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Abstract

This thesis investigates pattern formation in ensembles of locally coupledKuramoto rings. Although
this topic is well documented in the literature, we revisited the problem from different perspectives.
Throughout our analysis we have focused on emergent phase-locked states, where oscillators end up hav-
ing the same frequency, also allowing a constant non-vanishing phase difference between each first order
neighbor. Starting from a fairly simple systemof homogeneous oscillatorswith uniformone dimensional
coupling topology we have identified all types of phase locked states analytically. The dynamics was also
investigated in order to correlate randomphase initial stateswith the ordered final states. The possibilities
of predicting final states from disordered initial states have been discussed and two types of prediction
methods were introduced. The performance of these methods have been compared in the case of homo-
geneous oscillators and heterogeneous systems as well. As a next step we have generalized our systems of
interest by introducing a constant uniform time delay in the interaction, increasing thus the dimensional-
ity of the problem. Our aim was to determine the effect of the delay on the stability and attraction basin
sizes of the phase locked states. We found that both the local stability and basin sizes depend strongly
on the relevant system parameters, resulting in a very different picture compared to the non-delayed case.
Since time delayed systems are equivalent to infinite dimensional systemswe briefly discuss the possibility
of obtaining other types of attractors as well.
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1
Introduction

Spontaneous synchronization 1 is an intriguing phenomena present in different fields of sciences ranging
frombiology (synchronous flashing of fireflies 2, pacemaker cells 3 etc.) to engineering (collective behavior
of Josephson junctions arrays4, the case of theMillenniumBridge 5 etc ). The first recorded observation of
spontaneous synchronization is from the 17th century dutch physicist ChristiaanHuygenswhodescribed
the synchronization of two pendulum clocks hanging from the same suspension rod, which he called as
“odd sympathy”6. The next milestone came in 1958, when Norbert Wiener observed a strong activity in
human brain waves in the low frequency domain called alpha rythm.7. He hypothesized that there are
oscillators in the brain with slightly different natural frequencies, which interact with each other by “fre-
quencypulling”, leading to amoreprecise collective oscillation. Amore elaborate descriptionof emerging
order in biological oscillators came from a theoretical biologist named Arthur Winfree in 1967 8. He in-
troduced the phase model approximation of oscillators. In his simple model the oscillators had different
natural frequencies and each oscillator was coupled to all the other ones. This simple model uncovered
intriguing similarities between spontaneous synchronization and order-disorder type thermodynamic
phase-transitions. Inspired by the work of Winfree, a physicist named Yoshiki Kuramoto introduced an
analytically solvable model of coupled phase oscillators in 1975 which is capable to analitically reproduce
similar results9. He also considered an ensemble of non-identical phase oscillators, with a unimodal in-
trinsic frequency distribution. For measuring the degree of order in the system, Kuramoto introduced a
complex valued order parameter. Using intuitive assumptions and self-consistency, Kuramoto was able
to show that in the thermodynamic limit there is a critical coupling strength above which partially syn-
chronized states begin to appear. In spite that the problem seems to be solved, his derivation raised serious
question as well 10,11.

The Kuramoto model triggered many new studies in the field of statistical physics and nonlinear
dynamics. Soon it became the fundamental tool in studying and modeling complex behavior. With
the sharp growth of computational power, numerical experiments studying collective behavior quickly
gained new perspectives. The modularity of the oscillators enables to implement and investigate systems
having almost arbitrary type of interaction topology 12,13. Advances in network science around the new
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millennium 14,15 motivated studies on the Kuramoto model considering local interaction on complex net-
works 16–20. New variants of the Kuramoto model have also appeared considering disorder in coupling
constants 21, frustration 22, noise 23 and external fields 24 as well. In 2002, Kuramoto with his colleague Bat-
togtokh discovered a state in non-locally coupled oscillators in which disordered and ordered regimes
coexist 25, a phenomenon later called as chimera states 26. Since then chimera states became one of the
most active field of nonlinear dynamics, opening up new challanges to the celebrated model. Experimen-
tal studies revealed evenmore newpossibilities for chimera states to emerge 27–31. Remote synchronization,
another novel form of complex behavior, has also been confirmed in Kuramoto-type systems 32,33. Dur-
ing the past four and a half decades numerous varieties of the Kuramoto model were studied targeting
different problems.

In the thesis we summarize our findings on systems of one-dimensional locally coupled Kuramoto
oscillators. Chapter 2 of the thesis reviews our results on non-delayed rings discussing the results pub-
lished in Communications in Nonlinear Science andNumerical Simulation 34 and Romanian Reports in
Physics 35. In these works we focused mainly on homogeneous oscillators and their phase locked states.
We determined all possible phase locked states and their linear stability using a novel framework. The
dynamics of such ensembles have been studied and the problem of predictability of the final states has
been examined. The results presented here shed light also on the relevant time scales in such rings. We
show that under certain circumstances our results on homogeneous oscillators can be applied on hetero-
geneous systems as well. In Chapter 3 we present our studies on Kuramoto rings with delayed coupling.
Using time rescaling wewere able to construct the stabilitymap of the systemwhich exhibits high level of
symmetry and periodicity. Besides linear stability we studied the changes in attraction basin sizes due to
variations of the system parameters. The results presented here were also published in the journal Com-
munications inNonlinear Science andNumerical Simulation 36. An outlook chapter concludes the thesis
giving new research ideas and further questions to be addressed in locally coupled oscillator systems.
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2
Locally coupled Kuramoto oscillators without

time delay in the interactions

2.1 Emergent patterns

The systems we studied consist of a system of N first order ordinary differential equations, coupled
through a sinusoidal kernel 37–39:

θ̇i = ω0 +K[sin(θi−1 − θi) + sin(θi+1 − θi)] , i = 1, N , (2.1)

N is the number of oscillators and θi is the phase of oscillator having index i. The natural frequency ω0

is the same for each oscillator and the positive real numberK is the uniform coupling constant. In order
to maintain a ring-like structure periodic boundary conditions are applied: θ0 = θN and θN+1 = θ1. In
order the get a homogeneous differential equation we switch to a rotating reference frame:

ui(t) = θi(t)− ω0t . (2.2)

The transformation will yield the following system of equations in the ui(t) variables:

u̇i = K[sin(ui−1 − ui) + sin(ui+1 − ui)] = F (ui−1, ui, ui+1) . (2.3)

It can be shown that such a system is a gradient system, where the equations of motions can be derived
from a potential function as u̇i = −∂V/∂ui

40. The advantage of a gradient system is that the allowed
asymptotic states are fixpoints, while limit cycles and chaotic attractors can not appear41. Thismeans that
the fixpoints correspond to the stationary points of the potential function, which can be of three types:
minimum, saddle, or maximum point.

In a fixpoint the system does not change its state, thus we search for these points by taking u̇i = 0.
For a triplet of oscillators (ui−1, ui and ui+1) this can be achieved in either of the two cases:

ui+1 − 2ui + ui−1 = 2kiπ, ki ∈ Z, (2.4)
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Figure 2.1: Illustraধon of the∆ϕi phase shiđ defined in Eq. (2.7).

or:
ui+1 − ui−1 = (2qi + 1)π, qi ∈ Z. (2.5)

Since there areN such triplets and for each triplet one of the above two condition has to be true, there are
many ways to construct a fixpoint where all time derivatives are zero. In order to separate these different
cases we distinguish three classes of stationary states:

(a) condition (2.4) holds for all i values,

(b) condition (2.5) is fulfilled for all i indeces,

(c) for some i condition (2.4) is true and for the remaining pairs condition (2.5) holds.

Both (a) and (b) cases lead to symmetric states at the level of triplets of oscillators, while class (c) states
allow unbalanced triplets to appear, corresponding to a nontrivial symmetry breaking.

We transform the ui values in order to obtain phases between 0 and 2π:

ϕi = ui mod 2π. (2.6)

Nowwe introduce a∆ϕi parameter called as phase shift for representing the relative position of oscillator
pairs. It is equivalent to a signed distancemeasure on the perimeter of a unit circle, having values between
−π and π. The phase shift is calculated using the floor function (⌊x⌋):

∆ϕi = (ϕi − ϕi−1)− 2π

⌊
ϕi − ϕi−1 + π

2π

⌋
. (2.7)
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√
N . Each distribuধons was constructed

considering an ensemble of 5000 random iniধal states. K = 1.5, ω0 = 2.

Amore comprehensive visual representation of this definition is presented onFig. 2.1. As the figure shows
∆ϕi is simply the shortest path between the tips of two successive vectors along the perimeter of the unit
circle. The sign is positive when the advance from i−1 to i is clockwise and negative if counter-clockwise.
In order to rule out the ambiguity at−π and π we fix the phase shift as∆ϕi ∈ [−π, π).

By taking advantage of the periodic boundary conditions it can be easily shown that the sum of all
phase shifts at any time moment is a multiple of 2π:

N∑
i=1

∆ϕi(t) =
N∑
i=1

(ϕi(t)− ϕi−1(t))− 2π
N∑
i=1

⌊
ϕi(t)− ϕi−1(t) + π

2π

⌋
= 2m(t)π. (2.8)

The m, integer parameter is called winding number. Since ∆ϕi is bounded, it can be shown, that the
winding number is also has lower and upper bounds:⌈

−N

2

⌉
≤ m(t) <

⌊
N

2

⌋
, (2.9)

where ⌈x⌉ is the ceiling function, which evaluates to−N/2, ifN is even and−(N − 1)/2, ifN is odd,
while ⌊x⌋ is the floor function evaluating to N/2 if N is even and (N − 1)/2, if N is odd. Rewriting
Eq. (2.4) in terms of the∆ϕ phases shifts we get the following condition for class (a) states:

∆ϕi+1 = ∆ϕi . (2.10)
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In this class all the phase shifts are the same thus the indices can be dropped, namely∆ϕi = ∆ϕ. Conse-
quently, using the winding number the possible values of∆ϕ can be easily determined 38,40,42,43:

∆ϕ =
∆N

N
= 2

m

N
π . (2.11)

Time dependencies are dropped, indicating the stationarity of the state. The consequence of such a con-
dition is that these (a) type states can be characterized by only one parameter, which is the m winding
number. Taking into account that all phase shifts are equal, the classical in-phase synchrony is member
of this class, havingm = 0. Anti-phase synchrony corresponds to the case of∆ϕ = −π, thus its wind-
ing number ism = −N/2. Every other twisted or wave-like state will get the remaining indices. Results
on linear stability shows that the only stable states are these case (a) states, thus we focus only on these
patterns. In the terms of the winding number these states are stable if:

−N

4
< m <

N

4
, (2.12)

or in the terms of the phase shift:
−π

2
< ∆ϕ <

π

2
. (2.13)

In all other cases this type of state is unstable.
Since the remaining two classes are not stable we do not go into details concerning these unstable

states.

2.2 Dynamics and final state prediction

The previous section revealed that the only attractors are type (a) states with winding numbers−N/4 <
m < N/4. A first possible look on the dynamical aspects of such attractorswould be to study their basins
of attraction. The attraction basins of an attractors the collection of all points from where the system
will converge to the given attractor. Numerical integration of Eq. (2.1) can be easily used to determine the
relative size of the attraction basins by considering a large ensemble of random initial states and recording
the number of appearance of each attractor. The outcome of such computer experiment is visible on
Fig. 2.2. Results show that the distribution of the relative sizes of the attraction domains falls below a
Gaussian envelope curve, centered around the state of in-phase synchrony. The standard deviation of the
basin sizes scales linearly with the square root of the system size40,43.

For studying the self-organization process we generalized the complex order parameter introduced by
Kuramoto.9 This yields a more general set of order parameters, each one linked to one of them states: 34

rm(t)e
iψm(t) =

1

N

N∑
j=1

ei[θj(t)−(j−1) 2mπ
N

]. (2.14)

Similarly to the original order parameter, here each m state will have its own parameter, ranging in ab-
solute value from 0 to 1. It can be shown that if the system approaches asymptotically to a state with
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Figure 2.3: Time evoluধon of rm order parameters. The number of oscillators isN = 30, however order parameters with |m| ≥ 4
are not shown to avoid overcrowding of the graph. The verধcal lines indicate the ধme moment of predicধons with two different
method. The ts is linked to the derivaধves of rm, while tε corresponds to the crossing of the threshold value as in Eq. (2.15).

winding number m∗, its order parameter rm∗ will approach 1, while all other rm̸=m∗ parameters will
vanish.

Based on the time evolution of the order parameters a straightforward method of prediction would
be to define an ε > 0 tolerance and check if one of the order parameters approach 1within this tolerance.
For small enough ε on can conclude that the state with the specificm will be selected. This assumption
is equivalent to the following conjecture:

if rm∗(t) > 1− ε ⇒ lim
t→∞

rm∗(t) = 1. (2.15)

The 1− ε quantity is also referred to as threshold.
On Fig. 2.3 we present a sample time evolution of the order parameters. For illustration purposes we

marked the time moment tε of passing the 0.99 threshold with a continuous vertical line. This value is
high enough to consider the final state selected, so the prediction is correct, however this results in waste
of CPU time since we set the threshold too high. Because rm is bounded between 0 and 1 these values
can only be reached by constant decrease and increase, respectively. As a conclusion in the exponential
relaxation stage only one order parameter is increasing and the others decrease. Hence there must be
a ts time moment in the dynamics after which only the order parameter of the selected m∗ state keeps
increasing:

ṙm∗(t ≥ ts) > 0

ṙj ̸=m∗(t ≥ ts) < 0 .
(2.16)

This time moment is marked by a vertical dashed line on Fig. 2.3. Based on the previous arguments we
propose another prediction method by inverting the reasoning: we consider anm∗ state to be selected if
the only increasing order parameter is rm∗ .

This second method is inherently ill-defined, since the reverse argument may not necessarily be true
and thiswill inevitably lead to false predictions. This indeed happens and it is caused by the type (c) saddle
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(1 − ε = 0.999) while darker tones of the same color indicate iniধal states where predicধons based on the derivaধves of rm were
incorrect.

points. Saddle points are able distort trajectories by being attractive from some directions. Approaching
a fixpoint implies an exponential slowing down in the dynamics, resulting in a transient metastable be-
havior.

In order to visualize this anomaly we compared the reliability of the two prediction methods and
mapped the results on cross sections of the ∆ϕ phase space. Figure 2.4 shows the outcome of such ex-
periment for different system sizes. The cross sections were constructed using the fact that ∆ϕ space of
an N dimensional system is actually N − 1 dimensional due the constraint on the sum of phase shifts
in Eq. (2.8). Hence a two dimensional cross section can be constructed by varying two phase shifts and
applying some other constraint to the remaining ones. The most simple example of constraint is to fix
the remainingN − 3 (one phase shift is always calculated from the sum in Eq. (2.8)). However in order
to see most of the stationary states an “oblique” cross section was considered having maximal symmetry
along the main diagonal of theN dimensional hypercube. On each panel of Fig. 2.4 there are two cross
sections on top of each other constructed differently. Areas with bright coloring are created using a very
low tolerance (ε = 0.001) considered to be accurate, while dark colors mark the initial states where the
method using derivatives gave different results compared to the control. As expected, unstable nodes
(hollow circles) and saddles (stars) are on the boundaries of attraction basins and incorrect predictions
flock together around the edges between two domains or in the vicinity of unstable states.

Apparently, the question of choosing the best prediction method boils down to a trade-off between
speed and precision as presented on Fig. 2.5. The first method with a proper choice of the tolerance can
eliminate any doubt concerning the time evolution, however in this limit the method does not predict
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Kc = 42.

but reassures results already visible to the naked eye. On the other hand, the second method is less time
consuming, yet errors are inherently built in the method due to the deflections near saddles. The failing
rate of this method (inset of Fig. 2.5) may seem statistically negligible however it will never become zero.
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3
Rings of Kuramoto oscillators with time-delayed

coupling

3.1 Symmetric phase locked states

The equations of motion we considered is a generalization of the system introduced in Eq. (2.1) by insert-
ing a τ > 0 time delay in the interaction kernel:

θ̇i(t) = ω0 +K[sin(θi−1(t− τ)− θi(t)) + sin(θi+1(t− τ)− θi(t))] , i = 1, N . (3.1)

Notations are the same as in the non-delayed case and periodic boundary conditions are applied in order
tomaintain a ring-like topology. The introduction of time delay increased the number of free parameters
of the system, however with a proper time rescaling one arrives to a set of dimensionless equations with
three parameters including the system sizeN . Hence, we define the dimensionless time as u = t/τ and
substitute in the equations of motion which leads to the following dimensionless system:

dθi(u)

du
= ω + κ[sin(θi−1(u− 1)− θi(u)) + sin(θi+1(u− 1)− θi(u))] , (3.2)

with ω = ω0τ being the dimensionless natural frequency and κ = Kτ is the dimensionless coupling.
The delay in this representation becomes unity.

Phase locked state is written in the form:

θi(u) = Ωu+ ϕi . (3.3)

The final dimensionless frequency is denoted byΩ.
Type (a) states require ϕi − ϕi−1 = ∆ϕ to be constant over the system. Substituting this type of

solution in Eq. (3.2) will give the following equation:

Ω = ω − 2κ cos(∆ϕ) sin(Ω) . (3.4)
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Figure 3.1: Number of stable Ω frequencies as a funcধon of the ω natural frequency and κ coupling coded by colormaps. Zero
stableΩ means that the state is unstable for the given parameter values. The winding numbers indicate the paħerns we invesধgated,
∆ϕ = 2mπ/N . Frequencies were obtained by solving Eq. (3.4), stability is determined using Eq. (3.6). The system size considered
here isN = 10.

The∆ϕ phase shift has the same definition and meaning as described in Eq. (2.7). The condition on the
sumof the phase shifts, namely

∑
i∆ϕi(t) = 2m(t)π still holds, since it is a consequence of the topology

and not the dynamics. The equation from above is transcendental in Ω, however the exact value of Ω is
important because in this case the phase shift alone is not enough to characterize a state, since there is
more than one∆ϕ solution for a given∆ϕ.

The stability analysis of such states involves the perturbation of solutions and studying the time evo-
lution of the perturbation. The perturbation of the solutions is done in the following way:

θi(u) = Ωu+ φi + ϵ ηi(u) , (3.5)

where ϵ ≪ 1. Using this ansatz we are able to determine the stability of the phase locked states by
substituting them in the rescaled equations in Eq. (3.2).

Based on the work of Earl and Strogatz44 it can be shown that in-phase synchrony states (∆ϕ =
0, m = 0) are stable whenever cos(Ω) > 0, while anti-phase synchrony (∆ϕ = −π, m = −N/2) is
stable if cos(Ω) < 0. For states wherem is neither 0 nor−N/2 the perturbation will lead to a system of
linearDDEs, whichwe solved using themethod ofAsl andUlsoy using thematrix LambertW function45.
A {Ω,∆ϕ} state is stable if the real part of the following quantity is negative for a j values:

λj = W0

(
2(κc cos

2πj

N
+ iκs sin

2πj

N
)e2κc

)
− 2κc , j = 0, N − 1, (3.6)

where κc = cos(∆ϕ) cos(Ω), κs = sin(∆ϕ) sin(Ω) andW0 is the principal branch of the Lambert W
function.
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Figure 3.2: Top: Probability of detecধng different phase locked state for different ω natural frequencies. Boħom: Probability of sym-
metric type (a) phase locked states as funcধon of ω. Due to symmetric distribuধons only half of the probabiliধes are ploħed. Dashed
lines mark the parameters of the sample distribuধons of the top panel. N = 10, κ = 2. For each ω value an ensemble of 105 iniধal
states were considered.

By evaluatingλ in Eq. (3.6) we can construct the stabilitymap of symmetric phase locked states in the
ω − κ parameter space. First the possibleΩ frequencies have to be determined for a given {m,ω, κ} set.
Substituting these values in Eq. (3.6) will yieldN exponents, or eigenvalues. In the case when all of them
(except for the j = 0 case) are negative the frequency is stable. Such a set of stability maps is shown on
Fig. 3.1 for different winding numbers.

3.2 Basins of attractions and bifurcations

Similarly to the non-delayed case we determined the size distribution of the attraction basins. Initial-
ization in delayed systems is not a trivial question since instead of θi(0) values we need functions of
θi(u), u ∈ [−1, 0) for each oscillator. Herewe used “kick starting”meaning thatwe solve the uncoupled
κ = 0 system for the initial u ∈ [−1, 0) interval and interaction starts at u = 0. This setup is equivalent
to in interaction with a finite speed of propagation. We note that the θi(−1) phases are still generated
randomly form a uniform distribution over the [0, 2π) interval. For detecting the final state we use the
generalized order parameter defined in Eq. (2.14) with a high enough threshold. A sample for the basin
size distributions is presented on the top panel of Fig. 3.2. Results show that changing the parameters
can have very strong effects on the basin sizes opposed to the non-delayed case. Themain difference com-
pared to the non-delayed case is that probabilities may “flip” in a way that some states become practically
undetectable due to the size of their attraction basin. The results of a more thorough analysis on the
basin sizes is shown on the bottom panel of Fig. 3.2. As it was suggested by this sample, the basin sizes
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Figure 3.3: Two dimensional projecধons of cross secধons showing the structure of the aħracধon basins in the∆ϕi(0) space for a
system of N = 5 oscillators with coupling κ = 2 and varying natural frequency ω. Top row: The aħracধon basins have compact
structure with simply connected boundaries forω = π/8 and ω = π. Dominant states may vary asω changes (see the color code in
the legend). Fractal-like paħerns can appear as well, for example at ω = 3π/4 and ω = 11π/8. These regions show a high degree
of staধsধcal self similarity (see boħom row for the blowups). Iniধal states developing into long term (u ∼ 105 − 106) transient
dynamics may appear as well in the cross secধons, without converging towards one of the phase locked states. Each cross secধon
is considered on grid of 320 by 320 iniধal states. Boħom row: Blowups of the cross secধon for ω = 3π/4. The frames mark the
secধons that are enlarged on the graph on its right. Linear magnificaধon rates compared to the original (1x) are given on the top of
each plot.

can drastically change as ω is varied. Attraction basins can shrink and grow in size over four orders of
magnitude. A typical periodic behavior is also present: for constant coupling the most probable state is
either in-phase or anti-phase synchronization dictated by ω. We note that this behavior is not caused by
the stability of these states because there is always at least one stableΩ frequency for each state(compare
Fig. 3.1).

Results of Fig. 3.2 delivers a global overview of the interesting behavior of the attraction basins, how-
ever it does not provide any information about the spatial structure of these domains. To make a step
further one can make an attempt to partition the phase space of the system into attraction basins. Using
a similar workaround as in the case of Fig. 2.4 we considered a system of N = 5 oscillators. Such rep-
resentative cross sections are presented on the top panel of Fig. 3.3 for different ω values. The first and
the third cross section (ω = π/8 and ω = π) depicts a case of compact domains with simply connected
basin boundaries. For ω = 3π/4 and ω = 11π/8 however there are regions resembling fractal-like
structures with statistical self similarity. In order to investigate the aspects of these regions on the bottom
panel of Fig. 3.3 we gradually enlarged these sections, proving that this type of statistical self similarity
persists over at least three orders of magnitude. Another interesting finding is the appearance of long-
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term (u ∼ 105 − 106 at least) seemingly non-vanishing transient behavior, which is very different from
the discussed phase-locked states, since during this long periods of time no order parameter crosses the
desired threshold value

Up to now the different Ω frequencies for the same phase locked patterns were neglected as we con-
centrated only on thephase shifts byusing the order parameter in our simulations. In order tounderstand
themultistability in theΩ spacewe constructed a bifurcation diagramof the dominant in- and anti-phase
synchronized states states on Fig. 3.4. For the parameters we considered (κ = 2, ω ∈ [0, 4π]) both states
have at least one stable frequency. The pattern in the probabilities matches the behavior presented on the
bottom panel of Fig. 3.2, namely that the system changes its preference periodically towards in-phase and
anti-phase synchrony as a function of ω. For a given ∆ϕ always the same Ω is selected even if there are
multiple possibilities. When there are more stable frequencies for a pattern the system prefers the state
with the frequency closest to its natural frequency. For a more quantitative reasoning valid also for other
patterns as well we introduce two new parameters. First δ, which is proportional to theΩ−ω difference:

δ = cos(∆ϕ) sin(Ω) . (3.7)

The second one is σ which refers to the symmetry of the pattern:

σ = sin(∆ϕ) cos(Ω) . (3.8)
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This type of symmetry refers to the equality of the sine terms in Eq. (3.2) in the stationary states, namely
σ = sin(−∆ϕi,i−1 − Ω) − sin(∆ϕi+1,i − Ω) This symmetry parameter is 0 (totally symmetric) for
in-phase and anti-phase synchronization, while |σ| > 0 for other patterns.

As presented on Fig. 3.5 the interplay between σ and δ correlates with the change of the basin size
distributions

The conclusions from the patterns on Fig. 3.5 can be reformulated as a set of simple heuristic guide-
lines explaining the selection process of final states:

• First, the selected state tends to be symmetric as possible, which explains why the peak of the basin
size distributions are always around 0 and−π.

• If there are more solutions with the same |σ| value, the one with the smaller |δ| will be preferred
(see for example the σ = 0 line).

• Final states having the same |σ| and |δ| are equally probable.

These observations suggest that calculation of δ and σ can help us in the estimation of the relative basin
sizes for an ensemble of randomly initialized states.

3.3 Non-fixpoint type patterns

Without delay locally coupled oscillator rings are gradient systems. Thismeans that the only allowed equi-
libria are fixpoints (i.e. phase locked states) and no other type of attractors, such as limit cycles or chaotic
attractors can appear. In the case of delayed systems, the situation however is very different. First of all
systems like Eq. (3.2) can not be easily reformulated as gradient system, since the future states depend not
only on the present. This way we can not rule out the existence of more complex behavior. Furthermore
the dependence on past configurations increases the dimensionality of the problem, also suggesting that
there may be other emergent states as well besides phase locking.
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Figure 3.6: Time evoluধon of the θi(u) phases for different system sizes proving the existence of non trivial ordering besides phase
locking. Due to the translaধonal symmetry all phases have been rescaled between 0 and 2π then were let to evolve.

Even though the topic of this thesis is the emergence of phase locked patterns, the possibility of other
behavior should not be overlooked. In this section we share our observations gained through computer
simulations related to non-fixpoint patterns appearing in time delayed Kuramoto rings. Sticking to the
main focus of our study the presentation will be a purely descriptive one, dedicated mainly to offer new
research ideas and to raise interesting questions rather than explaining every aspect of these novel states.

The generalized order parameter in Eq. (2.14) is designed to indicate the convergence to one of the
symmetric phase locked states, it is not well suited to search for any other type of attractors. The lack of
convergence however, might be a hint that ordering may take different forms as well. The key factor here
is the time scale, which we use as a proxy for identifying non-fixpoint pattern formations. A sufficiently
long transient phase (u ∼ 105 − 106) might suggest a different kind of ordering.

On Fig. 3.6 we show four representative time series of the θi phases for different system sizes. The
first difference opposed to phase locked states is that the angular frequencies are not constant in time,
however the oscillations seem to be periodic. There is also a clearly visible average frequency for each
oscillator that leads to the overall increasing trends in the phases. Interestingly, these average frequencies
can be the same for some of oscillators, thus forming groups with same average angular velocity. The
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presence of such behavior in small andmiddle sized systems as well suggests that this phenomenon is not
a consequence of the growing system size, but it has to be caused by the time delayed interaction.

In order to get a more detailed picture of this complex behavior it is important to study the emerging
patterns as well. The so called space-time plots serve exactly this purpose where the state of the oscillators
is presented in time and space as well by a color code. Such a plot is visible on Fig. 3.7. Above the phase
representation the average frequencies are also plotted which reinforces the finding that oscillators with
similar average frequencies tend to form spatial clusters. Error bars indicating the standard deviation of
the frequency also show that the variability of the frequency tends to be greater at the borders between
domainswith similar ⟨Ω⟩. The coexistence of regionswithdifferent patternsmight suggest chimera states,
however as it can be seen, all regions are ordered, or at least they show similar periodic behavior. This
behavior can be a sign of a closed periodic orbit.
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4
Conclusions & Outlook

In this thesis we have focused on the formation of phase locked patterns in locally coupled one dimen-
sional Kuramoto systems. The phenomenon of phase locking, where oscillators end up having the same
frequencies and consequently constant phase shifts between them, is not a new type of complex behav-
ior in such systems. Therefore, the purpose of this work was to investigate the problem from a new
viewpoint, namely predictability of final patterns and influence of model parameters on their basins of
attraction.

In the first half of the thesis we presented our results on a simple locally coupled system of homoge-
neous Kuramoto oscillators. Inspired by past studies we developed a theoretical framework that we then
used through all the thesis. Using this framework we have reproduced and completed recent results on
such systems. The novel aspect of our investigation was the prediction of final states from a randomly
initialized setup. We have generalized the complex Kuramoto order parameter and applied it to the time
series of the oscillators. Results show that random initial states require a certain transient time period
after which the long term behavior is clearly predictable. Two distinct prediction methods were intro-
duced, both based on the generalized order parameter. These methods were compared in their precision
and time efficiency, showing a trade off between these two properties. The effect of saddles and unstable
nodes on the dynamics of the oscillators was discussed, revealing that trajectories can be heavily distorted
around these repellers and basin boundaries as well. This type of distortions will inevitably lead to pre-
diction errors. In the second part we took a step further by introducing time delayed interaction in one
dimensional systems of homogeneous Kuramoto oscillators. The main problems we have investigated
concerned the influence of the delay on the dynamics and the stable attractors of the oscillator ensemble.
According to our observations this change can have drastic consequences under given circumstances. By
these circumstances wemean different regions of the parameter space. The first major consequence is the
that each phase locked pattern can be locally stabilized or destabilized, a very different behavior compared
to the non-delayed case where the stability of the state is ultimately determined by themain properties of
the state and not the parameters. As it has been advocated before, the attraction basin sizes can help us re-
fine the picture on attractors and repellers obtained by studying their local stability, thuswe studied them
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with great interest. In this regard the parameters also proved to be the decisive factor. More precisely, the
size of attraction basins can vary over several orders ofmagnitude depending on the parameters, meaning
that some otherwise locally stable states become practically unobservable given the initializations we have
used. It seems that intrinsic frequencies play an important role in this peculiar behavior observed in the
basin sizes. Another important difference compared to non-delayed systems is the appearance of closed
orbits discussed in more detail in Section 3.3, which could be interpreted as limit cycles or even chimera
states.

The Kuramoto model have become a prototype model in the study of spontaneous synchronization
and other types of complex behavior. It was proven to be helpful in a wide range of interdisciplinary
problems, thus becoming a fundamental tool in the field of complex systems. The literature covering the
usage of themodel is vast, pointing far beyond the concept of frequency entrainment in globally coupled
oscillator systems, the initial topic which Kuramoto and Nishikawa had developed the model for. For
such a fundamental model it is hard to discover new results however, key models need to be understood
profoundly, meaning that besides broadening its applicability, one should also strive for deepening our
knowledge, by questioning the fundamentals. The present work fits in this line of studies, by taking
another look on previously discussed problems.

19



Publications related to the thesis

ISI publications

• Károly Dénes, Bulcsú Sándor, and Zoltán Néda. Pattern selection in a ring of Kuramoto oscillators,
Communications in Nonlinear Science and Numerical Simulation, 78:104868, 2019. IF=4.115

• Károly Dénes, Bulcsú Sándor, and Zoltán Néda. On the predictability of the final state in a ring of Ku-
ramoto rotators, Romanian Reports in Physics, 78:108, 2019. IF=1.84

• Károly Dénes, Bulcsú Sándor, and Zoltán Néda. Synchronization patterns in rigs of time-delayed Ku-
ramotooscillators. Communications inNonlinear Science andNumerical Simulation, 93:105505, 2021. IF=4.115

Conferences

1. KárolyDénes, Bulcsú Sándor, andZoltán Néda (6-10 June 2016). Collective behavior patterns in a ring of Kuramoto-
type rotators with time-delay. [Oral presentation]. XXXVI. Dynamics Days Europe, Corfu, Greece.

2. Károly Dénes, Bulcsú Sándor, and Zoltán Néda (10-14 July 2017). Kuramoto oscillators in a ring-like topology.
[Poster presentation]. SigmaPhi2017, International Conference on Statistical Physics, Corfu, Greece.

3. KárolyDénes, Bulcsú Sándor, and Zoltán Néda (19-23March 2018). Pattern selection in a ring of Kuramoto rotators.
[Poster presentation]. Analysis and Modeling of Complex Oscillatory Systems, Barcelona, Spain.

4. Károly Dénes, Bulcsú Sándor, and Zoltán Néda (1-4 May 2018). Collective modes of identical Kuramoto rotators
in a ring-like topology. [Poster presentation]. MECO43: 43rd Conference of the Middle European Cooperation in
Statistical Physics, Kraków, Poland.

5. Károly Dénes, Bulcsú Sándor, andZoltánNéda (14-17 June 2018). Collective modes of identical Kuramoto rotators in
a ring-like topology. [Oral presentation]. 12th Joint Conference onMathematics and Computer Science, Cluj-Napoca,
Romania.

6. Károly Dénes, Bulcsú Sándor, and Zoltán Néda (2-6 September 2019). Bifurcations in systems of Kuramoto oscilla-
tors with delayed coupling. [Poster presentation]. XXXIX. Dynamics Days Europe, Rostock, Germany.

7. Károly Dénes, Bulcsú Sándor, and Zoltán Néda (14-16 September 2020). Stabilizing phase-locked patterns in sys-
tems of Kuramoto oscillators with delayed coupling. [Poster presentation]. MECO45: 45th Conference of the Middle
European Cooperation in Statistical Physics - online, Cluj-Napoca, Romania

20



Selected references

[1] Steven Strogatz. Sync: The emerging science of spontaneous order. Penguin UK, 2004.

[2] D Attenborough. BBC Trials of Life Talking to Strangers, 1990.

[3] Charles S Peskin. Mathematical aspects of heart physiology. Courant Inst. Math, 1975.

[4] KurtWiesenfeld, Pere Colet, and StevenHStrogatz. Synchronization transitions in a disordered Josephson series array.
Physical review letters, 76(3):404, 1996.

[5] Pat Dallard, AJ Fitzpatrick, A Flint, S Le Bourva, A Low, RM Ridsdill Smith, and M Willford. The London Millen-
nium footbridge. Structural Engineer, 79(22):17–21, 2001.

[6] CHuygens. Letter to de sluse. letter no. 1333 of february 24, 1665. Oeuvres Complète de Christiaan Huygens. Correspon-
dence, 5:1664–1665, 1665.

[7] Steven H Strogatz. Norbert Wiener’s brain waves. In Frontiers in mathematical biology, pages 122–138. Springer, 1994.

[8] Arthur T. Winfree. Biological rhythms and the behavior of populations of coupled oscillators. Journal of Theoretical
Biology, 16(1):15 – 42, 1967.

[9] Yoshiki Kuramoto. Self-entrainment of a population of coupled non-linear oscillators. In Huzihiro Araki, editor,
International Symposium on Mathematical Problems in Theoretical Physics, volume 39 of Lecture Notes in Physics,
pages 420–422. Springer Berlin Heidelberg, 1975.

[10] Steven H Strogatz and Renato E Mirollo. Stability of incoherence in a population of coupled oscillators. Journal of
Statistical Physics, 63(3-4):613–635, 1991.

[11] StevenH Strogatz, Renato EMirollo, and Paul CMatthews. Coupled nonlinear oscillators below the synchronization
threshold: relaxation by generalized Landau damping. Physical Review Letters, 68(18):2730, 1992.

[12] Hidetsugu Sakaguchi, Shigeru Shinomoto, and Yoshiki Kuramoto. Local and grobal self-entrainments in oscillator
lattices. Progress of Theoretical Physics, 77(5):1005–1010, 1987.

[13] Hidetsugu Sakaguchi, Shigeru Shinomoto, and Yoshiki Kuramoto. Mutual entrainment in oscillator lattices with
nonvariational type interaction. Progress of Theoretical Physics, 79(5):1069–1079, 1988.

[14] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’ networks. Nature, 393(6684):440, 1998.

[15] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science, 286(5439):509–512, 1999.

[16] Hyunsuk Hong, Moo-Young Choi, and Beom Jun Kim. Synchronization on small-world networks. Physical Review
E, 65(2):026139, 2002.

[17] Hyunsuk Hong, Hyunggyu Park, and Lei-Han Tang. Finite-size scaling of synchronized oscillation on complex net-
works. Physical Review E, 76(6):066104, 2007.

[18] Carsten Grabow, Steven M Hill, Stefan Grosskinsky, and Marc Timme. Do small worlds synchronize fastest? EPL
(Europhysics Letters), 90(4):48002, 2010.

[19] S Yoon, M Sorbaro Sindaci, AV Goltsev, and JFF Mendes. Critical behavior of the relaxation rate, the susceptibility,
and a pair correlation function in the Kuramoto model on scale-free networks. Physical Review E, 91(3):032814, 2015.

21



[20] Fumito Mori. Necessary condition for frequency synchronization in network structures. Physical review letters,
104(10):108701, 2010.

[21] Hiroaki Daido. Quasientrainment and slow relaxation in a population of oscillators with random and frustrated
interactions. Physical review letters, 68(7):1073, 1992.

[22] Hidetsugu Sakaguchi and Yoshiki Kuramoto. A soluble active rotater model showing phase transitions via mutual
entertainment. Progress of Theoretical Physics, 76(3):576–581, 1986.

[23] SeunghwanKim, SeonHee Park, and Chang SuRyu. Nonequilibrium phenomena in globally coupled active rotators
with multiplicative and additive noises. ETRI journal, 18(3):147–160, 1996.

[24] Shigeru Shinomoto and Yoshiki Kuramoto. Phase transitions in active rotator systems. Progress of Theoretical Physics,
75(5):1105–1110, 1986.

[25] Yoshiki Kuramoto andDorjsuren Battogtokh. Coexistence of coherence and incoherence in nonlocally coupled phase
oscillators. arXiv preprint cond-mat/0210694, 2002.

[26] Daniel M Abrams and Steven H Strogatz. Chimera states for coupled oscillators. Physical review letters, 93(17):174102,
2004.

[27] Aaron M Hagerstrom, Thomas E Murphy, Rajarshi Roy, Philipp Hövel, Iryna Omelchenko, and Eckehard Schöll.
Experimental observation of chimeras in coupled-map lattices. Nature Physics, 8(9):658–661, 2012.

[28] Erik Andreas Martens, Shashi Thutupalli, Antoine Fourrière, and Oskar Hallatschek. Chimera states in mechanical
oscillator networks. Proceedings of the National Academy of Sciences, 110(26):10563–10567, 2013.

[29] TomaszKapitaniak, Patrycja Kuzma, JerzyWojewoda, Krzysztof Czolczynski, and YuriMaistrenko. Imperfect chimera
states for coupled pendula. Scientific reports, 4:6379, 2014.

[30] Lucia Valentina Gambuzza, Arturo Buscarino, Sergio Chessari, Luigi Fortuna, Riccardo Meucci, and Mattia Frasca.
Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators.
Phys. Rev. E, 90:032905, Sep 2014.

[31] Jerzy Wojewoda, Krzysztof Czolczynski, Yuri Maistrenko, and Tomasz Kapitaniak. The smallest chimera state for
coupled pendula. Scientific reports, 6(1):1–5, 2016.

[32] Vincenzo Nicosia, Miguel Valencia, Mario Chavez, Albert Díaz-Guilera, and Vito Latora. Remote synchronization
reveals network symmetries and functional modules. Physical review letters, 110(17):174102, 2013.

[33] Y. Qin, Y. Kawano, andM. Cao. Stability of remote synchronization in star networks of kuramoto oscillators. In 2018
IEEE Conference on Decision and Control (CDC), pages 5209–5214, 2018.

[34] Károly Dénes, Bulcsú Sándor, and Zoltán Néda. Pattern selection in a ring of Kuramoto oscillators. Communications
in Nonlinear Science and Numerical Simulation, 78:104868, 2019.

[35] Károly Dénes, Bulcsú Sándor, and ZoltánNéda. On the predictability of the final state in a ring of Kuramoto rotators.
Romanian Reports in Physics, 71:108, 2019.

[36] Károly Dénes, Bulcsú Sándor, and Zoltán Néda. Synchronization patterns in rings of time-delayed Kuramoto oscilla-
tors. Communications in Nonlinear Science and Numerical Simulation, 93:105505, 2021.

[37] J. Ochab and P. F. Gora. Synchronisation of coupled oscillators in a local one-dimensional Kumamoto model. In
Lawniczak, AT and Makowiec, D and Di Stefano, BN, editor, Summer Solstice 2009, International Conference on
Discrete Models of Complex Systems, volume 3 of Acta Physica Polonica B Proceedings Supplement, pages 453–462,
2010.

[38] T. K. Roy and A. Lahiri. Synchronized oscillations on a Kuramoto ring and their entrainment under periodic driving
. Chaos, Solitons & Fractals, 45(6):888 – 898, 2012.

22



[39] Xia Huang, Meng Zhan, Fan Li, and Zhigang Zheng. Single-clustering synchronization in a ring of Kuramoto oscilla-
tors. Journal of Physics A: Mathematical and Theoretical, 47:125101, 03 2014.

[40] Daniel A. Wiley, Steven H. Strogatz, and Michelle Girvan. The size of the sync basin. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 16(1):015103, 2006.

[41] Morris W Hirsch, Stephen Smale, and Robert L Devaney. Differential equations, dynamical systems, and an introduc-
tion to chaos. Academic press, Boston, 2012.

[42] Ramana Dodla, Abhijit Sen, and George L. Johnston. Phase-locked patterns and amplitude death in a ring of delay-
coupled limit cycle oscillators. Phys. Rev. E, 69:056217, May 2004.

[43] Paulo FC Tilles, Fernando F Ferreira, and Hilda A Cerdeira. Multistable behavior above synchronization in a locally
coupled Kuramoto model. Physical Review E, 83(6):066206, 2011.

[44] Matthew G. Earl and Steven H. Strogatz. Synchronization in oscillator networks with delayed coupling: A stability
criterion. Phys. Rev. E, 67:036204, Mar 2003.

[45] FarshidMaghamiAsl andAGalipUlsoy. Analysis of a system of linear delay differential equations. J. Dyn. Sys., Meas.,
Control, 125(2):215–223, 2003.

23


	Abstract
	Contents of the summary
	Introduction
	Locally coupled Kuramoto oscillators without time delay in the interactions
	Emergent patterns
	Dynamics and final state prediction

	Rings of Kuramoto oscillators with time-delayed coupling
	Symmetric phase locked states
	Basins of attractions and bifurcations
	Non-fixpoint type patterns 

	Conclusions & Outlook 
	Publications related to the thesis
	Selected references

