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Introduction

The main research domain of our doctoral thesis is deep learning applied in the field of meteorology.
Our PhD thesis is entitled “Deep learning models for weather nowcasting” and aims at developing
new machine learning models for improving weather nowcasting prediction.

Predicting weather, and particularly severe weather, is an important challenge both for the mete-
orological and machine learning researchers. The complexity and difficulty of the problem is mainly
due to the chaotic character of the atmosphere and the implicit large set of meteorological informa-
tion (radar, satellite or ground meteorological observations) which have to be analyzed by meteorol-
ogists. Thus, understanding the relationships between various meteorological parameters extracted
from radar observations may be useful for providing additional comprehension about severe weather
development and would help to identify situations when severe weather can occur.

The problem of issuing a nowcasting warning can be very difficult for meteorologists, since there
is often an extremely large set of meteorological data (available in the form of radar, satellite or
ground meteorological observations) which has to be analyzed in a very short period of time and the
constraints imposed on a desirable solution are complex and not exactly known. Therefore, Machine
Learning (ML) based methods (particularly the supervised ones) are necessary for obtaining effective
solutions for the nowcasting problem. In addition, the unsupervised learning methods are useful for
extracting accurate and meaningful patterns from the large amount of weather related data and to
improve decision-making for high-impact weather.

Firstly, in order to better understand the data, we employed unsupervised learning. Unsupervised
learning is a sub-field of ML dealing with algorithms which extract useful information from raw
data without using labeled examples (as in supervised learning). For example unsupervised learning
methods could organize data in some clusters based on some given similarity function, or provide an
encoder and decoder with which to compress and decompress data of some type, or maybe extract
some rules from the data given a structure of the rules. For this we relied on self-organizing maps
(SOMs) [SK99], a type of unsupervised Artificial Neural Network (ANN).

Then, based on the information extracted, we created supervised learning models, for meteoro-
logical data prediction. Supervised learning is a subfield of machine learning, dealing with the task of
approximating a mapping from some input domain to some output domain based on example input-
output pairs. A supervised learning algorithm generalizes the training data, producing a function
that, given an input can return a close enough approximation of the correct output. In order to create
supervised learning models we mainly focused on Neural Network models. Neural networks have
been modeled to be similar to complex webs of neurons. This morphology has been adopted in com-
puter science, by building densely interconnected systems that have as building blocks basic units,
that take as input a series of real-valued numbers and produce a single real-valued output [Mit97]. We
have also experimented with creating supervised learning models using Relational Association Rules.
Relational Association Rules represents an important data analysis and mining technique useful in
multiple ML tasks as they are able to express different type of non-ordinal relations between data
attributes.
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Approached Problem

The main problem that was approached in our work is nowcasting in the domain of meteorology. The
term “nowcasting” is derived from the contraction of “now forecasting”, intended to mean forecasting
of very short term events. Weather nowcasting is the short term analysis and forecast of weather pat-
terns, generally for the next 0 to 6 hours, and is of major interest within the meteorological research.

As stated by the World Meteorological Organization (WMO) [WMO18] weather, and particularly
severe weather, causes many natural disasters and is responsible for lots of damages and loss of life.
Since the number and intensity of severe weather events is increasing in various regions of the world,
the problem of forecasting such phenomena and issuing early warnings is nowadays one of the most
popular topics in meteorology. Accurate weather nowcasting is a key element for issuing relevant
early warnings.

While Numerical Weather Prediction (NWP) can be quite successfully used for general weather
forecasting, for very short term predictions – nowcasting – it not as usable, as it uses accurate sim-
ulations of the physical equations governing the atmospheric model, thus needing a lot of time and
computational power to make predictions [TSM21]. For this reason, most state-of-the art nowcasting
systems used employ other methods – i.e. extrapolation of meteorological data [SCW+15]. This
highlights one aspect that makes weather nowcasting such a complex topic: predictions need to be
fast, so that early warnings can be issued as early as possible.

The other aspect that makes weather nowcasting a complex task is the sheer quantity of data
available, that needs to be analysed to make good nowcasting predictions. First of all, there are many
data sources, that all could be relevant. There are many meteorological satellites that generate data
continuously, tracking data about elements such as temperature, winds or clouds; while on Earth
there are terrestrial stations constantly gathering real-time data, from radar stations to surface-water
gauging stations measuring rainfall and flooding. More recently, relevant data can be gathered from
items such as solar panels, smart thermometers and smart online air conditioners. In many nowcasting
systems radar data is used as the source for prediction. Even so, a radar gathers data from hundreds
of thousands square kilometers, on many elevations and outputs tens of different products that each
give some kind of information about the current weather. It is hard for operational meteorologists to
analyse all this data, and usually they have a subset of most relevant elevations and products that they
use for prediction and early warning issuing.

Even more, meteorological institutes hold a large set of historical meteorological data, such as
radar measurements, satellite data and historical meteorological observations. This historical data
could give important insights for weather patterns and manifestations, which could help create better
predictions. But the historical data is too large to be analysed by meteorologists, thus automated
systems are needed. Data mining techniques are particularly suitable fur such tasks.

Taking these elements in consideration, we decided approaching the weather nowcasting problem
from a machine learning perspective. Once a proper machine learning model is created and trained it
can give fast predictions based on new data. A machine learning model is trained using existing data.
In meteorology there is too much historical data to be analysed by hand, while in machine learning the
more training data, the better the model. Therefore, machine learning seems a good fit for weather
nowcasting as it can take advantage of the huge amount of existent historical meteorological data.
Also, there are unsupervised machine learning methods that can be used to analyse the historical data
and retrieve meaningful patterns and information.

In this work we aim creating machine learning models for weather nowcasting purposes. The
goal was to create new models that could potentially be incorporated in either existing and already
operational systems or new, state-of-the-art nowcasting systems. In order to do this we chose subset
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of meteorological data to use for the proof of concept of our models. We focused our efforts on
radar data, and we used real historical data provided to us by the Romanian National Meteorological
Administration. While the main focus was to create models for meteorological data prediction, we
also created unsupervised models for data analysis, in order to extract information from the historical
data.

Original Contributions

Our research was focused on two main directions: (1) investigating unsupervised learning models
(such as self-organizing maps and relational association rule mining) for historical meteorological
data analysis and information extraction; and (2) developing supervised learning models for weather
nowcasting prediction. For (2) we focused on deep learning models, such as deep neural networks,
recurrent neural networks and convolutional neural networks. And such, our results and main contri-
butions are also separated in these two directions, presented in Chapters 2 and 3:

(1) Unsupervised learning models for radar data analysis.

Seeing the nature of the problem and the amount of historical data available, we considered
that there would be interest in analysing the data to find patterns or meaningful information. To
this end we proposed using self-organizing maps (SOMs) for unsupervised radar data analysis.
We did these experiments with two goals in mind: devising useful SOM-based methods for
radar data analysis and extracting some information from the data we had to use further in the
modeling of the radar data predictor. Our results on this line of research were the following:

a) Our first experiment had the goal to uncover how the values of the radar products evolve
between consecutive radar scans. The details and results of our work on this idea resulted
by being published in [CMtT19]. The methodology and results are also detailed in Section
2.2. We have shown that in general the values of radar products change slowly over
time, except some specific moments during severe events. We have also shown that the
data is very similar in periods where there are no meteorological events and that, during
significant events, one particularly noisy product (V – Velocity) cannot be ignored, as the
data is not as well described without it.

b) In our next study, we analysed the change in radar product values at a much lower level:
we searched for patterns in how values change, for one specific product, at one specific
timestamp (moment). We chose to analyse one highly relevant product (R02 – Reflec-
tivity at the second lowest elevation) at a timestamp in the middle of the severe weather
event and one before the beginning of the severe event. The results of this work were
published in [MCt19]. We describe the methodology and results in detail in Section 2.3
of this thesis. We have found empirical evidence that similar values for a radar product
at a given moment are encoded in similar neighborhoods at previous time moments, thus
showing that a meaningful relation exists between the value of the product at a moment
and its neighbourhood at the previous moment, a relation that can be used by supervised
algorithms for prediction. We have also shown that the same pattern holds both for normal
and severe weather conditions, and also holds if we consider 1 or 5 previous moments,
showing that there might be possible to create predictions only from one previous step
(making training and predictions faster).

c) Since the previous experiment was done only on one specific product, we wanted to verify
if the same patterns appear in other radar products we considered using for prediction.
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Thus we extended the experiment to also study data from the lowest elevation, and also 2
other products (V – Velocity and VIL – Vertically integrated Liquid). The results of this
extention of experiments were published in [Mih20]. In this thesis, the details and results
are presented in Section 2.4. We have shown that the same relation and patterns appears
for all the considered products and elevations.

(2) Supervised Learning Models for weather nowcasting.

Our second direction of research is towards developing new supervised models for weather
nowcasting. The goal was to create new machine learning models that can be used for radar
data prediction and validate them as proofs of concept. In order to validate the models, we
used different measures, but the most relevant ones are Root Mean Squared Error (RMSE) for
regression tasks and Critical Success Index (CSI) for classification tasks. RMSE is often used
as a measure in literature for weather prediction and CSI is a meteorology specific measure for
the predictions of whether there will be a meteorological event at a location. We also computed
RMSE only for non-zero values, as those are the meteorologicaly relevant values, and zero
values are much more abundant than non-zero values, thus skewing the results. During our
research we developed the 3 following machine learning models:

a) NowDeepN. The first model we created was based on deep neural networks. The ideea
was to predict the value of one radar product at a location based on the values of all
products at the previous time step in a neighbourhood of that location. Since we predict
multiple products, we have multiple networks for each product predicted – resulting in a
model containing an ensemble of 13 networks (we are not using the “ensemble learning”
paradigm). The NowDeepN model description and results were published in [CMt21].
They are also described in detail in Section 3.1. On testing data we obtained a RMSE of
2.25±0.12 with zeros and of 5.93±0.14 on nonzero values. If we considered the value of
5 dbZ as a threshold for classification, we obtained a CSI of 0.64. Comparing to related
work, the comparison is favorable for NowDeepN in 5 out of 7 cases.

b) RadRAR. This model is based on Relational Association Rules (RARs) mining. While
initially using Relational Association Rule (RAR) mining as an unsupervised data mining
tool, we later found a way to use the extracted rules for prediction, and ended by creating
the RadRAR binary classifier model. As one of the drawbacks of RARs is that they are
less scalable, RadRAR was trained and tested on a smaller geographical region than the
other 2 models, and only considers one radar product (R01 – Reflectivity at the lowest
elevation angle). Our work on this model is published in [CMC19b]. We described the
details of this model in Section 3.2 in this thesis. Using a threshold of 35 dbZ, which is
a meteorologicaly relevant thershold for product R01, we obtained a CSI of 0.56 ± 0.02,
performing better in 8 out of 9 comparisons with related work and other classifiers.

c) XNow. The third model we developed is based on deep convolutional networks. This
time, we started with the idea of predicting the entire region and all products at once, from
the data at the previous moment. The model is heavily inspired by the UNet [RFB15] and
Xception [Cho17] architectures, XNow actually being a modified version of the latter to
work similarly as the former. This model was published in [SCIM20] and is presented in
detail in Section 3.3 in this thesis. With the XNow model we obtained a RMSE of 1.85 ±
0.15 on data with zeros and 2.28 ± 0.17 on nonzero values. This is a very good result,
being better than NowDeepN and marginally better than the best model we found in the
literature, with a similar experiment design and purpose.
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Thesis Structure

The rest of the thesis is organized as follows. In the first Chapter the theoretical background and the
literature review is presented. In Section 1.1 we first present the type of radar data that we use and
how it is collected and then we present our literature review. In the second part of the first chapter –
Section 1.2 – we detail the theoretical basis necessary for the machine learning algorithms we used in
our research.

In Chapter 2 we present our experiments using unsupervised machine learning methods – mainly
Self-Organizing Maps – on radar data. Since all these experiments use the same data set, we first
present in detail this data set in Section 2.1. The first experiment is described in Section 2.2, where
we analyse the change of the radar products’ values in time. Our second experiment using Self
Organizing Maps is detailed in Section 2.3. Since our second experiment was done only one one
of the radar products, at one elevation angle, we considered extending the experiment to multiple
products and elevations. The results of this extension are presented in Section 2.4. We also introduced
new evaluation measures to better interpret the results and efficiency of the SOM.

The three supervised machine learning models we have developed for weather nowcasting are
described in Chapter 3. The first model proposed is NowDeepN, presented in Section 3.1, which is
based on deep neural networks. The second model we developed, based on Relational Association
Rule mining, is described in the Section 3.2 of this thesis. The last model we developed, XNow,
based on convolutional neural networks, and more exactly on the Xception architecture, is presented
in Section 3.3.
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Chapter 1

Background

In this chapter we present the theoretical elements that will be used in the thesis. It is split into
two parts: weather nowcasting, covering elements related to weather nowcasting and radar data; and
machine earning methods, covering elements regarding machine learning methods considered in our
research.

1.1 Weather nowcasting

According to a recent joint article from Nordic and Baltic countries [Swe18], climate change includ-
ing extreme rain phenomena is expected. In consequence, there is an increasing need for accurate
and early warning of severe weather events. As the number and intensity of severe meteorological
phenomena increases, predicting them in due time to avoid disasters becomes highly demanding for
meteorologists.

The division of weather prediction dealing with weather analysis and forecast for the next 0 to 6
hours is called nowcasting and plays an increasing role in crisis management and risk prevention. The
problem of issuing a nowcasting warning is a difficult task for meteorologists, mainly because of the
extremely large set of data which has to be analyzed in a short period of time. Therefore, ML based
methods are useful for offering effective solutions for nowcasting by learning relevant patterns from
the large amount of weather data and thus improving decision-making for high-impact weather. Most
of the existing operational and semi-operational methods for nowcasting are using the extrapolation
of radar data and algorithms mainly based on cell tracking.

The current thesis uses radar data provided by the WSR-98D weather radar [NOA18]. About
every 6 minutes data is collected on a complete set of about 30 base and derived products, gathered
over 7 different elevations. The base products are particle reflectivity (R), providing information on
particle size and type, and particle velocity (V), containing information on particle motion. Both
products are available for several elevation angles of the radar antenna, and for each time step a set
of seven data products, R01-R07 and V01-V07, is delivered, each of them corresponding to a certain
tilt of the antenna. Among the derived products, of particular interest for the study is VIL (vertically
integrated liquid), an estimation of the total mass of precipitation above a certain unit of area.

1.2 Machine learning models

Supervised learning is a subfield of machine learning, dealing with the task of approximating a map-
ping from some input domain to some output domain based on example input-output pairs. Unsuper-
vised learning is a subfield of ML dealing with algorithms which extract useful information from raw
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data without using labeled examples (as in supervised learning).
A self-organizing map (SOM) [SK99] is an unsupervised learning model, a type of ANN from the

category of competitive learning networks. A SOM contains two layers: the input layer and the output
layer. These layers are densely connected. Usually, a SOM is trained using the Kohonen algorithm
[SK99]. While a SOM is tool for visualizing high dimensional data, it is also very effective clustering
problems, data-mining tasks or classification [LO92]. The U-Matrix method [KK96] is usually used
for visualizing a trained SOM.

Relational association rules (RARs) [SCC06] are an extension of Association rules (ARs), which
are powerful data analysis and mining tools. RARs can discover various types of relationships be-
tween data attributes. Discovery of Relational Association Rules (DRAR) is the Apriori-like algo-
rithm used for mining the interesting RARs from a dataset [CBC12].

Neural network learning methods provide a robust approach to approximating real-valued, discrete-
valued or vector-valued target functions [Mit97]. Neural networks are suited for problems that deal
with noisy, complex data, such as camera, microphone or sensor data. Their success is due to their
similarity to effective biological systems, that are able to generalize and associate data that has not
been explicitly trained upon during the training phase, and correlate that data to a class where it
belongs.

Unlike classical neural networks, Deep Neural Networks (DNNs) contain multiple hidden lay-
ers and have a large number of parameters which makes them able to express complicated target
functions, i.e. complex mappings between their input and outputs [SHK+14]. Nowadays, DNNs are
powerful models in the ML literature applied for complex classification and regression problems from
various domains.

Recurrent Neural Network (RNN) [HS13] are capable to express dynamic and temporal processes
and to model sequential information. Due to their ability to model sequences, RNNs were success-
fully used to solve numerous tasks in which the input was organized in time steps, including: speech
recognition [Lip15], [GWD14], image and video processing [WKS16], machine translation and sen-
timent analysis [CvMG+14]. A RNN contains at least one feed-back connection, so the activations
can flow round in a loop [HS13]. That enables the networks to do temporal processing and learn
sequences, like: performing sequence recognition/reproduction or temporal association/prediction.

A Long Short-Term Memory (Long Short-Term Memory network (LSTM)) [HS97] is a particular
model of RNN allowing the unit activations to retain important information over a much longer period
of time. In order to store an information for a longer period, a circuit for simulating a memory cell
should be implemented.

Convolutional Neural Networks (Convolutional Neural Networks (CNNs)) [KSH12] are ANNs
that receive as input multi-channel images. Since they are ANNs at the core, the ANNs concepts are
valid for CNNs, too: they receive input, process it through the propagation function, then pass the
result to an activation function, and finally produce an output.

The ideea of Convolutional Long Short-Term Memory network (ConvLSTM) is to introduce Con-
volution inside the LSTM cell. LSTM does not use spatial data, only temporal data, which is a great
disadvantage for task that could take advantage of spatial data. Combination of LSTM and CNN were
mentioned in 2014 by Donahue et al. in [DHG+14].



Chapter 2

New unsupervised learning models for
meteorological data analysis

Predicting weather, and particularly severe weather, is an important challenge both for meteorological
and machine learning researchers. The complexity and difficulty of the problem is mainly due to the
chaotic character of the atmosphere and the implicit large set of meteorological information (radar,
satellite or ground meteorological observations) which have to be analyzed by meteorologists. Thus,
understanding the relationships between various meteorological parameters extracted from radar ob-
servations may be useful for providing additional comprehension about severe weather development
and would help to identify situations when severe weather can occur.

In the following sections self-organizing maps are being explored as an unsupervised classifica-
tion model for detecting patterns in radar data which are relevant in predicting short-term weather
changes.

In the studies presented in this chapter real data provided by the National Meteorological Admin-
istration (NMA) was used. In Section 2.1 this data set is presented in detail.

All the elements presented in this chapter were also published in three original papers [CMtT19,
MCt19, Mih20]. In the following we highlight the main original contributions presented in the chap-
ter:

• The first experiment is presented in Section 2.2. With the main goal of analyzing how the values
for the weather radar products are evolving between consecutive radar scans, we empirically
show that in general there is a slow change in the values over time, except for the situations
when when certain severe phenomena occur. The study conducted in Section 2.2 is an original
work published in [CMtT19] and is aimed to provide a better insight regarding how the values
of weather radar products are evolving in time both in calm and severe weather conditions, with
the broader goal of using these findings for weather nowcasting.

• Section 2.3 introduces an alternative radar data model and aims at obtaining an empirical ev-
idence that: (1) there are some patterns in the way the radar products’ values transition from
one time moment to another in both normal and severe weather conditions; and (2) that similar
values for a product at a given moment are encoded in similar neighborhoods at previous time
moments. The approach from this section was published in the original paper [MCt19].

• The previous experiment was, at first, tested on only one radar product. We then extended the
scope of the study for other radar products with the aim of supporting the idea that the results
are consistent on different radar data products. This extension is presented in Section 2.4 and
the results were published in [Mih20].

14
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The presentation from this chapter is based on the original papers [CMtT19, MCt19, Mih20].

2.1 Radar data set

For our experiments we use real radar data provided by NMA, the Romanian meteorological admin-
istration.

The data was provided by the WSR-98D weather radar [NOA18] located in Bobohalma, Romania.
About every 6 minutes data is collected on a complete set of about 30 base and derived products,
gathered over 7 different elevations. The most interesting products are particle reflectivity (R), particle
velocity (V) and vertically integrated liquid (VIL). Products R and V are available for several elevation
angles of the radar antenna and a set of seven data products, R01-R07 and V01-V07, is delivered,
each of them corresponding to a certain tilt of the antenna. The data grid provided by the radar for
the selected geographical area at a given time moment is fit to a matrix. The radar provides one data
matrix for each of the meteorological products, and each matrix has 624 rows and 800 columns (i.e.
m = 800 and n = 624).

The day used as case study is the 5th of June 2017, a day with moderate atmospheric instability
in the region, manifested through thunderstorms accompanied by heavy rain and medium-size hail.
Concerning these phenomena, the National Meteorological Administration issued five severe weather
warnings, code yellow. In the chosen geographical area, there were two distinct episodes with intense
meteorological events in June 5, 2017: the first one between approximately 09:00 and 11:00 UTC,
and the second one between approximately 12:00 and 17:00 UTC, with the most severe events taking
place between 14:00 and 15:00 UTC.

The radar data used in our case study has been recorded between 00:04:04 UTC and 23:54:02
UTC. We have a total of 231 time stamps (i.e. k = 231), with time stamp 1 corresponding to 00:04:04
UTC. The most interesting time stamps are the ones in which there is data about the above mentioned
meteorological events: the time stamps from 88 to 106 contain the data for the meteorological event
from 09:00 to 11:00 and the time stamps from 117 to 165 contain the data for the meteorological
event from 12:00 to 17:00. The data for the maximum values approximated to be between 14:00 to
15:00 are contained in the time stamps from 137 to 145.

The data gathered by the radar contains a special value that represents ”No Data”. This value is
usually represented by −999 but we decided to replace it with 0 as in most cases this value refers
to air particles with 0 reflectivity (i.e. no significant water droplets). ’No data’ may also represent
air volumes which have returned no signal, for example if a sector with high reflectivity is between
the radar and the respective location. In this case, replacing it with 0 is also correct, since the entire
region is obturated and the data is not relevant for the learning process. The radar data is prone to
different type of errors, meteorological and technical, which implicitly are to be found in the output
data matrix. Meteorological errors (e.g., the underestimation of a particle’s reflectivity) are difficult to
identify and eliminate, but some errors occurring during the data conversion have been identified and
corrected. For example, the product V should only contain values from -33 to 33 but we found values
of -100. In order to avoid introducing into our experiments the noise that these values represent, we
decided to skip them in the unsupervised learning process. More exactly, during the training using
the Kohonen algorithm, the erroneous values of -100 were omitted while computing the Euclidian
distance between the input instances and the neurons from the map.
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2.2 Analysis of radar data change over multiple timestamps

Self organizing maps are being explored in this section as an unsupervised classification model for
detecting patterns in radar data which are relevant in predicting short-term weather changes. The
approach introduced in this section is an original work published in [CMtT19]. With the main goal of
analyzing how the values for the weather radar products are evolving between consecutive radar scans,
we empirically show that generally these values are slowly modifying in time, excepting situations
when certain severe phenomena occur. The study conducted in this section is aimed to provide a
better insight regarding how the values of weather radar products are evolving in time both in calm
and severe weather conditions, with the broader goal of using these findings for weather nowcasting.

We are assessing the usefulness of SOMs to unsupervisedly uncover the underlying structure in
radar data, for analyzing how the values for several weather radar products are evolving between
consecutive radar scans and for studying the relevance of the radar products in predicting short-term
weather changes. Through several experiments performed on the real radar data provided by the
NMA, we aim to obtain an empirical evidence that the radar meteorological products’ values are
generally smoothly changing in time in normal weather conditions, excepting situations when certain
severe phenomena occur. In addition, we expect that SOMs are able to distinguish severe weather
conditions using radar data.

We propose in the following a data model which will be further used in our experiments. The
idea is to assign, at each time stamp, a vectorial representation to each 3D data grid provided by the
radar. In this model, for a day d, a time stamp tdi (1 ≤ i ≤ k) and a set Prod of meteorological
products, a data parallelepiped Ptid

(m,n, Prod) = (pxyz)x=1,m
y=1,n

z=1,|Prod|

is constructed. In this paral-

lelepiped, OX and OY axes represent the rows and columns from the radar data grid, and the depth
axis OZ represents the meteorological products. For obtaining the vectorial representation for the
data parallelepiped Ptid

(m,n, Prod), it is liniarized.
Two data sets D1 and D2 are constructed for representing the radar data collected during the

time stamps t1, t2, . . . , tk using the data model previously introduced. The difference between D1

and D2 is given by the set of meteorological products used for representing the instances. In D1 the
entire set of meteorological products provided by the radar (i.e. 24) is used, while D2 employs only
13 products: base reflectivity (R) of particles on six elevations, velocity (V) on six elevation and the
estimated quantity of water (VIL) contained by a one square meter column of air.

For detecting the underlying structure of the data sets D1 and D2, the SOM model is applied for
obtaining an unsupervised two-dimensional representation of the data sets.

As a preliminary step before applying the unsupervised SOM models, a statistical analysis was
performed on the data set with the goal of analyzing the variation of the meteorological products on
each time stamp.

For the SOM employed in the experiments we used our own implementation, without any third
party libraries. For building the SOM, we used a torus topology [KTO+07].

The following parameters were used for the SOM: a configuration of 30x30 neurons on the map,
20000 training epochs and a learning rate of 0.1.

In our implementation, the lower values on the U-matrix are depicted as darker places, while
higher places are marked as whiter regions. Accordingly, darker regions encode similar data instances,
whilst whiter regions represent separation boundaries between the data clusters.

The results suggests that there might be some readable changes in the meteorological products
almost 2 hours before the start of the event which might help to forecast the start of the phenomena.

Also, we concluded that R, V and VIL values may be useful for predicting meteorological events
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and that additional meteorological products (other than R, V and VIL) do not bring significant addi-
tional information about the phenomenon.

For assessing the relevance of V in usupervisedly uncovering meteorological events, we per-
formed the first experiment using only R and VIL products, without considering V. Analysing the
results we concluded that V is also relevant in detecting severe meteorological events and R and
VIL measurements have to be used together with V for increasing the performance of the detection
process.

The results show evidence that the values of the radar products clearly discriminate between calm
weather and severe events. The SOM is also able to unsupervisedly detect these patterns using only
the R, V and VIL products. This suggests the feasability of learning to predict (using R, V and VIL
products) an entire data parallelepiped at a certain time based on data parallelepipeds at previous time
moments.

This section presented a study towards applying SOMs as an unsupervised classification method
for analyzing meteorological radar data and investigating the relevance of several meteorological
products in detecting severe weather phenomena.Several experiments were performed, analyzing the
results we obtained an empirical evidence that in normal weather condition the values of the meteoro-
logical products are smoothly changing in time, excepting situations when certain severe phenomena
occur. Thus, meteorological events reflected in changes occurred in the values of several meteorolog-
ical products are indeed detected by unsupervised learning algorithms.

2.3 Analysis of patterns in radar data transition between consecutive
radar scans

The approach introduced in this section is an original work published in [MCt19].
The main goal of the approach introduced in this section is to better understand the relationships

between the meteorological products extracted from one radar observations and some radar data ob-
servation from previous times, both in severe and normal weather conditions.

In this section we are investigating the ability of SOMs models to unsupervisedly learn meteoro-
logical relevant patterns, particularly in situations when severe meteorological events occurred. We
are particularly focused on the patterns of meteorological data arising from one time moment to an-
other. As a proof of concept, SOMs were used in the current study as an unsupervised learning tool
for analyzing radar data recorded at the national level and used for weather nowcasting. Through ex-
periments an empirical evidence that (1) there are some patterns in the way the radar products’ values
transition from one time moment to another in both normal and severe weather conditions and that
(2) similar values for a product at a given moment are encoded in similar neighborhoods at previous
time moments.

For computational modelling of the radar data, we propose a cell-level data model. In this model,
we aim to assign to a certain cell (x,y) from the grid, at each time stamp time a vectorial represen-
tation. This representation contains the data products’ values from a neighboring area (subgrid) of a
certain length surrounding the point (x,y), for a temporal window of length l before time: time-l,
time-l+1,. . . , time-1.

The experiments are aimed to analyze the extent to which SOMs are able to unsupervisedly un-
cover meteorological phenomena in radar data. The goal of the experiments is to test if similar values
for a radar product at a given moment are encoded in similar neighborhoods at previous time mo-
ments. For a certain time stamp t, two data sets D and D′ are constructed. The difference between D

and D′ is given by the length l considered for the temporal window: in D we are using a length l of
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1, while D′ considers a value for l greater than 1.
As a preliminary step before applying the unsupervised SOM model, a statistical analysis was

performed on the data set, with the goal of analyzing the variation of the meteorological products on
each time stamp.

For the SOM [SK99] employed in the experiments we used our own implementation, without any
third party libraries. For building the SOM, we used a torus topology [KTO+07]. In our implementa-
tion, the lower values on the U-matrix [KK96] are depicted as darker places, while higher places are
marked as whiter regions. Accordingly, darker regions encode similar data instances, whilst whiter
regions represent separation boundaries between the clusters. Through this experiment, we would
expect the SOM to unsupervisedly detect a relationship between the value of a certain product for a
grid cell c at a certain time stamp t and its vectorial representation using the proposed cell-level data
model at time stamps preceding t.

The analysis of the results led to the conclusion that higher values for R02 can be predicted
from previous time stamps, irrespective of the temporal window length or if there are meteorological
events present or not. Furthermore a good enough estimate of the actual value of R02 is predictable.
This result implies the fact that patterns can be learned from the data and supervised learning for the
prediction of R02 is feasible for the purpose of nowcasting.

As a conclusion of our study, SOMs are able to unsupervisedly uncover in radar data hidden
patterns which are relevant from a meteorological perspective. The findings of our study suggest
promising results in applying predictive supervised learning models for weather nowcasting using
radar data.

2.4 Extension of analysis for multiple radar products

In the previous section (Section 2.3) we focused our experiments on only one radar product, R02.
In this work, published in [Mih20], we are extending and further analyzing the ability of SOMs

to encode and extract from radar data patterns regarding how the radar products are transitioning
from one time moment to another, analysing four other radar products, empirically showing that our
previous results can be generalised for the most used radar products in nowcasting.

Before building the SOM model, a data cleaning step is first applied to the radar data. The goal
of this preprocessing step is to correct the erroneous values provided by the radar. Erroneous values
represent values that are outside the bounds for one product (e.g. a value of 75 for R01, which
normally should be between 0 and 65). We correct this values using an estimation algorithm that
estimates the correct value from the values of the points in the 13x13 neighbourhood around the
erroneous values.

The main ML model used is the SOM with a 2D map. Each instance of the input data is a
cell-level vector, the same as the one used in the previous section. In this work we extend that
experiment to investigate if the hypothesis that similar values at a time moment are encoded in similar
neighborhoods at previous moments still hold for other radar data products (R01, V 01, V 02 and
V IL). Two different number of previous timestamps are used in our experiments: only one previous
timestamp and five previous timestamp. Therefore we have eight experimental results – for each of the
four radar products (R01, V 01, V 02 and V IL) we have two results, one with one previous timestamp
and one with five previous timestamps.

For evaluating the quality of the SOM mapping we are introducing an evaluation measure ASE

(Average Similarity Error) which measures how similar are the values of a certain radar product which
are mapped on similar regions of the SOM. We introduce this error in order to measure how different
is the mapping on one neuron from the ideal mapping.
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The ASE measure will have values between 0 and 1, where 0 means that all interesting neurons
have labels of equal value (which is ideal), and 1 means that all interesting neurons have labels from
both of the extremes in equal amount. Therefore, smaller values for ASE indicate a better mapping,
from a meteorological viewpoint.

For obtaining a better insight on the structure of the radar data, we have decided to strengthen the
constraints imposed for an interesting neuron. We decided to do this because we observed that there
were many neurons which had many 0 labels and one or very few non-zero labels, but very close to 0.
Therefore we have a secondary Average Similarity Error (ASE′) which only considers neurons that
contain only non-zero values.

We employed in our experiments our own implementation of SOM, which was build using a 2D
lattice having a torus topology [KTO+07]. The U-matrix method is used to visualize the resulting
map, where lower values in the U-matrix are depicted as darker regions, while whiter regions depict
higher values.

By analyzing the resulting U-matrices of the 8 experiments conducted we observed that they are
consistent with the results obtained in our previous work [MCt19]. This means that similar combi-
nations of values of the radar data products at previous timestamps are correlated to similar values
of product values at the current timestamp, for all of the studied products, leading to the conclusion
that the studied radar products can be predicted for future timestamps from the values of the radar
products at previous time stamps.

For each of these resulted SOM maps, we have computed the measures introduced previously.
ASE is very low for all the resulted maps. All values are below 0.05, with the exception of R01,
which are below 0.1. An error lower than 0.05 means that the labels mapped for one single neuron
have, on average, differences no bigger than 5% of the maximum difference possible for that label.
This means that the labels mapped to one neuron are very similar to one another, which is desirable.

The ASE′ measure is very similar to the ASE measure, with the only difference being the neu-
rons on which the errors are measured. ASE′ is measured using much fewer neurons, a third to a
sixth of the number of the neurons used by ASE. Nevertheless, ASE′ is not much bigger than ASE.
Overall, the values of the measures ASE and ASE′ are quite promising, supporting the interpretation
of the maps that similar labels are mapped to similar regions.

Using only 1 previous timestamp or multiple previous timestamps for training does not seem to
impact the result in a significant way. Using 5 previous timestamps the numbers of neurons used
(both N and N ′) was lower for all experiments, but the measures were not impacted, as they are very
similar.



Chapter 3

Contributions in developing deep
learning models for weather nowcasting

The second purpose of our research was to create novel models for weather nowcasting prediction.
More exactly, we created supervised machine learning models that predict radar echo for one time
moment based on the previous time moments, and validated the models. This chapter present these
supervised machine learning models we have developed and the experiments we have performed with
these new models.

All the elements presented in this chapter were also published in three original papers: [CMt21,
CMC19b, SCIM20]. Our original contributions presented in this chapter are the following:

• In Section 3.1 we present our first model, NowDeepN, published in [CMt21]. This model was
based on deep neural networks. The ideea was to predict the value of one radar product at a
location based on the values of all products at the previous time step in a neighbourhood of
that location. Since we predict multiple products, we have multiple networks for each product
predicted On testing data we obtained a RMSE of 2.25 ±0.12 with zeros and of 5.93±0.14
on nonzero values. If we considered the value of 5 dbZ as a threshold for classification, we
obtained a CSI of 0.64. Comparing to related work, the comparison is favorable for NowDeepN
in 5 out of 7 cases.

• Section 3.2 describes our nex model, RadRAR, based on Relational Association Rules (RARs)
mining, model and experiment published in our paper [CMC19b]. As one of the drawbacks of
RARs is that they are less scalable, RadRAR was trained and tested on a smaller geographical
region than the other 2 models, and only considers one radar product (R01 – Reflectivity at
the lowest elevation angle). Using a threshold of 35 dbZ, we obtained a CSI of 0.56 ± 0.02,
performing better in 8 out of 9 comparisons with related work and other classifiers.

• The last model we developed is XNow is presented in Section 3.3. This model is based on deep
convolutional networks and was published in [SCIM20].We started with the idea of predicting
the entire region and all products at once, from the data at the previous moment. The model
is heavily inspired by the UNet [RFB15] and Xception [Cho17] architectures. With the XNow
model we obtained a RMSE of 1.85 ± 0.15 on data with zeros and 2.28 ± 0.17 on nonzero
values. This is a very good result, being better than NowDeepN and marginally better than the
best model we found in the literature, with a similar experiment design and purpose.

The presentation from this chapter is based on the original papers [CMt21, CMC19b, SCIM20].
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3.1 NowDeepN: An approach for nowcasting prediction using deep neu-
ral networks

With the goal of helping meteorologists in analysing radar data for issuing nowcasting warnings,
we introduced in our original paper [CMt21] a supervised learning model NowDeepN based on
an ensemble of deep neural network regressors for predicting the values for radar meteorological
products which may be used for weather nowcasting. The presentation of the model in this thesis is
based on our published work [CMt21].

As a proof of concept, NowDeepN is proposed for learning to approximate a function between
past values of the radar products extracted from radar observations and their future values. Experi-
ments were performed on real radar data provided by the Romanian National Meteorological Admin-
istration and collected on the Central Transylvania region.

For NowDeepN we use the same data model introduced in Section 2.3.
The radar data is prone to different type of errors, meteorological and technical, which implicitly

are to be found in the output data matrix. For reducing the noise that the invalid values represent, a
data cleaning step is proposed. The underlying idea behind the cleaning step is to replace the invalid
values on a certain point (i, j) with the weighted average of values from a neighborhood of length 13

surrounding the point. The weight associated to a certain neighbor of the point is inverse proportional
to the Euclidian distance between the neighbor and the point, such that the closest neighbors’ values
have more importance in estimating the value of point.

The regression problem we are focusing on is the following: to predict a sequence of values
for a set Prod of radar products at a given time moment t on a certain location (i,j) on the map,
considering the values for the neighboring locations of (i,j) at time moment t-1. NowDeepN uses
an ensemble of DNNs for learning to predict the values of the radar products from the set Prod based
on their historical values. The ensemble consists of np DNNs (np = |Prod|), one DNN for each
radar product.

One of the difficulties regarding the regression problem previously formulated is that the training
data sets are highly imbalanced. More specifically, there are a lot of training instances labeled with
zero (i.e. yk = 0) corresponding to points on the map without specific weather events and a much
smaller number of instances with a non-zero label (i.e. corresponding to a severe meteorological
phenomenon). The imbalanced nature of the data may lead to a regressor which is biased to predict
zero values, as the majority of the training examples used for building the regressor were zero-labeled.

For assessing the performance of NowDeepN , a cross-validation testing methodology is applied
on each of the data sets. The data sets are randomly splitted in 5 folds. Subsequently, 4 folds will be
used for training and the remaining fold for testing and this is repeated for each fold (5 times).

For each training-testing split, two evaluation measures are used and computed for each training-
testing split: Root mean squared error (RMSE) and Normalized root mean squared error (NRMSE)
[HK06]. The RMSE computes the square root of the average of squared errors obtained for the testing
instances. The NRMSE represents the normalized RMSE, obtained by dividing the RMSE value to
the range of the output and is usually expressed as a percentage. For a more precise evaluation of the
results, the values for the evaluation measures (RMSE and NRMSE) are also computed for the non
zero-labeled instances (RMSEnon−zero, NRMSEnon−zero).

The data set used in the NowDeepN experiments is the same as the one presented in 2.1.
In order to estimate the impact of the data cleaning step, we analyzed the data set before and after

cleaning. The observations we made from this analysis lead us to the hypothesis that the cleaning step
would impact the overall performance of NowdDeepN , and this should be visible at least at lower
degrees of elevations for V.
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For the DNNs used in our experiments, the implementation from the Keras deep learning API
[Ker18] using the Tensorflow neural networks framework was employed. The code is publicly avail-
able at [CMt21]. Given the fact that our data was quite high-dimensional we needed a relatively
complex neural network. These networks were trained for 30 epochs using 1024 instances in a train-
ing batch.

We intend to analyze how correlated are our computational findings with the meteorological evi-
dence. In order to allow an easier interpretation of the results from a meteorological perspective, we
computed the Mean of Absolute Errors for all instances (MAE), as well as only for the non-zero la-
beled instances (MAEnon−zero). We obtained an average NRMSE of less than 4% for the R products,
which would entail a close resemblance between the predicted data and the real data, resemblance.
From a meteorological point of view, the MAE for both all and non-zero instances is a satisfactory
one, meaning that the predicted value is on the same level or on a neighbouring level on the product
value scale.

In order to empirically validate the hypothesis that the cleaning step improves the predictive per-
formance of NowDeepN , we have evaluated the model trained on the uncleaned data set, using the
same methodology.

Comparing the results, we observed an improvement in the predictive performance of NowDeepN

achieved on the cleaned data. For determining the significance of the features, we are comparing the
results of NowDeepN using the original set of features with those obtained by applying NowDeepN

after the prior application of a feature extraction step. Two feature extractors were applied on the orig-
inal set of features, for reducing the dimensionality of the input data: a sparse denoising AE and the
PCA algorithm. Comparing the results with those obtained without applying a feature extraction step
we observed an improvement in the predictive performance of NowDeepN achieved without a prior
feature extraction step. The relevance of the features is validated by the fact that a dimensionality re-
duction technique (AE/PCA) applied prior to the classification using NowDeepN does not improve
the learning performance.

We started the comparison between NowDeepN and related work by comparing our model to
a simple baseline model, the linear regression (LR). For an exact comparison, the data model used
for NowDeepN was used for the LR model as well. By applying the LR on the dataset an overall
RMSE for the non-zero values (RMSEnon−zero) of 6.094 was obtained.

We found four approaches having similar goal to our paper, that of predicting the future values of
the radar products’ values based on their historical values. The approaches from the literature which
are the most similar to ours are those proposed by Yan Ji [Ji17], Han et al. [HSZ+17, HSZ19] and
Yan et al. [YJM+20].

The results reveals that overall, in 71% of the cases (5 out of 7 comparisons), the comparison is
favorable to NowDeepN . Our proposal is outperformed only by the work of Yan Ji [Ji17] which
reported a better HR and a maximum RMSE slightly better than ours.

Tran and Song [TS19] tackled the precipitation nowcasting problem from a computer vision per-
spective, by applying certain thresholds on the reflectivity values (5/20/40 dBZ). The comparative
results highlight that NowDeepN obtained better results than the model proposed by Tran and
Song [TS19] in 77.7% of the cases (7 out of 9 comparisons). We note the good performance of
NowDeepN at higher values for the reflectivity threshold, which indicate the ability of our model to
detect moderate and heavy precipitation and medium and large hail.

We introduced in this section a supervised learning based regression model NowDeepN which
used an ensemble of deep artificial neural network for predicting the values for meteorological prod-
ucts at a certain time moment based on their historical values. NowDeepN was intended to be a
proof of concept for the feasibility of learning to approximate a function between past values of the



CHAPTER 3. DEEP LEARNING FOR WEATHER NOWCASTING 23

radar products extracted from radar observations and their future values.

3.2 RadRAR: A relational association rule mining approach for now-
casting based on predicting radar products’ values

Relational Association Rules (RARs) [SCC06] extend the classical association rules by capturing re-
lationships between values of attributes characterizing a data set. In our original paper [CMC19b] we
are investigating, as a proof of concept, the suitability of applying RAR mining for distinguishing be-
tween severe and normal weather conditions, with the aim of using these predictions for nowcasting.
In addition, we aim to point out the relevance of the RARs mined from radar data, from a mete-
orological viewpoint. Thus, we are proposing a new one-class classifier, named RadRAR (Radar
products’ values prediction using Relational Association Rules) for convective storms nowcasting
based on radar data.

The radar data used in our experiments is provided by the WSR-98D weather radar [NOA18].
In the current study we are focusing on a single meteorological product, namely R01. We decided
to select R01, as it is one of the most relevant radar products used by operational meteorologists for
issuing nowcasting warnings.

Accordingly, we assign to each location l from the analysed map (data grid) at timestamp t a high-
dimensional vector whose elements are the values of R01 for the locations situated in a neighborhood
of l at timestamp t-1. We note that the label of the d2-dimensional instance previously described is
the value of R01 for the geographical point l at timestamp t.

We note that a value of 13 has been selected for the diameter of the neighbourhood, since it
represents about 5 kilometers in the physical world and this distance commonly determines small
gradients of the meteorological parameters. The reflectivity values above a certain threshold (35
dBZ is generally used [HSZ19, DW93]) are indications about potential moderate to heavy storms
occurrences. Thus, we are diving the data set D in two classes of instances: the positive class (also
denoted as “+”) represents the instances labeled with R01 values higher than 35, while the negative
class (denoted as “-”) represents the instances labeled with R01 values less or equal to 35. Thus we
have 2 data sets, D+ and D− for positive and, respectively, negative data.

We propose RadRAR, a one-class classifier which is trained on D− and will learn to predict,
based on the neighborhood of a certain location at time t, whether the radar echo value at time t+1
will be higher than 35dBZ. The prediction is based on estimating the probability p− that a certain
169-dimensional instance belongs to the “-” class.

The classification process we propose takes place in two phases: training and testing. During the
training, a classification model consisting of a set of interesting RARs from the set D− will be built,
and during testing, the model built during the training will be applied for deciding the class (“+” or
“-”) for a testing instance unseen during

For evaluating the performance of the RadRAR model, it is tested on data sets containing both
positive and negative instances which are completely disjoint from the training data set. For a testing
data set, the confusion matrix consisting of four values is computed: True Positives – TP, True Neg-
atives – TN, False Positives – FP and False Negatives – FN. As evaluation measures, we are using
four measures computed based on the values from the confusion matrix, used in supervised learning
for assessing the performance of binary classifiers: sensitivity or probability of detection (POD =

TP
TP+FN ), specificity or true negative rate (Spec = TN

TN+FP ), false alarm rate (FAR = FP
TP+FP ) and

Area Under the ROC Curve (AUC = POD+Spec
2 ). Additionally, we also consider the Critical success

index (CSI) measure which is usually used for convective storms nowcasting based on radar data –
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CSI= TP
TP+FN+FP . All the previously mentioned evaluation measures range in [0, 1]. Excepting FAR

which has to be minimized, higher values for all other evaluation measures indicate better classifiers.
The case study used in our experiments is the radar data provided by the radar for the 5th of June

2017, a day with moderate atmospheric instability manifested through thunderstorms accompanied
by heavy rain and medium-size hail. In the area from the central Transylvania region there were two
distinct episodes with intense meteorological events in June 5, 2017. We restrict ourselves to a small
size experiment, as our aim is to establish a proof of concept for the relevance of using RARs for
nowcasting based on radar data. The data used for training RadRAR is collected at approximately
14:37 UTC (in the middle of the severe event). The data sets D+ and D− collected from the raw
radar data consist of 1321 and 19991 instances, respectively.

In our experiments, two possible relations between the features’ values are considered in the
mining process: R = {≤,≥}. After the relations were defined, the set RAR− of interesting relational
association rules were discovered from D−.

The approaches from the literature which are the most similar to ours are those proposed by Yan
Ji [Ji17] and Han et al. [HSZ+17, HSZ19]. For better highlighting the effectiveness of RadRAR

as an anomaly detector, we replaced it with an autoencoder (AE). The AE had been built using the
Keras framework in Python, with Tensorflow backend.

Analysing the results we observed that our RadRAR proposal provides better results for the eval-
uation measures in 8 out 9 comparisons. From the results we may conclude that the RARs uncovered
within the radar data are effective for predicting if the radar echo values are higher than 35dBZ, obtain-
ing performances which are generally better than the results from the literature [HSZ19, HSZ+17].

As a proof of concept, we introduced in this section a novel one-class classification model RadRAR

based on uncovering interesting relational association rules for estimating if the radar echo values
will be higher than 35dBZ. Thus, based on the predicted values, the approach is useful for discrim-
inating between normal and stormy weather conditions. Real radar data provided by the Romanian
National Meteorological Administration have been used for assessing the performance of RadRAR.

3.3 XNow: A convolutional deep learning technique for nowcasting
based on radar products’ values prediction

We introduced in our original paper [SCIM20], a convolutional neural network model XNow for
short-term prediction of radar data by adapting the Xception architecture [Cho17] mainly used in the
literature for image processing. Experiments performed on real radar data highlight that the proposed
deep learning model is able to accurately predict the value for the radar data at a certain time moment
in a certain geographical region, based on their historical values.

The exported radar data is stored as two-dimensional matrix (grid) in which each point correspond
to a geographical location and contains the value of a radar product at a given time moment. Thus, a
sequence of matrices is available, each matrix corresponding to a certain time stamp t and a certain
meteorological product p (e.g. R01).

The next step applied before building the XNow deep learning model is to apply a preprocessing
step on the sequences St for correcting some erroneous values recorded by the radar. In order to avoid
these errors we decided to replace them with an estimation. The estimation is a weighted average of
the values in a neighbourhood (a 13 by 13 matrix with the point to estimate at the center) where the
weight is the Euclidean distance between the neighbour and the point.

The target function in our learning problem is the mapping f such that for a certain data grid Gt,
XNow will have to provide an estimation of the 3D data grid Gt+1 containing the radar products’
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values at time t + 1. For achieving the learning task, XNow model will be obtained by training an
adapted Xception architecture. A training sample is in the form (Gt, Gt+1).

The original Xception architecture abstracts within each layer its input, such that in the end we
get a compact representation of it from which a single value, representing the prediction, is obtained.
Nevertheless, our goal is to reconstruct the original input, similar to the behavior of an encoder-
decoder architecture, while still preserving the effectiveness of Xception as a convolutional neural
network. In this regard, we consider a slightly modified version of the classical version, by substitut-
ing its final layers.

We will use 70% of the data set for training XNow, 20% for the model validation and the remain-
ing of 10% will be further used for testing. For evaluating the performance of XNow, the RMSE
value is computed over the samples of the previously gathered test data. The radar data used in our
experiments contains a lot of zero-valued data points, consequently, the RMSE value for the non-zero
values, denoted by RMSE nonzero, will be provided, as well.

The experiments were performed using data provided by the Romanian NMA and represents
the data collected by the radar in 10 days. The days were selected such that in some days there
were significant meteorological events while in some other days there were almost no meteorological
activity and some in between, so as to resemble as much as possible to typical summer weather. The
data comes from a radar situated in central Transylvania and provides data for a large area.

The results revealed that RMSE values are slightly higher for the non-zero values than for all the
values. However, the value of 2.282 obtained for the average RMSE nonzero, when normalized we
obtain a normalized root mean squared error of about 3%, highlighting a very good performance of
XNow.

For better highlighting the effectiveness of XNow (i.e. the enhanced Xception model), experi-
ments were performed using the classical Xception architecture, as well. The average RMSE values
computed over the multiple runs of XNow were computed. Analysing the results we observed that
XNow provides better RMSE values than the classical Xception architecture on the cleaned data -
we observe an almost 2 times improvement on the average RMSE nonzero. Moreover, there is a
small standard deviation of the RMSE values over the multiple runs and this conducts to a small CI,
highlighting the stability of the XNow model.

The approach from the literature which is the most similar to ours is that proposed by Yan Ji
[Ji17]. The exact RMSE values obtained in estimating the values for R are not provided, but only
the hit rate defined as the percentage of cases in which the absolute error is less or equal to 5. The
minimum, maximum and average hit rate values are reported by Yan Ji. Starting from the provided
hit rates, we deduced the inferior limits of the range of the RMSE values. This limit is quite low
(being obtained when all values were exactly predicted) and thus it is hard to deduce an accurate
approximation of the RMSE values. Our best XNow model obtained a better performance than the
ANN proposed by Yan Ji [Ji17].

We have introduced in this section a convolutional neural network model XNow for predicting,
in a supervised learning manner, the future values of the radar products, with the aim of assisting me-
teorologists in decision making processes (e.g. providing nowcasting warnings). Experiments were
performed on real radar data provided by the Romanian National Meteorological Administration. For
highlighting the effectiveness of XNow, it was compared to the classical Xception architecture and
the obtained results were also compared to the current performance of existing solutions. An average
normalized root mean squared error less than 3% was obtained, highlighting a very good performance
of the XNow regressor.



Conclusions

The aim of our PhD research, as per the title of this thesis, was to develop new machine learning
models, both supervised and unsupervised, to be used in weather nowcasting contexts.

For the unsupervised part of our research we have chosen the Self Organizing Map (SOM) model
to study. We developed two data models for the radar data and techniques to apply the SOM on
the data. The first model is based on the goal of uncovering how the radar products evolve during
consecutive radar scans. By interpreting the resulting U-matrices we have shown that radar product
values change slowly over time, except some specific moments related to severe weather phenomena.
Our second data model was based on the goal of studying the relationship between the value of one
radar product at a location at a time moment and the values of the radar products in a neighbourhood
of that location in previous time moments. Interpreting the SOM results with this data model we
have shown that for similar values of one product, the neighbourhoods at previous time moments are
similar. We have also created an evaluation measure – the Average Similarity Error – that shows that
the results of our SOM experiments are significant.

Our research on the supervised learning part of the project culminated with the development of
three new machine learning models for weather nowcasting: NowDeepN, RadRAR and XNow. We
developed NowDeepN, an ensemble of 13 neural networks, each predicting a different radar product at
a specific location based on all the radar products in a neighbourhood of that location. We have shown
that NowdeepN performs quite well, compared to other models in the literature, the comparison being
favorable to our model in 5 out of 7 cases. When developing RadRAR we had the goal to classify if
the value of a radar product will be above or below a threshold. RadRAR first learns rules from data,
separated between the 2 classes then, based on the mined rules, it can predict whether the value of R01
at a location is above or below the 35 dBZ threshold, based on the values of R01 in a neighbourhood of
that location at the previous time step. We have shown that RadRAR is quite performant at this task,
comparing favorably with other models from the literature. The last supervised machine learning
model we developed was XNow. XNow is capable to predict all the data for one time step based on
the data at the previous time step. We have empirically shown that the model has very good results,
slightly outperforming the other models in the literature.

In the future we aim at continuing the development of these models. For RadRAR we envision
making improvements to the rules mining algorithm and optimizing the data from which to extract
the rules and number of rules. For continuing our efforts for creating better machine learning models
for weather nowcasting, our main focus will be on the XNow model, as it had the best results out of
the three models and also it is the most scalable. So, in future research projects, we plan to extend the
XNow model to be able to predict for more than one time step in the future. We also envision using
multiple previous time steps and increasing the training data from days to weeks or months .
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