BABES BOLYAI UNIVERSITY, CLUJ NAPOCA, ROMANIA
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

INTELLIGENT METHODS FOR
INFERRING SOFTWARE
ARCHITECTURES FROM
MOBILE APPLICATIONS

CODEBASES

PhD student: Dragos Dobrean
Scientific supervisor: Prof. PhD Laura Diosan

2021

Abstract

With over two-thirds of the world’s population using them, smartphones have become our
most personal devices. We use these devices for communicating with others, entertain-
ment, analyzing our health, ordering food, exercising, finding a date, and so much more.
Slowly they have even started to be a replacement for wallets, as they allow us to make
payments, store digital tickets, and validate the identity of the owner. With the rise of
the popularity of these devices and the hardware advancements, mobile applications have
become one of the most commonly written pieces of software.

The software architecture of a mobile product, especially in the case of complex ones,
which are maintained and developed for long periods (years), plays a major role in their
success. By correctly implementing a certain architectural pattern to a mobile application
project, developers ensure the testability, extensibility, and flexibility of those projects,
which represent a major advantage in a fast pace, high-demand market. Since the archi-
tectural health of a mobile codebase represents an important factor in its success, this
thesis studies different approaches in which architectural issues could be spotted and fixed
before they could affect the product. The scope of this thesis is to pave the way for build-
ing a system capable of identifying architectural issues early, in the development phase,
or Continuous Integration (CI) / Continuous Delivery (CD) pipelines, and to lay a strong
foundation of knowledge that could also be applied to other platforms.

Each software architecture has a set of constraints between its composing parts. Pre-
sentational applications (such as mobile apps) predominantly use layered software archi-
tectures. While the architectural rules between the layers of a system can be easily defined,
a more important problem is the inference of the architectural layers from a mobile code-
base. To create a tool that highlights architectural issues automatically, we need a system
that could infer the components from the codebase and categorize them in architectural
layers without the need for human interaction.

The approaches presented in this thesis take advantage of the Software Development
Kits (SDKs) used in building those kinds of applications. By using the information from
those SDKs insightful data can be extracted regarding the types of the components in
the codebase and the architectural layer they should reside in. In addition to the usage
of information from SDKs, Machine Learning (ML) techniques are also involved in some
of the introduced approaches for aiding the process of categorizing the components of a
mobile codebase in architectural layers. Moreover, when designing the approaches, we've
also focused on portability, all the presented approaches are platform-agnostic, and can
easily be extended to other mobile or non-mobile platforms.

The research presented in this work is at the confluence of two domains, Software Engi-
neering and Artificial Intelligence. The goal of this study is to advance the field of Software
Engineering by improving the process of developing presentational software products. New
discoveries are usually the byproduct of the interaction between different study fields, and
we strongly believe that the Artificial Intelligence methods can be successfully applied
to Software Engineering and both fields can be driven forward from this symbiosis. The
problem of inferring software architectures from mobile codebases is heavily related to the
field of Software Engineering. However, while developing approaches for enhancing this
process we’ve tried to tackle every problem we encountered from an Artificial Intelligence
perspective.

In this work, we have analyzed the most common architectural patterns used on mobile
platforms, together with their advantages and disadvantages. We have discovered that the
precursor of a large number of those architectural patterns, Model View Controller (MVC),

is still one of the most used presentational patterns, especially in mobile codebases. The
focus with this initial work was to study and find ways for automatically detecting the
composition of the architectural layers of an MVC architecture from a mobile codebase.

Our first approach — Mobile software architecture checker system (mACS), the de-
terministic one, achieved good results in solving this problem, by using the information
available in the mobile SDKs and a set of heuristics. Next, since there are other, more
complex architectural patterns used in the mobile codebase, we have moved our focus to
those, and try to come up with an approach that would allow us to detect other types of
architectural layers, not only those present in the MVC. The second proposal — Clustering
architectural layers (CARL) is the non-deterministic approach, in which machine learning
techniques are used for splitting the components of a mobile codebase into architectural
layers. This second approach was not as performant as our first one (the deterministic
approach), but it had the extra flexibility that was lacking in the first attempt.

The third approach — Hybrid detection of architectural layers (HyDe) is a hybrid one,
in which we have combined the deterministic approach with the non-deterministic one.
This third attempt had an improved accuracy over the non-deterministic method and
much better flexibility than the deterministic one and represents a good candidate for a
solution that could analyze more specialized architectural patterns.

To sum up, this thesis managed to contribute to the field of software architecture in
multiple research areas. This work shed some light on the importance of software archi-
tectures in an academic framework (students and instructors) as well as for practitioners.
It analyzed and compared the most used architectural patterns on mobile platforms, and
studied the most common mistakes of the most prolific one — the MVC. Moreover, with
this work, we have formulated the problem of automatically identifying architectural layers
from a mobile codebase mathematically and proposed three approaches (mACS, CARL,
HyDe) for solving it. Furthermore, for testing the proposed approaches and compar-
ing them, a benchmark of iOS and Android applications was constructed and the three
approaches were compared from an intrinsic and extrinsic point of view and validated
statistically with approach-specific metrics, and empirically using the interview method.
In addition to this, we’ve also compared our detection methods with already existing ones
from the literature by looking at how the information is used, how its analyzed, whats
their granularity and flexibility. Our methods proved to have increased flexibility, mean-
ing they can be applied to different platforms, and different programming languages with
ease. Lastly, we have shown through experiments that the work presented in this thesis,
can easily be ported to other mobile platforms, or even to completely different ones, with
great results. With this work, we have opened a lot of research directions for future work.
The results presented in this thesis, make us feel confident about achieving our goal — the
creation of a mobile software architecture checker tool, that could be integrated into a
CI/CD pipeline, or used locally, by developers or students. short-term research priorities
revolve around improving the performance of our approaches. While the results obtained
are promising, there is still a lot of work to be done, until we have an automatic solution
that can detect architectural layers from mobile codebases. Our plans revolve around the
software architecture tool, applying it to more platforms, and creating tools for improving
the architectural knowledge of students.

Keywords: mobile applications software architecture; automatic static analysis; model
view controller; automatic analysis of software architectures; structural and lexical in-
formation; software clustering; hybrid approach; software architecture detection; multi-
platform

Contents

List of Publications

1

Introduction
L1 Why? . e e e e e
1.2 What? . . . e
1.3 HOW? . . o e
L4 Impact o e e e e
1.5 Contributions to software architecture inference for mobile applications
1.6 Thesisoutline e
Background
Importance of software architectures in mobile projects
2.1 ConteXt e e e
2.2 Related work L e
2.3 Method overview e e e e
23.1 Surveydesign e e e e e
2.3.1.1 Developers e e e e
23.1.2 Students e
2.3.1.3 INStructors e e e e e e e e
2.3.2 Surveydistribution oL
24 Resultsand analysis e e e e e
241 Developerso e e e e
242 Students e e
243 INnStructors e e e e e e e
2.5 Findings L e e e e
A comparative study of software architectures in mobile applications
3.1 ConteXt e e e
3.2 Mobile architectural patterns e e e
32.1 MVC . . e
322 MVP e
323 MVVM . . e e e
324 VIPER e
3.3 Analysisandbenchmark

34 Findings oL e

N B R WD NoN

11
11
12
13
13
13
13
14
14
14
15
16
16
17

4

1T

Architectural issues when using MV C for mobile development

41 ContexXt o i e e e e e e e e e e
42 AnalySiso e e e e
421 Complexity o e e e e e e
422 Misunderstandingsl e e e
423 Model
424 VIEW . . . o e e e e e e e e
4.2.5 Coordinating Controllers
42.6 View Controllers e e e e
43 Findings e e e e
Scientific problem
5.1 Challanges for solvingthe problem
Proposed intelligent approaches for automatically inferring software architectures
Preliminary
6.1 Model-View-Controller e
6.2 Data e e e e e e e
6.3 Evaluation metrics e e e e e
Mobile software architecture checker system (mACS)

7.1 ConteXt o e e e e e e

7.2 Approach L e e e

721 Detection oL e e e e e e e e

722 EXtraction oo it e

7.2.3 Categorisation oL e e e e e e e e e e

724 AnalySis e e e e

7.3 Evaluation L e e

7.3.1 Methodology e

7.3.1.1 MVC Approach (SimpleCateg.)

7.3.1.2 MVC with Coordinators approach (CoordCateg.)

7.3.2 Validation -stage e e e e e

733 Analysis-Stage L e e e e e e

7.4 Findings e e e e

7.5 Threatstovalidity
Clustering architectural layers (CARL)

81 Context

8.2 Approach e e e

8.2.1 Pre-processing and feature extraction

8.2.2 Featureselection

8.2.3 Clustering algorithm L

82.3.1 Numberofclusters

8.2.3.2 Logical aspect of the clustering process

8.2.3.3 Measures of similarities

8.2.3.4 Assigning responsibilities to layerso oL

83 Evaluation

8.3.1 Methodology e

34
34
35
36
36
37
37
38
39
41

42
43

46

47
47
48
49

53
53
54
55
55
57
60
62
62
62
63
64
65
70
70

8.4
8.5

8.3.2 Validation-stage e
8.3.3 AnalysiS-Stage e e e e e e e e
Findings e
Threats to validity e e e e

9 Hybrid detection of architectural layers (HyDe)

9.1
9.2

9.3

9.4
9.5

Context v ot e e
Approach L e e
9.2.1 Pre-processing e
9.2.2 DeterminiStiC StEP e e e e e e e e e e e e e e

9.22.1 EXtraction e e e

0.2.2.2 Categorization e e
9.2.3 Non-determiniStiC StEP v v e e e e e e e e e e e

9.2.3.1 Feature extraction

0.2.3.2 Clusterization i
Evaluation e e
9.3.1 Methodology e e e
9.3.2 Validation-stage e
9.33 AnalySiS-Stage e e e e e e e e e
Findings e e
Threats to validity L e e e e

III Assessment of the designed methods

10 Approaches comparison

10.1
10.2
10.3

10.4
10.5

Context o e e e e e e e
Related work e
Methods OVEIVIEW e e e e e e e e e e e e
10.3.1 mACS e e e e
10.3.1.1 Advantages e
10.3.1.2 Disadvantages ot e e e e e e e e
10.3.2 CARL e e e e
10.3.2.1 Advantages e
10.3.2.2 Disadvantages i e e e e e
10.3.3 HyDe e e e e e e
10.3.3.1 Advantages
10.3.3.2 Disadvantagest e e e e e e e
1034 OVEIVIEW o o o e e e e e e e e e e e
Setup of experiments e e e e e e
Numerical results e e e e e e
10.5.1 Precision e e e e
10.5.1.1 Model Precision e
10.5.1.2 View Precision e
10.5.1.3 Controller Precision
10.5.1.4 Precision Comparision e
10.5.2 Recall e e e e e
10.5.2.1 ModelRecall
10.5.2.2 ViewRecall
10.5.2.3 ControllerRecall

87
87
88
88
89
89
89
90
90
92
92
93
94
96
97
97

10.5.2.4 Recall Comparision L

10.5.3 ACCUTACY vt o i e e e e e e e e e
10.5.4 Homogeneity o oot e
10.5.5 Completeness o i e e e e e e e e e e e e
10.5.6 Adjusted RandIndex
10.5.7 Mean Silhouette Coefficient
10.5.8 Davies - Bouldinindex L
10.5.9 Overlappedresults e

10.6 Findings L e e
10.7 Threatsto validity e e e e

11 Empirical evaluation
I1.1 Context o v i e e e e e e e e e e
11.2 Design of interviews L e e e e e
11.3 Participants background and analyzeddata
11.4 Findings o o e e e
11.5 Threatstovalidity e e e e e

12 Flexibility, going beyond iOS

12,1 ConteXxt v v v e e e e e e e e e e
12.2 Applying mACS to other platforms Lo
123 Evaluationo e e e e e e

12.3.1 Methodology e

12.3.2 AnalysiS e e e e e e
12.4 Findings oL e e
12.5 Threatstovalidity e e e

13 Closure
13.1 Conclusions e e e
13.2 Further work e

126
126
127
127
128
129

130
130
131
132
132
133
137
137

