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Abstract

Almost two decades have passed since the discovery of graphene. Following this, two-dimensional

systems have received a great deal of attention, resulting in the publishing of a myriad of re-

search papers on them. However, because of their theoretical and technological potential, they

still need a great deal of attention. One of the aims of this thesis is to explain certain magnetic

measurements done on fluorinated graphene. This is achieved by working in the Born and

T -matrix approximations to analyse the static spin susceptibility of gapped graphene systems

in the presence of disorder with weak impurity scattering. The results obtained achieved a

qualitative agreement with the experimental data. Another model for the study of the static

spin susceptibility proposes graphene systems in the presence of disorder with strong impurity

scattering (the unitary limit), while considering a small energy gap. This model is proposed

as a test for the unitary limit in disordered graphene systems, alongside with our models for

the spin-lattice relaxation time and electronic heat capacity, respectively. In all three studies

done while working in the unitary limit, we noticed certain behaviour changes that depend on

the impurities concentration. Besides graphene, the thermodynamic properties of transition

metal dichalcogenide superconductors on a substrate have also been studied. The effects of a

substrate on the superconducting energy gap, the specific heat and specific heat jump, and the

critical field are analysed.

Keywords: Graphene, Disorder, Energy gap, T-matrix approximation, Born Ap-

proximation, Unitary limit, Critical disorder, Spin susceptibility, Spin-lattice re-

laxation, Electronic heat capacity, Transition metal dichalcogenides, Substrate,

Massive gapped spectrum, Superconducting gap, Specific heat, Critical field.
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Chapter 1

Introduction

Graphene is the first two-dimensional material to have ever been synthesized and it is a one atom

thick layer of carbon atoms arranged in a hexagonal, honeycomb-like, lattice [1]. The unusual

properties of graphene are owed to the Dirac-like band structure, its valence and conduction

bands meet in six points at the corners of the Brillouin zone [2,3], divided into the non-equivalent

points labeled K and K ′, also named Dirac points [4]. The linear energy dispersion around

the Dirac points gives rise to the many interesting physical phenomena present in graphene

systems [4, 5]. In spite of its outstanding properties, pristine graphene is not well suited for

many practical application due to its zero bandgap. At the same time, one has to consider

that fabricated graphene samples are not free of structural defects and that the properties of

graphene can be affected by the presence of disorder. The density of states is one of them and

it, in turn, affects many other physical properties. Ever since graphene was synthesized, a great

many theoretical studies have been published on the problem of disorder in graphene systems

with the purpose to explain the results that were obtained experimentally [4–10]. To achieve

this, the authors used different approximations, such as: the Born approximation, the self-

consistent Born approximation, the T -matrix, the self-consistent T -matrix approximation, and

the unitary limit. The gapped energy spectrum was accounted for in order to obtain a better

analysis of the anomalous growth of thermoelectric power in graphene [11] (massive gapped

spectrum). In order to explain several spectroscopic measurements [12], the phenomenological

massless gapped spectrum was introduced [13]. The latter reconciles the gapped nature of the

energy spectrum and the massless character of the particles in graphene.

Not too long ago, the magnetic measurements conducted on fluorinated graphene revealed

1



2 Chapter 1. Introduction

strong magnetism in these graphene-based structures [14]. Thus, in order to analyse, in a

qualitative way, the static spin susceptibility, that was measured in fluorinated graphene, we

have considered a gapped graphene system and worked in the Born and T -matrix approxima-

tions [15].

By considering the unitary limit (strong impurity scattering), Ostrovsky et.al. [7] managed to

obtain results that compared nicely with the experimentally observed linear electron concen-

tration dependence of the conductivity of graphene [16, 17]. By working in the unitary limit,

we proposed to use the temperature dependence of the static spin susceptibility to reveal the

presence of scattering mechanisms [18].

Nuclear Magnetic Resonance (NMR) is an experimental technique with far reaching applications

in both scientific areas and industry. Strong deviations from the NMR parameters in metals

were reported in systems formed of graphene monolayers [19,20]. The differences arise from the

Fermi contact term in the electron-nuclear spin interaction that differs significantly from the

case of standard metals and the presence of an energy gap has important effects as well. Having

this in mind, we proposed to study the spin-lattice relaxation time in the case of disordered

graphene systems with strong scatterers (unitary limit) [21].

When considering possible technological applications, the thermal properties of the materials

should be taken into account. As such, it is of interest to study the thermal properties of

graphene (e.g., heat capacity and thermal conductivity) [22, 23]. Although in graphene the

heat capacity is dominated by the contribution from the phonons, one shouldn’t rule out the

importance of the electronic heat capacity. As such, we proposed to study the electronic heat

capacity of graphene is the presence of disorder, while working in the unitary limit [24].

The first synthesis of monolayer graphene from bulk graphite was followed by a massive in-

crease in the number of published articles on graphene. This growing interest in graphene and

its interesting physical properties gripped the scientific community and reinvigorated the re-

search done on two-dimensional materials. Transition metal dichalcogenides are a class of quasi

two-dimensional layers, bonded by weak van der Waals forces, that have a rich history spanning

back over 50 years [25] and has benefited from this boom. At low temperatures, these materials
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exhibit s-wave superconductivity and the superconductivity states coexist with charge density

waves [26]. Other studies have revealed similar properties to those of high-temperature super-

conductors, such as the lifetime behaviour of the quasi-particles and the linear dependence of the

normal state resistivity with temperature. On the other hand, in the region where the charge

density waves gap vanishes, Dirac fermions quasi-particles are created. The superconductiv-

ity is then given by these particles that form acoustic phonon mediated Cooper-pairs [27, 28].

They resemble to a degree the superconducting properties in graphene [29, 30]. Following the

method given in Ref. [28], we proposed to analyse several thermodynamic properties of the

superconducting transition metal dichalcogenides grown on a substrate. In the presence of a

substrate, an asymmetry in the Hamiltonian occurs. This is liable to lift the degeneracy at

the Dirac points and as a consequence, a non-superconducting energy gap E0 opens in the

energy spectrum [20, 31]. Close to the Dirac point, this leads to the massive gapped spectrum

and this is the case that we proposed to be studied, instead of the case of massless gapped

spectrum [13] used in Ref. [32] to discuss the gap equation, the critical temperature, and the

Geilikman-Kresin ratio [33, 34].



Chapter 2

Disordered graphene systems with

weak scatterers

In this chapter we will start with a short review on graphenes and then summarise our findings

on the static spin susceptibility for disordered graphene systems.

2.1 Graphene

Carbon is a non-metallic tetravalent chemical element that is a key component of life as we know

it and the focus of organic chemistry. One of carbons allotrope, with planar sp2 hybridization,

is graphene, a two-dimensional structure disposed in a hexagonal, honeycomb-like, lattice that

can be considered as two interlacing triangular lattices as shown in Fig 2.1.1.

Although graphene was first synthesized almost two decades ago by Novoselov et al. [35,36] (in

2010 Andre Geim and Konstantin Novoselov received the Nobel prize for their groundbreaking

experimental work regarding graphene), it has been studied ever since due to its remarkable

properties, the band structure was first calculated in 1947 [2] using the tight-binding approx-

imation in order to explain the properties of graphite, a material that was being used in the

nuclear reactors of those times; graphene still being a purely theoretical structure as theory

predicted that one- or two-dimensional crystalline long-range order was not possible [37, 38].

About a decade after Wallace’s studies came the Slonczewski-Weiss-McClure (SWM) band-

structure model of graphite [39, 40] that described the electronic properties in graphite and

was able to successfully describe the experimental data. A problem of this model was the

assignment of the electron and hole states in the material, a problem that was solved in 1968

following laser magnetoreflection experiments on pyrolytic graphite [41], that analysed the type

4



2.1. Graphene 5

BA

Figure 2.1.1: The graphene honeycomb lattice, A and B are the carbon atoms belonging to the
considered triangular lattices.

of carriers at the K points and established their currently accepted location. A major problem

of the SWN model was that the band-structure description was unable to describe the van der

Waals-like interactions that arise between the graphene layers, but the model was revised in

2003 [42]. Research into this matter is still being conducted [43–45] and although the values

obtained by density functional theory are quite scattered, as seen clearly in these comparative

studies [46,47], experimental results are beginning to appear [48,49]. Even though these prob-

lems are lacking in the single-layer graphene crystal, in the multilayer case they are present

and of interest as the layered structures can have considerably different electronic properties.

Granted that these layered structures are just as interesting, but for this thesis they were only

a digression.

The low-energy quasiparticle excitations represents one of the most notable feature of graphene

as they are chiral, massless, Dirac fermions that follow a linear dispersion around the Dirac

points. This aspect is responsible for many interesting phenomena, as they imitate the massless

fermions described by quantum electrodynamic, with the speed of light c being considered to be

the Fermi velocity vF , which is about 300 times smaller. This leads to the presence of quantum
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electrodynamic physics in graphene [50]. For the curious reader, more in depth reviews from a

theoretical and experimental point of view of graphene can be found in Refs. [4, 51].

2.2 Spin susceptibility of disordered graphene systems

The Green’s functions do not work so well when used to describe the scattering of a particle

from a single impurity. The changes of a particle’s energy is calculated from the interactions

by using Dyson’s equation, in which the self-energy of a particle contains the energy that stems

from the interactions between the particle and environment. In a very large system, a single

impurity would induce a change of the particles energy that is inversely proportional to the

system’s volume V . With the addition of Ni impurities (with Ni/V = ni as V → inf), one

could change the particles energy. By doing this, the energy of the particle becomes a function

of the impurities concentration ni. To study the isolated impurity case, one has to find the

self-energy for ni and then take the limit ni → 0 [52].

ni

U0 U0

G

(a)

ni

U0 U0

G

ni

U0 U0

G G

U0

ni

U0 U0

G G

U0 U0

G

(b)

Figure 2.2.1: The Feynman diagram for the (a) Born approximation and (b) T -matrix approx-
imation of the self-energy.

In Fig. 2.2.1 we have the Feynman diagram for the Born approximation and T -matrix approxi-

mation of the self-energy. The Born approximation holds true for small impurities concentration

and no multiple scattering events. In this case of the T -matrix approximation, one has to con-

sider the summation of the entire series of Feynman diagrams with non-intersecting impurity

lines concerning scattering, using the bare Green’s function. The density of states was calcu-

lated using the self energy. The appropriate density of states that were obtained, were then

used to determine the static spin susceptibility for the approximations considered.

In Fig. 2.2.2, we plot the temperature dependence of the spin susceptibility for the Born ap-

proximation case using the appropriate density of states and self-energy. We chose to consider
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(a) (b)

Figure 2.2.2: The spin susceptibility as a function of temperature, in the Born approximation,
for (a) ∆ = 0.11 eV (line) and ∆ = 0.13 eV (dashed-dotted-line), using εc = 5 eV, µ = 0.1 eV,
γB = 0.05 and (b) γB = 0.05 (line) and γB = 0.07 (dashed-dotted-line), using εc = 5 eV,
µ = 0.1 eV, ∆ = 0.13 eV.

the chemical potential µ as a parameter, but, this is an assumption that doesn’t hold true for

the entire temperature interval. However, in our case, where the temperatures are lower than

300K, approximating the chemical potential with a constant value is acceptable if we consider

the extrinsic graphene case and low disorder (see Refs. [10, 53]). For the clean case and in

the extrinsic limit, we found that µ(T = 200 K) ' 0.75EF , which means that our numerical

estimations with a constant value approximation for the chemical potential (µ ≈ EF ) are less

reliable close to the room temperature. However, the slight decrease of the chemical potential

in this temperature range can explain the plateau structure in the temperature dependence of

the static spin susceptibility from the experiments [14]. In the presence of disorder, it is very

difficult to estimate the chemical potential because of the complicated form of the density of

states that we found. This estimation would need a separate investigation, using numerical

methods. However, in the limit of low disorder we assumed the above approximation, consid-

ering that the effect of the impurities is small. Due to the symmetric form of the density of

states, these results do not change if µ→ −µ (holes contribution). In Fig. 2.2.2(b) we analyse

the effect of weak disorder on the temperature dependence of the spin susceptibility. This effect
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is very small as long as we consider the weak disorder case only, where γB is small. The weak

disorder assumptions means that the impurities concentration is small, thus, the disorder can

be considered as Gaussian and γB � 1 (see Refs. [7, 9]). For example, if we take the impurity

density ni ∼ 1011 cm−2 and the potential strength U0 ∼ 1 KeVÅ
2
, the strength of disorderness

is evaluated to γB ∼ 0.1 [9]. In our estimations we assume an impurity density lower than

1011 cm−2 and the strengths of order for γB = 0.05 and γB = 0.07 are considered as reliable.

Figure 2.2.3: The spin susceptibility as a function of temperature, in the T -matrix approxima-
tion for µ = −0.1 eV (line) and µ = 0.1 eV (dashed-dotted-line), using εc = 5 eV, γB = 0.05,
∆ = 0.13 eV, u = 1 (eV)−1.

In the T -matrix approximation case, again, the distance between the energy-gap and the chem-

ical potential is important and the density of states is no longer symmetric (in energy) and the

temperature dependence of the spin susceptibility differs for the cases when µ > 0 and µ < 0,

as one can see from Fig. 2.2.3. Here, the effect of weak disorder on the temperature dependence

of the spin susceptibility was found to be small.

Even simplified, our model still revealed additional information on how different parameters

influence the temperature dependence of the static spin susceptibility (the authors in Ref. [14]

used only a simple exponential temperature dependence in the presence of a gap). As such, the

first important information present in our model is on the effect the position of the chemical

potential relative to the gap has on the temperature dependence of the static spin susceptibil-
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ity. This effect produces important modifications in the temperature dependence of the spin

susceptibility in both the Born and the T -matrix approximations. This was to be expected, as

at finite temperatures, the relative position of the chemical potential to the gap strongly influ-

ences the number of electrons (holes) in the system. The second information is how the weak

disorder influences the temperature dependence of the static spin susceptibility. The effect of

weak disorder has in the Born approximation, as well as in the T -matrix approximation, is a

small one (with small differences between the approximations, as mentioned). Even though

we have achieved a qualitative agreement between theory and experiment, in the next chapter,

among other properties, we will summarise our investigations on the static spin susceptibility,

while considering the opposite case of weak scatterers.



Chapter 3

Disordered graphene systems with

strong scatterers

3.1 Introduction
We’ve seen in the previous chapter that we have managed to achieve a qualitative agreement

between theory and experiment for the static spin susceptibility. In this chapter we will sum-

marise our studies on the static spin susceptibility, the spin-lattice relaxation parameter T1,

and the electronic heat capacity of disordered graphene systems while considering strong im-

purity scattering (i.e., the unitary limit U0 →∞). The study conducted by Ostrovsky et.al. [7]

has shown that the unitary limit can be successfully used to describe experimental data, as

they managed to obtain results that compared nicely with the experimentally observed linear

electron concentration dependence of the conductivity of graphene [16,17].

3.2 Spin susceptibility as a test of unitary limit in

disordered graphene systems
The static spin susceptibility of graphene systems was analysed in the presence of disorder and

a small energy gap. We looked into the effects the temperature and impurity concentration

have on the static spin susceptibility. We considered the scattering mechanism in the unitary

limit to be of main importance and a small energy gap of secondary importance. To achieve

our goal, we have first calculated the electron’s self-energy while working in the unitary limit

and considering a small gap. Those results were then used to calculate the density of states,

with the help of which we determined the static spin susceptibility.

In order to find out the electron’s self-energy, we considered disorder induced by randomly

10



3.2. Spin susceptibility as a test of unitary limit in disordered graphene systems 11

distributed impurities. The self-energy Σ in the presence of impurities is given by the complete

impurity’s T -matrix [7, 9, 54]. Usually, the self-energy represents the contribution to the par-

ticle’s energy due to the interactions between the particle and the system (here the scattering

events). In the presence of impurities, momentum eigenstates are no longer energy eigenstates.

The inverse lifetime is the energy uncertainty of a momentum eigenstate and the mean free path

is the momentum uncertainty of an energy eigenstate. As a consequence, the electron Green’s

function, in the real space, decays exponentially (instead of a power law behaviour for a clean

system). U0 corresponds to the Fourier transform of the impurity potential, whose range can

be long or short (unscreened or screened). We considered short-range impurities which result

from localized structural defects in the honeycomb lattice. These impurities are roughly on

the length scale of the lattice constant, when it is acceptable to approximate U(~k) = U0, a real

constant. Point defects can nucleate a few electronic states in their vicinity, which leads to a

change in the electronic density and to an enhancement of the density of states at the Dirac

Point, in contrast to the clean case where the density of states vanishes.

The chemical potential will vary slightly in the interval of temperatures that goes from T = 0 K

and up to room temperature, in our case µ = EF for T = 0 K and µ = 0.7EF for T = 300 K,

where EF is the Fermi energy. Taking this variation into account, in Fig. 3.2.1 we plot the

temperature dependence of the static susceptibility for two different dimensionless concentration

of impurities, η < ηc and η > ηc. Here, ηc is a critical value of the impurities concentration that

we determined analytically. The spin susceptibility has finite, non-zero, values at T = 0 K

due to the fact that in disordered graphene, near the Dirac point, the density of states is

enhanced by impurities instead of being suppressed as |E| (E → 0), a result valid for the clean

case. In Fig. 3.2.2 we plot the temperature dependence of the spin susceptibility for several

values of the dimensionless concentration of impurities. We observe two different behaviours.

If the degree of disorder is less than a critical value ηc (for the values used ηc = 0.031), the

temperature dependence of the spin susceptibility starts from a single point, that is mainly

determined by the Fermi energy. If the degree of disorder is enhanced (η > ηc), the behaviour

at T = 0 K is different, being disorder dependent. This behaviour remains valid even for the

case when the value of the energy gap tends to zero. This kind of temperature dependence of
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Figure 3.2.1: Static spin susceptibility as function of temperature for: η = 0.035 (η > ηc), and
η = 0.025 (η < ηc), with: ∆ = 0.05 eV ; EF = 0.1 eV ; Ec = 1 eV

Figure 3.2.2: Static spin susceptibility as function of temperature for several values of η (with an
incremented of 0.002). The lower curve corresponds to η = 0.023, the upper curve to η = 0.035,
and the dotted curve to the critical disorder ηc = 0.031, with: ∆ = 0.05 eV ; EF = 0.1 eV ,
Ec = 1 eV .

the static spin susceptibility could be an additional test to the presence of strong scatterers in

graphene systems. However, the experimental results from Ref. [14], concerning the temperature

dependence of the static spin susceptibility, are rather closer to the Born approximation (weak

scatterers, Gaussian disorder) in the presence of an energy gap than to the unitary limit; i.e, the

analysis of the experimental results we did in the previous chapter Ref. [15], where we pointed
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out the importance of the energy gap rather than the small influence of disorder. However,

in Ref. [14] the presence of disorder is presumed to be accidental rather than engineered by

the authors. The model we developed here captures the important (almost linear) increase of

the spin susceptibility with temperature, which is a signature of the presence of Dirac fermions

through the appropriate density of states (see Ref. [6]).

If the unitary limit is indeed important, one could observe this behaviour in future experimental

measurements by carefully engineering the presence of disorder in graphene systems. The plot

of the magnetic susceptibility as a function of T reveals the presence of the Dirac fermions

through the linear part of the plot and that the graphenes static spin susceptibility increases

with both temperature and number of impurities. This seems to be a general result which

appears even for finite U0 [6].

3.3 Spin-lattice Relaxation Time in Disordered

Graphene Systems

Nuclear Magnetic Resonance (NMR) is an important experimental technique for the scientific

and industrial areas. The phenomenon occurs when on the polarized nuclei of the sample, by

a strong magnetic field, is applied another weak perpendicular oscillating magnetic field at the

resonant frequency that induces an energy transition in the nuclear system. Then the nuclear

magnetic relaxation is studied and, usually, it is caused by magnetic and quadrupole interactions

between a nuclear magnetic moment and the surrounding electrons [55, 56]. The spin-lattice

relaxation process, when the nuclei interact with the lattice to return to a lower energy level,

is characterised by the spin-lattice relaxation time (in an usual metal 1/(T1T ) ∼ const). In

graphenes, it has been reported that the NMR parameters have strong deviations from those in

metals [19,20]. The difference of the Fermi contact term in the electron-nuclear spin interaction

between standard metals and graphene is the reason these differences arise; the presence of an

energy gap was reported to have important effects as well. The NMR parameters for three-

dimensional Dirac electron systems in the presence of the orbital and quadrupole interactions

have also been studied [57]. Here we will summarise our analysis of the spin-lattice relaxation

time of graphene systems in the presence of disorder with strong impurity scattering (unitary
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Figure 3.3.1: Spin-lattice relaxation rate as function of disorder, for: TF = 1000 K, Tc =
10000 K, and for: T = 10 K (line), T = 30 K (dashed line), T = 50 K (dotted line)

limit), but this time we will consider a zero-gapped system.

The density of states was obtained by following the same steps as in the previous section. Here,

the chemical potential will vary slightly in the interval of temperatures that goes from T = 0 K,

up to room temperature (µ = EF for T = 0 K and µ = 0.7EF for T = 300 K), where EF is the

Fermi energy. Since we are interested in the effects of disorder on the spin-lattice relaxation

time at low temperatures, we will approximate the chemical potential to µ ' EF .

In Fig. 3.3.1 we plot the spin-lattice relaxation rate as a function of disorder η, for three (low)

temperatures. As long as disorder is very small, the spin-lattice relaxation rate reproduces the

Fermi-gas behaviour. This result is in agreement with previous studies [19, 58]. However, in

our model, even in the weak disorder limit, there is a critical value of the disorderness ηc that

represents the threshold between the Fermi-gas (metallic) behaviour and a strong non-Fermi

behaviour. The critical value is around ηc ' 0.03 for the parameters we used, and it is slightly

dependent on temperature.

Our findings show that a very small amount of disorder leads to a Fermi-gas like behaviour

of the studied relaxation rate. This behaviour changes drastically once the dimensionless con-

centration of impurities increases over a critical value ηc. If one would engineer an experiment
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where the presence of disorder in the graphene system is carefully designed, then one could

determine if the unitary limit is acceptable to describe the physical properties of graphene sys-

tems. Alongside the study we did on the static spin susceptibility [18], the results we obtained

in this study could the used as an alternative test for the importance of the unitary limit in

graphene systems and, thus, complement the previous studies on the conductivity [7], thermal

and electric response [59].

3.4 Electronic heat capacity in disordered graphene

systems

The constant interest for new materials that can be used in technological applications implies a

need for the experimental and theoretical studies of such materials. This includes the thermal

properties, as they can be of primary importance in certain applications. Graphene is such a

materials and it is of interest to study its thermal properties (e.g., heat capacity and thermal

conductivity) [22,23]. Close to the Dirac points, the energy dispersion of a graphene monolayer

has a linear k dependence that at low temperature leads to an electronic heat capacity that

is quadratic in temperature [60]. The dominant contribution to the heat capacity in graphene

comes from the phonons, but the contribution from the electrons could be important. In the

following we will summarise our findings on the electronic heat capacity of graphene systems

in the presence of disorder.

The density of states used to determine the electronic heat capacity was the one determined in

the previous section. In Fig. 3.4.1 we plot the scaled electronic heat capacity C(T, η)/C0 (with

C0 = k3
BT

2
c /(πv

2
F ), where kB is the Boltzmann constant, vF is the Fermi speed, and Tc = Ec/kB

with Ec being the energy cutoff) as a function of temperature for impurities concentration

η = 0.003 and for the clean case. For the clean case we obtain C(T, η = 0) ∼ T 2, an expected

result that is in agreement with Refs. [60–62] for the non-interacting case. On the other hand, in

the presence of disorder and at low temperatures, the behaviour of the electronic heat capacity

changes to C(T, η) ∼ T . In order to obtain the analytical forms for these results, we introduced

the varying parameter x = (Tc/T )
√
η/ ln(1/η). The first case we considered was when x� 1.

This case allowed us to take in the final result the limit η → 0, which corresponds to the clean
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Figure 3.4.1: The scaled electronic heat capacity as a function of temperature is plotted with
line for the clean case (η = 0) and dash-line in the presence of disorder (η = 0.003), for
Tc = 10000 K

case. For very small values of η, we obtained:

C(T, η) ' 9ζ(3)k3
BT

2

πv2
F

[
1− 1

54πζ(3)

(
Tc
T

)4
η2

ln η

(
1 +

3π

4 ln η

)]
(3.4.1)

which reduces to:

C(T, η = 0) = 9ζ(3)C0

(
T

Tc

)2

(3.4.2)

when η = 0, in agreement with Ref. [60]. However, due to the fact that f(η) = (η2/ ln η)(1 +

3π/(4 ln η)) < 1 for small η, the presence of disorder will enhance the electronic heat capacity,

even for very small disorder. This enhancement is very small and appears due to the fact that

a few electron states can nucleate on the impurities, thus enhancing the density of states. We

should mention that f(η) < 1 for values of η between 0 and e−3π/4 ' 0.095. For this upper

limit, if we take Tc ∼ 10000 K and T ∼ 300 K (room temperature), the parameter x ' 6.7.

One concludes that Eq. (3.4.1) remains valid for degrees of disorder much lower than η = 0.095,

to remain in agreement with the consideration x� 1. In the opposite case, we consider x� 1.

This case corresponds to the presence of disorder (with η finite and positive) and Tc/T � 1
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Figure 3.4.2: The scaled electronic heat capacity as a function of temperature is plotted for the
extrinsic disordered graphene using the parameters: Tc = 10000 K, TF = 1000 K, and η = 0.003

(low temperatures). The electronic heat capacity will be:

C(T, η) ' π

3
C0

√
−η ln η

T

Tc
(3.4.3)

in agreement with the plot from Fig. 3.4.1. The electron states that at low temperatures

nucleate on impurities enhance the electronic heat capacity. As the temperature increases,

many of these states are washed out by the rising of temperature and the disordered electronic

heat capacity becomes comparable to the clean case.

Now we will consider the extrinsic graphene case, when µ 6= 0, and the Fermi temperature

TF ∼ 1000 K. In this case, the electron heat capacity has a temperature dependent chemical

potential. However, for the values we used here: Tc ∼ 10000 K, TF ∼ 1000 K, and η ∼ 0.003;

the chemical potential at room temperature is evaluated to µ(T = 300 K) ' 0.85 · EF and

we will assume the chemical potential to be µ ≈ EF in the 0 − 300 K temperature range. In

Fig. 3.4.2 we plot the scaled electronic heat capacity as a function of temperature for the case

of extrinsic graphene. In this case, the electronic heat capacity is negligible small in a large low

temperatures interval.

Thus, by using the parameter x, we found that the behaviour of the electronic heat capacity
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could be quadratic (with a very small correction) in temperature through Eq (3.4.1) or linear

through Eq (3.4.3). We have seen that small amounts of impurities could increase the value

of the electronic heat capacity, while, on the other hand, for the extrinsic graphene case the

electronic heat capacity could be negligibly small in a larger low temperatures interval. We

found for low temperatures a somewhat similar result in Ref. [63], where they studied a mono-

layer hydrogenated graphene in the presence of impurities. In Ref. [64], by using the Random

Phase Approximation, they found that in doped graphene the electronic heat capacity depends

linearly on temperature. A finding similar to ours, for the case a non-interacting system with

impurities and in the unitary limit.

This concludes our studies on disordered graphene systems with strong impurity scattering.

The support for the use of the unitary limit is given in Ref. [7], where they found that the

concentration dependence of the conductivity would indicate the dominant scatterers to be

strong. Along other theoretical studies (e.g., Ref. [59]) we have proposed three more ways to test

if the dominant scatters are in the unitary limit by studying the static spin susceptibility [18],

the spin-lattice relaxation time [21], and the electronic heat capacity [24].



Chapter 4

Transition metal dichalcogenide

superconductors

4.1 Introduction
Transition metal dichalcogenides are a class of quasi two-dimensional layers, bonded by weak

van der Waals forces, that have a rich history spanning back over 50 years [25]. The synthesis

of the first graphene monolayer [1] meant that free standing two-dimensional materials were

possible and on top of that, it was found to be an exceptional material with many remarkable

properties (e.g., the charge carriers are massless Dirac fermions). This discovery rejuvenated

the research that was being done into transition metal dichalcogenides as well. The interest in

this class of materials stems from their properties that have theoretical and experimental im-

plications (such as applications in nano-electronics [65]). At low temperatures, these materials

exhibit s-wave superconductivity and the superconductivity states coexist with charge density

waves [26]. Other studies have revealed similar properties to those of high-temperature super-

conductors, such as the lifetime behaviour of the quasi-particles and the linear dependence of the

normal state resistivity with temperature. On the other hand, in the region where the charge

density waves gap vanishes, Dirac fermions quasi-particles are created. The superconductivity

is then given by these particles that form acoustic phonon mediated Cooper-pairs [27,28]. They

resemble to a degree the superconducting properties in graphene [29,30]. The superconductiv-

ity in transition metal dichalcogenides has been the subject of many studies [66–68]. In this

chapter we will summarize our finding on transition metal dichalcogenides superconductors on

a substrate.

In the presence of a substrate, an asymmetry occurs in the Hamiltonian. This is liable to lift

19
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the degeneracy at the Dirac points and, as a consequence, a non-superconducting energy gap E0

opens in the energy spectrum [20,31]. Close to the Dirac point this leads to the massive gapped

spectrum and this is the case that we proposed to be studied, instead of the case of massless

gapped spectrum [13] used in Ref. [32] to discuss the gap equation, the critical temperature,

and the Geilikman-Kresin ratio [33, 34]. We will summarise the effect a substrate has on the

superconducting energy gap at T = 0 K and close to the critical temperature. We will also

present our studies on the specific heat, the specific heat jump, and the critical field.

4.2 General concepts

In 1911, H. Kamerlingh Onnes was the first to discover superconductivity [69]. The discovery

of this entirely strange behaviour of some metals and alloys to have their electrical resistivity

suddenly drop to zero and enter the superconducting state captivated the attention of the

scientific community and it took them about four decades to formulate a satisfactory theoretical

model. The zero electrical resistivity was demonstrated in experiments where they measured

the electrical currents decay in solenoids. They concluded that it would take more than 100, 000

for the current to decay.

From other experiments, the scientists discovered that these materials were acting as perfect

diamagnets [70]. They found that by cooling a superconductor down below its critical tem-

perature, the magnetic field would be expulsed from the material and no other magnetic field

would be able to enter. This phenomenon is called the Meissner effect and it suggested that

perfect diamagnetism is a hallmark of the superconducting state. But this effect happens only

for magnetic fields below a certain value, over which the superconducting state ceases to exist.

The transition around this critical value of the field is reversible.

The first to describe the perfect conductivity and the Meissner effect were the London brothers

in 1935 (the London equations) who proposed two equations to govern the microscopic and

electric magnetic fields [71]. Using the London brothers’ work, Pippard proposed an improved

model [72]. They found that by using this model, one was able to fit the experimental data on tin

and aluminium [73]. The London equations also lead to the definition of another fundamental

characteristic to the superconductors, the London penetration depth λL. This length measures
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the penetration depth of the external magnetic field.

In addition to the magnetic properties, the superconductors displayed distinct thermal proper-

ties. In zero field, the transition to the superconducting state is accompanied by a discontinuity

in the specific heat, that in non-superconducting states varies linearly with the temperature.

In superconductors, just below the critical temperature Tc, the electronic specific heat increases

and then drops exponentially to zero as T → 0 [74].

4.2.1 Superconductivity in transition metal dichalcogenides

Transition metal dichalcogenides have a long and rich history. The research that has already

been done has proven their value from a theoretical perspective and applicability. The myriad

of noteworthy properties, like the anomalous impurity effects in the superconducting phase [75].

Of notice is the fact that the anomalous properties of transition metal dichalcogenides do not

depend on the sample as they tend to be very clean materials [28]. Still, the interpretation

of the experimental data is very controversial due to fact that in the Peierls one-dimensional

theory, the charge density wave gap if formed due to nested Fermi surfaces, while the nesting

in two-dimensional systems is not perfect, which can lead to zero-gapped parts of the Fermi

surface. There also seems to be a lack of consensus between the results obtained from different

experimental investigation methods [28], scanning tunneling microscopy and angle resolved

photoemission experiments, and the latter method even failing to detect traces of the charge

density wave in the Brillouin zone.

Our following discussion will be based on Ref. [28], in which they proposed a model where

the Fermi surface is fully gapped by the superposition of the charge density wave and s-wave

superconducting order parameters. A charge density wave gap that is similar to the Brillouin

zone of graphene (with the exception that the lattice inversion symmetry is broken) with nodes

at the π-bands crossing points. This model has already been successfully used to explain several

properties of two-dimensional transition metal dichalcogenides [76].

Usually, the Cooper pairs form across the Fermi sea surface, but in this case they form at

the node points. The electron-phonon coupling is considered to piezoelectric in nature (a

phenomenon that appears due to the broken inversion symmetry of the lattice). From the gap
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equation, for µ = 0, they found that it has a quantum critical point, which is a general property

of the nodal liquids. When the parameter µ is modified, the superconducting gap ∆S is strongly

impacted and leads to the suppression of the quantum critical point. Two regimes were found

for the scaling of ∆S/µ: a weak coupling regime (”Fermi liquid”) and a strong coupling regime

(marginal limit). The specific heat jump from the BCS model is recovered for the Fermi liquid

regime.

In the optical and thermal conductivities, they observed an infrared peak that stems from

the quasi-particle excitations. This is a property that is not met in the more traditional

superconductors. They also observed an anomalous suppression of the diamagnetic spectral-

weight, which points to lack of high energy diamagnetic states in the superconducting gap.

4.3 Thermodynamic properties of transition metal

dichalcogenide superconductors on a substrate

a) The superconducting gap

We analysed the superconducting gap ∆s at zero and non-zero temperatures. At T = 0 K, at

the Dirac point (µ = 0) we obtained the following result for the superconducting energy gap:

∆s = vFkc

√(
1− gc

g

)2

−
(
E0

vFkc

)2

(4.3.1)

where vF is the Fermi velocity, kc is a momentum cutoff, E0 represents the energy gap induced

by the substrate, g is the coupling constant, and with gc = 2πv∆/kc and the condition gc/g < 1.

In the absence of the substrate, when E0 = 0, we re-obtain the result from [28]. However, notice

that in our case the superconducting energy gap vanishes when gc/g = 1−(E0/vFkc), otherwise,

in the absence of the substrate it vanishes when gc/g = 1. This means that the presence of the

substrate reduces the value of the superconducting gap. Apart from the Dirac point (µ 6= 0),

the superconducting gap has a more complicated structure. Here, we will distinguished two

cases:
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Figure 4.3.1: The ratio R = ∆s/vFkc as a function of gc/g for µ = 0 (the lower curve - R1) and
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Figure 4.3.2: The ratio P = ∆s(µ,E0)/∆s(µ,E0 = 0) as a function of scaled energy E0/vFkc,
for gc/g = 0.85 and µ/vFkc = 0.001

I.) For µ� E0 and µ� ∆s, the superconducting energy gap will be:

∆s '
vFkc√

2

√(
1− gc

g

)2

+

(
µ

vFkc

)2

√√√√
1− 2E2

0

a
+

√
1 +

(
2µE0

a

)2

(4.3.2)

where we used the notation a = (vFkc)
2 (1− gc/g)2 + µ2. In Fig. 4.3.1 we plot the ratio

R = ∆s/vFkc as a function of gc/g for µ = 0 (lower curve) and for µ 6= 0 (upper curve),
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using the following parameters: µ/vFkc = 0.001 and E0/vFkc = 0.01. When µ 6= 0 the

superconducting gap is larger because this situation is more favourable for pairing.

In Fig. 4.3.2 we plot the ratio P = ∆s(µ,E0)/∆s(µ,E0 = 0) as a function of the scaled energy

E0/vFkc, using the following parameters gc/g = 0.85, and µ/vFkc = 0.001. We observe, again,

that the presence of the substrate reduces the value of the superconducting gap even for the

case when µ 6= 0.

II.) For µ� E0 and µ� ∆s, the superconducting gap will be:

∆s ' 2µ exp

[
2πv∆vF

µ

(
g−1
c − g−1

)
− 1− E2

0

2µ2

]
(4.3.3)

Having found the superconducting gap at zero temperature, we turned to calculate the expres-

sions for the superconducting gap at T 6= 0 K. Here, we also discerned two cases. Considering

µ > E0, βc(µ− E0)/2� 1, and βc(µ+ E0)/2� 1 we found:

∆s(T ) '

√
1− T

Tc√
1

2(µ2−E2
0)

+ 7ζ(3)
8(πkBTc)2

(4.3.4)

for T < Tc and T close to Tc; where β = 1/kBT and kB is the Boltzmann’s constant (at T = Tc:

β = βc, where Tc is the critical temperature). Keeping the same temperature conditions, but

in the opposite limit βµ� 1, the superconducting gap will be (where ∆0 =
√
α (1− gc/g)):

∆s(T ) ' 2

√
Tc − T
Tc

√
∆0

βc
+
µ2 − E2

0

2
(4.3.5)

With βcµ� 1, we obtained the critical temperature:

Tc =
∆0 +

√
∆2

0 + (µ2 − E2
0) ln 4

ln 16
(4.3.6)

We notice that the substrate influences the superconducting energy gap, as well as the critical

temperature, by reducing the effect of the chemical potential.
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b) The specific heat

The specific heat jump is defined as the difference between the superconducting and the normal

specific heat: ∆C = CVS −CVN . We used Eq. (4.3.4) in order to evaluate ∆C|T=Tc
in the weak-

coupling limit (βcµ� 1). Thus, we obtained:

∆C|T=Tc
' kB

2πv∆vFβc

µ
7ζ(3)
8π2 + 1

2β2
c(µ2−E2

0)

(4.3.7)

We also calculated the normal specific heat and the ratio ∆C/CVN |T=Tc
are:

CVN |β=βc
' πkBµ

3v∆vFβc
,

∆C

CVN

∣∣∣∣
T=Tc

' 3

2π2

1
7ζ(3)
8π2 + 1

2β2
c(µ2−E2

0)

(4.3.8)

In the strong-coupling limit (βcµ� 1), using Eq. (4.3.5) we get:

∆C|T=Tc
' 8kB
πv∆vF

(
ln 2

βc

)2 [
1 +

β2
c (µ2 − E2

0)

4 ln 2

]
(4.3.9)

In this case, the calculated normal specific heat and the ratio ∆C/CVN |T=Tc
are:

CVN |β=βc
' 9ζ(3)kB
πv∆vFβ2

c

,
∆C

CVN

∣∣∣∣
T=Tc

' 8(ln 2)2

9ζ(3)

[
1 +

β2
c (µ2 − E2

0)

4 ln 2

]
(4.3.10)

Having obtained these results, we observed that the presence of the substrate diminishes the

effect of the chemical potential.

c) The critical field

The critical field for a superconducting material is the field above which the superconducting

state cannot exist. This field is closely related to the critical temperature Tc and in zero field

it is related to the free-energy difference between the superconducting and normal states. The

transition is reversible and the superconducting state returns if the magnetic field drops below

the critical field. For µ = 0, we obtained for the critical field:, close to Tc:

Hc '
√

8

v∆vFβc

(
∆0 −

βcE
2
0

2

)(
1− T

Tc

)
(4.3.11)
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We find that the critical field has a linear dependence in temperature and that the presence

of the substrate reduces the magnitude of the critical field. In the case µ 6= 0, close to Tc the

critical field obtained is:

Hc '

√
8

v∆vFβc

[
1 +

1

6
(βcµ)2

] [
∆0 +

βc
2

(
µ2 − E2

0

)](
1− T

Tc

)
(4.3.12)

In this case, we notice an increase of the factor in front of (1 − T/Tc) compared to the one in

Eq. (4.3.11), this translates in an increase of the critical field. This is an expected result due

to the fact that a non-zero chemical potential is associated with an increased number of paired

particles in the superconducting state.

d) Conclusions

We summarized the results we obtained for several thermodynamic properties of superconduct-

ing transition metal dichalcogenides on a substrate. The presence of the substrate lifts the

degeneracy at the Dirac point and a non-superconducting energy gap E0 occurs in the energy

spectrum. The massless gapped spectrum has already been discussed in Ref. [32] and in this

study we proposed to study the case of the massive gapped spectrum. The presence of the

non-superconducting gap E0 modifies the superconducting energy gap ∆s. We’ve seen that in

the presence of the substrate, the zero-temperature superconducting gap decreases, meaning

that the pairing is less effective. In the case when the chemical potential is not at the Dirac

point (i.e., µ 6= 0), we notice an increase of the pairing energy due to an increase of the number

of paired particles. At non-zero temperatures, and close to the critical temperature Tc, we

noticed that the substrate influences the superconducting energy gap by reducing the influence

of the chemical potential on the gap. The critical temperature is influenced in the same way.

Once we had our results for the specific heat and specific heat jump at T = Tc, we noticed that,

yet again, the substrate influences them by reducing the effect of the chemical potential.

When we analysed the critical field, we first considered the chemical potential at the Dirac

point (µ = 0) and found that the substrate reduces the magnitude of the critical field. A

non-zero chemical potential has a positive effect on the critical field, but its effect is diminished
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to some extent by the presence of the substrate. In both cases we noticed a linear temperature

dependence of the critical field, but one should take notice that the critical temperature in

Eq. (4.3.11) differs from the one in Eq. (4.3.12). Namely, in the first case the critical temperature

is only influenced by the substrate (i.e., Tc = Tc(E0)), while in the second case it is influenced

by the substrate and the chemical potential (i.e., Tc = Tc(E0, µ)).



Chapter 5

Conclusions and Outlook

The field of two-dimensional materials is still growing and the need for better theoretical frame-

works to understand the experimental data and to predict the properties of new materials will

not cease to exist anytime soon. In this work we aimed to offer theoretical models of multiple

properties of graphene and transition metal dichalcogenides.

Chapter 2 addresses the static spin susceptibility of graphene systems in the presence of disorder

and an energy gap, with weak scatterers. We worked in the Born and the T -matrix approxima-

tion to determine the self-energy and the density of states of the system. By making use of the

density of states we analysed the static spin susceptibility. We managed to achieve a qualitative

agreement between our results and experimental data. Our model managed to capture of how

certain aspects, concerning the influence the relative position of the chemical potential to the

energy gap and the presence of weak scattering, influence the static spin susceptibility.

Chapter 3 addresses multiple properties of graphene systems in the presence of disorder with

strong scatterers (the unitary limit). Thus, it is divided in multiple sections:

Section 3.2 studies the static spin susceptibility, for which we found that at zero tempera-

ture has a non-zero value and to have two different behaviours. Namely, if the impurities

concentration is below a certain critical value, the static spin susceptibility has the same

value at T = 0 K; over the critical value of disorder, the value of the zero temperature

static spin susceptibility starts to increase.

Section 3.3 studies the spin-lattice relaxation. We found that the impurities concentration

has a critical value that defines two different behaviours, as well. A very small amount of

28
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disorder leads to a Fermi-gas like behaviour of the spin-lattice relaxation rate, over that

critical value, this behaviour changes drastically.

Section 3.4 studies the heat capacity. We showed that, the heat capacity could have a

quadratic or linear temperature dependence (depending on the value of a certain param-

eter x) and that a small amount of impurities could increase the value of the electronic

heat capacity, while in the case of extrinsic graphene, its value could be negligible small

in a larger low temperatures interval.

These results could be used to test if the scatterers in a graphene system are in the unitary limit

and one would carefully engineer the presence of disorder in a graphene system, then, one could

reveal if the unitary limit is indeed appropriate to describe the physical properties of graphene.

We have to mention that the unitary limit has been successfully used to describe experimental

data. We should mention, that the recent studies in Ref. [77] are in good agreement with the

results we have achieved for the heat capacity.

Chapter 4 addresses the properties of a different two-dimensional system, transition metal

dichalcogenides. While considering a massive gapped spectrum, we studied the influence a

surface has on the superconducting energy gap, the specific heat and specific heat jump, and

the critical field. The substrate decreases the superconducting gap and when we considered a

non-zero chemical potential, the other properties were influenced by reducing the effect of the

chemical potential.

A growing scientific field will always have room for improvement, be it by exploring new facets

[78] or by improving already existing models. The results obtained in Chapter 2 could be

altered if we would go beyond the methods used, by considering the self-consistent Born and

T -matrix approximations. In Chapter 3, the model could be improved by considering the

electron-electron effects on the density of states.
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