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Introduction

The representation theory of a finite group is a very important tool needed to examine
the structure of said group, thereby one of the main goals of the representation theory of
finite groups is the classification of all finite groups. In this sense, a main result obtained
this century was the successful classification of all simple groups. For the classification
of all finite groups, some of the oldest conjectures propose to relate the representation
theory of a finite group to that of its local subgroups.

One of the more modern strategies used in order to tackle these so-called local-global
conjectures is to reduce them to some more complicated statements on finite simple sub-
groups through the so-called inductive conditions. Such reduction theorems are obtained,
by techniques of Clifford theory, and in particular, by using the language of character
triples and of the various relations between them.

In the recent results of Britta Späth, surveyed in [37] and [38], on inductive conditions
for the McKay conjecture and the Alperin weight conjecture, the developed reduction
theorems involve certain order relations between two character triples, which forces the
two triples to have “the same Clifford theory”. More precisely, Britta Späth considers
three relations between character triples: the first-order relation ([38, Definition 2.1]), the
central-order relation ([38, Definition 2.7]) and the blockwise-order relation ([38, Definition
4.2]).

In this thesis we create a categorical version of character triples, named module triples
and we give three relations between module triples analogous in a sense to those between
character triples previously recalled. Moreover, we will prove that these relations are
consequences of some group graded Morita, Rickard or derived equivalences, respectively,
with some additional properties. This is motivated by the convictions, expressed primarily
in the work of Michel Broué (see, for instance, [5] and [6]), that character correspondences
with good properties are consequences of categorical equivalences, like Morita equivalences
or Rickard equivalences between blocks of group algebras. To explain the link between
these two points of view, let us introduce our context.

We consider a finite group G, a p-modular system (K,O, k ), where O is a complete
discrete valuation ring, K is the field of fractions of O and k = O/J(O) is its residue field,
together with the assumptions that k is algebraically closed, and that K contains all the
unity roots of order |G|.

Let N be a normal subgroup of G, and denote Ḡ := G/N. Let also G ′ be a subgroup
of G such that G = NG ′, and let N ′ = G ′ ∩ N. Let b and b ′ be Ḡ-invariant blocks of
ON and ON ′, respectively, and consider the strongly Ḡ-graded O-algebras A = bOG
and A ′ = b ′OG ′, with identity components B = bON and B ′ = b ′ON ′.

In Chapter 1, we start with the “Butterfly theorem”, which as stated by B. Späth in
[38, Theorem 2.16], gives the possibility to construct certain relations between character
triples. Motivated by this, as we have published in article [28], we consider group graded
Morita equivalences between block extensions and we obtain Theorem 1.5.2, which shows
how to construct a group graded Morita equivalence from a given one, under very sim-
ilar assumptions to those in [38]. Nevertheless, our assumption that all elements of M
commute with the elements in the center of N, where M is a (B,B ′)-bimodule assumed
to induce a Morita equivalence between B and B ′, provides the motivation for some fur-
ther developments of this categorical version of the “Butterfly theorem”, which will be
presented in Chapter 2.
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Moreover, one of the conditions in Späth’s definition [37, Definition 3.1], [38, Definition
2.7] of the central order ≤c between two character triples is that CG(N) ≤ G ′ and that
the projective characters associated to the character triples take the same scalar values
on elements of CG(N). Observe that in this situation, the group algebra C = OCG(N) is
a Ḡ-graded subalgebra of both A and A ′, and has an obvious Ḡ-action compatible with
the Ḡ-grading.

Henceforth, given that we already know that equivalences induced by Ḡ-graded bimod-
ules preserve many Clifford theoretical invariants (see [25, Chapter 5] and [26]), both our
initial categorical version of the “Butterfly theorem” and the relation ≤c between char-
acter triples leads us to the consideration of Ḡ-graded (A,A ′)-bimodules M̃ satisfying
mḡc =

ḡ cmḡ for all ḡ ∈ Ḡ, c ∈ C and mḡ ∈ M̃ḡ. It turns out that equivalences induced
by such bimodules imply the relation ≤c between corresponding character triples. This
type of bimodules, namely G-graded (A,A ′)-bimodules over a Ḡ-graded Ḡ-acted algebra
C, will be introduced in Chapter 2, where we will also establish their main properties. This
new type of structures was first published by us in article [29]. The main result of this
chapter is Theorem 2.1.13, where we show that their corresponding category, A-Gr/C-A ′,
is equivalent to the category of ∆C-modules, where ∆C =

⊕
ḡ∈ḠAḡ⊗CA ′

op
ḡ . Actually, there

are three naturally isomorphic functors giving this equivalence (see Proposition 2.1.14),
and we also prove in Proposition 2.1.15 that these functors are also compatible with tensor
products and with taking homomorphisms.

In the following sections of the chapter, we develop a group graded Morita Theory over
C, as we have done in article [32], and we show that G-graded Morita equivalences over
C can be induced from certain equivariant Morita equivalences between B and B ′, after
which we prove in Theorem 2.4.3 our final version of the “Butterfly theorem”, generalizing
the initial result of Chapter 1. As an application, in Section 2.5 we show how to obtain
Ḡ-graded Morita equivalences over C from the Morita equivalences induced by the Scott
module Sc(N×N ′, ∆Q) of Koshitani and Lassueur [19], [20].

In order to take advantage of this categorical setting, in Chapter 3, as we have pub-
lished in article [29], we introduce module triples (A,B, V), where V is a Ḡ-invariant
simple K ⊗O B-module, and the relation ≥c between two module triples (A,B, V) and
(A ′, B ′, V ′). Our final main result is Theorem 3.2.4, where we prove that if the mod-
ule triples (A,B, V) and (A ′, B ′, V ′) correspond under a Ḡ-graded Rickard equivalence
over C = OCG(N), then (A,B, V) ≥c (A ′, B ′, V ′); this, in turn, implies the relation
(G,N, θ) ≥c (G ′, N ′, θ ′) between the associated character triples. Furthermore, in Defi-
nition 3.3.1 we also provide a module triple version of the blockwise-relation ≥b (see [38,
Definition 4.2]), and we show in Proposition 3.3.6 that this is a consequence of a special
type of group graded derived equivalences which is compatible in a certain sense with
the Brauer map. These new blockwise additions to our theory of module triples were
developed by us in article [30].

Finally, in Chapter 4, given that Britta Späth’s research shows that a new character
triple can be constructed via a wreath product construction of character triples ([38,
Theorem 2.21]), we will prove that our equivalences are compatible with tensor and wreath
product constructions, as we have done in articles [33, 30].

Cumulatively, this thesis is based upon our results published in [28, 29, 32, 33, 30].
Additionally certain parts of this thesis have been presented in various national and
international conferences.

For any unexplained concepts and results, our general references are [23] and [25].
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Chapter 1

Ḡ-graded endomorphism algebras
and Morita equivalences

In this chapter, we will present our basic notations and in the following sections we will
prove a group graded Morita equivalences version of the “butterfly theorem” on character
triples. This gives a method to construct an equivalence between block extensions from
another related equivalence. Results of this chapter were published in [28].

1.1 Notations and preliminaries

In general, our notations and assumptions are standard and follow [25].
All rings in this thesis are associative with identity 1 6= 0 and all modules are unital

and finitely generated.
Let A be a ring. We denote by A-Mod the category of all left A-modules. We shall

usually write actions on the left, so in particular, by module we will usually mean a left
module, unless otherwise stated. The notation MA (respectively, MA A ′ ) will be used to
emphasize that M is a left A-module (respectively, an (A,A ′)-bimodule).

To introduce our context, let G be a finite group and let (K,O, k ) be a p-modular
system, where O is a complete discrete valuation ring, K is the field of fractions of O (of
characteristic 0) and k = O/J(O) is its residue field (of characteristic p). We assume that
k is algebraically closed, and that K contains all the roots of unity of order |G|.

We consider N to be a normal subgroup of G, and we will denote by Ḡ the factor
group G/N.

Let A =
⊕

ḡ∈ḠAḡ be a Ḡ-graded O-algebra. For a subgroup H̄ of Ḡ, we denote by

AH̄ :=
⊕

ḡ∈H̄Aḡ the truncation of A from Ḡ to H̄. We denote by A-Gr the category of

all Ḡ-graded left A-modules. For M =
⊕

ḡ∈ḠMḡ ∈ A-Gr and ḡ ∈ Ḡ, the ḡ-suspension of

M is defined to be the Ḡ-graded A-module M(ḡ) = ⊕h̄∈ḠM(ḡ)h̄, where M(g)h̄ = Mḡh̄.
For any ḡ ∈ Ḡ, TAḡ : A-Gr → A-Gr will denote (as in [11]) the ḡ-suspension functor, i.e.
TAḡ (M) =M(ḡ) for all ḡ ∈ Ḡ. The stabilizer of M in G is, by definition [25, §2.2.1], the
subgroup

ḠM =
{
ḡ ∈ Ḡ |M 'M(ḡ) as Ḡ-graded left A-modules

}
.

If ḠM = Ḡ or equivalently M is isomorphic in A-Gr to each of of its ḡ-suspensions, we
say that M is Ḡ-invariant.

Let M,N ∈ A-Gr. We denote by HomA(M,N), the additive group of all A-linear
homomorphisms from M to N. Because Ḡ is finite, E. C. Dade showed in [9, Corollary
3.10] that HomA(M,N) is Ḡ-graded. More precisely, if ḡ ∈ Ḡ, the component of degree
ḡ (furthermore called the ḡ-component) is defined as in [25, §1.2]:

HomA(M,N)ḡ :=
{
f ∈ HomA(M,N) | f(Mx̄) ⊆ Nx̄ḡ, for all x̄ ∈ Ḡ

}
.

We denote by idX the identity map defined on a set X.
For the sake of simplicity, in this chapter, we will mostly consider only crossed prod-

ucts, also because the generalization of the statements to the case of strongly graded
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algebras is a mere technicality. Recall that, if A is a crossed product, we can chose an
invertible homogeneous element uḡ in the component Aḡ, for all ḡ ∈ Ḡ.

Our main example for a Ḡ-graded crossed product is obtained as follows: Regard OG
as a Ḡ-graded algebra with the 1-component ON. Let b ∈ Z(ON) be a Ḡ-invariant block
idempotent. We denote A := bOG and B := bON. Then the block extension A is a
Ḡ-graded crossed product, with 1-component B. This will also constitute the basis of
our main framework (Section 1.4) and also the reason for which we will mainly utilize
“Ḡ-gradings” in this thesis, although this is not always essential: in most cases, one may
consider instead the gradings to be given directly by G.

1.2 Group graded Morita equivalences

In this section, we recall from [25] the main facts on group graded Morita equivalences
and we state a graded variant of the second Morita Theorem [12, Theorem 12.12].

Let A =
⊕

ḡ∈ḠAḡ and A ′ =
⊕

ḡ∈ḠA
′
ḡ be strongly Ḡ-graded algebras, with the 1-

components B and B ′ respectively.
It is clear that A⊗O A ′op is a Ḡ× Ḡ-graded algebra. Let

δ(Ḡ) := {(ḡ, ḡ) | ḡ ∈ Ḡ}

be the diagonal subgroup of Ḡ× Ḡ, and let ∆O be the diagonal subalgebra of A⊗OA ′op

∆O := ∆(A⊗O A ′op) := (A⊗O A ′op)δ(Ḡ) =
⊕
ḡ∈Ḡ

Aḡ ⊗A ′ḡ−1 .

Then ∆O is a Ḡ-graded algebra, with 1-component ∆O1 = B⊗O B ′op.

Let M be a (B,B ′)-bimodule, or, equivalently, M is a B ⊗O B ′op-module, thus a ∆1-
module. Let M∗ := HomB(M,B) be its B-dual. Note that if B is a symmetric algebra,
then we have the isomorphism

M∗ := HomB(M,B) ' HomO(M,O),

where HomO(M,O), is the O-dual of M.

Definition 1.2.1. We say that the Ḡ-graded (A,A ′)-bimodule M̃ induces a Ḡ-graded
Morita equivalence between A and A ′, if M̃ ⊗A ′ M̃∗ ' A as Ḡ-graded (A,A)-bimodules
and M̃∗⊗AM̃ ' A ′ as Ḡ-graded (A ′, A ′)-bimodules, where theA-dual M̃∗ = HomA(M̃,A)
of M̃ is a Ḡ-graded (A ′, A)-bimodule.

By [25, Theorem 5.1.2], the following statements are equivalent:

(1) between B and B ′ we have a Morita equivalence given by the ∆O1 -module M:

B oo
M
B B ′⊗B ′−

B ′;//
M∗

B ′ B
⊗B−

and M extends to a ∆O-module;

(2) M̃ := A⊗BM is a Ḡ-graded (A,A ′)-bimodule and M̃∗ := A ′ ⊗B ′M∗ is a Ḡ-graded
(A ′, A)-bimodule, which induce a Ḡ-graded Morita equivalence between A and A ′,
given by the functors:

A oo
M̃

A A ′⊗A ′−
A ′.//

M̃∗
A ′ A

⊗A−
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Chapter 1. Ḡ-graded endomorphism algebras and Morita equivalences

In this case, by [25, Lemma 1.6.3] tells us the following are naturally isomorphic
equivalences of categories:

A⊗B − ' −⊗B ′ A ′ ' ((A⊗O A ′op)⊗∆O −),

thus we have the natural isomorphisms of Ḡ-graded bimodules

M̃ := A⊗BM 'M⊗B ′ A ′ ' ((A⊗O A ′op)⊗∆O M),

Assume that B and B ′ are Morita equivalent. Then, by the second Morita Theorem
[12, Theorem 12.12], we can choose the bimodule isomorphisms

ϕ :M∗ ⊗BM→ B ′, ψ :M⊗B ′M∗ → B,

such that
ψ(m⊗m∗)n = mϕ(m∗ ⊗ n), ∀m,n ∈M, m∗ ∈M∗

and that
ϕ(m∗ ⊗m)n∗ = m∗ψ(m⊗ n∗), ∀m∗, n∗ ∈M∗, m ∈M.

By the surjectivity of this functions, we may choose finite sets I and J and the elements
m∗j , n

∗
i ∈M∗ and mj, ni ∈M, for all i ∈ I, j ∈ J such that:

ϕ(
∑
j∈J

m∗j ⊗Bmj) = 1B ′ , ψ(
∑
i∈I

ni ⊗B n∗i ) = 1B.

Assume that M̃ and M̃∗ give a Ḡ-graded Morita equivalence between A and A ′. As
above, by [12, Theorem 12.12], we can choose the isomorphisms

ϕ̃ : M̃∗ ⊗A M̃→ A ′, ψ̃ : M̃⊗A ′ M̃∗ → A

of Ḡ-graded bimodules such that

ψ̃(m̃⊗ m̃∗)ñ = m̃ϕ̃(m̃∗ ⊗ ñ), ∀m̃, ñ ∈ M̃, m̃∗ ∈ M̃∗

and that
ϕ̃(m̃∗ ⊗ m̃)ñ∗ = m̃∗ψ̃(m̃⊗ ñ∗), ∀m̃∗, ñ∗ ∈ M̃∗, m̃ ∈ M̃.

Actually, ϕ̃1 and ψ̃1 are the same with ϕ and ψ from before and are ∆O-linear isomor-
phisms. Moreover, we have that 1A = 1B ∈ B and 1A ′ = 1B ′ ∈ B ′. Henceforth, we may
choose the same finite sets I and J and the same elements m∗j , n

∗
i ∈M∗ and mj, ni ∈M,

∀i ∈ I, j ∈ J such that:

ϕ̃(
∑
j∈J

m∗j ⊗Bmj) = 1B ′ , ψ̃(
∑
i∈I

ni ⊗B n∗i ) = 1B.

1.3 Centralizers and graded endomorphism algebras

This section is based on [28, §3]. In it, we show that there is a natural map, compatible
with Morita equivalences, from the centralizer CA(B) of B in A to the endomorphism
algebra of a Ḡ-graded A-module induced from a B-module.
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We will assume that A and A ′ are Ḡ-graded crossed products, although the results
of this section can be generalized to strongly graded algebras. Let U ∈ B-mod and
U ′ ∈ B ′-mod such that U ′ =M∗ ⊗B U. We denote

E(U) := End(A⊗B U)op, E(U ′) := End(A ′ ⊗B ′ U ′)op,

the Ḡ-graded endomorphism algebras of the modules induced from U and U ′.
We will prove that there exists a natural Ḡ-graded algebra homomorphism between

the centralizer of B in A and E(U), compatible with Ḡ-graded Morita equivalences.

Lemma 1.3.1. The map

θ : CA(B)→ E(U), θ(c)(a⊗ u) = ac⊗ u,

where c ∈ CA(B), a ∈ A and u ∈ U is a homomorphism of Ḡ-graded algebras.

By [25, Lemma 1.6.3], we have

A⊗BM 'M⊗B ′ A ′,

and we will need an explicit isomorphism between the two. We will choose invertible
elements uḡ ∈ U(A) ∩ Aḡ and u ′ḡ ∈ U(A) ∩ A ′ḡ of degree ḡ ∈ Ḡ. We have that an
arbitrary element a ′ḡ ∈ A ′ḡ can be written uniquely in the form a ′ḡ = u

′
ḡb
′, where b ′ ∈ B ′.

The desired Ḡ-graded bimodule isomorphism is:

ε :M⊗B ′ A ′ → A⊗BM m⊗B ′ a ′ḡ 7→ uḡ ⊗B u−1
ḡ ma

′
ḡ

for m ∈M. We will also need the explicit isomorphism of Ḡ-graded bimodules

β : A ′ ⊗B ′M∗ →M∗ ⊗B A a ′ḡ ⊗B ′ m∗ 7→ a ′ḡm
∗u−1

ḡ ⊗B uḡ

for m∗ ∈M∗. Henceforth we consider the isomorphism of Ḡ-graded A ′-modules

β⊗B idU : A ′ ⊗B ′M∗ ⊗B U→M∗ ⊗B A⊗B U.

Proposition 1.3.2. Assume that M̃ and M̃∗ give a Ḡ-graded Morita equivalence between
A and A ′. Then the diagram

E(U)
ϕ1

∼
// E(U ′)

CA(B)
ϕ2

∼
//

θ

OO

CA ′(B
′)

θ ′

OO

is commutative, where the maps are defined as follows:

θ(c)(a⊗ u) = ac⊗ u,
θ ′(c ′)(a ′ ⊗ u ′) = a ′c ′ ⊗ u ′

ϕ1(f) = (β⊗B idU)−1 ◦ (idM̃∗ ⊗ f) ◦ (β⊗B idU),

ϕ2(c) = ϕ̃(
∑
j∈J

m∗j c⊗Bmj).

for all a ∈ A, a ′ ∈ A ′, c ∈ CA(B), c ′ ∈ CA ′(B ′), u ∈ U, u ′ ∈ U ′ and f ∈ E(U).
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Chapter 1. Ḡ-graded endomorphism algebras and Morita equivalences

1.4 The beginning of the main framework

Recall that G is a finite group and that N is a normal subgroup of G. Additionally,
let G ′ be a subgroup of G and N ′ a normal subgroup of G ′. We assume that N ′ = G ′∩N
and G = G ′N, hence by the second isomorphism theorem

Ḡ := G/N ' G ′/(G ′ ∩N) = G ′/N ′.

We can represent this in the following diagram:

G

N G ′

N ′.

We regard OG and OG ′ as Ḡ-graded algebras with the 1-components ON and ON ′
respectively. It is known that Ḡ acts on Z(ON) and Z(ON ′).

Let b ∈ Z(ON) and b ′ ∈ Z(ON ′) be two block idempotents. We denote

A := bOG, A ′ := b ′OG ′, B := bON, B ′ := b ′ON ′,

hence A and A ′ are Ḡ-graded crossed products, with 1-components B and B ′ respectively.
We assume that b and b ′ are Ḡ-invariant. This hypothesis does not represent a huge

loss in generality. Indeed, for example, if we consider the block idempotent e ∈ Blk (ON)
such that b covers e, then according to the Fong-Reynolds reduction theorem, we have
that A := bOG = OGeOG ' eOGe ' eOGḠe = eOḠe and e is Ḡe-invariant.

1.5 The butterfly theorem for group graded Morita

equivalences

In this last section of the chapter, published in [28, §4], we prove that a Morita
equivalence between the 1-components of two block extensions always lifts to a graded
equivalence between certain centralizer algebras. This is the main ingredient in the proof
of the main result from this chapter, Theorem 1.5.2.

Additionally to the framework presented in Section 1.4, we assume that CG(N) ⊆ G ′,
and we denote C̄G(N) := NCG(N)/N. We consider the algebras:

A := bOG A ′ := b ′OG ′

C := bONCG(N) C ′ := b ′ON ′CG(N)

B := bON B ′ := b ′ON ′.

If M induces a Morita equivalence between B and B ′, the question that arises is what
can we deduce without the additional hypothesis that M extends to a ∆O-module. One
answer is given by the following proposition.
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Proposition 1.5.1. Assume that:

(1) CG(N) ⊆ G ′.

(2) M induces a Morita equivalence between B and B ′.

(3) zm = mz for all m ∈M and z ∈ Z(N).

Then there is a C̄G(N)-graded Morita equivalence between C and C ′

A := bOG A ′ := b ′OG ′

C := bONCG(N)
M̂
C C ′

∼ C ′ := b ′ON ′CG(N)

B := bON
M
B B ′

∼ B ′ := b ′ON ′,

induced by the C̄G(N)-graded (C,C ′)-bimodule

M̂ := C⊗BM 'M⊗B ′ C ′ ' (C⊗ C ′op)⊗∆(C⊗C ′op)M.

Our main result, published in [28, Theorem 4.2], is a version for Morita equivalences
of the so-called “butterfly theorem” [38, Theorem 2.16].

Theorem 1.5.2 (The butterfly theorem for group graded Morita equivalences).
Let Ĝ be another group with normal subgroup N such that the block b is also Ĝ-invariant.

Assume that:

(1) CG(N) ⊆ G ′;

(2) M̃ induces a Ḡ-graded Morita equivalence between A and A ′;

(3) zm = mz for all m ∈M and z ∈ Z(N);

(4) the conjugation maps ε : G→ Aut(N) and ε̂ : Ĝ→ Aut(N) satisfy ε(G) = ε̂(Ĝ).

Denote Ĝ ′ = ε̂−1(ε(G ′)). Then there is a Ĝ/N-graded Morita equivalence between Â :=
bOĜ and Â ′ := b ′OĜ ′.
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Chapter 2

Equivalences over a group graded
group acted algebra

This chapter is based on our results published in [29] and [32]. In it, we introduce
Morita and Rickard equivalences over a group graded G-algebra between block extensions,
which are needed given that a consequence of such equivalences is that Späth’s central or-
der relation holds between two corresponding character triples (as we shall see in Chapter
3).

2.1 Ḡ-graded bimodules over a Ḡ-graded

Ḡ-acted algebra

The notions introduced in this section, together with the results have first been pub-
lished in [29, §2].

2.1.1. Let A =
⊕

ḡ∈ḠAḡ be a Ḡ-graded O-algebra with the identity component B := A1.
For the sake of simplicity, we assume that A is a crossed product (the generalization is
not difficult, see for instance [25, §1.4.B.]). This means that we can choose invertible
homogeneous elements uḡ in the component Aḡ, for any ḡ ∈ Ḡ. Let also A ′ be another
crossed product with identity component B ′, and choose invertible homogeneous elements
u ′ḡ ∈ A ′ḡ, for all ḡ ∈ Ḡ.

Definition 2.1.2. An O-algebra C is a Ḡ-graded Ḡ-acted O-algebra if

(1) C is Ḡ-graded, and we write C =
⊕

ḡ∈Ḡ Cḡ;

(2) Ḡ acts on C (always on the left in this thesis);

(3) for all ḡ, h̄ ∈ Ḡ and for all c ∈ Ch̄ we have cḡ ∈ C h̄ḡ .

We denote the identity component of C by Z := C1 , which is a Ḡ-acted algebra.

Example 2.1.3. By Miyashita’s theorem [25, p.22], we know that the centralizer CA(B)
of B in A is a Ḡ-graded Ḡ-acted algebra, where for all h̄ ∈ Ḡ,

CA(B)h̄ = {a ∈ Ah̄ | ab = ba, ∀b ∈ B} ,

and the action is given by ḡc = uḡcuḡ−1 , for all c ∈ CA(B)h̄ and ḡ, h̄ ∈ Ḡ. Note that this
definition does not depend on the choice of the elements uḡ and that CA(B)1 = Z(B) (the
center of B) . This example goes back to Dade’s work [8] on the Clifford theory of blocks.

Example 2.1.4. If we denote C̄G(N) := NCG(N)/N, then OCG(N) is a strongly C̄G(N)-
graded Ḡ-acted algebra and therefore by consequence a Ḡ-graded Ḡ-acted algebra.
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Definition 2.1.5. Let C be a Ḡ-graded Ḡ-acted O-algebra. We say the A is a Ḡ-graded
O-algebra over C if there is a Ḡ-graded Ḡ-acted algebra homomorphism

ζ : C → CA(B),

i.e. for any h̄ ∈ Ḡ and c ∈ Ch̄, we have ζ(c) ∈ CA(B)h̄, and for every ḡ ∈ Ḡ, ζ( cḡ ) = ζ(c)ḡ .

Example 2.1.6. In our main framework given in Section 1.4, given also Example 2.1.4,
we have that A := bOG is a Ḡ-graded algebra over the Ḡ-graded Ḡ-acted algebra C :=
OCG(N), with structural map ζ : C → CA(B) given by inclusion.

Moreover, if we assume, in addition, that CG(N) ⊆ G ′ (as needed in Section 1.5),
then A ′ := b ′OG ′ is also a Ḡ-graded algebra over C := OCG(N), with structural map
ζ ′ : C → CA ′(B

′) given again by inclusion.

Another important example of a Ḡ-graded O-algebra over a Ḡ-graded Ḡ-acted algebra,
is given by the following lemma (published in [32, Lemma 1]):

Lemma 2.1.7. Let P be a Ḡ-graded A-module. Assume that P is Ḡ-invariant. Let
A ′ = EndA(P)

op be the set of all A-linear endomorphisms of P. Then A ′ is a Ḡ-graded
O-algebra over CA(B).

Definition 2.1.8. Let A and A ′ be two Ḡ-graded crossed products over C, with structure
maps ζ and ζ ′, respectively.

a) We say that M̃ is a Ḡ-graded (A,A ′)-bimodule over C if:

(1) M̃ is an (A,A ′)-bimodule;

(2) M̃ has a decomposition M̃ =
⊕

ḡ∈Ḡ M̃ḡ such that AḡM̃x̄A
′
h̄
⊆ M̃ḡx̄h̄, for all ḡ, x̄, h̄ ∈

Ḡ;

(3) m̃ḡ · c = cḡ · m̃ḡ, for all c ∈ C, m̃ḡ ∈ M̃ḡ, ḡ ∈ Ḡ, where c · m̃ = ζ(c) · m̃ and
m̃ · c = m̃ · ζ ′(c), for all c ∈ C, m̃ ∈ M̃.

b) Ḡ-graded (A,A ′)-bimodules over C form a category, which we will denote by
A-Gr/C-A ′, where the morphisms between Ḡ-graded (A,A ′)-bimodules over C are just
homomorphism between Ḡ-graded (A,A ′)-bimodules.

Remark 2.1.9. Condition (3) of Definition 2.1.8 can be replaced by

(3’) m · c = c ·m, for all c ∈ C, m ∈ M̃1.

An example of a Ḡ-graded bimodule over a Ḡ-graded Ḡ-acted algebra is given by the
following proposition (published in [32, Proposition 1]):

Proposition 2.1.10. Let C be a Ḡ-graded Ḡ-acted algebra and A a strongly Ḡ-graded O-
algebra over C. Let P be a Ḡ-invariant Ḡ-graded A-module. Let A ′ = EndA(P)

op. Then
the following statements hold:

(1) A ′ is a Ḡ-graded O-algebra over C;

(2) P is a Ḡ-graded (A,A ′)-bimodule over C.

2 103



Chapter 2. Equivalences over a group graded group acted algebra

2.1.11. We regard A ′op as a Ḡ-graded algebra with components (A ′op)ḡ = A
′op
ḡ = A ′

ḡ−1
,

∀ḡ ∈ Ḡ. We denote by “∗” the multiplication in A ′op. We consider the diagonal part of
A⊗C A ′op , which is well-defined:

∆C := ∆(A⊗C A ′op
) :=

⊕
ḡ∈Ḡ

Aḡ ⊗C A ′ḡ−1 .

Lemma 2.1.12. (1) ∆C is an O-algebra.

(2) A⊗C A ′op is a right ∆C-module and a Ḡ-graded (A,A ′)-bimodule over C.

Theorem 2.1.13. [29, Theorem 2.9] The category of ∆C-modules and the category of
Ḡ-graded (A,A ′)-bimodules over C are equivalent:

∆C-Mod
(A⊗CA ′op)⊗

∆C− // A-Gr/C-A ′
(−)1

oo

Proposition 2.1.14. The functors(
A⊗C A ′op)⊗∆C −, A⊗B −, −⊗B ′ A ′ : ∆C-Mod→ A-Gr/C-A ′

are naturally isomorphic equivalences of categories, and their inverse is taking the 1-
component (−)1.

Proposition 2.1.15. For a ∆C-module M, we denote M̃ = (A⊗CA ′op)⊗∆CM ' A⊗BM '
M⊗B ′ A ′. Let A ′′ be a third Ḡ-graded crossed product over C.

(1) Let M be a ∆(A ⊗C A ′op)-module and let M ′ be a ∆(A ′ ⊗C A ′′op)-module. Then
M⊗B ′M ′ is a ∆(A⊗C A ′′op)-module with the multiplication operation defined by

(aḡ ⊗C a ′′op
ḡ )(m⊗B ′ m ′) := (aḡ ⊗C (u ′−1ḡ )op)m⊗B ′ (u ′ḡ ⊗C a ′′

op
ḡ )m ′,

for all ḡ ∈ Ḡ and for all aḡ ∈ Aḡ, a ′′op
ḡ ∈ A ′′

op
ḡ , m ∈ M, m ′ ∈ M ′. Moreover, we

have the isomorphism

˜M⊗B ′M ′ ' M̃⊗A ′ M̃ ′

of Ḡ-graded (A,A ′′)-bimodules over C.

(2) Let M be a ∆(A ′ ⊗C Aop)-module and let M ′ be a ∆(A ′ ⊗C A ′′op)-module. Then
HomB ′(M,M

′) is a ∆(A⊗C A ′′op)-module with the following operation:

((aḡ ⊗C a ′′op
ḡ )f)(m) := (u ′ḡ ⊗C a ′′

op
ḡ )f((u ′−1ḡ ⊗C a

op
ḡ−1

)m),

for all ḡ ∈ Ḡ and for all aḡ ∈ Aḡ, a ′′op
ḡ ∈ A ′′

op
ḡ , m ∈ M, f ∈ HomB ′(M,M

′).
Moreover, we have the isomorphism

˜HomB ′(M,M ′) ' HomA ′(M̃, M̃
′)

of Ḡ-graded (A,A ′′)-bimodules over C.
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2.2 Group graded Morita theory over C
In this section, as published in [32], we develop a group graded Morita theory over a

Ḡ-graded Ḡ-acted algebra C. We will follow, in its development, the treatment of Morita
theory given by C. Faith in 1973 in [12]. Significant here is the already developed graded
Morita theory, which started in 1980 when R. Gordon and E. L. Green have characterized
graded equivalences in the case of G = Z, in [14]. Furthermore, in 1988 it was observed
to work for arbitrary groups G by C. Menini and C. Năstăsescu, in [31]. We will make
use of their results under the form given by A. del Ŕıo in 1991 in [11] and we will also use
the graded Morita theory developed by P. Boisen in 1994 in [4].

In what follows, we construct the notion of a Ḡ-graded Morita context over C and
we will give an appropriate example. In Section 2.2.2 we introduce the notions of graded
functors over C and of graded Morita equivalences over C and finally we state and prove two
Morita-type theorems using the said notions in which we prove that by taking a G-graded
bimodule over a G-graded G-acted algebra we obtain a G-graded Morita equivalence over
the said G-graded G-acted algebra and that by being given a G-graded Morita equivalence
over a G-graded G-acted algebra, we obtain a G-graded bimodule over the said G-graded
G-acted algebra, which induces the given G-graded Morita equivalence.

2.2.1 Group graded Morita contexts over C
We start by introducing the notion of a Ḡ-graded Morita context over C, following the

treatment given in [12, §12]. Note that some authors [12] use the terminology of a set of
pre-equivalence data instead of Morita context.

Definition 2.2.1. Consider the following Morita context:

(A,A ′, M̃, M̃ ′, f, g).

We call it a Ḡ-graded Morita context over C if:

(1) A and A ′ are strongly Ḡ-graded O-algebras over C;

(2) M̃A A ′ and M̃
′

A ′ A are Ḡ-graded bimodules over C;

(3) f : M̃⊗A ′ M̃ ′ → A and g : M̃ ′⊗A M̃→ A ′ are Ḡ-graded bimodule homomorphisms
such that by setting f(m̃ ⊗ m̃ ′) = m̃m̃ ′ and g(m̃ ′ ⊗ m̃) = m̃ ′m̃, we have the
associative laws:

(m̃m̃ ′)ñ = m̃(m̃ ′ñ) and (m̃ ′m̃)ñ ′ = m̃ ′(m̃ñ ′),

for all m̃, ñ ∈ M̃, m̃ ′, ñ ′ ∈ M̃ ′.

If f and g are isomorphisms, then (A,A ′, M̃, M̃ ′, f, g) is called a surjective Ḡ-graded
Morita context over C.

Note that, if f and g are isomorphisms, then (A,A ′, M̃, M̃ ′, f, g) is called in [12] a set
of Ḡ-graded equivalence data over C.

As an example of a Ḡ-graded Morita context over C, we have the following proposition
which arises from [12, Proposition 12.6].
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Proposition 2.2.2. Let A be a strongly Ḡ-graded O-algebra over C, let P be a Ḡ-invariant
Ḡ-graded A-module, let A ′ = EndA(P)

op and let P∗ := HomA(P,A) be the A-dual of P.
Then

(A,A ′, P, P∗, (·, ·), [·, ·])

is a Ḡ-graded Morita context over C, where (·, ·) is a Ḡ-graded (A,A)-homomorphism,
called the evaluation map, defined by:

(·, ·) : P ⊗A ′ P∗ → A,

x⊗ϕ 7→ ϕ(x), for all ϕ ∈ P∗, x ∈ P,

and where [·, ·] is a Ḡ-graded (A ′, A ′)-homomorphism defined by:

[·, ·] : P∗ ⊗A P → A ′,

ϕ⊗ x 7→ [ϕ, x], for all ϕ ∈ P∗, x ∈ P,

where for every ϕ ∈ P∗ and x ∈ P, [ϕ, x] is an element of A ′ such that

y[ϕ, x] = ϕ(y) · x, for all y ∈ P.

If (A,A ′, M̃, M̃ ′, f, g) is a surjective Ḡ-graded Morita context over C, then by Propo-
sition 12.7 of [12], we have that A ′ is isomorphic to EndA(M̃)op and we have a bimodule
isomorphism between M̃ ′ and M̃∗ = HomA(M̃,A). Henceforth, in this situation, the
example given by Proposition 2.2.2 is essentially unique up to an isomorphism.

Given Corollary 12.8 of [12], the example given by Proposition 2.2.2 is a surjective
Ḡ-graded Morita context over C if and only if PA is a progenerator.

2.2.2 Group graded Morita theorems over C
We denote by A and A ′ two strongly Ḡ-graded O-algebras over C (with identity

components B := A1 and B ′ := A ′1), each endowed with a Ḡ-graded Ḡ-acted algebra
homomorphism ζ : C → CA(B) and ζ ′ : C → CA ′(B

′) respectively. According to [11] we
have the following definitions:

Definition 2.2.3. (1) We say that the functor F̃ : A-Gr → A ′-Gr is G-graded if for
every g ∈ Ḡ, F̃ commutes with the g-suspension functor, i.e. F̃ ◦ TAg is naturally

isomorphic to TA
′

g ◦ F̃ ;

(2) We say that A and A ′ are Ḡ-graded Morita equivalent if there is a Ḡ-graded equiv-
alence: F̃ : A-Gr→ A ′-Gr.

Assume that A and A ′ are Ḡ-graded Morita equivalent. Therefore, we can consider
the G-graded functors:

A-Gr
F̃ // A ′-Gr
G̃

oo

which give a Ḡ-graded Morita equivalence between A and A ′. By Gordon and Green’s
result [11, Corollary 10], this is equivalent to the existence of a Morita equivalence between
A and A ′ given by the following functors:

A-Mod
F // A ′-Mod;
G

oo
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such that the following diagram is commutative:

A-Gr

U
��

F̃ // A ′-Gr

U ′

��

G̃
oo

A-Mod
F // A ′-Mod
G

oo

in the sense that:

U ′ ◦ F̃ = F ◦U, U ◦ G̃ = G ◦U ′,

where U is the forgetful functor from A-Gr to A-Mod and U ′ is the forgetful functor from
A ′-Gr to A ′-Mod.

Lemma 2.2.4. If P̃ is a Ḡ-graded A-module, then P̃ and F̃(P̃) have the same stabilizer
in G.

Consider P̃ and Q̃ two Ḡ-graded A-modules. We have the following morphism:

HomA(P̃, Q̃)
F̃ // HomA ′(F̃(P̃), F̃(Q̃)). (∗)

By following the proofs of Lemma 2.1.7 and Proposition 2.1.10, we have a G-graded
homomorphism from C to EndA(P̃)

op (the composition between the structure homomor-
phism ζ : C → CA(B) and the morphism θ : CA(B) → EndA(P̃)

op from Lemma 1.3.1)
and that P̃ is a Ḡ-graded (A,EndA(P̃)

op)-bimodule. Then, by the restriction of scalars
we obtain that P̃ is a right C-module. Analogously Q̃, F̃(P̃) and F̃(Q̃) are also right C-
modules, thus HomA(P̃, Q̃) and HomA(F̃(P̃), F̃(Q̃)) are Ḡ-graded (C, C)-bimodules. This
allows us to state the following definition:

Definition 2.2.5. (1) We say that the functor F̃ is over C if the morphism F̃ (see (∗))
is a morphism of Ḡ-graded (C, C)-bimodules;

(2) We say that A and A ′ are Ḡ-graded Morita equivalent over C if there is a Ḡ-graded
equivalence over C: F̃ : A-Gr→ A ′-Gr.

Theorem 2.2.6 (Graded Morita I over C - [32, Theorem 1]).
Let (A,A ′, M̃, M̃ ′, f, g) be a surjective Ḡ-graded Morita context over C. Then the functors

M̃ ′ ⊗A − : A-Gr→ A ′-Gr

M̃⊗A ′ − : A ′-Gr→ A-Gr

are inverse Ḡ-graded equivalences over C.

By Proposition 2.2.2 and the observations made in Section 2.2.1, the following corollary
is straightforward.

Corollary 2.2.7. Let P be a Ḡ-invariant Ḡ-graded A-module and A ′ = EndA(P)
op. If PA

is a progenerator, then P ⊗A ′ − is a Ḡ-graded Morita equivalence over C between A ′-Gr
and A-Gr, with P∗ ⊗A − as its inverse.
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Theorem 2.2.8 (Graded Morita II over C - [32, Theorem 2]).
Assume that A and A ′ are Ḡ-graded Morita equivalent over C and let

A-Gr
F̃ // A ′-Gr
G̃

oo

be inverse Ḡ-graded equivalences over C. Then this equivalence is given by the following
Ḡ-graded bimodules over C: P = F̃(A) and Q = G̃(A ′). More exactly, P is a Ḡ-graded
(A ′, A)-bimodule over C, Q is a Ḡ-graded (A,A ′)-bimodule over C and the following nat-
ural equivalences of functors hold:

F̃ ' P ⊗A − and G̃ ' Q⊗A ′ −.

Now, given both Morita theorems (Theorems 2.2.6 and 2.2.8) and Proposition 2.1.15
we can state the following equivalent definition of a group graded Morita equivalence over
C.

Definition 2.2.9. Let M̃ be a Ḡ-graded (A,A ′)-bimodule over C. Clearly, the A-dual
M̃∗ = HomA(M̃,A) of M̃ is a Ḡ-graded (A ′, A)-bimodule over C. We say that M̃ induces
a Ḡ-graded Morita equivalence over C between A and A ′, if M̃⊗A ′ M̃∗ ∼= A as Ḡ-graded
(A,A)-bimodules over C and M̃∗ ⊗A M̃ ∼= A ′ as Ḡ-graded (A ′, A ′)-bimodules over C.

2.2.3 Group graded Morita equivalences over C
We continue with the notations of the preceding section. In this section, as published

in [29, §3], we extend [25, Theorem 5.1.2] to the case of Ḡ-graded Morita equivalences over
C, in order to provide a link between them and Morita equivalences (Theorem 2.2.10).
Moreover, continuing on the work done in Section 1.3, Proposition 2.2.13 provides the
reasoning behind our choice of the definition of the central-order relation between module
triples (see Definition 3.2.3).

Theorem 2.2.10. [29, Theorem 3.3] Assume that the (B,B ′)-bimodule M and its B-dual
M∗ = HomB(M,B) induce a Morita equivalence between B and B ′:

B-Mod
M∗⊗B− // B ′-Mod
M⊗B ′−

oo

If M extends to a ∆C-module, then we have the following:

(1) M∗ becomes a ∆(A ′ ⊗C Aop)-module;

(2) M̃ := (A ⊗C A ′op) ⊗∆C M is a Ḡ-graded (A,A ′)-bimodule over C, M̃∗ ' (A ′ ⊗C
Aop) ⊗∆(A ′⊗CAop) M

∗ as Ḡ-graded (A ′, A)-bimodules over C, and they induce a Ḡ-
graded Morita equivalence over C between A and A ′.

Remark 2.2.11. Ḡ-graded Morita equivalence over C can be truncated [25, Corollary
5.1.4.]. In our case, consider M̃ a Ḡ-graded (A,A ′)-bimodule over C and M̃∗ its A-dual.
Assume that M̃ and M̃∗ induce a Ḡ-graded Morita equivalence over C between A and A ′.
Let H̄ be a subgroup of Ḡ. Then M̃H̄ :=

⊕
h̄∈H̄ M̃h̄ and M̃∗

H̄
induce a H̄-graded Morita

equivalence over CH̄ between AH̄ and A ′
H̄

.
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2.2.12. If U is a B-module, we denote by

E(U) := EndA(A⊗B U)op

the Ḡ-graded endomorphism algebra of the A-module induced from U.

Proposition 2.2.13. Assume that M̃ induces a Ḡ-graded Morita equivalence over C
between A and A ′. Let U be a B-module and let U ′ = M∗ ⊗B U be the B ′-module corre-
sponding to U under the given equivalence. Then there is a commutative diagram:

E(U)
∼ // E(U ′)

CA(B)
∼ //

OO

CA ′(B
′)

OO

C

OO

idC C.

OO

2.3 Updated main framework

2.3.1. We recall our main framework given in Section 1.4: Let G ′ be a subgroup of G
and N ′ a normal subgroup of G ′. We assume that N ′ = G ′ ∩N and G = G ′N, hence

Ḡ := G/N ' G ′/(G ′ ∩N) = G ′/N ′.

Let b ∈ Z(ON) and b ′ ∈ Z(ON ′) be two Ḡ-invariant block idempotents. We denote

A := bOG, A ′ := b ′OG ′, B := bON, B ′ := b ′ON ′,

hence A and A ′ are Ḡ-graded crossed products, with 1-components B and B ′ respectively.

2.3.2. Additionally, we assume that A and A ′ are Ḡ-graded algebras over the Ḡ-graded
Ḡ-acted O-algebra C, with structural maps ζ : C → CA(B) and ζ ′ : C → CA ′(B

′), as in
Definition 2.1.5.

For instance, Example 2.1.6 tells us that, if we assume, in addition, that CG(N) ⊆ G ′,
then we may take C := OCG(N), which is a Ḡ-graded Ḡ-acted algebra, and we have that
A and A ′ are Ḡ-graded algebras over C := OCG(N) with structural maps ζ : C → CA(B)
and ζ ′ : C → CA ′(B

′) given by inclusion.

2.4 The butterfly theorem

for Ḡ-graded Morita equivalences over C

2.4.1. As published in [29, §3], we will give a version for Morita equivalences over C of
the so-called “butterfly theorem” [38, Theorem 2.16], based on Theorem 1.5.2. We start
by adapting Proposition 1.5.1, henceforth, we will work in the context of our updated
framework (Section 2.3). Additionally, we assume that CG(N) ⊆ G ′, and we denote
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C̄G(N) := NCG(N)/N and C := OCG(N). We consider the algebras:

A := bOG A ′ := b ′OG ′

C := bONCG(N) C ′ := b ′ON ′CG(N)

B := bON B ′ := b ′ON ′.

Proposition 2.4.2. Let C = OCG(N), and assume that:

(1) CG(N) ⊆ G ′;

(2) M induces a Morita equivalence between B and B ′;

(3) zm = mz, for all m ∈M and z ∈ Z(N).

Then there is a C̄G(N)-graded Morita equivalence between C and C ′ over C

A := bOG A ′ := b ′OG ′

C := bONCG(N)
M̂
C C ′

∼ C ′ := b ′ON ′CG(N)

B := bON
M
B B ′

∼ B ′ := b ′ON ′,

induced by the C̄G(N)-graded (C,C ′)-bimodule over C:

M̂ := C⊗BM 'M⊗B ′ C ′ ' (C⊗C C ′
op

)⊗∆(C⊗CC ′op
)M.

Theorem 2.4.3 (Butterfly theorem for group graded Morita equivalences over C - [29]).
Let Ĝ be another group with normal subgroup N, such that the block b is also Ĝ-invariant.
Let C = OCG(N). Assume that:

(1) CG(N) ⊆ G ′,

(2) M̃ induces a Ḡ-graded Morita equivalence over C between A and A ′;

(3) the conjugation maps ε : G→ Aut(N) and ε̂ : Ĝ→ Aut(N) satisfy ε(G) = ε̂(Ĝ).

Denote Ĝ ′ = ε̂−1(ε(G ′)). Then there is a Ĝ/N-graded Morita equivalence over Ĉ :=
OCĜ(N) between Â := bOĜ and Â ′ := b ′OĜ ′.

2.4.4. Condition (1) of Proposition 2.4.2 may be replaced with the assumption that the
(B,B)-bimodule M is Ḡ-invariant, that is, Aḡ ⊗BM⊗B ′ A ′ḡ−1 'M as (B,B ′)-bimodules,

for all ḡ ∈ Ḡ, to get a slightly stronger statement.
Let Ḡ[b] = G[b]/N be the stabilizer of B as a (B,B)-bimodule, that is, Ḡ[b] is the

largest subgroup H̄ of Ḡ such that CA(B)H̄ is a crossed product (see [8, 2.9]). Then Ḡ[b]
is a normal subgroup of Ḡ, and in particular, we have that CG(N) ⊆ G[b].

Corollary 2.4.5. Assume that the (B,B)-bimodule M is Ḡ-invariant. Assume also that
zm = mz, for all m ∈ M and z ∈ Z(N). Then Ḡ[b] = Ḡ[b ′] (hence CG(N) ⊆ G ′), and
there is a Ḡ[b]-graded Morita equivalence over C := OCG(N) between AḠ[b] and A ′

Ḡ[b]
.
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Remark 2.4.6. On the other hand, still without condition (1) of Proposition 2.4.2,
assume that M̃ induces a Ḡ-graded Morita equivalence between A and A ′ (so in particular,
M is Ḡ-invariant). Then, by [25, Theorem 5.1.8], CA(B) ' CA ′(B ′) and Ḡ[b] = Ḡ[b ′]. If,
in addition, zm = mz, for all m ∈ M and z ∈ Z(N), then, by Corollary 2.4.5, M̃ is a
Ḡ-graded (A,A ′)-bimodule over C := OCG(N) (in fact, even over CA(B)Ḡ[b]).

2.5 Scott modules

Koshitani and Lassueur constructed in [19] and [20] Morita equivalences induced by
certain Scott modules. We show here that their constructions can be extended to obtain
group graded Morita equivalences over C = OCG(N). This section was published in [29,
§4].

2.5.1. Let Q be a Sylow p-subgroup of N, let δ(Q) = {(q, q) ∈ Q ×Q | q ∈ Q} be the
diagonal subgroup of Q × Q, let G ′ = NG(Q) and N ′ = G ′ ∩ N. In this situation, we
have that CG(N) ⊆ G ′, and let C = OCG(N) and Z = Z(N). Denote also

K = {(g, g ′) | ḡ = ḡ ′ in Ḡ = G/N ' G ′/N ′}.

Let b ∈ Z(ON) and b ′ ∈ Z(ON ′) be the principal block idempotents, and denote

A := bOG, A ′ := b ′OG ′, B := bON, B ′ := b ′ON ′.

Recall that for a subgroup H ≤ G, the (Alperin)-Scott OG-module with respect to
H (denoted by Sc(G,H)) is the unique indecomposable direct summand of the induced
module IndGHOH = OG⊗OH OH which contains OG in its socle. Here OH represents the
trivial OH-module.

As in [19] and [20], we consider the Scott module Sc(N ×N ′, δ(Q)), and we refer to
[34, §4.8] for the properties of Scott modules.

Proposition 2.5.2. With the above notations, assume that p does not divide the order
of Ḡ and denote M = Sc(N×N ′, δ(Q)). Then

M ' ResKN×N ′ Sc(K, δ(Q)).

In particular, M may be regarded as a ∆(A ⊗ A ′op)-module, and moreover, M may be
chosen such that M̃ := A⊗BM is a Ḡ-graded (A,A ′)-bimodule over C = OCG(N) between
A and A ′.

2.6 Rickard equivalences over C
By using the remarks made in [25, §5.2.1], we may extend the results of Section

2.2.3 to the case of Rickard equivalences. We keep the notations and assumptions of our
framework from Section 2.3.1, and we use Hb to denote a bounded homotopy category.
Note that by a Rickard equivalence, we mean an equivalence between the bounded chain
homotopy categoriesHb(A) andHb(A ′) induced by a split endomorphism tilting complex,
as presented by Rickard in [21, §9.2.2]. In this case it is essential that A and A ′ are
symmetric algebras. This section was published in [29, §5].
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2.6.1. Let M̃ be a bounded complex of Ḡ-graded (A,A ′)-bimodules, with 1-component
M, which is a bounded complex of ∆(A ⊗O A ′op)-modules. Recall that M̃ and its dual
M̃∗ induce a Ḡ-graded Rickard equivalence between A and A ′, if there are isomorphisms

ϕ̃ : M̃∗ ⊗A M̃→ A ′ and ψ̃ : M̃⊗A ′ M̃∗ → A,

in the appropriate bounded homotopy categories of Ḡ-graded bimodules.
We say that this equivalence is over C if M̃ is a complex of Ḡ-graded (A,A ′)-bimodules

over C.

2.6.2. It is easy to see that Remark 2.2.11, Proposition 2.2.13 and Proposition 2.4.2 still
hold by replacing “Morita equivalence” with “Rickard equivalence” (and “modules” with
“bounded complexes of modules”). On the other hand, according to [25, Theorem 5.2.5],
in Theorem 2.2.10 we have to assume in addition that p does not divide the order of Ḡ.
Corollary 2.4.5 and Remark 2.4.6 can also be adapted to this situation.

Consequently, we have the following Rickard equivalence variant of the Butterfly The-
orem (Theorem 2.4.3).

Theorem 2.6.3. Let Ĝ be another group with normal subgroup N, such that the block b
is also Ĝ-invariant. Let C = OCG(N). Assume that:

(1) CG(N) ⊆ G ′,

(2) M̃ induces a Ḡ-graded Rickard equivalence over C between A and A ′;

(3) the conjugation maps ε : G→ Aut(N) and ε̂ : Ĝ→ Aut(N) satisfy ε(G) = ε̂(Ĝ);

(4) p does not divide the order of Ḡ.

Denote Ĝ ′ = ε̂−1(ε(G ′)). Then there is a Ĝ/N-graded Rickard equivalence over Ĉ :=
OCĜ(N) between Â := bOĜ and Â ′ := b ′OĜ ′.
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Chapter 3

Character triples and module triples

In this chapter, we introduce the concept of a module triple and we show that the
relations ≥ and ≥c given in [38, Definition 2.1.] and [38, Definition 2.7.] are consequences
of Rickard equivalences over C between such module triples. Additionally, in Definition
3.3.1 we also provide a module triple version of the relation ≥b (see [38, Definition 4.2]),
and we prove in Proposition 3.3.6 that this too is a consequence of a special type of group
graded derived equivalences which is compatible in a certain sense with the Brauer map.
Finally, note that our approach to character triples is different from that of Turull [39].
Results of this chapter are published in [29] and [30].

3.1 Module triples

3.1.1. Let K be a field, let G be a finite group, and let N be a normal subgroup of G.
We denote by IrrK(G) the set of all irreducible K-valued characters of G.
It is clear that the group G acts on IrrKN: for θ ∈ IrrKN and g ∈ G we have:

θg : N→ K
θg (n) = θ

(
gng−1

)
, ∀n ∈ N.

We say that θ is G-invariant if θg = θ for all g ∈ G.
We recall the definition of a character triple ([18, p.186], [38, Definition 1.6]):

Definition 3.1.2. Let G be a finite group, let N be a normal subgroup of G and let
θ ∈ IrrKN. We say that (G,N, θ) is a character triple if θ is G-invariant.

We know that θ ∈ IrrKN is a character associated to a simple KN-module V and that
θ determines the isomorphism class of V .

3.1.3. Let K be a field and V a KN-module. Similarly, for a g ∈ G we can consider the
g-conjugate of V :

Vg = KNg⊗KN V.

Definition 3.1.4. We say that a KN-module V is G-invariant (or G-stable) if V is
isomorphic to Vg as KN-modules, for all g ∈ G.

Remark 3.1.5. If g ∈ N, then V is isomorphic to Vg as KN-modules.

Thus, N acts trivially on the isomorphism classes of KN-modules. Moreover, we have
that for all g ∈ G and n ∈ N:

Vgn ' ( Vn )g ' Vg ,

so in fact G/N := Ḡ acts on the isomorphism classes of KN-modules.

3.1.6. We continue in the previously introduced main framework (Section 2.3). In ad-
dition, let V be a G-invariant simple KB-module, and let V ′ be a G-invariant simple
KB ′-module, where

KB = K ⊗O B = (1⊗ b)KN and KB ′ = K ⊗O B ′ = (1⊗ b ′)KN ′.
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Let θ ∈ IrrK(B) be a G-invariant irreducible character associated to V , and let θ ∈
IrrK(B

′) be a G ′-invariant irreducible character associated to V ′. Thus, (G,N, θ) and
(G ′, N ′, θ ′) are character triples.

We can now define the notion of a module triple, a correspondent to the notion of a
character triple, but in terms of modules and not of characters.

Definition 3.1.7. We say that (A,B, V) is a module triple, and we will consider its
endomorphism algebra

E(V) := EndKA (KA⊗KB V)op
.

Because we assumed that K contains all the unity roots of order |G| (see Section 1.1),
E(V) is a twisted group algebra of the form KαḠ, with α ∈ Z2(Ḡ,K×). We know that
the class [α] ∈ H2(Ḡ,K×) depends only on the isomorphism class of V , thus, in fact, [α]
is determined by θ.

3.2 First-order and central-order relations

We continue with the notations and assumptions given in the previous section. The
following notions and results have been published in [29, §6].

Proposition 3.2.1. Let ∆(V) := ∆(KG⊗ E(V)op). Then ∆(V) is isomorphic to KInfG
Ḡ
αG

as Ḡ-graded algebras. In particular, the KN-module structure of V extends to a KInfG
Ḡ
αG-

module structure.

Remark 3.2.2. The ∆(V)-module structure of V gives rise to the projective K-repre-
sentation of G associated to θ. Two projective representations P and P ′ are similar if and
only if E(V) = KαḠ and E(V ′) = Kα ′Ḡ are isomorphic as Ḡ-graded algebras, or if and
only if [α] = [α ′] in H2(Ḡ,K×). This holds if and only if the ∆(V)-module V is isomorphic
to the ∆(V ′)-module V ′, via the isomorphism as ∆(V) ' ∆(V ′) of Ḡ-graded algebras.

Now, we can formulate a version in terms of modules of the first-order and central-
order relations between character triples.

Definition 3.2.3. Let (A,B, V) and (A ′, B ′, V ′) be two module triples.

a) We write (A,B, V) ≥ (A ′, B ′, V ′) if

(1) G = NG ′ and N ′ = N ∩G ′;

(2) there exists a Ḡ-graded algebra isomorphism

E(V) = EndKA(KA⊗KB V)op → E(V ′) = EndKA ′(KA ′ ⊗KB ′ V ′)op.

b) We write (A,B, V) ≥c (A ′, B ′, V ′) if

(1) G = G ′N, N ′ = N ∩G ′

(2) CG(N) ⊆ G ′
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(3) there exists a Ḡ-graded algebra isomorphism

E(V) = EndKA(KA⊗KB V)op → E(V ′) = EndKA ′(KA ′ ⊗KB ′ V ′)op

such that the diagram

E(V)
∼ // E(V ′)

KC

OO

idKC KC,

OO

of Ḡ-graded K-algebras is commutative, where KC = KCG(N) is regarded as a
Ḡ-graded Ḡ-acted K-algebra, with 1-component KZ(N).

We now give a link between the relation ≥c for character triples, the relation ≥c for
module triples and Rickard equivalences over C. Recall that since KB is a semisimple
algebra, the indecomposable objects in Db(KB) are the simple KB-modules regarded as
complexes concentrated in some degree n ∈ Z.

Theorem 3.2.4. [29, Theorem 6.7] Assume that CG(N) ⊆ G ′, and that the complex M̃
induces a Ḡ-graded Rickard equivalence over C := OCG(N) between A and A ′.

Let V be a G-invariant simple KB-module with character θ, and let V ′ be a G ′-
invariant simple KB ′-module corresponding to V via the given correspondence, with char-
acter θ ′. Then we have that (A,B, V) ≥c (A ′, B ′, V ′) and (G,N, θ) ≥c (G ′, N ′, θ ′).

3.3 Blockwise relations

Späth also considered in [36], [37] and [38] the blockwise relation (≥b) between charac-
ter triples. This relation is a refinement of the central-order relation (≥c), and it involves
block induction, see [38, Definition 4.2].

On a similar idea, as published in [30, §5], we introduce the blockwise relation, ≥b,
between module triples as a refinement of the central-order relation, ≥c, by using the
Harris-Knörr correspondence (see Definition 3.3.1). Note that our definition does not
fully cover [38, Definition 4.2], because there block induction in a more general situation
is considered. We also introduce in Definition 3.3.5 a notion of a derived equivalence
compatible with the Brauer map. This a a weaker condition that that of a splendid
or basic equivalence, and is inspired by the results of [27], which connect basic Morita
equivalences with the main result of Dade [8]. We prove in Proposition 3.3.6 that the
relation ≥b between module triples is a consequence of a certain group graded derived
equivalence compatible with the Brauer map.

Note that by a derived equivalence we mean an equivalence between the bounded
derived categories Db(A) and Db(A ′) induced by a two-sided tilting complex as in [21,
Section 6.2].

We continue with notations and assumptions of the preceding sections of this chapter,
and in addition we require that CG(N) ⊆ G ′. Recall from Section 2.3.2, that this gives us
that A and A ′ are Ḡ-graded algebras over the Ḡ-graded Ḡ-acted O-algebra C := OCG(N),
with structural maps ζ : C → CA(B) and ζ ′ : C → CA ′(B

′), as in Definition 2.1.5, given
by inclusion.

We are going to use the Brauer map and basic equivalences between blocks, introduced
by L. Puig in [35]. Then [38, Remark 4.3 (c)] leads us to the following setting.
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Definition 3.3.1. We assume that the block b has defect group Q, G ′ = NG(Q), N ′ =
NN(Q), and b ′ is the Brauer correspondent of b. Let (A,B, V) and (A ′, B ′, V ′) be two
module triples. We write

(A,B, V) ≥b (A ′, B ′, V ′)

if the following conditions are satisfied:

(1) (A,B, V) ≥c (A ′, B ′, V ′);

(2) For any subgroup N ≤ J ≤ G, if the simple OJ-module W covering V corresponds
(via condition (1)) to the simple OJ ′-module W ′ covering V ′ (where J ′ = G ′ ∩ J),
then the block β of OJ to which W belongs is the Harris-Knörr correspondent of
the block β ′ of OJ ′ to which W ′ belongs.

3.3.2. Recall that the Harris-Knörr correspondence [17] is a bijection between the blocks
of A with defect group D (where Q ≤ D) and the blocks of A ′ with defect group D. This
bijection in induced by the Brauer map

BrQ : AQ → A(Q).

3.3.3. Denote
C̄ = C̄A(B) = CA(B)/Jgr(CA(B)).

we know from [8, 2.9] that C̄ is a Ḡ[b]-graded crossed product, where

Ḡ[b] = {ḡ ∈ Ḡ | Aḡ ' B as (B,B)-bimodules} = {ḡ ∈ Ḡ | AḡAḡ−1 = B}.

Denote also C̄ ′ = C̄A ′(B
′) = CA ′(B

′)/Jgr(CA ′(B
′)).

The main result of Dade [8] says that the Brauer map BrQ induces an isomorphism C̄ '
C̄ ′ of Ḡ[b]-graded Ḡ-acted algebras. Moreover, by [27, Theorem 3.7], this isomorphism
induces the same Harris-Knörr correspondence between the blocks of A and the blocks of
A ′.

3.3.4. Recall also from [25, Corollary 5.2.6] that a Ḡ-graded derived equivalence between
A and A ′ induces yet another isomorphism C̄ ' C̄ ′ of Ḡ[b]-graded Ḡ-acted algebras.

Definition 3.3.5. We say that a Ḡ-graded derived equivalence between A and A ′ is
compatible with the Brauer map if the induced isomorphism C̄ ' C̄ ′ of Ḡ[b]-graded Ḡ-
algebras from 3.3.4 coincides with the isomorphism induced by the Brauer map BrQ from
3.3.3.

Proposition 3.3.6. Assume that the complex X̃ induces a Ḡ-graded derived equivalence
between A and A ′ compatible with the Brauer map BrQ, such that the simple KB-module
V corresponds to the simple KB ′-module V ′. Then (A,B, V) ≥b (A ′, B ′, V ′).

Remark 3.3.7. By [27, Corollary 4.4], a Ḡ-graded basic Morita equivalence between A
and A ′ is compatible with the Brauer map BrQ in the sense of the above definition.
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Chapter 4

Tensor products and wreath products

This chapter is based on our results published in [30] and [33]. In it, we obtain
equivalences for tensor products (Proposition 4.1.3) and wreath products (Theorem 4.3.3
and Theorem 4.4.4).

Such constructions are again motivated by the reduction methods, which require the
compatibility of the relations between character triples and the wreath product construc-
tions: in order to prove most reduction theorems, recent results of Britta Späth, surveyed
in [36], [37] and [38], show that a new character triple can be constructed via a wreath
product construction of character triples ([36, Theorem 5.2] and [38, Theorem 2.21]). In
Theorem 3.2.4, we have proved that there is a link between character triples and group
graded equivalences over a group graded group acted algebra, therefore we want to prove
that a similar wreath product construction can also be made for the corresponding group
graded equivalences.

Another motivation comes from the fact that it is already known by [25, Theorem
5.1.21] that Morita equivalences can be extended to wreath products.

In Section 4.1, we prove that the algebraic constructions introduced in Section 2.1 are
compatible with tensor products and the main proposition in this section, Proposition
4.1.3, proves that the tensor products of some group graded Morita equivalent algebras
over some group graded group acted algebras remain group graded Morita equivalent over
a group graded group acted algebra.

In Section 4.2, we prove that the previously enumerated algebra types are also com-
patible with wreath products.

In Section 4.3, one of our main result, Theorem 4.3.3, proves that the wreath product
between a G-graded bimodule over C and Sn (the symmetric group of order n) is also
a group graded bimodule over C⊗n, and moreover, if this bimodule induces a G-graded
Morita equivalence over C, then its wreath product with Sn will induce a group graded
Morita equivalence over C⊗n.

In Section 4.4, we build group graded derived and Rickard equivalences for wreath
products. In order to do this, we extend the construction of wreath product for group
graded algebras and bimodules over C to chain complexes of G-graded bimodules over C.
Our main result of this section, Theorem 4.4.4, says that the wreath product between a
chain complex of G-graded bimodules over C and the symmetric group of order n, Sn, is a
complex of GoSn-graded bimodules over C⊗n, and moreover, if the given complex induces a
G-graded derived (respectively Rickard) equivalence over C, then its wreath product with
Sn (respectively a p ′-subgroup of Sn) will induce a group graded derived (respectively
Rickard) equivalence over C⊗n. Our group graded algebras here are block extensions, but
it is clear that most of the statements are true for more general group graded algebras.
Theorem 4.4.4 improves [25, Theorem 5.2.12] in several ways, by taking into account all
the additional structure that we deal with. As already noted by Zimmermann [40], a
certain “p ′-condition” on the order of the grading groups, which appears in [25, Theorem
5.2.12], is actually not needed in the case of derived equivalences, but is needed in the
case of Rickard equivalences.

Finally, in Section 4.5, in Proposition 4.5.1 we prove that the relation ≥c is compatible
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with wreath products of G-graded derived equivalences over C. Moreover, Theorem 4.5.2
and Corollary 4.5.3 are the main results of this chapter, and establish the compatibility
of the relation ≥b between module triples with wreath products of derived equivalences.

4.1 Tensor products

4.1.1. Throughout this chapter n will represent an arbitrary nonzero natural number.
Consider Gi to be a finite group, Ni to be a normal subgroup of Gi and denote by
Ḡi = Gi/Ni, for all i ∈ {1, . . . , n}. We denote by

Ḡ :=

n∏
i=1

Ḡi.

Lemma 4.1.2. Let Ai be Ḡi-graded algebras and Ci be Ḡi-graded Ḡi-acted algebras, for
all i ∈ {1, . . . , n}. The following affirmations hold:

(1) The tensor product A := A1 ⊗ . . .⊗An is a Ḡ-graded algebra;

(2) If Ai are Ḡi-graded crossed products, for all i ∈ {1, . . . , n}, then A is a Ḡ-graded
crossed product;

(3) The tensor product C := C1 ⊗ . . .⊗ Cn is a Ḡ-graded Ḡ-acted algebra;

(4) If Ai are Ḡi-graded algebras over Ci, for all i ∈ {1, . . . , n}, then A is a Ḡ-graded
algebra over C.

Proposition 4.1.3. Assume that Ci are Ḡi-graded Ḡi-acted algebras and that Ai and A ′i
are Ḡi-graded crossed products over Ci, for all i ∈ {1, . . . , n}. If Ai and A ′i are Ḡi-graded
Morita equivalent over Ci, and if M̃i is a Ḡi-graded (Ai, A

′
i)-bimodule over Ci, that induces

the said equivalence, for all i, then:

(1) M̃ := M̃1⊗. . .⊗M̃n is a Ḡ-graded (A,A ′)-bimodule over C, where A := A1⊗. . .⊗An,
A ′ := A ′1 ⊗ . . .⊗A ′n and C := C1 ⊗ . . .⊗ Cn;

(2) M̃ induces a Ḡ-graded Morita equivalence over C between A and A ′.

4.2 Wreath products for algebras

4.2.1. We denote Ḡn := Ḡ× . . .× Ḡ (n times).
We recall the definition of a wreath product as in [38, Definition 2.19] and [25, Section

5.1.C]:

Definition 4.2.2. The wreath product ḠoSn is the semidirect product ḠnoSn, where the
symmetric group of order n, Sn, acts on Ḡn (on the left) by permuting the components:

(g1, . . . , gn)
σ := (gσ−1(1), . . . , gσ−1(n)),

for all g1, . . . , gn ∈ Ḡ and σ ∈ Sn. More exactly, the elements of Ḡ o Sn are of the form
((g1, . . . , gn), σ), and the multiplication is:

((g1, . . . , gn), σ)((h1, . . . , hn), τ) := ((g1, . . . , gn) · (h1, . . . , hn)
σ

, στ),

for all g1, . . . , gn, h1, . . . , hn ∈ Ḡ and σ, τ ∈ Sn.
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Definition 4.2.3. Let A be an O-algebra. We denote by A⊗n := A⊗ . . .⊗A (n times).
The wreath product A o Sn is the skew group algebra

A o Sn := A⊗n ⊗OSn

between A⊗n and Sn, with multiplication

((a1 ⊗ . . .⊗ an)⊗ σ)((b1 ⊗ . . .⊗ bn)⊗ τ)
:= ((a1 ⊗ . . .⊗ an) · (b1 ⊗ . . .⊗ bn)σ )⊗ (στ),

where
(b1 ⊗ . . .⊗ bn)σ := bσ−1(1) ⊗ . . .⊗ bσ−1(n),

for all (a1 ⊗ . . .⊗ an)⊗ σ, (b1 ⊗ . . .⊗ bn)⊗ τ ∈ A o Sn.

Note also that if A is a symmetric algebra, A o Sn is also symmetric (see [25, Lemma
5.1.8]).

Lemma 4.2.4. Let A be a Ḡ-graded algebra and C be a Ḡ-graded Ḡ-acted algebra. The
following affirmations hold:

(1) A o Sn is a Ḡ o Sn-graded algebra, with ((g1, . . . , gn), σ)-component

(A o Sn)((g1,...,gn),σ) := ((Ag1 ⊗ . . .⊗Agn)⊗Oσ),

for each ((g1, . . . , gn), σ) ∈ Ḡ o Sn;

(2) If A is a Ḡ-graded crossed product, then A o Sn is a Ḡ o Sn-graded crossed product;

(3) C⊗n is a Ḡ o Sn-acted Ḡn-graded algebra, where

(c1 ⊗ . . .⊗ cn)((g1,...,gn),σ) := cσ−1(1)
g1 ⊗ . . .⊗ cσ−1(n)

gn .

(4) If A is a Ḡ-graded algebra over C, then A o Sn is a Ḡ o Sn-graded algebra over C⊗n,
with structural Ḡ o Sn-graded Ḡ o Sn-acted algebra homomorphism

ζwr : C⊗n → CAoSn(B
⊗n)

given by the composition

ζ⊗n : C⊗n → CA(B)
⊗n ⊆ CAoSn(B⊗n).

4.3 Morita equivalences for wreath products

We recall the definition of a wreath product between a module and Sn.

Definition 4.3.1. Let A and A ′ be two algebras. Assume that M̃ is an (A,A ′)-bimodule.
The action of Sn on M̃⊗n is defined by

(m̃1 ⊗ . . .⊗ m̃n)
σ := m̃σ−1(1) ⊗ . . .⊗ m̃σ−1(n),

for all m̃1, . . . , m̃n ∈ M̃ and σ ∈ Sn. As an O-module, the wreath product M̃ o Sn is

M̃ o Sn := M̃⊗n ⊗OSn,
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with scalar multiplication

((a1 ⊗ . . .⊗ an)⊗ σ) ((m̃1 ⊗ . . .⊗ m̃n)⊗ τ) ((a ′1 ⊗ . . .⊗ a ′n)⊗ π)
= (a1 ⊗ . . .⊗ an) · σ(m̃1 ⊗ . . .⊗ m̃n) · στ(a ′1 ⊗ . . .⊗ a ′n)⊗ στπ,

for all (a1⊗. . .⊗an)⊗σ ∈ AoSn, (m̃1⊗. . .⊗m̃n)⊗τ ∈ M̃oSn and (a ′1⊗. . .⊗a ′n)⊗π ∈ A ′oSn.

4.3.2. Let C be a Ḡ-graded Ḡ-acted algebra and A and A ′ be two Ḡ-graded crossed
products over C, with identity components B and B ′ respectively.

If M̃ is an (A,A ′)-bimodule which induces a Morita equivalence between A and A ′, by
the results of [25, Section 5.1.C], we already know that M̃oSn induces a Morita equivalence
between A oSn and A ′ oSn. The question that arises is whether this result can be extended
to give a graded Morita equivalence over a group graded group acted algebra. An answer
to this question is presented in Theorem 4.3.3, which extends [25, Theorem 5.1.21] to the
case of group graded Morita equivalences over a group graded group acted algebra, which
we published in [33, Theorem 5.3].

Theorem 4.3.3. Let M̃ be a Ḡ-graded (A,A ′)-bimodule over C. Then, the following
affirmations hold:

(1) M̃ o Sn is a Ḡ o Sn-graded (A o Sn, A ′ o Sn)-bimodule over C⊗n, with ((g1, . . . , gn), σ)-
component

(M̃ o Sn)((g1,...,gn),σ) = (M̃g1 ⊗ . . .⊗ M̃gn)⊗Oσ;

(2) (A oSn)⊗B⊗nM⊗n 'M⊗n⊗B ′⊗n (A ′ oSn) ' M̃ oSn as Ḡ oSn-graded (A oSn, A ′ oSn)-
bimodules over C⊗n, where M is the identity component of M̃;

(3) If M̃ induces a Ḡ-graded Morita equivalence over C between A and A ′, then M̃ o Sn
induces a Ḡ o Sn-graded Morita equivalence over C⊗n between A o Sn and A ′ o Sn.

4.4 Derived equivalences for wreath products

4.4.1. Let A and A ′ be two Ḡ-graded crossed products, hence A⊗A ′ is a Ḡ× Ḡ-graded
crossed product with 1-component B ⊗ B ′. We assume from now on, that A and A ′ are
free and finitely generated as O-modules.

4.4.2. Now, if X̃ is a chain complex of Ḡ-graded (A,A ′)-bimodules over C which induces
a Ḡ-graded derived or Rickard equivalence between A and A ′, we want to extend the
results of [25, Section 5.1.C], to obtain a Ḡ o Sn-graded derived or Rickard equivalence
over C⊗n between A o Sn and A ′ o Sn. In the case of Rickard equivalences, some additional
condition will be needed.

4.4.3. Recall (see, for instance [3, Section 4.1]) that Sn acts on X̃⊗n := X̃ ⊗ . . . ⊗ X̃ (n
times). By [25, Lemma 5.2.11], this action can be defined as follows: Denote C2 = {±1},
and observe that Sn acts on the abelian group Fun(Cn2 , C2) of functions from Cn2 to C2;
for i ∈ Z denote also î = (−1)i. Then there is a 1-cocycle ε ∈ Z1(Sn,Fun(Cn2 , C2)) such
that

σ(xi1 ⊗ · · · ⊗ xin) = εσ(̂i1, . . . , în)xiσ−1(1) ⊗ · · · ⊗ xiσ−1(n) ,
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where xij belongs to the j-th factor of X̃⊗n, and has degree ij ∈ Z. In our situation, X̃⊗n

is a complex of Ḡn-graded (A⊗n, A ′⊗n)-bimodules over C⊗n, and even more, a complex of
Ḡn-graded (A⊗A ′op) o Sn-modules.

We may therefore consider the wreath product

X̃ o Sn = X̃⊗n ⊗OSn.

Theorem 4.4.4. [30, Theorem 3.7] Let X̃ be a complex of Ḡ-graded (A,A ′)-bimodules
over C, with identity component X. Then, the following statements hold:

(1) X̃ oSn is a complex of Ḡ oSn-graded (A o Sn, A ′ o Sn)-bimodules over C⊗n, isomorphic
to (A o Sn)⊗B⊗n X⊗n and to X⊗n ⊗B ′⊗n (A ′ o Sn).

(2) If X̃ induces a Ḡ-graded derived equivalence between A and A ′, then X̃ o Sn induces
a Ḡ o Sn-graded derived equivalence over C⊗n between A o Sn and A ′ o Sn.

(3) If X̃ induces a Ḡ-graded Rickard equivalence between A and A ′, and if Σ is a p ′-
subgroup of Sn, then X̃ o Σ induces a Ḡ o Σ-graded Rickard equivalence over C⊗n
between A o Σ and A ′ o Σ.

4.5 Relations between module triples

induced by wreath products

We again consider the assumptions and notations of our main example 2.3.1.
The next result is motivated by [38, Theorem 2.21].

Proposition 4.5.1. Consider the module triples (A,B, V) and (A ′, B ′, V ′). If A and A ′

are Ḡ-graded derived equivalent over C such that V corresponds to V ′, then

(A o Sn, B⊗n, V⊗n) ≥c (A ′ o Sn, B ′⊗n, V ′⊗n).

Now we will do a similar wreath product construction for the blockwise relation ≥b.
In order to do this, we rely on the results of Harris [15, 16], which extend the results of
Külshammer [22], and of Alghamdi and Khammash [1].

Theorem 4.5.2. [30, Theorem 5.8] Assume that the complex X̃ induces a Ḡ-graded derived
equivalence between A and A ′ compatible with the Brauer map BrQ. Then the ḠoSn-graded
derived equivalence between A o Sn and A ′ o Sn induced by X̃ o Sn is compatible with the
Brauer map BrQn.

From Proposition 4.5.1 and Theorem 4.5.2 we immediately deduce:

Corollary 4.5.3. Assume that the complex X̃ induces a Ḡ-graded derived equivalence
over C between A and A ′, and that this equivalence is compatible with the Brauer map
BrQ. Assume also that the simple KB-module V corresponds to the simple KB ′-module
V ′. Then

(A o Sn, B⊗n, V⊗n) ≥b (A ′ o Sn, B ′⊗n, V ′⊗n).

Remark 4.5.4. We are interested in the relation ≥b when induced by derived equiva-
lences. However, it is not difficult to show directly, with the methods already used here,
that similarly to [36, Theorem 5.2], if (A,B, V) ≥b (A ′, B ′, V ′), then (A oSn, B⊗n, V⊗n) ≥b
(A ′ o Sn, B ′⊗n, V ′⊗n)
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