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1
Introduction

One of the basic problems in calculus of variations is to study the existence of extrema or critical/equilibrium

points of functionals. Many non-linear problems in partial differential equations can be reduced to finding

the extrema of the associated energy functional, which is more easier than solving the original problems.

This method is applicable since if an extremum can be detected then it will be a weak solution to the

original problem. This approach is called the direct method of calculus of variations and can be derived from

Physics, where in general the study of the equilibrium state of a process can be reduced to the minimization

of the total energy that characterizes the underlying physical process. In proving the existence of extrema

of (energy) functionals the Palais–Smale, or shortly, the (PS) condition [Palais and Smale, 1964] is the most

frequently used tool, since it provides a sufficient condition for the existence of a minimum. Thus, if we show

that the (PS) condition is satisfied, then we have at least a critical point.

The variational principle of Ekeland introduced in [Ekeland, 1972, 1974] for lower semi-continuous func-

tionals on metric spaces is the non-linear version of the Bishop–Phelps theorem [Bishop and Phelps, 1963]

and it is a useful tool in the construction of the minimizer of lower semi-continuous functionals on complete

metric spaces. Actually, the variational principle of Ekeland characterizes the completeness of a metric space

and it can be used successfully to establish the existence of an approximate minimizer and, used in con-

junction with the (PS) condition, the functional must achieve its minimum. Depending on the variational

framework, several different versions and extensions of this principle are known, of which we will focus on

its symmetric version introduced and proved by [Squassina, 2012].

It is easier to find the extrema of functionals, than to localize those critical points which are not minima

or maxima. At first, [Ambrosetti and Rabinowitz, 1973] presented a method for finding non-extremal critical

points of continuously differentiable functionals that are unbounded from either above, or below. Due to their

geometrical interpretation, we refer to these critical points as mountain pass points. To detect such critical

points, they proposed a minimax method that is based on a deformation lemma and consists of two basic

steps, namely the proof of the existence of a (PS) sequence and the verification of the (PS) condition. Their

mountain pass theorem of positive altitude has been intensively studied and applied in order to establish

the existence of critical points of such types of functionals. [Pucci and Serrin, 1984, 1985] developed a
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1 INTRODUCTION

weaker version of the theorem, which is called mountain pass theorem of zero altitude that can be used

to prove the existence of critical points in the case when the separating mountain range has zero altitude.

Another important extension of the theorem is due to [Ghoussoub and Preiss, 1989], which in addition to

proving the existence of critical points, also derives information about their location. [Willem, 1996] proved

a quantitative deformation lemma that can be used in the construction of (PS) sequences independently of

their compactness conditions. This approach is more general than the original one and it can be used to

many problems where the (PS) condition fails. Based on the general minimax principle of [Willem, 1996],

[Schaftingen, 2005] proved a symmetric minimax principle for continuously differentiable functionals in order

to obtain symmetric critical points. Moreover, he used this new method to study the symmetry properties of

solutions to elliptic partial differential equations. In addition to these results, the mountain pass theorem has

a wide range of applications to non-linear partial differential equations – without providing an exhaustive

survey, we mention here, e.g., the works of [Ambrosetti and Malciodi, 2007; Aubin and Ekeland, 1984;

Brezis and Nirenberg, 1991; Jabri, 2003; Kristály et al., 2010; Mahwin and Willem, 1989; Rabinowitz, 1986;

Schechter, 1999; Struwe, 2008] and many references therein. In the last decades, different areas of critical

point theory have been developed very intensively and it became a natural framework in several modern

mathematical fields with important applications in Mechanics, Engineering, Biology and Economics.

Another way to determine the extrema of functionals is possible by using fixed point theory, since many

applications can be reformulated as a fixed point problem. In this regard, one has to define sufficient con-

ditions guaranteeing the existence of fixed points of functionals and also to study the nature of the obtained

fixed points, i.e., whether they are extrema or not. Due to its usefulness, the application of fixed point

theorems has become a very popular tool in studying the existence (and in some cases the multiplicity) of

solutions to partial differential inclusions/equations. Among of the well-known fixed point theorems, we will

use both the Leray–Schauder alternative [Granas and Dugundji, 2003] and a variant of the Krasnoselkii’s fixed

point theorem proved in [Precup, 2012] for establishing the existence of solutions to certain non-linear partial

differential equations, which are described as Dirichlet problems that involve Finsler–Laplacian operators.

The thesis is devoted to the study of non-linear problem{
Lu ∈ ∂F (x, u) in Ω,

u = 0 on ∂Ω,

�� ��1.1

where Ω is a non-empty open subset of the Euclidean space Rn (n ∈ N≥1), u : Ω → R is a sufficiently smooth

function, L may correspond to the classical Laplacian, p-Laplacian or Finsler–Laplacian differential operator

and F : Ω× R → R is either a continuously differentiable or only a locally Lipschitz function.

Depending on the type of the differential operator L and the properties of the function F , we use either

smooth or non-smooth analysis methods presented above to prove the existence of the solution(s). Moreover,

in some cases, we can also either localize them or to show that they have special properties, e.g., they are

invariant by spherical cap symmetrization.

At first, we will provide a brief summary of the preliminary notions and existing theoretical results,

then – by combining variational and topological methods with the elements of either critical or fixed point

theory – in each subsequent chapter of the thesis we will study the existence, multiplicity (in some cases the

symmetry property) and localization of the solutions to differently parametrized problems of type (1.1).

Apart from the current introductory chapter, the present thesis consists of five main chapters, their brief

summary and structure are presented below.

� In Chapter 2, we summarize the basic preliminary notions and results related to the theoretical back-

ground of the methods which will be presented in further chapters of the thesis.

� In Chapter 3, based on article [Mezei, Molnár and Vas, 2014], at first – considering a semi-linear

2



elliptic differential inclusion problem – we study the case when Ω = B(0, 1) is the unit ball in the

Euclidean space RN (N ∈ N≥2), F : Ω× R → R is a locally Lipschitz function that is super-linear at

the origin and also fulfils a sub-linear growth condition at infinity and L = ∆pu = div
(
|∇u|p−2∇u

)
is the p-Laplacian operator defined on the Sobolev space W 1,p

0 (Ω) with p ∈ (1, N) fixed. Then, in

the case when Ω = RN (N ∈ N≥2), (X, ∥ · ∥X) is a real separable reflexive Banach space with its

topological dual space (X∗, ∥ · ∥X∗), F : Ω × R → R is a locally Lipschitz function and A : X → X∗

is a potential operator we deal with a hemivariational inequality. In addition to proving the existence

of solutions to the above problems, by using both the symmetric version of the variational principle of

Ekeland proved by [Squassina, 2012] and the non-smooth version of the symmetric minimax principle

developed by [Schaftingen, 2005], we also study the multiplicity property of the solutions. Moreover,

we prove a very important qualitative property of them, namely that they are invariant by spherical

cap symmetrization.
;<;<;<

Our contributions in this chapter are: Theorems 3.1, 3.2 and Lemmas 3.1, 3.2, 3.3, 3.4, 3.5, 3.6,

3.7, 3.8.

� Chapter 4 is dedicated to the study of the critical point theory developed by Schechter [1992, 1999].

Based on article [Vas, 2015], in Section 4.1 at first we prove a Schechter-type critical point result

for locally Lipschitz functions defined on a ball of a Hilbert space and we also provide a concrete

application of it. Using our Schechter-type critical point theorem, we prove the existence of the

solutions to problem (1.1), when Ω is a bounded open set in RN that has C1 regular boundary ∂Ω,

F : Ω × R → R is a locally Lipschitz function and L = ∆u is the classical Laplacian operator. The

second part of the chapter relies on [Lisei and Vas, 2016]. In Section 4.2, we apply the smooth version of

the previously discussed Schechter-type critical point theorem developed for C1 functionals in Banach

spaces to localize the solutions to problems which contain the p-Laplacian operator on either bounded

or unbounded domains.

;<;<;<

Our contributions in this chapter are: Theorems 4.1, 4.2, 4.3, 4.4 and Propositions 4.1, 4.2, 4.3.

� Chapter 5 is based on article [Lisei, Varga and Vas, 2018]. After a brief summary of preliminary

notions and properties, Section 5.2 presents some auxiliary results that are required to prove the main

statements of Section 5.3 for the case of a wedge intersected with a ball in a reflexive locally uniformly

convex smooth Banach space. More precisely, we mention the new variants of: the deformation lemma

and the bounded version of the general minimax theorem of [Willem, 1996]; and the mountain pass

theorem of [Ambrosetti and Rabinowitz, 1973] as well. In Section 5.4, we apply our previously discussed

results to localize two non-trivial solutions to Dirichlet problems involving non-homogeneous operators

in the context of Orlicz–Sobolev spaces. The chapter concludes with three concrete examples of the

considered Dirichlet problem.

;<;<;<

Our contributions in this chapter are: Propositions 5.1, 5.2, 5.3, 5.4, Lemmas 5.1, 5.2 and Theo-

rems 5.1, 5.2, 5.3, 5.4, 5.5, 5.6.

� Chapter 6 relies on [Mezei and Vas, 2019] and studies the existence and localization results in the

case of two Dirichlet problems that involve the Finsler–Laplacian operator, i.e., L = ∆Fu. At first, in

the case of our first problem, based on the results of [Dinca et al., 2001], we show the existence of the

solutions in two different ways: by applying the direct method of the calculus of variations, then by

using the Leray–Schauder alternative. Then, in the case of our second problem, we prove an existence

3



1 INTRODUCTION

and localization result, by the combined use of the Harnack inequality and a Krasnosel’skii-type fixed

point theorem of [Precup, 2012].

;<;<;<

Our contributions in this chapter are: Lemma 6.1 and Theorems 6.1, 6.3, 6.7.

Our results
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2
Preliminary notions and results

This chapter is devoted to collect the basic preliminary notions and results related to the theoretical back-

ground of the methods which will be used in further chapters.

2.1 Lebesgue spaces

2.2 Sobolev spaces

2.3 Orlicz–Sobolev spaces

2.4 Elements of calculus of variations

2.5 Locally Lipschitz functions

2.6 Symmetrization and polarization
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3
Multiple symmetric solutions to some hemivariational

inequalities

Based on article [Mezei, Molnár and Vas, 2014], this chapter presents some multiplicity results for hemivari-

ational inequalities defined either on the unit ball or on the whole space RN . Using the symmetric version

of the variational principle of Ekeland introduced by [Squassina, 2012] and a non-smooth version of the

symmetric minimax principle due to [Schaftingen, 2005], we prove that the solutions to these inequalities

are invariant by spherical cap symmetrization. In Section 3.1 we study the existence of multiple symmetric

solutions to a semi-linear elliptic differential inclusion problem defined on the unit ball of the space RN ,

while in Section 3.2 we deal with the case of hemivariational inequality defined on the whole space RN .

3.1 The first problem

Let Ω = B(0, 1) be the unit ball in RN and F : Ω×R → R be a locally Lipschitz function. Fix the parameters

p ∈ (1, N) and λ > 0, moreover, by using the p-Laplacian operator ∆pu = div(|∇u|p−2∇u), consider the

semi-linear elliptic differential inclusion problem{
−∆pu+ |u|p−2u ∈ λ∂yF (x, u) in Ω,

u = 0 on ∂Ω,

�
 �	3.1.Pλ

where ∂yF (x, s) is the generalized gradient of F at the point s ∈ R with respect to the second variable.

In the study of the existence of the solutions to problem (3.1.Pλ), we combine methods of calculus of

variations and symmetrization techniques. [Schaftingen, 2005] developed an abstract framework for sym-

metrizations and, relying on his work, [Squassina, 2012] formulated the symmetric versions of classic vari-

ational principles. Many papers related to symmetrizations have been published, where the solutions are

eighter radially [Squassina, 2011] or axially symmetric [Kristály and Mezei, 2012] functions, or which have

some symmetry properties with respect to certain group actions [Farkas and Mezei, 2013]. Moreover, [Fil-

ippucci, Pucci and Varga, 2015] proved the existence of multiple symmetric solutions to some eigenvalue

7



3 HEMIVARIATIONAL INEQUALITIES

problems, and [Farkas and Varga, 2014] obtained multiplicity results for a model quasi-linear elliptic system

in the case of C1 functionals.

Our aim was to extend the above-mentioned results for the case of locally Lipschitz functions, by proving

the existence of multiple spherical cap symmetric solutions to problem (3.1.Pλ) on the Sobolev spaceW 1,p
0 (Ω),

endowed with its standard norm.

Our result is valid provided that the function F satisfies the conditions:(
C1

F

)
lim
|s|→0

max{|ξ| : ξ ∈ ∂yF (x, s)}
|s|p−1

= 0;

(
C2

F

)
lim

|s|→+∞

max{|ξ| : ξ ∈ ∂yF (x, s)}
|s|p−1

= 0;

(
C3

F

)
there exists an u0 ∈ W 1,p

0 (Ω), u0 ̸= 0 for which

∫
Ω

F (x, u0(x))dx > 0;

(
C4

F

)
F (x, s) = F (y, s) for a.e. x, y ∈ Ω with |x| = |y| and all s ∈ R;(

C5
F

)
F (x, s) ≤ F (x,−s) for a.e. x ∈ Ω and all s ∈ R−.

We can state an existence and multiplicity result related to problem (3.1.Pλ) as follows.

Theorem 3.1 ([Mezei, Molnár and Vas, 2014]). Assume that p ∈ (1, N) is fixed. Let Ω = B(0, 1) be the

unit ball in RN and F : Ω×R → R be a locally Lipschitz function with F (x, 0) = 0 which satisfies conditions(
C1

F

)
–
(
C5

F

)
. Then,

(a) there exists a scalar λF such that, for every 0 < λ ≤ λF the problem (3.1.Pλ) has only the trivial

solution;

(b) there exists a real number λ1 such that, for every λ > λ1 the problem (3.1.Pλ) has at least two weak

solutions in W 1,p
0 (Ω), which are invariant by spherical cap symmetrization.

Remark 3.1. For p = 3, the function F : Ω× R → R with the formula

F (x, s) =

 |x|
(
s4 − s2

)
, |s| ≤ 1,

|x| ln
(
s2
)
, |s| > 1

�� ��3.2

fulfils conditions
(
C1

F

)
–
(
C5

F

)
.

Fig. 3.1: Graph of the function (3.2).
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3.2 THE SECOND PROBLEM

Definition 3.1 (Weak solution to problem (3.1.Pλ)). A function u ∈ W 1,p
0 (Ω) is a weak solution to problem

(3.1.Pλ) if there exists ξF ∈ ∂yF (x, u(x)) for a.e. x ∈ Ω such that∫
Ω

(
|∇u(x)|p−2∇u(x)∇v(x) + |u(x)|p−2u(x)v(x)

)
dx = λ

∫
Ω

ξF (x)v(x)dx
�� ��3.3

for all v ∈ W 1,p
0 (Ω).

We consider the functionals I,F : W 1,p
0 (Ω) → R,

I(u) =
1

p

∫
Ω

(|∇u(x)|p + |u(x)|p) dx and F(u) =

∫
Ω

F (x, u(x))dx,

by means of which one can associate the energy functional Eλ : W 1,p
0 (Ω) → R,

Eλ(u) = I(u)− λF(u)
�� ��3.4

with the problem (3.1.Pλ).

Remark 3.2. If Ω is bounded, due to [Motreanu and Panagiotopoulos, 1999, Theorem 1.3], we have that

∂F(u) ⊂
∫
Ω

∂yF (x, u(x))dx.

Thus, the critical points of the energy functional Eλ are the weak solutions to problem (3.1.Pλ). Consequently,

instead of looking for the solutions to problem (3.1.Pλ), it is enough to find the critical points of Eλ.

Using the properties of the energy functional Eλ stated in the following lemmas and applying the non-

smooth version of the symmetric minimax principle of [Schaftingen, 2005, Theorem 3.5], one can prove the

existence and multiplicity results of Theorem 3.1 related to the solutions to problem (3.1.Pλ).

Lemma 3.1 ([Mezei, Molnár and Vas, 2014]). The energy functional Eλ is coercive for every λ ≥ 0, i.e.,

Eλ(u) → ∞ as ∥u∥W 1,p
0 (Ω) → ∞, for all u ∈ W 1,p

0 (Ω).

Lemma 3.2 ([Mezei, Molnár and Vas, 2014]). For every λ > 0, the energy functional Eλ satisfies the

non-smooth (PS) condition.

Starting from the symmetric version of the variational principle of Ekeland, proved by [Squassina, 2012,

Theorem 2.8], we can formulate the following lemma for the case of locally Lipschitz functions.

Lemma 3.3 ([Mezei, Molnár and Vas, 2014]). Using the notations V := Lp(Ω) and X := W 1,p
0 (Ω) assume

that (X,V, ∗,H∗, S) satisfies the conditions of [Squassina, 2012, Definition 2.1] with the further property that

if (un)n ⊂ W 1,p
0 (Ω) for which un → u in Lp(Ω), then u∗

n → u∗ in Lp(Ω). We suppose that Φ : W 1,p
0 (Ω) → R

is a bounded from below locally Lipschitz functional such that

Φ(uH) ≤ Φ(u), ∀u ∈ S, ∀H ∈ H∗,
�� ��3.5

and for all u ∈ W 1,p
0 (Ω) there exists ξ ∈ S for which Φ(ξ) ≤ Φ(u).

If the (PS)inf Φ condition holds for the functional Φ, then there exists a function v ∈ W 1,p
0 (Ω) for which

Φ(v) = inf Φ and v = v∗ in Lp(Ω).

Lemma 3.4 ([Mezei, Molnár and Vas, 2014]). The energy functional Eλ satisfies the inequality

Eλ(uH) ≤ Eλ(u).

3.2 The second problem

Let Ω = RN and consider a real separable reflexive Banach space (X, ∥ · ∥X) together with its topological

dual space (X∗, ∥ · ∥X∗). Additionally, let p ∈ [2, N) be fixed and let us denote by p∗ := Np
N−p the critical

9



3 HEMIVARIATIONAL INEQUALITIES

Sobolev exponent. We impose on X the following conditions:(
C1

X

)
suppose that the embeddingX ↪→ Lr

(
RN
)
is continuous with the embedding constant Cr for r ∈ [p, p∗];(

C2
X

)
assume that the embedding X ↪→ Lr

(
RN
)
is compact for r ∈ (p, p∗).

Let F : Ω× R → R be a locally Lipschitz function such that conditions
(
C1

F

)
,
(
C4

F

)
and

(
C5

F

)
hold. In

what follows, we do not require
(
C3

F

)
, but we suppose that:

(C̃1
F ) there exist a positive constant c and r ∈ (p, p∗) for which |ξ| ≤ c(|s|p−1 + |s|r−1), ∀s ∈ R, ξ ∈

∂yF (x, s) and a.e. x ∈ RN ; and

(C̃2
F ) instead of condition

(
C2

F

)
, there exist q ∈ (0, p), ν ∈ (p, p∗), α ∈ L

ν
ν−q (RN ) and β ∈ L1(RN ) such

that

F (z, s) ≤ α(z)|s|q + β(z), ∀s ∈ R and a.e. z ∈ RN .

Remark 3.3. When Ω = B(0, 1) (as it was the case in our first problem (3.1.Pλ)), we can deduce assumption

(C̃1
F ) by means of conditions

(
C1

F

)
and

(
C2

F

)
, but if Ω = RN (as it is in the current section), condition

(C̃1
F ) is necessary.

Consider also the potential operator A : X → X∗ with the potential a : X → R, i.e., a is Gâteaux-

differentiable and for every u, v ∈ X we have that

lim
t→0

a(u+ tv)− a(u)

t
= ⟨A(u), v⟩,

where ⟨·, ·⟩ denotes the duality pairing between X∗ and X. For a potential we always suppose that a(0) = 0.

Additionally, we also assume that A fulfils the next conditions:(
C1

A

)
A is hemi-continuous, i.e., A is continuous on line segments in X and X∗, endowed with the weak

topology;(
C2

A

)
A is homogeneous of degree p− 1, i.e., A(tu) = tp−1A(u), ∀u ∈ X, ∀t > 0;(

C3
A

)
A is a strongly monotone operator, i.e., there exists a continuous function τ : [0,∞) → [0,∞) that is

strictly positive on (0,∞), furthermore τ(0) = 0, lim
t→∞

τ(t) = ∞ and

⟨A(u)−A(v), u− v⟩ ≥ τ(∥u− v∥X)∥u− v∥X , ∀u, v ∈ X;(
C4

A

)
a(u) ≥ c∥u∥pX for all u ∈ X, where c > 0 is a constant;(

C5
A

)
a(uH) ≤ a(u) for all u ∈ X, where uH is the polarization of the function u.

Remark 3.4. Conditions
(
C1

A

)
and

(
C2

A

)
imply that a(u) = 1

p ⟨A(u), u⟩.

Our second problem is formulated as follows: find u ∈ X for which

⟨Au, v⟩+
∫
RN

F ◦
y (x, u(x);−v(x))dx ≥ 0, ∀v ∈ X,

�
 �	3.6.Pλ

where F ◦
y denotes the generalized directional derivative of F in the second variable.

Under these conditions, we can state our second main existence and multiplicity result related to the

solutions to problem (3.6.Pλ).

Theorem 3.2 ([Mezei, Molnár andVas, 2014]). Assume that p ∈ [2, N) is fixed. Let Ω = RN , F : Ω×R → R
be a locally Lipschitz function and A : X → X∗ be a potential operator such that the conditions

(
C1

A

)
–(

C5
A

)
,
(
C1

X

)
–
(
C2

X

)
,
(
C1

F

)
, (C̃1

F )–(C̃
2
F ) and

(
C4

F

)
–
(
C5

F

)
are satisfied. Then, there exists λ2 > 0 such that

for every λ > λ2 the problem (3.6.Pλ) has two non-trivial solutions, which are invariant by spherical cap

symmetrization.

10



3.2 THE SECOND PROBLEM

Consider the functional F̃ : X → R,

F̃(u) =

∫
RN

F (x, u(x))dx
�� ��3.7

and the energy functional Aλ : X → R,

Aλ(u) = a(u)− λF̃(u)
�� ��3.8

related to the problem (3.6.Pλ).

Remark 3.5. Using [Kristály and Varga, 2004, Proposition 5.1.2], due to condition (C̃1
F ), we have the

inequality

F̃◦(u; v) ≤
∫
RN

F ◦
y (x, u(x); v(x))dx.

�� ��3.9

Thus, the critical points of the energy functional Aλ are the weak solutions to problem (3.6.Pλ).

Similarly to the case of the previous problem, the existence and multiplicity result of Theorem 3.2 related

to the solutions to problem (3.6.Pλ) can be proved by using the properties of the energy functional Aλ stated

in the following lemmas.

Lemma 3.5 ([Mezei, Molnár and Vas, 2014]). If conditions (C̃2
F ) and

(
C4

A

)
hold, then the energy functional

Aλ is coercive for each λ > 0, i.e., Aλ(u) → ∞ as ∥u∥X → ∞, for all u ∈ X.

Lemma 3.6 ([Mezei, Molnár and Vas, 2014]). For every λ > 0 the energy functional Aλ satisfies the (PS)

condition.

Lemma 3.7 ([Mezei, Molnár and Vas, 2014]). Assume that conditions
(
C4

F

)
–
(
C5

F

)
and

(
C5

A

)
hold. Then,

for all H ∈ H∗, we have that

Aλ(u
H) ≤ Aλ(u), ∀u ∈ X.

3.2.1 A particular case

This subsection presents a particular case of the previously studied problem (3.6.Pλ).

Let V : RN → R be a function that fulfils the following assumptions:(
C1

V

)
V0 := inf

x∈RN
V (x) > 0;(

C2
V

)
meas

({
x ∈ RN : V (x) ≤ M

})
< ∞, ∀M > 0;(

C3
V

)
V (x) ≤ V (y), ∀x, y ∈ RN with |x| ≤ |y|.

The space

H :=

{
u ∈ W 1,2

(
RN
)
:

∫
RN

(
|∇u(x)|2 + V (x)u2(x)

)
dx < ∞

}
equipped with the inner product

⟨u, v⟩ :=
∫
RN

(∇u(x)∇v(x) + V (x)u(x)v(x)) dx

is a Hilbert space and, by means of [Bartsch and Wang, 1995], we know that H is compactly embedded into

Ls
(
RN
)
for s ∈ [2, 2∗).

We can also state a particular case of problem (3.6.Pλ): find a positive u ∈ H for which∫
RN

(∇u(x)∇v(x) + V (x)u(x)v(x)) dx+

∫
RN

F ◦
y (x, u(x);−v(x))dx ≥ 0, ∀v ∈ H.

�
 �	3.10.P ′
λ

Lemma 3.8 ([Mezei, Molnár and Vas, 2014]). If F : RN ×R → R satisfies conditions
(
C1

F

)
, (C̃2

F ),
(
C4

F

)
–(

C5
F

)
and

(
C1

V

)
–
(
C3

V

)
, then there exist two non-trivial solutions to problem (3.10.P ′

λ), which are invariant

by the spherical cap symmetrization.
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4
Schechter-type critical point results

In this chapter, we focus to the critical point theory developed by [Schechter, 1992, 1999]. Of the methods

he presents in [Schechter, 1999], we will deal with those that are related to the existence of a minimizer for

C1 functionals defined on a closed ball of an appropriate Hilbert or Banach space.

[Precup, 2009, 2013] studies the critical point theorems of Schechter-type for C1 functionals defined on

a closed ball, on annular domains and also on a closed conical shell of a Hilbert space. Using the variational

principle of Bishop–Phelps, he gives in [Precup, 2013] a new proof to Schechter’s theorem for extrema.

Based on the variational principle of Ekeland, in [Lisei and Vas, 2016], we improved the aforementioned

Schechter-type results on a closed ball of Precup for sublevel sets in locally uniformly convex Banach spaces

and we applied our result for localizing the solutions to problems which contain the p-Laplacian operator

on both bounded and unbounded domains. Then, in article [Vas, 2015], we extended the Schechter-type

results of Precup for locally Lipschitz functions defined on a closed ball of a Hilbert space and, to illustrate

the applicability of our result, we have presented an inclusion problem.

From our results mentioned above, in Section 4.1, we present the Schechter-type critical point theorem

for the case of locally Lipschitz functions, as well a concrete application of it. Thereafter, in Section 4.2, we

deal with the critical point theorem of Schechter-type for C1 functionals in Banach spaces, emphasizing the

applicability of the theorem by presenting two applications.

4.1 A Schechter-type critical point result for locally Lipschitz functions

This section discusses a critical point result of Schechter-type for locally Lipschitz functions defined on a

ball of a Hilbert space.

Let (X, ⟨·, ·⟩) be a Hilbert space with the inner product ⟨·, ·⟩ and the norm ∥ · ∥X =
√
⟨·, ·⟩. Consider

the origin-centered closed ball XR := {x ∈ X : ∥x∥X ≤ R} of the space X with radius R > 0 and the

corresponding sphere ∂XR := {x ∈ X : ∥x∥X = R}.
Using the above notations, the main result of the section can be formulated as follows.

12



4.1 SCHECHTER-TYPE RESULT FOR LOCALLY LIPSCHITZ FUNCTIONS

Theorem 4.1 ([Vas, 2015]). Let F : XR → R be a locally Lipschitz function, which is bounded from below.

There exists a sequence (xn)n ⊂ XR, such that F (xn) → inf F (XR) := inf
x∈XR

F (x) and one of the following

two situations holds:

(a) λF (xn) → 0;

(b) ∥xn∥X = R, ⟨w∗
n, xn⟩ ≤ 0 for all n and w∗

n ∈ ∂F (xn), and λF,∂XR
(xn) → 0,

where ∂F (xn) is the generalized gradient of the locally Lipschitz function F and

λF,∂XR
(xn) := inf

{
w∗ − 1

R2

〈
w∗

, xn

〉
Λxn : w∗ ∈ ∂F (xn)

}
.

If in addition ⟨x∗, x⟩ ≥ −a > −∞ for all x ∈ ∂XR and x∗ ∈ ∂F (x), furthermore F satisfies a (PS)-type

compactness condition and the boundary condition

x∗ + µΛx ̸= 0
�� ��4.1

holds for all x ∈ ∂XR and µ > 0, then there exists x ∈ XR such that

F (x) = inf F
(
XR

)
.

4.1.1 An application

This subsection gives a concrete application of our Schechter-type critical point Theorem 4.1.

Let Ω be a bounded domain in RN (N ∈ N≥2) that has C
1 regular boundary ∂Ω. Consider the Sobolev

space W 1,2
0 (Ω) endowed with the norm ∥u∥W 1,2

0 (Ω)
:=

(∫
Ω

|∇u(x)|2 dx
) 1

2

and let W−1,2(Ω) denote the

topological dual space
(
W 1,2

0 (Ω)
)∗

.

Due to the Rellich–Kondrachov Theorem, the embedding W 1,2
0 (Ω) ↪→ Lq(Ω) is compact for all q ∈(

1, 2∗ = 2N
N−2

)
and there exists a constant Cq > 0 for which

∥u∥Lq(Ω) ≤ Cq ∥u∥W 1,2
0 (Ω) , ∀u ∈ W 1,2

0 (Ω).
�� ��4.2

Consider the Carathéodory function F : Ω× R → R that fulfils the conditions:

(a) F (·, u) is measurable for each u ∈ R;

(b) F (x, ·) is locally Lipschitz for each x ∈ Ω;

(c) F (·, 0) ∈ L1(Ω);

and, also assume that the growth condition

|z| ≤ a(x) + b(x) |y|q−1
, ∀z ∈ ∂yF (x, y), (x, y) ∈ Ω× R,

�� ��4.3

holds, where a ∈ L
q

q−1 (Ω), b ∈ L∞(Ω) are positive functions and q ∈
(
1, 2∗ = 2N

N−2

)
.

Under the above conditions, we consider the non-smooth Dirichlet inclusion problem{
−∆u ∈ ∂yF (x, u) a.e. x ∈ Ω,

u = 0 on ∂Ω,

�� ��4.4.P

We recall the notations

XR :=
{
u ∈ W 1,2

0 (Ω) : ∥u∥W 1,2
0 (Ω) ≤ R

}
and

∂XR :=
{
u ∈ W 1,2

0 (Ω) : ∥u∥W 1,2
0 (Ω) = R

}
.

Definition 4.1 (Weak solution to problem (4.4.P )). A function u ∈ W 1,2
0 (Ω) is a weak solution to problem

13



4 SCHECHTER-TYPE CRITICAL POINT RESULTS

(4.4.P ) if there exists wF (x) ∈ ∂yF (x, u(x)) for a.e. x ∈ Ω such that∫
Ω

∇u(x)∇v(x)dx =

∫
Ω

wF (x) · v(x)dx, ∀v ∈ W 1,2
0 (Ω).

Let E : W 1,2
0 (Ω) → R,

E(u) = 1

2

∫
Ω

|∇u(x)|2 dx−
∫
Ω

F (x, u(x))dx
�� ��4.5

be the energy functional related to problem (4.4.P ), whose critical points are the weak solutions to (4.4.P ).

Proposition 4.1 ([Vas, 2015]). If R > 0 is the solution to the inequality

R− Cq
q ∥b∥L∞(Ω) R

q−1 > Cq ∥a∥
L

q
q−1 (Ω)

�� ��4.6

over R, then
⟨u∗, u⟩+ µ · ⟨Λu, u⟩ ≠ 0, ∀u∗ ∈ ∂E(u)

for any µ > 0, where u ∈ ∂XR.

Using the conditions of Proposition 4.1 and our related Schechter-type critical point Theorem 4.1 we can

formulate the next result related to the solutions to problem (4.4.P ).

Theorem 4.2 ([Vas, 2015]). If we choose R > 0 to be the solution to the inequality

R− Cq
q ∥b∥L∞(Ω) R

q−1 > Cq ∥a∥
L

q
q−1 (Ω)

over R, then problem (4.4.P ) admits a weak solution u ∈ XR, which minimizes E on XR.

4.2 A critical point result of Schechter-type in a Banach space

Based on article [Lisei and Vas, 2016], this section presents two applications of our Schechter-type critical

point theorem [Lisei and Vas, 2016, Theorem 3.1] for C1 functionals in Banach spaces. In both examples, the

theorem will be used to localize the solutions to partial differential equations which contain the p-Laplacian

operator, but in the first one we will work on bounded, while in the second one on unbounded domain.

4.2.1 The first example

Let Ω be a bounded domain in RN (N ∈ N≥2) that has Lipschitz continuous boundary and let p ∈ (1,∞)

be fixed. Consider the uniformly convex smooth Banach space
(
W 1,p

0 (Ω), ∥ · ∥W 1,p
0 (Ω)

)
with its uniformly

convex topological dual space W−1,p′
(Ω).

By means of the Rellich–Kondrachov Theorem, the embedding W 1,p
0 (Ω) ↪→ Lq(Ω) is compact for q ∈

(1, p∗) (where p∗ = Np
N−p , if p < N and p∗ = ∞, provided that p ≥ N), thus there exists Cq > 0 such that

∥u∥Lq(Ω) ≤ Cq∥u∥W 1,p
0 (Ω), ∀u ∈ W 1,p

0 (Ω).
�� ��4.7

Let Jφ : W 1,p
0 (Ω) → W−1,p′

(Ω) be the duality mapping corresponding to the normalization function

φ(t) = tp−1 for t ∈ R+ and consider the mapping J̄ : W−1,p′
(Ω) → W 1,p

0 (Ω), J̄ = J−1
φ . Due to [Dinca et al.,

2001, Theorem 5] J̄ is bounded, continuous and monotone, moreover, for each w ∈ W−1,p′
(Ω) one has that

⟨w, J̄w⟩ = φ−1
(
∥w∥W 1,p

0 (Ω)

)
∥w∥W 1,p

0 (Ω) and ∥J̄w∥W 1,p
0 (Ω) = φ−1

(
∥w∥W 1,p

0 (Ω)

)
.

�� ��4.8

We also consider the p-Laplacian operator −∆p : W 1,p
0 (Ω) → W−1,p′

(Ω),

⟨−∆p(u), v⟩ =
∫
Ω

|∇u(x)|p−2∇u(x)∇v(x)dx, ∀u, v ∈ W 1,p
0 (Ω).
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4.2 A CRITICAL POINT RESULT OF SCHECHTER-TYPE IN A BANACH SPACE

Let the functional H : W 1,p
0 (Ω) → R be given by H(u) =

1

p
∥u∥p

W 1,p
0 (Ω)

, which is continuously Fréchet-

differentiable on W 1,p
0 (Ω) and H ′ = −∆p. Since the operator −∆p is the above duality mapping Jφ, we have

that H ′ = Jφ, see [Dinca et al., 2001, Theorems 7 and 9]. In this example we will also use the notations

XR :=

{
u ∈ W 1,p

0 (Ω) :
1

p
∥u∥p

W 1,p
0 (Ω)

≤ R

}
and

∂XR :=

{
u ∈ W 1,p

0 (Ω) :
1

p
∥u∥p

W 1,p
0 (Ω)

= R

}
.

Assume that f : Ω× R → R is a Carathéodory function such that f(x, 0) ̸= 0 for a.e. x ∈ Ω and it also

fulfils the growth condition

|f(x, s)| ≤ a(x)|s|q−1 + b(x), ∀x ∈ Ω, s ∈ R,
�� ��4.9

where a ∈ L∞(Ω), b ∈ L
q

q−1 (Ω) are positive functions and q ∈ (1, p∗). The Nemytskii operator Nf :

W 1,p
0 (Ω) → W−1,p′

(Ω) introduced by the function f is

Nf (u) (x) = f(x, u(x)).

Under the above conditions, we have that Nf (W
1,p
0 (Ω)) ↪→ Nf (L

q(Ω)) ⊂ L
q

q−1 (Ω) = (Lq(Ω))∗ ↪→ W−1,p′
(Ω)

and Nf is a continuous function which maps bounded sets into bounded sets (see [Goldberger et al., 1992]).

Using the p-Laplacian operator, consider the Dirichlet problem{
−∆pu = f(x, u) a.e. x ∈ Ω,

u = 0 on ∂Ω.

�� ��4.10.P

Definition 4.2 (Weak solution to problem (4.10.P )). A function u ∈ W 1,p
0 (Ω) is a weak solution to problem

(4.10.P ) if ∫
Ω

|∇u(x)|p−2∇u(x)∇v(x)dx =

∫
Ω

f(x, u(x))v(x)dx, ∀v ∈ W 1,p
0 (Ω).

�� ��4.11

Let E : W 1,p
0 (Ω) → R,

E (u) =
1

p
∥u∥p

W 1,p
0 (Ω)

−
∫
Ω

h (x, u(x)) dx
�� ��4.12

be the energy functional associated with problem (4.10.P ), where h : Ω× R → R is h (x, t) =

∫ t

0

f (x, s) ds.

Then, due to [Goldberger et al., 1992, Theorem 7], we have that

E ′ (u) = H ′ (u)−Nf (u) .

Moreover, the critical points of the energy functional E are the solutions to (4.11), consequently the weak

solutions to problem (4.10.P ).

Now, we formulate some assumptions for R: denote by C an upper bound for the constant Cq and

suppose that one of the following three assumptions is satisfied:(
C1

R

)
if p > q, let R > 0 be a solution to the inequality

R
p−1
p > Cqp

q−p
p ∥a∥L∞(Ω)R

q−1
p + Cp

1−p
p ∥b∥

L
q

q−1 (Ω)

over R;(
C2

R

)
if p = q, assume that 1 > Cp∥a∥L∞(Ω) and let R be such that

R >

Cp
1−p
p ∥b∥

L
p

p−1 (Ω)

1− Cp∥a∥L∞(Ω)


p

p−1

;

15



4 SCHECHTER-TYPE CRITICAL POINT RESULTS

(
C3

R

)
if q > p, assume that 1 > Cqp

q−p
p ∥a∥L∞(Ω) + Cp

1−p
p ∥b∥

L
q

q−1 (Ω)
and let R > 0 be a solution to the

inequality

R
p−1
p − Cqp

q−p
p ∥a∥L∞(Ω)R

q−1
p > Cp

1−p
p ∥b∥

L
q

q−1 (Ω)

over R.

Proposition 4.2 ([Lisei and Vas, 2016]). If R satisfies one of the above conditions
(
C1

R

)
–
(
C3

R

)
, the relation

E ′(u) + µH ′(u) ̸= 0, ∀µ > 0, u ∈ ∂XR

holds.

Proposition 4.3 ([Lisei and Vas, 2016]). Assume that R satisfies one of the conditions
(
C1

R

)
–
(
C3

R

)
. Then,

E satisfies the following (PS)-type compactness condition: if (un)n is a sequence from XR such that one of

the following statements hold

(a) E ′(un) → 0 as n → ∞;

(b) for each n ∈ N we have that H(un) = R, ⟨H ′(un), J̄E ′(un)⟩ ≤ 0 and

E ′(un)−
⟨E ′(un), un⟩
⟨H ′(un), un⟩

H ′(un) → 0 as n → ∞,

then (un)n admits a convergent subsequence.

In order to localize the solutions to problem (4.10.P ), we apply our smooth version of the Schechter-type

critical point theorem, see [Lisei and Vas, 2016, Theorem 3.1].

Theorem 4.3 ([Lisei and Vas, 2016]). Assume that R satisfies one of the conditions
(
C1

R

)
–
(
C3

R

)
. Then,

problem (4.10.P ) admits a weak solution u ∈ XR, which minimizes E on XR.

We study situations when the best Sobolev constant Cq admits an upper estimate which can be computed

as follows.

Denoting by λp(Ω) := min
v∈W 1,p

0 (Ω)\{0}

∫
Ω

|∇v(x)|pdx∫
Ω

|v(x)|pdx
the first eigenvalue of the p-Laplacian operator, one

has the inequality

∥u∥pLp(Ω) ≤
1

λp(Ω)
∥u∥p

W 1,p
0 (Ω)

, ∀u ∈ W 1,p
0 (Ω).

Therefore, the best embedding constant of W 1,p
0 (Ω) ↪→ Lp(Ω) is Cp =

(
1

λp(Ω)

) 1
p

, while for q < p the best

embedding constant of W 1,p
0 (Ω) ↪→ Lq(Ω) due to the Hölder’s inequality verifies Cq ≤ |Ω|

p−q
pq

(
1

λp(Ω)

) 1
p

,

where |Ω| denotes the Lebesgue measure, i.e., the N -dimensional volume of the set Ω. In order to obtain

upper bounds for the constant Cq (q ≤ p), we need to determine lower bounds for the first eigenvalue λp(Ω).

Due to the Faber-Kahn inequality [Bhattacharya, 1999, Theorem 1], we have that λp(Ω) ≥ λp(Ω
∗),

where Ω∗ denotes the N -dimensional origin-centered ball, the volume of which coincides with that of Ω,

consequently, it has the radius r = 1√
π

(
|Ω|Γ

(
N
2 + 1

)) 1
N .

By [Lefton and Wei, 1997], for the ball Ω∗ ⊂ RN with radius r we have the inequality λp(Ω
∗) ≥

(
N
rp

)p
,

accordingly the best Sobolev constant Cp has the upper estimate

Cp ≤ p

N
√
π

(
|Ω|Γ

(
N

2
+ 1

)) 1
N

,
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and for q ∈ (1, p) one has that

Cq ≤ p

N
√
π

(
|Ω|

(p−q)
pq + 1

N Γ

(
N

2
+ 1

)) 1
N

.

In one-dimension, for Ω = (0, T ) ⊂ R the first eigenvalue is (see [Drábek and Manásevich, 1999]) λp(Ω) =

(p− 1)

(
2π

Tp sin(π
p )

)p

, consequently

Cp =
Tp sin

(
π
p

)
2π(p− 1)

1
p

.

Also, for Ω = (0, T ) ⊂ R – by the sharp Poincaré inequality (see [Talenti, 1976, p. 357]) – for each

p ∈ (1,∞) , q ∈ [1,∞) and u ∈ W 1,p
0 (Ω) the inequality

∥u∥Lq(Ω) ≤ Cq∥u∥W 1,p
0 (Ω)

is satisfied with the embedding constant

Cq =
T

1
q+

1
p′

2B
(

1
q ,

1
p′

) (p′)
1
q q

1
p′ (p′ + q)

1
p−

1
q ,

where p′ = p
p−1 and B is the Beta function.

4.2.2 The second example

For fixed p ∈ (1,∞), we define the closed subspace

W 1,p
r

(
RN
)
=
{
u ∈ W 1,p

(
RN
)
: u(x) = u(x′), ∀ x, x′ ∈ RN : |x| = |x′|

}
of radially symmetric functions of the separable reflexive uniformly convex smooth Banach space W 1,p

(
RN
)

equipped with the norm

∥u∥W 1,p(RN ) :=

 ∫
RN

(|∇u(x)|p + |u(x)|p) dx

 1
p �� ��4.13

induced fromW 1,p
(
RN
)
. Then,W 1,p

r

(
RN
)
is also uniformly smooth and its topological dual space

(
W 1,p

r

(
RN
))∗

is uniformly convex.

Let Jφ : W 1,p
r

(
RN
)
→
(
W 1,p

r

(
RN
))∗

be the duality mapping that corresponds to the normalization

function φ(t) = tp−1, t ∈ R+ (see [Chabrowski, 1997, Proposition 2.2.4]). Under the above conditions, for

the duality mapping Jφ the properties

∥Jφu∥W 1,p(RN ) = φ
(
∥u∥W 1,p(RN )

)
and ⟨Jφu, u⟩ = ∥Jφu∥W 1,p(RN )∥u∥W 1,p(RN )

hold for all u ∈ W 1,p
r

(
RN
)
. Moreover, the functional H : W 1,p

r

(
RN
)
→ R, H(u) = 1

p∥u∥
p
W 1,p(RN )

is convex

and Fréchet-differentiable with H ′ = Jφ. We consider also J̄ :
(
W 1,p

r

(
RN
))∗ → W 1,p

r

(
RN
)
, J̄ = J−1

φ .

Due to [Lions, 1982, Théorème II.1], the embedding W 1,p
r (RN ) ↪→ Lq

(
RN
)
is compact for q ∈ (p, p∗)

(where N ∈ N≥2, p
∗ = Np

N−p if p < N and p∗ = ∞, if p ≥ N) and there exists the best embedding constant

Cq > 0 such that

∥u∥Lq(RN ) ≤ Cq∥u∥W 1,p(RN ), ∀u ∈ W 1,p
r

(
RN
)
.

�� ��4.14

Let f : RN × R → R be a Carathéodory function such that f(x, 0) ̸= 0 for a.e. x ∈ RN and which fulfils

the growth condition

|f(x, s)| ≤ a(x)|s|q−1 + b(x), ∀(x, s) ∈ RN × R,

17
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where a ∈ L∞ (RN
)
, b ∈ L

q
q−1
(
RN
)
are positive functions, q ∈ (p, p∗) and f(x, ·) = f(x′, ·) for all x, x′ ∈ RN

for which |x| = |x′| (i.e., f is radially symmetric in the first variable).

Using the p-Laplacian operator, consider the problem

−∆pu+ |u|p−2u = f(x, u) a.e. x ∈ RN .
�� ��4.15.P

Definition 4.3 (Weak solution to problem (4.15.P )). A function u ∈ W 1,p
(
RN
)
is a weak solution to

problem (4.15.P ) if∫
Ω

|∇u(x)|p−2∇u(x)∇v(x) + |u(x)|p−2u(x)v(x)dx =

∫
Ω

f(x, u(x))v(x)dx
�� ��4.16

holds for all v ∈ W 1,p
(
RN
)
.

Define the Nemytskii operator Nf : W 1,p
r

(
RN
)
→
(
W 1,p

r

(
RN
))∗

by Nf (u) (x) = f(x, u(x)). Let the

energy functional E : W 1,p
r

(
RN
)
→ R related to the problem (4.15.P ) be defined by

E (u) =
1

p
∥u∥pW 1,p(Ω) −

∫
RN

h (x, u(x)) dx,
�� ��4.17

where h : Ω× R → R is h (x, t) =

∫ t

0

f (x, s) ds. Hence, one has that

E ′ (u) = H ′ (u)−Nf (u) .

Let G = O
(
RN
)
be the set of all rotations on RN , whose elements leave RN invariant, i.e., g(RN ) = RN

for all g ∈ G. Observe that G induces an isometric linear action on the space W 1,p
(
RN
)
by the formula

(gu)(x) = u(g−1x), g ∈ G, u ∈ W 1,p
(
RN
)

a.e. x ∈ RN .

A function ϕ ∈ W 1,p
(
RN
)
is G-invariant if

ϕ(gu) = ϕ(u), ∀g ∈ G, u ∈ W 1,p
(
RN
)
.

Actually, W 1,p
r

(
RN
)
is the fixed point set of W 1,p

(
RN
)
under G and the norm (4.13) is G-invariant on

W 1,p
(
RN
)
.

Based on the assumptions set for the function f and the above remark, the energy functional E is

G−invariant, consequently, by means of the principle of symmetric criticality [Palais, 1979], every critical

point of E is also a solution to (4.16).

Considering the set

XR =

{
u ∈ W 1,p

r

(
RN
)
:
1

p
∥u∥p

W 1,p(RN )
≤ R

}
,

the next result can be proved similarly to the case of our previous example in Section 4.2.1.

Theorem 4.4 ([Lisei and Vas, 2016]). Suppose that R satisfies one of the conditions
(
C1

R

)
–
(
C3

R

)
. Then,

E admits a critical point u ∈ XR, which minimizes E on XR. Moreover, this critical point is also a weak

solution to the problem (4.15.P ).

We present situations when the Sobolev constant Cq admits an upper estimate, which can be computed

as follows.

Due to [Talenti, 1976], we have the following result: for p ∈ (1, N) and p∗ = Np
N−p the inequality

∥u∥Lp∗ (RN ) ≤ CR

(∫
RN

|∇u(x)|pdx
) 1

p

, ∀u ∈ W 1,p
(
RN
)

18
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holds, where

CR =
1

√
πN

1
p

(
p− 1

N − p

)1− 1
p

 Γ
(
1 + N

2

)
Γ(N)

Γ
(

N
p

)
Γ
(
1 +N − N

p

)
 1

N

.

Consequently,

∥u∥Lp∗ (RN ) ≤ CR∥u∥W 1,p(RN ), ∀u ∈ W 1,p
(
RN
)
.

For any q ∈ (p, p∗) there exists θ ∈ (0, 1) such that q = θp + (1 − θ)p∗, then, by using Hölder’s inequality,

for each u ∈ W 1,p
(
RN
)
we obtain that

∥u∥q
Lq(RN )

≤ ∥u∥θp
Lp(RN )

∥u∥(1−θ)p∗

Lp∗ (RN )
≤ C

Nq( 1
p−

1
q )

R ∥u∥q
W 1,p(RN )

.

Thus, the Sobolev constant Cq has the upper estimate

Cq ≤ C
N( 1

p−
1
q )

R , q ∈
(
p,

Np

N − p

)
, p ∈ (1,∞) .
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5
A localization method for the solutions to

non-homogeneous operator equations

This chapter is based on article [Lisei, Varga and Vas, 2018]. After a brief summary of preliminary notions

and properties, Section 5.2 presents some auxiliary results that are required to prove the main statements

of Section 5.3, in which we discuss the new variants of: the deformation lemma and the bounded version of

the general minimax theorem of [Willem, 1996]; the mountain pass theorem of [Ambrosetti and Rabinowitz,

1973]; and the variational principle of Ekeland [Ekeland, 1974] as well for the case of a wedge intersected

with a ball in a reflexive locally uniformly convex smooth Banach space. Finally, in Section 5.4, we apply our

results to localize two non-trivial solutions to Dirichlet problems that involve non-homogeneous operators in

the context of Orlicz–Sobolev spaces.

5.1 Preliminaries

Consider the real Banach space (X, ∥ · ∥X), its topological dual space X∗ and denote by ⟨·, ·⟩ the duality

between X∗ and X.

Consider also the set-valued operator Jφ : X → P(X∗),

Jφx = {x∗ ∈ X∗ : ⟨x∗, x⟩ = φ (∥x∥X) ∥x∥X , ∥x∗∥X = φ (∥x∥X)} , x ∈ X,

which is the duality mapping that corresponds to the normalization function φ.

Hereafter, we suppose that:(
C1

X

)
X is a locally uniformly convex reflexive smooth Banach space.

Since X is smooth, due to [Ciorănescu, 1990, Corollary 4.5, p. 27], card (Jφx) = 1. Hence, Jφ : X → X∗

and we have that ⟨Jφx, x⟩ = φ (∥x∥X) ∥x∥X and ∥Jφx∥X = φ (∥x∥X) . Under these conditions, by means of

[Dinca and Matei, 2007, Theorem 5], the duality mapping Jφ is bijective and its inverse J−1
φ is bounded, con-

tinuous and monotone. Moreover, by using the canonical isomorphism χ : X → X∗∗ and the duality mapping

J∗
φ−1 : X∗ → X∗∗ that corresponds to the normalization function φ−1, we have that J−1

φ = χ−1J∗
φ−1 .
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We consider the mapping J̄ : X∗ → X defined by J̄ = J−1
φ , which due to the above result is bounded,

continuous and monotone. Additionally, we have that

⟨w, J̄w⟩ = φ−1 (∥w∥X) ∥w∥X and ∥J̄w∥X = φ−1 (∥w∥X) , ∀w ∈ X∗.
�� ��5.1

In the case of the normalization function φ : R+ → R+ we will use the notation Ψ(t) :=

∫ t

0

φ(s)ds, which

is a convex function by means of [Ciorănescu, 1990, Lemma 4.3, p. 25]. Since X satisfies condition
(
C1

X

)
,

we have that
d

dt
Ψ(∥x+ ty∥X)

∣∣∣
t=0

= ⟨Jφx, y⟩, ∀x, y ∈ X,

due to [Ciorănescu, 1990, Corollary 4.5, p. 27]. Consequently, the Gâteaux derivative of x ∈ X 7→ Ψ(∥x∥X) ∈
R in the direction y ∈ X is

⟨Ψ′ (∥x∥X) , y⟩ = ⟨Jφx, y⟩, ∀x, y ∈ X.
�� ��5.2

We also assume that:(
C2

X

)
the duality mapping Jφ : X → X∗ is continuous.

Remark 5.1. Due to [Ciorănescu, 1990, Corollary 5.3, p. 77], if X∗ is locally uniformly convex and X is

reflexive, then Jφ is continuous. In the case of the applications we studied, it is easier to show the continuity

property of the duality mapping Jφ than to prove the locally uniformly convex property of the space X∗,

thus we require condition
(
C2

X

)
. This way we can also avoid theorems which involve equivalent renormings,

because we need the concrete expression and certain properties of the duality mapping in our applications.

Let K ⊂ X, K ̸= {0} be a wedge of X, i.e., it is a convex closed non-empty set such that λu ∈ K for

every u ∈ K and λ ≥ 0. For R > 0 we introduce the notations

XR := {x ∈ X : ∥u∥X < R}, XR := {x ∈ X : ∥u∥X ≤ R}

and

KR := {x ∈ K : ∥u∥X ≤ R}, ∂KR := {x ∈ K : ∥u∥X = R}.

Consider the subset S ⊂ K and for a fixed ρ > 0 let

Sρ := {x ∈ K : dist(x, S) = inf{∥x− y∥X : y ∈ S} ≤ ρ}.

be the ρ-neighbourhood of S. Consider the C1 functional E : X → R and for any a, b ∈ R for which a ≤ b

we also define the sets

Ea := {x ∈ KR : E(x) ≥ a }, Eb := {x ∈ KR : E(x) ≤ b}

and

Eb
a := {x ∈ KR : a ≤ E(x) ≤ b}.

5.2 Auxiliary results

This section presents some auxiliary results, which play an important role in proving our main results for

the case of a wedge in a Banach space.

Proposition 5.1 ([Lisei, Varga and Vas, 2018]). Assume that the condition
(
C1

X

)
holds. Let α and θ be

real numbers such that 0 < α < 1
2 (1− θ). Then, for each x∗, y∗ ∈ X∗ \ {0} such that

− ⟨x∗, J̄y∗⟩ ≤ θ∥x∗∥X∥J̄y∗∥X ,
�� ��5.3
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there exists h ∈ X for which

⟨x∗, h⟩ ≤ −α∥x∗∥X∥h∥X and ⟨y∗, h⟩ < 0.
�� ��5.4

Additionally, if K ⊂ X is a wedge and J̄y∗, J̄y∗ − J̄x∗ ∈ K, then J̄y∗ + µh ∈ K for all µ ∈
[
0, θ+α

θ+1

]
.

Next, by using Proposition 5.1, we state a pseudo-gradient lemma which generalizes the results of

[Schechter, 1999, Lemma 5.9.2] for the case of a wedge in a Banach space.

Lemma 5.1 ([Lisei, Varga and Vas, 2018]). Assume that conditions
(
C1

X

)
and

(
C2

X

)
hold. Let E : X → R

be a C1 functional and for a > 0 consider both the set U := {u ∈ KR : ∥E′(u)∥X > a} ≠ ∅ and the closed

subset U0 ⊆ U ∩ ∂KR. Suppose that there exists θ ∈ (0, 1) such that

−⟨E′(u), u⟩ ≤ θ∥E′(u)∥X∥u∥X , ∀u ∈ U0

and

u− J̄E′(u) ∈ K, ∀u ∈ KR.

Then, there exist α ∈ (0, 1) and a locally Lipschitz continuous map H : U → X such that

u+H(u) ∈ K, ∥H(u)∥X ≤ 1, ⟨E′(u), H(u)⟩ ≤ −α∥E′(u)∥X , ∀u ∈ U
�� ��5.5

and

⟨Jφu,H(u)⟩ < 0, ∀u ∈ U0.
�� ��5.6

The next corollary discusses the case when in Lemma 5.1 we assume that U ∩ ∂KR = ∅ and property

(5.6) is dropped.

Corollary 5.1. Suppose that the condition
(
C1

X

)
holds. Let E : X → R be a C1 functional and for a > 0

consider the set U := {u ∈ KR : ∥E′(u)∥X > a} ̸= ∅ with U ∩ ∂KR = ∅. Suppose that u − J̄E′(u) ∈ K for

each u ∈ KR. Then, there exist α > 0 and a locally Lipschitz continuous map H : U → X for which

u+H(u) ∈ K, ∥H(u)∥X ≤ 1 and ⟨E′(u), H(u)⟩ ≤ −α∥E′(u)∥X , ∀u ∈ U.
�� ��5.7

5.3 A deformation lemma and minimax theorems

Based on the auxiliary results presented in Section 5.2, in this section we provide a deformation lemma

[Willem, 1996], a bounded version of the general minimax theorem of [Willem, 1996] and of the mountain

pass theorem of [Ambrosetti and Rabinowitz, 1973] and a particular case of the variational principle of

Ekeland [Ekeland, 1974] for the case of a wedge in Banach spaces.

First, we present a Willem-type deformation lemma on a wedge, which is a generalization of [Willem,

1996, Lemma 2.3].

Lemma 5.2 ([Lisei, Varga and Vas, 2018]). Assume that conditions
(
C1

X

)
and

(
C2

X

)
hold. Consider the

C1 functional E : X → R, suppose that u− J̄E′(u) ∈ K for all u ∈ KR and there exists θ ∈ (0, 1) for which

⟨E′(u), u⟩+ θR∥E′(u)∥X ≥ 0, ∀u ∈ ∂KR.
�� ��5.8

Consider the closed subset S ⊂ KR and assume that for some c ∈ R and ε, ρ > 0 the functional E satisfies

the condition

∥E′(u)∥X ≥ 2ε

ρ
, ∀u ∈ Ec+2ε

c−2ε ∩ S2ρ

�� ��5.9

and Ec+ε
c−ε ∩ Sρ ̸= ∅.

Then, there exists a continuous deformation σ : [0, 1]×KR → KR such that the following properties hold:
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(
C1

σ

)
σ(0, ·) = idKR

;(
C2

σ

)
σ(t, ·) : KR → KR is an homeomorphism for all t ∈ [0, 1];(

C3
σ

)
σ(t, ·) = id on KR \ (Ec+2ε

c−2ε ∩ S2ρ) for all t ∈ [0, 1];(
C4

σ

)
for every u ∈ KR the mapping t ∈ [0, 1] 7→ E(σ(t, u)) is non-increasing;(

C5
σ

)
there exists α ∈ (0, 1) such that σ(α,Ec+αε ∩ S) ⊂ Ec−αε ∩ Sρ.

Remark 5.2. If E : X → R is a C1 functional for which there exists θ ∈ (0, 1) such that the inequality

⟨E′(u), u⟩+ θR∥E′(u)∥X ≥ 0, ∀u ∈ ∂KR

�� ��5.10

holds, then

E′(u) + λJφu ̸= 0, ∀λ > 0 and ∀u ∈ ∂KR.

To prove this statement let us suppose that there exist a function v ∈ ∂KR and λ > 0 such that E′(v) =

−λJφv. Then, inequality (5.10) implies that

−λ⟨Jv, v⟩+ θRλ∥Jv∥X ≥ 0,

from where follows that θ ≥ 1, which contradicts that θ ∈ (0, 1).

Next, we state a bounded version on a wedge of the general minimax theorem of [Willem, 1996, Theorem

2.8] which can be proved by using our Willem-type deformation Lemma 5.2.

Theorem 5.1 ([Lisei, Varga and Vas, 2018]). Let (X, ∥ · ∥X) be a Banach space which satisfies conditions(
C1

X

)
and

(
C2

X

)
. Consider the C1 functional E : X → R. We suppose that u− J̄E′(u) ∈ K for all u ∈ KR

and that there exists θ ∈ (0, 1) such that

⟨E′(u), u⟩+ θR∥E′(u)∥X ≥ 0, ∀u ∈ ∂KR.

Consider the closed subspace M0 of the metric space M and Γ0 ⊂ C(M0,KR) and define the set

Γ := {γ ∈ C(M,KR) : γ|M0 ∈ Γ0}.

If E satisfies

∞ > c := inf
γ∈Γ

sup
u∈M

E(γ(u)) > a := sup
γ0∈Γ0

sup
u∈M0

E(γ(u)),
�� ��5.11

then for every (γn)n ⊂ Γ such that

lim
n→∞

sup
u∈M

E(γn(u)) = c,
�� ��5.12

and for n ∈ N> 2
c−a

there exists un ∈ KR such that un ∈ E
c+ 2

n

c− 2
n

, dist(un, γn(M)) ≤ 2√
n
and ∥E′(un)∥X <

1√
n
.

From Theorem 5.1 we derive the following bounded version of the mountain pass theorem of [Ambrosetti

and Rabinowitz, 1973] for the case of a wedge.

Theorem 5.2 ([Lisei, Varga and Vas, 2018]). Let (X, ∥ · ∥X) be a Banach space which satisfies conditions(
C1

X

)
and

(
C2

X

)
. Consider the C1 functional E : X → R. We suppose that u− J̄E′(u) ∈ K for all u ∈ KR

and there exists θ ∈ (0, 1) such that

⟨E′(u), u⟩+ θR∥E′(u)∥X ≥ 0, ∀u ∈ ∂KR.

Let e ∈ KR and r > 0 be fixed, with ∥e∥X > r for which

inf{E(u) : u ∈ KR, ∥u∥X = r} > max{E(0), E(e)}.
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We will use the notation

Γ := {γ ∈ C([0, 1],KR) : γ(0) = 0, γ(1) = e}

and

c := inf
γ∈Γ

max
t∈[0,1]

E(γ(t)).

Then, there exists a sequence (un)n ⊂ KR for which

E(un) → c and E′(un) → 0.

A particular case of the variational principle of Ekeland [Ekeland, 1974] can be proved by following the

steps of the proof given in [Willem, 1996, Theorem 2.4].

Theorem 5.3 ([Lisei, Varga and Vas, 2018]). Let (X, ∥ · ∥X) be a Banach space which satisfies conditions(
C1

X

)
and

(
C2

X

)
. Let E : X → R be a C1 functional which is bounded from below on KR. We suppose that

u− J̄E′(u) ∈ K for all u ∈ KR and there exists θ ∈ (0, 1) for which

⟨E′(u), u⟩+ θR∥E′(u)∥X ≥ 0, ∀u ∈ ∂KR.

Let (vn)n ⊂ KR be such that

lim
n→∞

E(vn) = inf E(KR).
�� ��5.13

Then, there exists (wn)n ⊂ KR such that

E(wn) ≤ inf E(KR) +
2

n
, ∥E′(wn)∥X <

1√
n

and dist(wn, S) ≤
2√
n
,

where S = cl ({vn : n ∈ N}) .

Theorem 5.4 ([Lisei, Varga and Vas, 2018]). Let (X, ∥ · ∥X) be a Banach space which satisfies conditions(
C1

X

)
and

(
C2

X

)
. Consider the C1 functional E : X → R such that E(0) = 0. We suppose that u− J̄E′(u) ∈

K for all u ∈ KR and there exists θ ∈ (0, 1) for which

⟨E′(u), u⟩+ θR∥E′(u)∥X ≥ 0, ∀u ∈ ∂KR.
�� ��5.14

Let e ∈ KR and r > 0, with ∥e∥X > r such that E(e) < 0 and

inf{E(u) : u ∈ KR, ∥u∥X = r} > 0.
�� ��5.15

Assume that E is bounded from below on KR and it also fulfils the (PS) condition on KR. Then, the

functional E has two non-trivial critical points located in KR and one of them is the global minimum of E

on KR.

5.4 Application to non-homogeneous operator equations

In this section, we apply the results presented in the previous section to the case of non-homogeneous operator

equations.

Based on the results of [Adams and Fournier, 2003; Dinca and Matei, 2007; Pick et al., 2013], we enumerate

some basic assumptions necessary to work in Orlicz–Sobolev spaces.

Let a : R → R be an admissible function. Consider the N -function A : R → R+, A(t) =

∫ t

0

a(s)ds and

its complementary N -function Ā : R → R+, Ā(t) =

∫ t

0

a−1(s)ds determined by the admissible functions a

and a−1, respectively. Assume that the following properties hold:
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(
C1

A

)
p0 = inf

t>0

ta(t)

A(t)
> 1 and p∗ = sup

t>0

ta(t)

A(t)
< ∞;

(
C2

A

)
the function t ∈ (0,∞) 7→ a(t)

t
is non-decreasing;(

C3
A

)
there exists a constant C > 0 for which A(t) ≥ C · tp0 for all t ∈ (0, 1);(

C4
A

) ∫ 1

0

A−1(τ)

τ
N+1
N

dτ < ∞ and

∫ ∞

1

A−1(τ)

τ
N+1
N

dτ = ∞;

(
C5

A

)
for the constant p0 defined in

(
C1

A

)
the inequality p0 < p∗ := lim inf

t→∞

tA′
∗(t)

A∗(t)
holds, where A∗ denotes

the Sobolev conjugate of A.

Due to [Pick et al., 2013, Theorem 4.4.4], [Clément et al., 2004, Lemma C.8] and
(
C1

A

)
, the ∆2-condition

holds for both N -functions A and Ā.

Let Ω ⊂ RN (N ∈ N≥2) be a bounded open set and consider the Orlicz space LA(Ω) associated with the

N -function A, which is a reflexive separable Banach space with respect to the Luxemburg norm

∥u∥LA(Ω) := inf

{
k > 0 :

∫
Ω

A

(
u(x)

k

)
dx ≤ 1

}
.

�� ��5.16

Due to condition
(
C1

A

)
, at first we have that 1 < p0 = inf

t>0

ta(t)

A(t)
, thus by means of [Clément et al., 2004,

Lemma C.9] one obtains that∫
Ω

A(u(x))dx ≤ ∥u∥p0

LA(Ω), ∀u ∈ LA(Ω) with ∥u∥LA(Ω) ≤ 1;
�� ��5.17

secondly, we have that 1 < p∗ = sup
t>0

ta(t)

A(t)
< ∞, which by [Dinca and Matei, 2007, Remark 7.2] implies that

A(t) ≤ tp
∗
A(1), ∀t ≥ 1,

�� ��5.18

and by [Dinca and Matei, 2007, Lemma 6.5] it follows that∫
Ω

A(u(x))dx ≤ ∥u∥p
∗

LA(Ω), ∀u ∈ LA(Ω) with ∥u∥LA(Ω) > 1.
�� ��5.19

Consequently, by (5.17) and (5.19), for all u ∈ LA(Ω) we have the inequality∫
Ω

A(u(x)) dx ≤ ∥u∥p0

LA(Ω) + ∥u∥p
∗

LA(Ω).
�� ��5.20

Remark 5.3. If besides conditions
(
C1

A

)
–
(
C4

A

)
for the N -function A we also have that

lim
t→∞

ta(t)

A(t)
= ℓ,

then, by means of a property given in [Clément et al., 2000, p. 55], we obtain that

lim
t→∞

tA′
∗(t)

A∗(t)
=

Nℓ

N − ℓ
.

�� ��5.21

For fixed m ∈ N∗ consider the Orlicz–Sobolev space Wm
0 LA(Ω) and let T [·, ·] be a non-negative symmetric

bilinear form on the space Wm
0 LA(Ω), involving only generalized derivatives of order m, satisfying the

condition(
C1

T

)
c1
∑

|α|=m

(Dαu)2 ≤ T [u, u] ≤ c2
∑

|α|=m

(Dαu)2

a.e. on Ω for all u ∈ Wm
0 LA(Ω), where c1, c2 > 0 are constants.

We denote by ∥ · ∥Wm
0 LA(Ω) :=

∥∥∥√T [·, ·]
∥∥∥
LA(Ω)

the norm on the Orlicz–Sobolev space Wm
0 LA(Ω). We
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also denote by CA > 0 the constant such that ∑
|α|<m

∥Dαu∥2LA(Ω)

 1
2

≤ CA∥u∥Wm
0 LA(Ω).

�� ��5.22

Since the embedding Wm
0 LA(Ω) ↪→ LA∗(Ω) is continuous, i.e., there exists a positive constant C∗ such

that

∥Dαu∥LA∗ (Ω) ≤ C∗∥u∥Wm
0 LA(Ω)

�� ��5.23

for any α for which |α| < m.

Let Ja : Wm
0 LA(Ω) →

(
Wm

0 LA(Ω)
)∗

be the duality mapping corresponding to the normalization function

a such that

Ja(0) = 0 and Jau = a(∥ · ∥Wm
0 LA(Ω))∥ · ∥′Wm

0 LA(Ω)(u), ∀u ∈ Wm
0 LA(Ω) \ {0}.

�� ��5.24

Consider the set {fα : Ω× R → R+ : |α| < m} of Carathéodory functions which have primitives

Fα (x, s) =

∫ s

0

fα(x, τ) dτ

for all α with |α| < m and suppose that:(
C1

fα

)
for each α with |α| < m, there exist N -functions Mα, that increase essentially more slowly than A∗

near infinity,

1 < qα = inf
t>0

tM ′
α(t)

Mα(t)
≤ q∗α = sup

t>0

tM ′
α(t)

Mα(t)

and

fα(x, s) ≤ cα + dαM
−1

α (Mα(s)) , ∀s ∈ R and a.e. x ∈ Ω,

where Mα are the complementary N -functions to Mα and cα, dα > 0 are constants;(
C2

fα

)
for each |α| < m it holds

lim sup
s→0

fα(x, s)

a(s)
<

C

2N0C
p0

A

uniformly for a.e. x ∈ Ω,

where N0 :=
∑

|α|<m

1, C and p0 are the constants from
(
C1

A

)
and

(
C3

A

)
, while CA is the constant from

inequality (5.22);(
C3

fα

)
for each multi-index α, there exist sα > 0 and θα > p∗ (p∗ defined in

(
C1

A

)
) such that

0 < θαFα(x, s) ≤ sfα(x, s), ∀|s| ≥ sα and a.e. x ∈ Ω.

Under these conditions, our aim is to localize the solutions to the boundary value problem
Jau =

∑
|α|<m

(−1)|α|Dαfα(x,D
αu) in Ω,

Dαu = 0 on ∂Ω, |α| ≤ m− 1,

�� ��5.25.P

Moreover, when m = 1 and a(t) = |t|p−2t, t ∈ R with p ∈ (1, N) fixed, we are able to localize the positive

solutions to the above problem, see Example 5.3.

Due to
(
C1

A

)
and

(
C2

A

)
, by means of [Dinca and Matei, 2007, Theorems 3.6, 3.14 and 4.5], the Banach

spaceWm
0 LA(Ω) is smooth and uniformly convex, moreover the duality mapping on

(
Wm

0 LA(Ω), ∥ · ∥Wm
0 LA(Ω)

)
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subordinated to the normalization function a is

⟨Jau, h⟩ =
a
(
∥u∥Wm

0 LA(Ω)

)
·
∫
Ω

a

(√
T [u, u](x)

∥u∥Wm
0 LA(Ω)

)
T [u, h](x)√
T [u, u](x)

dx

∫
Ω

a

(√
T [u, u](x)

∥u∥Wm
0 LA(Ω)

) √
T [u, u](x)

∥u∥Wm
0 LA(Ω)

dx

�� ��5.26

for u, h ∈ Wm
0 LA(Ω), u ̸= 0. Moreover, Ja is bijective and its inverse J̄ = J−1

a is continuous.

Also consider the functional E : Wm
0 LA(Ω) → R,

E(u) = A
(
∥u∥Wm

0 LA(Ω)

)
−
∑

|α|<m

∫
Ω

Fα(x,D
αu(x))dx,

�� ��5.27

whose critical points are the weak solutions to problem (5.25.P ). By means of [Dinca and Matei, 2007,

Proposition 7.5], one has that

⟨E ′(u), v⟩ = ⟨Ja(u), v⟩ −
∑

|α|<m

∫
Ω

fα(x,D
αu(x))Dαv(x)dx, ∀u, v ∈ Wm

0 LA(Ω).

Let K ⊆ Wm
0 LA(Ω) be a wedge and for R > 0 we recall the notations

KR := {u ∈ Wm
0 LA(Ω) : u ∈ K and ∥u∥Wm

0 LA(Ω) ≤ R}

and

∂KR := {u ∈ Wm
0 LA(Ω) : u ∈ K and ∥u∥Wm

0 LA(Ω) = R}.

Proposition 5.2 ([Lisei, Varga and Vas, 2018]). Assume that conditions
(
C1

A

)
–
(
C2

A

)
,
(
C4

A

)
,
(
C1

T

)
and(

C1
fα

)
are satisfied. Then, the functional E fulfils the (PS) condition on KR.

Proposition 5.3 ([Lisei, Varga and Vas, 2018]). Suppose that conditions
(
C1

A

)
–
(
C2

A

)
,
(
C4

A

)
,
(
C1

T

)
and(

C1
fα

)
hold. Then, for all s ∈ R and a.e. x ∈ Ω the inequality

|Fα(x, s)| ≤ cα|s|+ 2dαMα(|s|)
�� ��5.28

holds and E maps bounded sets into bounded sets.

Proposition 5.4 ([Lisei, Varga and Vas, 2018]). Assume that conditions
(
C1

A

)
–
(
C2

A

)
,
(
C4

A

)
,
(
C1

T

)
and(

C1
fα

)
–
(
C2

fα

)
hold. For any α with |α| < m there exist µα ∈

(
0, C

2N0C
p0
A

)
and tα > 0 such that

Fα(x, s) ≤ µαA(s), ∀|s| < tα and a.e. x ∈ Ω,
�� ��5.29

and

|Fα(x, s)| ≤
(

cαtα
Mα(tα)

+ 2dα

)
Mα(|s|), ∀|s| ≥ tα and a.e. x ∈ Ω.

�� ��5.30

Since, by our assumptions, the N -function Mα increases essentially more slowly than A∗ near infinity, in

particular one obtains that

lim
s→∞

Mα(s)

A∗(s)
= 0.

Accordingly, there exists t′α ≥ tα such that

Mα(s) ≤ A∗(s), ∀s ≥ t′α.
�� ��5.31

Due to the definition of p∗ from
(
C1

A

)
for any µ ∈ (0, p∗ − p0) there exists t′′α ≥ t′α for which

A′
∗(s)

A∗(s)
≥ p∗ − µ

s
, ∀s ≥ t′′α.

�� ��5.32
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For each |α| < m we introduce the notation

kα :=
t′′α
tα

> 1.
�� ��5.33

We formulate the following assumptions for R:(
C1

R

)
2CW

∑
|α|<m

(
aα + dα((CWR)qα−1 + (CWR)q

∗
α−1)

)
≤ a(R),

where aα := cα
M−1

α ( 1
vol(Ω) )

and CW is the constant from the compact embedding Wm
0 LA(Ω)↪→W :=⋂

|α|<m

Wm−1LMα(Ω);

(
C2

R

)
R > ρ0 := min

1,
1

CA
,

1(
max
|α|<m

kα

)
C∗

,

(
C

3D

) 1
p∗−µ−p0

 ,

where C∗ is the constant from (5.23), CA the constant from (5.22),

D := Cp∗−µ
∗

∑
|α|<m

(
cαtα

Mα(tα)
+ 2dα

)
kp∗−µ
α ,

with tα obtained in Proposition 5.4, kα defined in (5.33) and µ ∈ (0, p∗ − p0) is fixed arbitrarily;(
C3

R

)
let the function v ∈ Wm

0 LA(Ω) be such that for (at least one) multi-index α with |α| < m the set

Ω̂1
α := {x ∈ Ω : |Dαv(x)| ≥ sα}

has vol
(
Ω̂1

α

)
> 0, and let λ be the smallest real number with λ > max

{
1,

ρ0
∥v∥Wm

0 LA(Ω)

}
for which

A(1)λp∗
∥v∥p

∗

Wm
0 LA(Ω) −

∑
|α|<m

λθαγα +
∑

|α|<m

bα < 0,

where

γα :=

∫
Ω̂1

α

min{Fα(x, sα), Fα(x,−sα)}dx

and

bα := (cαsα + 2dαMα(sα)) vol(Ω)

with sα given in condition
(
C3

fα

)
; moreover, also assume that R ≥ λ∥v∥Wm

0 LA(Ω).

Following the ideas of articles [Clément et al., 2000; Dinca and Matei, 2007], the next existence and

localization result related to the solutions to problem (5.25.P ) can be proved by applying Theorem 5.4.

Theorem 5.5 ([Lisei, Varga and Vas, 2018]). We assume that u − J̄E ′(u) ∈ K for all u ∈ KR and the

assumptions
(
C1

A

)
–
(
C5

A

)
,
(
C1

T

)
and

(
C1

fα

)
–
(
C3

fα

)
hold. Let R be the smallest positive number such that

conditions
(
C1

R

)
–
(
C3

R

)
are satisfied. Then, problem (5.25.P ) admits two weak non-trivial solutions in KR

and one of them is the global minimum of the functional E on KR.

5.5 Examples

This section presents three concrete examples in order to show the applicability of the results discussed in

Section 5.4.

In the examples below, the non-negative symmetric bilinear form T is

T [u, u] =
∑

|α|=m

(Dαu)2, ∀u ∈ Wm
0 LA(Ω)
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and the wedge K = Wm
0 LA(Ω) denotes the whole Orlicz–Sobolev space. In this case, KR = XR and

evidently u− J̄E ′(u) ∈ K for all u ∈ KR.

Example 5.1. Let 1 < p1 < p2 < · · · < pn < N and consider the admissible function

a : R → R, a(t) =

n∑
i=1

|t|pi−2t
�� ��5.34

with the corresponding N -function

(E5.1|CA) A : R → R, A(t) =

n∑
i=1

1

pi
|t|pi ,

where p0 = p1 > 1 and p∗ = pn < N.

Consider also the set {fα : Ω× R → R+ : |α| < m} of Carathéodory functions which have primitives

Fα (x, s) =

∫ s

0

fα(x, τ) dτ

for all α with |α| < m and satisfy the following conditions:(
E5.1|C1

fα

)
for each multi-index α with |α| < m there exist qα ∈

(
1, Npn

N−pn

)
such that

|fα(x, s)| ≤ cα + dα|s|qα−1, ∀s ∈ R and a.e. x ∈ Ω;
�� ��5.35(

E5.1|C2
fα

)
using the notation N0 :=

∑
|α|<m

1, assume that

lim sup
s→0

fα(x, s)

a(s)
<

1

2p1N0C
p1

A

uniformly for a.e. x ∈ Ω;

(
E5.1|C3

fα

)
for each multi-index α with |α| < m there exist sα > 0 and θα > pn such that

0 < θαFα(x, s) ≤ sfα(x, s), ∀s ∈ R with |s| ≥ sα and for a.e. x ∈ Ω.
�� ��5.36

Under the above conditions, problem (5.25.P ) has two non-trivial weak solutions in XR, where R is the

smallest positive number such that conditions
(
C1

R

)
–
(
C3

R

)
hold.

Remark 5.4. In the case when the admissible function is a(t) = |t|p−2 · t, p ∈ (1, N), m = 1 and T [u, v] =

∇u·∇v, the space X becomes the ordinary Sobolev space W 1,p
0 (Ω) and the duality mapping is Ja = −∆p. The

existence result obtained in this Example 5.1 completes the localization results of Section 4.2 of the thesis,

by ensuring that the Dirichlet problem{
−∆pu = f0(x, u) in Ω,

u = 0 on ∂Ω

has two non-trivial weak solutions located in XR ⊂ W 1,p
0 (Ω), where R is the smallest positive number such

that assumptions
(
C1

R

)
–
(
C3

R

)
hold and the function f0 satisfies the conditions

(
E5.1|C1

fα

)
–
(
E5.1|C3

fα

)
. For

the localization of positive solutions see Example 5.3.

Example 5.2. Let p ∈ (1, N − 1) be fixed and consider the admissible function

a : R → R, a(t) = |t|p−2t
√
t2 + 1.

�� ��5.37

Consider also the set {fα : Ω× R → R+ : |α| < m} of Carathéodory functions which have primitives

Fα (x, s) =

∫ s

0

fα(x, τ) dτ

for all α with |α| < m and satisfy the following conditions:
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(
E5.2|C1

fα

)
for each multi-index α with |α| < m there exist qα ∈

(
1, Np

N−p

)
such that (5.35) holds;(

E5.2|C2
fα

)
using the notation N0 :=

∑
|α|<m

1, assume that

lim sup
s→0

fα(x, s)

a(s)
<

1

2pN0C
p
A

, uniformly for a.e. x ∈ Ω;

(
E5.2|C3

fα

)
for each multi-index α with |α| < m there exist sα > 0 and θα > p+ 1 such that (5.36) holds.

Under the above conditions, problem (5.25.P ) has two non-trivial weak solutions in XR, where R is the

smallest positive number such that conditions
(
C1

R

)
–
(
C3

R

)
hold.

Remark 5.5. In Examples 5.1 and 5.2, a more explicit expression of the duality mapping Ja can be computed

if the admissible function is written in the form a(t) = b(t)t, ∀t ∈ R, and A is the corresponding N -function.

Then, the duality mapping has the formula

⟨Jau, h⟩ =
b
(
∥u∥W 1

0 LA(Ω)

)
∫
Ω

b

(
|∇u(x)|

∥u∥W 1
0 LA(Ω)

)
|∇u(x)|2 dx

∫
Ω

b

(
|∇u(x)|

∥u∥W 1
0 LA(Ω)

)
∇u(x)∇h(x) dx,

�� ��5.38

where u, h ∈ W 1
0LA(Ω), u ̸= 0.

Example 5.3. For fixed p ∈ (1, N) consider the admissible function a(t) = |t|p−2 · t and we choose m = 1,

T [u, v] = ∇u · ∇v and X = W 1,p
0 (Ω). Then, the duality mapping is Ja = −∆p. Choosing also M0(t) =

|t|q
q ,

we have that

(E5.3|CA) A(t) = |t|p
p , ∥u∥LA(Ω) = p−

1
p ∥u∥Lp(Ω), ∥u∥W 1

0 LA(Ω) = p−
1
p ∥∇u∥Lp(Ω),

A∗(t) =

(
N − p

Np

) Np
N−p

· p−
N

N−p · t
N−p
Np , ∥u∥LA∗ (Ω) =

N−p
Np · p−

1
p ∥u∥

L
N−p
Np (Ω)

and

p0 = p∗ = p, p∗ =
Np

N − p
.

In this case, the constants CA and CW from (5.22) and the compact embedding Wm
0 LA(Ω)↪→W :=⋂

|α|<m

Wm−1LMα(Ω), respectively, are as follows:

� CA = Cp is the best embedding constant of W 1,p
0 (Ω) ↪→ Lp(Ω), i.e., CA = Cp =

(
1

λp(Ω)

) 1
p

, where λp(Ω)

is the first eigenvalue of the p-Laplacian operator defined on Ω;

� CW = Cq is the best embedding constant of the compact embedding W 1,p
0 (Ω) ↪→ Lq(Ω), since q ∈(

1, Np
N−p

)
and p < N .

Based on article [Lisei and Vas, 2016, Section 4], in Section 4.2 of the thesis we presented the detailed

construction of upper estimates for the constants Cp and Cq.

Let

K :=
{
u ∈ W 1,p

0 (Ω) : u(x) ≥ 0 for a.e. x ∈ Ω
}

be the wedge and assume that the Carathéodory function f0 : Ω× R → R+ fulfils the conditions:(
E5.3|C1

f0

)
there exists q ∈

(
1, Np

N−p

)
such that for constants c0, d0 > 0 one has that

|f0(x, s)| ≤ c0 + d0|s|q−1, ∀s ∈ R and a.e. x ∈ Ω;(
E5.3|C2

f0

)
lim sup

s→0

f0(x, s)

sp−1
<

λp(Ω)

2p
uniformly for a.e. x ∈ Ω;
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(
E5.3|C3

f0

)
there exist s0 > 0 and θ0 > p for which

0 < θ0F0(x, s) ≤ sf0(x, s), ∀|s| ≥ s0 and a.e. x ∈ Ω.

Under the above-mentioned conditions, the Dirichlet problem{
−∆pu = f0(x, u) in Ω,

u = 0 on ∂Ω

has two non-trivial weak solutions in KR, where R is the smallest positive number such that the following

assumptions hold:(
E5.3|C1

R

)
c0Cq(vol(Ω))

q−1
q + d0C

q
qR

q−1 ≤ Rp−1;

(
E5.3|C2

R

)
R > ρ0 := min

{
1,

1

Cp
,

1

k0C∗
,

(
C

3D

) 1
p∗−µ−p0

}
,

where k0 is given in (5.33), C∗ := N−p
Np C Np

N−p
, C := 1

p , D := c0t
1−q
0 + d0

q with t0 obtained in Proposition

5.4, while µ ∈
(
0, p2

N−p

)
is arbitrarily fixed;(

E5.3|C3
R

)
let v ∈ W 1,p

0 (Ω) be such that the set

Ω̂1
α := {x ∈ Ω : |v(x)| ≥ s0}

has vol
(
Ω̂1

0

)
> 0 and let λ be the smallest real number with λ > max

{
1,

ρ0
∥v∥W 1

0 LA(Ω)

}
such that

1

p
λp∥v∥p

W 1
0 LA(Ω)

− λθ0γ0 + b0 < 0,

where

γ0 :=

∫
Ω̂1

0

min{F0(x, s0), F0(x,−s0)}dx

and

b0 :=

(
c0s0 +

d0s
q
0

q

)
vol(Ω);

moreover, suppose that λ∥v∥W 1
0 LA(Ω) ≤ R.

Remark 5.6. For this special case, conditions
(
E5.3|C1

R

)
–
(
E5.3|C3

R

)
are adapted versions of

(
C1

R

)
–
(
C3

R

)
,

consequently these estimates are better, because they were calculated for this concrete case.

For u ∈ K we denote v := u− J̄E ′(u). Then, Ja(u−v) = E ′(u) ≤ Jau (weakly), since by our assumptions

f0 is a positive function. By the weak comparison principle for Ja (see [Shapiro, 1980, Theorem, p. 259]),

one has that u− v ≤ u. Thus, v = u− J̄E ′(u) ∈ K.

Theorem 5.6 ([Lisei, Varga and Vas, 2018]). Assume that R satisfies conditions
(
E5.3|C1

R

)
–
(
E5.3|C3

R

)
and

the above assumptions
(
E5.3|C1

f0

)
–
(
E5.3|C3

f0

)
hold as well. Then, equation (5.25.P ) admits two non-trivial

weak positive solutions in KR and one of them is the global minimum of the functional E on KR.
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6
Existence results for some Dirichlet problems involving

Finsler–Laplacian operator

Based on article [Mezei and Vas, 2019], in this chapter we present some existence and localization results

for two Dirichlet problems which involves the Finsler–Laplacian operator.

At first, let Ω ⊆ Rn (n ∈ N≥2) be a smooth bounded domain and consider the problem{
−∆Fu = g (x, u) in Ω,

u = 0 on ∂Ω,

�� ��6.1.P

where −∆F : W 1,2
0 (Ω) → W−1,2 (Ω) denotes the Finsler–Laplacian operator and g : Ω × R → R is a

Carathéodory function that fulfils some special growth condition. In the case of our first problem (6.1.P ),

based on the results of [Dinca et al., 2001], we show the existence of the solutions in two different ways: by

applying the direct method of the calculus of variations, then by using the Leray–Schauder alternative.

Secondly, consider the problem {
−∆Fu = g (u) in Ω,

u = 0 on ∂Ω,

�� ��6.2.P

where the function g : R+ → R+. In the case of our second problem (6.2.P ), we prove an existence and

localization result, by the combined use of the Harnack inequality and a Krasnosel’skii-type fixed point

theorem of [Precup, 2012].

Hereafter, we suppose that F is a norm in Rn for which F 2 is strongly convex in Rn \ {0}. Let Ω ⊂ Rn

(n ∈ N≥2) be a smooth bounded domain and consider the Sobolev space W 1,2
0 (Ω) equipped with the inner

product ⟨u, v⟩ =

∫
Ω

(∇u(x) · ∇v(x)) dx that induces the norm ∥u∥W 1,2
0 (Ω)

:=

∫
Ω

|∇u (x)|2 dx

 1
2

. Then,(
W 1,2

0 (Ω) , ∥ · ∥W 1,2
0 (Ω)

)
is a Hilbert space and W−1,2 (Ω) is its topological dual space. Based on [Xia, 2012],
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6.0 EXISTENCE BY CRITICAL POINT THEORY

we define the Finsler–Laplacian operator −∆F : W 1,2
0 (Ω) → W−1,2 (Ω),

∆Fu := div (F (∇u)Fξ (∇u)) =

n∑
i=1

∂

∂xi
(F (∇u)Fξi (∇u)) =

n∑
i=1

∂

∂xi

(
∂

∂ξi

(
1

2
F 2 (∇u)

))
.

6.1 Existence results for problem (6.1.P ) via critical point theory

This section studies our first Dirichlet problem (6.1.P ), where −∆F : W 1,2
0 (Ω) → W−1,2 (Ω) denotes the

Finsler–Laplacian operator and g : Ω× R → R is a Carathéodory function.

In order to prove the existence of the solutions to problem (6.1.P ) by applying the tools of critical point

theory, we need to define the Nemytskii operator associated with the Carathéodory function g.

Let us consider the set M := {u : Ω→ R : u is measurable}.

Proposition 6.1. If g : Ω× R → R is a Carathéodory function, then for each measurable function u ∈ M
the function Ng(u) : Ω→ R,

Ng(u) (x) = g (x, u (x)) , ∀x ∈ Ω

is measurable in Ω.

Remark 6.1. The function Ng : M → M is the Nemytskii operator associated with the function g.

Proposition 6.2 ([Dinca et al., 2001, Proposition 6.]). Assume that g : Ω × R → R is a Carathéodory

function that fulfils the growth condition

|g (x, s)| ≤ C |s|q−1
+ b (x) , ∀x ∈ Ω, ∀s ∈ R,

�� ��6.3

where C ≥ 0 is constant, q > 1, b ∈ Lq′ (Ω) and 1
q + 1

q′ = 1. Moreover, consider also the function

G : Ω× R → R, G (x, s) =

∫ s

0

g (x, τ) dτ . Then:

(a) the function G is Carathéodory and there exist a constant C1 ≥ 0 and a function c ∈ L1 (Ω) for which

|G (x, s)| ≤ C1 |s|q + c (x) , ∀x ∈ Ω, ∀s ∈ R;

(b) the functional Φ : Lq (Ω) → R, Φ (u) :=

∫
Ω

NG(u)(x)dx =

∫
Ω

G (x, u(x)) dx is continuously Fréchet-

differentiable and Φ′ (u) = Ng(u) for all u ∈ Lq (Ω).

Remark 6.2. Under the above-mentioned conditions, we have that Ng (L
q (Ω)) ⊂ Lq′ (Ω) and NG (Lq (Ω)) ⊂

L1 (Ω), while the Nemytskii operators Ng and NG are continuous and bounded. Moreover, for each fixed

u ∈ Lq (Ω) the equality Ng(u) = Φ′ (u) ∈ Lq′ (Ω) holds.

Assume that the Carathéodory function g : Ω× R → R fulfils the growth condition (6.3) with q ∈ (1, 2∗).

Due to the restriction q ∈ (1, 2∗), the embedding W 1,2
0 (Ω) ↪→ Lq (Ω) is compact with the constant Cq

and Ng : W 1,2
0 (Ω) → W−1,2 (Ω) is a compact operator, i.e., W 1,2

0 (Ω)
Id
↪−→ Lq (Ω)

Ng−−→ Lq′ (Ω)
I∗
d

↪−→ W−1,2 (Ω) .

6.1.1 An existence result via the direct method of calculus of variations

Define JG : W 1,2
0 (Ω) → R by JG(u) =

∫
Ω

G(x, u(x))dx and let E : W 1,2
0 (Ω) → R be the energy functional

E(u) = 1

2

∫
Ω

F 2(∇u(x))dx− JG(u)
�� ��6.4

associated with problem (6.1.P ), where E is well-defined, moreover, the critical points of the energy functional

E are the weak solutions to problem (6.1.P ).
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By means of the direct method of the calculus of variations, the existence of critical points of E can be

proved, by using the coercivity and the sequentially weakly lower semi-continuous property of E .

Lemma 6.1 ([Mezei and Vas, 2019]). If the function g satisfies the growth condition (6.3) with q ∈ (1, 2),

then the energy functional E is coercive and sequentially weakly lower semi-continuous.

Theorem 6.1 ([Mezei and Vas, 2019]). If the function g satisfies the growth condition (6.3) with q ∈ (1, 2),

then the energy functional E is coercive and sequentially weakly lower semi-continuous, consequently E has

at least one critical point in W 1,2
0 (Ω), which is a solution to problem (6.1.P ).

6.1.2 An existence result via the Leray–Schauder alternative

To show the existence of the solutions to problem (6.1.P ) by using the Leray–Schauder technique, we reduce

our problem to a fixed point problem with a compact operator.

Definition 6.1. If

−∆Fu = Ng(u)
�� ��6.5

holds for some u ∈ W 1,2
0 (Ω), i.e.,

⟨−∆Fu, v⟩ = ⟨Ng(u), v⟩ =
∫
Ω

g(x, u(x)) · v(x) dx, ∀v ∈ W 1,2
0 (Ω) ,

then u is a solution to problem (6.1.P ) in the sense of W−1,2 (Ω).

Lemma 6.2. The function −∆F : W 1,2
0 (Ω) → W−1,2 (Ω) is a bijection and (−∆F )

−1
: W−1,2 (Ω) →

W 1,2
0 (Ω) is Lipschitzian.

Since the operator (−∆F )
−1

is bounded and continuous, we can rewrite the equation (6.5) into the form

u = (−∆F )
−1 ◦Ng(u),

where (−∆F )
−1 ◦Ng : W 1,2

0 (Ω) → W 1,2
0 (Ω) is a compact operator.

Theorem 6.2 (Leray–Schauder alternative, [Granas and Dugundji, 2003]). Let T : X → X be a compact

operator and consider the set S = {x ∈ X : x = αT (x), α ∈ [0, 1)}. Then either the set S is unbounded, or

T has at least one fixed point.

Based on the technique presented in [Dinca et al., 2001, Theorem 11], we can state the next existence

result for the solutions to problem (6.1.P ).

Theorem 6.3 ([Mezei and Vas, 2019]). If the Carathéodory function g satisfies the growth condition (6.3)

with q ∈ (1, 2), then the operator (−∆F )
−1 ◦Ng has at least one fixed point in W 1,2

0 (Ω), which is a solution

to problem (6.1.P ).

6.2 An existence result for problem (6.2.P ) via Harnack inequality and

Krasnosel’skii theorem

This section is devoted to the study of our second problem (6.2.P ), in which case the existence of the solutions

will be proved by the combined use of the Harnack inequality and a Krasnosel’skii-type fixed point theorem.

Taking A (x, u,∇u) = ∇ξ

(
1
2F

2 (∇u)
)
and B (x, u,∇u) = 0 in the weak Harnack inequality of [Pucci and

Serrin, 2007, Theorem 7.1.2], all the assumptions are satisfied, thus one has the inequalities〈
∇ξ

(
1

2
F 2(ξ)

)
, ξ

〉
= F 2(ξ) ≥ a |ξ|2 and

∣∣∣∣∇ξ

(
1

2
F 2(ξ)

)∣∣∣∣ ≤ a1 |ξ| ,
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6.2 EXISTENCE BY HARNACK INEQUALITY AND KRASNOSEL’SKII THEOREM

using which we can formulate the relevant form of the weak Harnack inequality.

Theorem 6.4 (Weak Harnack inequality). Fix the parameter p ∈ (1, n) and let the function u ∈ W 1,p
loc (Ω)

be a non-negative solution to the inequality

−∆Fu ≥ 0.
�� ��6.6

Then, for any ball B4R in Ω and any s ∈
(
0, (p−1)n

n−p

)
, we have that

R−n
s ∥u∥Ls(B2R) ≤ C · inf

B2R

u,
�� ��6.7

or equivalently,

M0 ∥u∥Ls(B2R) ≤ inf
B2R

u,
�� ��6.8

where the constant C depends only on the parameters n, s and M0 :=
R−n

s

C
.

[Precup, 2012, Theorem 1.3] gives a very similar estimation to (6.7) for any non-negative superharmonic

function, which remains true on any bounded subdomain Ω0 with Ω0 ⊂ Ω (i.e., Ω0 ⋐ Ω), not only on balls,

as in the case of [Pucci and Serrin, 2007, Theorem 7.1.2]. Replacing the superharmonic function with a ∆F -

superharmonic function in [Precup, 2012, Theorem 1.3], we can state the next Moser–Harnack-type inequality.

Theorem 6.5. Let either n ≥ 3 and s ∈
(
1, n

n−2

)
, or n = 2 and s ∈ (1,∞) be arbitrarily fixed numbers and

consider the domain Ω0 ⋐ Ω. Then, there exists a constant M = M(n, s,Ω,Ω0) > 0 for which the inequality

M ∥u∥Ls(Ω0)
≤ inf

Ω0

u
�� ��6.9

holds for every non-negative ∆F -superharmonic function u ∈ Ω.

Hereafter, assume that Ω ⊂ Rn (n ∈ N≥2) is a bounded regular domain and consider the continuous

function g : R+ → R+. Relying on the results of [Precup, 2012], our goal is to prove the existence of positive,

∆F -superharmonic solutions to problem (6.2.P ), i.e., u ∈ C1
(
Ω
)
, u(x) > 0 and −∆Fu ≥ 0 for any x ∈ Ω

and u which fulfils (6.2.P ).

In order to formulate the main existence result of this section, we introduce some notations and revive

some relevant preliminary results. Let the space X = C0

(
Ω
)
= {u ∈ C

(
Ω
)
: u = 0 on ∂Ω} be equipped

with the norm |u| = |u|∞ = max
Ω

|u(x)| . We fix any bounded subdomain Ω0 ⋐ Ω and consider the space

Y = Lp(Ω0) endowed with the norm ∥v∥Lp(Ω0)
=

(∫
Ω0

|v(x)|p dx
) 1

p

, where p ∈
[
1, n

n−2

)
if n > 2 and

p ∈ [1,∞) if n = 2.

Define the linear map I : C0

(
Ω
)
→ Lp(Ω0), Iu = u|Ω0

. For any function u ∈ C0

(
Ω
)
, the inequality

∥u∥Lp(Ω0)
≤ |u| (meas(Ω0))

1
p holds, which implies that |I| ≤ (meas(Ω0))

1
p .

Due to [Azizieh and Clèment, 2002, Lemma 1.1] and [Lieberman, 1988, Theorem 1], if Ω is a bounded

regular domain of class C 1,β for some β ∈ (0, 1) and g ∈ L∞(Ω), then the weak solution in W 1,2
0 (Ω) to the

Dirichlet problem {
−∆Fu = g (u) in Ω,

u = 0 on ∂Ω,

�� ��6.10

belongs to C 1
(
Ω
)
and (−∆F )

−1
: L∞(Ω) → C 1

(
Ω
)
is continuous, compact and order-preserving.

Using the function G : C
(
Ω;R+

)
→ C

(
Ω
)
, G(u)(x) = g(u(x)) we define the function N : C

(
Ω;R+

)
→

C0

(
Ω
)
,

N = (−∆F )
−1 ◦G.

Since the function g is non-negative and (−∆F )
−1

is positive, the functionN maps C
(
Ω;R+

)
onto C

(
Ω;R+

)
.
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6 DIRICHLET PROBLEMS INVOLVING FINSLER–LAPLACIAN OPERATOR

Let us introduce the set

K := {u ∈ C0

(
Ω;R+

)
: u(x) ≥ M ∥u∥Lp(Ω0)

, ∀x ∈ Ω0},

where the constant M > 0 comes from the Harnack inequality (6.9).

By the definition of the function N , we have that N (u) is ∆F -superharmonic, thus by applying Theorem

6.5 the function N maps K into itself. Consequently, we can use the following variant of the Krasnosel’skii-

type fixed point theorem.

Theorem 6.6 (Krasnosel’skii-type theorem, [Precup, 2012, Theoem 2.1]). Let N : K → K be completely

continuous, let ϕ ∈ K with |ϕ| = 1 be any fixed element, let R0 and R1 be any positive numbers with

R0 < ∥ϕ∥Lp(Ω0)R1 and let h ∈ K be such that ∥h∥Lp(Ω0)
> R0. Assume also that conditions

Nu ̸= λu, ∀ |u| = R1, ∀λ ≥ 1
�� ��6.11

and

(1− µ)N
(
min

{
R1

|u|
, 1

}
u

)
+ µh ̸= u, ∀µ ∈ (0, 1) , ∥u∥Lp(Ω0)

= R0, ∀ |u| ≤ R2

�� ��6.12

are satisfied, where R2 = max

{
R1, |h| , max

|u|≤R1

|Nu|
}
.

Then, function N has a fixed point u in KR0R1
:=
{
u ∈ K : R0 < ∥u∥Lp(Ω0)

, |u| < R1

}
.

Due to [Franzina, 2012, Theorem 3.2.1], we can take ϕ as the positive eigenfunction that corresponds to

the first eigenvalue λ1, i.e., {
∆Fϕ+ λ1ϕ = 0 in Ω,

ϕ = 0 on ∂Ω,

with |ϕ| = 1.

Let χΩ0
: Ω → R+ be the characteristic function of Ω0, i.e,

χΩ0
(x) =

{
1, x ∈ Ω0,

0, x /∈ Ω0,

and also consider the set C = |1|Lp(Ω0)
= (meas(Ω0))

1
p . The inequality

(−∆F )
−1

χΩ0 ≥ M
∥∥∥(−∆F )

−1
χΩ0

∥∥∥
Lp(Ω0)

in Ω0

implies that ∥∥∥(−∆F )
−1

χΩ0

∥∥∥
Lp(Ω0)

≥ MC
∥∥∥(−∆F )

−1
χΩ0

∥∥∥
Lp(Ω0)

,

which yields that MC ≤ 1.

Introducing the notations A :=
1

MC
∥∥∥(−∆F )

−1
χΩ0

∥∥∥
Lp(Ω0)

and B :=
1∣∣∣(−∆F )

−1
1
∣∣∣ , we can formulate

the main existence result of the current section related to the solutions to problem (6.2.P ).

Theorem 6.7 ([Mezei and Vas, 2019]). Suppose that g : R+ → R+ is a continuous function and there exist

R0, R1 with R0 ∈
(
0,MC ∥ϕ∥Lp(Ω0)

R1

)
such that

min
τ∈[MR0,R1]

g(τ) > A ·R0

�� ��6.13

and

max
τ∈[0,R1]

g(τ) < B ·R1.
�� ��6.14

Then, problem (6.2.P ) has at least one solution with R0 < ∥u∥Lp(Ω0)
and |u| < R1.
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Operators, Ph.D. Thesis. Università Degli Studi di Trento, Dipartimento di Matematica. Retrieved August

9, 2021 from https://cvgmt.sns.it/paper/2102/.

Ghoussoub, N., Preiss, D., 1989. A general mountain pass principle for locating and classifying critical points.
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Kristály, A., Mezei, I.I., 2012. Multiple solutions for a perturbed system on strip-like domains. Discrete

Contin. Dyn. Syst. - S 4, 789–796. DOI: https://doi.org/10.3934/dcdss.2012.5.789.
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