),

P(4, 3) =


1 0 0
0 0 1

 , 1 1 0
0 0 1

 ,

1 0 0
0 1 0
0 0 1

 ,

1 0 0
0 1 0
0 0 1

 ,

1 0
0 0
0 1

 ,

0
1
1


 ,

P(8n + 4, 3) =

( 

2n−1 1 2n−1 1 1 1 1

1 0 1 0 0 0 0 0
2n−1 1 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0

,


2n−1 2n−1 1 1 1 1 1

2n−1 1 1 0 0 0 0 0
1 0 0 0 1 1 0 0
1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1

,

[4n+3

4n+3 1
]
,

[4n+3

4n+3 1
]
,



2n−1 1 1 1

2n−1 0 0 0 0
2n−1 1 0 0 0
1 0 0 0 1
1 0 1 0 0
1 0 0 0 0
1 0 0 1 0
1 0 0 0 1


,



2n−1 1 1

2n−1 1 0 0
2n−1 0 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 0



)
, n > 0;

dimP(8n + 5, 3) = (2n + 2, 2n + 2, 2n + 1, 2n + 2, 4n + 4, 4n + 3, 4n + 3),

P(8n + 5, 3) =

( 
2n+1 2n+1 1 1

2n+1 1 1 0 0
1 0 0 0 1

, 
2n+1 1 2n+1 1

1 0 1 0 0
2n+1 1 0 1 0

,

4n+2 1

4n+2 1 0
1 0 0
1 0 1

,
[4n+3

4n+3 1
]
,


2n+1

2n+1 0
2n+1 1
1 0

,


2n+1 1

2n+1 1 0
1 0 1
2n 0 0
1 0 1


)
;

dimP(8n + 6, 3) = (2n + 2, 2n + 2, 2n + 2, 2n + 1, 4n + 4, 4n + 4, 4n + 3),

P(8n + 6, 3) =

( 
2n+1 1 2n+1 1

1 0 1 0 0
2n+1 1 0 1 0

, 
2n+1 2n+1 1 1

2n+1 1 1 0 0
1 0 0 0 1

, [4n+4

4n+4 1
]
,


4n+2 1

4n+2 1 0
1 0 1
1 0 1

,

2n+2

2n+1 0
2n+2 1

,

2n+1

2n+1 1
2n+2 0

 );
dimP(8n + 7, 3) = (2n + 2, 2n + 2, 2n + 1, 2n + 2, 4n + 4, 4n + 4, 4n + 4),
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P(8n + 7, 3) =

( 
2n+1 2n+1 1 1

2n+1 1 1 0 0
1 0 0 0 1

, 
2n+1 1 2n+1 1

1 0 1 0 0
2n+1 1 0 1 0

, [4n+4

4n+4 1
]
,

[4n+4

4n+4 1
]
,


2n+1

2n+1 0
2n+1 1
2 0

,


2n+1 1

2n+1 1 0
1 0 1
2n+1 0 0
1 0 1


)
;

dimP(8n, 5) = (4n + 1, 4n + 1, 4n, 4n, 8n + 1, 8n, 8n),
MP(8n,5)
α = MP(8n,1)

α ⊕ MP(8n+1,1)
α , for α 6= (5→ 1),

MP(8n,5)
5→1 =

(
MP(8n,1)

5→1 ⊕ MP(8n+1,1)
5→1

)
�


4n 1

2n 0 0
1 0 1

;
dimP(8n + 1, 5) = (4n + 1, 4n + 1, 4n, 4n, 8n + 2, 8n + 1, 8n),

MP(8n+1,5)
α = MP(8n+1,1)

α ⊕ MP(8n+2,1)
α , for α 6= (5→ 2),

MP(8n+1,5)
5→2 =

(
MP(8n+1,1)

5→2 ⊕ MP(8n+2,1)
5→2

)
�


4n 1

2n 0 0
1 0 1

;
dimP(8n + 2, 5) = (4n + 1, 4n + 1, 4n, 4n, 8n + 2, 8n + 2, 8n + 1),

MP(8n+2,5)
α = MP(8n+2,1)

α ⊕ MP(8n+3,1)
α , for α 6= (7→ 6),

MP(8n+2,5)
7→6 =

(
MP(8n+2,1)

7→6 ⊕ MP(8n+3,1)
7→6

)
�


4n 1

4n 0 0
1 0 1

;
dimP(8n + 3, 5) = (4n + 2, 4n + 2, 4n + 1, 4n + 1, 8n + 3, 8n + 3, 8n + 3),

P(3, 5) =


1 1 0
1 0 1

 , 1 0 0
0 1 0

 ,

1 0 0
0 1 0
0 0 1

 ,

1 0 0
0 1 0
0 0 1

 ,

1
0
0

 ,

0
1
0


 ,

MP(8n+3,5)
α = MP(8n,3)

α ⊕ MP(8n+3,3)
α , for α 6= (5→ 2),

MP(8n+3,5)
5→2 =

(
MP(8n,3)

5→2 ⊕ MP(8n+3,3)
5→2

)
�


4n−1 1 2

2n−1 0 0 0
1 0 1 0
1 0 0 0

, n > 0;

dimP(8n + 4, 5) = (4n + 3, 4n + 3, 4n + 2, 4n + 2, 8n + 5, 8n + 4, 8n + 4),
MP(8n+4,5)
α = MP(8n+4,1)

α ⊕ MP(8n+5,1)
α , for α 6= (5→ 1),

MP(8n+4,5)
5→1 =

(
MP(8n+4,1)

5→1 ⊕ MP(8n+5,1)
5→1

)
�


4n+2 1

2n+1 0 0
1 0 1

;
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dimP(8n + 5, 5) = (4n + 3, 4n + 3, 4n + 2, 4n + 2, 8n + 6, 8n + 5, 8n + 4),
MP(8n+5,5)
α = MP(8n+5,1)

α ⊕ MP(8n+6,1)
α , for α 6= (5→ 2),

MP(8n+5,5)
5→2 =

(
MP(8n+5,1)

5→2 ⊕ MP(8n+6,1)
5→2

)
�


4n+2 1

2n+1 0 0
1 0 1

;
dimP(8n + 6, 5) = (4n + 3, 4n + 3, 4n + 2, 4n + 2, 8n + 6, 8n + 6, 8n + 5),

MP(8n+6,5)
α = MP(8n+6,1)

α ⊕ MP(8n+7,1)
α , for α 6= (7→ 6),

MP(8n+6,5)
7→6 =

(
MP(8n+6,1)

7→6 ⊕ MP(8n+7,1)
7→6

)
�


4n+2 1

4n+2 0 0
1 0 1

;
dimP(8n + 7, 5) = (4n + 4, 4n + 4, 4n + 3, 4n + 3, 8n + 7, 8n + 7, 8n + 7),

MP(8n+7,5)
α = MP(8n+7,2)

α ⊕ MP(8n,2)[n 7→n+1]
α , for α 6= (5→ 2),

MP(8n+7,5)
5→2 =

(
MP(8n+7,2)

5→2 ⊕ MP(8n,2)[n 7→n+1]
5→2

)
�


4n+3 1

1 0 1
2n 0 0

;
dimP(8n, 6) = (4n + 1, 4n + 1, 4n, 4n, 8n + 1, 8n + 1, 8n),

MP(8n,6)
α = MP(8n,1)

α ⊕ MP(8n+2,2)
α , for α 6= (5→ 1),

MP(8n,6)
5→1 =

(
MP(8n,1)

5→1 ⊕ MP(8n+2,2)
5→1

)
�


4n 1

2n 0 0
1 0 1

;
dimP(8n + 1, 6) = (4n + 1, 4n + 1, 4n, 4n, 8n + 2, 8n + 1, 8n + 1),

MP(8n+1,6)
α = MP(8n+1,1)

α ⊕ MP(8n+3,2)
α , for α 6= (6→ 5),

MP(8n+1,6)
6→5 =

(
MP(8n+1,1)

6→5 ⊕ MP(8n+3,2)
6→5

)
�


4n 1

4n 0 0
1 0 1

;
dimP(8n + 2, 6) = (4n + 2, 4n + 2, 4n + 1, 4n + 1, 8n + 3, 8n + 3, 8n + 2),

P(2, 6) =


1 0 0
0 1 0

 , 1 0 0
0 1 1

 ,

1 0 0
0 1 0
0 0 1

 ,

1 1
0 1
0 0

 ,
10

 , 01

 ,

MP(8n+2,6)
α = MP(8n,3)

α ⊕ MP(8n+2,4)
α , for α 6= (5→ 2),

MP(8n+2,6)
5→2 =

(
MP(8n,3)

5→2 ⊕ MP(8n+2,4)
5→2

)
�


4n 1 1

2n−1 0 0 0
1 0 1 0
1 0 0 0

, n > 0;

dimP(8n + 3, 6) = (4n + 2, 4n + 2, 4n + 1, 4n + 1, 8n + 4, 8n + 3, 8n + 3),
MP(8n+3,6)
α = MP(8n+1,4)

α ⊕ MP(8n+3,3)
α , for α 6= (6→ 5),
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MP(8n+3,6)
6→5 =

(
MP(8n+1,4)

6→5 ⊕ MP(8n+3,3)
6→5

)
�


4n 1 1

4n 0 0 0
1 0 1 0
1 0 0 0

;

dimP(8n + 4, 6) = (4n + 3, 4n + 3, 4n + 2, 4n + 2, 8n + 5, 8n + 5, 8n + 4),
MP(8n+4,6)
α = MP(8n+4,1)

α ⊕ MP(8n+6,2)
α , for α 6= (5→ 1),

MP(8n+4,6)
5→1 =

(
MP(8n+4,1)

5→1 ⊕ MP(8n+6,2)
5→1

)
�


4n+2 1

2n+1 0 0
1 0 1

;
dimP(8n + 5, 6) = (4n + 3, 4n + 3, 4n + 2, 4n + 2, 8n + 6, 8n + 5, 8n + 5),

MP(8n+5,6)
α = MP(8n+5,1)

α ⊕ MP(8n+7,2)
α , for α 6= (6→ 5),

MP(8n+5,6)
6→5 =

(
MP(8n+5,1)

6→5 ⊕ MP(8n+7,2)
6→5

)
�


4n+2 1

4n+2 0 0
1 0 1

;
dimP(8n + 6, 6) = (4n + 4, 4n + 4, 4n + 3, 4n + 3, 8n + 7, 8n + 7, 8n + 6),

MP(8n+6,6)
α = MP(8n+6,1)

α ⊕ MP(8n,2)[n 7→n+1]
α , for α 6= (5→ 2),

MP(8n+6,6)
5→2 =

(
MP(8n+6,1)

5→2 ⊕ MP(8n,2)[n 7→n+1]
5→2

)
�


1 4n+3

2n 0 0
1 1 0

;
dimP(8n + 7, 6) = (4n + 4, 4n + 4, 4n + 3, 4n + 3, 8n + 8, 8n + 7, 8n + 7),

MP(8n+7,6)
α = MP(8n+5,3)

α ⊕ MP(8n+7,4)
α , for α 6= (6→ 5),

MP(8n+7,6)
6→5 =

(
MP(8n+5,3)

6→5 ⊕ MP(8n+7,4)
6→5

)
�


4n+2 1 1

4n+2 0 0 0
1 0 1 0
1 0 0 0

;

dimP(8n, 7) = (4n + 1, 4n + 1, 4n, 4n, 8n + 1, 8n + 1, 8n + 1),
MP(8n,7)
α = MP(8n,1)

α ⊕ MP(8n+3,1)
α , for α 6= (5→ 1),

MP(8n,7)
5→1 =

(
MP(8n,1)

5→1 ⊕ MP(8n+3,1)
5→1

)
�


4n 1

2n 0 0
1 0 1

;
dimP(8n + 1, 7) = (4n + 2, 4n + 2, 4n + 1, 4n + 1, 8n + 3, 8n + 2, 8n + 2),

MP(8n+1,7)
α = MP(8n+1,6)

α ⊕ MR2
1(1)

α , for α 6= (4→ 7),

MP(8n+1,7)
4→7 =

(
MP(8n+1,6)

4→7 ⊕ MR2
1(1)

4→7

)
�


1

8n 0
1 1

;
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dimP(8n + 2, 7) = (4n + 2, 4n + 2, 4n + 1, 4n + 1, 8n + 4, 8n + 3, 8n + 2),

MP(8n+2,7)
α = MP(8n+2,5)

α ⊕ MR2
1(2)

α , for α 6= (3→ 7),

MP(8n+2,7)
3→7 =

(
MP(8n+2,5)

3→7 ⊕ MR2
1(2)

3→7

)
�


1

8n 0
1 1

;
dimP(8n + 3, 7) = (4n + 2, 4n + 2, 4n + 1, 4n + 1, 8n + 4, 8n + 4, 8n + 3),

P(3, 7) =


1 0 0 0
0 0 1 0

 , 1 1 0 0
0 0 1 1

 ,

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

1 0 0
0 0 1
0 1 0
0 0 1

 ,

1
0
0

 ,

0
1
0


 ,

MP(8n+3,7)
α = MP(8n+2,3)

α ⊕ MP(8n+3,3)
α , for α 6= (5→ 1),

MP(8n+3,7)
5→1 =

(
MP(8n+2,3)

5→1 ⊕ MP(8n+3,3)
5→1

)
�


4n 1 1

2n 0 0 0
1 0 1 0

, n > 0;

dimP(8n + 4, 7) = (4n + 3, 4n + 3, 4n + 2, 4n + 2, 8n + 5, 8n + 5, 8n + 5),
MP(8n+4,7)
α = MP(8n+4,1)

α ⊕ MP(8n+7,1)
α , for α 6= (5→ 1),

MP(8n+4,7)
5→1 =

(
MP(8n+4,1)

5→1 ⊕ MP(8n+7,1)
5→1

)
�


4n+2 1

2n+1 0 0
1 0 1

;
dimP(8n + 5, 7) = (4n + 4, 4n + 4, 4n + 3, 4n + 3, 8n + 7, 8n + 6, 8n + 6),

MP(8n+5,7)
α = MP(8n+5,6)

α ⊕ MR2
1(1)

α , for α 6= (4→ 7),

MP(8n+5,7)
4→7 =

(
MP(8n+5,6)

4→7 ⊕ MR2
1(1)

4→7

)
�


1

8n+4 0
1 1

;
dimP(8n + 6, 7) = (4n + 4, 4n + 4, 4n + 3, 4n + 3, 8n + 8, 8n + 7, 8n + 6),

MP(8n+6,7)
α = MP(8n+6,6)

α ⊕ MR3
1(1)

α , for α 6= (5→ 2),

MP(8n+6,7)
5→2 =

(
MP(8n+6,6)

5→2 ⊕ MR3
1(1)

5→2

)
�


1

4n+3 0
1 1

;
dimP(8n + 7, 7) = (4n + 4, 4n + 4, 4n + 3, 4n + 3, 8n + 8, 8n + 8, 8n + 7),

MP(8n+7,7)
α = MP(8n+7,2)

α ⊕ MP(8n+2,2)[n 7→n+1]
α , for α 6= (5→ 1),

MP(8n+7,7)
5→1 =

(
MP(8n+7,2)

5→1 ⊕ MP(8n+2,2)[n 7→n+1]
5→1

)
�


1 4n+4

2n+1 0 0
1 1 0

.

38



Chapter III. Tree representations of the quiver D̃m

0 1
1 1 1

1 1

I(0, 1)

1 1
1 1 1

0 1

I(0, 2)

0 1
0 0 0

0 0

I(0, 3)

0 0
0 0 0

0 1

I(0, 4)

0 1
1 1 1

0 1

I(0, 5)

0 1
0 1 1

0 1

I(0, 6)

0 1
0 0 1

0 1

I(0, 7)

1 1
1 1 2

0 1

I(1, 1)

0 1
1 1 2

1 1

I(1, 2)

0 0
0 0 1

0 1

I(1, 3)

0 1
0 0 1

0 0

I(1, 4)

1 2
2 2 3

1 2

I(1, 5)

0 1
1 1 2

0 1

I(1, 6)

0 1
0 1 2

0 1

I(1, 7)

0 1
1 2 2

1 1

I(2, 1)

1 1
1 2 2

0 1

I(2, 2)

0 1
0 1 1

0 0

I(2, 3)

0 0
0 1 1

0 1

I(2, 4)

1 2
2 3 4

1 2

I(2, 5)

1 2
2 3 3

1 2

I(2, 6)

0 1
1 2 2

0 1

I(2, 7)

. . .

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

The preinjective part of the Auslander–Reiten quiver of ∆(D̃6)

III.4.2 The preinjective indecomposable modules

The preinjective indecomposable modules correspond to the vertices of the preinjective part of the

Auslander–Reiten quiver, as shown in Figure III.2.

Due to the symmetry of the quiver ∆(D̃6) we give only the families of representations of the form

I(s, 1), I(s, 3), I(s, 5), I(s, 6) and I(s, 7). For I(s, 2) and I(s, 4) we can use the permutations σ = (1, 2)

and τ = (3, 4) to write them in terms of I(s, 1) and I(s, 3) in the following way (s ≥ 0):

dimI(s, 2) =
(
dσ(i)

)
i∈∆(D̃6)0

, where dimI(s, 1) = (di)i∈∆(D̃6)0

dimI(s, 4) =
(
dτ(i)

)
i∈∆(D̃6)0

, where dimI(s, 3) = (di)i∈∆(D̃6)0

for the dimension vectors, respectively

I(s, 2) =
(
Mσ(i)→σ( j)

)
(i→ j)∈∆(D̃6)1

, where I(s, 1) =
(
Mi→ j

)
(i→ j)∈∆(D̃6)1

I(s, 4) =
(
Mτ(i)→τ( j)

)
(i→ j)∈∆(D̃6)1

, where I(s, 3) =
(
Mi→ j

)
(i→ j)∈∆(D̃6)1

for the matrices.

In what follows we list the tree representations for preinjective families of the form I(s, 1), I(s, 3),

I(s, 5), I(s, 6) and I(s, 7):

dimI(8n, 1) = (2n + 1, 2n, 2n + 1, 2n + 1, 4n + 1, 4n + 1, 4n + 1),
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I(8n, 1) =

( [2n 2n+1

2n+1 0 1
]
,

[2n 2n+1

2n 1 0
]
,

[4n+1

4n+1 1
]
,

[4n+1

4n+1 1
]
,


2n 1

2n 1 0
2n 1 0
1 0 1

,


2n 1

2n 1 0
1 0 1
2n 1 0


)
;

dimI(8n + 1, 1) = (2n, 2n + 1, 2n + 1, 2n + 1, 4n + 1, 4n + 1, 4n + 2),

I(1, 1) =

0, [1] , [1] , [0 1
]
,

01
 , 11

 ,
I(8n + 1, 1) =

( 
1 1 2n−1 2n

1 1 1 0 0
2n−1 0 0 1 0

, 
1 2n 2n

1 1 0 0
2n 0 0 1

, [4n+1

4n+1 1
]
,

[ 1 4n+1

4n+1 0 1
]
,



1 2n−1 1

1 1 0 0
1 1 0 0
1 0 0 0
2n−1 0 1 0
2n−1 0 1 0
1 0 0 1


,



1 1 2n−2 1

1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 1 0 0
2n−2 0 0 1 0
1 0 0 0 1
1 0 1 0 0
2n−2 0 0 1 0



)
, n > 0;

dimI(8n + 2, 1) = (2n + 1, 2n, 2n + 1, 2n + 1, 4n + 1, 4n + 2, 4n + 2),

I(8n + 2, 1) =

( [2n 2n+1

2n+1 0 1
]
,

[2n 2n+1

2n 1 0
]
,

[ 1 4n+1

4n+1 0 1
]
,

[4n+2

4n+2 1
]
,


2n+1

2n+1 1
2n+1 1

,


2n 1

1 0 0
2n 1 0
2n 1 0
1 0 1


)
;

dimI(8n + 3, 1) = (2n, 2n + 1, 2n + 1, 2n + 1, 4n + 2, 4n + 2, 4n + 2),

I(8n + 3, 1) =

( [ 1 2n 2n+1

2n 0 1 0
]
,

[2n+1 2n+1

2n+1 0 1
]
,

[4n+2

4n+2 1
]
,

[4n+2

4n+2 1
]
,


2n+1

2n+1 1
2n+1 1

,


2n 1

1 0 0
2n 1 0
2n 1 0
1 0 1


)
;

dimI(8n + 4, 1) = (2n + 2, 2n + 1, 2n + 2, 2n + 2, 4n + 3, 4n + 3, 4n + 3),

I(8n + 4, 1) =

( [2n+1 2n+2

2n+2 0 1
]
,

[2n+1 2n+2

2n+1 1 0
]
,

[4n+3

4n+3 1
]
,

[4n+3

4n+3 1
]
,


2n+1 1

2n+1 1 0
2n+1 1 0
1 0 1

,

2n+1 1

2n+1 1 0
1 0 1
2n+1 1 0


)
;

dimI(8n + 5, 1) = (2n + 1, 2n + 2, 2n + 2, 2n + 2, 4n + 3, 4n + 3, 4n + 4),
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I(8n + 5, 1) =

( [2n+1 2n+2

2n+1 1 0
]
,

[2n+1 2n+2

2n+2 0 1
]
,

[4n+3

4n+3 1
]
,

[ 1 4n+3

4n+3 0 1
]
,



2n+1 1

1 0 0
2n+1 1 0
2n+1 1 0
1 0 1

,

2n+2

2n+2 1
2n+2 1

 );

dimI(8n + 6, 1) = (2n + 2, 2n + 1, 2n + 2, 2n + 2, 4n + 3, 4n + 4, 4n + 4),

I(8n + 6, 1) =

( [2n+1 2n+2

2n+2 0 1
]
,

[2n+1 2n+2

2n+1 1 0
]
,

[ 1 4n+3

4n+3 0 1
]
,

[4n+4

4n+4 1
]
,



2n+1 1

1 0 0
2n+1 1 0
2n+1 1 0
1 0 1

,

2n+2

2n+2 1
2n+2 1

 );

dimI(8n + 7, 1) = (2n + 1, 2n + 2, 2n + 2, 2n + 2, 4n + 4, 4n + 4, 4n + 4),

I(8n + 7, 1) =

( [ 1 2n+1 2n+2

2n+1 0 1 0
]
,

[2n+2 2n+2

2n+2 0 1
]
,

[4n+4

4n+4 1
]
,

[4n+4

4n+4 1
]
,



2n+1 1

1 0 0
2n+1 1 0
2n+1 1 0
1 0 1

,

2n+2

2n+2 1
2n+2 1

 );

dimI(8n, 3) = (2n, 2n, 2n + 1, 2n, 4n, 4n, 4n),

I(8n, 3) =

( [2n 2n

2n 0 1
]
,

[2n 2n

2n 1 0
]
,

[4n

4n 1
]
,

[4n

4n 1
]
,



1 2n−1 1

1 1 0 0
2n−1 0 1 0
2n−1 0 1 0
1 0 0 1

,


2n−1 1

1 0 1
2n−1 1 0
1 0 1
2n−1 1 0


)
;

dimI(8n + 1, 3) = (2n, 2n, 2n, 2n + 1, 4n, 4n, 4n + 1),

I(1, 3) =
(
0, 0, 0, 0, 0,

[
1
])
,

I(8n + 1, 3) =

( 
1 1 1 2n−2 2n−1

1 1 0 0 0 0
1 0 1 1 0 0
2n−2 0 0 0 1 0

,


1 1 2n−1 2n−1

1 1 1 0 0
2n−1 0 0 0 1

, [4n

4n 1
]
,

[ 1 4n

4n 0 1
]
,



1 2n−1

1 0 0
1 1 0
1 0 0
2n−1 0 1
2n−1 0 1


,



1 1 2n−2 1

1 1 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 0 0 0
2n−2 0 0 1 0
2n−2 0 0 1 0
1 0 0 0 1



)
, n > 0;
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dimI(8n + 2, 3) = (2n, 2n, 2n + 1, 2n, 4n, 4n + 1, 4n + 1),

I(2, 3) =
(
0, 0, 0,

[
1
]
,
[
1
]
, 0

)
,

I(8n + 2, 3) =

( [2n 2n

2n 0 1
]
,

[2n 2n

2n 1 0
]
,

[ 1 4n

4n 0 1
]
,

[4n+1

4n+1 1
]
,



1 2n−1 1

1 0 0 1
1 1 0 0
2n−1 0 1 0
2n−1 0 1 0
1 0 0 1


,



2n−1 1

1 0 0
1 0 1
2n−1 1 0
1 0 1
2n−1 1 0


)
, n > 0;

dimI(8n + 3, 3) = (2n, 2n, 2n, 2n + 1, 4n + 1, 4n + 1, 4n + 1),

I(3, 3) =
(
0, 0,

[
1
]
,
[
1
]
, 0,

[
1
])
,

I(8n + 3, 3) =

( 
1 1 2n−1 2n

1 1 0 0 0
2n−1 0 0 1 0

, [2n+1 2n

2n 0 1
]
,

[4n+1

4n+1 1
]
,

[4n+1

4n+1 1
]
,



2n−1 1

1 0 1
1 0 0
2n−1 1 0
2n−1 1 0
1 0 1


,


1 2n

1 1 0
2n 0 1
2n 0 1


)
, n > 0;

dimI(8n + 4, 3) = (2n + 1, 2n + 1, 2n + 2, 2n + 1, 4n + 2, 4n + 2, 4n + 2),

I(8n + 4, 3) =

( [2n+1 2n+1

2n+1 0 1
]
,

[2n+1 2n+1

2n+1 1 0
]
,

[4n+2

4n+2 1
]
,

[4n+2

4n+2 1
]
,



1 2n 1

1 1 0 0
2n 0 1 0
2n 0 1 0
1 0 0 1

,


2n 1

1 0 1
2n 1 0
1 0 1
2n 1 0


)
;

dimI(8n + 5, 3) = (2n + 1, 2n + 1, 2n + 1, 2n + 2, 4n + 2, 4n + 2, 4n + 3),

I(5, 3) =


[
1 0

]
,
[
0 1

]
,

1 0
0 1

 , 1 0 1
0 0 1

 ,

0
0
1

 ,

1 0
0 1
0 1


 ,

I(8n + 5, 3) =

( 
1 1 1 2n−1 2n

1 1 0 1 0 0
1 0 1 0 0 0
2n−1 0 0 0 1 0

,


1 2n+1 2n

1 1 0 0
2n 0 0 1

, [4n+2

4n+2 1
]
,

[ 1 4n+2

4n+2 0 1
]
,



1 2n−1 1

1 0 0 0
1 1 0 0
1 0 0 1
1 0 0 0
2n−1 0 1 0
2n−1 0 1 0
1 0 0 1


,



1 1 2n

1 1 0 0
1 1 0 0
1 0 1 0
2n 0 0 1
2n 0 0 1


)
, n > 0;
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dimI(8n + 6, 3) = (2n + 1, 2n + 1, 2n + 2, 2n + 1, 4n + 2, 4n + 3, 4n + 3),

I(6, 3) =


[
1 1

]
,
[
1 0

]
,

1 0 0
0 0 1

 ,

1 0 0
0 1 0
0 0 1

 ,

1 0
1 0
0 1

 ,

1
0
0


 ,

I(8n + 6, 3) =

( [2n+1 2n+1

2n+1 0 1
]
,

[2n+1 2n+1

2n+1 1 0
]
,

[ 1 4n+2

4n+2 0 1
]
,

[4n+3

4n+3 1
]
,



1 2n 1

1 0 0 0
1 1 0 0
2n 0 1 0
2n 0 1 0
1 0 0 1


,



2n 1

1 0 0
1 0 1
2n 1 0
1 0 1
2n 1 0


+


1 1 2n−1

1 0 1 0
4n+2 0 0 0

 ), n > 0;

dimI(8n + 7, 3) = (2n + 1, 2n + 1, 2n + 1, 2n + 2, 4n + 3, 4n + 3, 4n + 3),

I(8n + 7, 3) =

( 
1 1 2n 2n+1

1 1 1 0 0
2n 0 0 1 0

, [2n+2 2n+1

2n+1 0 1
]
,

[4n+3

4n+3 1
]
,

[4n+3

4n+3 1
]
,


2n+1

1 0
2n+1 1
2n+1 1

,


1 2n 1

1 1 0 0
1 0 0 0
2n 0 1 0
2n 0 1 0
1 0 0 1


)
;

dimI(8n, 5) = (4n, 4n, 4n + 1, 4n + 1, 8n + 1, 8n + 1, 8n + 1),

I(0, 5) =
(
0, 0,

[
1
]
,
[
1
]
,
[
1
]
,
[
1
])
,

MI(8n,5)
α = MI(8n,1)

α ⊕ MI(8n+7,1)[n 7→n−1]
α , for α 6= (3→ 7),

MI(8n,5)
3→7 =

(
MI(8n,1)

3→7 ⊕ MI(8n+7,1)[n 7→n−1]
3→7

)
�


2n−1 1

1 0 1
4n 0 0

, n > 0;

dimI(8n + 1, 5) = (4n + 1, 4n + 1, 4n + 2, 4n + 2, 8n + 2, 8n + 2, 8n + 3),

I(1, 5) =


[
0 1

]
,
[
1 0

]
,

1 0
0 1

 , 0 1 1
0 0 1

 ,

0 0
1 0
0 1

 ,

1 0
1 0
0 1


 ,

MI(8n+1,5)
α = MI(8n+4,4)

α ⊕ MI(8n+1,4)
α , for α 6= (3→ 7),

MI(8n+1,5)
3→7 =

(
MI(8n+4,4)

3→7 ⊕ MI(8n+1,4)
3→7

)
�


1 1 2n−1

1 0 1 0
4n+1 0 0 0

, n > 0;

dimI(8n + 2, 5) = (4n + 1, 4n + 1, 4n + 2, 4n + 2, 8n + 2, 8n + 3, 8n + 4),
MI(8n+2,5)
α = MI(8n+2,1)

α ⊕ MI(8n+1,1)
α , for α 6= (5→ 1),

MI(8n+2,5)
5→1 =

(
MI(8n+2,1)

5→1 ⊕ MI(8n+1,1)
5→1

)
�


4n 1

2n 0 0
1 0 1

;
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dimI(8n + 3, 5) = (4n + 1, 4n + 1, 4n + 2, 4n + 2, 8n + 3, 8n + 4, 8n + 4),
MI(8n+3,5)
α = MI(8n+3,1)

α ⊕ MI(8n+2,1)
α , for α 6= (3→ 7),

MI(8n+3,5)
3→7 =

(
MI(8n+3,1)

3→7 ⊕ MI(8n+2,1)
3→7

)
�


1 2n

1 1 0
4n+1 0 0

;
dimI(8n + 4, 5) = (4n + 2, 4n + 2, 4n + 3, 4n + 3, 8n + 5, 8n + 5, 8n + 5),
MI(8n+4,5)
α = MI(8n+4,1)

α ⊕ MI(8n+3,1)
α , for α 6= (5→ 1),

MI(8n+4,5)
5→1 =

(
MI(8n+4,1)

5→1 ⊕ MI(8n+3,1)
5→1

)
�


1 4n+1

1 1 0
2n+1 0 0

;
dimI(8n + 5, 5) = (4n + 3, 4n + 3, 4n + 4, 4n + 4, 8n + 6, 8n + 6, 8n + 7),
MI(8n+5,5)
α = MI(8n+5,1)

α ⊕ MI(8n+4,1)
α , for α 6= (3→ 7),

MI(8n+5,5)
3→7 =

(
MI(8n+5,1)

3→7 ⊕ MI(8n+4,1)
3→7

)
�


1 2n+1

1 1 0
4n+3 0 0

;
dimI(8n + 6, 5) = (4n + 3, 4n + 3, 4n + 4, 4n + 4, 8n + 6, 8n + 7, 8n + 8),
MI(8n+6,5)
α = MI(8n+6,1)

α ⊕ MI(8n+5,1)
α , for α 6= (4→ 7),

MI(8n+6,5)
4→7 =

(
MI(8n+6,1)

4→7 ⊕ MI(8n+5,1)
4→7

)
�


1 2n+1

1 1 0
4n+3 0 0

;
dimI(8n + 7, 5) = (4n + 3, 4n + 3, 4n + 4, 4n + 4, 8n + 7, 8n + 8, 8n + 8),
MI(8n+7,5)
α = MI(8n+7,1)

α ⊕ MI(8n+6,1)
α , for α 6= (3→ 7),

MI(8n+7,5)
3→7 =

(
MI(8n+7,1)

3→7 ⊕ MI(8n+6,1)
3→7

)
�


1 2n+1

1 1 0
4n+3 0 0

;
dimI(8n, 6) = (4n, 4n, 4n + 1, 4n + 1, 8n, 8n + 1, 8n + 1),
MI(8n,6)
α = MI(8n+2,4)

α ⊕ MI(8n,3)
α , for α 6= (3→ 7),

MI(8n,6)
3→7 =

(
MI(8n+2,4)

3→7 ⊕ MI(8n,3)
3→7

)
�


2n 1

1 0 1
4n 0 0

;
dimI(8n + 1, 6) = (4n, 4n, 4n + 1, 4n + 1, 8n + 1, 8n + 1, 8n + 2),

I(1, 6) =

0, 0, [1] , [0 1
]
,

01
 , 11

 ,
MI(8n+1,6)
α = MI(8n+1,1)

α ⊕ MI(8n+7,2)[n 7→n−1]
α , for α 6= (5→ 2),
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MI(8n+1,6)
5→2 =

(
MI(8n+1,1)

5→2 ⊕ MI(8n+7,2)[n 7→n−1]
5→2

)
�


1 4n−1

1 1 0
2n 0 0

, n > 0;

dimI(8n + 2, 6) = (4n + 1, 4n + 1, 4n + 2, 4n + 2, 8n + 2, 8n + 3, 8n + 3),
MI(8n+2,6)
α = MI(8n+2,2)

α ⊕ MI(8n,1)
α , for α 6= (3→ 7),

MI(8n+2,6)
3→7 =

(
MI(8n+2,2)

3→7 ⊕ MI(8n,1)
3→7

)
�


2n 1

1 0 1
4n+1 0 0

;
dimI(8n + 3, 6) = (4n + 1, 4n + 1, 4n + 2, 4n + 2, 8n + 3, 8n + 3, 8n + 4),

I(3, 6) =


[
0 1 0

]
,
[
0 0 1

]
,


1 0 0
0 1 0
0 0 1

 ,

1 0 0 0
0 1 0 1
0 0 0 1

 ,

0 0
1 0
0 0
0 1

 ,

1 0
1 0
0 1
0 1


 ,

MI(8n+3,6)
α = MI(8n+5,4)

α ⊕ MI(8n+3,3)
α , for α 6= (5→ 1),

MI(8n+3,6)
5→1 =

(
MI(8n+5,4)

5→1 ⊕ MI(8n+3,3)
5→1

)
�


1 1 4n−1

1 0 1 0
2n 0 0 0

, n > 0;

dimI(8n + 4, 6) = (4n + 2, 4n + 2, 4n + 3, 4n + 3, 8n + 4, 8n + 5, 8n + 5),
MI(8n+4,6)
α = MI(8n+6,3)

α ⊕ MI(8n+4,4)
α , for α 6= (3→ 7),

MI(8n+4,6)
3→7 =

(
MI(8n+6,3)

3→7 ⊕ MI(8n+4,4)
3→7

)
�


1 2n

1 1 0
4n 0 0

;
dimI(8n + 5, 6) = (4n + 2, 4n + 2, 4n + 3, 4n + 3, 8n + 5, 8n + 5, 8n + 6),
MI(8n+5,6)
α = MI(8n+5,2)

α ⊕ MI(8n+3,1)
α , for α 6= (5→ 1),

MI(8n+5,6)
5→1 =

(
MI(8n+5,2)

5→1 ⊕ MI(8n+3,1)
5→1

)
�


1 4n+1

1 1 0
2n+1 0 0

;
dimI(8n + 6, 6) = (4n + 3, 4n + 3, 4n + 4, 4n + 4, 8n + 6, 8n + 7, 8n + 7),
MI(8n+6,6)
α = MI(8n+6,2)

α ⊕ MI(8n+4,1)
α , for α 6= (3→ 7),

MI(8n+6,6)
3→7 =

(
MI(8n+6,2)

3→7 ⊕ MI(8n+4,1)
3→7

)
�


1 2n+1

1 1 0
4n+3 0 0

;
dimI(8n + 7, 6) = (4n + 3, 4n + 3, 4n + 4, 4n + 4, 8n + 7, 8n + 7, 8n + 8),
MI(8n+7,6)
α = MI(8n+7,2)

α ⊕ MI(8n+5,1)
α , for α 6= (3→ 7),

MI(8n+7,6)
3→7 =

(
MI(8n+7,2)

3→7 ⊕ MI(8n+5,1)
3→7

)
�


1 2n+1

1 1 0
4n+3 0 0

;
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dimI(8n, 7) = (4n, 4n, 4n + 1, 4n + 1, 8n, 8n, 8n + 1),

I(0, 7) =
(
0, 0, 0, 0,

[
1
]
,
[
1
])
,

MI(8n,7)
α = MI(8n,1)

α ⊕ MI(8n+5,1)[n 7→n−1]
α , for α 6= (4→ 7),

MI(8n,7)
4→7 =

(
MI(8n,1)

4→7 ⊕ MI(8n+5,1)[n 7→n−1]
4→7

)
�


1 2n−1

4n 0 0
1 1 0

, n > 0;

dimI(8n + 1, 7) = (4n, 4n, 4n + 1, 4n + 1, 8n, 8n + 1, 8n + 2),

I(1, 7) =

0, 0, 0, [0 1
]
,

01
 , 11

 ,
MI(8n+1,7)
α = MI(8n+1,1)

α ⊕ MI(8n+6,1)[n 7→n−1]
α , for α 6= (5→ 2),

MI(8n+1,7)
5→2 =

(
MI(8n+1,1)

5→2 ⊕ MI(8n+6,1)[n 7→n−1]
5→2

)
�


4n+2 1

1 0 0
1 0 1
2n−3 0 0

, n > 0;

dimI(8n + 2, 7) = (4n, 4n, 4n + 1, 4n + 1, 8n + 1, 8n + 2, 8n + 2),

I(2, 7) =

0, 0, [0 1
]
,

1 0
0 1

 , 01
 , 11

 ,
MI(8n+2,7)
α = MI(8n+2,1)

α ⊕ MI(8n+7,1)[n 7→n−1]
α , for α 6= (5→ 1),

MI(8n+2,7)
5→1 =

(
MI(8n+2,1)

5→1 ⊕ MI(8n+7,1)[n 7→n−1]
5→1

)
�


4n−1 1

2n 0 0
1 0 1

, n > 0;

dimI(8n + 3, 7) = (4n + 1, 4n + 1, 4n + 2, 4n + 2, 8n + 3, 8n + 3, 8n + 3),
MI(8n+3,7)
α = MI(8n+3,1)

α ⊕ MI(8n,1)
α , for α 6= (5→ 2),

MI(8n+3,7)
5→2 =

(
MI(8n+3,1)

5→2 ⊕ MI(8n,1)
5→2

)
�


4n 1

2n 0 0
1 0 1

;
dimI(8n + 4, 7) = (4n + 2, 4n + 2, 4n + 3, 4n + 3, 8n + 4, 8n + 4, 8n + 5),
MI(8n+4,7)
α = MI(8n+4,1)

α ⊕ MI(8n+1,1)
α , for α 6= (3→ 7),

MI(8n+4,7)
3→7 =

(
MI(8n+4,1)

3→7 ⊕ MI(8n+1,1)
3→7

)
�


2n 1

1 0 1
4n+2 0 0

;
dimI(8n + 5, 7) = (4n + 2, 4n + 2, 4n + 3, 4n + 3, 8n + 4, 8n + 5, 8n + 6),
MI(8n+5,7)
α = MI(8n+6,4)

α ⊕ MI(8n+5,4)
α , for α 6= (3→ 7),

MI(8n+5,7)
3→7 =

(
MI(8n+6,4)

3→7 ⊕ MI(8n+5,4)
3→7

)
�


1 1 2n

1 0 0 0
1 0 1 0
4n+1 0 0 0

;
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dimI(8n + 6, 7) = (4n + 2, 4n + 2, 4n + 3, 4n + 3, 8n + 5, 8n + 6, 8n + 6),
MI(8n+6,7)
α = MI(8n+6,1)

α ⊕ MI(8n+3,1)
α , for α 6= (3→ 7),

MI(8n+6,7)
3→7 =

(
MI(8n+6,1)

3→7 ⊕ MI(8n+3,1)
3→7

)
�


1 2n

1 0 0
1 1 0
4n+2 0 0

;

dimI(8n + 7, 7) = (4n + 3, 4n + 3, 4n + 4, 4n + 4, 8n + 7, 8n + 7, 8n + 7),
MI(8n+7,7)
α = MI(8n+7,1)

α ⊕ MI(8n+4,1)
α , for α 6= (3→ 7),

MI(8n+7,7)
3→7 =

(
MI(8n+7,1)

3→7 ⊕ MI(8n+4,1)
3→7

)
�


1 2n+1

1 1 0
4n+3 0 0

.
III.4.3 The exceptional regular modules

There are only a finite number of exceptional regular modules. These are the non-homogeneous

indecomposable regulars with dimension vector falling below δ = (1, 1, 1, 1, 2, 2, 2), marked with green

in Figure III.6. Note that dimRl
0(2) = dimRl′

1 (4) = dimRl
∞(2) = δ, where l ∈ {1, 2}, l′ ∈ {1, 2, 3, 4}.

Representations of regular simples of ∆(D̃6) are also given in [34], we include them here only for

the sake of completeness:

dimR1
∞(1) = (0, 1, 0, 1, 1, 1, 1),

R1
∞(1) =

(
0,

[
1
]
,
[
1
]
,
[
1
]
, 0,

[
1
])

;

dimR2
∞(1) = (1, 0, 1, 0, 1, 1, 1),

R2
∞(1) =

([
1
]
, 0,

[
1
]
,
[
1
]
,
[
1
]
, 0

)
;

dimR1
0(1) = (0, 1, 1, 0, 1, 1, 1),

R1
0(1) =

(
0,

[
1
]
,
[
1
]
,
[
1
]
,
[
1
]
, 0

)
;

dimR2
0(1) = (1, 0, 0, 1, 1, 1, 1),

R2
0(1) =

([
1
]
, 0,

[
1
]
,
[
1
]
, 0,

[
1
])

;

dimR1
1(1) = (0, 0, 0, 0, 0, 0, 1),

R1
1(1) = (0, 0, 0, 0, 0, 0) ;

dimR1
1(2) = (1, 1, 1, 1, 1, 1, 2),

R1
1(2) =

[1] , [1] , [1] , [0 1
]
,

01
 , 11

 ;
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The regular non-homogeneous tube T ∆(D̃6)
∞

1 0
1 1 1

0 1

R1
∞(1)

0 1
1 1 1

1 0

R2
∞(1)

1 0
1 1 1

0 1

R1
∞(1)

1 1
2 2 2

1 1

R1
∞(2)

1 1
2 2 2

1 1

R2
∞(2)

1 2
3 3 3

2 1

R2
∞(3)

2 1
3 3 3

1 2

R1
∞(3)

1 2
3 3 3

2 1

R2
∞(3)

τ−1

τ−1

τ−1

τ−1

τ−1 τ−1

The regular non-homogeneous tube T ∆(D̃6)
0

1 1
1 1 1

0 0

R1
0(1)

0 0
1 1 1

1 1

R2
0(1)

1 1
1 1 1

0 0

R1
0(1)

1 1
2 2 2

1 1

R1
0(2)

1 1
2 2 2

1 1

R2
0(2)

1 1
3 3 3

2 2

R2
0(3)

2 2
3 3 3

1 1

R1
0(3)

1 1
3 3 3

2 2

R2
0(3)

τ−1

τ−1

τ−1

τ−1

τ−1 τ−1

The regular non-homogeneous tube T ∆(D̃6)
1

0 0
0 0 1

0 0

R1
1(1)

1 1
1 1 1

1 1

R2
1(1)

0 0
1 0 0

0 0

R3
1(1)

0 0
0 1 0

0 0

R4
1(1)

0 0
0 0 1

0 0

R1
1(1)

1 1
1 1 2

1 1

R1
1(2)

1 1
2 1 1

1 1

R2
1(2)

0 0
1 1 0

0 0

R3
1(2)

0 0
0 1 1

0 0

R4
1(2)

1 1
1 2 2

1 1

R4
1(3)

1 1
2 1 2

1 1

R1
1(3)

1 1
2 2 1

1 1

R2
1(3)

0 0
1 1 1

0 0

R3
1(3)

1 1
1 2 2

1 1

R4
1(3)

1 1
2 2 2

1 1

R4
1(4)

1 1
2 2 2

1 1

R1
1(4)

1 1
2 2 2

1 1

R2
1(4)

1 1
2 2 2

1 1

R3
1(4)

1 1
3 2 2

1 1

R3
1(5)

1 1
2 3 2

1 1

R4
1(5)

1 1
2 2 3

1 1

R1
1(5)

2 2
3 3 3

2 2

R2
1(5)

1 1
3 2 2

1 1

R3
1(5)

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1 τ−1 τ−1 τ−1

Regular non-homogeneous tubes in the case of ∆(D̃6)

dimR1
1(3) = (1, 1, 1, 1, 2, 1, 2),

R1
1(3) =

[1 0
]
,
[
1 1

]
,

10
 , [0 1

]
,

01
 , 11

 ;

dimR2
1(1) = (1, 1, 1, 1, 1, 1, 1),

R2
1(1) =

([
1
]
,
[
1
]
,
[
1
]
,
[
1
]
,
[
1
]
,
[
1
])

;

dimR2
1(2) = (1, 1, 1, 1, 2, 1, 1),

R2
1(2) =

[1 0
]
,
[
1 1

]
,

10
 , [1] , [1] , [1] ;
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dimR2
1(3) = (1, 1, 1, 1, 2, 2, 1),

R2
1(3) =

[1 0
]
,
[
1 1

]
,

1 0
0 1

 , 10
 , [1] , [1] ;

dimR3
1(1) = (0, 0, 0, 0, 1, 0, 0),

R3
1(1) = (0, 0, 0, 0, 0, 0) ;

dimR3
1(2) = (0, 0, 0, 0, 1, 1, 0),

R3
1(2) =

(
0, 0,

[
1
]
, 0, 0, 0

)
;

dimR3
1(3) = (0, 0, 0, 0, 1, 1, 1),

R3
1(3) =

(
0, 0,

[
1
]
,
[
1
]
, 0, 0

)
;

dimR4
1(1) = (0, 0, 0, 0, 0, 1, 0),

R4
1(1) = (0, 0, 0, 0, 0, 0) ;

dimR4
1(2) = (0, 0, 0, 0, 0, 1, 1),

R4
1(2) =

(
0, 0, 0,

[
1
]
, 0, 0

)
;

dimR4
1(3) = (1, 1, 1, 1, 1, 2, 2),

R4
1(3) =

[1] , [1] , [0 1
]
,

1 0
0 1

 , 01
 , 11

 .
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Chapter IV

On the combinatorial nature of tree repre-
sentations of Euclidean quivers

As we have mentioned earlier, Ringel proved that every exceptional module has a tree representation,

but one of the steps in his proof involves a choice of basis, which seems to depend on the underlying

field. He posed the question (see Problems 1. and 2. from Section 9. of [27]) whether there exist tree

representations that are independent of this choice of basis, hence being field independent. This problem

remains open in general, but as we have seen in Chapters II and III in some particular cases it has been

settled: the tree representations for the canonically oriented Euclidean quivers Ẽ6 and D̃m listed in the

previous chapter are indeed field independent, thus giving an affirmative answer to Ringel’s question in

these cases.

We recall that the representations from the previous two chapters were obtained by experimentation

in Z2 and Z3, and were not specifically constructed to be field independent. This is probably not a lucky

coincidence, and begs the question whether every tree representation is field independent or not.

In this chapter, based on the article [18] we verify computationally this question in the case of

Euclidean quivers of type D̃4, D̃5 and Ẽ6 with dimension vector bounded by the minimal radical vector

of the quiver. This includes a large class of exceptional representations, in particular all the regular

non-homogeneous exceptionals.

IV.1 Computational findings and conjectures

In the following let k be an arbitrary field, Q a Euclidean quiver, and x an exceptional root over Q.

We introduce the following notation for the set of all tree representations with dimension vector x over

k:

Tk(x) = { M ∈ rep kQ | dimM = x and M is a tree representation }.

Proposition IV.1.1. Let Q denote a canonically oriented Euclidean quiver of type D̃4, D̃5 or Ẽ6. Let

x be an exceptional root over Q, smaller than the minimal radical δ. If we regard the matrices of the

representations as formal 2-dimensional arrays of the symbols 0 and 1, then the set Tk(x) has the same

elements over any field, that is Tk(x) = Tk′(x) for any two fields k and k′.

As a result of the previous proposition we formulate the following conjecture:

Conjecture IV.1.2. Let x be an exceptional root over an arbitrary Euclidean quiver Q smaller than the

minimal radical vector δ. If we regard the matrices of the representations as formal 2-dimensional arrays

50
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of the symbols 0 and 1, then the set Tk(x) has the same elements over any field, that is Tk(x) = Tk′(x) for

any two fields k and k′.

In the case of the (computationally verified) quivers we could omit the index k and denote the set

only as T (x).

Let z be an exceptional root of the quiver Q and Z ∈ T (z) a tree representation. We define the set

S (z), which will contain the pairs of dimension vectors of every (non-special) Schofield pair belonging

to Z. More precisely:

S (z) = { (x, y) | x, y are exceptional roots of Q and (Y, X) is a Schofield

pair belonging to Z, where Z ∈ T (z), Y ∈ T (y) and

X ∈ T (x) with dimX = x, dimY = y, dimZ = z }

Note that while the representations X,Y,Z ∈ mod kQ exist within the context of a base field k, the

conditions stated in Proposition 7 from [39] depend only on the value of the roots (dimension vectors),

hence the set S (z) may be used in a field independent context.

If the root z is smaller than the minimal radical vector δ, then we have only so-called non-special

Schofield sequences of the form 0→ X → Z → Y → 0 (see Propositions 7 and 9 from [39]) and the set

S (z) may be given in the following way:

S (z) = { (x, y) | x, y are exceptional roots of Q, x + y = z, 〈x, y〉 = 0 }

In what follows we define a set of representations constructed using Schofield pairs. Let x and y be

exceptional roots of the quiver Q and consider arbitrary tree representations X ∈ T (x) and Y ∈ T (y). We

construct a new representation Rαi j
XY , as follows (α ∈ Q1 and i, j being row respectively column indices

in the upper right block of the matrix Mα):

Rαi j
XY = (Mv,Ma)v∈Q0

a∈Q1

=

(Xv ⊕ Yv)v∈Q0 ,


Xa Ei j

a

0 Ya




a∈Q1


where for the upper right block Ei j

a is true that Ei j
a = 0 for a 6= α and Ei j

α contains exactly one non-zero

entry 1 in the ith row and jth column and it is zero elsewhere. Using this notaion we introduce the

following set Ek(x, y) ⊆ mod kQ:

Ek(x, y) = { Rαi j
XY | α ∈ Q1, i, j are row resp. column indices,

X ∈ Tk(x), Y ∈ Tk(y), Rαi j
XY ∈ Tk(x + y) }

For given tree representations X and Y , the representation Rαi j
XY is the construction given by Ringel in

Section 6 of [27]. As mentioned there, the position of the single nonzero entry specified by α, i and j

involves a choice of basis and could very well depend on the base field k. To our surprise, however, this
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seems not to be the case:

Proposition IV.1.3. Let Q denote a canonically oriented Euclidean quiver of type D̃4, D̃5 or Ẽ6. Let

x and y be exceptional roots over Q, smaller than the minimal radical δ. If we regard the matrices of

the representations as formal 2-dimensional arrays of the symbols 0 and 1, then the set Ek(x, y) has the

same elements over any field, that is Ek(x, y) = Ek′(x, y) for any two fields k and k′.

Based on our findings we conjecture that Proposition IV.1.3 holds for arbitrary tame quivers and

exceptional roots. In the case of the (computationally verified) quivers we could omit the index k and

denote the set only as E(x, y).

Further advancing with our “computational inquiry” into the problem of field independence we may

ask for a method to construct the set of tree representations, other than the “exhaustive search” we

have performed. Ringel in his proof used Schofield induction to construct tree representations (see

Section 6. of [27]), and we may ask the question whether there are other methods for obtaining them, or

does his construction result in every possible tree representation. Permuting the basis vectors is a field

independent operation, so we introduce the following:

Definition IV.1.4. Let M = (Mi,Mα) and N = (Ni,Nα) be representations of a quiver Q. Then we call

them permutation-similar, provided there exists a family of permutation matrices {Ai | i ∈ Q0} such that

the following diagram is commutative for every arrow α ∈ Q1:

Mi M j

Ni N j

Mα

Ai A j

Nα

Let Z ∈ T (z) be a tree representation, we denote by π(Z) the set of all tree representations that are

permutation-similar to Z.

Using the notations introduced above, we state the following proposition, giving a method to induc-

tively construct the sets of tree representations:

Proposition IV.1.5. Let z be an exceptional root of a caconically oriented Euclidean quiver of type D̃4,

D̃5 or Ẽ6, such that z < δ. Then we have

T (z) =
⋃

(x,y)∈S (z)
Z∈E(x,y)

π(Z).

We conjecture that Proposition IV.1.5 also holds true for every exceptional root of any Euclidean

quiver.
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[39] Cs. Szántó and I. Szöllősi, Schofield sequences in the Euclidean case, Journal of Pure and Applied

Algebra 225 (2021), no. 5, 106586.

[40] T. Weist, Tree modules of the generalised Kronecker quiver, Journal of Algebra 323 (2010), no. 4,

1107–1138.

[41] T. Weist, Tree modules, Bulletin of the London Mathematical Society 44 (2012), no. 5, 882–898.

[42] P. Zhang, Y.-B. Zhang, and J.-Y. Guo, Minimal Generators of Ringel–Hall Algebras of Affine Quiv-

ers, Journal of Algebra 239 (2001), no. 2, 675–704.

55

https://www.math.uni-bielefeld.de/~sek/kau
https://www.math.uni-bielefeld.de/~sek/kau
https://www.math.uni-bielefeld.de/~sek/shanghai/sjtu.html
https://www.math.uni-bielefeld.de/~sek/shanghai/sjtu.html

	Introduction
	Preliminaries
	Quivers and modules
	Auslander–Reiten theory
	Finite and infinite representation type quivers
	Extensions of quiver representations
	Tree representations and Schofield sequences

	Tree representations of the quiver E"0365E_6
	Basic notions and definitions
	Proving the field independent tree module property 
	Notations

	Tree representations of the quiver Δ(E"0365E_6) 
	The preprojective indecomposable representations 
	The preinjective indecomposable modules
	The exceptional regular modules


	Tree representations of the quiver D"0365D_m
	Basic notions and definitions
	Constructing tree representations for Δ(D"0365D_m) from trees of Δ(D"0365D_6)
	Proving the field independent tree module property 
	Tree representations of the quiver Δ(D"0365D_6) 
	The preprojective indecomposable representations 
	The preinjective indecomposable modules
	The exceptional regular modules


	On the combinatorial nature of tree representations of Euclidean quivers
	Computational findings and conjectures

	Bibliography

