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1. Introduction 

Amino acids (AA) are organic compounds that contain one or more amino groups (–NH2) in the 

molecule along with one or more carboxyl groups (–COOH). AA can be considered derivatives of 

carboxylic acids in which one or more hydrogen atoms are substituted with –NH2 groups. Many of AAs 

found in nature, only 20 of them (α-AA) are found as building blocks of proteins, being called 

proteinogenic AAs. Due to their high mass (representing 40–45% of body weight), skeletal muscle is 

the largest reservoir of proteinogenic AA in the whole body 1. AAs that are not found in the composition 

of proteins and peptides are called non-proteinogenic AAs. 

All α-AAs have in common the –NH2 and –COOH groups attached on α carbon atom (Cα) and 

differ from each other by the side chain (R). The mode, order and number of AAs that make up each 

specific protein are written in the genetic code (DNA and RNA), where genes contain the hole 

"instructions" for their synthesis 2. 

No group of compounds is more difficult to characterize than AA! These are basic structural 

elements, which are part of proteins, compounds with remarkable biological properties. They function 

as precursors for the synthesis of a wide range of biological substances, such as: hormones, purines, 

pyrimidines, porphyrins, vitamins, sugars, cofactors or biogenic amines 3,4. It also plays an important 

role in cellular signaling, acting as regulators of gene expression, protein phosphorylation, nutrient 

transport (hemoglobin heme), cellular metabolism, and innate and cell-mediated immune responses 5. 

The relationship between AA and proteins, as well as their specific properties in proteins, is the 

driving force behind various research on these fascinating compounds. 

The present thesis aims to determine, characterize and classify AAs and related compounds in 

terms of lipophilicity and antioxidant activity using various classical and advanced chemometric 

methods. The paper is structured in two parts, a theoretical part and an experimental part. 

The theoretical part is structured in four chapters, that deals with aspects of chemometric methods 

used to characterize and classify AAs and related compounds, experimental methods for determining 

antioxidant activity and aspects of modeling and predicting of lipophilicity of AAs. The information 

presented in this section is supported by many bibliographic references from the last ten years.  
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The experimental part includes five chapters dedicated to the determination of the antioxidant 

activity of AAs and biogenic amines using differents analytical methods, modeling and prediction of 

lipophilicity (retention coefficient RM0) of AAs, as well as classification of solvents involved in 

chromatographic determination of lipophilicity and food classification in terms of AAs content applying 

classical and advanced chemometric methods based on fuzzy set theory. The results of the research 

included in this part have been presented and published in prestigious journals abroad and in the country. 
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CHAPTER II—STUDY OF LITERATURE AND DEFINITION OF PREMISES 

2. Specific properties of amino acids 

2.1. Antioxidant activity 

The oxidation products of AAs differ depending on the structure from which they are derived. 

Following oxidation, some AAs can be hydroxylated, nitrated, nitrosylated and even converted to a 

carbonyl derivative by extraction of a hydrogen atom from the parent molecule. Biogenic amines derived 

from AA tyrosine are called catecholamines because they contain a catechol or 3,4-dihydroxylphenyl 

group. The most abundant catecholamines are epinephrine (adrenaline), norepinephrine (noradrenaline) 

and dopamine. Catecholamines are hormones released in the body in response to a series of stresses to 

regulate the body's physiological functions 6–10. In addition to these physiological functions, they can 

also act as antioxidants or prooxidants 11,12. 

All these radical-induced oxidation products have a high functional importance because they 

contribute to the modulation of protein activity in vivo. Moreover, some AAs, such as aromatics and 

acidics, act as biomarkers of oxidative stress under various conditions or as indicators of the 

effectiveness of a treatment (by increasing or decreasing their level in the blood) 13. 

The role of AAs as targets of various radical attacks, as well as their role in antioxidant defense, 

have led to the fact that AAs can be considered sacrificial (or primary) antioxidants with the ability to 

inhibit free radicals 14. 

Till now, no extensive reports have been published in the literature regarding the antioxidant 

activity of free proteinogenic AAs. Previous studies 15–17 show the antioxidant activity of small groups 

of AAs and compare their activity with reference antioxidants such as ascorbic acid and Trolox. But the 

results obtained are based only on a few antioxidant activity methods. A comprehensive evaluation has 

not yet been provided to better understand the antioxidant behavior of these important compounds.  

Recent studies 18,19 have emphasized that peptides have a substantial antioxidant activity and not 

proteins. Glutathione, the most important endogenous antioxidant of the cell, is a tripeptide consisting 

of 3 AAs containing cysteine, being also an indicator of the level of oxidative stress expressed by the 

ratio between reduced glutathione and oxidized. 
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While hydrolyzed proteins have important antioxidant activity, it is not yet possible to explain 

exactly how AAs in their composition influences their ability to inhibit lipid peroxidation 20. Previous 

studies 21 note that there are several specific AAs, mainly basic (histidine and lysine) and tyrosine, which 

modulate the antioxidant activity of peptides. Thus, understanding the relationship between the AAs 

composition of peptides and their antioxidant activity could lead to the development of a new class of 

natural multifunctional antioxidants. From this point of view, AAs are unique compared to other 

antioxidants because, in addition to the effects they have on the body, they can be used as potential 

antioxidants to inhibit various oxidation processes. 

2.2. Modeling and prediction of lipophilicity of amino acids 

Computational chemistry is currently an efficient and elegant way to organize the properties of 

compounds, but also to develop strategies for developing and synthesizing new structures based on a 

molecular design. 

Quantitative structure-property (QSPR) or –activity (QSAR) relationship represents the 

mathematical correlation between the specific molecular property or biological activity and one or more 

physico-chemical and/or structural molecular characteristics, known as descriptors.  

QSPR studies have led to increased drug discovery efforts to a large extent solely on the basis of 

theoretical information obtained for the compounds studied 22–24. The reasons for the widespread use of 

QSPR studies are mainly the following: (a) to reduce the time and cost of design studies; (b) to predict 

biological, pharmaceutical, physical and chemical properties; (c) to assist practitioners by providing 

valuable information found in large databases; (d) to understand the mechanism of action of the property 

of interest. Therefore, QSPR studies have found wide applications in life sciences 25 (biology, agriculture 

and medicine) as well as in physics, chemistry and engineering 26 (organic chemistry, physical chemistry, 

materials science). 

Despite widespread use, the full potential of QSPR models has not yet been achieved, with efforts 

being made to generate models with high predictive performance. To benefit, QSPR models must be 

simple and easy to interpret so that the most important features can be easily highlighted. 
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A robust, reliable and reproducible QSPR model can be obtained by selecting those descriptors 

that strongly correlate with the property of interest and by a very careful analysis of the data by an expert 

and well-trained staff. Not every set of descriptors can lead to promising results. 

Lipophilicity (hydrophobicity) is a fundamental molecular property defined as the logarithm of 

the octanol-water partition coefficient (logPOW) and which practically reflects the partition of the non-

ionized compound between two phases, usually octanol and water 27,28. 

Various experimental (chromatographic) methods have also been applied and continue to be used 

successfully to estimate the physico-chemical characteristics of chemical compounds, of which 

lipophilicity is one of the most important 29. 

Modeling the specific properties (lipophilicity and antioxidant activity) of proteinogenic AA as 

well as predicting these parameters using different experimental and calculated molecular descriptors 

using advanced chemometric methods will allow a better understanding of the relationships between the 

structure of AAs and their physicochemical and biochemical properties. At the same time, the new 

information provided in the QSPR models can provide a more in-depth (comprehensive) characterization 

of AAs. 
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CHAPTER III—ORIGINAL CONTRIBUTIONS 

3. Determination of antioxidant activity and chelating capacity of amino acids 

3.1. Introduction 

The purpose of this chapter is to evaluate the antioxidant power of proteinogenic AAs, such as 

free radical scavenging and free radical scavenging activity and also, metal chelation capacity. At the 

same time, the comparison of the results obtained using classical and advanced chemometric methods 

such as hierarchical cluster analysis (HCA), PCA and SRD. 

3.2. Materials and methods 

3.2.1. Samples 

A set of twenty proteinogenic amino acids were used in this study. They includes: essential AA 

(EAA, red), non-essential AA (NEAA, blue) and conditional essential AA (CEAA, green): Alanine 

(Ala), Arginine (Arg), Asparagine (Asn), Aaspartic acid (Asp), Cysteine (Cys), Glutamine (Gln), 

Glutamic acid (Glu), Glycine (Gly), Hystidine (His), Isoleucine (Ile), Leucine (Leu), Lysine (Lys), 

Methionine (Met), Phenilalanine ( Phe), Proline (Pro), Serine (Ser), Threonine (Thr), Triptophan 

(Trp), Tyrozine (Tyr) și Valine (Val) with high analitical grade (98–99%) obtained from Merck and 

Sigma (Sigma-Aldrich GmbH, Sternheim, Germany). 

3.2.2. Samples preparation 

The standard solutions of all amino acids were prepared in ultrapure water at concentration 0.1 

M. For those amino acids that were not hydrochlorides, stoichiometric hydrochloric acid was added.The 

final concentration of each amino acid in all the employed assays was 5 mM for ABTS, DPPH, SORS, 

FRAP, CUPRAC assay and metal chelating capacity, 20 mM for NO scavenging assay and 17 mM for 

CHROMAC assay. 



13 

 

3.2.3. Methods of determination of antioxidant activity 

For derermination of antioxidant activity were used eight methods groups as radical scavenging 

assays (DPPH, ABTS, SORS și NO), reducing antioxidant power assays (FRAP, CUPRAC și 

CHROMAC) and metal chelating capacity. 

3.2.4. Chemometric methods 

For realization of purpose, were used the following chemometric methods for multidimensional 

data analysis, such as HCA, PCA and SRD analysis.  

3.3. Results and discussion 

3.3.1. Radical scavenging capacity 

In Figure 3.1 it can be seen that some of the AAs that contain mainly heteroatoms (Cys, Glu, 

Asp) or aromatic fragments (Tyr, Phe, Trp) in the side chain, have a significant ability to quench DPPH 

radicals. With the exception of Cys and Arg, which have a much stronger antioxidant reactivity than the 

ABTS radical compared to DPPH, the other AAs investigated behave differently or at the limit. 

At the same concentration, the following amino acids showed the highest superoxide radical 

quenching capacity of over 80%: Asn, His, Phe, Trp and Tyr. In this case, Cys, compared to all AAs, 

has a significant activity and not the highest, contrary to what would have been expected (Figure 3.1). 

The potential for inhibition of NO radicals by AAs is over 51%, highlighting the same AA as in 

the case of the SORS method, joining Cys. The highest activity was obtained for Tyr around 58%.  

3.3.2. Reducing antioxidant power 

According to the FRAP analysis, Cys (96.72%) and Trp (85.30%) have the highest free radical 

reduction power of all the AAs investigated. 

However, after testing the potential of reducing power of free radicals, the best results were 

observed for Cys (95.77%) for CUPRAC assay and for Arg, Gln, Leu and Trp for CHROMAC assay, 

as can be seen in Figure 3.1. 
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Of all the AAs studied, only three of them showed significant antioxidant activity by all methods 

applied: Cys, Trp and Tyr. 

5.3.3. Chelating capacity 

The chelating capacity of metal ions, especially ferrous ions, of proteinogenic AA is moderate, 

except for Arg (92.15%), Gly (65.27%), Glu (63.89%), Tyr (66.40 %) and Val (68.74%)) as can be 

seen in Figure 3.1. However, Arg and Asn have the highest chelating capacity compared to the other 

AAs investigated. 

In conclusion, Arg, Asn and Tyr can be considered chelators of metal ions and reducers of 

oxidative stress by supplementation. 

3.3.4. Cluster analysis and pricipal component analysis 

The dendrogram (Figure 3.1) was obtained by applying the HCA analysis on the matrix of data 

corresponding to the antioxidant and chelating capacity of the investigated AA (using the covariance 

matrix), two well-defined groups of methods can be highlighted. The first group includes the DPPH, 

NO, CHROMAC and SORS methods, including chelating capacity, and the second group contains the 

ABTS, CUPRAC and FRAP methods. 

These results are well supported by the graphical representation Heat Map where both 

(di)similarities between AA and (di)similarities between applied methods can be observed 

simultaneously (Figure 3.2). The highest values appear for DPPH and SORS and the lowest for the 

ABTS and CUPRAC methods.  
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Figure 3.1. Combined dendrogram [(Dlink/Dmax)*100 –Ward’s method] corresponding to all 

antioxidant and chelating  capacity  method sand dendrogram [(Dlink/Dmax)*100 –Ward’s method] 

corresponding to the investigated amino acids with the heat map corresponding to amino acids and all 

method. 

 

Figure 3.1 shows the similarities and differences between AAs according to all methods applied 

in this study. Thus, it can be seen that AAs form two well-defined groups: the group of AAs with 

significant activity and the group of AAs with low activity. Cysteine being the only AA that differs from 

the rest by its antioxidant activity.  
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By graphically representation of scores using the first three principal components (Figure 3.2), 

a satisfactory separation of AAs is obtained depending on the antioxidant potential, where it can be seen 

that Cys appears as an extreme.  

 

 

Figure 3.2. 3D-score scatterplot, corresponding to the investigated amino acids (PC1—DPPH, NO, 

SORS—46.93%, PC2—ABTS, FRAP, CUPRAC—17.73%, PC3—chelating capacity—15.68%), 

obtained after applying PCA on the covariancematrix of the all dataset. 

 

The vector corresponding to the first principal component (PC1) can be associated with the 

radical scavenging capacity—DPPH, NO, SORS, the vector of the second principal component (PC2)—

the reduction of antioxidant power—ABTS, FRAP, CUPRAC and the vector of the third principal 

component (PC3)—chelation capacity of metal ions. A very good separation can be observed in 3 well-

defined groups of AAs along to PC3–—the component associated with chelating capacity of metal ions.  
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5.3.5. SRD analysis 

The results shown that the method closest to the “average value” is the DPPH method, while the 

most different method is the ABTS method (Figure 3.3) As can be seen in the figure, the methods that 

appear the left of the Gaussian curve are most similar to the "average value". Thus, the performance of 

the applied methods can be visualized (from left to right). 

 

 

Figure 3.3. SRD-CRRN test results of the data matrix. Average was used as a golden standard. Scaled 

SRD values are plotted on the x-axis and left y-axis, the right y-axis shows the relative frequencies 

(black curve). Parameters of the Gaussian fit: media = 67, standard deviation = 10.3 Probability levels 

5% (XX1), Median (Med), and 95% (XX19) are also given. 
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4. Determination of antioxidant activity and chelating capacity of some biogenic 

amines and related drugs 

4.1. Introducion 

The purpose of this chapter is to evaluate the antioxidant potential of catecholamines and drugs 

with similar structure, such as scavenging radical capacity (DPPH, ABTS, SORS and NO), reduction of 

antioxidant power (FRAP, CUPRAC and CHROMAC) and chelation of metals ions. And at the same 

time, interpreting and comparing the results obtained by applying advanced chemometric methods such 

as HCA, PCA and SRD. 

4.2. Materials and methods 

4.2.1 Samples 

The biogenic amines investigated in this study include adrenaline, noradrenaline, dopamine, and 

related drugs: methyldopa, L-dopa, D-dopa, metaraminol, ritodrine, adrenalone, albuterol, 

metaproterenol, terbutaline, isoprenaline, and methoxamine of analytical grade obtained from Merck 

and Sigma (Sigma-Aldrich GmbH, Sternheim, Germany). All other reagents were either of analytical 

grade or of the highest quality available.  

The stock solutions of all compounds, including positive controls (quercetin and trolox) were 

prepared in absolute ethanol (96%) at concentration 1 mM. EDTA solution was prepared in water at 

concentration 1mM. For those related drugs that were poorly soluble in ethanol (adrenaline, D-dopa), 

stoichiometric hydrochloric acid was added. The final concentration of investigated compounds (300 

μL) was: 1.67 μM for DPPH, ABTS, SORS, FRAP, CUPRAC, FIC assays; 20 μM for NO assay and 

16.67 μM for CHROMAC assay. The same concentrations are for reference antioxidant solutions. 

4.2.2. Methods of determination of antioxidant activity 

For derermination of antioxidant activity were used eight methods groups as radical scavenging 

assays (DPPH, ABTS, SORS și NO), reducing antioxidant power assays (FRAP, CUPRAC și 

CHROMAC) and metal chelating capacity. 
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4.2.3. Chemometric methods 

For realization of purpose, were used the following chemometric methods for multidimensional 

data analysis, such as HCA, PCA and SRD analysis. 

4.3. Results and discussion 

The results obtained after the application of 8 methods for determining the antioxidant activity 

combined with chemometric methods are summarized graphically in Figure 4.1. 

Regarding the results obtained by the methods of quenching the power of free radicals, most of 

the compounds showed a significant activity except for some drugs (ritodrine, methoxamine, D,L-dopa 

and adrenaline). The results regarding the reduction of antioxidant power, several groups with very close 

values can be identified: norepinephrine and isoprenaline; dopamine, adrenaline, methyldopa; albuterol, 

metaproterenol, terbutaline; L-dopa and D-dopa; metaraminol and metoxamine having the lowest values 

in all three methods. Adrenaline and ritodrine appear quite different again. The highest reducing power, 

according to the FRAP method, has: adrenaline (96.02%) methyldopa (95.97%), dopamine (94.67%) 

and isoprenaline (93.72%), and the lowest—metaraminol (5.79%). 

The chelating capacity of Fe2+ ions of the analyzed compounds is low but significant except for 

adrenalone (66.35%), metaraminol (55.31%), metaproterenol (49.58%) and terbutaline (45.64%), which 

showed a capacity chelation slightly above 50%. The lowest value, in this case, was obtained for 

methyldopa (0.28%). 
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Figure 4.1. The heat map corresponding to all investigated compounds and  all assays coupled with 

hierarchical cluster analysis. 

 

By careful examination of Figure 4.1 (based on color intensity) it is very interesting to note that 

most adrenergic drugs have the highest antioxidant activity, except for Metoxamine, L-dopa and D-dopa 

(which has no pharmacological activity). In the case of catecholamines, the results obtained for 

noradrenaline are much more similar to dopamine and adrenergic drugs, but quite different from 

adrenaline. 
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The results obtained by applying PCA on the unmodified data matrix (14 samples × 8 methods) 

indicate a significant reduction of variables. The first three principal components take over 84.33% of 

the total variation, the first two components take over only 68.18% of the total variance, and the first—

48.80%. However, the 3D representation of the scores corresponding to the first three main components 

indicates a satisfactory separation of the compounds according to their antioxidant activity. 

By representing the first three components, the vector corresponding to the first component (PC1) 

can be associated with the radical scavenging power—DPPH, ABTS and NO, the vector of the second 

principal component (PC2)—the radical scavenging power—ABTS, FRAP and CUPRAC and the vector 

of the third component (PC 3)—chelation capacity of metal ions. 

According to SRD, the best method to express antioxidant activity of investigated biogenic 

amines and their related drugs is DPPH because it is the method closest to the “average antioxidant and 

chelating capacity’’, while the FRAP method is the most different. The results are well illustrated in 

Figure 4.2. We have also to remark the high similarity of the clusters with the dendrogram obtained 

applying HCA. 

 

 

 

Figure 4.2. Evaluation of the eight assays using the sum of ranking differences. Average was 

used as a golden standard. 
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5. Modeling of amino acids lipophilicity using QSPR studies 

5.1. Introduction 

The objective of this chapter was to identify a mathematical models for correct estimation and 

prediction of lipophilicity of AAs, starting from the complex information provided by their molecular 

structure. Currently the literature abounds with experimental data on the lipophilicity of AAs determined 

in the flask and on various chromatographic plates, but the major objectives of this study are to create a 

model "as general as possible" that can be applied to determine lipophilicity for a large classes of 

compounds with similar structure of AAs, as well as the identification of the best method of expressing 

lipophilicity. 

Prediction models were generated by multiple linear regression (MLR) using genetic algorithms 

for the selection of initial variables. The best prediction models were selected based on a wide set of 

classic quality statistical parameters as well as a series of newly developed and applied fuzzy quality 

parameters, which differ in the way of calculating the distance from the regression line (thus minimizing 

the contribution of residues or minimizing the difference between �̅�i estimated and yi measured). A 

comparison between classic and fuzzy models was presented. 

5.2. Materials and methods 

5.2.1. Structure of amino acids 

The AA’s structures were represented using Chem3D Ultra 8.0 and optimized using the MM+ 

(Molecular Mechanics Force Field) procedure included in the same program. The optimized geometric 

structures were used in the Dragon plus 5.4 program and the SMILES structures in the Alchemy program 

(http://www.tripos.com) in order to calculate the molecular descriptors. 

5.2.2. Methods 

In this study, the development of calculated and predicted models was performed using 

MobiDigs v.1.0 30 using multiple linear regression method (MLR). The selection of the most significant 
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variables (descriptors) was performed using genetic algorithms 31 methodology, included in the same 

program. 

The development of fuzzy calculated and predicted models was done using the Sadic program.  

5.3. Results and discussion 

Multiple linear regression models for estimating lipophilicity parameters of proteinogenic AAs 

were obtained by selecting the most significant descriptors using the genetic algorithm methodology 

(RLM-GA) using the chromatographic lipophilicity coefficient (RM0) obtained in a previous 

experimental study 32 for 16 proteinogenic amino acids (Ala, Arg, Asn, Asp, Cys, Glu, Gly, His, Leo, 

Lys, Met, Phe, Pro, Ser, Tyr, Val). Because, at that time, the lipophilicity coefficient RM0 was not 

determined experimentally for 4 amino acids (Gln, Ile, Thr, Trp), they were used as a test set and external 

validation of the created models. 

Starting with the independent variables obtained by calculating the theoretical descriptors using 

DRAGON and Alchemy software, the most statistically significant RLM models with 3, 4 and 5 

independent variables were generated using genetic algorithms methodology. The best models were 

selected according to the values of the statistical quality parameters. The descriptors, obtained with both 

software, retained in the models are presented in Table 5.1. The best models obtained using the 

descriptors with DRAGON and Alchemy with the highest predictive power together with the statistical 

quality parameters are presented in Table 5.2.  

The statistical parameters that correspond to all regression models illustrate a statistically 

significant to moderate prediction power. At the same time, it can be seen that the most powerful models 

are those containing 5 or 4 molecular descriptors. 

Analyzing the data from Table 5.2 it can be seen that an R2 of over 89% was obtained for 

Alchemy models and for models containing Dragon descriptors of over 99%. 

On closer examination, it can be seen that the descriptors that most strongly correlate with the 

chromatographic lipophilicity coefficient (RM0) in the case of Alchemy set are: molecular (Polar) and 

specific (Pol.Pol) polarization, the sum of the absolute values on nitrogen and oxygen atoms in the 

molecule (ABSQON), volume and Wiener index (WienI). 
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Table 5.1. Retained descriptors in RLM-GA models and calculated with Alchemy2000 and Dragon Plus 5.4 software.  

* RM0 experimental datas obtained on HPTLC RP-18W chromatographic plates extracted from 32 

 

 

 

AA 
Data* 

Descriptors 

ALCHEMY DRAGON 

RM0 Volume ABSQon MaxQ− Polar Sp.Pol 0χv
 WienI MATS3p MATS3v DP11 DP12 RDF070e Mor12u Ap HATS2u SP13 H1p 

Ala −1.14 164.62 1.92 −0.35 17.49 0.11 6.73 247.00  −0.27 −0.34 0.02 0.01 0.00 −0.55 2.66 0.61 0.002 0.40 

Arg −0.60 165.16 1.92 −0.36 17.87 0.11 6.71 247.00 −0.06 −0.06 6.73 6.42 5.70 −1.43 11.46 0.32 6.06 0.51 

Asn −1.19 114.90 1.66 −0.42 11.88 0.10 4.70 96.00 −0.31 −0.32 1.50 0.95 0.25 −1.01 4.76 0.43 0.66 0.43 

Asp −1.26 112.39 1.57 −0.33 11.04 0.10 4.57 96.00 −0.36 −0.38 1.42 0.89 0.00 −0.82 4.22 0.42 0.60 0.42 

Cys −0.90 101.85 0.94 −0.33 11.48 0.11 4.56 46.00 0.01 −0.04 0.43 0.19 0.00 −0.52 3.69 0.55 0.10 0.56 

Gln – 132.91 1.66 −0.42 13.71 0.10 5.41 136.00 −0.21 −0.23 3.30 2.73 1.42 −1.03 5.74 0.39 2.28 0.47 

Glu −1.18 129.38 1.57 −0.33 12.87 0.10 5.28 136.00 −0.16 −0.18 3.38 2.81 1.92 −1.20 6.39 0.39 2.37 0.46 

Gly −1.07 68.43 0.95 −0.33 6.64 0.10 2.64 18.00 0.34 0.23 0.01 0.004 0.00 −0.34 1.45 0.77 0.001 0.24 

His −0.59 137.90 1.53 −0.33 15.43 0.11 5.82 165.00 −0.01 −0.01 2.74 2.11 3.22 −1.06 7.31 0.42 1.65 0.68 

Ile – 135.50 0.94 −0.33 13.86 0.10 5.80 92.00 0.14 0.11 1.50 0.98 2.46 −0.77 6.61 0.41 0.72 0.55 

Leu −0.47 135.82 0.94 −0.33 13.86 0.10 5.79 96.00 0.19 0.15 0.90 0.47 1.61 −1.09 6.46 0.45 0.24 0.65 

Lys −0.93 148.91 1.27 −0.33 15.21 0.10 5.92 143.00 0.08 0.06 5.10 4.69 3.21 −1.15 8.26 0.37 4.29 0.48 

Met −0.55 137.48 0.94 −0.33 15.02 0.11 6.15 102.00 0.24 0.19 3.79 3.27 3.52 −0.52 7.25 0.51 2.83 0.56 

Phe −0.02 157.90 0.94 −0.33 18.14 0.11 6.60 212.00 0.33 0.30 3.96 3.40 4.33 −1.04 10.37 0.36 2.94 0.86 

Pro −0.90 108.70 0.93 −0.33 11.24 0.10 4.55 62.00 0.21 0.15 0.28 0.11 0.00 −0.97 4.06 0.55 0.05 0.53 

Ser −1.21 93.57 1.33 −0.39 9.12 0.10 3.66 46.00 −0.40 −0.46 0.23 0.09 0.00 −0.68 2.98 0.54 0.04 0.39 

Thr – 110.39 1.33 −0.39 10.83 0.10 4.54 65.00 −0.15 −0.19 0.27 0.11 0.00 −0.56 4.14 0.45 0.06 0.48 

Trp – 186.60 1.22 −0.33 22.32 0.12 8.10 396.00 0.19 0.18 5.87 5.48 6.88 −1.01 16.43 0.33 5.26 0.89 

Tyr −0.44 165.64 1.34 −0.39 18.78 0.11 6.97 268.00 0.11 0.08 5.39 4.99 4.14 −1.20 10.69 0.33 4.63 0.73 

Val −0.68 118.81 0.94 −0.33 12.02 0.10 5.09 65.00 0.01 −0.01 0.30 0.12 0.00 −0.74 5.15 0.46 0.07 0.51 
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Table 5.2. Multiple linear regression models obtained for the prediction of the retention coefficient (RM0) by applying the methodology 

of genetic algorithms to Alchemy and Dragon descriptors. 

*—standardized coefficients 

**—non-standardized coefficients 

 

ID 
Dimensi

on 
Models 

R2 

% 
F s RSS SDEC 

Q2 

% 
PRESS SDEP 

ALCHEMY 

A 5 

*RM0 = 14.01 – 0.14·Volume + 1.68·MaxQ− + 1.54·Polar – 155.52·Sp.Pol –

0.008·Wienl 

**RM0 = –11.08·Volume + 0.15·MaxQ− + 15.01·Polar – 2.61·Sp.Pol – 1.691·WienI 

89.19 16.51 0.143 0.206 0.113 76.37 0.450 0.168 

B 4 
*RM0 =13.38–0.14·Volume + 1.56·Polar–156.11·Sp.Pol – 0.008·WienI 

**RM0 = –11.06·Volume + 15.14·Polar – 2.62·Sp.Pol – 1.86·WienI 
87.33 18.95 0.148 0.242 0.123 73.03 0.514 0.179 

C 3 
*RM0 = −0.97 – 0.68·ABSQON + 0.18·Polar – 0.28·0  V 

**RM0 = −0.70·ABSQON + 1.79·Polar – 0.94·0  V 
83.45 20.16 0.162 0.315 0.140 71.50 0.543 0.184 

D 2 
*RM0 = −1.17 – 0.66·ABSQON + 0.09·Polar 

**RM0 = −0.68·ABSQON + 0.86·Polar 
80.95 27.62 0.167 0.363 0.151 68.96 0.591 0.192 

DRAGON 

E 5 

*RM0 = −1.36 + 0.36·MATS3p – 0.22·DP11 + 0.09·RDF070e + 0.37·Mor12u + 

0.20·Ap 

**RM0= 0.24·MATS3p – 1.37·DP11 + 0.50·RDF070e + 0.32·Mor12u +1.69·Ap 

99.83 1172.90 0.018 0.003 0.014 99.54 0.009 0.023 

F 4 
*RM0 = −3.05 – 0.22·DP12 + 0.31·Mor12u + 0.32·Ap + 2.07·HATS2u 

**RM0 = −1.33·DP12 + 0.27·Mor12u + 2.73·Ap + 0.69·HATS2u 
99.06 290.00 0.040 0.018 0.034 98.17 0.035 0.047 

G 3 
*RM0 = −3.32 – 0.24·SP13 + 0.32·Ap + 2.85·HATS2u 

**RM0 = −1.30·SP13 + 2.71·Ap + 0.95·HATS2u 
97.51 156.50 0.063 0.047 0.055 95.56 0.085 0.073 

H 2 
*RM0 = −1.64 + 0.61·MATS3v + 1.61·H1p 

**RM0 = 0.40·MATS3v + 0.68·H1p 
88.45 49.80 0.130 0.220 0.117 84.97 0.286 0.134 
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Table 5.3. Regression coefficients and fuzzy quality parameters obtained for prediction of RM0 on Dragon and Alchemy descriptors 

applying RLM-GA. 

 

ID 
Dimens

ion 
Type Models QC1 QC3 QC5 QC6 NQC5 NQC6 

ALCHEMY 

A 5 

Clasic RM0 = 14.01 – 0.14·Volume + 1.68·MaxQ− + 1.54·Polar – 155.52·Sp.Pol – 0.008·WienI 0.643 0.212 1.747 5.216 0.437 0.326 

Vertical RM0 = 14.45 – 0.14·Volume + 1.84·MaxQ− + 1.59·Polar – 163.10·Sp.Pol – 0.01·WienI 1.038 0.245 1.691 6.466 0.423 0.404 

Normal RM0 = 20.02 – 0.19·Volume + 1.08·MaxQ− + 2.14·Polar – 223.29·Sp.Pol – 0.01·WienI 1.883 0.203 1.275 6.314 0.319 0.395 

B 4 

Clasic RM0 =13.38 – 0.14·Volume + 1.56·Polar – 156.11·Sp.Pol – 0.008·WienI 0.690 0.224 1.828 4.716 0.457 0.295 

Vertical RM0 = 17.62 – 0.18·Volume + 1.96·Polar – 201.66·Sp.Pol – 0.012·WienI 1.178 0.269 1.839 5.909 0.460 0.369 

Normal RM0 = 25.10 – 0.22·Volume + 2.47·Polar – 280.90·Sp.Pol – 0.014·WienI 1.070 0.231 1.671 5.793 0.418 0.362 

C 3 

Clasic RM0 = −0.97 – 0.68·ABSQON + 0.18·Polar – 0.28·0  V 0.344 0.229 2.151 4.912 0.538 0.307 

Vertical RM0 = −0.89 – 0.70·ABSQon + 0.23·Polar – 0.40·0  V 0.356 0.233 2.563 4.385 0.641 0.274 

Normal RM0 = −0.87 – 0.71·ABSQon + 0.23·Polar – 0.41·0  V 0.233 0.183 2.090 5.160 0.523 0.322 

D 2 

Clasic RM0 = −1.17 – 0.66·ABSQON + 0.09·Polar 0.339 0.24 2.093 4.851 0.523 0.303 

Vertical RM0 = −0.80 − 0.83·ABSQ
ON

 + 0.08·Polar 0.353 0.241 2.297 4.679 0.574 0.292 

Normal RM0 = −1.64 + 0.76·ABSQ
ON

 + 1.61·Polar 0.324 0.225 1.557 5.588 0.389 0.349 

DRAGON 

E 5 

Clasic RM0 = −1.36 + 0.36·MATS3p – 0.22·DP11 + 0.09·RDF070e + 0.37·Mor12u + 0.20·Ap 0.163 0.03 2.152 4.73 0.538 0.296 

Vertical RM0 = −1.36 + 0.37·MATS3p − 0.21 * DP11 + 0.08·RDF070e + 0.38·Mor12u + 0.20·Ap 0.174 0.026 1.871 4.975 0.468 0.311 

Normal RM0 = −1.36 + 0.37−MATS3p − 0.21 * DP11 + 0.08·RDF070e + 0.38·Mor12u + 0.20·Ap 0.168 0.021 1.785 6.433 0.446 0.402 

F 4 

Clasic RM0 = −3.05 – 0.22·DP12 + 0.31·Mor12u + 0.32·Ap + 2.07·HATS2u 0.185 0.059 1.619 4.846 0.405 0.303 

Vertical RM0 = −3.07 − 0.23·DP12 + 0.32·Mor12u + 0.33·Ap + 2.10·HATS2u 0.191 0.06 1.852 4.98 0.463 0.311 

Normal RM0 = −3.24 − 0.25·DP12 + 0.30·Mor12u + 0.34·Ap + 2.30·HATS2u 0.082 0.048 1.282 5.959 0.321 0.372 

G 3 

Clasic RM0 = −3.32 – 0.24·SP13 + 0.32·Ap + 2.85·HATS2u 0.229 0.092 2.599 4.451 0.65 0.278 

Vertical RM0 = −3.40 − 0.19·SP13 + 0.29·Ap + 2.47·HATS2u 0.257 0.109 2.311 4.608 0.578 0.288 

Normal RM0 = −4.37 − 0.26·SP13 + 0.36·Ap + 3.82·HATS2u 0.144 0.102 1.873 5.735 0.468 0.358 

H 2 

Clasic RM0 = −1.64 + 0.61·MATS3v + 1.61·H1p 0.274 0.167 1.905 4.695 0.476 0.293 

Vertical RM0 = −1.63 + 0.76·MATS3v + 1.59·H1p 0.25 0.163 1.888 4.940 0.472 0.309 

Normal RM0 = −1.65 + 0.76·MATS3v + 1.616·H1p 0.184 0.153 1.782 5.435 0.446 0.340 



28 

 

The most significant descriptors calculated with Dragon software are radial distribution 

descriptors (RDF), autocorrelation indices and geometric descriptors related mainly to atomic 

polarizability (MATS3p, Ap, H1p), van der Waals atomic volume (MATS3v), Sanderson atomic 

electronegativity (RDF070e ) and molecular Randice profiles (DP11, DP12) . 

To examine the ability of the obtained models to predict the chromatographic lipophilicity 

coefficient, the calculated and predicted RM0 values in the validation process were compared with the 

experimental ones. Good correlation values were found for training dataset (16 amino acids) and the 

training and test set (20 amino acids) for models using Dragon descriptors (Figure 5.1) and Alchemy 

descriptors (Figure 5.2). Based on the classical quality coefficients, the best model that can predict 

lipophilicity with a power of 99.83% and which explains 99.83% of the total variance, was obtained for 

models containing Dragon descriptors and a power of 76.37% for models containing descriptors 

Alchemy.  

A comparison between classical and fuzzy models can be seen in Figure 5.3 and Table 5.4 where 

all classical quality coefficients for each fuzzy model are summarized. Also, it can be seen that fuzzy 

models show a significant improvement in terms of predictive power, for both models (that contain 

Alchemy and Dragon descriptors. 

 

  

(a) (b) 
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(c) (d) 

Figure 5.1. Correlations between experimental and calculated (a, c) and experimental 

andpredicted (b, d) RM0 values for models E (a, b) and F (c, d) that contain Dragon descriptors. 

 

  

(a) (b) 
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(c) (d) 

Figure 5.2. Correlations between experimental and calculated (a, c), experimental and 

predicted (b, d) RM0 values for models A (a, b) and B (c, d) that contain Alchemy descriptors. 

 

 

Figura 5.3. Predicted RM0 values for the best models in the external cross validation process. 
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Table 5.4. Comparison of classic RLM-GA models and new fuzzy RLM-GA models developed using Dragon and Alchemy descriptors. 

ID 
Dimen

sion 
Type Models 

R2 
% 

F s RSS SDEC 
Q2 
% 

PRESS SDEP 

ALCHEMY 

A 5 

Clasic RM0 = 14.01 – 0.14·Volume + 1.68·MaxQ− + 1.54·Polar – 155.52·Sp.Pol – 0.008·WienI 89.19 16.51 0.143 0.206 0.113 76.37 0.450 0.168 

Vertical RM0 = 14.45 – 0.14·Volume + 1.84·MaxQ− + 1.59·Polar – 163.10·Sp.Pol – 0.01·WienI 84.94 14.028 0.169 0.287 0.134 71.53 0.543 0.184 

Normal RM0 = 20.02 – 0.19·Volume + 1.08·MaxQ− + 2.14·Polar – 223.29·Sp.Pol – 0.01·WienI 79.83 13.212 0.196 0.384 0.155 79.83 0.384 0.155 

B 4 

Clasic RM0 =13.38 – 0.14·Volume + 1.56·Polar – 156.11·Sp.Pol – 0.008·WienI 87.33 18.95 0.148 0.242 0.123 73.03 0.514 0.179 

Vertical RM0 = 17.62 – 0.18·Volume + 1.96·Polar – 201.66·Sp.Pol – 0.012·WienI 81.94 17.69 0.177 0.344 0.147 63.28 0.699 0.209 

Normal RM0 = 25.10 – 0.22·Volume + 2.47·Polar – 280.90·Sp.Pol – 0.014·WienI 72.14 12.612 0.220 0.531 0.182 72.14 0.531 0.182 

C 3 

Clasic RM0 = −0.97 – 0.68·ABSQON + 0.18·Polar – 0.28·0  V 83.45 20.16 0.162 0.315 0.140 71.50 0.543 0.184 

Vertical RM0 = −0.89 – 0.70·ABSQon + 0.23·Polar – 0.40·0  V 82.79 20.776 0.165 0.328 0.144 71.72 0.540 0.184 

Normal RM0 = −0.87 – 0.71·ABSQon + 0.23·Polar – 0.41·0  V 82.77 20.981 0.165 0.328 0.143 82.77 0.328 0.143 

D 2 

Clasic RM0 = −1.17 – 0.66·ABSQON + 0.09·Polar 80.95 27.62 0.167 0.363 0.151 68.96 0.591 0.192 

Vertical RM0 = −0.80 − 0.83·ABSQ
ON

 + 0.08·Polar 74.44 21.635 0.194 0.487 0.174 68.02 0.609 0.195 

Normal RM0 = −1.64 + 0.76·ABSQ
ON

 + 1.61·Polar 72.09 23.289 0.202 0.532 0.182 72.09 0.532 0.182 

DRAGON 

E 5 

Clasic RM0 = −1.36 + 0.36·MATS3p – 0.22·DP11 + 0.09·RDF070e + 0.37·Mor12u + 0.20·Ap 99.83 1172.9 0.018 0.003 0.014 99.54 0.009 0.023 

Vertical RM0 = −1.36 + 0.37·MATS3p − 0.21 * DP11 + 0.08·RDF070e + 0.38·Mor12u + 0.20·Ap 99.76 794.34 0.021 0.005 0.017 99.63 0.007 0.021 

Normal RM0 = −1.36 + 0.37−MATS3p − 0.21 * DP11 + 0.08·RDF070e + 0.38·Mor12u + 0.20·Ap 99.76 797.86 0.021 0.005 0.017 99.76 0.005 0.017 

F 4 

Clasic RM0 = −3.05 – 0.22·DP12 + 0.31·Mor12u + 0.32·Ap + 2.07·HATS2u 99.06 290.00 0.040 0.018 0.034 98.17 0.035 0.047 

Vertical RM0 = −3.07 − 0.23·DP12 + 0.32·Mor12u + 0.33·Ap + 2.10·HATS2u 98.92 248.03 0.043 0.021 0.036 98.03 0.038 0.048 

Normal RM0 = −3.24 − 0.25·DP12 + 0.30·Mor12u + 0.34·Ap + 2.30·HATS2u 98.74 225.38 0.047 0.024 0.039 98.74 0.024 0.039 

G 3 

Clasic RM0 = −3.32 – 0.24·SP13 + 0.32·Ap + 2.85·HATS2u 97.51 156.50 0.063 0.047 0.055 95.56 0.085 0.073 

Vertical RM0 = −3.40 − 0.19·SP13 + 0.29·Ap + 2.47·HATS2u 96.25 95.009 0.077 0.072 0.067 93.79 0.118 0.086 

Normal RM0 = −4.37 − 0.26·SP13 + 0.36·Ap + 3.82·HATS2u 94.44 78.309 0.094 0.106 0.081 94.44 0.106 0.081 

H 2 

Clasic RM0 = −1.64 + 0.61·MATS3v + 1.61·H1p 88.45 49.80 0.130 0.220 0.117 84.97 0.286 0.134 

Vertical RM0 = −1.63 + 0.76·MATS3v + 1.59·H1p 87.54 53.144 0.135 0.236 0.122 85.92 0.268 0.129 

Normal RM0 = −1.65 + 0.76·MATS3v + 1.616·H1p 87.41 53.754 0.136 0.240 0.122 87.41 0.240 0.122 
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6. Fuzzy characterization and classification of solvents according to their 

polarity and selectivity. A comparison with the Snyder approach. 

6.1. Introduction 

The goal of the present study is to describe and apply a new methodology for solvents 

characterization and classification, improving in this way the approach proposed by Snyder. The 

clustering and classification approaches pro-posed here were iteratively obtained by applying the fuzzy 

clustering method (partitioning) and robust fuzzy linear discriminant analysis. The diversity of their 

mathematical backgrounds allows more relevant conclusions to be drawn,finding more specific groups 

and a better characterization ofsolvents using their degrees of membership to each fuzzy partition and 

solving in this way some discrepancies. 

The efficiency of the robust fuzzy linear discriminantanalysis was measured by the correct 

classification rate oforiginal data and by the values of quality performance features obtained applying 

leave-one-out (LOO) crossvalidation approach. 

6.2. Materials and methods 

6.2.1. Dataset 

The values of physicochemical characteristics for 72 solvents were taken from the most widely 

cited classification in chromatography and other separation procedures so called the solvent-selectivity 

triangle developed by Snyder 33. For this classification, Snyder considered different polar interactions as 

a proton acceptor (xe), proton donor (xd), dipole (xn), chromatographic strength (P’) derived from gas-

liquid partition coefficient reported by Rohrschneider 34 including also toluene similitudes (xt) and 

methylethyl ketone similitudes(xm). Values of x measure the interaction with test solutes classified as 

acidic (ethanol), basic (dioxane) and dipolar (nitromethane) and satisfied the following condition: xe + 

xd + xn = 1. 

The solvents were assigned to eight groups according to their selectivity. Solvents included in 

the same group (region) of the triangle have similar selectivity generally whereas from other groups have 

different selectivity, even if their solventstrength is similar. 
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6.2.2. Fuzzy clustering methods 

To achieve the proposed goal, chemometric methods of multidimensional data analysis were 

used. The classification methods applied were: the fuzzy c-mean algorithm and fuzzy LDA analysis. 

All graphs and chemometric analyzes presented were performed using Statistics 8.1 (StatSoft, 

Tulsa, USA) and the Sadic program. 

6.3. Results and discussion 

In the following, we tried to resume the Snyder procedure, whose classification was based on the 

physicochemical properties of solvents (selectivity and polarity). 

Fuzzy classification algorithms were applied in order to obtain a nuanced, much more natural 

classification of the 72 solvents used in the study. 

6.3.1. Partitional clustering using fuzzy c-means approach 

Fuzzy c-means classification (FCM) produced 8 fuzzy partitions (groups), which were all 

represented by a prototype. To compare the partitions (groups) and the similarity and differences of 

solvents, we have to analyze both the characteristics of the prototypes corresponding to the eight fuzzy 

partitions (A1–A8) obtained by applying FCM and DOMs of solvents corresponding to all fuzzy par-

titions. 

The fuzzy partition A1, for example, has a moderatechromatographic strength (P’ = 4.71) and 

proton acceptor (�̃�e = 0.23), but a high dipolarity (�̃�d = 0.23) and very small proton donor (�̃�d = 0.23). 

This partition includes all the solvents ofthe Snyder’s group VIa excepting formyl morpholine and 

butyrolactone which are assigned to the partition A4 with avery high DOM (0.9841) and moderate one 

(0.7732), respectively. To this partition (A1) were assigned in addition3 solvents from Snyder group III 

(2-picoline, 2,6-lutidine, quinoline) with moderate DOMs, and nitrobenzene from Snyder group VII with 

a relatively small DOM (0.5656). 

The fuzzy partition A2, with relatively high value for P’ (7.09), �̃�e (0.39) and �̃�n (0.35), contain 

different solvents including dimethyl sulfoxide (III), ethyleneglycol (IV) and m-crezol (VIII) with the 

following very high DOMs: 0.9679 > 0.8757 > 0.8324. 
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By the contrary, the fuzzy partition A3 including the majority of solvents assigned by Snyder to 

the group I (aliphatic ethers and triethylamine) and VII (benzene and its derivatives) has the smallest 

chromatographic strength (P’ = 2.48) and a high dipolarity (�̃�n = 0.42). 

The fuzzy partition A4 has a high chromatographic strength (P’ = 6.25), proton acceptor (�̃�e = 

0.37) and dipolarity (�̃�n = 0.38), but a moderate proton donor (�̃�d = 0.25). This partition contains solvents 

of the Snyder’s group III (dimethylformamide, N,N-dimethyl acetamide, methylformamide, 

tetramethylurea), and also aniline (VIb), nitromethane (VII), acetic acid (IV), but with quite different 

DOM: 0.9530 > 0.7272 > 0.7259. 

The fuzzy partition A5 has a medium chromatographic strength (P’ = 3.99), but the highest 

proton acceptor value (�̃�e = 0.47). This partition includes the majority of aliphatic alcohols (Snyder’ 

group II) with high DOMs and also tetrahydrofuran (Snyder’ group III) with a high DOM = 0.8888 and 

chloroform (Snyder’ group VIII) with a moderate DOM = 0.6346. 

The fuzzy partition A6 has a small chromatographic strength (P’ = 3.28), but the highest 

dipolarity (�̃�n = 0.44). This partition includes solvents from Snyder’s group VII with very high DOMs 

(ethoxybenzene, fluorobenzene, diphenylether) and also methylene chloride, ethylene chloride (Snyder’ 

group V) with high DOMs and 1-Octanol (Snyder’ group II) with a small DOM = 0.5877. 

The fuzzy partition A7 has a moderate chromatographic strength (P’ = 5.43), and high proton 

acceptor value (�̃�e = 0.38) and dipolarity (�̃�n = 0.37). This partition includes solvents from Snyder’ group 

III with very high DOMs (nonylphenol oxyethylate, 2-methoxyethanol, pyridine, triethyleneglycol, 

diethyleneglycol), and also benzyl acohol (IV), nitroethane (VII), acetonitrile (VIb), methanol (II), 

acetone (VIa) with DOMs in the following order: 0.6972 > 0.6814 > 0.5008 > 0.4954 > 0.4942. 

The fuzzy partition A8 has the highest chromatographic strength (P’ = 9.44) and methylethyl 

ketone similitudes (�̃�m = 0.35), but the smallest dipole (�̃�n = 0.28). Also, quite interesting, the proton 

acceptor value (�̃�e = 0.35) and donor acceptor value (�̃�d = 0.36) are near equal. This group is identical to 

the Snyder’s group VIII, excepting formamide which is assigned also to this group of water with a very 

high DOM (0.9866). Chloroform assigned to this group in Snyder classification was moved in fuzzy 

partition A5 (a group of alcohols). 
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6.3.2. Fuzzy discriminant analysis (FLDA) 

The application of FLDA led to the discrimination of the investigated solvents in eight classes in 

good agreement to classification of Snyder but with very various and relatively small DOMs, from 

0.2251 for formamide and 0.9110 for tert-pentanol (Table 6.2). The results indicate a very good 

separation of solvents in about all cases according to the correct classification rate (Table 6.3): the 

highest value (100%) was obtained in the majority of cases (II, IV, V and VI) and the lowest value 

(66.67%) for solvents corresponding to the first group. 

Tabel 6.3. Classification matrix of solvents obtained by applying fuzzy discriminant analysis for the 

eight groups of Snyde. 

 Classification matrix Classification matrix (%) 

Class Total I II III IV V VI VII VIII I II III IV V VI VII VIII 

I 6 4 0 2 0 0 0 0 0 66.67 0 33.33 0 0 0 0 0 

II 8 0 8 0 0 0 0 0 0 0 100 0 0 0 0 0 0 

III 15 0 0 13 0 0 0 0 0 0 0 86.67 0 0 6.67 6.67 0 

IV 4 0 0 0 4 0 0 0 0 0 0 0 100 0 0 0 0 

V 2 0 0 0 0 2 0 0 0 0 0 0 0 100 0 0 0 
VI 18 0 0 0 0 0 18 0 0 0 0 0 0 0 100 0 0 

VII 14 0 0 0 0 0 2 12 0 0 0 0 0 0 14.29 85.71 0 

VIII 5 0 0 0 0 0 0 1 4 0 0 0 0 0 0 20.00 80.00 

 

In the case of first group, two solvents hexamethyl phosphoramide and tetramethyl guanidine, 

were moved to group III according to the following small DOMs: 0.3563 and 0.4524. By the other side, 

two solvents from group III, namely tetrahydrofuran and nonylphenol oxyethylate were moved to other 

groups: tetrahydrofuran to VI (DOM = 0.3933) and nonylphenol oxyethylate to VII (DOM = 0.2265). 

Two solvents included by Snyder to the group VII were assigned to group VI: nitromethane (0.4171) 

and nitroethane (0.4223). The case of group VIII is also quite interesting because chloroform included 

in this group by Snyder is move in the group VII (DOM = 0.2693). 

The efficiency of FLDA are well supported by scatterplot of canonical scores on the plane 

defined by ROOT1-ROOT2(Figure 6.2).  
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Table 6.2. Results obtained for eight predefined groups applying fuzzy linear discriminant analysis. 

Class 
Parameters of class centers Solvents (ranked in 

decreasing order) 
Name of solvents DOMs 

P’ �̃�e �̃�d �̃�n �̃�t �̃�m 

I 2.4740 0.5003 0.1438 0.3557 0.0816 0.1785 23 22 41 24 

Di-iso-propiletilenă (I) 

Dietileter (I) 

Trietilamină (I) 

Di-n-butileter (I) 

0.7878 

0.7764 

0.5212 

0.4742 

II 4.0083 0.5481 0.1927 0.2656 0.0531 0.2118 47 3 7 4 5 2 

terț-Pentanol (II) 

1-Propanol (II) 

1-Octanol (II) 

2-Propanol (II) 

1-Butanol (II) 

Etanol (II) 

0.9110 

0.9064 

0.8361 

0.7903 

0.7852 

0.5646 

III 5.6099 0.4124 0.2191 0.3692 0.1234 0.2353 
43 61 44 52 71 39 48 

57 38 50 37 55 65 

Piridină (III) 

Metilformamidă (III) 

Quinolină (III) 

2-Picolină (III) 

Trietilenglicol 

Tetrametiluree (III) 

2-Metoxietanol (III) 

N,N-dimetil acetamidă (III) 

N-Metilpirolidină (III) 

2,6-lutidină (III) 

Dimetilformamidă (III) 

Tetrametil guanidină (I) 

Dimetil sulfoxid (III) 

0.9063 

0.8295 

0.6801 

0.6651 

0.5697 

0.5676 

0.5652 

0.5462 

0.4867 

0.4851 

0.4754 

0.4524 

0.4459 

IV 6.2920 0.4046 0.3013 0.2938 0.1084 0.2752 9 30 8 
Benzil alcool (IV) 

Acid acetic (IV) 

Etileneglicol (IV) 

0.8592 

0.7619 

0.6645 

V 3.3000 0.2950 0.1950 0.5100 0.2000 0.2100 49 Clorură de metilen (V) 0.4132 
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VI 5.3804 0.3389 0.2507 0.4112 0.1432 0.2413 

62 33 35 27 21 68 32 

36 20 31 58 69 54 67 

64 19 18 

Ciano morfolină (VI) 

Acetofenonă (VI) 

Carbonat de propilen (VI) 

Dioxan (VI) 

Acetonitril (VI) 

tris-cianoetoxipropan (VI) 

Ciclohexanonă (VI) 

Butirolactonă (VI) 

Benzonitril (VI) 

Acetonă (VI) 

Tricrezilfosfat (VI) 

Oxidipropionitril (VI) 

bis-(2-etoxi etil) eter (VI) 

Tetrahidrotiofenă (VI) 

Formil morfolină (VI) 

Nitroetan (VII) 

Nitrometan (VII) 

0.7833 

0.7346 

0.7136 

0.7112 

0.6543 

0.6260 

0.6201 

0.6035 

0.5813 

0.5531 

0.5489 

0.5456 

0.5267 

0.5232 

0.4554 

0.4223 

0.4171 

VII 3.2526 0.2573 0.3072 0.4354 0.1554 0.3142 
45 13 16 12 14 51 28 

26 15 17 25 

Fluorobenzen (VII) 

Clorobenzen (VII) 

p-Xilen (VII) 

Benzen (VII) 

Bromobenzen (VII) 

Etoxibenzen (VII) 

Anisol (VII) 

Difenileter (VII) 

Iodobenzen (VII) 

Nitrobenzen (VII) 

Dibenzileter (VII) 

0.8783 

0.8110 

0.8108 

0.8028 

0.7974 

0.7696 

0.7525 

0.7058 

0.6423 

0.5931 

0.4128 

VIII 8.5477 0.3486 0.3768 0.2727 0.0772 0.3617 63 66 72 56 

Dodecafluoroheptanol (VIII) 

Tetrafluoropropanol (VIII) 

Apa (VIII) 

m-Crezol (VIII) 

0.8983 

0.7597 

0.6239 

0.5920 
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Figure 6.2. Scatterplot of canonical scores corresponding to ROOT1 and ROOT2. 

At the same time, the results of the classification matrix using the leave-one-out cross-validation 

procedure (Table 6.4), showed a high correctness of the classification rate in accordance with the 

classification of the initial data. 

Table 6.4. Classification matrix of solvents obtained by applying leave-one-out cross-validation 

approach. 

 Classification matrix Classification matrix (%) 

Class Total I II III IV V VI VII VIII I II III IV V VI VII VIII 

I 6 4 0 2 0 0 0 0 0 66.67 0 33.33 0 0 0 0 0 
II 8 0 8 0 0 0 0 0 0 0 100 0 0 0 0 0 0 

III 15 0 0 13 0 0 0 0 0 0 0 86.67 0 0 6.67 6.67 0 

IV 4 0 0 0 3 0 0 0 0 0 0 0 75.00 0 0 0 25.00 

V 2 0 0 0 0 2 0 0 0 0 0 0 0 100 0 0 0 

VI 18 0 0 0 0 0 17 0 0 0 0 0 5.56 0 94.44 0 0 

VII 14 0 0 0 0 0 2 12 0 0 0 0 0 0 14.29 85.71 0 

VIII 5 0 0 0 0 0 0 1 4 0 0 0 0 0 0 20.00 80.00 
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7. Characterization and classification of foods based on amino acids content, using 

fuzzy c-means algorithms 

7.1. Introduction 

The aim of this study was to characterize and classify the most important and consumed foods 

according to their AA profile, especially according to their EAA content, using advanced chemometric 

techniques. 

7.2. Materials and methods 

7.2.1. Samples 

The data analyzed in this study include 100 samples (food) characterized by the content of the 

most important AA, collected from various sources in the literature 35−43. 

The investigated foods are classified in: milk, eggs, meat, fruits, vegetables, nuts, seeds, honey 

and wine and include information on the content in AA. 

AA analyzed by different analytical methods (RP-HPLC, IEC, GC) for all  considered foods 

were the following : alanine (Ala), arginine (Arg), aspartic acid (Asp), cysteine (Cys), glutamic acid (Glu), 

glycine (Gly), histidine (His), isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), phenilalanine 

(Phe), proline (Pro), serine (Ser), threonine (Thr), triptophan (Trp), tyrozine (Tyr), valine (Val). The 

content of amino acid for each sample (food) ware expressed in percentage (%) of the mass, resulting a 

matrix with the size of 100 × 18. 

7.2.2. Methods 

To achieve the proposed goal, were used the classical HCA analysis and metoda fuzzy divisive c-

means algorithm. 
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7.3. Results and disscusion 

The data collected on the AA content of the most consumed foods is presented in Figure 7.1. As 

can be seen, the most abundant AA are Pro, Glu and Asp. With the exception of three AAs, most foods 

have an AA content ranging from 0−10%  

Considering the obtained dendrogram (Figure 7.2), applying HCA analysis (complete linkage 

and Euclidian distance as a measure of similarity) a very important aspect can be observed, especially 

that the difference between foods increases exponentialy from right to left, except for the group of fish 

that are very similar to each other, but also clearly different from the other foods. 

 

Figure 7.1. Profile of food samples in terms of amino acid content . 

 

To compare the partitions obtained by applying the fuzzy c-means approch, we analyzed the 

similarities and differences between foods, the degrees of membership (DOMs) corresponding to all 
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fuzzy partitions for both samples and characteristics (AA concentration). The results obtained applying 

the method of hierarchical-divisive associative clusters are presented in Table 7.1. Through a rigorous 

analysis of the fuzzy partitions at each level (partition history) in parallel with the values of AA 

concentrations in food, the following remarks can be made. At the first partition level (100 samples) 

they were separated into 2 fuzzy partitions A1 and A2. The DOMs values of the foods in partition A1 

are in the range of 0.029−0.945 or 2.90−94.50% and between 0.962−0.994 (99.62−99.40%) in the case 

of fuzzy partition A2. Most of the analyzed foods have been assigned to the fuzzy partition A1.  

 

Table 7.1. Partițiile fuzzy asociate finale. 

Fuzzy 

partition 

level  

Fuzzy 

divisive 

partition 
Samples DOMs 

Associate 

variables 

(concentration 

of AA, %) 

DOMs 

0 A 
1,…, 100 

Foods 
 1,..., 18  

Final partition 

1 A111111 57, 47 
0.501; 

0.029 
Gly 0.821 

2 A111112 
20, 19, 21, 18 (7.05, 7.36, 7.07, 

7.09) 
0.918−0.590 Ser (highest) 0.669 

3 A11112 
35, 34 (Val: 6.9, 6.7; Ala: 9.1, 

9.4) 
0.881;0.704 Val, Ala 

0.722; 

0.446 

4 A11121 14, 52, 67, 50, 61, 1, 68 0.764−0.408 Thr 0.709 

5 A11122 
64, 9, 91, 8, 88 (Phe: 5.1, 5.7, 

5.2, 4.7, 5.3) 
0.585−0.260 Phe; Ile (mare) 

0.854; 

0.792 

6 A1121 
49, 37, 77, 36, 38, 63, 39, 79, 72, 

71, 10, 51, 62 
0.901−0.389 

Arg (highest) ~ 

12 
0.624 

7 A11221 
2, 3, 4, 12, 13, 17, 5, 93, 65, 73, 

78, 55 
0.945−0.269 Lys 0.753 

8 A11222 16, 15, 32, 33, 90, 7, 66, 27, 6 0.739−0.262 Leu 0.510 

9 A121 

46, 95, 92, 89, 59, 54, 48, 42, 97, 

94, 76, 69, 96, 74, 41, 99, 100, 

45, 25, 11, 70, 43, 44, 53, 30, 26, 

29, 98, 31, 28, 24 

0.892−0.363 
His; Met 

Tyr 

0.867; 

0.792 

0.486 
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10 A1221 40, 75 
0.501; 

0.363 
Trp 0.803 

11 A1222 56, 58, 60 0.738−0.628 Cys 0.877 

12 A2 
82, 84, 81, 85, 83, 80, 23, 87, 86, 

22 
0.994−0.962 

Asp, Glu 

(lower), 

Pro (lower) 

0.990; 

0.879 

0.754 

 

 

Figure 7.2. Dendogram corresponding to all investigated food samples(18 amino acids).  
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CHAPTER IV—GENERAL CONCLUSIONS 

➢ Applying various experimental methods and advanced chemometric analysis, we could 

characterize and classify amino acids and related compounds according to their specific 

properties (lipophilicity and antioxidant activity). 

➢ Proteinogenic AAs were tested using different methods for antioxidant activity determination 

based on several types of free radicals (present both in vivo and in vitro). The results of the study 

confirmed that some proteinogenic AAs have a significant free radical scavenging activity 

through most applied methods and support the development of a new class of multifunctional 

and natural antioxidants. The Amino acids with high activity are: Cys, Trp, Tyr, Arg and Asn. 

➢ PCA and CA analysis showed that antioxidant activity methods based on similar mechanisms 

are closely related. Based on SRD results, the methods that best discriminate AA are those based 

on the scavenging antioxidant power, such as DPPH and NO. 

➢ Regarding catecholamines, based on the obtained results, they shown a significant activity of 

scavenging and reducing the power of free radicals and support the development of a new class 

of multifunctional antioxidants. 

➢ According to the experimental and chemometric results, most drugs have high antioxidant 

activity in most assays, except for methoxamine, L-dopa and D-dopa (which do not have 

pharmacological properties). At the same time, the investigated compounds showed a low 

chelating capacity of ferrous ions. 

➢ Regarding the prediction and modeling of lipophilicity of AAs, the best models, validated 

internally by cross-validation procedure, showed that a small number of molecular descriptors 

are needed to obtain statistically significant prediction models. 

➢ Models derived from Dragon descriptors showed greater predictive power compared to those 

derived from Alchemy, because they describe much better the 3D aspects of AAs. 

➢ The selected descriptors in the equations of the most powerfull models for prediction of the 

lipophilicity of the investigated compounds contain both 2D and 3D aspects of the molecular 

structure, as well as aspects regarding the topology, conformation, connectivity indices and some 

molecular properties of the compounds. 
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➢ Fuzzy models compared to the classic ones, demonstrated a much higher predictive power for 

both models containing Dragon and Alchemy descriptors, and also, presenting a much better and 

efficient applicability for prediction of the molecular property with great interest in drug 

discovery, toxicology and ecology. 

➢ By applying robust fuzzy classification algorithms, it was possible to find more specific groups 

and better characterization of solvents using the degree of membership for each fuzzy partition 

and thus solving the problem of solvents that were not well classified according to Snyder's 

classification. 

➢ At the same time, we managed to highlight more efficiently the specific characteristics of each 

class of solvents, in terms of prototype parameters and class centers. Thus, by applying fuzzy 

algorithms, the solvent or mixture of solvents suitable for the desired chromatographic analysis 

could be selected much more easily and correctly. 

➢ By applying fuzzy c-means algorithm, it was possible to classify foods in terms of AA content, 

especially in EAA content. With the help of prototype parameters and class centers, the specific 

characteristics of each food class were highlighted much more efficiently and well, and the 

degrees of membership allowed a much more rational comparison of (di)similarities between 

foods according to their AA content. 

➢ The applied advance chemometric analysis proved, once again, that they are extremely useful 

for studying the similarities and differences between foods, on the one hand, and AA on the other 

hand, as well as establishing the AA characteristics for each food class. 
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