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Introduction

The purpose of this thesis is to present new contributions in the theory of univalent
functions of one and several complex variables. The theory of univalent functions is a
part of the geometric function theory that became an important point of interest for
many research works done through time. Let C be the complex plane and let Cn =
{z = (z1, z2, . . . , zn) : zi ∈ C, i = 1, . . . , n}, where n ≥ 2, be the complex space equipped
with the Euclidean inner product, which provides the Euclidean norm ∥ · ∥. Also, we
denote by U the unit disc in C, Bn the Euclidean unit ball in Cn and Pn the unit
polydisc in Cn. By a univalent function we mean a holomorphic and injective function.
A well-known result that established new directions in the theory of univalent functions
of one complex variable is the Riemann mapping theorem, which ensures the conformal
equivalence of every simply connected domain Ω that is a proper subset of the complex
plane C with the unit disc U (see [48], [66]). This result provided a direction in the
study of the univalence on the unit disc U (see e.g. [48], [66]). Since any univalent
function can be reduced to a normalized univalent function, i.e. univalent function f
with f(0) = f ′(0) − 1 = 0, then it suffices to study the set of normalized univalent
functions on U , S (see [25], [102]). Riemann mapping theorem does not remain true in
Cn, n ≥ 2 (see [93], [106]). The result which conducted to this statement is the fact that
the Euclidean unit ball Bn in Cn is not biholomorphic equivalent with the unit polydisc
Pn in Cn, although they are homeomorphic. This observation was provided by Poincaré
[100].

Along this thesis, we denote by S(Bn) the set of biholomorphic and normalized
mappings on Bn. Cartan H. [9] showed that S(Bn) is not a locally uniformly bounded
family, thus S(Bn) is not compact in the topology of the set of holomorphic mappings
on Bn, H(Bn). Moreover, in view of this result, we deduce that the set S(Bn) does not
admit growth and distortion theorems. A remarkable family introduced by Graham,
Hamada and Kohr [37] is the set of mappings with parametric representation on Bn,
S0(Bn). Graham et al. [37] proved that S0(Bn) is a proper subset of S(Bn). Therefore,
not any normalized biholomorphic mapping has parametric representation on Bn. This
is an essential difference between the case of several complex variables (n ≥ 2) and the
case of one complex variable (n = 1), where any function in the class S has parametric
representation (see [102]). The set S0(Bn) is not empty since any normalized starlike
mapping belongs to this set.

In the complex plane, any function f ∈ S admits parametric representation (PR
for shortness), which means that there exists a Loewner chain (LC for shorteness),
f(z, t) : U × [0,∞) → C, such that f is the first element of f(z, t). This result is
due to Pommerenke [102] and is a fundamental result in the theory of Loewner chains.
Important subclasses of S with geometric properties have analytical characterization in
terms of Loewner chains. Let us mention here the description through Loewner chains
for spirallike functions of the type γ, γ ∈

(
−π

2 ,
π
2

)
, starlike functions, (see e.g. [102],
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Introduction 6

[48]), almost starlike functions of order α, α ∈ [0, 1) (see [119]), convex functions (see
[48], [102]) on U . Various problems and applications on this topic may be consulted in
the work of Pommerenke [102], Duren [25], Graham and Kohr [48], Mocanu, Bulboacă
and Sălăgean [90].

Another topic of great interest in the theory of biholomorphic mappings in Cn is
represented by the study of geometric properties of univalent mappings. An analytical
characterization of starlikeness on Bn have been obtained by Matsuno [88]. Gurganus
[54] and Suffridge [114] provided a characterization of starlikeness on the unit ball of
a Banach space. Suffridge [113] gave a similar characterization of starlikeness on the
unit polydisc of Cn. Growth, covering and coefficient results for the class S∗(Bn) of
normalized starlike mappings on Bn have been obtained by Kubicka and Poreda [78], and
Barnard, FitzGerald and Gong [5], Gong [32, 33], Graham and Kohr [48], respectively
by Kohr [72], Curt [19], Graham, Hamada and Kohr [37]. The concept of order α
starlikeness on the unit ball in Cn, where α ∈ [0, 1), was introduced by Kohr [70],
respectively the concept of order α almost starlikeness, α ∈ [0, 1), was introduced by
Feng [30] on the unit ball of a Banach space. Moreover, T. Chirilă [12] defined almost
starlikeness of order α and type γ on Bn, with 0 ≤ α < 1 and 0 ≤ γ < 1. The analytic
characterization of convexity in Cn was given by Kikuchi [69], Gong, Wang and Yu
[34] and Suffridge [114, 112]. Other results regarding the class of normalized convex
mappings such as growth theorem, coefficient estimates, a Marx-Strohhäcker theorem
have been obtained by Suffridge [115], FitzGerald and Thomas [31], Liu [79], Kohr
[70, 72], Curt [18]. Gurganus K. [54] defined the notion of spirallikeness with respect to
a normal linear operator, whose eigenvalues have positive real part (see also [60], [48]).
Also, Suffridge [112] extended this notion to the case of a complex Banach space. Other
generalizations were considered by Liu and Liu [82] and Chirilă [11].

The theory of Loewner chains in the complex plane provided numerous applications
such as: analytic characterizations of the univalent functions with geometric properties,
approaching different extremal problems, proving Bieberbach conjecture, etc (see [25],
[48]). The first contribution in the generalization of the Loewner chains and Loewner
differential equation in n-dimensions, n ≥ 2, is due to Pfaltzgraff [96, 97], which extended
the notion of Loewner chain to Bn in Cn. Later, Poreda [103, 104] refined these results
on the unit polydisc Pn in Cn and introduced the set of normalized univalent mappings
which admit parametric representation on Pn, S0(Pn). Other important contributions
have been obtained by Kubicka and Poreda [78], who analyzed the class S∗(Bn). Notable
improvements appeared through time in the theory of Loewner chains in n-dimensions.
An remarkable example in this sense is the introduction of the family S0(Bn) of mappings
which admit parametric representation on Bn in Cn, due to Graham, Hamada and Kohr
[37]. Graham et al. [37] proved the strict inclusion S0(Bn) ⊊ S(Bn), which shows that
not any mapping from S(Bn) admits parametric representation on Bn. An outstanding
contribution to the theory of Loewner chains in Cn has been done by G. Kohr and her
collaborators in a series of valuable publications starting with [37], [51], [23], [52], [26].
Other aspects regarding this topic can be found in [7], [2], [8], [3]. Also, univalence
criteria using the method of Loewner chains can be consulted in [16, 17].

The theory of Loewner on hyperbolic complex manifolds was developed by Arosio,
Bracci, Hamada and Kohr in [3]. Graham I., Hamada H., Kohr G. and Kohr M. [42]
studied the notion of generalized parametric representation with respect to an operator
A, which is time dependent, in the case of reflexive complex Banach spaces (see also [58]
). Important results regarding Loewner chains and non-linear resolvents of M, which is
the Carathéodory family on Bn, were considered in [40] which extends the work in [29].
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Also, topological Loewner chains on Riemann surfaces were studied in [15]. The reader
may also consult the survey on Loewner chains and approximation results regarding
univalent mappings on the Euclidean unit ball Bn in [59].

An important subclass of S0(Bn) is the set of mappings with g-parametric represen-
tation (g-PR for shortness) on Bn, S0

g (Bn), where the function g satisfies some common
properties. This important class was introduced by Graham, Hamada and Kohr in [37]
and is strictly connected with the notion of g-Loewner chain (g-LC for shortness). We
say that f(z, t) : Bn × [0,∞) → Cn is a g-Loewner chain if it satisfies the following
conditions : f(z, t) is a Loewner chain, the family {e−tf(·, t)}t≥0 is normal on Bn and
the mapping h which appears in the Loewner differential equation

(0.0.1)
∂f

∂t
= Df(z, t)h(z, t), a.e. t ≥ 0,∀z ∈ Bn,

has the property that, for almost every t ≥ 0, h(·, t) belongs to Mg ([37]). The class
Mg is given below ([37])

Mg =

{
h ∈ H(Bn) : h(0) = 0, Dh(0) = In, ⟨h(z),

z

∥z∥2
⟩ ∈ g(U), z ∈ Bn

}
,

with ⟨h(z), z
∥z∥2 ⟩|z=0 = 1. Then f admits g-parametric representation if and only if f is

the first element of a g-Loewner chain. We have important reasons to study g-parametric
representation, respectively g-Loewner chains for n ≥ 2. For example, if g(ζ) = 1−ζ

1+ζ ,
ζ ∈ U , then any g-Loewner chain becomes a Loewner chain. However, for n ≥ 2, there
exists Loewner chains that are not g-Loewner chains. A growth and coefficient estimates
for the family S0

g (Bn) were obtained in [37], [73]. Also, g-Loewner chains been studied
in [39], [43], [62].

The ability to build biholomorphic mappings with geometric properties in n-dimensions,
n ≥ 2, seems to require sometimes a great deal of effort, such in the case of convex map-
pings in Cn. A first step in this direction was done by Roper and Suffridge [108], who
proposed the extension operator Φn : LS → LSn, defined by

Φn(f)(z) = (f(z1), z̃
√
f ′(z1)), z = (z1, z̃) ∈ Bn,

where
√

f ′(z1)|z1=0 = 1, as a way of constructing convex mappings on Bn using convex
functions on U . Therefore, the operator Φn preserves convexity. This property of the
operator Φn was also obtained by Graham and Kohr [47] by using a different method.
In [47], Graham I. and Kohr G. first showed that Φn preserves the notion of starlikeness.
A few years later, Hamada, Kohr and Kohr [63] proved that Φn preserves starlikeness
of order 1/2. Further, Liu [80] proved the conservation of starlikeness of order α ∈ (0, 1)
(a different proof in terms of g-Loewner chains was given by Chirilă in [12]). Moreover,
Graham, Kohr and Kohr [51] proved that spirallikeness of type γ ∈

(
−π

2 ,
π
2

)
is preserved

under the operator Φn. Using g-Loewner chains, Chirilă [12] showed that the same
operator preserves also the spirallikeness of type γ ∈

(
−π

2 ,
π
2

)
and order α ∈ (0, 1) ( also

[82]). All of these properties are consequences of the following result due to Graham,
Kohr and Kohr [51]: if f ∈ S then Φn(f) ∈ S0(Bn).

Other extension operators that map a locally univalent function on U onto a mapping
with the same properties on Bn in Cn were given through time. An example is the
following extension operator which extends the operator Φn:

Φn,α,β(f)(x) =

(
f(z1), z̃

(f(z1)
z1

)α
(f ′(z1))

β

)
, ∀z = (z1, z̃) ∈ Bn,
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where α ≥ 0, β ≥ 0. We consider the branches of the power functions such that(f(z1)
z1

)α∣∣∣
z1=0

= 1, (f ′(z1))
β
∣∣
z1=0

= 1.

This remarkable extension operator was introduced by Graham, Hamada, Kohr and Suf-
fridge in [46]. If 0 ≤ α ≤ 1, 0 ≤ β ≤ 1/2 and α+β ≤ 1, then Φn,α,β preserves parametric
representation, starlikeness, order γ starlikeness, γ ∈ (0, 1), almost starlikeness of type
γ ∈ (0, 1) and order δ ∈ [0, 1), spirallikeness of type γ ∈

(
−π

2 ,
π
2

)
and order δ ∈ (0, 1)

(see [46], [80], [81], [11]). An important question related to the operator Φn,α,β is that of
the preservation of convexity. Graham, Hamada, Kohr and Suffridge [46] showed that
Φn,α,β preserves convexity only if (α, β) = (0, 1/2). Motivated to find a way to provide
extreme points of K(Bn), Muir [92] gave a generalization of the extension operator due
to Roper and Suffridge, which maps extreme points of the class K to extreme points of
the class K(Bn). This extension operator is defined by

Φn,Q(f)(z) = (f(z1) +Q(z̃)f ′(z1), z̃
√
f ′(z1)), z = (z1, z̃) ∈ Bn,

where we choose the branch of the square root such that
√

f ′(z1)|z1=0 = 1 and Q :
Cn−1 → C is a homogeneous polynomial of degree 2. For ∥Q∥ ≤ 1/4, we have that
Φn,Q conserves parametric representation, starlikeness as it was proved by Kohr [75].
Also, if ∥Q∥ ≤ 1/2, the Muir extension operator conserves convexity (see [92]). For

∥Q∥ ≤ 1−|2α−1|
8α , starlikeness of order α ∈ (0, 1) is also preserved under Φn,Q ( see [116],

[12]).

The Pfaltzgraff-Suffridge extension operator is a generalization of the extension op-
erator due to Roper-Suffridge, which maps a locally biholomorphic and normalized map-
ping on Bn into a mapping with the same properties on Bn+1. This Pfaltzgraff-Suffridge
operator is described as follows ([99]): Ψn : LSn → LSn+1 with

Ψn(f)(z) =
(
f(z̃), zn+1[Jf (z̃)]

1
n+1

)
, z = (z̃, zn+1) ∈ Bn+1.

We consider the branch of the power function to be [Jf (z̃)]
1

n+1

∣∣∣
z̃=0

= 1. This extension

operator satisfies properties like: Ψn(S
0(Bn)) ⊆ S0(Bn+1), Ψn(S

∗(Bn)) ⊆ S∗(Bn+1) (see
[53]). The preservation of convexity under the extension operator Ψn remained until
now an open problem. However, a partial result was obtained by Graham, Kohr and
Pfaltzgraff in [53], where the authors showed that for a convex mapping on Bn the image
of that mapping through Ψn includes the convex envelope of the image of an egg domain
in Bn.

Roper-Suffridge type extension operators with alike properties are studied in [27],
[28], [36], [38], [46], [47], [48], [49], [50], [75], etc. Pfaltzgraff-Suffridge type extension
operators were considered in [13], [63] on Reinhardt domains and [41] on bounded sym-
metric domains in Cn.

In [65], the authors adapted the extension operators Φn,Q and Ψn to non-normalized
mappings and chains and showed that these extension operators conserve Ld-Loewner
chains. Recent contributions regarding Roper-Suffridge and Pfaltzgraff-Suffridge type
extension operators on complex Banach spaces obtained by Graham et al. are gath-
ered in [45] (see also [44], [41]). In this work, the authors studied the preservation of
g-Loewner chains. More recent results concerning extended Loewner chains and the
extension operator Φn,Q, as well as other preservation results have been obtain in [91].
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Our main objective is represented by the study of certain preservation results con-
cerning the extension operators Φn,α,β, Φn,Q and subclasses of S0

g (Bn), where g is the
function given by

(0.0.2) g(ζ) =
1 +Aζ

1 +Bζ
, ζ ∈ U, where − 1 ≤ B < A ≤ 1.

Given this form of g, we shall refer in this thesis to the set of mappings with g-parametric
representation on Bn, the set of g-starlike mappings on Bn, the set of g-almost starlike
mappings of order α on Bn and the set of g-spirallike mappings of type γ on Bn. For a
suitable choice of parameters A,B in the expression of g, these classes can be reduced
to some well-known subclasses of S(Bn). We especially remark the case g(ζ) = 1+ζ

1−ζ ,
ζ ∈ U , when g-parametric representation on Bn reduces to parametric representation
Bn, g-starlikeness on Bn reduces to standard starlikeness on Bn and so on. We are
also interested on a particular type of starlikeness on Bn, namely Janowski (almost)
starlikeness with real coefficients. These notions coincides with g-starlikeness on Bn for
a proper selection of A and B in (0.0.2). Also, we shall refer to a generalization of these
notions, namely to Janowski (almost) starlikeness with complex coefficients.

Let the function g be described by (0.0.2). In this thesis, we prove that g-parametric
presentation is preserved under the extension operators Φn,α,β, Φn,Q. Also, we show that
g-starlikeness and g-spirallikeness of type γ is conserved through Φn,α,β, Φn,Q. Moreover,
g-almost starlikeness of order α is preserved under Φn,α,β. A direct consequence of
the preservation of g-starlikeness is represented by the fact that Φn,α,β, Φn,Q preserve
Janowski (almost) starlikeness with real coefficients.

Let |1 − a| < b ≤ a with a, b ∈ R. Let J (a,b) be the class of Janowski starlike
functions on U and let AJ (a,b) be the class of Janowski almost starlike functions on
U . Also, let S∗ be the set of normalized starlike functions on U and let S∗

g be the set

of g-starlike functions on U . We give the J (a,b) radius of the classes S, S∗. Then,
we determine the J (a,b) radius of the classes Φn,α,β(S) and Φn,α,β(S

∗). We next obtain
growth theorems for the class Φn,Q(S

0
g ), the class Φn,Q(S

∗
g ), the class Φn,Q(J (a,b)) and

the class Φn,Q(AJ (a,b)). We give estimates of detDΦn,Q(f)(z), where f belongs to S∗
g ,

J (a,b) or AJ (a,b). Some distortion results along a vector of norm equal to 1 in Cn

for certain subclasses of Φn,Q(S
∗
g ) will be given. Particular cases that derive from the

previous mentioned growth and distortion results will be mentioned.
In the last part, we prove that the extension operators Φn,α,β, Φn,Q preserve Janowski

(almost) starlikeness with complex coefficients. Also, we obtain the expression of the
Herglotz vector field associated with a particular Loewner chain F (z, t) : B3 × [0,∞) →
C3, where its first element is Ψ2(f) with f ∈ S0(B2). The Loewner chain F (z, t) is
mentioned in [53] (see the proof of Theorem 2.1).

The content of this thesis is divided in four chapters. We present a brief introduction
of these chapters in the following.

In Chapter 1, we begin with some preliminary results regarding holomorphic func-
tions in C, respectively holomorphic functions and holomorphic mappings in Cn. We
present some basic properties of holomorphic functions in the case of one complex vari-
able and, then, analyze if the extension of these results to higher dimensions, n ≥ 2,
remains valid. We next describe general results for the univalent functions in C and
biholomorphic mappings in Cn. We present the Carathédory class P in C (see [48],
[102]) and its extension to n-dimensions, n ≥ 2, the family M (see [96], [48]).

In another section we present certain subclasses of S. The first part is devoted to the
class of univalent and normalized functions on U , denote by S. Then, we refer to the class
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of starlike and normalized functions on U with respect to the origin, denoted by S∗, the
class of normalized convex functions on U , denoted by K, the class of normalized starlike
functions of order α on U , denoted by S∗

α, the class of normalized spirallike functions
of type γ on U , denoted by Ŝγ , and the class of normalized almost starlike functions of
order α on U , denoted byAS∗

α. We present analytical characterizations, growth, covering
and distortion theorems, coefficients bounds for the previous mentioned subclasses. We
continue in the next section with the generalization to higher dimensions, n ≥ 2, of
these subclasses of normalized univalent functions and investigate similar properties as
in the case of one complex variable, which may or may not remain true.

In the last section we present Loewner chains in C and Cn. We include general results
regarding Loewner chains on U . We shall present the Loewner differential equation on
U and, further, give an analytical characterization of some subclasses of normalized
univalent functions through Loewner chains. In a separate part of this chapter, we
mention general results regarding Loewner chains in Cn. We describe Loewner chains
and the Loewner differential equation in Cn, n ≥ 2. We give the characterization of
some subclasses of S(Bn) through Loewner chains.

This chapter contains important and useful results for the forthcoming chapters. We
intend to present only the statement of these results and omit their proofs.

In Chapter 2, we present the parametric representation on the unit disc U and
on the unit ball Bn of Cn. First, we describe the notion of a function with parametric
representation on U . Then, we shall see that any function f ∈ S admits parametric
representation on U (see [102], [48]). Further, we present the class of mappings which
admit parametric representation on Bn, S0(Bn). This class was described in [37]. We
give growth and coefficient estimates (see [37], [73]) and state the compactness of this
class (see [51]). We next continue with a subclass of the family M, the set Mg, where g :
U → C fulfills certain assumptions. The class Mg was considered by Graham, Hamada
and Kohr in [37]. We present the class of mappings with g-parametric representation on
Bn, S0

g (Bn). We shall consider growth and coefficient estimates for this class (see [37]).
We describe the concept of a g-Loewner chain due to Graham, Hamada and Kohr [37].

Let g be a function described by (0.0.2). In the next section, we are concerned
about some preservation results concerning the extension operators Φn,α,β, Φn,Q and a
subclass of mappings with g-parametric representation. We give a brief introduction and
some well-known properties of these extension operators. We are also concerned about
certain radii problems regarding subclasses of biholomorphic mappings generated by
these extension operators. The main results represented by Theorem 2.3.2 and Theorem
2.3.3 are included in the last section and state that the extension operators Φn,α,β, Φn,Q

preserve g-parametric representation on Bn, where g is defined by (0.0.2).

These original results have been obtained by the author of this thesis in [85, 86].

In Chapter 3, we present certain subclasses of S(Bn) which have geometric prop-
erties and admit g-parametric representation, where the function g : U → C satisfies
certain assumptions. We describe g-starlikeness, g-almost starlikeness of order 0 ≤ α < 1
and g-spirallikeness of type γ ∈

(
−π

2 ,
π
2

)
on Bn. We give the characterization in terms

of g-Loewner chains of the mappings described by these concepts. We prove that these
notions are conserved under the extension operator Φn,α,β when g has the particular
form (0.0.2). For the same function g, we show that Φn,Q preserves g-starlikeness and
g-spirallikeness of type γ ∈

(
−π

2 ,
π
2

)
on Bn. We state these properties in Theorem 3.1.10,

Theorem 3.1.12, Theorem 3.1.13, respectively Theorem 3.1.15, Theorem 3.1.17. These
results are original and have been obtained in [85, 86], except Theorem 3.1.13 which was
obtained after the publication of the paper [85].
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Let a, b ∈ R satisfying the condition |1−a| < b ≤ a. We next study two subclasses of
functions that admit g-parametric representation on U and have interesting geometric
properties, namely the set of Janowski starlike functions on U , J (a,b), respectively the
set of Janowski almost starlike functions on U , AJ (a,b). The set J (a,b) was defined
by Silverman [109] (see also [110]), respectively the set AJ (a,b) was defined by Curt
[21]. Then, we present their natural generalization to the unit ball Bn of Cn due to
Curt [21]. The results contained in Theorem 3.2.5, Theorem 3.2.6, Theorem 3.2.7 and
Theorem 3.2.8 are original and show that the extension operators Φn,α,β, Φn,Q preserve
the Janowski (almost) starlikeness on Bn. These results have been obtained in [85, 86].

In a separate section, we investigate certain radii problems regarding the extension
operator Φn,α,β and Janowski starlikeness on the unit disc U . We give the J (a,b) radius
of the classes S, S∗, where |1 − a| < b ≤ a, in Theorem 3.3.3 and Theorem 3.3.5.
Particular cases of Theorem 3.3.3 are Corollary 3.3.4 and Remark 3.3.6. We compute
the J (a,b) radius of the classes Φn,α,β(S), Φn,α,β(S

∗) in Theorem 3.3.8, Theorem 3.3.9.
Also, we deduce the radius of almost starlikeness of order α, with α ∈ (0, 1), of the classes
Φn,α,β(S), Φn,α,β(S

∗) in Theorem 3.3.9. These results are original and are included in
[85].

The last section is devoted to growth and distortion results for certain families of
mappings with g-parametric representation generated under the operator Φn,Q, where
g is described by (0.0.2). First, we mention the growth result for the class S0

g (Bn) due
to Graham, Hamada and Kohr [37], which generalizes Theorem 2.3 in [73]. We next
give growth theorems for the class Φn,Q(S

0
g ) stated in Theorem 3.4.2, the class Φn,Q(S

∗
g )

stated in Corollary 3.4.3 and the classes Φn,Q(J (a,b)), respectively Φn,Q(AJ (a,b)), stated
in Corollary 3.4.4, Corollary 3.4.5.

The next part provides distortion theorems for certain subclasses of Φn,Q(S
∗
g ), when

g is described by (0.0.2). We give estimates for detDΦn,Q(f)(z), where f belongs to
S∗
g , J (a,b) or AJ (a,b) in Theorem 3.4.9, Corollary 3.4.10, Corollary 3.4.11. Particular

cases of these results are stated in Corollary 3.4.12, Corollary 3.4.13. Some distortion
results along a vector of norm 1 in Cn for certain subclasses of Φn,Q(S

∗
g ) are obtained in

Theorem 3.4.14, Corollary 3.4.15, Corollary 3.4.16, and their consequences in Corollary
3.4.17 and Corollary 3.4.18.

The above results are original and are included in [86].

In Chapter 4, we consider the concept of g-parametric representation, g-Loewner
chains and g-starlikeness where g : U → C is univalent on U , g(0) = 1 and Reg(ζ) > 0,
ζ ∈ U (see [44]). We state that g-parametric representation and g-starlikeness are con-
served under the extension operators Φn,α,β and Φn,Q (see [44]). We give particular
selections of this general function g that depend on two complex parameters A and
B, which will serve as a connection between g-starlikeness and Janowski (almost) star-
likeness with complex coefficients (see [22]). This type of starlikeness generalizes the
Janowski (almost) starlikeness with real coefficients defined in [21]. We give a brief
presentation of Janowski (almost) starlikeness with complex coefficients. Then we shall
refer to the preservation of these notions under Φn,α,β, Φn,Q in Theorem 4.2.2, Theorem
4.2.3 and Theorem 4.2.4. These preservation properties generalize the results obtained
in [85, 86], which regard Janowski classes with real coefficients. Also, we prove a useful
result that we will use to prove some of the above properties and it is described by
Remark 4.2.1.

In the final part of this chapter we obtain the expression of the Herglotz vector
field associated with a particular Loewner chain F (z, t) : B3 × [0,∞) → C3 where
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its first element is the image of a mapping f ∈ S0(B2) through the Pfaltzgraff-Suffridge
extension operator Ψ2. We refer to the Loewner chain F (z, t) from the proof of Theorem
2.1 in [53] when n = 2. This result is included in Theorem 4.3.7. First, we present the
Pfaltzgraff-Suffridge extension operator Ψn and mention important results concerning
this operator.

The new results presented in this chapter have been obtained in [87], except Theorem
4.3.7.

We include below a list with the main results presented in this thesis:

� Chapter 2: Theorem 2.3.2, Theorem 2.3.3.

� Chapter 3: Theorem 3.1.10, Theorem 3.1.12, Theorem 3.1.13, Theorem 3.1.15,
Theorem 3.1.17, Theorem 3.2.5, Theorem 3.2.6, Theorem 3.2.7, Theorem 3.2.8,
Theorem 3.3.3, Theorem 3.3.5, Corollary 3.3.4, Remark 3.3.6, Theorem 3.3.8, The-
orem 3.3.9, Theorem 3.4.2, Corollary 3.4.3, Corollary 3.4.4, Corollary 3.4.5, The-
orem 3.4.9, Corollary 3.4.10, Corollary 3.4.11, Corollary 3.4.12, Corollary 3.4.13,
Theorem 3.4.14, Corollary 3.4.15, Corollary 3.4.16, Corollary 3.4.17, Corollary
3.4.18.

� Chapter 4: Remark 4.2.1, Theorem 4.2.2, Theorem 4.2.3, Theorem 4.2.4, Theo-
rem 4.3.7.

The new results presented in the content of this thesis are published in the following
articles:

� Manu, A.: Extension Operators Preserving Janowski Classes of Univalent Func-
tions, Taiwanese J. Math., 24:1 (2020), 97 − 117, Impact Factor/2020: 1.136,
Accession Number: WOS:000508232900007, DOI: 10.11650/tjm/190407

� Manu, A.: The Muir extension operator and Janowski univalent functions, Com-
plex Var. Elliptic Equ., 65:6 (2020), 897 − 919, Impact Factor/2020: 0.846, Ac-
cession Number: WOS:000476259700001, DOI: 10.1080/17476933.2019.1636788

� Manu, A.: Extension operators and Janowski starlikeness with complex coeffi-
cients, Stud. Univ. Babeş-Bolyai Math., submitted, ISSN: 2065-961x.

The new results presented in this thesis were communicated to the following confer-
ences:

• October 15 − 18, 2021, 16th International Symposium on Geometric Function
Theory and Applications (GFTA 2021), online, Lucian Blaga University, Sibiu,
Romania; communication: Roper-Suffridge extension operators and Janowski uni-
valent functions.

• October 22− 24, 2020, Conferinţa Şcolilor Doctorale din Consorţiul Universitaria
(CSDCU-MIF2020), Third Edition, online, Alexandru Ioan Cuza University, Iaşi,
Romania; communication: Roper-Suffridge extension operators and Janowski uni-
valent functions.
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• June 25− 27, 2018, The 5th Conference of PhD Students in Mathematics (CSM),
University of Szeged, Bolyai Institute, Szeged, Hungary; communication: Exten-
sion operators preserving Janowski classes of univalent functions.

• June 14− 16, 2018, International Conference on Mathematics and Computer Sci-
ence (MACOS 2018), Transilvania University, Braşov, Romania; communication:
Extension operators preserving Janowski classes of univalent functions.
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Chapter 1

Univalence in one and several
complex variables

In this chapter, we present general results regarding holomorphic functions in C, re-
spectively holomorphic functions and holomorphic mappings in Cn. First, we shall refer
to some important results in the theory of holomorphic functions on C. Next, we con-
sider the extensions of these results to holomorphic functions in Cn. In the case of
holomorphic mappings in Cn, these results may not be valid.

We shall refer to basic properties of the univalent functions in C and biholomor-
phic mappings in Cn. A fundamental result in the theory of univalent functions is the
Riemann mapping theorem, which states the conformal equivalence of every simply con-
nected domain in C that is a proper subset of C with the unit disc U . Poincaré H. [100]
showed that the Euclidean unit ball in Cn is not biholomorphic equivalent with the unit
polydisc in Cn, although they are homeomorphic, which leads to the failure of Riemann
mapping theorem in higher dimensions, n ≥ 2.

In the next part, we present the Carathédory class P in C and its extension to
n-dimensions, n ≥ 2, the family M. A key result in the theory of Loewner chains in
n-dimensions was proving the compactness of the set M, due to Graham, Hamada and
Kohr [37].

Another part is dedicated to the study of certain subclasses of univalent functions on
the unit disc U in C. First, we present the class of univalent and normalized functions
on U , denoted by S. Then, we shall refer to the class of normalized starlike function
on U with respect to 0, denoted by S∗, the class of normalized convex functions on U ,
denoted by K, the class of normalized starlike functions of order α on U , denoted by S∗

α,
the class of normalized spirallike functions of type γ on U , denoted by Ŝγ , and the class
of normalized almost starlike functions of order α on U , denoted by AS∗

α. We aim to give
analytical characterizations and other important properties of these subclasses. Next,
we shall consider the generalization to higher dimensions, n ≥ 2, of these subclasses of
normalized univalent functions and investigate similar properties as in the case of one
complex variable, which may or may not be valid.

Let S(Bn) be the set of biholomorphic and normalized mappings on Bn for n ≥ 2.
The compactness of the class S(Bn) does no longer hold for n ≥ 2 as in the case of the
class S.

We are also concerned about the study of Loewner chains in C and Cn. We include
important results regarding Loewner chains on U . We shall present the Loewner differ-
ential equation on U and, further, give an analytical characterization of some subclasses

15
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of normalized univalent functions through Loewner chains. We next continue with the
generalization of Loewner chains and the Loewner differential equation in Cn, n ≥ 2.
We mention important results in the theory of Loewner chains in Cn, including the
characterization of some subclasses of S(Bn) through Loewner chains.

The principal sources used to document and prepare this chapter are [102], [66], [48],
[76], [90].

1.1 Preliminaries

First, we give certain useful notations that we will use throughout the content of this
thesis.

Let C be the complex plane. Let a ∈ C and r > 0. Let

U(a, r) = {z ∈ C : |z − a| < r}

be the disc of center a and radius r. Also, let U(a, r), respectively ∂U(a, r), be the
closure, respectively the boundary, of the disc U(a, r). In the case a = 0, we use the
notation Ur instead of U(0, r), respectively U instead of U(0, 1).

Let n ∈ N = 1, 2, 3 . . . , and let Cn = {z = (z1, z2, . . . , zn) : zi ∈ C, i = 1, . . . , n} be
the complex space equipped with the Euclidean inner product

⟨z, w⟩ =
n∑

i=1

ziwi,

which provides the Euclidean norm ∥z∥2 = ⟨z, z⟩. Let a ∈ Cn and let R > 0. Let

Bn(a,R) = {z ∈ Cn : ∥z − a∥ < R}

be the open ball of radius R and center a. Let Bn(a,R), respectively ∂Bn(a,R), be the
closure, respectively the boundary, of the open ball Bn(a,R). If a = 0 then we denote
the open ball Bn(0, R) by Bn

R, respectively the open unit ball Bn(0, 1) by Bn.

Let us consider the multiradius r = (r1, . . . , rn) ∈ R+ × · · · × R+. Let

Pn(z0, r) = U(z01 , r1)× · · · × U(z0n, rn)

be the open polydisc of center z0 = (z01 , . . . , z
0
n) ∈ Cn and multiradius r. If r = (1, . . . , 1)

then we denote the unit polydisc Pn(0, r) by Pn.

1.2 Holomorphic function theory in one and several com-
plex variables

This section is dedicated to the presentation of holomorphic functions in C and Cn,
respectively the holomorphic mappings in Cn. We begin by presenting the notion of
holomorphic function in C and then we refer to the holomorphism in higher dimensions.
In the first section, we include main results that have an important role in the theory of
holomorphic function in C. In a succeeding part, we shall present certain generalizations
of these results in higher dimensions. The main sources used to prepare this section are
[66], [76], [74], [77], and [106].
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1.2.1 Holomorphic functions in C

In the followings we present certain elementary properties of holomorphic functions on
an open set in C. Let Ω be an open set in C. Then H(Ω) means the set of holomorphic
functions defined on Ω with values in C.

Assume that 0 ∈ Ω. Then a holomorphic function on Ω is normalized if f(0) =
f ′(0)− 1 = 0.

Two main results well known in the theory of the holomorphic functions are open
mapping theorem, respectively maximum(minimum) modulus theorem (see [66], [76]).
These properties play a main role in the development of the results presented in the
next chapters. They state the followings:

Theorem 1.2.1. (Open mapping theorem) Let Ω be a domain in C and let f ∈
H(Ω) be such that f is a nonconstant function on Ω. Then f(Ω) is also a domain in C.

The above result also holds for holomorphic functions from domains in Cn into C,
and for locally biholomorphic mappings defined on domains in Cn with values in Cn,
n ≥ 2. (see e.g. [106]).

Theorem 1.2.2. (Maximum(minimum) modulus theorem) Assume that Ω ⊆ C
is a domain and f ∈ H(Ω). If there exists z0 ∈ Ω such that

|f(z0)| = max{|f(z)| : z ∈ Ω}
(
|f(z0)| = min{|f(z)| : z ∈ Ω}

)
,

then f is constant on Ω.

The maximum modulus theorem have various applications in the theory of holo-
morphic functions. One of them is known as the Schwarz’s lemma (see [66], [76]). We
present its statement below:

Corollary 1.2.3. (Schwarz’s lemma) Assume f ∈ H(U) such that f(0) = 0 and
|f(z)| < 1, z ∈ U . Then |f(z)| ≤ |z| for z ∈ U and |f ′(0)| ≤ 1. Moreover, if there
exists some w ∈ U\{0} such that |f(w)| = |w|, or if |f ′(0)| = 1, then there exists λ ∈ C,
|λ| = 1 and f(z) = λz, z ∈ U .

We next present two notions that will be useful in the followings sections. We shall
describe the locally uniformly bounded family, respectively the normal family on an
open set of C (see e.g. [66], [76]).

Definition 1.2.4. Assume that Ω ⊆ C is an open set. Let F ⊆ H(Ω). We say that the
family F is locally uniformly bounded if for each compact subset of Ω, K, there isMK > 0
(the constant could depend on K) with the property that for all f ∈ F we have that
∥f |K∥ ≤ MK . Here, we consider the norm ∥f |K∥ to be ∥f |K∥ = max{|f(z)| : z ∈ K}.

Definition 1.2.5. Assume that Ω ⊆ C is an open set and let F ⊆ H(Ω). We say that
the family F is normal if each sequence {fi}i∈N ⊆ F has a subsequence which converges
locally uniformly on Ω.

It was proved that the notions of locally uniformly bounded family, respectively of
normal family are equivalent. The result was obtained by Montel (see e.g. [66], [76]). It
is important to note that the result remains valid when n ≥ 2 ( see [93]).

Theorem 1.2.6. Assume that Ω ⊆ C is an open set and F ⊆ H(Ω). Then the family
F is normal if and only if F is locally uniformly bounded.
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Another useful result that derives from Montel’s theorem is stated in following corol-
lary (see [66], [76]). The result remains true when n ≥ 2 (see [93]).

Corollary 1.2.7. If Ω ⊆ C is an open set and F ⊆ H(Ω), then F is compact if and
only if F is locally uniformly bounded and closed.

1.2.2 Holomorphic functions in Cn. Holomorphic mappings in Cn

In this part, we propose to study holomorphic functions and holomorphic mappings on
a open set in Cn. We mainly focus on the generalizations to n-dimensions, n ≥ 2, of
the results presented in the previous part for holomorphic functions on an domain in C.
Further, we assume that m > 1.

First, we recall the notion of a holomorphic function in Cn. (see e.g. [48]).

Definition 1.2.8. Let Ω ⊆ Cn be an open set and let f : Ω → C. If f is continuous on
Ω and holomorphic in each variable separately, then we say that f is holomorphic on Ω.

In view of the Hartogs result, the condition of continuity in Definition 1.2.8 is not
needed. Therefore, we deduce that any holomorphic function in each variable separately
is holomorphic on the entire open set Ω (see [10], [77]). Let H(Ω,C) denote the set of
holomorphic functions on the open set Ω ⊆ Cn into C.

In the followings, we shall highlight basic properties of the holomorphic functions
on a domain in Cn. First, we give the generalization of the open mapping theorem for
holomorphic functions a open set in Cn (see [93]).

Theorem 1.2.9. If Ω ⊆ Cn is a domain and f : Ω → C is a nonconstant holomorphic
function then f(Ω) is a domain in C.

Since the locally uniformly bounded families, respectively the normal families are
defined similarly in Cn, n ≥ 2, we skip their presentation in higher dimensions (see e.g.
[93], [106]).

We will proceed further with the generalization of Montel’s theorem in n-dimensions,
n ≥ 2 (see e.g. [93]).

Theorem 1.2.10. Let Ω ⊆ Cn be an open set and F ⊆ H(Ω,C). Then F is a normal
family if and only if F is locally uniformly bounded.

We next give a characterization of compact families of holomorphic functions on a
open set in Cn (see e.g. [93], [106]).

Corollary 1.2.11. Let Ω ⊆ Cn be an open set and F ⊆ H(Ω,C). Then F is compact
if and only if F is locally uniformly bounded and closed.

Next, we want to present the notion of a holomorphic mapping from open subsets
of Cn into Cm (see e.g. [48]).

Definition 1.2.12. Assume that Ω ⊆ Cn is an open set and f : Ω → Cm. We say that
the mapping f = (f1, . . . , fm) is holomorphic if each of its components, fj , j = 1,m, is
an holomorphic function from Ω into C.

Let H(Ω,Cm) be the set of holomorphic mappings from the open set Ω ⊆ Cn into
Cm. For n = m, we use the notation H(Ω) instead of H(Ω,Cn).
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Assuming that Ω is a domain in Cn and that f ∈ H(Ω,Cm), then the differential
Df(z) at z ∈ Ω is a complex linear mapping from Cn into Cm and is linked to the
complex Jacobian matrix

Df(z) =

 ∂f1
∂z1

· · · ∂f1
∂zn

· · · · · · · · ·
∂fm
∂z1

· · · ∂fm
∂zn

 .

In the case n = m, the determinant of the matrix Df(z), z ∈ Ω, denoted by Jf (z),
represents the complex Jacobian determinant of f at z. We mean by a normalized
mapping on Ω a mapping f with the properties: f(0) = 0 and Df(0) = In, when 0 ∈ Ω
and In is the identity matrix n× n.

Further, we shall present certain properties that are satisfies by the holomorphic
mappings in Cn. We saw in the begining of this part that certain results obtained for
holomorphic functions in C still remain true for holomorphic functions in Cn. In the
case of holomorphic mappings in Cn, these results may not be valid. We illustrate in
the following remark one example of this kind.

Remark 1.2.13. Let Ω ⊆ Cn be a domain. The generalization of the Theorem 1.2.9
does not hold in the case of a mapping from H(Ω,Cm), where m > 1 (see e.g. [106]).
However, this result remains true for locally biholomorphic mappings from Ω into Cn(see
[48]).

Note that the maximum(minimum) modulus theorem can be extended to holomor-
phic mappings in the complex space Cn equipped with an arbitrary norm ∥ · ∥ (see [48],
[93]).

Theorem 1.2.14. Assume that Ω ⊆ Cn is a domain and let f ∈ H(Ω,Cm). If there
exists a point z0 ∈ Ω such that

∥f(z0)∥ = max{∥f(z)∥ : z ∈ Ω}
(
∥f(z0)∥ = min{∥f(z)∥ : z ∈ Ω}

)
,

then ∥f(z)∥ is constant on Ω.

Remark 1.2.15. Assume the conditions in the Theorem 1.2.14 hold. If the norm ∥ · ∥ in
the space Cm is the Euclidean norm then the mapping f is constant on Ω.

In the followings, we present the analogous of Schwarz’s lemma for holomorphic
mappings on Bn. Let ∥ · ∥ be an arbitrary norm on Cn (see e.g. [48], [93]).

Corollary 1.2.16. Let f : Bn → Cm be such that f ∈ H(Bn,Cm), f(0) = 0 and
∥f(z)∥ < 1, z ∈ Bn. Then ∥f(z)∥ ≤ ∥z∥, z ∈ Bn, and ∥Df(0)∥ ≤ 1. Moreover, if there
exists z0 ∈ Bn\{0} such that ∥f(z0)∥ = ∥z0∥, then ∥f(λz0)∥ = ∥λz0∥, for all λ ∈ C,
|λ| < 1/∥z0∥.

1.3 Univalence in one and several complex variables

In this section we include important results in the theory of the univalent function in C
and Cn. First, we introduce the notion of univalent function in C and present certain
well known results regarding univalent functions (see e.g. [89], [90], [102] ). In the
following part, we define the notions of univalent mapping in Cn and biholomorphic
mapping in Cn and, next, show the connection between these notions. This part will
be preceded by certain important results regarding biholomorphic mappings in Cn (see
e.g. [48], [77], [93]).
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1.3.1 Univalent functions on C

This part is allotted to the study of univalent function of one complex variables. Well
known results regarding univalence on the complex plane will be mentioned.

The following definition presents the notion of an univalent function in the complex
plane C (see e.g. [90], [102]).

Definition 1.3.1. Assume that Ω ⊆ C is a domain. We say that the function f : Ω → C
is univalent on Ω if f is injective and holomorphic on Ω.

We next present some suggestive examples of univalent functions that play an im-
portant role in the univalent functions theory (see e.g. [90], [102]).

Example 1.3.2. (i) A well known example of a univalent function that plays an
important role in many extremal problems is described by k(z) = z

(1−z)2
, z ∈ U

(Koebe function), which extends U onto C\(−∞,−1/4].

(ii) Let θ ∈ R. The rotation of the Koebe function is still a univalent function

kθ(z) =
z

(1− eiθz)2
, z ∈ U.

In the next statement, we provide a necessary condition for univalence. However,
this requirement is not a sufficient condition for univalence (see [48]).

Theorem 1.3.3. Let Ω ⊆ C be a domain and let f : Ω → C be a univalent function on
Ω. Then f ′(z) ̸= 0, z ∈ Ω.

Still, one have a criterion for global univalence for holomorphic functions. The result
is due to Alexander [1], Noshiro [95], Warschawski [117] and Wolff [118] and is presented
in the following theorem.

Theorem 1.3.4. Let Ω ⊆ C be a convex domain and let f ∈ H(Ω). If Ref ′(z) > 0,
z ∈ Ω, then f is univalent on Ω.

We next recall the notions of a conformal function, conformal equivalence of domains
in C and then point up certain observations regarding these notions(see e.g. [25], [66],
[76], [102]).

Definition 1.3.5. Assume that Ω1 and Ω2 are domains in C. The domains Ω1 and Ω2

are conformally equivalent if there is a function f : Ω1 → Ω2 satisfying the conditions:
f is univalent on Ω1 and f(Ω1) = Ω2. A function f with these properties is called a
conformal mapping. Moreover, if Ω1 = Ω2, then f is a conformal automorphism of Ω1

(see e.g. [66]).

We present a main result in the theory of univalent functions in C, known as the
Riemann mapping theorem (see e.g. [48], [66]). However, Riemann mapping theorem is
not true in Cn, for n ≥ 2 (see [93], [106]).

Theorem 1.3.6. Assume that Ω ⊊ C is a simply connected domain. Then Ω and
the unit disc U are conformally equivalent. In addition, if z0 ∈ Ω, there is a unique
conformal mapping f : Ω → U satisfying the conditions: f(z0) = 0, f ′(z0) > 0.

We present in the next statement a consequence of the Riemann mapping theorem
(see e.g. [66], [76]).

Corollary 1.3.7. Any two simply connected domains in C, that are different by the
entire complex plane C, are conformally equivalent.
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1.3.2 Biholomorphic mappings in Cn

In this part, we propose to study the biholomorphic mappings in Cn, as well as certain
properties that are satisfied by these mappings.

In the followings, we introduce the notion of univalence, respectively the notion of
biholomorphy in n-dimensions, n ≥ 2 (see [48], [77], [93]).

Definition 1.3.8. Assume that Ω ⊆ Cn is a domain. Let f : Ω → Cn.

(i) If f is holomorphic and injective on Ω, then we say that f is univalent on Ω.

(ii) If f ∈ H(Ω) and the inverse mapping f−1 exists and is holomorphic on the domain
Ω′ = f(Ω), then we say that f is biholomorphic. In such a case, we say that the
domains Ω and Ω′ are biholomorphically equivalent. Moreover, if Ω = Ω′ then the
mapping f is called an automorphism of Ω.

In higher dimensions, n ≥ 2, the equivalence between biholomorphy and univalence
still holds (see e.g. [93], [106]), but for infinite dimensional complex Banach spaces, is
no longer valid (see [112]).

Theorem 1.3.9. Assume that Ω ⊆ Cn is a domain. Let f : Ω → Cn. Then f is
biholomorphic from Ω onto f(Ω) if and only if f is univalent on Ω.

The fact that the Bn is not biholomorphic equivalent with the unit polydisc in Cn

leads to the failure of Riemann mapping theorem in higher dimensions, n ≥ 2 (see [93],
[106]). The following result is due to Poincaré [100] and illustrates this context.

Theorem 1.3.10. Let n ≥ 2. Then Bn is not biholomorphically equivalent to Pn. But,
these domains are homeomorphic.

Now, we describe the notion of locally univalence on a domain from Cn(see e.g. [48]).

Definition 1.3.11. Assume that Ω ⊆ Cn is a domain. Let f ∈ H(Ω). The mapping f is
called locally biholomorphic on Ω if for every z ∈ Ω one can find an open and connected
set V ⊂ Ω, which is a neighborhood of z, such that f |V : V → f(V ) is biholomorphic
mapping.

Remark 1.3.12. Let Ω ⊆ Cn be a domain and f ∈ H(Ω). Then Jf (z) ̸= 0, z ∈ Ω, if and
only if f is locally biholomorphic on Ω ( see e.g. [48], [106]).

1.4 The Carathéodory class in C and Cn.

In this section, we shall present the Carathéodory class in C and its generalization to
higher dimensions and give important properties of these classes. The main sources used
to prepare this section are [90] and [102] in the case of one complex variable, respectively
[48], [37] and [96] in the case of several complex variables.

1.4.1 Holomorphic functions with positive real part

In the followings, we shall introduce the notion of subordination in C (see e.g. [90]).
First, we need the to describe the class of Schwarz functions on U , V. We have that
φ ∈ V if and only if φ is holomorphic on the unit disc U , φ(0) = 0 and |φ(z)| < 1,
z ∈ U .
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Definition 1.4.1. Let f, g ∈ H(U). We say that f is subordinate to g, and write f ≺ g,
if there is a Schwarz function φ such that f(z) = g(φ(z)), z ∈ U .

We have the following characterization of subordination (see e.g. [90], [102]):

Theorem 1.4.2. Assume that f, g : U → C are holomorphic functions on U . Also, g
is univalent on U . The subordination condition f ≺ g is equivalent to f(U) ⊆ g(U) and
f(0) = g(0).

Assume that the conditions in the previous theorem hold and f(U) ⊆ g(U), f(0)−
g(0) = 0. Then, the condition f(UR) ⊆ g(UR) holds for any R ∈ (0, 1). This result is
known as the subordination principle.

Let be the following class of holomorphic functions on U (see e.g. [48], [90], [102]):

P = {p ∈ H(U) : p(0) = 1,Rep(z) > 0, z ∈ U}.

The class P is known as Carathéodory class and has an major contribution in the
description of some subclasses of univalent functions on U and in the theory of Loewner
chains.

Next, we present growth and distortion results for the Carathéodory class P (see
[90]).

Theorem 1.4.3. Let p ∈ P. Then the following estimates are true:

1− |z|
1 + |z|

≤ Rep(z) ≤ |p(z)| ≤ 1 + |z|
1− |z|

, z ∈ U,

|p′(z)| ≤ 2Rep(z)

1− |z|2
≤ 2

(1− |z|)2
, z ∈ U.

These estimates are sharp.

The function p(z) = 1+λz
1−λz , z ∈ U , for some complex number λ with |λ| = 1, yields

equality in the above estimates.
Any function p ∈ P can be written as: p(z) = 1 +

∑∞
n=1 pnz

n, z ∈ U . We next give
the following estimates for the coefficients pk, k ∈ N, (see e.g. [90]):

Theorem 1.4.4. Assume that p ∈ P. Let pk, k ∈ N denote the coefficients of the power
series expansion of p. Then the estimates |pk| ≤ 2, k ≥ 1 hold and are sharp.

The function p(z) = 1+λz
1−λz , z ∈ U , where λ ∈ C, |λ| = 1, is extremal for the above

estimates (see e.g. [90]).

1.4.2 Holomorphic mappings in the class M

The notion of subordination can be extended to holomorphic mappings from Bn to Cn

(see e.g. [48]). First, we say that a mapping φ defined on Bn is a Schwarz mapping if
φ ∈ H(Bn) and ∥φ(z)∥ ≤ ∥z∥, z ∈ Bn.

Definition 1.4.5. Assume that f, g ∈ H(Bn). Then f is subordinate to g ( f ≺ g ), if
there exists a Schwarz mapping φ such that f(z) = g(φ(z)), z ∈ Bn.

The condition of subordination from the above definition can be described as follows
(see [48]):
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Theorem 1.4.6. Let f, g ∈ H(Bn). If the mapping g is biholomorphic on Bn then f ≺ g
if and only if f(Bn) ⊆ g(Bn) and f(0) = g(0).

The following set represents the Carathéodory class on Cn (see [96], [114] and, also
[48], [74])

(1.4.1) M = {h ∈ H(Bn) : h(0) = 0, Dh(0) = In,Re⟨h(z), z⟩ > 0, z ∈ Bn\{0}}.

This set has a significant role in the theory of Loewner chains in Cn and in the description
of some classes of mappings, which are biholomorphic on Bn (see [48]).

It can be seen that, when n = 1, h is a mapping in the class M if and only if p ∈ P,
where h(z) = zp(z), z ∈ U . This points out that the class M extends the class P in
n-dimensions, n ≥ 2.

A simple example of a mapping from M is the mapping described by h(z) =
(z1p1(z1), . . . , znpn(zn)), z = (z1, . . . , zn) ∈ Bn, where pi ∈ P, i = 1, . . . , n.

We next give a growth result due to Pfaltzgraff [96] ( see also [48]).

Theorem 1.4.7. Any mapping h ∈ M satisfies the estimates

(1.4.2) ∥z∥2 1− ∥z∥
1 + ∥z∥

≤ Re⟨h(z), z⟩ ≤ ∥z∥2 1 + ∥z∥
1− ∥z∥

, z ∈ Bn.

The inequalities are sharp.

Graham et al. [37] obtained a stronger upper bound than that in (1.4.2).

Theorem 1.4.8. If h ∈ M then

(1.4.3) ∥z∥1− ∥z∥
1 + ∥z∥

≤ ∥h(z)∥ ≤ 4∥z∥
(1− ∥z∥)2

, z ∈ Bn.

The compactness of the class M was proved by Graham et al. [37] (see also [61]).

Corollary 1.4.9. The class M is compact in H(Bn).

1.5 Subclasses of univalent functions on unit disc

In this section we shall set forth certain subclasses of univalent functions on the unit disc
U . We start by presenting the class S of normalized univalent functions on U . In this
section, we shall also refer to the set of normalized starlike function on U with respect
to 0, S∗, the set of normalized convex functions on U , K, the set of normalized starlike
functions of order α on U , S∗

α , the set of normalized spirallike functions of type γ on
U , Ŝγ , and the set of normalized almost starlike functions of order α on U , AS∗

α. Our
main focus will be to give analytical and geometric characterizations of the previous
mentioned classes. The main bibliographic sources used to prepare this section are [25],
[48], [90] and [102].

1.5.1 The class S

We study univalence on the unit disc U , as it suffices to investigate only on U , according
to Riemann mapping theorem.

For this purpose, we introduce the class

S = {f ∈ H(U) : f univalent, f(0) = f ′(0)− 1 = 0}.



1.5. Subclasses of univalent functions on unit disc 24

Note that all the functions that are mentioned in Examples 1.3.2 are univalent and
normalized.

A function f ∈ S can be written as follows:

(1.5.1) f(z) = z + a2z
2 + · · ·+ anz

n + . . . , z ∈ U.

An estimate for second coefficient a2 in the above power series expansion was obtained
by Bieberbach [6].

Theorem 1.5.1. If f ∈ S has the power series expansion (1.5.1), then |a2| ≤ 2. Equality
occurs if and only if f is a rotation of the Koebe function.

On the basis that the coefficients ak, k = 2, 3, . . . satisfy the relation |ak| = k,
k = 2, 3, . . . , for a rotation of the Koebe function, let be the next conjecture formulated
by Bieberbach [6]:

Conjecture 1.5.2. (Bieberbach’s conjecture) If f ∈ S has the power series expan-
sion (1.5.1) then

(1.5.2) |ak| ≤ k, k = 2, 3, . . .

Equality occurs in (1.5.2) if and only if f is a rotation of the Koebe function.

The above conjecture was given in 1916 and was solved years later by de Branges
[24] (1985).

Another important consequence of Theorem 1.5.1 is the Koebe distortion theorem
given in (1.5.4) (see [6]). Starting from this distortion theorem, one may deduce the
estimates (1.5.3), (1.5.5) (see e.g [48]).

Theorem 1.5.3. If f ∈ S then:

(1.5.3)
|z|

(1 + |z|)2
≤ |f(z)| ≤ |z|

(1− |z|)2
, ∀z ∈ U,

(1.5.4)
1− |z|

(1 + |z|)3
≤ |f ′(z)| ≤ 1 + |z|

(1− |z|)3
, ∀z ∈ U,

and

(1.5.5)
1− |z|
1 + |z|

≤
∣∣∣zf ′(z)

f(z)

∣∣∣ ≤ 1 + |z|
1− |z|

, ∀z ∈ U.

These estimates are sharp. Equality in each of the above relations holds if and only if f
is a rotation of the Koebe function.

The following statement can be seen as covering theorem for the class S and is an
application of Theorem 1.5.1. It is well known as Koebe 1/4-covering theorem for the
class S (see [48], [90]).

Theorem 1.5.4. Let f ∈ S. Then f(U) ⊇ U1/4.

The following theorem states the compactness of the class S, which was proved using
the upper bound from the estimates (1.5.3) (see [90], [48]).

Corollary 1.5.5. The class S is a compact subset of H(U).
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1.5.2 The class S∗

An important subclass of S is the set of starlike and normalized functions on U , S∗.
Different results and properties related to starlike functions may be found in [102], [25],
[35], [48], [90].

The notion of a starlike function on U was introduced by Alexander [1].

Definition 1.5.6. Assume f ∈ H(U), f(0) = 0. The function f is called starlike on U
if f is univalent on U and f(U) is a starlike domain with respect to 0 (origin).

The notion of starlikeness can be described in an analytical way, as stated below (see
e.g. [25], [102], [48]).

Theorem 1.5.7. Assume that f ∈ H(U), f(0) = 0. Then f ∈ S∗ if and only if
f ′(0) ̸= 0 and the following condition holds:

Re

[
zf ′(z)

f(z)

]
> 0, z ∈ U.

Remark 1.5.8. The growth and distortion results from Theorem 1.5.3 remain true and
sharp for the class S∗. The class S∗ is compact in H(U). Also, the Koebe constant for
S∗ is 1/4 ([83], [94], [48]). Moreover, Bieberbach conjecture remains true for the class
S∗ (see [83], [94]).

1.5.3 The class S∗
α

Another important subclass of S is the set of normalized starlike functions of order α
on U , S∗

α.
The concept of order α starlikeness was introduced by Robertson [107].

Definition 1.5.9. Let 0 ≤ α < 1 and f ∈ H(U). The function f is called starlike of
order α on U if f(0) = 0, f ′(0) = 1 and

Re
[zf ′(z)

f(z)

]
> α, z ∈ U.

Note that any function from S∗
α is also starlike on U and the set S∗

0 becomes S∗.
The following statement shows a way to generate a function from S∗

α using a starlike
function on U and vice versa (see [48]).

Theorem 1.5.10. Let 0 ≤ α < 1. Then f ∈ S∗
α if and only if the following function

g(z) = z
[f(z)

z

] 1
1−α

, z ∈ U,

belongs to S∗, where
[
f(z)
z

] 1
1−α
∣∣∣
z=0

= 1.

Next, we give a growth theorem for functions in S∗
α (see [48], [35], [90]).

Theorem 1.5.11. Let f ∈ S∗
α and let 0 ≤ α < 1. Then:

|z|
(1 + |z|)2(1−α)

≤ |f(z)| ≤ |z|
(1− |z|)2(1−α)

.

These inequalities are sharp.



1.5. Subclasses of univalent functions on unit disc 26

1.5.4 The class AS∗
α

The notion of almost starlikeness of order α was introduced first in the case of complex
Banach spaces (see [119]).

Definition 1.5.12. Assume that 0 ≤ α < 1. Let f ∈ H(U) be such that f is normalized.
The function f is called almost starlike of order α on U if

(1.5.6) Re

[
f(z)

zf ′(z)

]
> α, z ∈ U.

Let AS∗
α be the set of normalized almost starlike functions of order α on U . Note

that AS∗
α ⊆ S∗.

1.5.5 The class K

We give below the definition of a convex function on U (see e.g. [48]).

Definition 1.5.13. Let f ∈ H(U). We say that f is convex if f is univalent on U and
f(U) is a convex domain.

We denote the set of convex and normalized functions on U by K. Also, we have
the following inclusions K ⊂ S∗ ⊂ S.

Let f ∈ K. Then

(1.5.7) f(z) = z + a2z
2 + · · ·+ anz

n + . . . , z ∈ U.

Also, the convexity can be described in an analytical way on U (see [25], [48]):

Theorem 1.5.14. Assume that f ∈ H(U). Then f ∈ K if and only if the next condi-
tions hold:

Re
[
1 +

zf ′′(z)

f ′(z)

]
> 0, z ∈ U,

and f ′(0) ̸= 0.

Next, we shall give growth and distortion results for the set K (see e.g. [48]).

Theorem 1.5.15. Let f ∈ K. The following relations hold:

|z|
1 + |z|

≤ |f(z)| ≤ |z|
1− |z|

, z ∈ U,

1

(1 + |z|)2
≤ |f ′(z)| ≤ 1

(1− |z|)2
, z ∈ U.

These inequalities are sharp and equality yields at z ̸= 0 for f(z) = z
1−λz , λ ∈ C, |λ| = 1.

In view of the growth theorem and since K is closed, we deduce the compactness of
the class K (see e.g. [90]).

Next result provides sharp estimates of the convex and normalized function coefficients([83]).

Theorem 1.5.16. Let f ∈ K and let (1.5.7) be its power series expansion. Then
|ak| ≤ 1, k = 2, 3, . . . . These inequalities are sharp and equality occurs if and only if
f(z) = z

1−λz , λ ∈ C, |λ| = 1.
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Next, we state the duality theorem obtained by Alexander [1], which establishes a
bound between convex and starlike functions on U .

Theorem 1.5.17. Let f ∈ H(U), f(0) = 0. Then the relation f ∈ K is equivalent to
g(z) = zf ′(z) ∈ S∗.

Note that the duality theorem is not true for n ≥ 2 (see [112] and also [48]).
Next, we highlight the bound between convexity and starlikeness of order 1/2 due

to Marx and Strohhäcker (see e.g. [48], [90]). This result is true in n-dimensions, n ≥ 2
(see [18], [70]).

Theorem 1.5.18. If f ∈ K then f ∈ S∗
1/2. This result is sharp.

1.5.6 The class Ŝγ

Next, we consider the class of normalized spirallike functions on U , introduced by S̆pac̆ek
[111].

Let γ ∈
(
−π

2 ,
π
2

)
and z0 ∈ C\{0}. The curve given by

z = z0e
−e−iγt, t ∈ R,

is a logarithmic γ−spiral (or γ−spiral).
First we define the notion of a spirallike domain (see [111]; see also [48]).

Definition 1.5.19. Let Ω ⊂ C be a domain and 0 ∈ Ω. We say that Ω is spirallike of
type γ, γ ∈

(
−π

2 ,
π
2

)
, if for every z ∈ Ω, z ̸= 0, the arc of γ-spiral connecting z with the

origin lies entirely in Ω.

Now we can define the notion of type γ spirallike function on U (see [111]).

Definition 1.5.20. Let γ ∈
(
−π

2 ,
π
2

)
. Assume that f ∈ H(U), f(0) = 0.

1. The function f is called spirallike of type γ on the unit disc if f is univalent on U
and f(U) is a spirallike domain of type γ.

2. The function f is called spirallike if there is γ ∈
(
−π

2 ,
π
2

)
such that f is spirallike

of type γ.

Let γ ∈
(
−π

2 ,
π
2

)
and let Ŝγ be the class of normalized spirallike functions of type γ

on U . In this case, Ŝγ ⊂ S∗ and Ŝ0 = S∗.
The following theorem, due to S̆pac̆ek [111], presents a necessary and sufficient con-

dition for spirallikeness of type γ on U (see also [48]).

Theorem 1.5.21. Let γ ∈
(
−π

2 ,
π
2

)
. Assume that f ∈ H(U) with f(0) = 0, f ′(0) ̸= 0.

Then the function f is spirallike of type γ if and only if

Re
[
eiγ

zf ′(z)

f(z)

]
> 0, z ∈ U.

The next characterization of spirallikeness can be used to establish to connection
between classes S∗ and Ŝγ (see e.g. [48], [90]).

Theorem 1.5.22. Let γ ∈
(
−π

2 ,
π
2

)
and θ = e−iγ cos γ. The condition f ∈ Ŝγ is

equivalent to the fact that there is a function g ∈ S∗ with the property

f(z) = z
[g(z)

z

]θ
, z ∈ U,

where
[
g(z)
z

]θ∣∣∣
z=0

= 1.
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1.5.7 Radius problems regarding univalent functions on U

In this part we present certain radii problems for some subclasses of S. The reader may
consult [35], [48] and [90] for more details on this topic.

Definition 1.5.23. Let F be a family of functions from the class S. Let P be a certain
property that we investigate on the family F . We denote by r(P,F) the radius for
the property P in the set F , which represents the largest radius r > 0 such that each
function in F has the property P on the open disc of radius r centered at origin.

Let r(S∗, S) be the radius of starlikeness of S and let r(K,S) be the radius of
convexity of S.

The radius r(S∗, S) was determined by Nenvalinna and Campbell and the radius
r(S∗, S) was obtained by Grunsky ( see e.g. [35]).

Theorem 1.5.24. 1. r(S∗, S) = tanh π
4 = eπ/2−1

eπ/2+1
.

2. r(K,S) = r(K,S∗) = 2−
√
3.

1.6 Subclasses of biholomorphic mappings in Cn

In this section, we present certain families of biholomorphic mappings on the Euclidean
unit ball of Cn that have geometric properties. We shall present the set of starlike
mappings, the set of starlike mappings of order α, the set of almost starlike mappings
of order α, the set of convex mappings and the set of spirallike mappings of type γ.
Moreover, we shall give analytical and geometric properties of these classes.

The main bibliographic sources used for preparing this section are [48], [74], [112]
and [12].

In the followings, let S(Bn) be the set of normalized biholomorphic mappings on Bn

in Cn. Also, let LSn(Bn) be the set of normalized locally biholomorphic mappings on
Bn. For n = 1, we use the notation LS instead of LS1(B1).

1.6.1 The class S∗(Bn)

This part is dedicated to the study of the set of normalized starlike mappings on Bn,
S∗(Bn). We shall refer to the extensions of some properties of starlike functions on U
to Bn ı̂n Cn.

We give the definition of starlikeness on Bn (see [48], [74]).

Definition 1.6.1. Let f ∈ H(Bn). We say that f is starlike if f is biholomorphic on
Bn, f(0) = 0, and f(Bn) is a starlike domain with respect to zero.

We denote the class of starlike and normalized mappings on Bn by S∗(Bn). For
n = 1, S∗(B1) becomes S∗.

An analytical characterization of starlikeness on Bn have been obtained by Matsuno
[88]. Other extensions of this result have been given through time. We can mention
here the extension to the unit ball of a Banach space obtained by Gurganus [54] and
Suffridge [114] and to unit polydisc of Cn due to Suffridge [113].

Theorem 1.6.2. Assume that f ∈ LS(Bn), f(0) = 0. Then f ∈ S∗(Bn) if and only if
the mapping h(z) = [Df(z)]−1f(z) belongs to the class M, i.e.

(1.6.1) Re⟨[Df(z)]−1f(z), z⟩ > 0, z ∈ Bn\{0}.
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The following statement presents a growth result for the mappings in S∗(Bn), due to
Kubicka and Poreda [78], and Barnard, FitzGerald and Gong [5]. Other generalizations
of this result can be found in [32, 33], [48].

Theorem 1.6.3. If f ∈ S∗(Bn) then

∥z∥
(1 + ∥z∥)2

≤ ∥f(z)∥ ≤ ∥z∥
(1− ∥z∥)2

, z ∈ Bn.

These estimates are sharp. Consequently, f(Bn) ⊇ Bn
1/4.

1.6.2 The class S∗
α(Bn)

In this part we shall refer to the class of order α starlike mappings on Bn in Cn, S∗
α(Bn).

First, the concept of order α starlikeness on Bn was introduced by Kohr [70] (see
also [18]).

Definition 1.6.4. Assume that 0 ≤ α < 1 and f ∈ LS(Bn). We say that f is starlike
of order α if

(1.6.2) Re
[ ∥z∥2

⟨[Df(z)]−1f(z), z⟩

]
> α, z ∈ Bn\{0}.

Note that S∗
0(Bn) = S∗(Bn) and S∗

α(Bn) ⊆ S∗(Bn).
We next present a growth result for the set S∗

α(Bn) (see [70], [18]).

Theorem 1.6.5. Let f ∈ S∗
α(Bn), where 0 ≤ α < 1. Then the following relation holds:

∥z∥
(1 + ∥z∥)2(1−α)

≤ ∥f(z)∥ ≤ ∥z∥
(1− ∥z∥)2(1−α)

, z ∈ Bn.

These inequalities are sharp.

1.6.3 The class AS∗
α(Bn)

In the followings, we describe the notion of order α almost starlikeness on Bn in Cn.
This concept was first introduced on the unit ball of a Banach space by Xu and Liu
[119].

Definition 1.6.6. Assume that 0 ≤ α < 1. Let f ∈ LS(Bn). We say that f is almost
starlike of order α if

(1.6.3) Re
[⟨[Df(z)]−1f(z), z⟩

∥z∥2
]
> α, z ∈ Bn\{0}.

We denote the set of almost starlike mappings of order α on Bn by AS∗
α(Bn).

In [12], T. Chirilă introduced the concept of almost starlikeness of order α and type
γ, where 0 ≤ α < 1 and 0 ≤ γ < 1.

Definition 1.6.7. Assume that 0 ≤ α < 1, 0 ≤ γ < 1. Let f ∈ LS(Bn). We say that f
is almost starlike of order α and type γ if

Re
(
1
/[ 1

(1− α)∥z∥2
⟨[Df(z)]−1f(z), z⟩ − α

1− α

])
> γ, z ∈ Bn\{0}.

We denote the set of mappings which are almost starlike of order α and type γ by
AS∗

α,γ(Bn). For n = 1, we use the notation AS∗
α,γ instead of AS∗

α,γ(B1).
The following equivalence holds: f ∈ AS∗

α,0(Bn) if and only if f ∈ AS∗
α(Bn). Also,

any mapping from the set AS∗
α,γ(Bn) is also from AS∗

α(Bn) ⊆ S∗(Bn).
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1.6.4 The class K(Bn)

Next, we describe a convex mapping on Bn (see [48], [70]).

Definition 1.6.8. We say that f ∈ H(Bn) is convex if f is biholomorphic on Bn and
the domain f(Bn) is convex.

Let K(Bn) be the set of normalized convex mappings on the unit ball of Bn.
The following result states the analytical characterization of a convex mapping on

Bn. The result is due to Kikuchi [69]. An equivalent result was obtained by Gong, Wang
and Yu in [34].

Theorem 1.6.9. Let f ∈ LS(Bn). Then the condition f ∈ K(Bn) is equivalent to

(1.6.4) 1− Re⟨[Df(z)]−1D2f(z)(v, v), z⟩ > 0,

for every z ∈ Bn and v ∈ Cn with ∥v∥ = 1 and Re⟨z, v⟩ = 0.

In the following remark, we highlight important observations regarding convexity on
Bn, and, also, give an example of a convex mapping on Bn.

Remark 1.6.10. For n ≥ 2, it is more difficult to build a convex mapping on Bn than for
n = 1. Let f(z) = (f1, . . . , fn), where fi : U → C, i = 1, n are convex functions on U .
However, f is not necessary convex on Bn, for n ≥ 2 (see [34]). But, in particular, the
mapping described by

f(z) =
( z1
1− z1

, . . . ,
zn

1− z1

)
, z = (z1, . . . , zn) ∈ Bn

is convex.

The following statement represents a growth result for the set K(Bn) and was ob-
tained by Suffridge [115], FitzGerald and Thomas [31] and Liu [79].

Theorem 1.6.11. Let f ∈ K(Bn). Then

∥z∥
1 + ∥z∥

≤ ∥f(z)∥ ≤ ∥z∥
1− ∥z∥

, z ∈ Bn.

The above inequalities are sharp.

The Marx-Strohhäcker theorem for one complex variable, presented in Theorem
1.5.18, was extended to n-dimensions, n ≥ 2, by Kohr[70] and Curt [18].

Theorem 1.6.12. K(Bn) ⊆ S∗
1/2(B

n). The result is sharp.

1.6.5 The class Ŝγ(Bn)

Next, we shall describe the concept of spirallikeness on Bn in Cn. Gurganus K. [54]
defined this concept with respect to a normal linear operator, whose eigenvalues have
positive real part. Also, Suffridge [112] extended this concept to a complex Banach
space.

Let A ∈ L(Cn,Cn) and t ≥ 0. Also, let

m(A) = min{Re⟨A(z), z⟩ : ∥z∥ = 1},

e−tA =
∞∑
k=0

(−1)k

k!
tkAk.

We next state the notion of spirallikeness on Bn by following the definition given by
Suffridge [112].
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Definition 1.6.13. Let f ∈ S(Bn). Also, assume A ∈ L(Cn,Cn) with m(A) > 0. We
say that f is spirallike relative to A if e−tAf(Bn) ⊆ f(Bn) for all t ≥ 0.

Let be the liniar operator A ∈ L(Cn,Cn) with m(A) > 0. In the next statement, we
present an analytical characterization of spirallikeness relative to the operator A. This
characterization was given by Suffridge [112] (see also [54]).

Theorem 1.6.14. Let f ∈ LS(Bn). Then the mapping f is spirallike relative to A if
and only if

(1.6.5) Re⟨[Df(z)]−1Af(z), z⟩ > 0, z ∈ Bn\{0}.

In particular, if A is the operator e−iγIn, where γ ∈
(
−π

2 ,
π
2

)
, then one obtains the

class Ŝγ(Bn) of spirallike mappings of type γ, which was considered by Hamada and Kohr
[60]. Then the condition (1.6.5) becomes Re(e−iγ⟨[Df(z)]−1f(z), z⟩) > 0, z ∈ Bn\{0}.

Let γ ∈
(
−π

2 ,
π
2

)
, α ∈ [0, 1). An extension of the notion of spirallikeness of type γ is

the concept of spirallikeness of type γ and order α, introduced by Liu and Liu [82] and
Chirilă [11].

Definition 1.6.15. Assume that γ ∈
(
−π

2 ,
π
2

)
, α ∈ [0, 1). Let f ∈ LS(Bn). We say

that f is spirallike of type γ and order α if the following condition is satisfied

Re
[ 1

(1− i tanα)⟨[Df(z)]−1f(z), z⟩/∥z∥2 + i tanα

]
> γ, z ∈ Bn\{0}.

The set of mappings that satisfy the above definition is denoted by Ŝγ,α(Bn). For
n = 1, we use the notation Ŝγ,α instead of Ŝγ,α(B1).

Any mapping from the set Ŝγ,α(Bn) is also from Ŝγ(Bn) ⊆ S∗(Bn). Also, Ŝγ,0(Bn) =
Ŝγ(Bn).

1.7 Loewner chains in one and several complex variables

In this section we study the Loewner chains in C and Cn. We begin with general results
in the theory of Loewner chains on the unit disc U . We give the Loewner differential
equation on U and next continue with the analytical characterization of some subclasses
of normalized univalent functions using the method of Loewner chains. More results in
this direction are presented in [102], [48], [90] and also in [25].

Next, we shall consider the generalization of Loewner chains and of the Loewner
differential equation in Cn. An important application of Loewner chains in n dimensions
is represented by the characterizations of some subclasses of S(Bn) using Loewner chains.
An remarkable contribution in the theory of Loewner chains ı̂n Cn is the introduction
of the family S0(Bn) of mappings which admit parametric representation on Bn in Cn

due to Graham, Hamada and Kohr [37]. Graham et al. [37] proved the strict inclusion
S0(Bn) ⊊ S(Bn). An outstanding contribution to the theory of Loewner chains in Cn

has been done by G. Kohr and her collaborators in a series of valuable publications
starting with [37], [51], [23], [52], [26].

Throughout this section, we shall use the following abbreviations:

Notation 1.7.1. We use the following shorter notations: LC for a Loewner chain, LDE
for the Loewner differential equation, PR for the parametric representation.
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1.7.1 The theory of Loewner chains in one complex variable

In this part, we present a brief introduction of LCs on the unit disc U . We shall first
recall the definition of an univalent subordination chain, followed by the definition of a
LC.

The principal sources used to prepare this part are [102], [48], [90].

1.7.1.1 General results regarding Loewner chains in C

We begin by presenting preliminary notions regarding the theory of LCs on U .
We first need to give the definition of a univalent subordination chain (see e.g. [48]).

Definition 1.7.2. The function f : U × [0,∞) → C is said to be a univalent subordina-
tion chain if the followings conditions hold:

(i) f(·, t) is univalent on U ,

(ii) f(0, t) = 0, for t ≥ 0,

(iii) f(·, s) ≺ f(·, t), whenever 0 ≤ s ≤ t < ∞.

If, in addition, f ′(0, t) = et, for all t ≥ 0, then f is a LC.

In the above definition one have used the notation f ′(z, t) instead of ∂f
∂z (z, t).

Assume that f(z, t) is a LC. In this case, there exists a unique v = v(z, s, t) such that
v is an univalent Schwarz function and satisfies the following property (see e.g. [48]):

(1.7.1) f(z, s) = f(v(z, s, t), t),

where z ∈ U and 0 ≤ s ≤ t < ∞. The function v is called the transition function
associated to f .

Next, we present an important result in the theory of LCs (see [48]).

Theorem 1.7.3. Assume that p : U × [0,∞) → C is a function which satisfies the
following properties:

(i) p(·, t) ∈ P, for all t ≥ 0,

(ii) p(z, ·) is measurable on [0,∞), for all z ∈ U .

Under this conditions and for all z ∈ U , s ≥ 0, the Cauchy problem

(1.7.2)

{
∂v
∂t = −vp(v, t), a.e. t ≥ s,

v(z, s, s) = z

admits a unique solution v(z, s, ·), which is locally absolutely continuous and v′(0, s, t) =
es−t.

Moreover, if s ≥ 0 and z ∈ U then v(z, s, ·) is Lipschitz continuous on [s,∞), locally
uniformly with respect to z. Also, for all t ≥ s, v(·, s, t) is a univalent Schwarz function.

Furthermore, for every s ≥ 0, the following limit exists:

(1.7.3) f(z, s) := lim
t→∞

etv(z, s, t)

locally uniformly on U , where f(z, t) is a LC satisfying the following differential equation

(1.7.4)
∂f

∂t
(z, t) = zf ′(z, t)p(z, t), a.e. t ≥ 0, ∀z ∈ U.
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The differential equation (1.7.4) is known as LDE (or Loewner-Kufarev differential
equation).

We next present the characterization of the LCs due to Pommerenke [101] (see also
[48]).

Theorem 1.7.4. Assume f : U × [0,∞) → C such that f(0, t) = 0, f ′(0, t) = et, t ≥ 0.
Then f is a LC if and only if the following requirements are satisfied:

(i) There exist r ∈ (0, 1) and M > 0 such that f(·, t) ∈ H(U(0, r)) ( where U(0, r) =
{z ∈ C : |z| < r}) for all t ≥ 0, f(z, ·) is locally absolutely continuous on [0,∞)
locally uniformly with respect to z ∈ U(0, r), and |f(z, t)| ≤ Met, for all z ∈
U(0, r), t ≥ 0.

(ii) There exists p : U× [0,∞) → C satisfying the conditions (i) and (ii) from Theorem
1.7.3 such that

∂f

∂t
(z, t) = zf ′(z, t)p(z, t), a.e. t ≥ 0, z ∈ U(0, r).

1.7.1.2 Loewner chains and subclasses of univalent functions on U

In the followings, we give the characterization of some subclasses of S using LCs (see
[48]).

First, we present the characterization of the functions from Ŝγ through LCs. Since
the set Ŝ0 coincides with the set S∗, then we can give a characterization of starlike
functions on U using LCs (see [102], [48]).

Theorem 1.7.5. Assume that γ ∈
(
−π

2 ,
π
2

)
. Let f ∈ H(U) be a normalized function.

Then the relation f ∈ Ŝγ on U is equivalent to the property that the function

f(z, t) = e(1−ia)tf(eiatz), z ∈ U, t ≥ 0,

is a LC, with a = tan γ. Particularly, the relation f ∈ S∗ is equivalent to the property
that the function

f(z, t) = etf(z), z ∈ U, t ≥ 0,

is a LC.

We next state the characterization of almost starlikeness of order α using LCs (see
[119]).

Theorem 1.7.6. Assume that 0 ≤ α < 1. Let f ∈ H(U) be a normalized function.
Then the relation f ∈ AS∗

α is equivalent to the property that the function

f(z, t) = e
1

1−α
tf(e

α
α−1

tz), z ∈ U, t ≥ 0

is a LC.

The statement below gives a characterization of convex function on U in terms of
LCs (see [48], [102]).

Theorem 1.7.7. Let f ∈ H(U) be a normalized function. Then the relation f ∈ K is
equivalent to the property that the function

f(z, t) = f(z) + (et − 1)zf ′(z), z ∈ U, t ≥ 0

is a LC.
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1.7.2 The theory of Loewner chains in several complex variables

In this part, we shall consider the generalization of the LCs and LDE to n dimensions.
Further, we shall provide important results regarding LCs in higher dimensions (n ≥ 2).
Also, we are concerned about various applications of LCs in n dimensions. We include
here characterizations of some subclasses of S(Bn).

The main sources used to prepare this section are [48], [20], [37], [51].

1.7.2.1 General results regarding Loewner chains on several complex vari-
ables

We first give the definition of a LC in higher dimensions (n ≥ 2) (see [96], [48]).

Definition 1.7.8. We say that f : Bn× [0,∞) → Cn is a univalent subordination chain
if the next statements are true:

(i) f(·, t) is biholomorphic on Bn,

(ii) f(0, t) = 0 for t ≥ 0, and

(iii) f(·, s) ≺ f(·, t), 0 ≤ s ≤ t < ∞.

Furthermore, if Df(0, t) = etIn, with In the n × n-identity matrix and t ≥ 0, then the
mapping f(z, t) is called a LC.

The subordination condition from the above definition is equivalent to the following
statement (see [96], [48]): there exists a unique biholomorphic mapping v = v(z, s, t),
called the transition mapping, such that ∥v(z, s, t)∥ ≤ ∥z∥, z ∈ Bn, and the following
relation holds

f(z, s) = f(v(z, s, t), t), z ∈ Bn, 0 ≤ s ≤ t.

The following result was obtained by Pfaltzgraff [96]. The result was also studied on
Banach spaces by Poreda [105].

Theorem 1.7.9. [96] Let h : Bn× [0,∞) → Cn be such that the next requirements hold:

(i) h(·, t) ∈ M, t ≥ 0,

(ii) h(z, ·) is measurable on [0,∞) for z ∈ Bn.

Then the next Cauchy problem admits a unique locally absolutely continuous solution
v(t) (= v(z, s, t) = es−tz + . . . ):

(1.7.5)

{
∂v
∂t = −h(v, t), a.e. t ≥ s

v(s) = z,

for every s ≥ 0 and z ∈ Bn. In addition, v is a univalent Schwarz mapping on Bn with
respect to the first variable and, for fixed s ≥ 0 and z ∈ Bn, it is a Lipschitz function of
t ≥ s locally uniformly with respect to z.

The mapping h satisfying the requirements (i), (ii) of the Theorem 1.7.9 is known
as a Herglotz vector field. The differential equation from (1.7.5) is known as Loewner
(ordinary) differential equation associated to h.

Next, we give the following important result obtained by Poreda[105], Hamada and
Kohr [61] (see also [48]). The following remarkable result presents a way to obtain a LC
through its transition mapping, which is the solution of the Cauchy problem (1.7.5).
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Theorem 1.7.10. Assume that h is a Herglotz vector field and v is the solution of the
Cauchy problem (1.7.5). Then the following limit exists

lim
t→∞

etv(z, s, t) = f(z, s),

locally uniformly on Bn for every s ≥ 0. Moreover, f(·, s) is univalent on Bn and
f(z, s) = f(v(z, s, t), t) for all z ∈ Bn, 0 ≤ s ≤ t < ∞. Thus f(z, t) is a LC such that
the family {e−tf(·, t)}t≥0 is normal on Bn and f(z, ·) is a locally Lipschitz mapping on
[0,∞) locally uniformly with respect to z ∈ Bn. Also, f satisfies the following equation:

(1.7.6)
∂f

∂t
(z, t) = Df(z, t)h(z, t), a.e. t ≥ 0, ∀z ∈ Bn.

The differential equation (1.7.6) is known as the (generalized) LDE associated to h.
The following statement represents a principal result in studying the theory of LCs.

The result was obtained by Pfaltzgraff [96] and by Poreda [105] on Banach spaces. Other
important connected contributions have been obtained by Hamada and Kohr in [61].

Theorem 1.7.11. Assume that h is a Herglotz vector field. Also, assume that f =
f(z, t) : Bn× [0,∞) → Cn satisfies the following properties: f(·, t) ∈ H(Bn), f(0, t) = 0,
Df(0, t) = etIn, where t ≥ 0, f(z, ·) is locally absolutely continuous on [0,∞) locally
uniformly with respect to z ∈ Bn and the LDE (1.7.6) holds.

Let {tm}m∈N be an increasing sequence of strictly positive real numbers with tm → ∞
and limm→∞ e−tmf(z, tm) = F (z) locally uniformly on Bn. Let v be the solution of the
Cauchy problem (1.7.5) for all z ∈ Bn. Then f(z, t) is a LC and

lim
t→∞

etv(z, s, t) = f(z, s)

locally uniformly on Bn for all s ≥ 0.

The next statement shows that any LC on Bn satisfies the LDE (1.7.6) and is due
to Graham et al. [37] ( see also [23], [48]).

Theorem 1.7.12. Assume that f is a LC on Bn. Then there exists a unique Herglotz
vector field h such that the LDE (1.7.6) is satisfied by f .

1.7.2.2 Loewner chains and subclasses of biholomorphic mappings on Bn

The following results represents characterizations of certain subclasses of S(Bn) by using
LCs.

The next result gives a characterization through LCs, obtained by Hamada and
Kohr [60], for the mappings from the set Ŝγ(Bn). In particular, this result also presents
a characterization for starlike mappings on Bn obtained by Pfaltzgraff and Suffridge [98].

Theorem 1.7.13. Let f ∈ LS(Bn) and let γ ∈
(
−π

2 ,
π
2

)
. Then the relation f ∈ Ŝγ(Bn)

is equivalent to the property that the mapping

f(z, t) = e(1−ia)tf(eiatz), z ∈ Bn, t ≥ 0,

is a LC, with a = tan γ.
Particularly, the relation f ∈ S∗(Bn) is equivalent to the property that the mapping

f(z, t) = etf(z) is a LC.
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Any almost starlike mapping of order α on Bn can be characterized using LCs. The
following characterization was obtained in the case of Banach spaces by Xu and Liu
[119].

Theorem 1.7.14. Let α ∈ [0, 1). Assume that f ∈ LS(Bn). Then the relation f ∈
AS∗

α(Bn) is equivalent to the property that the mapping f(z, t) = e
t

1−α f(e
αt

α−1 z), z ∈ Bn,
t ≥ 0, is a LC.



Chapter 2

Extension operators that preserve
g-parametric representation on Bn

In this chapter, we study the parametric representation on the unit disc U and on
the unit ball Bn of Cn. Then, we recall that any function f ∈ S admits parametric
representation on U (see [102], [48]). Further, we present the class S0(Bn) of mappings
that have parametric representation on the Euclidean unit ball Bn of Cn, introduced by
Graham, Hamada and Kohr [37]. We remark that the set S0(Bn) is compact as shown
in [51] and, thus, is a proper subset of S(Bn), which is the natural generalization of
the class S to higher dimensions. In the next part, let g be a function satisfying the
requirements of Assumption 2.1.6. We shall present the class of holomorphic mappings
Mg introduced by Graham et. al in [37]. We next present the class S0

g (Bn), which
includes the mappings with g-parametric representation on Bn (see [37]). In addition,
we shall give the definition of a g-Loewner chain due to Graham, Hamada and Kohr
[37].

In another part of this chapter, we present some preservation results concerning the
extension operators Φn,α,β, Φn,Q and the subclass of mappings with g-parametric rep-

resentation, where g is described by g(ζ) = 1+Aζ
1+Bζ , ζ ∈ U , with −1 ≤ B < A ≤ 1. These

preservation results represent the novelty of this chapter. We give a short introduction
and some well-known properties of these extension operators. In the last section of this
chapter, we shall prove that Φn,α,β, Φn,Q preserve g-parametric representation on Bn,
where g is described as above. These results are due to Manu [85, 86].

The main sources used for preparing this chapter are [102], [108], [36], [47], [46], [51],
[92], [63], [75], [11], [12].

Throughout this chapter, we use the shorter notations from Notation 1.7.1. Thus, the
following abbreviations are used: LC for a Loewner chain, LDE for the Loewner differ-
ential equation and PR for the parametric representation. In addition, the abbreviation
g-LC, respectively g-PR, is used for a g-Loewner chain, respectively for g-parametric
representation.

2.1 Loewner chains and parametric representations in one
and higher dimensions

We start with a short introduction of univalent functions that have PR on the unit disc.
We shall also refer to mappings which admit PR on Bn. Further, we will introduce the
notion of g-PR on Bn.

37
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2.1.1 Normalized univalent functions with parametric representation
on U

We first give the definition of a univalent function on U that has PR (see [102]).

Definition 2.1.1. A normalized holomorphic function f on U has PR if there exists a
LC, f(z, t) : U × [0,∞) → C, such that f(z, 0) = f(z).

The next statement shows that every function from the class S has PR on U (see
[102]). Still, the property does not hold true for the family S(Bn) for n ≥ 2, as we shall
see in the next section (see [37]).

Theorem 2.1.2. If f ∈ S then f has PR.

2.1.2 Normalized univalent mappings with parametric representation
on Bn

This part addresses the class of mappings which admit PR on Bn in Cn, which have
been studied by Kohr in [73]. Generalizations of the PR with respect to an arbitrary
norm were regarded by Graham, Hamada and Kohr in [37]. We next continue with the
definition of g-PR introduced by Graham et al. in [37], which is a natural generalization
of the notion of PR.

We now present the definition of PR on Bn in Cn (see [37]).

Definition 2.1.3. A mapping f ∈ S(Bn) has PR if there exists a LC, f(z, t) : Bn ×
[0,∞) → Cn, with the property that the family {e−tf(z, t)}t≥0 is normal on Bn and
f(z) = f(z, 0).

We denote the set of mappings which admit PR by S0(Bn).

Graham et al. [37] proved the strict inclusion S0(Bn) ⊊ S(Bn). Also, the authors
showed that the families S∗(Bn), Ŝγ(Bn) are subclasses of S(Bn) which admit PR on
Bn.

We next give a growth and a covering result for the family S0(Bn) due to Graham,
Hamada and Kohr [37], where the considered norm is arbitrary (see also [73]). Moreover,
this result is not true for the class S(Bn) (see [48]).

Theorem 2.1.4. Let f ∈ S0(Bn). Then

∥z∥
(1 + ∥z∥)2

≤ ∥f(z)∥ ≤ ∥z∥
(1− ∥z∥)2

, z ∈ Bn.

The above inequalities are sharp. Thus, f(Bn) ⊇ Bn
1/4, where Bn

1/4 = {z ∈ Cn : ∥z∥ <

1/4}.

We next state the compactness of the class S0(Bn) on H(Bn) due to Graham, Kohr
and Kohr [51].

Corollary 2.1.5. The family S0(Bn) is compact on H(Bn).
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2.1.3 Mappings that admit g-parametric representation on Bn

We next introduce the g-PR on the unit ball in Cn, where the function g satisfies the
properties mentioned in the following assumption (see [37]).

Assumption 2.1.6. Assume that g : U → C is an univalent function on U , which
satisfies the following properties: g(0) = 1, g(ζ) = g(ζ), Re g(ζ) > 0, ζ ∈ U , and, for
r ∈ (0, 1), the next relations hold:

min
|ζ|=r

Re g(ζ) = min{g(r), g(−r)},

max
|ζ|=r

Re g(ζ) = max{g(r), g(−r)}.

In the followings, we consider that g is a function satisfying Assumption 2.1.6.
Next, let Mg be the following nonempty subset of the Carathéodory class M given

by the following definition:

Definition 2.1.7.

Mg =

{
h ∈ H(Bn) : h normalized , ⟨h(z), z

∥z∥2
⟩ ∈ g(U), z ∈ Bn

}
.

We choose the branch ⟨h(z), z
∥z∥2 ⟩|z=0 = 1. This class was defined by Graham,

Hamada and Kohr [37]. It is immediate that idBn ∈ Mg (therefore, Mg is a nonempty

set) and Mg = M when g(ζ) = 1−ζ
1+ζ , ζ ∈ U .

The notion of a g-LC was introduced by Graham et al. in [37].

Definition 2.1.8. Assume that f(z, t) : Bn × [0,∞) → Cn. Then f is a g-LC if the
next requirements are fulfilled:

(i) f(z, t) is a LC,

(ii) the family {e−tf(·, t)}t≥0 is normal on Bn,

(iii) the mapping h from the following LDE

(2.1.1)
∂f

∂t
(z, t) = Df(z, t)h(z, t), ∀z ∈ Bn, a.e. t ≥ 0,

has the property h(·, t) ∈ Mg, for almost every t ≥ 0.

The next statement gives the definition of a mapping with g-PR on Bn due to
Graham et al. [37] (see also [51] for g(ζ) = 1−ζ

1+ζ , ζ ∈ U).

Definition 2.1.9. Let Assumption 2.1.6 hold and let f ∈ S(Bn). A mapping f has
g-PR if there exists a g-LC, f(z, t), such that f = f(·, 0).

We consider S0
g (Bn) to be the class of mappings with g-PR on Bn. Next, we present

certain observations concerning the family S0
g (Bn) due to Graham, Hamada and Kohr

[37]. First, let g be a function satisfying Assumption 2.1.6.

Remark 2.1.10. (i) S0
g (Bn) ⊆ S0(Bn) ⊆ S(Bn).

(ii) If g(ζ) = 1−ζ
1+ζ , ζ ∈ U , then S0

g (Bn) = S0(Bn) .

The next remark due to Graham, Hamada and Kohr [37] illustrates an important
reason to study g-PR, respectively g-LCs for n ≥ 2.

Remark 2.1.11. Assume that g(ζ) = 1−ζ, ζ ∈ U . Then any normalized convex mapping
on B admits g-PR.

A growth theorem for the family S0
g (Bn) was obtained by Graham, Hamada and

Kohr [37], and implies that S0
g (Bn) is a locally uniformly bounded (see also [73]).
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2.2 Introduction in the theory of extension operators

This section presents certain extension operators that conserve geometric and analytic
properties on the unit ball in Cn. More specific, we shall study the extension operator
Φn introduced by Roper and Suffridge [108], and two well known generalizations of this
extension operator, Φn,α,β, introduced by Graham, Hamada, Kohr and Suffridge [46],
respectively Φn,Q, introduced by Muir [92]. First of all, these extension operators map
a locally univalent function on U onto a mapping with the same properties on Bn.

In the followings sections, we denote by z̃ = (z2, . . . , zn) ∈ Cn−1.

2.2.1 The extension operator Φn

The operator Φn was defined by Roper and Suffridge in [108] and its purpose was to
build convex mappings on Bn using convex functions on U . The idea of constructing
an extension operator of this kind started from the fact that if f1, . . . , fn ∈ K then
the mapping f = (f1, . . . , fn) is not necessary convex on Bn. The following well-known
mapping on Bn illustrates this situation:

F (z) =

(
z1

1− z1
, . . . ,

zn
1− zn

)
, z = (z1, . . . , zn) ∈ Bn,

with the mention that the function ζ
1−ζ , ζ ∈ U , is convex on U .

In [108], the Roper-Suffridge extension Φn : LS → LSn was defined as follows:

(2.2.1) Φn(f)(z) = (f(z1), z̃
√
f ′(z1)), z = (z1, z̃) ∈ Bn.

We consider here the branch of the square root function to be
√
f ′(z1)|z1=0 = 1.

In [108], Roper K. and Suffridge T. proved that the extension operator Φn preserves
the notion of convexity. Graham and Kohr [47] obtained the result in a different way.

Theorem 2.2.1. Let f ∈ K. Then Φn(f) ∈ K(Bn). Therefore, Φn(K) ⊆ K(Bn).

The operator Φn also preserves starlikeness of order α ∈ (0, 1). In [47], Graham I.
and Kohr G. first showed that the operator preserves the concept of starlikeness. A
few years later, Hamada H., Kohr G. and Kohr M.[63] proved that Φn preserves the
starlikeness of order 1/2. Further, Liu X.[80] proved that Φn preserves starlikeness of
order α ∈ (0, 1) (a different proof using g-LCs was given by Chirilă in [12]).

Theorem 2.2.2. If f ∈ S∗
α, where α ∈ [0, 1), then Φn(f) ∈ S∗

α(Bn). Therefore,

Φn(S
∗
α) ⊆ S∗

α(Bn).

In [12], Chirilă proved the following preservation result regarding the functions from
the set AS∗

α,γ .

Theorem 2.2.3. Assume 0 ≤ α < 1 and 0 < γ < 1. If f ∈ AS∗
α,γ then Φn(f) ∈

AS∗
α,γ(Bn).

Graham, Kohr and Kohr [51] proved that the operator Φn conserves type γ spiral-
likeness, γ ∈

(
−π

2 ,
π
2

)
. Using g-LCs, Chirilă [12] obtained that the operator preserves

spirallikeness of type γ ∈
(
−π

2 ,
π
2

)
and order α ∈ (0, 1).

Theorem 2.2.4. Assume that γ ∈
(
−π

2 ,
π
2

)
and 0 < α < 1. If f ∈ Ŝγ,α, then Φn(f) ∈

Ŝγ,α(Bn).
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The following result plays an important role as it was used to prove some of the
above results. For example, the conservation of starlikeness and spirallikeness of type α
was proved using the characterization of these notions in terms of LCs (see [47], [51]).
The result was obtained by Graham, Kohr and Kohr [51] and states that the operator
Φn maps a function that has PR on U onto a mapping that has PR on Bn.

Theorem 2.2.5. If f ∈ S then Φn(f) ∈ S0(Bn). Therefore, Φn(S) ⊆ S0(Bn).

2.2.2 The extension operator Φn,α,β

We consider the following extension operator:

Definition 2.2.6. Assume that α ≥ 0, β ≥ 0. Let Φn,α,β : LS → LSn be given by

(2.2.2) Φn,α,β(f)(z) =

(
f(z1), z̃

(
f(z1)

z1

)α

(f ′(z1))
β

)
, z = (z1, z̃) ∈ Bn.

We consider the branches of the power functions to be(
f(z1)

z1

)α ∣∣∣
z1=0

= 1, (f ′(z1))
β
∣∣
z1=0

= 1.

This extension operator was introduced by Graham, Hamada, Kohr and Suffridge
in [46]. For the pair (α, β) = (0, 1/2), the operator Φn,α,β becomes the operator Φn.

We consider the following:

Assumption 2.2.7. Let 0 ≤ α ≤ 1, 0 ≤ β ≤ 1
2 and α+ β ≤ 1.

The next statement presents important preservation properties satisfied by the ex-
tension operator Φn,α,β (see [46]):

Theorem 2.2.8. Under Assumption 2.2.7, the following statements hold:

(i) Φn,α,β(S) ⊆ S0(Bn).

(ii) Φn,α,β(S
∗) ⊆ S∗(Bn).

(iii) Φn,α,β(S
∗
γ) ⊆ S∗

γ(Bn), with γ ∈ (0, 1).

(iv) The operator Φn,α,β conserves spirallikeness of type γ ∈
(
−π

2 ,
π
2

)
and order δ ∈

(0, 1).

(v) The operator Φn,α,β conserves almost starlikeness of type γ ∈ (0, 1) and order
δ ∈ [0, 1).

The statement of item (iii) was obtained by Liu in [80], respectively the statement
of item (iv) was proved by Liu and Liu in [81] (see also [11], where the result was proved
using g-LCs). The last item is due to Chirilă [11].

An important question that arises is if the extension operator Φn,α,β can preserve
convexity and, if yes, under which conditions. Graham, Hamada, Kohr and Suffridge
[46] showed that Φn,α,β preserves convexity only if (α, β) = (0, 1/2).

Theorem 2.2.9. If f ∈ K, then Φn,α,β(f) ∈ K(Bn) only if α = 0, β = 1
2 (i.e. only

when Φn,α,β becomes Φn).
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2.2.3 The extension operator Φn,Q

Motivated to find a way to provide extreme points of the set K(Bn), Muir [92] gave a
modification of the extension operator provided by Roper and Suffridge, which maps the
extreme points of K onto extreme points of K(Bn). Before presenting the definition of
this extension operator, we shall first recall the definition of a homogeneous polynomial
of degree k (see [48], [67]).

Definition 2.2.10. We say that a mapping Q : Cn → C is called a homogeneous
polynomial of degree k ∈ N\{0} if there is a continuous multilinear of degree k mapping
L :
∏k

i=1Cn → Cn such that Q(z) = L(z, . . . , z︸ ︷︷ ︸
k-times

), z ∈ Cn.

We can easily deduce that Q ∈ H(Cn) and, for all z ∈ Cn, Q(λz) = λkQ(z), λ ∈ C,
respectively DQ(z)(z) = kQ(z). Also, we have that Q(0) = 0.

We consider the following:

Assumption 2.2.11. Let Q : Cn−1 → C be a homogeneous polynomial of degree 2.

Now, we present the extension operator Φn,Q (see [92]).

Definition 2.2.12. Let Assumption 2.2.11 hold. Let Φn,Q : LS → LSn be given by

(2.2.3) Φn,Q(f)(z) = (f(z1) +Q(z̃)f ′(z1), z̃
√
f ′(z1)), z = (z1, z̃) ∈ Bn.

We consider the branch of the square root of f ′(z1) to be
√
f ′(z1)|z1=0 = 1.

It is immediate that, for Q ≡ 0, the operator Φn,Q becomes the operator Φn.

Next, we present important preservation properties satisfied by the extension op-
erator Φn,Q. Note that the results of items (i) and (ii) were proved by Kohr [75], the
result of item (iii) was obtained by Muir [92] and the result of item (iv) was shown by
Wang and Liu [116]. The last result was also obtained by Chirilă in [12] using a different
method.

Theorem 2.2.13. (i) Φn,Q(S) ⊆ S0(Bn), if and only if ∥Q∥ ≤ 1/4;

(ii) Φn,Q(S
∗) ⊆ S∗(Bn), if and only if ∥Q∥ ≤ 1/4;

(iii) Φn,Q(K) ⊆ K(Bn), if and only if ∥Q∥ ≤ 1/2;

(iv) Φn,Q preserves starlikeness of order α ∈ (0, 1) if and only if ∥Q∥ ≤ 1−|2α−1|
8α .

2.2.4 Radii of some families of holomorphic mappings associated with
extension operators

In this part, we present certain radii problems associated with the extension operators
Φn, Φn,α,β. First, we mention that Definition 1.5.23 can be extended from U to Bn in
Cn. Assume that F is a nonempty subset of S(Bn). Let r(P,F) be the radius of the
property P in F .

In the followings, we include some well-known radii problems concerning the operator
Φn due to Graham, Kohr and Kohr [51] (see also [47]). See also Theorem 1.5.24.

Theorem 2.2.14. (i) r(S∗,Φn(S)) = r(S∗, S).
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(ii) r(K,Φn(S)) = r(K,Φn(S
∗)) = r(K,S).

Note that, for n ≥ 2, we have that r(K,S0(Bn)) ≤ r(K,S∗(Bn)) < 2−
√
3 (see [48],

[51]).

The next result is due to Graham et al. [46] ( see also [11] for other radii problems
concerning the operator Φn,α,β).

Theorem 2.2.15. Under Assumption 2.2.7, the following statement holds:

r(S∗,Φn,α,β(S)) = r(S∗, S).

2.3 Generalized Roper-Suffridge extension operators and
g-parametric representation

In the following part, we are interested to investigate under which conditions the ex-
tension operators Φn,α,β and Φn,Q preserve g-PR on Bn, where the function g has a
particular form defined by (2.3.1). In the next chapter, we shall consider other impor-
tant consequences of these results concerning certain subclasses of mappings with g-PR.
The original results presented in this section have been obtained in [85] and [86].

Throughout this section, we consider the following:

Assumption 2.3.1. Let A,B ∈ R with −1 ≤ B < A ≤ 1. Let g : U → C be a function
described by:

g(ζ) =
1 +Aζ

1 +Bζ
, ζ ∈ U.

It is important to mention that the above function g meets the requirements of
Assumption 2.1.6.

2.3.1 The extension operator Φn,α,β and g-parametric representation

In this part, we prove that the extension operator Φn,α,β given in Definition (2.2.6)
preserves g-PR when g is given by Assumption 2.3.1.

The next statement is due to Manu [85] and shows that g-PR is preserved under the
extension operator Φn,α,β, when g is given by Assumption 2.3.1. In the case (A,B) =

(1,−1) (i.e. for g(ζ) = 1+ζ
1−ζ , ζ ∈ U), the result was obtained by Graham et al. in

[46, Theorem 2.1] (see also [50], when α = 0). In [11], Chirilă obtained this result for
(A,B) = (1, 2γ − 1), with 0 < γ < 1 (i.e. for g(ζ) = 1+ζ

1+(2γ−1)ζ , ζ ∈ U , 0 < γ < 1; see

also [12], for α = 0).

Theorem 2.3.2. Let Assumptions 2.2.7 and 2.3.1 be satisfied. Let f ∈ S0
g . Then

F = Φn,α,β(f) belongs to the set S0
g (Bn).

In the next chapter, we will present in details certain consequences of this main
result.



2.3. Generalized Roper-Suffridge extension operators and g-parametric representation 44

2.3.2 The extension operator Φn,Q and g-parametric representation

We want to show in the next part that g-PR is preserved under the extension operator
Φn,Q described in Definition (2.2.12), when g satisfying Assumption 2.3.1.

The following statement due to Manu [86] shows that the notion of g-PR is conserved
through the operator Φn,Q, where g satisfying Assumption 2.3.1. Particular cases of this
result were proved by Kohr [75] and Chirilă [12]. For (A,B) = (1,−1), the below result
reduces to [75, Theorem 2.1], due to Kohr. For (A,B) = (1, 2γ − 1), with γ ∈ (0, 1),
this result becomes [12, Theorem 3.1] due to Chirilă. Recall that Q is a homogeneous
polynomial as in Assumption 2.2.11.

Theorem 2.3.3. Let Assumptions 2.2.11 and 2.3.1 hold. Assume that f ∈ S0
g . If

∥Q∥ ≤ A−B
4(1+|B|) then F = Φn,Q(f) belongs to the set S0

g (Bn).

We will state important consequences of this result in the forthcoming chapter.



Chapter 3

Janowski starlikeness and
Janowski almost starlikeness

In this chapter, we study certain subclasses of normalized biholomorphic mappings which
have geometric characterization and, moreover, admit g-parametric representation. We
start by presenting the definitions of a g-starlike mapping, g-almost starlike mapping of
order α, respectively g-spirallike mapping of type γ on the Euclidean ball Bn. Further, we
study some preservation properties regarding the extension operators Φn,α,β, Φn,Q and
these notions. Another important part is dedicated to the study of Janowski (almost)
starlikeness and of the connection with g-starlikeness on Bn. The novelty of this chapter
is represented by the preservation of Janowski (almost) starlikeness on Bn under the
extension operators Φn,α,β, Φn,Q. Some radii problems concerning Janowski starlikeness
will be also included. In the final part of the chapter, we present growth and distortion
results for the above mentioned subclasses.

The main bibliographic sources used throughout this chapter are [68], [109], [110],
[46], [37], [55], [11], [21], [14], [12], see also [63], [56], [57].

Our original results presented in this chapter have been obtained in [85], [86].

Throughout this chapter, we use the shorter notations from Notation 1.7.1. Hence,
the following abbreviations are used: LC for a Loewner chain, LDE for the Loewner
differential equation and PR for the parametric representation. In addition, the ab-
breviation g-LC, respectively g-PR, is used for a g-Loewner chain, respectively for
g-parametric representation.

3.1 Certain subclasses of biholomorphic mappings that have
g-parametric representation

We start this section by presenting the definitions of certain classes of mappings which
admit g-PR on Bn. Further, we show that these mappings can be characterized through
g-LCs. Also, some preservations results concerning the extension operators Φn,α,β, Φn,Q

due to Manu [85, 86] will be included.

3.1.1 Preliminaries

Throughout this section, let Assumption 2.1.6 be satisfied.

Graham, Hamada and Kohr [37], respectively Hamada and Honda [55] introduced
the definition of g-starlikeness (see Definition 3.1.1). Various properties of this concept

45
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were studied in [56], [57], and also in [11], [12] and [14]. Extensions to complex Banach
spaces have been recently obtained in [64].

Definition 3.1.1. Let f ∈ LS(Bn). The mapping f is g-starlike on Bn if

⟨[Df(z)]−1f(z),
z

∥z∥2
⟩ ∈ g(U), ∀z ∈ Bn\{0}.

Let S∗
g (Bn) be the set of g-starlike mappings on Bn. For n = 1, we use the notation

S∗
g instead of S∗

g (U).
In the following remark, we establish a connection between g-starlikeness and stan-

dard starlikeness on Bn (see [37], [55]).

Remark 3.1.2. Assume that γ ∈ [0, 1).

(i) If g(ζ) = 1+ζ
1−ζ , ζ ∈ U , then S∗

g (Bn) = S∗(Bn).

(ii) If g(ζ) = 1−ζ
1+(1−2γ)ζ , ζ ∈ U , then S∗

g (Bn) = S∗
γ(Bn).

(iii) If g(ζ) = 1+(1−2γ)ζ
1−ζ , ζ ∈ U , then S∗

g (Bn) = AS∗
γ(Bn).

Chirilă T. [14] proved that g-starlike mappings on Bn are also mappings from S0
g (Bn).

Theorem 3.1.3. Let f ∈ LS(Bn). The condition f ∈ S∗
g (Bn) is equivalent to the

property that etf(z) is a g-LC. Hence, any mapping from S∗
g (Bn) admits g-PR.

The definition of g-almost starlikeness of order α was given by Chirilă in [14].

Definition 3.1.4. Let 0 ≤ α < 1. Assume that f ∈ LS(Bn). The mapping f is g-almost
starlike of order α on Bn if

1

1− α

(〈
[Df(z)]−1f(z),

z

∥z∥2

〉
− α

)
∈ g(U), z ∈ Bn\{0}.

The set of g-almost starlike mappings of order α on Bn is denoted by AS∗
g (Bn) and,

for n = 1, by AS∗
g .

The next remark illustrates the relation between the classes AS∗
g (Bn) and some

well-known classes (see [14]).

Remark 3.1.5. Let 0 ≤ α < 1 and 0 < γ < 1.

(i) If g(ζ) = 1+ζ
1−ζ , ζ ∈ U then AS∗

g (Bn) = AS∗(Bn).

(ii) If g(ζ) = 1−ζ
1+(1−2γ)ζ , ζ ∈ U then AS∗

g (Bn) reduces to the set AS∗
α,γ(Bn).

(iii) AS∗
g (Bn) ⊆ AS∗

α(Bn).

(iv) If α = 0 then AS∗
g (Bn) = S∗

g (Bn).

The next result states the characterization of the mappings from AS∗
g (Bn) through

g-LCs and is due to Chirilă [14].

Theorem 3.1.6. Let 0 ≤ α < 1 and let f ∈ LS(Bn). The condition f ∈ AS∗
g (Bn) is

equivalent to the property that e
1

1−α
tf(e

α
α−1

tz) is a g-LC. Thus, any mapping from the
class AS∗

g (Bn) admits g-PR.



47 Chapter 3. Janowski starlikeness and Janowski almost starlikeness

Further, we give the definition of g-spirallikeness of type γ on Bn, γ ∈
(
−π

2 ,
π
2

)
(see

[14] ).

Definition 3.1.7. Let γ ∈
(
−π

2 ,
π
2

)
. Assume that f ∈ LS(Bn). The mapping f is

g-spirallike of type γ on Bn if

i
sin γ

cos γ
+

e−iγ

cos γ

〈
[Df(z)]−1f(z),

z

∥z∥2

〉
∈ g(U), z ∈ Bn\{0}.

We denote the set of g-spirallike mappings of type γ on Bn by Ŝg(Bn). If n = 1, we
use the notation Ŝg instead of Ŝg(U).

The following remarks show the connection between the classes Ŝg(Bn) and Ŝγ(Bn).
Other important observations will be included (see [14]).

Remark 3.1.8. Let γ ∈
(
−π

2 ,
π
2

)
and 0 < α < 1 .

(i) If g(ζ) = 1+ζ
1−ζ , ζ ∈ U then Ŝg(Bn) = Ŝγ(Bn).

(ii) If g(ζ) = 1−ζ
1+(1−2α)ζ , ζ ∈ U then Ŝg(Bn) becomes the set Ŝγ,α(Bn).

(iii) Ŝg(Bn) ⊆ Ŝγ(Bn) (see Definition 1.6.13 when the operator A = e−iγI, where
γ ∈

(
−π

2 ,
π
2

)
).

(iv) For γ = 0, Ŝg(Bn) becomes S∗
g (Bn).

In the following, we describe the g-spirallikeness of type γ on Bn, γ ∈
(
−π

2 ,
π
2

)
, in

terms of g-LCs. This characterization was obtained in [14].

Theorem 3.1.9. Let γ ∈
(
−π

2 ,
π
2

)
and let f ∈ LS(Bn). The condition f ∈ Ŝg(Bn) is

equivalent to the property that e(1−ia)tf(eiatz) is a g-LC, with a = tan γ. Thus, any
mapping from the class Ŝg(Bn) admits g-PR.

3.1.2 Extension operators that preserve geometric properties of map-
pings with g-parametric representation

Next, we present certain preservation results concerning the extension operators Φn,α,β,
Φn,Q, defined in the Chapter 2 (see Definition 2.2.6 and Definition 2.2.12), and notions
like of g-starlikeness, g-almost starlikeness of order α and g-spirallikeness of type γ on
the Euclidean unit ball Bn, when g is a function given by Assumption 2.3.1.

Throughout this part, we consider that Assumption 2.3.1 holds.

Also, let the extension operator Φn,α,β be defined by Definition 2.2.6 and let the
extension operator Φn,Q be given by Definition 2.2.12.

In view of Theorem 2.3.2 and from the characterization in terms of g-LCs of g-
starlikeness, we deduce the following result, due to Manu [85]:

Theorem 3.1.10. Let Assumptions 2.2.7 and 2.3.1 be satisfied. If f ∈ S∗
g , then F =

Φn,α,β(f) ∈ S∗
g (B

n).

The next remark follows from Theorem 3.1.10 for a suitable choice of A, B in the
definition of function g defined by Assumption 2.3.1.

Remark 3.1.11. Assume that g : U → C is satisfying Assumption 2.3.1.
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(i) For the pair (A,B) = (1,−1), we have that S∗
g (Bn) = S∗(Bn). Thus, Φn,α,β(S

∗) ⊂
S∗(Bn). The result is due to Graham et al. [46].

(ii) Let γ ∈ (0, 1). For the pair (A,B) = (1, 2γ − 1), we have that S∗
g (Bn) = S∗

γ(Bn).
Thus, Φn,α,β(S

∗
γ) ⊂ S∗

γ(Bn) . This property was obtained by Hamada, Kohr and

Kohr [63], when α = 0, β = 1
2 , γ = 1

2 , and also by Liu [80], when Assumption
2.2.7 holds and γ ∈ (0, 1). Using the method of g-LCs, Chirilă T. [11] showed that
the same property holds.

We have the next preservation property due to Manu [85]. We remark that this
result is a consequence of Theorem 2.3.2.

Theorem 3.1.12. Let Assumptions 2.2.7 and 2.3.1 be satisfied. Let γ ∈ (−π/2, π/2).
If f ∈ Ŝg, then F = Φn,α,β(f) ∈ Ŝg(Bn).

The following statement is also due to Manu and was obtained after the publication
of the paper [85].

Theorem 3.1.13. Let Assumptions 2.2.7 and 2.3.1 be satisfied. Let 0 ≤ γ < 1. If f is
a g-almost starlike function of order γ on U , then F = Φn,α,β(f) is a g-almost starlike
mapping of order γ on Bn.

In the next remark, we include certain consequences of the above results.

Remark 3.1.14. Assume that g satisfies Assumption 2.3.1. Also, let δ ∈ (0, 1). If we
take A = 1 and B = 2δ − 1 then we get the followings:

(i) Let γ ∈ [0, 1). The operator Φn,α,β preserves almost starlikeness of order γ and
type δ. (see [11]).

(ii) Let γ ∈ (−π/2, π/2). The operator Φn,α,β preserves spirallikenes of type γ and
order δ. This property was obtained by Liu and Liu [82] ( see also [80], [11]).

Further, we prove that g-starlikeness and g-spirallikeness of type γ on Bn are con-
served under the extension operator Φn,Q, when the function g is given by Assumption
2.3.1.

Since any g-starlike mapping has g-PR, we deduce the following preservation prop-
erty due to Manu [86]. Recall that Q is a homogeneous polynomial as in Assumption
2.2.11.

Theorem 3.1.15. Let Assumptions 2.2.11 and 2.3.1 hold. Assume that f ∈ S∗
g . If

∥Q∥ ≤ A−B
4(1+|B|) then F = Φn,Q(f) ∈ S∗

g (Bn).

Note that the above result follows from Theorem 2.3.3. Other particular cases are
presented in the following remark.

Remark 3.1.16. Assume that g is satisfying Assumption 2.3.1.

(i) For the pair (A,B) = (1,−1), one have S∗
g (Bn) = S∗(Bn). Kohr G. proved the

property: Φn,Q(S
∗) ⊂ S∗(Bn) (see also [71]).

(ii) Let γ ∈ (0, 1). For the pair (A,B) = (1, 2γ−1), one have S∗
g (Bn) = S∗

γ(Bn). Thus,
Φn,Q(S

∗
γ) ⊂ S∗

γ(Bn). The property was prove by Wang and Liu [116] (see also [12],
where the author used a different method).
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Manu A. [86] proved that g-spirallikeness of type γ, where γ ∈
(
−π

2 ,
π
2

)
is conserved

under the operator Φn,Q(f).

Theorem 3.1.17. Let Assumptions 2.2.11 and 2.3.1 hold. Assume that γ ∈
(
−π

2 ,
π
2

)
and let f ∈ Ŝg. If ∥Q∥ ≤ A−B

4(1+|B|) then F = Φn,Q(f) ∈ Ŝg(Bn).

3.2 Janowski starlike and Janowski almost starlike map-
pings

In this section we study two subclasses of functions that admit g-PR on U and have
interesting geometric properties, namely the class of Janowski starlike functions and
the class of Janowski almost starlike functions on U . Then, we present their natural
generalization to the unit ball Bn of C. Further, we highlight the connection between
these concepts and g-starlikeness, when g meets the conditions of Assumption 2.3.1. We
show that the Janowski (almost) starlikeness is preserved under the extension operators
Φn,α,β, Φn,Q. This section includes original results from [85, 86].

Various results regarding Janowski starlikeness on U can be found in [68], [109],
[110]. Regarding Janowski (almost) starlikeness on Bn of Cn, the reader may consult
[21].

3.2.1 Preliminaries

First, we define Janowski starlikeness on U of C. Assume that −1 ≤ B < A ≤ 1.
In this part, we consider g : U → C defined by Assumption 2.3.1.
W. Janowski [68] defined the following set:

(3.2.1) J [A,B] =

{
f ∈ H(U) : f normalized,

zf ′(z)

f(z)
≺ g

}
Note that J [1,−1] becomes the set S∗ and J [1−2α,−1] becomes the set S∗

α, where 0 ≤ α <
1.

Assume that a, b ∈ R with |1− a| < b ≤ a. Let be the following classes:

J (a,b) =

{
f ∈ H(U) : f normalized,

∣∣∣∣zf ′(z)

f(z)
− a

∣∣∣∣ < b, z ∈ U

}
,

introduced by Silverman in [109] (see also [110]) and

AJ (a,b) =

{
f ∈ H(U) : f normalized,

∣∣∣∣ f(z)

zf ′(z)
− a

∣∣∣∣ < b, z ∈ U

}
,

defined by Curt in [21].
Assume that g is satisfying Assumption 2.3.1. The following remark due to Manu

[85] points out the connection between the set S∗
g and the sets J [A,B], J (a,b).

Remark 3.2.1. Assume that g is defined by Assumption 2.3.1. Then

(i) S∗
g = {f ∈ H(U) : f normalized , f(z)/(zf ′(z)) ≺ g, z ∈ U}.

(ii) J [−B,−A] = S∗
g .

(iii) S∗
g = J (a,b), with a = 1−AB

1−A2 , b = A−B
1−A2 and A ̸= 1. For A = 1, we have S∗

g =
S∗
(1+B)/2.
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Natural extensions of the classes J (a,b) and AJ (a,b) to the unit ball Bn of C were
obtained by Curt [21] and they will be presented in the next definition.

Definition 3.2.2. Let a, b ∈ R be such that |1− a| < b ≤ a. Let

J (a,b)(Bn) =

{
f ∈ LSn :

∣∣∣∣ ∥z∥2

⟨[Df(z)]−1f(z), z⟩
− a

∣∣∣∣ < b, z ∈ Bn\{0}
}
,

be the set of Janowski starlike mappings on Bn and let

AJ (a,b)(Bn) =

{
f ∈ LSn :

∣∣∣∣⟨[Df(z)]−1f(z), z⟩
∥z∥2

− a

∣∣∣∣ < b, z ∈ Bn\{0}
}
,

be the set of Janowski almost starlike mappings on Bn.

Note that J (a,b)(Bn) and AJ (a,b)(Bn) are subsets of S∗(Bn).
In the following remark, we highlight the connection between the sets J (a,b)(Bn),

AJ (a,b)(Bn) and the set S∗
g (Bn) (see [21]).

Remark 3.2.3. Let Assumption 2.3.1 be satisfied. Let a, b ∈ R such that |1−a| < b ≤ a.
Then

(i) S∗
g (Bn) = J (a,b)(Bn), for A = a−1

b and B = a2−b2−a
b .

(ii) S∗
g (Bn) = AJ (a,b)(Bn), for A = a−a2+b2

b and B = 1−a
b .

(iii) Let α ∈ (0, 1) and let a = 1
2α and b = 1

2α . Then

AJ ( 1
2α

, 1
2α)(Bn) = S∗

α(Bn) and J ( 1
2α

, 1
2α)(Bn) = AS∗

α(Bn).

3.2.2 Extension operators and Janowski starlike and Janowski almost
starlike mappings

In the next part we show that the extension operators Φn,α,β, Φn,Q preserve the Janowski
(almost) starlikeness on the unit ball Bn. These results are obtained by Manu in [85, 86].

Let the operator Φn,α,β be given by Definition 2.2.6 and let the operator Φn,Q be
given by Definition 2.2.12.

We consider the following:

Assumption 3.2.4. Let a, b ∈ R be such that |1− a| < b ≤ a.

Assume that g is a function defined by Assumption 2.3.1. For a suitable selection of
A and B, we get the next particular cases of Theorem 3.1.10. These results are due to
Manu [85].

Theorem 3.2.5. Let Assumptions 2.2.7 and 3.2.4 hold. Let f ∈ J (a,b). Then F =
Φn,α,β(f) belongs to the set J (a,b)(Bn).

Theorem 3.2.6. Let Assumptions 2.2.7 and 3.2.4 hold. Let f ∈ AJ (a,b). Then F =
Φn,α,β(f) belongs to the set AJ (a,b)(Bn).

The next two results due to Manu [86] are direct consequences of Theorem 3.1.15.
Recall that Q is a homogeneous polynomial as in Assumption 2.2.11.

Theorem 3.2.7. Let Assumptions 2.2.11 and 3.2.4 be satisfied. Let f ∈ J (a,b). If

∥Q∥ ≤ b2−(1−a)2

4(b+|a2−b2−a|) then F = Φn,Q(f) belongs to the set J (a,b)(Bn).

Theorem 3.2.8. Let Assumptions 2.2.11 and 3.2.4 be satisfied. Let f ∈ AJ (a,b). If
∥Q∥ ≤ b−|1−a|

4 then F = Φn,Q(f) belongs to the set AJ (a,b)(Bn).
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3.3 Radii problems and Janowski starlikeness

We propose to investigate certain radii problems regarding the extension operator Φn,α,β

and Janowski starlikeness on the unit disc. We assume that the conditions from As-
sumption 3.2.4 hold. First, we give the J (a,b) radius of the classes S and S∗. Then, we
compute the J (a,b) radius of the classes Φn,α,β(S) and Φn,α,β(S

∗). These results are due
to Manu [85]. We shall mention other cases which derive from this results.

Let r ∈ (0, 1]. We assume that the requirements from Assumption 3.2.4 hold.

Let be the open ball Bn
r = {z ∈ Cn : ∥z∥ < r}. We denote by LS(Bn

r ) the set of
normalized locally biholomorphic mappings on Bn

r .

Let

J (a,b)(Bn
r ) =

{
f ∈ LS(Bn

r ) :

∣∣∣∣ ∥z∥2

⟨[Df(z)]−1f(z), z⟩
− a

∣∣∣∣ < b, z ∈ Bn
r \{0}

}
.

When n = 1, we denote J (a,b)(Bn
r ) by J (a,b)(Ur).

Assume that fr(ζ) = f(rζ)/r, ζ ∈ U . By using the below useful property due to
Graham et al. [46]:

Φn,α,β(fr)(z) =
1

r
Φn,α,β(f)(rz), z ∈ Bn,(3.3.1)

we deduce the following statements:

Remark 3.3.1. Let Assumptions 2.2.7 and 3.2.4 be satisfied.

(i) If Φn,α,β(f) ∈ J (a,b)(Bn
r ), then f belongs to J (a,b)(Ur), for all 0 < r < 1.

(ii) If f ∈ J (a,b)(Ur), then Φn,α,β(f) belongs to J (a,b)(Bn
r ), for all 0 < r < 1.

First, we denote by ra,b the J (a,b) radius of S and by r∗a,b the J (a,b) radius of S∗,
defined as follows (see [110]).

Definition 3.3.2. The Janowski radius ra,b ( respectively r∗a,b) represents the radius of
the largest disc U(0, ra,b) (respectively U(0, r∗a,b)) such that the following relation is true∣∣zf ′(z)/f(z)− a

∣∣ < b,(3.3.2)

on U(0, ra,b) (respectively U(0, r∗a,b)) for any function f from S (respectively S∗).

We next intend to obtain the radii ra,b and r∗a,b. The next result states the radius
ra,b and is due to Manu [85].

Theorem 3.3.3. Under Assumption 3.2.4, the radius ra,b is given by

ra,b = min

{
tanh

π

4
,
−1 + a+ b

1 + a+ b
,
1− a+ b

1 + a− b

}
.(3.3.3)

We present the next particular case of Theorem 3.3.3:

Corollary 3.3.4. [85] Then ra,a = 2a−1
2a+1 , for a ∈ (1/2, r), and ra,a = tanh π

4 , for a ≥ r,

where r = 1
2 · eπ/2.

Next, we obtain the radius r∗a,b. This result was obtained by Manu in [85].
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Theorem 3.3.5. Under Assumption 3.2.4, the radius r∗a,b is given by

r∗a,b = min

{
−1 + a+ b

1 + a+ b
,
1− a+ b

1 + a− b

}
.(3.3.4)

Moreover, r∗a,a = 2a−1
2a+1 .

In view of Remark 3.2.3 (iii), for n = 1, and Corollary 3.3.4, one have the next
remarks (see [85]):

Remark 3.3.6. Assume that α ∈ (0, 1). Let qα (q∗α) denote the radius of almost starlike-
ness of order α of the class S ( respectively S∗).

(i) If 0 < α ≤ e−π/2, then qα = tanh π
4 . For e

−π/2 < α < 1, we have that qα = 1−α
1+α .

(ii) q∗α = 1−α
1+α .

In the following definition, assume that the conditions of Assumption 3.2.4 hold.
Also, we use the notation ra,b(Φn,α,β(S)) ( respectively ra,b(Φn,α,β(S

∗)) ) for the J (a,b)

radius of the class Φn,α,β(S) (respectively Φn,α,β(S
∗) ).

Definition 3.3.7. The Janowski radius ra,b(Φn,α,β(S)) (respectively ra,b(Φn,α,β(S
∗)) )

is the radius r ∈ (0, 1] of the largest ball Bn
r with the property that if F ∈ Φn,α,β(S) (

respectively F ∈ Φn,α,β(S
∗) ) then F belongs to the family J (a,b)(Bn

r ).

The next result due to Manu [85] gives the radius ra,b(Φn,α,β(S)).

Theorem 3.3.8. Let Assumptions 2.2.7 and 3.2.4 hold. The radius ra,b(Φn,α,β(S)) is
equal to the quantity given in (3.3.3).

The next statements are consequences of Theorem 3.3.8 and are due to Manu [85].
First, let qλ(Φn,α,β(S)) (respectively qλ(Φn,α,β(S

∗)) ) denote the radius of almost star-
likeness of order λ of Φn,α,β(S) (respectively Φn,α,β(S

∗) ), where λ ∈ (0, 1).

Theorem 3.3.9. Let Assumptions 2.2.7 and 3.2.4 be satisfied. Let λ ∈ (0, 1).

(i) The radius ra,b(Φn,α,β(S
∗)) is equal to the quantity given in (3.3.4).

(ii) If 0 < λ ≤ e−π/2 then qλ(Φn,α,β(S)) = tanh π
4 . For e−π/2 < λ < 1, we have that

qλ(Φn,α,β(S)) =
1−λ
1+λ . Moreover, qλ(Φn,α,β(S

∗)) = 1−λ
1+λ .

3.4 Growth and distortion results regarding subclasses of
S0
g(Bn)

This section presents growth results for certain families of mappings which admit g-PR
generated under the operator Φn,Q. Here, we consider g satisfying the conditions of
Assumption 2.3.1. For the same families, we shall present certain distortion results.
Also, we mention other particular cases that are direct consequences of these results.
The section contains original results from [86].

Throughout this section, let Assumption 2.3.1 hold.
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3.4.1 Growth results

In this part, we present growth results for some subclasses of the family Φn,Q(S
0
g ), where

the function g is given by Assumption 2.3.1.
Further, we present a growth result for the class S0

g (Bn) due to Graham, Hamada
and Kohr [37]. This result is more general than Theorem 2.3 in [73].

Theorem 3.4.1. Let Assumption 2.3.1 be satisfied. Assume that F ∈ S0
g (Bn). Then

∥z∥ exp
∫ ∥z∥

0

[
1/max{g(x), g(−x)} − 1

]dx
x

≤ ∥F (z)∥(3.4.1)

≤ ∥z∥ exp
∫ ∥z∥

0

[
1/min{g(x), g(−x)} − 1

]dx
x
, z ∈ Bn.

The following statement gives a growth result for the class Φn,Q(S
0
g ) and was obtained

by Manu [86].

Theorem 3.4.2. Let Assumptions 2.2.11 and 2.3.1 be satisfied. Assume that ∥Q∥ ≤
A−B

4(1+|B|) and let f be a function that admits g-PR on U . Let F = Φn,Q(f).

(i) In the case A = 0, the following estimates hold

∥z∥eB∥z∥ ≤ ∥F (z)∥ ≤ ∥z∥e−B∥z∥, ∀z ∈ Bn.(3.4.2)

(ii) In the case A ̸= 0, the following estimates hold

∥z∥ (1 +A∥z∥)
B−A
A ≤ ∥F (z)∥ ≤ ∥z∥ (1−A∥z∥)

B−A
A , ∀z ∈ Bn.(3.4.3)

The inequalities (3.4.2) and (3.4.3) are sharp.

Next we state some consequences of Theorem 3.4.2. The first one is a growth theorem
for the class Φn,Q(S

∗
g ) and was obtained by Manu [86] (see also [21]).

Corollary 3.4.3. Let Assumptions 2.2.11 and 2.3.1 be satisfied. Assume that ∥Q∥ ≤
A−B

4(1+|B|) and let f ∈ S∗
g . Let F = Φn,Q(f).

(i) In the case A = 0, the following estimates hold

∥z∥eB∥z∥ ≤ ∥F (z)∥ ≤ ∥z∥e−B∥z∥, ∀z ∈ Bn.

(ii) In the case A ̸= 0, the following estimates hold

∥z∥
(
1 +A∥z∥

)(B−A)/A
≤ ∥F (z)∥ ≤ ∥z∥

(
1−A∥z∥

)(B−A)/A
, ∀z ∈ Bn.

These inequalities are sharp.

The following two statements represent growth theorems for the classes Φn,Q(J (a,b)),
respectively Φn,Q(AJ (a,b)) . These results have been obtained by Manu [86] (see also
[21]).

Corollary 3.4.4. Let Assumptions 2.2.11 and 3.2.4 hold. Assume that ∥Q∥ ≤ b2−(1−a)2

4(b+|a2−b2−a|)
and let f ∈ J (a,b). Also, let c = b2 − (a− 1)2 and F = Φn,Q(f).
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(i) In the case a = 1, the following estimates hold

∥z∥e−b∥z∥ ≤ ∥F (z)∥ ≤ ∥z∥eb∥z∥, ∀z ∈ Bn.

(ii) In the case a ̸= 1, the following estimates hold

∥z∥
(
1− 1− a

b
∥z∥
)c/(1−a)

≤ ∥F (z)∥ ≤ ∥z∥
(
1 +

1− a

b
∥z∥
)c/(1−a)

, ∀z ∈ Bn.

These inequalities are sharp.

Corollary 3.4.5. Let Assumptions 2.2.11 and 3.2.4 hold. Assume that ∥Q∥ ≤ b−|1−a|
4

and let f ∈ AJ (a,b). Also, let c = b2 − (a− 1)2 and F = Φn,Q(f).

(i) In the case a = 1+
√
4b2+1
2 , the following estimates hold

∥z∥e
1−

√
4b2+1
2b

∥z∥ ≤ ∥F (z)∥ ≤ ∥z∥e
√

4b2+1−1
2b

∥z∥, ∀z ∈ Bn.(3.4.4)

(ii) In the case a ̸= 1+
√
4b2+1
2 , the following estimates hold

∥z∥
(
1 + ∥z∥(a− a2 + b2)/b

)c/(a2−b2−a)
≤ ∥F (z)∥(3.4.5)

≤ ∥z∥
(
1− ∥z∥(a− a2 + b2)/b

)c/(a2−b2−a)
, ∀z ∈ Bn.

These inequalities are sharp.

Next, we present some direct consequences of Theorem 3.4.2 and Corollary 3.4.3.
Since the classes S0

g , respectively S∗
g reduce to S, respectively S∗ when g(ζ) = 1+ζ

1−ζ ,
z ∈ U , then we have the below result obtained by Kohr (see [75, Corollary 2.4]):

Remark 3.4.6. Let Assumption 2.2.11 be satisfied. Assume that ∥Q∥ ≤ 1
4 and let f ∈ S

( f ∈ S∗ ). Then, for F = Φn,Q(f), the following estimates hold

∥z∥
(1 + ∥z∥)2

≤ ∥F (z)∥ ≤ ∥z∥
(1− ∥z∥)2

, ∀z ∈ Bn.

These inequalities are sharp.

In view of Remark 3.2.3 (iii) when n = 1, we have the following consequences of
Corollary 3.4.4 and Corollary 3.4.5:

Remark 3.4.7. Let α ∈ (0, 1) and let Assumption 2.2.11 hold.

(i) Assume that ∥Q∥ ≤ 1−|2α−1|
8α and let f ∈ S∗

α. Let F = Φn,Q(f). Then (see [18, 70]
and e.g. [48, Chapter 10]):

∥z∥
(1 + ∥z∥)2(1−γ)

≤ ∥F (z)∥ ≤ ∥z∥
(1− ∥z∥)2(1−γ)

, ∀z ∈ Bn.

These inequalities are sharp.

(ii) Assume that ∥Q∥ ≤ 1−α
4 and let f ∈ AS∗

α. Let F = Φn,Q(f). (see [21], [71] for
α = 1

2):
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(a) In the case α = 1
2 , the following estimate holds

∥z∥e−∥z∥ ≤ ∥F (z)∥ ≤ ∥z∥e∥z∥, ∀z ∈ Bn.

(b) In the case α ̸= 1
2 , the following estimate holds

∥z∥
(1− (2α− 1)∥z∥)2(α−1)/(2α−1)

≤ ∥F (z)∥ ≤ ∥z∥
(1 + (2α− 1)∥z∥)2(α−1)/(2α−1)

,

for all z ∈ Bn.

These inequalities are sharp.

3.4.2 Distortion results

In this part we provide distortion theorems for certain subclasses of Φn,Q(S
∗
g ), when the

function g is given by Assumption 2.3.1.
We consider that Assumption 2.3.1 holds.
Further, we intend to give a distortion result for the set S∗

g . Let φ : U → C be a
univalent function on U , with the following properties: Re φ(ζ) > 0, ζ ∈ U , φ(U) is
a symmetric domain with respect to the real axis and φ(U) is a starlike domain with
respect to φ(0) = 1. Also, let φ′(0) > 0.

Let be the set S∗(φ) = {f ∈ S : zf ′(z)
f(z) ≺ φ} introduced by Ma and Minda in [84].

Note that S∗
g = S∗(g), since the function g satisfies the same properties as the function

φ.
We next give a particular case of Theorem 2 from [84] due to Ma and Minda.

Lemma 3.4.8. Let Assumption 2.3.1 be satisfied. Let f ∈ S∗
g .

(i) In the case B = 0, the following estimates hold

(3.4.6) (1−A|z|)e−A|z| ≤ |f ′(z)| ≤ (1 +A|z|)eA|z|, ∀z ∈ U.

(ii) In the case B ̸= 0, the following estimates hold

(3.4.7) (1−A|z|)(1−B|z|)
A
B
−2 ≤ |f ′(z)| ≤ (1 +A|z|)(1 +B|z|)

A
B
−2, ∀z ∈ U.

These inequalities are sharp.

Let Assumption 2.2.11 hold and let f ∈ LS. Using elementary computations, one
have that

detDΦn,Q(f)(z) = [f ′(z1)]
n+1
2 , z = (z1, z̃) ∈ Bn.(3.4.8)

In the next statement we give estimates of detDΦn,Q(f)(z) with f from the class
S∗
g . The result was obtained by Manu [86].

Theorem 3.4.9. Let Assumptions 2.2.11 and 2.3.1 be satisfied. Assume that f ∈ S∗
g

and let d(z) = detDΦn,Q(f)(z), z ∈ Bn.

(i) In the case B = 0, the following estimates hold

(3.4.9)
[
(1−A∥z∥)e−A∥z∥

]n+1
2 ≤ |d(z)| ≤

[
(1 +A∥z∥)eA∥z∥

]n+1
2

, ∀z ∈ Bn.
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(ii) In the case B ̸= 0, the following estimates hold
(3.4.10)[

(1−A∥z∥)(1−B∥z∥)
A
B
−2
]n+1

2 ≤ |d(z)| ≤
[
(1 +A∥z∥)(1 +B∥z∥)

A
B
−2
]n+1

2
,

for all z ∈ Bn.

These inequalities are sharp.

The following two results derive from Theorem 3.4.9 and have been obtained by
Manu [86].

Corollary 3.4.10. Let Assumptions 2.2.11 and 3.2.4 be satisfied. Let d(z) = detDΦn,Q(f)(z),
where z ∈ Bn and f ∈ J (a,b).

(i) In the case a = 1+
√
1+4b2

2 , the following estimates hold

[(
1 +

1−
√
1 + 4b2

2b
∥z∥
)
e

1−
√

1+4b2

2b
∥z∥
]n+1

2 ≤ |d(z)|

≤
[(

1 +

√
1 + 4b2 − 1

2b
∥z∥
)
e

√
1+4b2−1

2b
∥z∥
]n+1

2
, ∀z ∈ Bn.

(ii) In the case a ̸= 1+
√
1+4b2

2 , the following estimates hold

[(
1 +

1− a

b
∥z∥
)(

1 +
b2 − a2 + a

b
∥z∥
) a−1

a2−b2−a
−2]n+1

2 ≤ |d(z)|

≤
[(

1 +
a− 1

b
∥z∥
)(

1 +
a2 − b2 − a

b
∥z∥
) a−1

a2−b2−a
−2]n+1

2
, ∀z ∈ Bn.

These inequalities are sharp.

Corollary 3.4.11. Let Assumptions 2.2.11 and 3.2.4 be satisfied. Let d(z) = detDΦn,Q(f)(z),
where z ∈ Bn and f ∈ AJ (a,b).

(i) In the case a = 1, the following estimates hold

(3.4.11)
[
(1− b∥z∥)e−b∥z∥

]n+1
2 ≤ |d(z)| ≤

[
(1 + b∥z∥)eb∥z∥

]n+1
2
, ∀z ∈ Bn.

(ii) In the case a ̸= 1, the following estimates hold

[(
1 +

a2 − b2 − a

b
∥z∥
)(

1 +
a− 1

b
∥z∥
) b2−a2+a

1−a
−2]n+1

2 ≤ |d(z)|(3.4.12)

≤
[(

1 +
b2 − a2 + a

b
∥z∥
)(

1 +
1− a

b
∥z∥
) b2−a2+a

1−a
−2]n+1

2
, ∀z ∈ Bn.

These inequalities are sharp.

The following statement is a particular case of Theorem 3.4.9. The result is due to
Manu [86].
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Corollary 3.4.12. Assume that f ∈ S∗. Then

[ 1− ∥z∥
(1 + ∥z∥)3

]n+1
2 ≤ |detDΦn,Q(f)(z)| ≤

[ 1 + ∥z∥
(1− ∥z∥)3

]n+1
2
, ∀z ∈ Bn.

The inequalities are sharp.

In view of Corollaries 3.4.10, 3.4.11, one obtain the following statements due to Manu
[86]:

Corollary 3.4.13. Let 0 < α < 1.

(i) Let f ∈ S∗
α.

(a) For α = 1
2 , the following estimates hold

[
(1− ∥z∥)e−∥z∥

]n+1
2 ≤ |detDΦn,Q(f)(z)| ≤

[
(1 + ∥z∥)e∥z∥

]n+1
2
, ∀z ∈ Bn.

(b) For α ̸= 1
2 , the following estimates hold

[
(1− ∥z∥)(1− (2α− 1)∥z∥)

1
2α−1

−2
]n+1

2 ≤ |detDΦn,Q(f)(z)|

≤
[
(1 + ∥z∥)(1 + (2α− 1)∥z∥)

1
2α−1

−2
]n+1

2
, ∀z ∈ Bn.

(ii) Let f ∈ AS∗
α. Then

[
(1 + (2α− 1)∥z∥)(1 + ∥z∥)2α−3

]n+1
2 ≤ |detDΦn,Q(f)(z)|

≤
[
(1− (2α− 1)∥z∥)(1− ∥z∥)2α−3

]n+1
2
, ∀z ∈ Bn.

The above inequalities are sharp.

In the following part, we present some distortion results along a vector with norm
equal to 1 in Cn for certain mappings which admit g-PR on Bn generated under the
operator Φn,Q. These results are due to Manu [86].

First, we remark that for f ∈ S∗
g , with F = Φn,Q(f) ∈ S∗

g (Bn), we have that
[DF (z)]−1F (z) ̸= 0, for z ̸= 0. In this case, if z ∈ Bn\{0}, then we can construct an
unit vector in terms of the mapping F given by

(3.4.13) v(z) =
[DF (z)]−1F (z)

∥[DF (z)]−1F (z)∥
.

The above statement is also true if f ∈ J (a,b) or f ∈ AJ (a,b).

The next statement gives a distortion theorem due to Manu [86] for the class
Φn,Q(S

∗
g ). A similar result was obtained by Curt [21, Theorem 3.8] for the entire class

S∗
g (Bn), where the function g is given by Assumption 2.3.1.
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Theorem 3.4.14. Let Assumptions 2.2.11 and 2.3.1 hold. Assume that ∥Q∥ ≤ A−B
4(1+|B|) .

Let f ∈ S∗
g and let G(z) = DΦn,Q(f)(z)v(z), where v is given by (3.4.13).

For A ̸= 0, the following estimate holds

∥G(z)∥ ≤ 1−B∥z∥
(1−A∥z∥)2−B/A

, ∀z ∈ Bn\{0}.(3.4.14)

For A = 0, the following estimate holds

∥G(z)∥ ≤ (1−B∥z∥) · e−B∥z∥, ∀z ∈ Bn\{0}.(3.4.15)

These inequalities are sharp.

The following consequences of Theorem 3.4.14 are due to Manu [86]. Curt [21]
obtained similar results for the families J (a,b)(Bn), AJ (a,b)(Bn).

Corollary 3.4.15. Let Assumptions 2.2.11 and 3.2.4 hold. Assume that ∥Q∥ ≤ b2−(1−a)2

4(b+|a2−b2−a|) .

Let f ∈ J (a,b) and let G(z) = DΦn,Q(f)(z)v(z), where v is given by (3.4.13).
For a ̸= 1, the following estimate holds

∥G(z)∥ ≤
1 + b2−a2+a

b ∥z∥(
1 + 1−a

b ∥z∥
)2−a2−b2−a

a−1

, ∀z ∈ Bn\{0}.

For a = 1, the following estimate holds

∥G(z)∥ ≤ (1 + b∥z∥)eb∥z∥, ∀z ∈ Bn\{0}.

These inequalities are sharp.

Corollary 3.4.16. Let Assumptions 2.2.11 and 3.2.4 hold. Assume that ∥Q∥ ≤ b−|1−a|
4 .

Let f ∈ AJ (a,b) and let G(z) = DΦn,Q(f)(z)v(z), where v is given by (3.4.13).

For a ̸= 1+
√
4b2+1
2 , the following estimate holds

∥G(z)∥ ≤
1− 1−a

b ∥z∥(
1− b2−a2+a

b ∥z∥
)2− 1−a

b2−a2+a

, ∀z ∈ Bn\{0}.

For a = 1+
√
4b2+1
2 , the following estimate holds

∥G(z)∥ ≤

(
1 +

√
4b2 + 1− 1

2b
∥z∥

)
· e

√
4b2+1−1

2b
∥z∥, ∀z ∈ Bn\{0}.

These inequalities are sharp.

In the followings, we consider that the Assumption 2.2.11 holds. We give below some
consequences of Theorem 3.4.14 due to Manu [86] (see also [21]).

Corollary 3.4.17. Let z ∈ Bn\{0}. Assume that f ∈ S∗ and let ∥Q∥ ≤ 1
4 . Let

G(z) = DΦn,Q(f)(z)v(z), where v is given by (3.4.13). Then

∥G(z)∥ ≤ 1 + ∥z∥
(1− ∥z∥)3

, ∀z ∈ Bn\{0}.

The estimate is sharp.
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Assume that α ∈ (0, 1). From Corollaries 3.4.15, 3.4.16 and Remark 3.2.3 (iii), when
n = 1, we deduce the following consequences due to Manu [86](see also [21]):

Corollary 3.4.18. (i) Assume that ∥Q∥ ≤ 1−|2α−1|
8α and let f ∈ S∗

α. Let G(z) =
DΦn,Q(f)(z)v(z), where v is given by (3.4.13).

Then

∥G(z)∥ ≤ 1− (2α− 1)∥z∥
(1− ∥z∥)3−2α

, ∀z ∈ Bn\{0}.

(ii) Assume that ∥Q∥ ≤ 1−α
4 and let f ∈ AS∗

α. Let G(z) = DΦn,Q(f)(z)v(z), where v
is given by (3.4.13).

For α = 1
2 , the following estimate holds

∥G(z)∥ ≤ (1 + ∥z∥)e∥z∥, ∀z ∈ Bn\{0}.

For α ̸= 1
2 , the following estimate holds

∥G(z)∥ ≤ 1 + ∥z∥
(1 + (2α− 1)∥z∥)2−

1
2α−1

, ∀z ∈ Bn\{0}.

These inequalities are sharp.
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Chapter 4

Extensions of Janowski
starlikeness to the case of
complex coefficients

In this chapter, we consider the notion of g-parametric representation, g-Loewner chains
and g-starlikeness, where g : U → C is univalent on U , g(0) = 1 and Reg(ζ) > 0, ζ ∈ U .
These notions have been introduced in the case of Banach spaces by Graham, Hamada,
Kohr and Kohr in [44]. Let be the extension operators Φn,α,β and Φn,Q. We next state
that g-parametric representation and g-starlikeness are conserved under these operators
(see [44]). Based on the preservation of the g-starlikeness, we shall prove that the concept
of Janowski (almost) starlikeness with complex coefficients introduced by Curt in [22]
is preserved under these operators. These properties generalize the results obtained in
[85, 86], which regard Janowski classes with real coefficients.

In the final part of this chapter we are interested about the preservation of g-
parametric representation through the Pfaltzgraff-Suffridge extension operator Ψn (n ≥
2), where the function g is satisfying Assumption 2.3.1. For the case n = 2, we consider
a particular Loewner chain F (z, t) : B3 × [0,∞) → C3, where its first element is the
image of a mapping f ∈ S0(B2) through the operator Ψ2. We refer to the Loewner
chain F (z, t) mentioned in the proof of [53, Theorem 2.1] for n = 2. We will obtain the
expression of the Herglotz vector field H(z, t) of F (z, t), which is a first step in approach-
ing this preservation property regarding operator Ψn, for the general case n ≥ 2. We
leave the effective study of this topic to be addressed in another paper. Also, we shall
present the Pfaltzgraff-Suffridge extension operator Ψn (n ≥ 2) and mention important
results concerning this operator.

The original results presented in this chapter have been obtained in [87].

The main sources used to prepare the first part of this chapter are [44], [45], [22] and
[53], [41], [45] for the second part.

Throughout this chapter, we use the shorter notations from Notation 1.7.1. Hence,
the following abbreviations are used: LC for a Loewner chain, LDE for the Loewner
differential equation and PR for the parametric representation. In addition, the ab-
breviation g-LC, respectively g-PR, is used for a g-Loewner chain, respectively for
g-parametric representation.
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4.1 Preliminaries

Let us consider the following function defined on U (see [44]):

Assumption 4.1.1. Let g : U → C be a univalent function on U such that g(0) = 1
and Reg(ζ) > 0, ζ ∈ U .

We remark that the function from Assumption 4.1.1 is more general than the one
from Assumption 2.1.6. This function was regarded in the work of Graham, Hamada,
Kohr and Kohr [44] in order to introduce g-PR on the unit ball of a complex Banach
space, when g satisfies Assumption 4.1.1.

Let be the following subset of the class M (see [44]):

Definition 4.1.2.

Mg =

{
h ∈ H(Bn) : h(0) = 0, Dh(0) = In,

〈
h(z),

z

∥z∥2

〉
∈ g(U), z ∈ Bn

}
,

where the function g meets the conditions of Assumption 4.1.1.

In the followings, we shall regard the notion of g-PR described in Definition 2.1.9
and the notion of g-LC defined in Definition 2.1.8, where g satisfies Assumption 4.1.1.
This generalizations have been approached by Graham, Hamada, Kohr and Kohr in [44].

An example of a function that fulfills the requirements of Assumption 4.1.1 is g(ζ) =
1+ζ
1−ζ , ζ ∈ U .

Further, let be the extension operator Φn,α,β given by Definition 2.2.6 and let be the
Muir extension operator Φn,Q given by Definition 2.2.12.

In a more recent work, it has been shown that g-PR and g-starlikeness are preserved
under the extension operators Φn,α,β, Φn,Q, where g is a convex function on U satisfying
Assumption 4.1.1 (see [44]).

Theorem 4.1.3. [44] Let g be a convex function on U satisfying Assumption 4.1.1.
Let Assumption 2.2.7 hold and let f ∈ S0

g . Then Φn,α,β(f) belongs to the set S0
g (Bn) .

Until now, certain cases of the above result have been studied and proved to be true
in: [46] for g(ζ) = 1+ζ

1−ζ , ζ ∈ U , (see Theorem 2.2.8 (i)), [11] for g(ζ) = 1+ζ
1+(2γ−1)ζ , ζ ∈ U ,

γ ∈ (0, 1) (see also [12], in the case α = 0) and [85], when g is described by Assumption
2.3.1.

In the next statement, let dist(1, ∂g(U)) denote the expression infζ∈∂g(U) |ζ − 1|.
Recall that Q is a homogeneous polynomial as in Assumption 2.2.11.

Theorem 4.1.4. [44] Let g be a convex function on U satisfying Assumption 4.1.1.
Let f ∈ S0

g and let Assumption 2.2.11 hold. If ∥Q∥ ≤ dist(1, ∂g(U))/4, then Φn,Q(f)
belongs to the set S0

g (Bn).

For different selections of the function g, particular cases of this result have been
proved in : [75], for g(ζ) = 1+ζ

1−ζ , ζ ∈ U , in [12] for g(ζ) = 1+ζ
1+(2γ−1)ζ , ζ ∈ U , γ ∈ (0, 1)

and [86], when g is described by Assumption 2.3.1.

We next continue with two properties studied in [44] regarding g-starlikeness.

Theorem 4.1.5. [44] Let g be a convex function on U which meets the requirements
of Assumption 4.1.1. Let Assumption 2.2.7 be satisfied and let f ∈ S∗

g . Then Φn,α,β(f)
belongs to the set S∗

g (Bn).
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This result is a generalization of the results presented in Remark 3.1.11 and Theorem
3.1.10.

Theorem 4.1.6. [44] Let g be a convex function on U which meets the requirements
of Assumption 4.1.1. Let Assumption 2.2.11 be satisfied and let f ∈ S∗

g . If ∥Q∥ ≤
dist(1, ∂g(U))/4, then Φn,Q(f) belongs to the set S∗

g (Bn).

The above mentioned property represents a generalization of some results mentioned
in Remark 3.1.16 and Theorem 3.1.15.

Let be the following function g : U → C considered by Curt in [22], which satisfies
Assumption 4.1.1.

Assumption 4.1.7. Let A,B ∈ C, A ̸= B. Let g : U → C be a holomorphic function
with positive real part on U given by:

(4.1.1) g(ζ) =
1 +Aζ

1 +Bζ
, ζ ∈ U.

The condition that requires that the function g from Assumption 4.1.7 to have
positive real part on U implies certain constraints on the parameters A and B. In
the following remark we present these constraints obtained by Curt in [22].

Remark 4.1.8. [22] Under Assumption 4.1.7, one of the following two relations holds:

(4.1.2) |B| < 1, |A| ≤ 1 and Re(1−AB) ≥ |A−B|,

or

(4.1.3) |B| = 1, |A| ≤ 1 and − 1 ≤ AB < 1.

We consider the following:

Assumption 4.1.9. Let a ∈ C, b ∈ R be such that |1− a| < b ≤ Re a.

In [22], the author considered the following subclasses of S∗(Bn):

Definition 4.1.10. Under Assumption 4.1.9, we consider the following classes

J (a,b)(Bn) =

{
f ∈ LSn :

∣∣∣∣ ∥z∥2

⟨[Df(z)]−1f(z), z⟩
− a

∣∣∣∣ < b, z ∈ Bn\{0}
}
,

and

AJ (a,b)(Bn) =

{
f ∈ LSn :

∣∣∣∣⟨[Df(z)]−1f(z), z⟩
∥z∥2

− a

∣∣∣∣ < b, z ∈ Bn\{0}
}
.

The above subclasses represent the set of Janowski starlike mappings on Bn and
Janowski almost starlike mappings on Bn. These families of starlike mappings generalize
the classes given in Definition 3.2.2, which have been introduced by Curt in [21]. It is
clear that if a ∈ R (or equivalently Re a = a), the above definition coincides with
Definition 3.2.2.

For n = 1, let J (a,b) denote J (a,b)(U) and let AJ (a,b) denote AJ (a,b)(U).
In the below results we highlight the connection between g-starlikeness and Janowski

(almost) starlikeness on Bn, when g satisfies Assumption 4.1.7. The following observa-
tions are due to Curt [22].
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Remark 4.1.11. [22] Let Assumption 4.1.9 be satisfied.

(i) For g(ζ) = 1+(a−1)/bζ
1+(|a|2−b2−a)/bζ

, ζ ∈ U, S∗
g (Bn) reduces to J (a,b)(Bn).

(ii) For g(ζ) = 1+(a−|a|2+b2)/bζ
1+(1−a)/bζ , ζ ∈ U, S∗

g (Bn) reduces to AJ (a,b)(Bn).

(iii) For b = a ∈ R (b > 0), we get

AJ (b,b)(Bn) = S∗
1
2b

(Bn) and J (b,b)(Bn) = AS∗
1
2b

(Bn).

4.2 Extension operators and Janowski starlike mappings
with complex coefficients

In this part, we are concerned about the preservation of Janowski (almost) starlikeness
with complex coefficients under the extension operators Φn,α,β, Φn,Q. These proper-
ties generalize the results obtained in [85, 86], which regard Janowski classes with real
coefficients. The original results presented in this part have been obtained in [87].

Let us first consider n ≥ 2.

Let Φn,α,β : LS → LSn be the extension operator described by Definition 2.2.6 and
let Φn,Q : LS → LSn be the extension operator described by Definition 2.2.12.

Next, we present the below remark which will be useful in the following results. This
statement is due to Manu [87].

Remark 4.2.1. Let Assumption 4.1.7 hold. Then dist(1, ∂g(U)) = |A−B|
1+|B| .

The next statement results from Theorem 4.1.5 and Remark 4.1.11, and states that
the extension operator Φn,α,β conserves Janowski (almost) starlikeness with complex
coefficients from U to Bn. This result generalizes Theorem 3.2.5, Theorem 3.2.6 (see
also [85]) and was obtained by Manu [87].

Theorem 4.2.2. Under Assumptions 2.2.7 and 4.1.9, the following statements hold:

(i) Let f ∈ J (a,b). Then Φn,α,β(f) belongs to the set J (a,b)(Bn),

(ii) Let f ∈ AJ (a,b). Then Φn,α,β(f) belongs to the set AJ (a,b)(Bn).

Using Theorem 4.1.5 and Remark 4.1.11, we obtained the following results. The
below statement shows that the extension operator Φn,Q conserves Janowski starlikeness
with complex coefficients.

Theorem 4.2.3. Let Assumptions 2.2.11 and 4.1.9 hold. Assume that f ∈ J (a,b). If

∥Q∥ ≤ b2 − (1− a)(1− a)

4(b+ ||a|2 − b2 − a|)
,

then Φn,Q(f) ∈ J (a,b)(Bn).

It is immediate that, for a ∈ R, the above result reduces to Theorem 3.2.7 (see also
[86]).

We present another conservation property of the Muir extension operator Φn,Q,
which shows that this operator conserves Janowski almost starlikeness with complex
coefficients.
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Theorem 4.2.4. Let Assumptions 2.2.11 and 4.1.9 be satisfied. Assume that f ∈
AJ (a,b). If

∥Q∥ ≤ b2 − (1− a)(1− a)

4(b+ |1− a|)
,

then Φn,Q(f) ∈ AJ (a,b)(Bn).

If we consider a, b ∈ R in Assumption 4.1.9, the above property reduces to Theorem
3.2.8 ( see also [86]).

4.3 A note on Loewner chains and Herglotz vector fields
related to the Pfaltzgraff-Suffridge operator

In this part, we investigate the following property regarding the Pfaltzgraff-Suffridge
extension operator Ψn: if f ∈ S0

g then Ψn(f) is the first element of a g-LC, F (z, t),
where the function g is satisfying Assumption 2.3.1. We make a first step in this sense
and, for the case n = 2, obtain the expression of the Herglotz vector field H(z, t) of a
particular LC, F (z, t) : B3 × [0,∞) → C3, which has the property that F (·, 0) = Ψ2(f),
where f ∈ S0(B2). We shall use the LC, F (z, t), mentioned in the proof of [53, Theorem
2.1] for n = 2. The expression of H(z, t) have been obtained for n ≥ 2 by Hamada,
Kohr and Muir in [65], where the authors considered the case of Ld-Loewner chains. We
leave the actual study of the preservation of g-PR under the operator Ψn, n ≥ 2, for a
forthcoming paper. First, we shall present the Pfaltzgraff-Suffridge extension operator
Ψn (n ≥ 2) and mention important properties of this operator.

The main bibliographic sources used to prepare this section are [53], [41], [45].

We present the following extension operator:

Definition 4.3.1. Let Ψn : LSn → LSn+1 be the extension operator given by:

(4.3.1) Ψn(f)(z) =
(
f(z̃), zn+1[Jf (z̃)]

1
n+1

)
, z = (z̃, zn+1) ∈ Bn+1.

We consider the branch of the power function to be

[Jf (z̃)]
1

n+1

∣∣∣
z̃=0

= 1.

This operator was introduced by Pfaltzgraff and Suffridge [99]. Also, it is immediate
that f ∈ S(Bn) → Ψn(f) ∈ S(Bn+1). For n = 1, the operator Ψ1 reduces to the operator
Φ2 (see relation (2.2.1)).

The following result states that a normalized biholomorphic mapping with PR on
Bn can be expanded to mapping with the same properties on Bn+1. This result is due
to Graham, Kohr and Pfaltzgraff [53]. This property was also obtained by Graham et
al. in [41], but in a more general case, for bounded symmetric domains with n ≥ 2 (see
also [38], [13]).

Theorem 4.3.2. If f ∈ S0(Bn) then Ψn(f) ∈ S0(Bn+1).

The next result states that the notion of starlikeness is preserved under the extension
operator Ψn due to Graham, Kohr and Pfaltzgraff [53] (see also [41]).

Theorem 4.3.3. Assume that f ∈ S∗(Bn). Then Ψn(f) is a mapping from S∗(Bn+1).
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We have the following conjecture proposed by Pfaltzgraff and Suffridge [99]:

Conjecture 4.3.4. Assume that f ∈ K(Bn). Then Ψn(f) ∈ K(Bn+1).

Even if there is no complete answer to this conjecture, a partial positive answer has
been given by Graham, Kohr and Pfaltzgraff in [53]. Let us state this result.

Let 0 < a ≤ 1. Also, let

Ωa,n = {z = (z̃, zn+1) ∈ Cn+1 : |zn+1|2 < a
2n
n+1 (1− ∥z̃∥2)}.

We remark that Ω1,n = Bn+1 and Ωa,n ⊆ Bn+1.

Theorem 4.3.5. Assume that f ∈ K(Bn) and a1, a2 > 0 such that a1 + a2 ≤ 1. Then
we have that γΨn(f)(z) + (1 − γ)Ψn(f)(w) is an element from Ψn(f)(Ωa1+a2,n), with
z ∈ Ωa1,n, w ∈ Ωa2,n and γ ∈ [0, 1].

The following preservation results are due to Chirilă [13] (see also [41]).

Theorem 4.3.6. (i) Assume that γ ∈
(
−π

2 ,
π
2

)
. Let f ∈ Ŝγ(Bn). Then F = Ψn(f) ∈

Ŝγ(Bn+1).

(i) Assume that α ∈ [0, 1). Let f ∈ AS∗
α(Bn). Then F = Ψn(f) ∈ AS∗

α(Bn+1).

In the following statement, we obtain the expression of the Herglotz vector field
H(z, t) of the LC, F (z, t) : B3 × [0,∞) → C3, mentioned in the proof of [53, Theorem
2.1] for n = 2 (see also [65] in the case of Ld-Loewner chains and n ≥ 2). Note that the
existence and uniqueness of H(z, t) is assured by Theorem 1.7.12.

Theorem 4.3.7. Let n = 2. Assume that f ∈ S0(B2). Let ft(z) be a LC such that f
represents its first element. Let F (z, t) : B3 × [0,∞) → C3 be the LC described by

(4.3.2) F (z, t) =
(
ft(z̃), z3e

t
3 [Jft(z̃)]

1/3
)
, z = (z̃, z3) ∈ B3, t ≥ 0,

where [Jft(z̃)]
1/3
∣∣∣
z̃=0

= e
2t
3 . Also, F (z, 0) = Ψ2(f)(z), z ∈ B3. Then the associated

Herglotz vector field H(z, t) : B3 × [0,∞) → C3 of F (z, t) is given by

H(z, t) =

(
h(z̃, t),

z3
3

(
1 +

∂h1
∂z1

(z̃, t) +
∂h2
∂z2

(z̃, t)

))
,

where z = (z̃, z3) ∈ B3, z̃ = (z1, z2), a.e. t ≥ 0.



Conclusions

In this thesis we give new contributions in the theory of univalent functions of one and
several complex variables. We shall present them in the following paragraphs.

The first chapter presents important results which are useful for the forthcoming
chapters and it does not include original results.

Further let g be a function satisfying Assumption 2.1.6.

We shall refer in the following two chapters to the g-parametric representation in-
troduced in [37], g-starlikeness introduced in [37, 55], g-almost starlikeness of order
α ∈ [0, 1) and g-spirallikeness of type γ ∈

(
−π

2 ,
π
2

)
introduced in [14], on the Euclidean

unit ball Bn, where the function g is defined as above.

Also, let Φn,α,β be the extension operator defined by Definition 2.2.6 and let Φn,Q

be the Muir extension operator defined by Definition 2.2.12.

We choose a particular selection of the function g given by Assumption 2.3.1.

InChapter 2, we prove that g-parametric is conserved under the extension operators
Φn,α,β and Φn,Q in Theorem 2.3.2 and Theorem 2.3.3, where the function g is given by
Assumption 2.3.1.

In Chapter 3, we show that g-starlikeness, g-almost starlikeness of order α ∈ [0, 1)
and g-spirallikeness of type γ ∈

(
−π

2 ,
π
2

)
are conserved under the extension operator

Φn,α,β, where g is given by Assumption 2.3.1. Moreover, we prove that Φn,Q preserves
g-starlikeness and g-spirallikeness of type γ ∈

(
−π

2 ,
π
2

)
, where g is defined by Assumption

2.3.1. These preservation properties are presented in Theorem 3.1.10, Theorem 3.1.12,
Theorem 3.1.13, Theorem 3.1.15, Theorem 3.1.17.

Let a, b ∈ R such that |1 − a| < b ≤ a. We shall refer to the Janowski classes of
starlike functions on U , J (a,b) (see [109], see also [110]), and AJ (a,b) (see [21]). Then, we
refer to their natural generalization to the unit ball Bn of Cn (see [21]). These Janowski
classes can be reduced to g-starlikeness for a suitable choice of function g satisfying
Assumption 2.3.1, for n ≥ 1 . We prove that Φn,α,β, Φn,Q preserve Janowski (almost)
starlikeness from U to Bn in Cn. The results are presented in Theorem 3.2.5, Theorem
3.2.6, Theorem 3.2.7 and Theorem 3.2.8.

We compute the J (a,b) radius of the classes S, S∗ in Theorem 3.3.3 and Theorem
3.3.5. Particular cases of these results are included in Corollary 3.3.4 and Remark 3.3.6.
We also deduce the J (a,b) radius of the classes Φn,α,β(S) and Φn,α,β(S

∗) in Theorem
3.3.8, Theorem 3.3.9. Also, we obtain the radius of almost starlikeness of order α, with
α ∈ (0, 1), of the classes Φn,α,β(S) and Φn,α,β(S

∗) in Theorem 3.3.9.

We next continue with growth results for certain families of mappings which admit
g-parametric representation and are obtained under the operator Φn,Q, where g is given
by Assumption 2.3.1. We give growth theorems for the class Φn,Q(S

0
g ) stated in The-

orem 3.4.2, the class Φn,Q(S
∗
g ) stated in Corollary 3.4.3 and the classes Φn,Q(J (a,b)),

respectively Φn,Q(AJ (a,b)), stated in Corollary 3.4.4, Corollary 3.4.5.
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Then we provide distortion results for certain subclasses of Φn,Q(S
∗
g ), where g is

described by Assumption 2.3.1. We give estimates for the expression detDΦn,Q(f)(z),
when f belongs to S∗

g , J (a,b) or AJ (a,b) in Theorem 3.4.9, Corollary 3.4.10, Corollary
3.4.11. Certain consequences of these results are stated in Corollary 3.4.12, Corollary
3.4.13. Some distortion results along a vector of norm equal to 1 in Cn for certain sub-
classes of Φn,Q(S

∗
g ) are obtained in Theorem 3.4.14, Corollary 3.4.15, Corollary 3.4.16,

and their consequences in Corollary 3.4.17 and Corollary 3.4.18.

The above original results have been obtained in [85, 86], except Theorem 3.1.13
which was proved after the publication of the article [85].

In Chapter 4, we shall refer to a more general function g satisfying Assumption
4.1.1. Then we refer to notions like g-parametric representation, g-Loewner chains and g-
starlikeness introduced in [44] in a certain Banach space, where g is this general function.
Further, we present a particular choice of the function g which meets the conditions of
Assumption 4.1.7.

For a proper selection of parameters A and B, we can establish a connection between
g-starlikeness and Janowski (almost) starlikeness with complex coefficients. This type
of starlikeness was recently introduced in [22] and generalizes the Janowski (almost)
starlikeness with real coefficients defined by the same author in [21]. Making use of
this connection between g-starlikeness and Janowski (almost) starlikeness, we prove
that Janowski (almost) starlikeness with complex coefficients is preserved under the
operators Φn,α,β, Φn,Q in Theorem 4.2.2, Theorem 4.2.3 and Theorem 4.2.4 (see also
Remark 4.2.1). The results obtained in [85, 86] and presented in Chapter 3, which refer
to the Janowski classes with real coefficients, are particular cases of these preservation
results.

These new results have been obtained in [87].

Let Ψn be the operator given by Definition 4.3.1, which was considered by Pfaltzgraff
and Suffridge.

Let n = 2 and let f ∈ S0(B2) be such that there exists a Loewner chain ft(z) with
f0(z) = f(z), z ∈ B2. Next, we want obtain the expression of the Herglotz vector field
H(z, t) of the following Loewner chain F (z, t) : B3 × [0,∞) → C3 given by

F (z, t) =
(
ft(z̃), z3e

t
3 [Jft(z̃)]

1/3
)
, z = (z̃, z3) ∈ B3, t ≥ 0,

where we consider the branch of the power function to be: [Jft(z̃)]
1/3
∣∣∣
z̃=0

= e
2t
3 . Also,

F (z, 0) = Ψ2(f)(z), z ∈ B3. The Loewner chain F (z, t) is chosen from the proof of [53,
Theorem 2.1]. Therefore, we obtain the following simple expression of H(z, t):

H(z, t) =

(
h(z̃, t),

z3
3

(
1 +

∂h1
∂z1

(z̃, t) +
∂h2
∂z2

(z̃, t)

))
,

where h = (h1, h2) is the associated Herglotz vector field for ft(z̃) and z = (z̃, z3) ∈ B3,
z̃ = (z1, z2), for a.e. t ≥ 0. This result is obtained in Theorem 4.3.7 (see also [65,
Theorem 6.3] for n ≥ 2).

Concluding the above description of the main results, let us mention that the pur-
pose of this thesis was the study of some preservation properties regarding the extension
operators Φn,α,β, Φn,Q and some subclasses of S(Bn) which admit g-parametric repre-
sentation on Bn, where the function g meets certain conditions. Moreover, based on
these preservation properties, we have studied radii problems and have obtained growth
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and distortion results. The new results presented in this thesis have been obtained us-
ing methods from the geometric function theory of one and several complex variables,
especially from the theory of Loewner chains. Also, we have used methods of functional
analysis and from the theory of partial differential equations (see [4]).
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Further research directions

In the followings, we present certain research directions that may be approached in
order to extend the results obtained in this thesis. They are mainly based on the idea of
the preservation of geometric or analytic properties of some special classes of univalent
mappings through extension operators.

⋄ In the last part of this thesis, we have referred to the Janowski classes with complex
coefficients. Let a ∈ C, b ∈ R such that |1−a| < b ≤ Re a. Let J (a,b) (AJ (a,b)) be
the class of Janowski (almost) starlike functions on U . Let Φn,α,β be the extension
operator described by Definition 2.2.6 and let Φn,Q be the extension operator
described by Definition 2.2.12.

It would be of interest to compute the J (a,b) radius of the classes S, S∗ and then
to obtain the radii for the classes Φn,α,β(S), Φn,α,β(S

∗). Note that the operator

Φn,α,β preserves the classes J (a,b) and AJ (a,b) as shown in Theorem 4.2.2.

Also, we are interested to obtain growth and distortion results, similar to those
presented in the last section of Chapter 3, for the following classes: Φn,α,β(J (a,b)),

Φn,α,β(AJ (a,b)), Φn,Q(J (a,b)) and Φn,Q(AJ (a,b)) .

⋄ An interesting generalization of the Muir extension operator was given by Graham,
Hamada, Kohr and Kohr in [44]. First, let Y be a complex Banach space and let
the function Pk : Y → C be a homogeneous polynomial of degree k, where k ≥ 2.
Let Ωk be the domain defined as {(z1, z′) ∈ C×Y : |z1|2+∥z′∥kY < 1}. We consider
the following extension operator ΦPk

: LS → LS(Ωk) given by (see [44]):

ΦPk
(f)(z) = (f(z1) + Pk(z

′)f ′(z1), (f
′(z1))

1/kz′), z = (z1, z
′) ∈ Ωk,

where we choose the branch of the power function such that (f ′(z1))
1/k
∣∣∣
z1=0

= 1.

Also, the authors referred to the operator Φn,α,β given by Definition 2.2.6 with the
mention that Φn,α,β maps a function from LS into a mapping from LS(Ωk).

It has been proved in [44] that the operators ΦPk
and Φn,α,β preserve g-parametric

presentation and Bloch functions, where g : U → C is an univalent function
with g(0) = 1, Re g(ζ) > 0, ζ ∈ U , and g is convex on U . We are interested if
other subclasses of biholomorphic mappings can be preserved under these extension
operators.

⋄ In [99], Pfaltzgraff and Suffridge proposed the extension operator Ψn : LSn →
LSn+1 defined by:

Ψn(f)(z) =
(
f(z̃), zn+1[Jf (z̃)]

1
n+1

)
, z = (z̃, zn+1) ∈ Bn+1,

71



Further research directions 72

where we consider the branch of the power function to be: [Jf (z̃)]
1

n+1
∣∣
z̃=0

= 1.
This extension operator preserve parametric representation from Bn to Bn+1 as
shown by Graham, Kohr and Pfaltzgraff in [53]. Then we are interested to inves-
tigate if the operator Ψn preserves g-parametric representation, with g satisfying
Assumption 2.3.1. In addition, we are interested to study if other subclasses of
S0
g (Bn) are conserved through this operator, like g-starlikeness, g-almost starlike-

ness of order α ∈ [0, 1), g-spirallikeness of type γ ∈
(
−π

2 ,
π
2

)
and Janowski (almost)

starlikeness on Bn with real coefficients.

A generalization of the Ψn operator was considered in [41] by Graham, Hamada
and Kohr. Assume that BX is the open unit ball of an n-dimensional JB∗-
triple (which is a complex Banach space where its open unit ball is homoge-
neous), denoted by X, BY is the open unit ball of a complex Banach space Y
and Da ⊆ BX × BY is a domain such that BX × {0} ⊂ Da, and a > 0.

Let Ψn,a : LS(BX) → LS(Da) be the following extension operator:

Ψn,a(f)(z) =
(
f(z̃), [Jf (z̃)]

1
2a c(BX )w

)
, z = (z̃, w) ∈ Da,

where [Jf (z̃)]
1

2a c(BX )
∣∣
z̃=0

= 1 ( Jf (z) = detDf(z), z ∈ Da) and c(BX) is a constant
determined by the Bergman metric on X. In the same paper [41], the authors
proved that Ψn,a preserves parametric representation from BX to Da if a ≥ n

2c(BX)
.

An interesting related problem could be the analysis of the preservation of g-
parametric representation from BX to Da through the operator Ψn,α, where g is
given by Assumption 2.3.1. Another important problem is that of preservation
through the operator Ψn,α of other subclasses of normalized biholomorphic map-
pings, in particular those with g-parametric representation.

⋄ We remark the recent work of Muir in [91], where the author considered Loewner
chains F (z, t) of order p on Bn and for t ≥ 0, but not normalized, in other words,
Loewner chains F (z, t) which satisfy a locally uniform local Lp-continuity con-
dition with respect to t. Also, in this paper [91] are approached two extension
operators: the Muir operator Φn,Q (see Definition 2.2.12) and a modification of
the Pfaltzgraff–Suffridge operator. The author uses this type of Loewner chains
to define a generalized form of spirallikeness with respect to A, where A is locally
integrable operator-valued function on [0,∞). An important result of this paper
is the fact that generalized spiralshaped mappings with respect to A are generated
using the above mentioned extension operators. We wonder if other subclasses
of biholomorphic mappings can be enhanced and connected to these extended
Loewner chains. It would be interesting to generate this kind of mappings using
the above operators.

⋄ In view of Elin’s work [27], which refers to generating extension operators using
the semigroup theory, it would be of interest to study extension operators and
their mapping properties through semigroup theory.

⋄ An new approach of the theory of the Loewner chains was developed by Aro-
sio, Bracci, Hamada and Kohr in [3], by considering Loewner chains on complete
hyperbolic complex manifolds. They obtained a new geometric construction of
Loewner chains in one and several complex variables, which holds on such mani-
folds, and showed that there is a one-to-one correspondence between Ld-Loewner
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chains and Ld-evolution families. Also, they gave examples of Ld-Loewner chains
generated by the Roper-Suffridge extension operator. There would be valuable to
generate and study Ld-Loewner chains in one and several complex variables by
using other extension operators.
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