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Introduction

The complex analysis dates from the eighteenth century, being a field of interest that has evolved
rapidly due to multiple applications in various branches of science and technology.

The geometric theory of functions of a complex variable is a special branch of complex analysis that
correlates rigorous reasoning with intuitive geometric models.The first significant works were published
in the early twentieth century by P. Koebe in 1907, T.H. Gromwell in 1914, I.W. Alexander in 1915, L.
Bieberbach in 1916. Bieberbach’s conjecture, proved by Louis de Branges in 1984 led to the emergence
of new directions of study in the geometric theory of analytic functions, one of which is the definition of
new classes of univalent functions for which conjecture could be verified.

The complex analysis also occupies a place of honor in the Romanian school of mathematics. Roma-
nian researchers have contributed decisively to the progress of this scientific branch through D. Pompeiu,
Gh. Călugăreanu and P.T. Mocanu. Gh. Călugăreanu, the father of the Romanian school of The Theory
of Univalent Functions, obtained for the first time necessary and sufficient conditions of univalence, and
P.T. Mocanu introduced the alpha -convex function class, addressed the issue of non-analytic injectivity,
and co-created with S.S. Miller’s well-known method of studying univalent classes of functions called
the ”admissible function method,” the differential subordination method, and more recently the theory of
differential subordination. Acad. P.T. Mocanu carried on the School of Theory of Univalent Functions
at Univ. Babes, -Bolyai, founded by Gh. Călugăreanu.

The univalence property of functions of a complex variable is the object of research of many math-
ematicians, by determining necessary and sufficient conditions of univalence. The geometric interpreta-
tion of univalent functions is done by conformal transformations. Thus, it might be analysed the param-
eters of a certain conformal transformation, which verifies the additional conditions of univalence.

The necessary and sufficient conditions of univalence are usually presented in the form of differ-
ential inequalities, but the property of univalence can also be demonstrated by other methods such as:
Loewner’s parametric method, the method of integral representations, the method of differential subor-
dinations (also known as the method of functions admissible) and the method of differential superorders.

A central role in the geometric theory of functions of a complex variable is played by the study
of integral operators, defined on certain spaces of analytic functions. The first integral operator by
univalent function classes was introduced in 1915 by J.W. Alexander, and since then several researchers
have shown interest in this study. Among them we mention R. Libera, S. Bernardi, S.S. Miller, P.T.
Mocanu, M.O. Reade, R. Singh, N.N. Pascu and many others.

The novelty of the results presented in this paper include: the introduction of integral operators as
an extension of already known operators, represented as particular cases, as well as the investigation of
geometric properties of univalence, convexity, starlikeness, but also of other classes of special functions,
for integral operators. we. The integral operators introduced here are generalizations of some integral op-
erators consecrated in the specialized literature, represented by constructions of several functions. Their
details are presented in section 2.1. For these integral operators we obtained conditions of: univalence,
starlikeness, convexity, but also of partnership to some special classes of analytic functions. This thesis
is structured on 5 chapters, an introduction and a bibliography and is based on 35 papers published or
in the process of being published (written in collaboration with D. Breaz) as well as some ideas not yet
published.
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The first chapter entitled ”Preliminary results” is divided into four paragraphs. Fundamental def-
initions and results are presented here the necessary basis for the following chapters. More precisely,
definitions and properties are presented regarding analytic functions, univalent functions, functions with
the real positive part, starlike functions, convex functions, but also other special classes of functions. The
last section of this chapter contains the univalence criteria used to demonstrate the main results in the
following chapters, given by Pascu [89], [90], Pescar [93], [94], Becker [42], Ozaki and Nunokawa [88].

The following four chapters present original results that represent the author’s contribution to the
field of geometric theory of analytic functions.

Chapter 2 it contains 8 section and begin with the presentation of four new general integral op-
erators, which are extensions of known integral operators and which consist of several functions. The
connection between these operators and other important results in the field is also marked. We specify
that all the results obtained in this paper refer to the four integral operators introduced here.

The second paragraph treats the obtaining sufficient univalence criteria for full operators, when the
functions are analytic. The justification of these results is made based on the univalence criteria given by
Pascu and Pescar and are contained in the works [5], [6], [7], [8].

Section 2.3, contained in the works [9], [10], presents new conditions of univalence for integral
operators general,Mδ,n and Tδ, n, using an extension of Becker’s univalence criterion, given by Pascu
in [90], but also the result given by Mocanu and S, erb in [76].

Paragraph 2.4 studied some properties of preserving the class of univalent functions by integral
operators. The tools that led to these results, included in the works [23], [24], [25], [26], are Becker’s
criteria of univalence and Pascu, but also the well-known inequalities of Nehari.

Paragraph 2.5 verifies the univalence of integral operators when the functions involved belong to
the class Gb, defined by Silverman in [109], for integral operators Mδ,n and Tδ,n, using the univalence
criteria of Pascu [90] and Pescar [93]. These contents can be found in the works [11], [12].

Section 2.6 considers sufficient univalence conditions for integral operators defined here, having
functions in the class S(p) studied by Ozaki, Nunokawa, Yang, Liu, Singh and others. Evidence of these
results uses Pescar’s [93] univalence criterion and is printed in [13], [14].

Next, paragraph 2.7, analyzes the univalence of integral operators for functions that are part of the
B(µ) classes defined by Ash and Darus in [69] and Sµ studied by Ponnusamy and Sing in [105]. The
demonstration of these results, from the works [15], [16], [17], [18], comes with the help of the inequalities
given by Deniz [60] and Frasin [63], as well as due to the univalence criteria Pascu [90] and Pescar [93].

The last section of this chapter addresses the univalence of integral operators for functions that are
members of the class B(µ, α) defined by Frasin and Jahangiri in [70] and represents the content of the
works [19], [20], [21], [22]. The univalence criteria Pascu [90] and Pescar [93], but also the Mocanu-S, erb
Theorem [76] leads to these results.

Chapter 3 addresses the issue of convexity of integral operators, being divided into 6 paragraphs.
In each paragraph the origin of the functions differs from one class to another.

Section 3.1 has as a starting point functions belonging to the classes Gb, B(µ, α) and S∗β . These
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contents are in the works [27], [30], [33], [36].

The following is the row of star function classes in section 3.2, the results being included in the
works [27], [30], [33], [36], [29], [32], [35], [39]. In this case, the convexity order was found for each fully
investigated operator.

The study of convexity continues in paragraph 3.3 with functions belonging to the class SP(α, β);
information are contained in the works [28], [31], [34], [37], [29], [32], [35], [39].

Paragraph 3.4 presents the approach of the convexity of the integral operators from the perspective
of S∗b class functions. News that can be found in the works [28], [31], [34], [37].

Then we present in section 3.5 the convexity orders of integral operators for the case when the
functions are members of the class SH(β), studies included in the works [29], [32] , [35], [39].

The end of this chapter comes with the approach of the convexity of integral operators for alpha -
convex functions. In the works [29], [32], [35], [39] we present this information.

În Chapter 4, structured in two paragraphs, we illustrate some conditions of membership of integral
operators to the function classN (β). The first section here use analytic functions, and the other functions
in class SP(α, β). The results obtained in this chapter can be found in the works [28], [31], [34], [37].

The last chapter it encompasses six sections and refers to the study of p-valence functions. These
studies are grouped into four separate articles, dedicated to each operator in full and are to be sent for
publication.

Section 5.1 identifies conditions for integral operators to belong to the class of p-valent convex
functions. For this purpose, the functions involved are included in the class of p-valent star functions.

The content of section 5.2 consists of conditions of belonging to class Np(β), while functions are
members of classes Np(β) andMp(β).

Follow the framing of the integral operators, through specific conditions to the class Kp(a, α) pre-
sented in paragraph 5.3. The role of the functions here is played in the class S∗p (a, α).

Paragraph 5.4 takes the p-valent analytic functions of integral operators into the class of p-valent
star functions by means of specific conditions.

Furthermore, section 5.5 transposes under certain conditions the p-valence analytic functions into
the class of p-valence quasi-convex functions.

The final results set the functions in the class of p-valence analytic functions and present conditions
for which integral operators belong to the class of uniformly p-valence functions almost convex.
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Chapter 1

Preliminary results

1.1 Definitions, notations and elementary results from the theory
of univalent functions

The notions and results described in this paragraph are part of the basic elements of the literature: the
notion of holomorphic function, univalent function, analytic function, Mocanu-Serb Theorem, Nehari’s
Theorem, and the General Schwarz Lemma often encountered in demonstrating main results.

Definition 1.1.1. A function f is called holomorph at the point z0, if there is a neighborhood V ∈ V(z0),
so that f is derivable in this neighborhood.

Definition 1.1.2. A holomorphic and injective function on a domain D, from C is called univalent on
D. Note withHU(D) the set of univalent functions on D.

Definition 1.1.3. Let f : D → C, z ∈ D. We say that the function f is analytic at point z0 or
expandable in Taylor series in z0, if there is a disk U (z0, r) = {z ∈ C :| z − z0 |< r} ⊂ D, so that f is
the sum a Taylor series, meaning:

f(z) =
∞∑
n=0

an (z − z0)n , z ∈ U (z0, r) .

We say that the function f is analytic in the field D, if it is analytic in every point of D.

We further consider the following notations: U = {z ∈ C :| z |< 1} - the unit disk in the complex
plane.

We will also consider for a ∈ C şi n ∈ N∗, the set

H[a, n] =
{
f ∈ H(U) : f(z) = a+ anz

n + an+1z
n+1...

}
,

An =
{
f ∈ H(U) : f(z) = a+ an+1z

n+1...
}

and
A = A1.
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We will note with
S = {f ∈ A : f ∈ H(U)} ,

class of univalent functions in the unit disk and normed with conditions

f(0) = f
′
(0)− 1 = 0,

hence the holomorphic and univalent functions in U, which have developed in series of form powers

f(z) = z + a2z
2 + ..., |z| < 1.

We note with
P = {p ∈ H(U) : p(0) = 1,Rep(z) > 0, z ∈ U} ,

class of Caratheodory functions.

The following theorem was proved by Mocanu and S, erb.

Theorem 1.1.1. (Mocanu - S, erb [76]) Let M0 = 1, 5936... the positive solution of the equation

(2−M) eM = 2. (1.1.1)

If f ∈ A and ∣∣∣∣f ′′(z))

f ′(z)

∣∣∣∣ ≤M0,

for all z ∈ U, then ∣∣∣∣zf ′(z))

f(z)
− 1

∣∣∣∣ ≤ 1, (z ∈ U) .

The edge M0 is sharp.

Theorem 1.1.2. (General Schwarz Lemma)[73] Let f be the function regular in the disk UR = {z ∈ C : |z| < R}
with |f(z)| < M , M fixed. If f(z) has in z = 0,one zero with multiply ≥ m, then

|f(z)| ≤ M

Rm
zm.

The equality for z 6= 0 can hold only if

f(z) = eiθ
M

Rm
zm,

where θ is constant.

On the other hand, Nehari proved other important results.

Lemma 1.1.3. [77] If the function g is regular in unit disk U and |g(z)| < 1 in U, then for all ξ ∈ U the
following inequalities hold ∣∣∣∣∣ g(ξ)− g(z)

1− g(z)g(ξ)

∣∣∣∣∣ ≤
∣∣∣∣ ξ − z1− z̄ξ

∣∣∣∣
and ∣∣∣g′

(z)
∣∣∣ ≤ 1− |g(z)|2

1− |z|2
,

the equalities hold in case g(z) = ε z+u
1+ūz

where |ε| = 1 and |u| < 1.

8



Remark 1.1.4. [77] For z = 0,from inequality (1) we obtain for every ξ ∈ U∣∣∣∣∣ g(ξ)− g(0)

1− g(0)g(ξ)

∣∣∣∣∣ ≤ |ξ|
and, hence

|g(ξ)| ≤ |ξ|+ |g(0)|
1 + |g(0)| |g(ξ)|

.

Considering g(0) = a and ξ = z, then

|g(z)| ≤ |z|+ |a|
1 + |a| |z|

,

for all z ∈ U.

In the next two sections we will mention important results regarding the following function classes:
star function class, order star function class α, class of starlike functions of complex order b and type
λ, class of convex functions, class of convex functions of order α, class of convex functions of complex
order b and type λ, alpha -convex function class, but also various special classes of analytic functions
such as: function class B(µ), class of functions B(µ, α), class of functions Sµ, class of functions SP ,
class of functions SP(α, β), class of functions SH(β), class of functions S(p), class of functions Gb,
class of functionsM(β) andN (β), classes S∗β and Sβ , class of functionsAp, classes of functions S∗p (β)
and S∗p (a, α), classes of functions Kp(β) and Kp(a, α), classes of functionsMp(β) and Np(β), class of
functions Up(β, k).

1.2 Class of starlike functions and class of convex functions

Also let S denote the subclass of A consisting of functions f ∈ A, which are univalent in U.

A function f ∈ A is a starlike function of order β, 0 ≤ β < 1 and we denote this class by S∗(β) if
it satisfies

Re
(
zf

′
(z)

f(z)

)
> β, z ∈ U.

We denote by K(β) the class of convex functions of order β, 0 ≤ β < 1 that satisfies the inequality

Re
(
zf

′′
(z)

f ′(z)
+ 1

)
> β, z ∈ U.

A function f ∈ A is a convex function of the complex order b, (b ∈ C − {0}) and type λ ,
(0 ≤ λ < 1), if and only if

Re
{

1 +
1

b

(
zf

′′
(z)

f ′(z)

)}
> λ, z ∈ U.

We denote by C∗λ(b) the class of these functions.
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A function f ∈ A is a starlike function of the complex order b, (b ∈ C − {0}) and type λ ,
(0 ≤ λ < 1), if and only if

Re
{

1 +
1

b

(
zf

′
(z)

f(z)
− 1

)}
> λ, z ∈ U.

We denote by S∗λ(b) the class of these functions.

A function f ∈ K(β) if and only if zf ′ ∈ S∗(β).

1.3 Special classes of analytic functions

Frasin and Jahangiri [70] studied the class B (µ, λ), µ ≥ 0, 0 ≤ λ < 1, which consists of functions f ∈ A
that satisfy the following conditions:∣∣∣∣f ′

(z)

(
z

f(z)

)µ
− 1

∣∣∣∣ < 1− λ, z ∈ U.

This class B (µ, λ) is a comprehensive class of normalized analytic functions in U. For instance, we
have B (1, λ) = S∗(λ), B (0, λ) = R(λ) and B (2, λ) = B(λ). In particular, the analytic and univalent
function class B(λ) was studied by Frasin and Darus [69].

A function f(z) ∈ A is said to be a member of the class B(µ) if it satisfies∣∣∣∣z2f ′(z)

f 2(z)
− 1

∣∣∣∣ < 1− µ

for some µ (0 ≤ µ < 1) and for all z ∈ U.

Lemma 1.3.1. [60] Let f(z) ∈ B(µ), then∣∣∣∣zf ′
(z)

f(z)
− 1

∣∣∣∣ < (1− µ)(1 + |z|)
1− |z|

, 0 ≤ µ < 1, z ∈ U.

Lemma 1.3.2. [64] Let f(z) ∈ B(µ), then∣∣∣∣zf ′′
(z)

f ′(z)

∣∣∣∣ < (1− µ)(2 + |z|)
1− |z|

, 0 ≤ µ < 1, z ∈ U.

The subclass Sµ of analytic functions was studied by Ponnusamy and Sing [105] is defined as follows

Sµ =

{
f ∈ A :

∣∣∣∣zf ′
(z)

f(z)
− 1

∣∣∣∣ < µ |z| , 0 ≤ µ < 1, z ∈ U
}

A function f ∈ A is said to belong to the classR(λ), 0 ≤ λ < 1, if

Re
[
f

′
(z)
]
> λ, z ∈ U.
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F. Ronning introduce in [108] the class of univalent functions SP(α, β), α > 0, β ∈ [0, 1).

The function f ∈ S is in the class SP(α, β), α > 0 if only if∣∣∣∣zf ′
(z)

f(z)
− (α + β)

∣∣∣∣ ≤ Re
zf

′
(z)

f(z)
+ α− β, z ∈ U.

In the paper [108], F. Ronning introduce the class of univalent functions SP(α, β), α > 0, β ∈ [0, 1).
The function f ∈ S is in the class SP(α, β), α > 0 if only if∣∣∣∣zf ′

(z)

f(z)
− (α + β)

∣∣∣∣ ≤ Re
zf

′
(z)

f(z)
+ α− β, z ∈ U.

J. Stankiewicz and A. Wisniowska in [114] introduce the class of univalent functions SH(β), for
some β > 0. If f ∈ SH(β), then f verifies the next inequality:

Re
(√

2
zf

′
(z)

f(z)

)
+ 2β

(√
2− 1

)
>

∣∣∣∣zf ′
(z)

f(z)
− 2β

(√
2− 1

)∣∣∣∣ , f ∈ S , z ∈ U.

In [120], it is defined the class S(p), which for 0 < p ≤ 2, includes the functions f ∈ A which
satisfy the conditions:

f(z) 6= 0 for 0 < |z| < 1

and ∣∣∣∣∣
(

z

f(z)

)′′∣∣∣∣∣ ≤ p

for all z ∈ U.

Lemma 1.3.3. [110] If f ∈ S(p), then the following inequality is true∣∣∣∣z2f
′′
(z)

[f(z)]2
− 1

∣∣∣∣ ≤ p |z|2 , z ∈ U

This inequality was demonstrated by Sigh in the paper [110].

In [109] Silverman define the class Gb. Precisely, for 0 < b ≤ 1 he considered the class∣∣∣∣1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

∣∣∣∣ < b

∣∣∣∣zf ′(z)

f(z)

∣∣∣∣ , z ∈ U.

Uralegaddi in [119], Owa and Srivastava in [87] define the class N (β).

A function f ∈ A is in the class N (β) if it verifies the inequality

Re
(
zf

′′
(z)

f ′(z)
+ 1

)
< β, z ∈ U, β > 1.
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Let Ap the class of all p-valent analytic functions

f(z) = zp + ap+1z
p+1 + ..., p ∈ N

If we consider p = 1 we obtain that A1 = A.

We consider the classes introduced and studied by R. Ali and V.Ravichandranin [2]. A function
f ∈ Ap is said to be p-valenlty starlike of order β (0 ≤ β < p) if and only if

1

p
Re
(
zf

′
(z)

f(z)

)
> β, z ∈ U.

We denote by S∗p (β) the class of all such functions.

A function f ∈ Ap is said to be p-valently convex of order β (0 ≤ β < p) if and only if

1

p
Re
(
zf

′′
(z)

f ′(z)

)
> β, z ∈ U.

Let Kp(β) denote the class of all those functions which are p-valently convex of order β in U. We
note that S∗p (0) = S∗p and Kp(0) = Kp are respectively, the classes of p-valently starlike and p-valently
convex functions in U. Also, we note that S∗1 = S∗ and K1 = K are, respectively the usual classes of
starlike and convex functions in U.

Starting from the classes of starlike and convex functions of complex order a and type α, R. Ali and
V.Ravichandranin [2] defined the classes S∗p (a, α) and Kp(a, α) as follows:

S∗p (a, α) =

{
f ∈ Ap, α < 1 : Re

(
1 +

1

b

(
1

p

zf
′
(z)

f(z)
− 1

))
> α

}
.

and

Kp(a, α) =

{
f ∈ Ap, α < 1 : Re

(
1 +

1

b

(
1

p

(
1 +

zf
′′
(z)

f ′(z)

)
+ 1

))
> α

}
.

In the case of p = 1 the classes were studied by Breaz [50], Frasin [64], etc.

Next we will consider the classesMp(β) and Np(β).

A function f ∈ Ap is in the classesMp(β) if

1

p
Re
(
zf

′
(z)

f(z)

)
< β, z ∈ U

for β > 1.

The class Np(β) contains all the functions that satisfy the condition

1

p
Re
(
zf

′′
(z)

f ′(z)
+ 1

)
< β, z ∈ U

for f ∈ Ap and β > 1.
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If we consider p = 1, we obtain the classesM(β) and N (β) that were studied by many others, for
example Breaz [46], Ularu, Breaz and Frasin in [116] and Uralegaddi, Ganigi and Sarangi in [119].

Also they have defined in a analogue mode the classesMp(a, α) and Np(a, α).

A function f ∈ Ap is in the classMp(a, α) if

Re
(

1 +
1

b

(
1

p

zf
′
(z)

f(z)
− 1

))
< α

for α > 1.

The class Np(a, α) contains all the functions f ∈ Ap that satisfy

Re
(

1 +
1

b

(
1

p

(
1 +

zf
′′
(z)

f ′(z)

)
− 1

))
< α

for α > 1.

A function f ∈ Ap is in the class Up(β, k) of k-uniformly p-valent starlike of order β, with −1 ≤
β < p in the open disk U , if the condition

Re
(
zf

′
(z)

f(z)
− β

)
≥ k

∣∣∣∣zf ′
(z)

f(z)
− p
∣∣∣∣ , k ≥ 0, z ∈ U,

is satisfied. This class was introduced by Goodman in [71].

The class of uniformly p-valent close-to convex functions of order β with −1 ≤ β < p in the open
disk U contains all the functions that satisfy

Re
(
zf

′
(z)

g(z)
− β

)
≥
∣∣∣∣zf ′

(z)

g(z)
− p
∣∣∣∣ , k ≥ 0, z ∈ U ,

for z ∈ U and the function g from the class of p-valent starlike functions of order β.

To prove that our functions are p-valently starlike and p-valently close-to-convex in the open unit
disk we will use the following lemmas:

Lemma 1.3.4. [80] If f ∈ Ap satisfies

Re
(

1 +
zf

′′
(z)

f ′(z)

)
< p+

1

4
for z ∈ U,

then f is p-valently starlike in U.

Lemma 1.3.5. [62] If f ∈ Ap satisfies∣∣∣∣zf ′′
(z)

f ′(z)
+ 1− p

∣∣∣∣ < p+ 1 for z ∈ U,

then f is p-valently starlike in U.
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Lemma 1.3.6. [106] If f ∈ Ap satisfies

Re
(

1 +
zf

′′
(z)

f ′(z)

)
< p+

a+ b

(1 + a) (1− b)
,

for z ∈ U, where a > 0, b ≥ 0 and a+ 2b ≤ 1, then f is p-valently close-to-convex in U.

Lemma 1.3.7. [3] If f ∈ Ap satisfies

Re
(

1 +
zf

′′
(z)

f ′(z)

)
< p+

1

3
for z ∈ U,

then f is uniformly p-valent close-to-convex in U.

1.4 Univalence criteria

An essential role in the study of integral operators is played by the univalence criteria, obtaining
with their help remarkable results in the geometric theory of univalent functions.

In the following we will present some univalence criteria necessary for the demonstrations in the
following chapters.

Lemma 1.4.1. [90] Let f ∈ A and γ ∈ C. If Reγ > 0 and

1− |z|2Reγ

Reγ

∣∣∣∣zf ′′(z))

f ′(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, then the integral operator

Fγ(z) =

(
γ

∫ z

0

tγ−1f ′(t)dt
) 1

γ

,

is in the class S.

Lemma 1.4.2. [90] Let δ ∈ C with Reδ > 0. If f ∈ A satisfies

1− |z|2Reδ

Reδ

∣∣∣∣zf ′′(z))

f ′(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, then, for any complex γ with Reγ ≥ Reδ, the integral operator

Fγ(z) =

(
γ

∫ z

0

tγ−1f ′(t)dt
) 1

γ

,

is in the class S.

Pescar gave the following univalence criteria for an integral operator:
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Lemma 1.4.3. [93] Let γ be complex number, Reγ > 0 and c a complex number, |c| ≤ 1, c 6= −1, and
f ∈ A, f(z) = z + a2z

2 + .... If ∣∣∣∣c |z|2γ +
(
1− |z|2γ

) zf ′′(z))

γf ′(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, then the integral operator

Fγ(z) =

(
γ

∫ z

0

tγ−1f ′(t)dt
) 1

γ

,

is in the class S.

Becker’s gave the following univalence criterion:

Lemma 1.4.4. [42] If the function f is regular in unit disk U and f(z) = z + a2z
2 + ... and(

1− |z|2
) ∣∣∣∣zf ′′

(z)

f ′(z)

∣∣∣∣ ≤ 1, for all z ∈ U,

then the function f is univalent in U.

Ozaki and Nunokawa demonstrated the following condition of univalence:

Lemma 1.4.5. [88] Let f ∈ A, satisfy the condition∣∣∣∣z2f ′(z))

[f(z)]2
− 1

∣∣∣∣ < 1,

for all z ∈ U, then f is regular and univalent in U.

Pescar demonstrated the following two conditions of univalence in [95]:

Lemma 1.4.6. [95] Let g ∈ A, α a real number, and c a complex number, |c| ≤ 1
α

, c 6= −1. If∣∣∣∣g′′(z))

g′(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, then the function

Gα(z) =

(
α

∫ z

0

[
tα−1g′(t)

]α−1 dt
) 1

α

,

is in the class in S.

Lemma 1.4.7. [95] Let the function g, satisfy (2), M a positive real number fixed, and c a complex
number. If α ∈

[
2M+1
2M+2

, 2M+1
2M

]
|c| ≤ 1−

∣∣∣∣α− 1

α

∣∣∣∣ (2M + 1) , c 6= −1,

|g(z)| ≤M,

for all z ∈ U, then the function

Gα(z) =

(
α

∫ z

0

[g(t)]α−1 dt
) 1

α

,

is in the class in S.
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Chapter 2

Sufficient conditions of univalence for new
integral operators

2.1 New integral operators

We will briefly present below four integral general operators introduced by Bărbatu and Breaz in the
works [5] - [8], which are integral operators such as those defined by Pfaltzgraff, Kim-Merkes and Over-
sea, as well as the links between them and other integral operators known in the literature.

We consider the first integral general operatorMδ,n, defined by [5]:

Mδ,n(z) =

{
δ

∫ z

0

tδ−1

n∏
i=1

[(
fi(t)

t

)αi−1

(gi
′(t))

βi

(
gi(t))

t

)γi]
dt

} 1
δ

, (2.1.1)

where fi, gi are analytic in U and αi, βi, γi ∈ C for all i = 1, n, n ∈ N \ {0}, δ ∈ C, with Reδ > 0.

Remark 2.1.1. The integral operatorMδ,n defined by (2.1.1) represents an extension of other operators
as follows:

i) For n = 1, δ = 1, α1 − 1 = α1 and β1 = γ1 = 0 we obtain the integral operator which was
studied by Kim-Merkes [72]

Fα(z) =

∫ z

0

(
f(t)

t

)α
dt.

ii) For n = 1, δ = 1 and α1 − 1 = γ1 = 0 we obtain the integral operator which was studied by
Pfaltzgraff [104]

Gα(z) =

∫ z

0

(f ′(t))
α dt.

iii) For αi− 1 = αi and βi = γi = 0, we obtain the integral operator which was defined and studied
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by D. Breaz and N. Breaz [47]

Dn(z) =

[
δ

∫ z

0

tδ−1

n∏
i=1

(
fi(t)

t

)αi
dt

] 1
δ

.

This integral operator is a generalization of the integral operator introduced by Pascu and Pescar [91].

iv) For αi− 1 = γi = 0 we obtain the integral operator which was defined and studied by D. Breaz,
Owa and N. Breaz [51]

In(z) =

[
δ

∫ z

0

tδ−1

n∏
i=1

[f ′i(t)]
αi dt

] 1
δ

.

This integral operator is a generalization of the integral operator introduced by Pescar and Owa in [102].

v) For αi − 1 = 0 we obtain the integral operator which was defined and studied by Pescar in [97]

Fn(z) =

[
δ

∫ z

0

tδ−1

n∏
i=1

(
fi(t)

t

)αi
(fi
′(t))

βi dt

] 1
δ

.

this integral operator is a generalization of the integral operator introduced by Frasin in [66] and by
Oversea in [86].

vi) For αi − 1 = αi and γi = 0 we obtain the integral operator which was studied by Ularu in [115]

In(z) =

[
δ

∫ z

0

tδ−1

n∏
i=1

(
fi(t)

t

)αi
(gi
′(t))

βi dt

] 1
δ

.

Let it now be the second integral general operator Cδ,n, defined by [6]:

Cδ,n =

{
δ

∫ z

0

tδ−1

n∏
i=1

[(
fi(t)

t
egi(t)

)αi−1

(hi
′(t))

βi

(
hi(t))

t

)γi]
dt

} 1
δ

, (2.1.2)

where fi, gi, hi are analytic in U and δ, αi, βi, γi are complex numbers, for all i = 1, n, n ∈ N \ {0},
δ ∈ C, with Reδ > 0.

And this integral operator given by the relation (2.1.2) constitutes the extension of integral operators,
thus:

Remark 2.1.2. i) For n = 1, δ = 1 and α1 − 1 = β1 = 0 we obtain the integral operator which was
studied by Kim-Merkes [72]

Fα(z) =

∫ z

0

(
f(t)

t

)α
dt.

ii) For n = 1, δ = 1 and α1 − 1 = γ1 = 0 we obtain the integral operator which was studied by
Pfaltzgraff [104]

Gα(z) =

∫ z

0

(f ′(t))
α dt.
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iii) For αi − 1 = βi = 0 we obtain the integral operator which was defined and studied by D. Breaz
and N. Breaz [47]

Dn(z) =

[
δ

∫ z

0

tδ−1

n∏
i=1

(
fi(t)

t

)αi
dt

] 1
δ

.

This integral operator is a generalization of the integral operator introduced by Pascu and Pescar [91].

iv) For αi− 1 = γi = 0 we obtain the integral operator which was defined and studied by D. Breaz,
Owa and N. Breaz [51]

In(z) =

[
δ

∫ z

0

tδ−1

n∏
i=1

[f ′i(t)]
αi dt

] 1
δ

.

This integral operator is a generalization of the integral operator introduced by Pescar and Owa in [102].

v) For αi − 1 = 0 we obtain the integral operator which was defined and studied by Pescar [97]

Fn(z) =

[
δ

∫ z

0

tδ−1

n∏
i=1

(
fi(t)

t

)αi
(fi
′(t))

βi dt

] 1
δ

.

this integral operator is a generalization of the integral operator introduced by Frasin in [66] and by
Oversea in [86].

vi) For n = 1, δ = β, αi − 1 = αi and βi = γi = 0 we obtain the integral operator which was
defined and studied by Stanciu in [111]

H1(z) =

[
β

∫ z

0

tβ−1

(
f(t)

t
eg(t)

)α
dt
] 1
β

.

We still take the third integral general operator Gδ,n, defined by [7]:

Gδ,n =

{
δ

∫ z

0

tδ−1

n∏
i=1

[(
fi
′(t)egi(t)

)αi−1
(
hi(t)

ki(t)

)βi (hi′(t))
ki
′(t)

)γi]
dt

} 1
δ

, (2.1.3)

where fi, gi, hi, ki are analytic in U and δ, αi, βi, γi are complex numbers, for all i = 1, n, n ∈ N \ {0},
δ ∈ C, with Reδ > 0.

The connection between the integral operator in the relation (2.1.3) and otherintegral operators look
as follows:

Remark 2.1.3. i) For n = 1, δ = 1, α1 − 1 = γ1 = 0 and k1(z) = z we obtain the integral operator
which was studied by Kim-Merkes [72]

Fα(z) =

∫ z

0

(
f(t)

t

)α
dt.

ii) For n = 1, δ = 1, α1 − 1 = α1, β1 = γ1 = 0 and g1(z) = 0, we obtain the integral operator
which was studied by Pfaltzgraff [104]

Gα(z) =

∫ z

0

(f ′(t))
α dt.
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iii) For αi − 1 = γi = 0 and ki(z) = z we obtain the integral operator which was defined and
studied by D. Breaz and N. Breaz [47]

Dn(z) =

[
δ

∫ z

0

tδ−1

n∏
i=1

(
fi(t)

t

)αi
dt

] 1
δ

.

This integral operator is a generalization of the integral operator introduced by Pascu and Pescar [91].

iv) For αi − 1 = αi, βi = γi = 0 and gi(z) = 0 we obtain the integral operator which was defined
and studied by D. Breaz, Owa and N. Breaz [51]

In(z) =

[
δ

∫ z

0

tδ−1

n∏
i=1

[f ′i(t)]
αi dt

] 1
δ

.

This integral operator is a generalization of the integral operator introduced by Pescar and Owa in [102].

v) For αi − 1 = 0, ki(z) = z and k′i(z) = 1 we obtain the integral operator which was defined and
studied by Pescar [97]

Fn(z) =

[
δ

∫ z

0

tδ−1

n∏
i=1

(
fi(t)

t

)αi
(fi
′(t))

βi dt

] 1
δ

.

this integral operator is a generalization of the integral operator introduced by Frasin in [66] and by
Oversea in [86].

vi) For αi − 1 = αi and βi = γi = 0, operatorul Gδ,n definit prin (2.1.3), se reduce la operatorul
integral care a fost definit and studiat de A. Oprea and D. Breaz ı̂n [83]

Gn(z) =

∫ z

0

n∏
i=1

[(
fi
′(t)egi(t)

)αi] dt.

This integral operator is a generalization of the integral operator introduced by Ularu and Breaz in [117].

vii) For αi − 1 = 0 we obtain the integral operator which was defined and studied by Pescar in [97]

In(z) =

[
δ

∫ z

0

tδ−1

n∏
i=1

(
fi(t)

gi(t)

)γi (f ′
i (t)

g
′
i(t)

)δi
dt

] 1
δ

.

The last integral general operator was defined in the paper [8]:

Tδ,n =

{
δ

∫ z

0

tδ−1

n∏
i=1

[(
fi(t)

t

)αi−1

(g′i(t))
βi

(
hi(t)

ki(t)

)γi (hi′(t))
ki
′(t)

)δi]
dt

} 1
δ

, (2.1.4)

where fi, gi, hi, ki are analytic in U and αi, βi, γi, δi ∈ C for all i = 1, n, n ∈ N \ {0}, δ ∈ C, with
Reδ > 0.

The way in which this operator operates from (2.1.4) can be reduced to another known integral
operator is shown below:
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Remark 2.1.4. i) For n = 1, δ = 1, α1 − 1 = α1 and β1 = γ1 = δ1 = 0 we obtain the integral operator
which was studied by Kim-Merkes [72]

Fα(z) =

∫ z

0

(
f(t)

t

)α
dt.

ii) For n = 1, δ = 1 and α1 − 1 = γ1 = δ1 = 0 we obtain the integral operator which was studied
by Pfaltzgraff [104]

Gα(z) =

∫ z

0

(f ′(t))
α dt.

iii) For αi − 1 = αi and βi = γi = δi = 0 we obtain the integral operator which was defined and
studied by D. Breaz and N. Breaz [47]

Dn(z) =

[
δ

∫ z

0

tδ−1

n∏
i=1

(
fi(t)

t

)αi
dt

] 1
δ

.

This integral operator is a generalization of the integral operator introduced by Pascu and Pescar [91].

iv) For αi − 1 = γi = δi = 0 we obtain the integral operator which was defined and studied by D.
Breaz, Owa and N. Breaz [51]

In(z) =

[
δ

∫ z

0

tδ−1

n∏
i=1

[f ′i(t)]
αi dt

] 1
δ

.

This integral operator is a generalization of the integral operator introduced by Pescar and Owa in [102].

v) For αi − 1 = αi and γi = δi = 0 we obtain the integral operator which was studied by Ularu in
[115]

Fn(z) =

[
δ

∫ z

0

tδ−1

n∏
i=1

(
fi(t)

t

)αi
(gi
′(t))

βi dt

] 1
δ

.

vi) For αi− 1 = βi = 0, ki(z) = z and k′i(z) = 1 we obtain the integral operator which was defined
and studied by Pescar [97]

Fn(z) =

[
δ

∫ z

0

tδ−1

n∏
i=1

(
fi(t)

t

)αi
(fi
′(t))

βi dt

] 1
δ

.

this integral operator is a generalization of the integral operator introduced by Frasin in [66] and by
Oversea in [86].

vii) For αi − 1 = βi = 0 we obtain the integral operator which was defined and studied by Pescar
ı̂n [97]

In(z) =

[
δ

∫ z

0

tδ−1

n∏
i=1

(
fi(t)

gi(t)

)γi (f ′
i (t)

g
′
i(t)

)δi
dt

] 1
δ

.
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viii) For δ = 1, αi − 1 = γi = 0, βi = δi and hi(z) = z2

2
we obtain the integral operator which was

defined and studied by Bucur and Breaz in [53]

In(z) =

∫ z

0

n∏
i=1

[
tg

′
i(t)

k
′
i(t)

]βi
dt.

this integral operator is a generalization of the integral operator introduced by Bucur, Andrei and Breaz
in [57] and [58].

xi) For δ = 1, αi − 1 = δi = 0, βi = γi and hi(z) = fi(z) and hi(z) = fi(z) we obtain the integral
operator which was defined and studied by Nguyen, Oprea and Breaz in [78]

Hn,α(z) =

∫ z

0

n∏
i=1

(
fi(t)

hi(t)
g

′

i(t)

)αi
dt.

2.2 Sufficient conditions of univalence for analytic functions

In this paragraph we will present sufficient conditions to ensure the univalence of the integral oper-
ators described in the previous section when the functions involved are analytic.

Theorem 2.2.1. Let γ, δ, αi, βi, γi be complex numbers, c = Reγ > 0 and Mi, Ni, Pi real positive
numbers, fi, gi ∈ A. If∣∣∣∣zf ′i(z)

fi(z)
− 1

∣∣∣∣ ≤Mi,

∣∣∣∣zg′i(z)

gi(z)
− 1

∣∣∣∣ ≤ Ni,

∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣ ≤ Pi,

for all z ∈ U, i = 1, n and

n∑
i=1

[|αi − 1|Mi + |βi|Pi + |γi|Ni] ≤
(2c+ 1)

2c+1
2c

2
,

then for all δ complex numbers Reδ ≥ Reγ, the integral operatorMδ,n given by (2.1.1) is in the class S.

If we consider δ = 1 in Theorem 2.2.1, obtain the next corollary:

Corollary 2.2.1.1. Let γ, αi, βi, γi be complex numbers, 0 < Reγ ≤ 1, c = Reγ and Mi, Ni, Pi real
positive numbers, fi, gi ∈ A. If∣∣∣∣zf ′i(z)

fi(z)
− 1

∣∣∣∣ ≤Mi,

∣∣∣∣zg′i(z)

gi(z)
− 1

∣∣∣∣ ≤ Ni,

∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣ ≤ Pi,

for all z ∈ U, i = 1, n and

n∑
i=1

[|αi − 1|Mi + |βi|Pi + |γi|Ni] ≤
(2c+ 1)

2c+1
2c

2
,
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then the integral operatorMn, defined in

Mn(z) =

∫ z

0

n∏
i=1

[(
fi(t)

t

)αi−1

(gi
′(t))

βi

(
gi(t))

t

)γi]
dt (2.2.1)

is in the class S.

If we consider δ = 1 and γi = 0 in Theorem 2.2.1, obtain the next corollary:

Corollary 2.2.1.2. Let γ, αi, βi be complex numbers, 0 < Reγ ≤ 1, c = Reγ and Mi, Pi real positive
numbers, fi, gi ∈ A. If ∣∣∣∣zf ′i(z)

fi(z)
− 1

∣∣∣∣ ≤Mi,

∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣ ≤ Pi,

for all z ∈ U, i = 1, n and

n∑
i=1

[|αi − 1|Mi + |βi|Pi] ≤
(2c+ 1)

2c+1
2c

2
,

then the integral operator Fn, defined in

Fn(z) =

∫ z

0

n∏
i=1

[(
fi(t)

t

)αi−1

(gi
′(t))

βi

]
dt (2.2.2)

is in the class S.

Remark 2.2.2. The integral operator in the relation (2.2.2) is a known result, proven in [115].

If we consider δ = 1 and βi = 0 in Theorem 2.2.1, obtain the next corollary:

Corollary 2.2.2.1. Let γ, αi, γi be complex numbers, 0 < Reγ ≤ 1, c = Reγ and Mi, Ni real positive
numbers, fi, gi ∈ A. If ∣∣∣∣zf ′i(z)

fi(z)
− 1

∣∣∣∣ ≤Mi,

∣∣∣∣zg′i(z)

gi(z)
− 1

∣∣∣∣ ≤ Ni,

for all z ∈ U, i = 1, n and

n∑
i=1

[|αi − 1|Mi + |γi|Ni] ≤
(2c+ 1)

2c+1
2c

2
,

then the integral operator Gn, defined in

Gn(z) =

∫ z

0

n∏
i=1

[(
fi(t)

t

)αi−1(
gi(t))

t

)γi]
dt (2.2.3)

is in the class S.

Remark 2.2.3. The integral operator in the relation (2.2.3) is another known result, introduced in [83].
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If we consider δ = 1 and αi − 1 = 0 in Theorem 2.2.1, obtain the next corollary:

Corollary 2.2.3.1. Let γ, βi, γi be complex numbers, 0 < Reγ ≤ 1, c = Reγ, Ni, Pi real positive
numbers, gi ∈ A. If ∣∣∣∣zg′i(z)

gi(z)
− 1

∣∣∣∣ ≤ Ni,

∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣ ≤ Pi,

for all z ∈ U, i = 1, n and
n∑
i=1

[|βi|Pi + |γi|Ni] ≤
(2c+ 1)

2c+1
2c

2
,

then the integral operator In, defined in

In(z) =

∫ z

0

n∏
i=1

[
(gi
′(t))

βi ·
(
gi(t))

t

)γi]
dt (2.2.4)

is in the class S.

Remark 2.2.4. The integral operator in the relation (2.2.4) was studied in [97].

If we consider n = 1, δ = γ = α and αi − 1 = βi = γi in Theorem 2.2.1, obtain the next corollary:

Corollary 2.2.4.1. Let α be complex number, Reα > 0 and M,N,P real positive numbers, f, g ∈ A. If∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤M,

∣∣∣∣zg′(z)

g(z)
− 1

∣∣∣∣ ≤ N,

∣∣∣∣zg′′(z)

g′(z)

∣∣∣∣ ≤ P,

for all z ∈ U, and

|α− 1| (M +N + P ) ≤ (2Reα + 1)
2Reα+1
2Reα

2
,

then the integral operatorM, defined in

M(z) =

{
α

∫ z

0

[
f(t)g′(t)

g(t))

t

]α−1

dt

} 1
α

, (2.2.5)

is in the class S.

Theorem 2.2.5. Let γ, αi, βi, γi be complex numbers, c = Reγ > 0 and fi, gi ∈ S, g′i ∈ P . If

2
n∑
i=1

|αi − 1|+
n∑
i=1

|βi|+ 2
n∑
i=1

|γi| ≤
c

2
, for 0 < c < 1

or

2
n∑
i=1

|αi − 1|+
n∑
i=1

|βi|+ 2
n∑
i=1

|γi| ≤
1

2
, for c ≥ 1

then for any complex numbers δ, Reδ ≥ c, the integral operatorMδ,n defined by (2.1.1) is in the class
S.

If we consider δ = 1 in Theorem 2.2.5, we obtain the next corollary:
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Corollary 2.2.5.1. Let γ, αi, βi, γi be complex numbers, 0 < Reγ ≤ 1 and fi, gi ∈ S, g′i ∈ P . If

2
n∑
i=1

|αi − 1|+
n∑
i=1

|βi|+ 2
n∑
i=1

|γi| ≤
Reγ

2
,

then the integral operatorMn given by (2.2.1) is in the class S.

Theorem 2.2.6. Let γ, δ, αi, βi, γi be complex numbers, c = Reγ > 0 and Mi, Ni, Pi, Qi real positive
numbers, fi, gi, hi ∈ A. If∣∣∣∣zf ′i(z)

fi(z)
− 1

∣∣∣∣ ≤Mi, |gi(z)| ≤ Ni,

∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣ ≤ Pi,

∣∣∣∣zh′i(z)

hi(z)
− 1

∣∣∣∣ ≤ Qi,

∣∣∣∣zg′i(z)

gi(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, i = 1, n and

n∑
i=1

[|αi − 1| (Mi +Ni) + |βi|Pi + |γi|Qi] ≤
(2c+ 1)

2c+1
2c

2
,

then for any complex numbers δ with Reδ ≥ Reγ, the integral operator Cδ,n, defined by (2.1.2) is in the
class S.

If we consider δ = 1 in Theorem 2.2.6, we obtain the next corollary:

Corollary 2.2.6.1. Let γ, αi, βi, γi be complex numbers, 0 < Reγ ≤ 1, c = Reγ and Mi, Ni, Pi, Qi real
positive numbers, fi, gi, hi ∈ A. If∣∣∣∣zf ′i(z)

fi(z)
− 1

∣∣∣∣ ≤Mi, |gi(z)| ≤ Ni,

∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣ ≤ Pi,

∣∣∣∣zh′i(z)

hi(z)
− 1

∣∣∣∣ ≤ Qi,

∣∣∣∣zg′i(z)

gi(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, i = 1, n and

n∑
i=1

[|αi − 1| (Mi +Ni) + |βi|Pi + |γi|Qi] ≤
(2c+ 1)

2c+1
2c

2
,

then the integral operator Cn, defined in

Cn(z) =

∫ z

0

n∏
i=1

[(
fi(t)

t
egi(t)

)αi−1

(hi
′(t))

βi

(
hi(t))

t

)γi]
dt, (2.2.6)

is in the class S.

If we consider δ = 1 and γi = 0 in Theorem 2.2.6, we obtain the next corollary:

Corollary 2.2.6.2. Let γ, αi, βi be complex numbers, 0 < Reγ ≤ 1, c = Reγ and Mi, Ni, Pi real positive
numbers, fi, gi, hi ∈ A. If∣∣∣∣zf ′i(z)

fi(z)
− 1

∣∣∣∣ ≤Mi, |gi(z)| ≤ Ni,

∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣ ≤ Pi,

∣∣∣∣zg′i(z)

gi(z)

∣∣∣∣ ≤ 1,
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for all z ∈ U, i = 1, n and
n∑
i=1

[|αi − 1| (Mi +Ni) + |βi|Pi] ≤
(2c+ 1)

2c+1
2c

2
,

then the integral operator Tn, defined in

Tn(z) =

∫ z

0

n∏
i=1

[(
fi(t)

t
egi(t)

)αi−1

(hi
′(t))

βi

]
dt, (2.2.7)

is in the class S.

Remark 2.2.7. The integral operator defined in (2.2.7) if we put them βi = 0, we get a known proven
result in [111].

If we consider δ = 1 and βi = 0 in Theorem 2.2.6, we obtain the next corollary:

Corollary 2.2.7.1. Let γ, αi, γi be complex numbers, 0 < Reγ ≤ 1, c = Reγ andMi, Ni, Qi real positive
numbers, fi, gi, hi ∈ A. If∣∣∣∣zf ′i(z)

fi(z)
− 1

∣∣∣∣ ≤Mi, |gi(z)| ≤ Ni,

∣∣∣∣zh′i(z)

hi(z)
− 1

∣∣∣∣ ≤ Qi,

∣∣∣∣zg′i(z)

gi(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, i = 1, n and
n∑
i=1

[|αi − 1| (Mi +Ni) + |γi|Qi] ≤
(2c+ 1)

2c+1
2c

2
,

then the integral operatorRn, defined in

Rn(z) =

∫ z

0

n∏
i=1

[(
fi(t)

t
egi(t)

)αi−1(
hi(t))

t

)γi]
dt, (2.2.8)

is in the class S.

Remark 2.2.8. If we consider γi = 0 in (2.2.8) we get the same integral operator introduced in [111].

If we consider δ = 1 and αi − 1 = 0 in Theorem 2.2.6, we obtain the next corollary:

Corollary 2.2.8.1. Let γ, βi, γi be complex numbers, 0 < Reγ ≤ 1, c = Reγ and Pi, Qi real positive
numbers, hi ∈ A. If ∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣ ≤ Pi,

∣∣∣∣zh′i(z)

hi(z)
− 1

∣∣∣∣ ≤ Qi,

for all z ∈ U, i = 1, n and
n∑
i=1

[|βi|Pi + |γi|Qi] ≤
(2c+ 1)

2c+1
2c

2
,

then the integral operator In, defined in

In(z) =

∫ z

0

n∏
i=1

[
(hi
′(t))

βi ·
(
hi(t))

t

)γi]
dt, (2.2.9)

is in the class S.
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Remark 2.2.9. The integral operator given by the relation (2.2.9) is a known result demonstrated in [97].

If we consider n = 1, δ = γ = α and αi − 1 = βi = γi in Theorem 2.2.6, we obtain the next
corollary:

Corollary 2.2.9.1. Let α be complex number, Reα > 0, M,N,P,Q real positive numbers, f, g, h ∈ A.

If ∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤M, |g(z)| ≤ N,

∣∣∣∣zh′′(z)

h′(z)

∣∣∣∣ ≤ P,

∣∣∣∣zh′(z)

h(z)
− 1

∣∣∣∣ ≤ Q,

∣∣∣∣zg′(z)

g(z)

∣∣∣∣ ≤ 1,

for z ∈ U, and

|α− 1| (M +N + P +Q) ≤ (2Reα + 1)
2Reα+1
2Reα

2
,

then the integral operator C defined in

C(z) =

{
α

∫ z

0

[
f(t)eg(t)h′(t)

h(t)

t

]α−1

dt

} 1
α

, (2.2.10)

is in the class S.

Theorem 2.2.10. Let γ, αi, βi, γi be complex numbers, c = Reγ > 0 and fi, hi ∈ S, hi′ ∈ P , gi ∈ R. If

4
n∑
i=1

|αi − 1|+
n∑
i=1

|βi|+ 2
n∑
i=1

|γi| ≤
c

2
, for 0 < c < 1

or

4
n∑
i=1

|αi − 1|+
n∑
i=1

|βi|+ 2
n∑
i=1

|γi| ≤
1

2
, for c ≥ 1

then for any complex numbers δ, Reδ ≥ c, the integral operator Cδ,n, defined by (2.1.2) is in the class S.

If we consider δ = 1 in Theorem 2.2.10, we obtain the next corollary:

Corollary 2.2.10.1. Let γ, αi, βi, γi be complex numbers, 0 < Reγ ≤ 1 and fi, hi ∈ S , gi, hi′ ∈ P ,
gi ∈ R. If

4
n∑
i=1

|αi − 1|+
n∑
i=1

|βi|+ 2
n∑
i=1

|γi| ≤
Reγ

2
,

then the integral operator Cn defined by (2.2.6) is in the class S.

Theorem 2.2.11. Let α be complex number, Reα > 0 and Mi, Ni, Pi real positive numbers, fi, gi, hi ∈
A. If ∣∣∣∣zf ′i(z)

fi(z)

∣∣∣∣ ≤Mi, |gi(z)| ≤ Ni,

∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣ ≤ 1

∣∣∣∣zh′i(z)

hi(z)
− 1

∣∣∣∣ ≤ Pi,

∣∣∣∣z2g′i(z)

[gi(z)]2
− 1

∣∣∣∣ < 1, ,
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for all z ∈ U, i = 1, n and

|c| ≤ 1−
∣∣∣∣α− 1

α

∣∣∣∣ (Mi + 2N2
i + Pi + 3

)
, c ∈ C, c 6= −1,

then the integral operator Cα,n, defined in

Cα,n(z) =

[
α

∫ z

0

tα−1

n∏
i=1

(
fi(t)

t
egi(t)hi

′(t)
hi(t))

t

)α−1

dt

] 1
α

(2.2.11)

is in the class S.

Theorem 2.2.12. Let γ, δ, αi, βi, γi be complex numbers, c = Reγ > 0 and Mi, Ni, Pi, Qi, Ri, Si real
positive numbers, fi, gi, hi, ki ∈ A. If∣∣∣∣zf ′′i (z)

f ′i(z)

∣∣∣∣ ≤Mi, |gi(z)| ≤ Ni,

∣∣∣∣zh′i(z)

hi(z)
− 1

∣∣∣∣ ≤ Pi,

∣∣∣∣zk′i(z)

ki(z)
− 1

∣∣∣∣ ≤ Qi,∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣ ≤ Ri,

∣∣∣∣zk′′i (z)

k′i(z)

∣∣∣∣ ≤ Si,

for all z ∈ U, i = 1, n and

n∑
i=1

[|αi − 1| (Mi +Ni) + |βi| (Pi +Qi) + |γi| (Ri + Si)] ≤
(2c+ 1)

2c+1
2c

2
,

then for any complex numbers δ, Reδ ≥ Reγ, the integral operator Gδ,n, given by (2.1.3) is in the class
S.

If we consider δ = 1 in Theorem 2.2.12, we obtain the next corollary:

Corollary 2.2.12.1. Let γ, αi, βi, γi be complex numbers, 0 < Reγ ≤ 1, c = Reγ andMi, Ni, Pi, Qi, Ri, Si
real positive numbers, fi, gi, hi, ki ∈ A. If∣∣∣∣zf ′′i (z)

f ′i(z)

∣∣∣∣ ≤Mi, |gi(z)| ≤ Ni,

∣∣∣∣zh′i(z)

hi(z)
− 1

∣∣∣∣ ≤ Pi,

∣∣∣∣zk′i(z)

ki(z)
− 1

∣∣∣∣ ≤ Qi,∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣ ≤ Ri,

∣∣∣∣zk′′i (z)

k′i(z)

∣∣∣∣ ≤ Si,

∣∣∣∣zg′i(z)

gi(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, i = 1, n and

n∑
i=1

[|αi − 1| (Mi +Ni) + |βi| (Pi +Qi) + |γi| (Ri + Si)] ≤
(2c+ 1)

2c+1
2c

2
,

then the integral operator Gn, defined in

Gn(z) =

∫ z

0

n∏
i=1

[(
fi
′(t)egi(t)

)αi−1
(
hi(t)

ki(t)

)βi (hi′(t))
ki
′(t)

)γi]
dt, (2.2.12)

is in the class S.

27



If we consider δ = 1 and γi = 0 in Theorem 2.2.12, we obtain the next corollary:

Corollary 2.2.12.2. Let γ, αi, βi be complex numbers, 0 < Reγ ≤ 1, c = Reγ and Mi, Ni, Pi, Qi real
positive numbers, fi, gi, hi, ki ∈ A. If∣∣∣∣zf ′′i (z)

f ′i(z)

∣∣∣∣ ≤Mi, |gi(z)| ≤ Ni,

∣∣∣∣zh′i(z)

hi(z)
− 1

∣∣∣∣ ≤ Pi,

∣∣∣∣zk′i(z)

ki(z)
− 1

∣∣∣∣ ≤ Qi,

∣∣∣∣zg′i(z)

gi(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, i = 1, n and

n∑
i=1

[|αi − 1| (Mi +Ni) + |βi| (Pi +Qi)] ≤
(2c+ 1)

2c+1
2c

2
,

then the integral operator Vn, defined in

Vn(z) =

∫ z

0

n∏
i=1

[(
fi
′(t)egi(t)

)αi−1
(
hi(t)

ki(t)

)βi]
dt, (2.2.13)

is in the class S.

Remark 2.2.13. The integral operator defined in (2.2.12), if we put them βi = 0, we get the known
proven result in [83].

If we consider δ = 1 and βi = 0 in Theorem 2.2.12, we obtain the next corollary:

Corollary 2.2.13.1. Let γ, αi, γi be complex numbers, 0 < Reγ ≤ 1, c = Reγ and Mi, Ni, Ri, Si real
positive numbers, fi, gi, hi, ki ∈ A. If∣∣∣∣zf ′′i (z)

f ′i(z)

∣∣∣∣ ≤Mi, |gi(z)| ≤ Ni,

∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣ ≤ Ri,

∣∣∣∣zk′′i (z)

k′i(z)

∣∣∣∣ ≤ Si,

∣∣∣∣zg′i(z)

gi(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, i = 1, n and

n∑
i=1

[|αi − 1| (Mi +Ni) + |γi| (Ri + Si)] ≤
(2c+ 1)

2c+1
2c

2
,

then the integral operatorWn, defined in

Wn(z) =

∫ z

0

n∏
i=1

[(
fi
′(t)egi(t)

)αi−1
(
hi
′(t))

ki
′(t)

)γi]
dt, (2.2.14)

is in the class S.

Remark 2.2.14. Putting γi = 0 in (2.2.13) we get the same integral operator that was introduced in [83].

If we consider δ = 1 and αi − 1 = 0 in Theorem 2.2.12, we obtain the next corollary:
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Corollary 2.2.14.1. Let γ, βi, γi be complex numbers, 0 < Reγ ≤ 1, c = Reγ and Pi, Qi, Ri, Si real
positive numbers, hi, ki ∈ A. If∣∣∣∣zh′i(z)

hi(z)
− 1

∣∣∣∣ ≤ Pi,

∣∣∣∣zk′i(z)

ki(z)
− 1

∣∣∣∣ ≤ Qi,

∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣ ≤ Ri,

∣∣∣∣zk′′i (z)

k′i(z)

∣∣∣∣ ≤ Si,

for all z ∈ U, i = 1, n and

n∑
i=1

[|βi| (Pi +Qi) + |γi| (Ri + Si)] ≤
(2c+ 1)

2c+1
2c

2
,

then the integral operator In, defined in

In(z) =

∫ z

0

n∏
i=1

[(
hi(t)

ki(t)

)βi (hi′(t))
ki
′(t)

)γi]
dt , (2.2.15)

is in the class S.

Remark 2.2.15. The integral operator given by the relation (2.2.14) is a known proven result in [97].

If we consider n = 1, δ = γ = α and αi − 1 = βi = γi in Theorem 2.2.12, we obtain the next
corollary:

Corollary 2.2.15.1. Let α be complex number, Reα > 0 and M,N,P,Q,R, S real positive numbers,
f, g, h, k ∈ A. If∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≤M, |g(z)| ≤ N,

∣∣∣∣zh′(z)

h(z)
− 1

∣∣∣∣ ≤ P,

∣∣∣∣zk′(z)

k(z)
− 1

∣∣∣∣ ≤ Q,∣∣∣∣zh′′(z)

h′(z)

∣∣∣∣ ≤ R,

∣∣∣∣zk′′(z)

k′(z)

∣∣∣∣ ≤ S,

∣∣∣∣zg′(z)

g(z)

∣∣∣∣ ≤ 1,

for all z ∈ U and

|α− 1| (M +N + P +Q+R + S) ≤ (2Reα + 1)
2Reα+1
2Reα

2
,

then the integral operator G, defined in

G(z) =

[
α

∫ z

0

tα−1

(
f ′(t)eg(t)

h(t)

k(t)

h′(t))

k′(t)

)α−1

dt

] 1
α

, (2.2.16)

is in the class S.

Theorem 2.2.16. Let γ, αi, βi, γi be complex numbers, c = Reγ > 0 and hi, ki ∈ S, fi′, hi′, ki′ ∈ P ,
gi ∈ R. If

3
n∑
i=1

|αi − 1|+ 4
n∑
i=1

|βi|+ 2
n∑
i=1

|γi| ≤
c

2
, for 0 < c < 1

or

3
n∑
i=1

|αi − 1|+ 4
n∑
i=1

|βi|+ 2
n∑
i=1

|γi| ≤
1

2
, for c ≥ 1

then for any complex numbers δ, Reδ ≥ c, the integral operator Gδ,n given by (2.1.3) is in the class S.
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If we consider δ = 1 in Theorem 2.2.16, we obtain the next corollary:

Corollary 2.2.16.1. Let γ, αi, βi, γi be complex numbers, 0 < Reγ ≤ 1 and hi, ki ∈ S, fi′, hi′, ki′ ∈ P ,
gi ∈ R. If

3
n∑
i=1

|αi − 1|+ 4
n∑
i=1

|βi|+ 2
n∑
i=1

|γi| ≤
Reγ

2
, for 0 < c < 1

then the integral operator Gn defined by (2.2.11) is in the class S.

Theorem 2.2.17. Let γ, δ, αi, βi, γi be complex numbers, Reγ > 0 andMi, Ni, Pi, real positive numbers,
fi, gi, hi, ki ∈ A. If∣∣∣∣zf ′′i (z)

f ′i(z)

∣∣∣∣ ≤ 1, |gi(z)| ≤Mi,

∣∣∣∣zh′i(z)

hi(z)
− 1

∣∣∣∣ ≤ Ni,

∣∣∣∣zk′i(z)

ki(z)
− 1

∣∣∣∣ ≤ Pi,

∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣ ≤ 1,

∣∣∣∣zk′′i (z)

k′i(z)

∣∣∣∣ ≤ 1,

∣∣∣∣z2g′i(z)

[gi(z)]2
− 1

∣∣∣∣ < 1,

for all z ∈ U, i = 1, n and

|c| ≤ 1− 1

|δ|

[(
1 + 2M2

i

) n∑
i−1

|αi − 1|+ (Ni + Pi + 4)
n∑
i=

|βi|+ 2
n∑
i=1

|γi|

]
, c ∈ C, c 6= −1,

then the integral operator Gδ,n, given by(2.1.3) is in the class S.

If we consider δ = γ = α and αi − 1 = βi = γi in Theorem 2.2.17, we obtain the next corollary:

Corollary 2.2.17.1. Let α be complex number, Reα > 0 and M,N,P real positive numbers, f, g, h, k ∈
A. If ∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1, |g(z)| ≤M,

∣∣∣∣zh′(z)

h(z)
− 1

∣∣∣∣ ≤ N,

∣∣∣∣zk′(z)

k(z)
− 1

∣∣∣∣ ≤ P,∣∣∣∣zh′′(z)

h′(z)

∣∣∣∣ ≤ 1,

∣∣∣∣zk′′(z)

k′(z)

∣∣∣∣ ≤ 1,

∣∣∣∣z2g′(z)

[g(z)]2
− 1

∣∣∣∣ < 1,

for all z ∈ U and

|c| ≤ 1−
∣∣∣∣α− 1

α

∣∣∣∣ (2M2 +N + P + 7
)
, c ∈ C, c 6= −1,

then the integral operator Gα,n, defined in

Gα,n(z) =

[
α

∫ z

0

tα−1

n∏
i=1

(
f ′i(t)e

gi(t)
hi(t)

ki(t)

h′i(t))

k′i(t)

)α−1

dt

] 1
α

(2.2.17)

is in the class S.
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Theorem 2.2.18. Let γ, δ, αi, βi, γi, δi be complex numbers, c = Reγ > 0 and Mi, Ni, Pi, Qi, Ri, Si real
positive numbers, fi, gi, hi, ki ∈ A. If∣∣∣∣zf ′i(z)

fi(z)
− 1

∣∣∣∣ ≤Mi,

∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣ ≤ Ni,

∣∣∣∣zh′i(z)

hi(z)
− 1

∣∣∣∣ ≤ Pi,

∣∣∣∣zk′i(z)

ki(z)
− 1

∣∣∣∣ ≤ Qi,

∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣ ≤ Ri,

∣∣∣∣zk′′i (z)

k′i(z)

∣∣∣∣ ≤ Si,

for all z ∈ U, i = 1, n and

n∑
i=1

[|αi − 1|Mi + |βi|Ni + |γi| (Pi +Qi) + |δi| (Ri + Si)] ≤
(2c+ 1)

2c+1
2c

2
,

then for any complex numbers δ, Reδ ≥ Reγ, the integral operator Tδ,n, defined by (2.1.4) is in the class
S.

If we consider δ = 1 in Theorem 2.2.18, we obtain the next corollary:

Corollary 2.2.18.1. Let γ, αi, βi, γi, δi be complex numbers, 0 < Reγ ≤ 1, c = Reγ andMi, Ni, Pi, Qi, Ri, Si
real positive numbers, fi, gi, hi, ki ∈ A. If∣∣∣∣zf ′i(z)

fi(z)
− 1

∣∣∣∣ ≤Mi,

∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣ ≤ Ni,

∣∣∣∣zh′i(z)

hi(z)
− 1

∣∣∣∣ ≤ Pi,

∣∣∣∣zk′i(z)

ki(z)
− 1

∣∣∣∣ ≤ Qi,

∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣ ≤ Ri,

∣∣∣∣zk′′i (z)

k′i(z)

∣∣∣∣ ≤ Si,

for all z ∈ U, i = 1, n and

n∑
i=1

[|αi − 1|Mi + |βi|Ni + |γi| (Pi +Qi) + |δi| (Ri + Si)] ≤
(2c+ 1)

2c+1
2c

2
,

then the integral operator Tn defined in

Tn(z) =

∫ z

0

n∏
i=1

[(
fi(t)

t

)αi−1 (
gi(t)

′)βi (hi(t)
ki(t)

)γi (hi′(t))
ki
′(t)

)δi]
dt, (2.2.18)

is in the class S.

If we consider δ = 1 and δi = 0 in Theorem 2.2.18, we obtain the next corollary:

Corollary 2.2.18.2. Let γ, αi, βi, γi be complex numbers, 0 < Reγ ≤ 1, c = Reγ and Mi, Ni, Pi, Qi real
positive numbers, fi, gi, hi, ki ∈ A. If∣∣∣∣zf ′i(z)

fi(z)
− 1

∣∣∣∣ ≤Mi,

∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣ ≤ Ni,

∣∣∣∣zh′i(z)

hi(z)
− 1

∣∣∣∣ ≤ Pi,

∣∣∣∣zk′i(z)

ki(z)
− 1

∣∣∣∣ ≤ Qi,
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for all z ∈ U, i = 1, n and

n∑
i=1

[|αi − 1|Mi + |βi|Ni + |γi| (Pi +Qi)] ≤
(2c+ 1)

2c+1
2c

2
,

then the integral operator Sn, defined in

Sn(z) =

∫ z

0

n∏
i=1

[(
fi(t)

t

)αi−1 (
gi(t)

′)βi (hi(t)
ki(t)

)γi]
dt, (2.2.19)

is in the class S.

Remark 2.2.19. The integral operator defined in (2.2.18) if we put them γi = 0, we obtain a known
result demonstrated in [115].

If we consider δ = 1 and βi = 0 in Theorem 2.2.18, we obtain the next corollary:

Corollary 2.2.19.1. Let γ, αi, γi, δi be complex numbers, 0 < Reγ ≤ 1, c = Reγ and Mi, Pi, Qi, Ri, Si
real positive numbers, fi, hi, ki ∈ A. If∣∣∣∣zf ′i(z)

fi(z)
− 1

∣∣∣∣ ≤Mi,

∣∣∣∣zh′i(z)

hi(z)
− 1

∣∣∣∣ ≤ Pi,

∣∣∣∣zk′i(z)

ki(z)
− 1

∣∣∣∣ ≤ Qi,

∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣ ≤ Ri,

∣∣∣∣zk′′i (z)

k′i(z)

∣∣∣∣ ≤ Si,

for all z ∈ U, i = 1, n and

n∑
i=1

[|αi − 1|Mi + |γi| (Pi +Qi) + |δi| (Ri + Si)] ≤
(2c+ 1)

2c+1
2c

2
,

then the integral operator Xn, defined in

Xn(z) =

∫ z

0

n∏
i=1

[(
fi(t)

t

)αi−1(
hi(t)

ki(t)

)γi (hi′(t))
ki
′(t)

)δi]
dt, (2.2.20)

is in the class S.

Remark 2.2.20. In the integral operator defined by (2.2.19), if we take αi−1 = 0, we get another known
result introduced in [97].

If we consider δ = 1 and αi − 1 = 0 in Theorem 2.2.18, we obtain the next corollary:

Corollary 2.2.20.1. Let γ, βi, γi, δi be complex numbers, 0 < Reγ ≤ 1, c = Reγ and Ni, Pi, Qi, Ri, Si
real positive numbers, gi, hi, ki ∈ A.

If∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣ ≤ Ni,

∣∣∣∣zh′i(z)

hi(z)
− 1

∣∣∣∣ ≤ Pi,

∣∣∣∣zk′i(z)

ki(z)
− 1

∣∣∣∣ ≤ Qi,

∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣ ≤ Ri,

∣∣∣∣zk′′i (z)

k′i(z)

∣∣∣∣ ≤ Si,
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for all z ∈ U, i = 1, n and

n∑
i=1

[|βi|Ni + |γi| (Pi +Qi) + |δi| (Ri + Si)] ≤
(2c+ 1)

2c+1
2c

2
,

then the integral operator Dn, defined in

Dn(z) =

∫ z

0

n∏
i=1

[(
gi(t)

′)βi (hi(t)
ki(t)

)γi (hi′(t))
ki
′(t)

)δi]
dt, (2.2.21)

is in the class S.

Remark 2.2.21. If in (2.2.20) take βi = 0, we get the result that was introduced in [97].

If we consider δ = 1 and γi = 0 in Theorem 2.2.18, we obtain the next corollary:

Corollary 2.2.21.1. Let γ, αi, βi, δi be complex numbers, 0 < Reγ ≤ 1, c = Reγ and Mi, Ni, Ri, Si real
positive numbers, fi, gi, hi, ki ∈ A. If∣∣∣∣zf ′i(z)

fi(z)
− 1

∣∣∣∣ ≤Mi,

∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣ ≤ Ni,

∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣ ≤ Ri,

∣∣∣∣zk′′i (z)

k′i(z)

∣∣∣∣ ≤ Si,

for all z ∈ U, i = 1, n and

n∑
i=1

[|αi − 1|Mi + |βi|Ni + |δi| (Ri + Si)] ≤
(2c+ 1)

2c+1
2c

2
,

then the integral operator Yn, defined in

Yn(z) =

∫ z

0

n∏
i=1

[(
fi(t)

t

)αi−1 (
gi(t)

′)βi (hi′(t))
ki
′(t)

)δi]
dt, (2.2.22)

is in the class S.

Remark 2.2.22. Putting in (2.2.21) δi = 0, we get the same proven result in [115].

If we consider n = 1, δ = γ = α and αi − 1 = βi = γi in Theorem 2.2.18, we obtain the next
corollary:

Corollary 2.2.22.1. Let α be complex number, Reα > 0 and M,N,P,Q,R, S real positive numbers,
f, g, h, k ∈ A. If ∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤M,

∣∣∣∣zg′′(z)

g(z)′

∣∣∣∣ ≤ N,

∣∣∣∣zh′(z)

h(z)
− 1

∣∣∣∣ ≤ P,∣∣∣∣zk′(z)

k(z)
− 1

∣∣∣∣ ≤ Q,

∣∣∣∣zh′′(z)

h′(z)

∣∣∣∣ ≤ R,

∣∣∣∣zk′′(z)

k′(z)

∣∣∣∣ ≤ S,

for all z ∈ U, and

|α− 1| (M +N + P +Q+R + S) ≤ (2Reα + 1)
2Reα+1
2Reα

2
,
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then the integral operator T , defined in

T (z) =

[
α

∫ z

0

tα−1

(
f(t)g′(t)

h(t)

k(t)

h′(t))

k′(t)

)α−1

dt

] 1
α

, (2.2.23)

is in the class S.

Theorem 2.2.23. Let γ, αi, βi, γi, δi be complex numbers, c = Reγ > 0 and fi, hi, ki ∈ S, gi′, hi′, ki′ ∈
P . If

2
n∑
i=1

|αi − 1|+
n∑
i=1

|βi|+ 4
n∑
i=1

|γi|+ 2
n∑
i=1

|δi| ≤
c

2
, for 0 < c < 1

or

2
n∑
i=1

|αi − 1|+
n∑
i=1

|βi|+ 4
n∑
i=1

|γi|+ 2
n∑
i=1

|δi| ≤
1

2
, for c ≥ 1

then for any complex numbers δ, Reδ ≥ c, the integral operator Tδ,n defined by (2.1.4) is in the class S.

If we consider δ = 1 in Theorem 2.2.23, we obtain the next corollary:

Corollary 2.2.23.1. Let γ, αi, βi, γi, δi be complex numbers, 0 < Reγ ≤ 1 and fi, hi, ki ∈ S, gi′, hi′, ki′ ∈
P . If

2
n∑
i=1

|αi − 1|+
n∑
i=1

|βi|+ 4
n∑
i=1

|γi|+ 2
n∑
i=1

|δi| ≤
Reγ

2
, for 0 < c < 1

then the integral operator Tn given by (2.2.18) is in the class S.

Theorem 2.2.24. Let γ, δ, αi, βi, γi, δi be complex numbers, Reγ > 0 and Mi, Ni, Pi, real positive num-
bers, fi, gi, hi, ki ∈ A. If∣∣∣∣zf ′i(z)

fi(z)
− 1

∣∣∣∣ ≤Mi,

∣∣∣∣zg′′i (z)

g′i(z)

∣∣∣∣ ≤ 1,

∣∣∣∣zh′i(z)

hi(z)
− 1

∣∣∣∣ ≤ Ni,

∣∣∣∣zk′i(z)

ki(z)
− 1

∣∣∣∣ ≤ Pi,

∣∣∣∣zh′′i (z)

h′i(z)

∣∣∣∣ ≤ 1,

∣∣∣∣zk′′i (z)

k′i(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, i = 1, n and

|c| ≤ 1− 1

|δ|

[
(2 +Mi)

n∑
i−1

|αi − 1|+
n∑
i=1

|βi|+ (Ni + Pi + 4)
n∑
i=

|γi|+ 2
n∑
i=1

|δi|

]
,

c ∈ C, c 6= −1, then the integral operator Tδ,n, defined by (2.1.4) is in the class S.

If we consider δ = γ = α, αi − 1 = βi = γi and n = 1 in Theorem 2.2.24, we obtain the next
corollary:

Corollary 2.2.24.1. Let α be complex number, Reα > 0 and M,N,P real positive numbers, f, g, h, k ∈
A. Dacă∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤M,

∣∣∣∣zg′′(z)

g′(z)

∣∣∣∣ ≤ 1,

∣∣∣∣zh′(z)

h(z)
− 1

∣∣∣∣ ≤ N,

∣∣∣∣zk′(z)

k(z)
− 1

∣∣∣∣ ≤ P,

∣∣∣∣zh′′(z)

h′(z)

∣∣∣∣ ≤ 1,

∣∣∣∣zk′′(z)

k′(z)

∣∣∣∣ ≤ 1,

for all z ∈ U and

|c| ≤ 1−
∣∣∣∣α− 1

α

∣∣∣∣ (Mi +Ni + Pi + 8) , c ∈ C, c 6= −1,

then the integral operator T , given by (2.2.23) is in the class S.
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2.3 New univalence conditions for analytic functions

This paragraph extends the sufficient conditions of univalence for operatorsMδ,n and Tδ,n when the
functions involved are analytic, using the Mocanu-S, erb Theorem.

Theorem 2.3.1. Let γ, δ, αi, βi, γi be complex numbers, c = Reγ > 0, M0 the positive solution of the
equation (1.1.1), M0 = 1, 5936... and fi, gi ∈ A. If∣∣∣∣f ′′i (z)

f ′i(z)

∣∣∣∣ ≤M0,

∣∣∣∣g′′i (z)

g′i(z)

∣∣∣∣ ≤M0,

for all z ∈ U, i = 1, n and

1

c

n∑
i=1

|αi − 1|+ 2M0

(2c+ 1)
2c+1
2c

n∑
i=1

|βi|+
1

c

n∑
i=1

|γi| ≤ 1,

then for any complex numbers δ, Reδ ≥ Reγ, the integral operator Mδ,n, defined by (2.2.1) is in the
class S.

If we consider δ = 1 in Theorem 2.3.1, we obtain the next corollary:

Corollary 2.3.1.1. Let γ, αi, βi, γi be complex numbers, 0 < Reγ ≤ 1, c = Reγ,M0 the positive solution
of the equation (1.1.1), M0 = 1, 5936... and fi, gi ∈ A. If∣∣∣∣f ′′i (z)

f ′i(z)

∣∣∣∣ ≤M0,

∣∣∣∣g′′i (z)

g′i(z)

∣∣∣∣ ≤M0,

for all z ∈ U, i = 1, n and

1

c

n∑
i=1

|αi − 1|+ 2M0

(2c+ 1)
2c+1
2c

n∑
i=1

|βi|+
1

c

n∑
i=1

|γi| ≤ 1,

then the integral operatorMn, given by (2.2.1) is in the class S .

If we consider n = 1, δ = γ = α and α1 − 1 = β1 = γ1 in Theorem 2.3.1, we obtain the next
corollary:

Corollary 2.3.1.2. Let α be complex number, a = Reα > 0, M0 the positive solution of the equation
(1.1.1), M0 = 1, 5936... and f, g ∈ A. If∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ ≤M0,

∣∣∣∣g′′(z)

g′(z)

∣∣∣∣ ≤M0,

for all z ∈ U and

2 (α− 1)

(
1

a
+

M0

(2a+ 1)
2a+1
2a

)
≤ 1,

then the integral operatorM, defined by (2.2.5) is in the class S.
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Theorem 2.3.2. Let γ, δ, αi, βi, γi, δi be complex numbers, c = Reγ > 0, M0 the positive solution of the
equation (1.1.1), M0 = 1, 5936... and fi, gi, hi, ki ∈ A. If∣∣∣∣f ′′i (z)

f ′i(z)

∣∣∣∣ ≤M0,

∣∣∣∣g′′i (z)

g′i(z)

∣∣∣∣ ≤M0,

∣∣∣∣h′′i (z)

h′i(z)

∣∣∣∣ ≤M0,

∣∣∣∣k′′i (z)

k′i(z)

∣∣∣∣ ≤M0,

for all z ∈ U, i = 1, n and

1

c

n∑
i=1

|αi − 1|+ 2M0

(2c+ 1)
2c+1
2c

n∑
i=1

|βi|+
2

c

n∑
i=1

|γi|+
4M0

(2c+ 1)
2c+1
2c

n∑
i=1

|δi| ≤ 1,

then for any complex numbers δ, Reδ ≥ Reγ, the integral operator Tδ,n, given by (2.1.4) is in the class
S.

If we consider δ = 1 in Theorem 2.3.2, we obtain the next corollary:

Corollary 2.3.2.1. Let γ, αi, βi, γi, δi be complex numbers, 0 < Reγ ≤ 1, c = Reγ, iar M0 the positive
solution of the equation (1.1.1), M0 = 1, 5936... and fi, gi, hi, ki ∈ A. If∣∣∣∣f ′′i (z)

f ′i(z)

∣∣∣∣ ≤M0,

∣∣∣∣g′′i (z)

g′i(z)

∣∣∣∣ ≤M0,

∣∣∣∣h′′i (z)

h′i(z)

∣∣∣∣ ≤M0,

∣∣∣∣k′′i (z)

k′i(z)

∣∣∣∣ ≤M0,

for all z ∈ U, i = 1, n and

1

c

n∑
i=1

|αi − 1|+ 2M0

(2c+ 1)
2c+1
2c

n∑
i=1

|βi|+
2

c

n∑
i=1

|γi|+
4M0

(2c+ 1)
2c+1
2c

n∑
i=1

|δi| ≤ 1,

then the integral operator Tn, defined by (2.2.18) is in the class S.

If we consider n = 1, δ = γ = α and α1 − 1 = β1 = γ1 = δ1 in Theorem 2.3.2, we obtain the next
corollary:

Corollary 2.3.2.2. Let α be complex number, a = Reα > 0, M0 the positive solution of the equation
(1.1.1), M0 = 1, 5936... and f, g, h, k ∈ A. If∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ ≤M0,

∣∣∣∣g′′(z)

g′(z)

∣∣∣∣ ≤M0,

∣∣∣∣h′′(z)

h′(z)

∣∣∣∣ ≤M0,

∣∣∣∣k′′(z)

k′(z)

∣∣∣∣ ≤M0,

for all z ∈ U and

3 (α− 1)

(
1

a
+

2M0

(2a+ 1)
2a+1
2a

)
≤ 1,

then the integral operator T , defined by (2.2.20) is in the class S.

2.4 Univalence conditions for univalent functions

The present paragraph contains sufficient conditions of univalence for the integral operators pre-
sented in this paper when the functions involved are univalent, using Nehari’s Theorem.

36



Theorem 2.4.1. Let δ, γ, αi, βi, γi ∈ C, c = Reγ > 0 and fi, gi ∈ S. If∣∣∣∣zf ′
i (z)− fi(z)

zfi(z)

∣∣∣∣ ≤ 1,

∣∣∣∣zg′
i(z)− gi(z)

zgi(z)

∣∣∣∣ ≤ 1,

∣∣∣∣g′′
i (z)

g
′
i(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, i = 1, n and ∑n
i=1 (|αi − 1|+ |βi|+ |γi|)∏n

i=1 (|αi − 1| |βi| |γi|)
< 1,

n∏
i=1

(|αi − 1| |βi| |γi|) ≤
1

max
|z|≤1

[(
1− |z|2

)
|z| |z|+|k|

1+|k||z|

] ,
where

|k| = |
∑n

i=1 [(αi − 1) a2i + 2βib2i + γib2i]|∏n
i=1 (|αi − 1| |βi| |γi|)

,

then for any complex numbers δ, Reδ ≥ Reγ, the functionMδ,n, defined by (2.1.1) is in the class S.

Letting n = 1, δ = γ = α and αi − 1 = βi = γi in Theorem 2.4.1, we obtain the next corollary:

Corollary 2.4.1.1. Let α ∈ C, Reα > 0 and f, g ∈ S. If∣∣∣∣zf ′
(z)− f(z)

zf(z)

∣∣∣∣ < 1,

∣∣∣∣zg′
(z)− g(z)

zg(z)

∣∣∣∣ < 1,

∣∣∣∣g′′
(z)

g′(z)

∣∣∣∣ < 1,

for all z ∈ U, and the constant |α| satisfies the condition

|α| ≤ 1

max
|z|≤1

[(
1− |z|2

)
|z| |z|+|a2+3b2|

1+|a2+3b2||z|

] ,
then the functionM, defined by (2.2.5) is in the class S.

Theorem 2.4.2. Let δ, γ, αi, βi, γi ∈ C, c = Reγ > 0 and fi, gi ∈ S, i = 1, n and Mi, Ni positive real
numbers. If ∣∣∣∣zf ′

i (z)

fi(z)

∣∣∣∣ < Mi,

∣∣∣∣zg′
i(z)

gi(z)

∣∣∣∣ < Ni,

∣∣∣∣zg′′
i (z)

g
′
i(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, i = 1, n, and

n∑
i=1

[|αi − 1| (Mi + 1) + |βi|+ |γi| (Ni + 1)] ≤ 1

max
|z|≤1

[
1−|z|2c

c
|z|+|k|
1+|k||z|

] ,
where

|k| = |
∑n

i=1 [(αi − 1) (a2i + 1) + 2βib2i + γi (b2i + 1)]|∑n
i=1 [|αi − 1| (Mi + 1) + |βi|+ |γi| (Ni + 1)]

,

then for any complex numbers δ, Reδ ≥ Reγ, the functionMδ,n, defined by (2.1.1) is in the class S.

The following corollary is a consequence of the Theorem 2.4.2:
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Corollary 2.4.2.1. Let δ, αi, βi, γi ∈ C, c = Reδ > 0 and fi, gi ∈ S, i = 1, n and Mi, Ni positive real
numbers. If ∣∣∣∣zf ′

i (z)

fi(z)

∣∣∣∣ ≤Mi,

∣∣∣∣zg′
i(z)

gi(z)

∣∣∣∣ ≤ Ni,

∣∣∣∣zg′′
i (z)

g
′
i(z)

∣∣∣∣ ≤ 1,

and ∣∣∣∣∣
n∑
i=1

[(αi − 1) (a2i + 1) + 2βib2i + γi (b2i + 1)]

∣∣∣∣∣ ≤ (2c+ 1)
2c+1
2c

2
,∣∣∣∣∣

n∑
i=1

[(αi − 1) (a2i + 1) + 2βib2i + γi (b2i + 1)]

∣∣∣∣∣ =
n∑
i=1

[|αi − 1| (Mi + 1) + |βi|+ |γi| (Ni + 1)] ,

then the functionMδ,n, given by (2.1.1) is in the class S.

Theorem 2.4.3. Let δ, γ, αi, βi, γi ∈ C, c = Reγ > 0 and fi, gi, hi ∈ S. If∣∣∣∣zf ′
i (z)− fi(z)

zfi(z)

∣∣∣∣ ≤ 1,
∣∣∣g′

i(z)
∣∣∣ ≤ 1,

∣∣∣∣zh′
i(z)− hi(z)

zhi(z)

∣∣∣∣ ≤ 1,

∣∣∣∣h′′
i (z)

h
′
i(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, i = 1, n and ∑n
i=1 (|αi − 1|+ |βi|+ |γi|)∏n

i=1 (|αi − 1| |βi| |γi|)
< 1,

n∏
i=1

(|αi − 1| |βi| |γi|) ≤
1

max
|z|≤1

[
2
(
1− |z|2

)
|z| |z|+|k|

1+|k||z|

] ,
where

|k| = |
∑n

i=1 [(αi − 1) (a2i + 1) + 2βic2i + γic2i]|
2
∏n

i=1 (|αi − 1| |βi| |γi|)
,

then for any complex numbers δ, Reδ ≥ Reγ, the function Cδ,n, defined by (2.1.2) is in the class S.

Letting n = 1, δ = γ = α and αi − 1 = βi = γi in Theorem 2.4.3, we obtain the next corollary:

Corollary 2.4.3.1. Let α ∈ C, Reα > 0 and f, g, h ∈ S. If∣∣∣∣zf ′
(z)− f(z)

zf(z)

∣∣∣∣ < 1,
∣∣∣g′

(z)
∣∣∣ < 1,

∣∣∣∣zh′
(z)− h(z)

zh(z)

∣∣∣∣ < 1,

∣∣∣∣h′′
(z)

h′(z)

∣∣∣∣ < 1,

for all z ∈ U and the constant |α| satisfies the condition

|α| ≤ 1

max
|z|≤1

[
2
(
1− |z|2

)
|z| 2|z|+|a2+3c2|

2+|a2+3c2||z|

] ,
then the function C, defined by (2.2.10) is in the class S.

Theorem 2.4.4. Let δ, γ, αi, βi, γi ∈ C, c = Reγ > 0 and fi, gi, hi ∈ S and Mi, Ni, Pi are positive real
numbers. If∣∣∣∣zf ′

i (z)

fi(z)

∣∣∣∣ < Mi,

∣∣∣∣zg′
i(z)

gi(z)

∣∣∣∣ < Ni, |gi(z)| ≤ 1,

∣∣∣∣zh′
i(z)

hi(z)

∣∣∣∣ < Pi,

∣∣∣∣zh′′
i (z)

h
′
i(z)

∣∣∣∣ ≤ 1,
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for all z ∈ U, i = 1, n,

n∑
i=1

[|αi − 1| (Mi +Ni + 1) + |βi|+ |γi| (Pi + 1)] ≤ 1

max
|z|≤1

[
1−|z|2c

c
|z|+|k|
1+|k||z|

] ,
where

|k| = |
∑n

i=1 [(αi − 1) (a2i + b2i + 1) + 2βic2i + γi (c2i + 1)]|∑n
i=1 [|αi − 1| (Mi +Ni + 1) + |βi|+ |γi| (Pi + 1)]

,

then for any complex numbers δ, Reδ ≥ Reγ, the function Cδ,n, defined by (2.1.2) is in the class S.

The following corollary is a consequence of the Theorem 2.4.4:

Corollary 2.4.4.1. Let δ, αi, βi, γi ∈ C, c = Reδ > 0 and fi, gi, hi ∈ S , i = 1, n and Mi, Ni, Pi positive
real numbers. If∣∣∣∣zf ′

i (z)

fi(z)

∣∣∣∣ ≤Mi,

∣∣∣∣zg′
i(z)

gi(z)

∣∣∣∣ ≤ Ni, |gi(z)| ≤ 1,

∣∣∣∣zh′
i(z)

hi(z)

∣∣∣∣ ≤ Pi,

∣∣∣∣zh′′
i (z)

h
′
i(z)

∣∣∣∣ ≤ 1,

and ∣∣∣∣∣
n∑
i=1

[(αi − 1) (a2i + b2i + 1) + 2βic2i + γi (c2i + 1)]

∣∣∣∣∣ ≤ (2c+ 1)
2c+1
2c

2
,∣∣∣∣∣

n∑
i=1

[(αi − 1) (a2i + b2i + 1) + 2βic2i + γi (c2i + 1)]

∣∣∣∣∣ =

=
n∑
i=1

[|αi − 1| (Mi +Ni + 1) + |βi|+ |γi| (Pi + 1)] ,

then the function Cδ,n, defined by (2.1.2) is in the class S.

Theorem 2.4.5. Let δ, γ, αi, βi, γi ∈ C, c = Reγ > 0 and fi, gi, hi, ki ∈ S. If∣∣∣∣f ′′
i (z)

f
′
i (z)

∣∣∣∣ ≤ 1,
∣∣∣g′

i(z)
∣∣∣ ≤ 1,

∣∣∣∣zh′
i(z)− hi(z)

zhi(z)

∣∣∣∣ ≤ 1,

∣∣∣∣zk′
i(z)− ki(z)

zhi(z)

∣∣∣∣ ≤ 1,

∣∣∣∣h′′
i (z)

h
′
i(z)

∣∣∣∣ ≤ 1,

∣∣∣∣k′′
i (z)

k
′
i(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, i = 1, n and ∑n
i=1 (|αi − 1|+ |βi|+ |γi|)∏n

i=1 (|αi − 1| |βi| |γi|)
< 1,

n∏
i=1

(|αi − 1| |βi| |γi|) ≤
1

max
|z|≤1

[
2
(
1− |z|2

)
|z| |z|+|k|

1+|k||z|

] ,
where

|k| = |
∑n

i=1 [(αi − 1) (2a2i + 1) + βi (c2i + d2i) + 2γi (c2i + d2i)]|
2
∏n

i=1 (|αi − 1| |βi| |γi|)
,

then for any complex numbers δ, Reδ ≥ Reγ, the function Gδ,n, defined by (2.1.3) is in the class S.

Letting n = 1, δ = γ = α and αi − 1 = βi = γi in Theorem 2.4.5, we obtain the next corollary:
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Corollary 2.4.5.1. Let α ∈ C, Reα > 0 and f, g, h, k ∈ S. If∣∣∣∣f ′′
(z)

f ′(z)

∣∣∣∣ < 1,
∣∣∣g′

(z)
∣∣∣ < 1,

∣∣∣∣zh′
(z)− h(z)

zh(z)

∣∣∣∣ < 1,

∣∣∣∣zk′
(z)− k(z)

zh(z)

∣∣∣∣ < 1,

∣∣∣∣h′′
(z)

h′(z)

∣∣∣∣ < 1,

∣∣∣∣k′′
(z)

k′(z)

∣∣∣∣ < 1,

for all z ∈ U and the constant |α| satisfies the condition

|α| ≤ 1

max
|z|≤1

[
2
(
1− |z|2

)
|z| 2|z|+|2a2+3c2+3d2+1|

2+|2a2+3c2+3d2+1||z|

] ,
then the function G, defined by (2.2.16) is in the class S.

Theorem 2.4.6. Let δ, γ, αi, βi, γi ∈ C, c = Reγ > 0 and fi.gi, hi, ki ∈ S and Mi, Ni, Pi positive real
numbers. If ∣∣∣∣zf ′′

i (z)

f
′
i (z)

∣∣∣∣ < 1,

∣∣∣∣zg′
i(z)

gi(z)

∣∣∣∣ < Mi, |gi(z)| ≤ 1,∣∣∣∣zh′
i(z)

hi(z)

∣∣∣∣ < Ni,

∣∣∣∣zk′
i(z)

ki(z)

∣∣∣∣ < Pi,

∣∣∣∣zh′′
i (z)

h
′
i(z)

∣∣∣∣ ≤ 1,

∣∣∣∣zk′′
i (z)

k
′
i(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, i = 1, n,
n∑
i=1

[|αi − 1| (Mi + 1) + |βi| (Ni + Pi + 2) + 2 |γi|] ≤
1

max
|z|≤1

[
1−|z|2c

c
|z|+|k|
1+|k||z|

] ,
where

|k| = |
∑n

i=1 [(αi − 1) (2a2i + b2i) + βi (c2i + d2i + 2) + 2γi (c2i + d2i)]|∑n
i=1 [|αi − 1| (Mi + 1) + |βi| (Ni + Pi + 2) + 2 |γi|]

,

then for any complex numbers δ, Reδ ≥ Reγ, the function Gδ,n, defined by (2.1.3) is in the class S.

The following corollary is a consequence of the Theorem 2.4.6:

Corollary 2.4.6.1. Fie δ, αi, βi, γi ∈ C, c = Reδ > 0 and fi, gi, hi, ki ∈ S and Mi, Ni, Pi positive real
numbers. If ∣∣∣∣zf ′′

i (z)

f
′
i (z)

∣∣∣∣ ≤ 1,

∣∣∣∣zg′
i(z)

gi(z)

∣∣∣∣ ≤Mi, |gi(z)| ≤ 1,∣∣∣∣zh′
i(z)

hi(z)

∣∣∣∣ ≤ Ni,

∣∣∣∣zk′
i(z)

ki(z)

∣∣∣∣ ≤ Pi,

∣∣∣∣zh′′
i (z)

h
′
i(z)

∣∣∣∣ ≤ 1,

∣∣∣∣zk′′
i (z)

k
′
i(z)

∣∣∣∣ ≤ 1,

and ∣∣∣∣∣
n∑
i=1

[(αi − 1) (2a2i + b2i) + βi (c2i + d2i + 2) + 2γi (c2i + d2i)]

∣∣∣∣∣ ≤ (2c+ 1)
2c+1
2c

2
,∣∣∣∣∣

n∑
i=1

[(αi − 1) (2a2i + b2i) + βi (c2i + d2i + 2) + 2γi (c2i + d2i)]

∣∣∣∣∣ =

=
n∑
i=1

[|αi − 1| (Mi + 1) + |βi| (Ni + Pi + 2) + 2 |γi|] ,

then the function Gδ,n, defined by (2.1.3) is in the class S.
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Theorem 2.4.7. Let δ, γ, αi, βi, γi, δi ∈ C, c = Reγ > 0 and fi, gi, hi, ki ∈ S. If∣∣∣∣zf ′
i (z)− fi(z)

zfi(z)

∣∣∣∣ ≤ 1,

∣∣∣∣g′′
i (z)

g
′
i(z)

∣∣∣∣ ≤ 1,

∣∣∣∣zh′
i(z)− hi(z)

zhi(z)

∣∣∣∣ ≤ 1,∣∣∣∣zk′
i(z)− ki(z)

zhi(z)

∣∣∣∣ ≤ 1,

∣∣∣∣h′′
i (z)

h
′
i(z)

∣∣∣∣ ≤ 1,

∣∣∣∣k′′
i (z)

k
′
i(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, i = 1, n and ∑n
i=1 (|αi − 1|+ |βi|+ |γi|+ |δi|)∏n

i=1 (|αi − 1| |βi| |γi| |δi|)
< 1,

n∏
i=1

(|αi − 1| |βi| |γi| |δi|) ≤
1

max
|z|≤1

[
2
(
1− |z|2

)
|z| |z|+|k|

1+|k||z|

] ,
where

|k| = |
∑n

i=1 [(αi − 1) a2i + 2βib2i + γi (c2i + d2i) + 2δi (c2i + d2i)]|
2
∏n

i=1 (|αi − 1| |βi| |γi| |δi|)
,

then for any complex numbers δ, Reδ ≥ Reγ, the function Tδ,n, defined by (2.1.4) is in the class S.

Letting n = 1, δ = γ = α and αi − 1 = βi = γi in Theorem 2.4.7, we obtain the next corollary:

Corollary 2.4.7.1. Let α ∈ C, Reα > 0 and f, g, h, k ∈ S. If∣∣∣∣zf ′
(z)− f(z)

zf(z)

∣∣∣∣ < 1,

∣∣∣∣g′′
(z)

g′(z)

∣∣∣∣ < 1,

∣∣∣∣zh′
(z)− h(z)

zh(z)

∣∣∣∣ < 1,∣∣∣∣zk′
(z)− k(z)

zh(z)

∣∣∣∣ < 1,

∣∣∣∣h′′
(z)

h′(z)

∣∣∣∣ < 1,

∣∣∣∣k′′
(z)

k′(z)

∣∣∣∣ < 1,

for all z ∈ U and the constant |α| satisfies the condition

|α| ≤ 1

max
|z|≤1

[
2
(
1− |z|2

)
|z| 2|z|+|a2+2b2+3c2+3d2|

2+|a2+2b2+3c2+3d2||z|

] ,
then the function T , defined by (2.2.23) is in the class S.

Theorem 2.4.8. Let δ, γ, αi, βi, γi, δi ∈ C, c = Reγ > 0 and fi, gi, hi, ki ∈ S and Mi, Ni, Pi positive
real numbers. If∣∣∣∣zf ′

i (z)

fi(z)

∣∣∣∣ < Mi,

∣∣∣∣zg′′
i (z)

g
′
i(z)

∣∣∣∣ ≤ 1,

∣∣∣∣zh′
i(z)

hi(z)

∣∣∣∣ < Ni,

∣∣∣∣zk′
i(z)

ki(z)

∣∣∣∣ < Pi,

∣∣∣∣zh′′
i (z)

h
′
i(z)

∣∣∣∣ ≤ 1,

∣∣∣∣zk′′
i (z)

k
′
i(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, i = 1, n,
n∑
i=1

[|αi − 1| (Mi + 1) + |βi|+ |γi| (Ni + Pi + 2) + 2 |δi|] ≤
1

max
|z|≤1

[
1−|z|2c

c
|z|+|k|
1+|k||z|

] ,
where

|k| = |
∑n

i=1 [(αi − 1) (a2i + 1) + 2βib2i + γi (c2i + d2i + 2) + 2δi (c2i + d2i)]|∑n
i=1 [|αi − 1| (Mi + 1) + |βi|+ |γi| (Ni + Pi + 2) + 2 |δi|]

,

then for any complex numbers δ, Reδ ≥ Reγ, the function Tδ,n, defined by (2.1.4) is in the class S.
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The following corollary is a consequence of the Theorem 2.4.8:

Corollary 2.4.8.1. Let δ, αi, βi, γi, δi ∈ C, c = Reδ > 0 and fi, gi, hi, ki ∈ S and Mi, Ni, Pi positive
real numbers. If∣∣∣∣zf ′

i (z)

fi(z)

∣∣∣∣ ≤Mi,

∣∣∣∣zg′′
i (z)

g
′
i(z)

∣∣∣∣ ≤ 1,

∣∣∣∣zh′
i(z)

hi(z)

∣∣∣∣ ≤ Ni,

∣∣∣∣zk′
i(z)

ki(z)

∣∣∣∣ ≤ Pi,

∣∣∣∣zh′′
i (z)

h
′
i(z)

∣∣∣∣ ≤ 1,

∣∣∣∣zk′′
i (z)

k
′
i(z)

∣∣∣∣ ≤ 1,

and ∣∣∣∣∣
n∑
i=1

[(αi − 1) (a2i + 1) + 2βib2i + γi (c2i + d2i + 2) + 2δi (c2i + d2i)]

∣∣∣∣∣ ≤ (2c+ 1)
2c+1
2c

2
,

∣∣∣∣∣
n∑
i=1

[(αi − 1) (a2i + 1) + 2βib2i + γi (c2i + d2i + 2) + 2δi (c2i + d2i)]

∣∣∣∣∣ =

=
n∑
i=1

[|αi − 1| (Mi + 1) + |βi|+ |γi| (Ni + Pi + 2) + 2 |δi|] ,

then the function Tδ,n, defined by (2.1.4) is in the class S.

2.5 Univalence conditions for the class Gb

In this section we present sufficient conditions of univalence of integral operatorsMδ,n, Tδ,n for the
situation when the functions involved belong to the class of functions Gb, 0 < b ≤ 1.

Theorem 2.5.1. Let γ, δ, αi, βi, γi be complex numbers, c = Reγ > 0, with

c ≥
n∑
i=1

[|αi − 1|+ (2bi + 1) |βi|+ |γi|] .

If gi ∈ Gbi , 0 < bi ≤ 1, fi ∈ A and∣∣∣∣zf ′i(z)

fi(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zg′i(z)

gi(z)
− 1

∣∣∣∣ < 1,

for all z ∈ U, i = 1, n, then the integral operatorMδ,n, defined by (2.1.1) is in the class S.

Putting n = 1, δ = γ = α and α1 − 1 = β1 = γ1 in Theorem 2.5.1, we obtain the next corollary:

Corollary 2.5.1.1. Let α be complex number, Reα > 0, with

Reα ≥ |α− 1| (2b+ 3) .

If g ∈ Gb, 0 < b ≤ 1, f ∈ A and∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zg′(z)

g(z)
− 1

∣∣∣∣ < 1,

for all z ∈ U, then the integral operatorM, defined by (2.2.5) is in the class S .
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Theorem 2.5.2. Let αi, βi, γi be complex numbers, Mi ≥ 1, Ni ≥ 1 positive real numbers, for all
i = 1, n and γ ∈ C with c = Reγ and

c ≥
n∑
i=1

[|αi − 1| (2Mi + 1) + (bi |βi|+ |βi|+ |γi|) (2Ni + 1) + bi |βi|] .

If gi ∈ Gbi , 0 < bi ≤ 1, fi ∈ A and∣∣∣∣z2f ′i(z)

[fi(z)]2
− 1

∣∣∣∣ < 1,

∣∣∣∣z2g′i(z)

[gi(z)]2
− 1

∣∣∣∣ < 1, |fi(z)| ≤Mi, |gi(z)| ≤ Ni,

for all z ∈ U, i = 1, n, then for any complex numbers δ, Reδ ≥ Reγ, the integral operatorMδ,n, given
by (2.1.1) is in the class S.

If we consider n = 1, α1 − 1 = β1 = γ1 and b1 = b in Theorem 2.5.2, we obtain the next corollary:

Corollary 2.5.2.1. Let α be complex number, M ≥ 1, N ≥ 1 positive real numbers, Reα > 0 and

Reα ≥ |α− 1| (2M + 2bN + 4N + 2b+ 3) .

If g ∈ Gb, 0 < b ≤ 1, f ∈ A and∣∣∣∣z2f ′(z)

[f(z)]2
− 1

∣∣∣∣ < 1,

∣∣∣∣z2g′(z)

[g(z)]2
− 1

∣∣∣∣ < 1 |f(z)| ≤M, |g(z)| ≤ N,

for all z ∈ U, then the integral operatorM, defined by (2.2.5) is in the class S.

Theorem 2.5.3. Let αi, βi, γi be complex numbers and δ ∈ C with

Reδ ≥
n∑
i=1

[|αi − 1|+ (2bi + 1) |βi|+ |γi|] ,

and let c ∈ C be such that

|c| ≤ 1− 1

Reδ

n∑
i=1

[|αi − 1|+ (2bi + 1) |βi|+ |γi|] .

If gi ∈ Gbi , 0 < bi ≤ 1, fi ∈ A and∣∣∣∣zf ′i(z)

fi(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zg′i(z)

gi(z)
− 1

∣∣∣∣ < 1,

for all z ∈ U, i = 1, n, then the integral operatorMδ,n, defined by (2.1.1) is in the class S.

Letting n = 1, α1 − 1 = β1 = γ1 and b1 = b in Theorem 2.5.3, we obtain the next corollary:

Corollary 2.5.3.1. Let α ∈ C∗ with

Reα ≥ |α− 1| (2b+ 3) ,
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and let c ∈ C be such that
|c| ≤ 1− 1

Reα
|α− 1| (2b+ 3) .

If g ∈ Gb, 0 < b ≤ 1, f ∈ A and∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zg′(z)

g(z)
− 1

∣∣∣∣ < 1,

for all z ∈ U, then the integral operatorM, defined by (2.2.5) is in the class S .

Theorem 2.5.4. Let αi, βi, γi be complex numbers, Mi ≥ 1, Ni ≥ 1 positive real numbers, δ ∈ C with

Reδ ≥
n∑
i=1

[|αi − 1| (2Mi + 1) + (bi |βi|+ |βi|+ |γi|) (2Ni + 1) + bi |βi|] ,

and let c ∈ C be such that

|c| ≤ 1− 1

Reδ

n∑
i=1

[|αi − 1| (2Mi + 1) + (bi |βi|+ |βi|+ |γi|) (2Ni + 1) + bi |βi|] .

If gi ∈ Gbi , 0 < bi ≤ 1, fi ∈ A and∣∣∣∣z2f ′i(z)

[fi(z)]2
− 1

∣∣∣∣ < 1,

∣∣∣∣z2g′i(z)

[gi(z)]2
− 1

∣∣∣∣ < 1,

for all z ∈ U, i = 1, n, then the integral operatorMδ,n, defined by (2.1.1) is in the class S.

Letting n = 1, α1 − 1 = β1 = γ1 and b1 = b in Theorem 2.5.4, we obtain the next corollary:

Corollary 2.5.4.1. Let α ∈ C∗, M ≥ 1, N ≥ 1 positive real numbers, with

Reα ≥ |α− 1| (2M + 2bN + 4N + 2b+ 3) ,

and let c ∈ C, be such that

|c| ≤ 1− 1

Reα
|α− 1| (2M + 2bN + 4N + 2b+ 3) .

If g ∈ Gb, 0 < b ≤ 1, f ∈ A and∣∣∣∣z2f ′(z)

[f(z)]2
− 1

∣∣∣∣ < 1,

∣∣∣∣z2g′(z)

[g(z)]2
− 1

∣∣∣∣ < 1

for all z ∈ U, then the integral operatorM, defined by (2.2.5) is in the class S .

Theorem 2.5.5. Let γ, δ, αi, βi, γi, δi be complex numbers, c = Reγ > 0, with

c ≥
n∑
i=1

[|αi − 1|+ (2bi + 1) |βi|+ 2 |γi|+ (4bi + 2) |δi|] .

If gi, hi, ki ∈ Gbi , 0 < bi ≤ 1, fi ∈ A and∣∣∣∣zf ′i(z)

fi(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zg′i(z)

gi(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zh′i(z)

hi(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zk′i(z)

ki(z)
− 1

∣∣∣∣ < 1,

for all z ∈ U, i = 1, n, then the integral operator Tδ,n, defined by (2.1.4) is in the class S.
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If we consider n = 1, δ = γ = α and α1 − 1 = β1 = γ1 = δ1 in Theorem 2.5.5, we obtain the next
corollary:

Corollary 2.5.5.1. Let α be complex number, Reα > 0, with

Reα ≥ 6 |α− 1| (b+ 1) .

If g, h, k ∈ Gb, 0 < b ≤ 1 f ∈ A and∣∣∣∣zf ′i(z)

fi(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zg′i(z)

gi(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zh′i(z)

hi(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zk′i(z)

ki(z)
− 1

∣∣∣∣ < 1,

then the integral operator T , defined by (2.2.23) is in the class S.

Theorem 2.5.6. Let αi, βi, γi, δi be complex numbers, Mi ≥ 1, Ni ≥ 1, Pi ≥ 1, Qi ≥ 1 positive real
numbers, γ ∈ C, c = Reγ and

c ≥
n∑
i=1

[|αi − 1| (2Mi + 1) + (bi |βi|+ |βi|) (2Ni + 1)] +

+
n∑
i=1

[(|γi|+ |δi| bi + |δi|) (2Pi + 2Qi + 2) + bi |βi|+ 2bi |δi|] .

If gi, hi, ki ∈ Gbi , 0 < bi ≤ 1 fi ∈ A and∣∣∣∣z2f ′i(z)

[fi(z)]2
− 1

∣∣∣∣ < 1,

∣∣∣∣z2g′i(z)

[gi(z)]2
− 1

∣∣∣∣ < 1,

∣∣∣∣z2h′i(z)

[hi(z)]2
− 1

∣∣∣∣ < 1,

∣∣∣∣z2k′i(z)

[ki(z)]2
− 1

∣∣∣∣ < 1,

|fi(z)| ≤Mi, |gi(z)| ≤ Ni, |hi(z)| ≤ Pi, |ki(z)| ≤ Qi,

for all z ∈ U, i = 1, n, then for any complex numbers δ, Reδ ≥ Reγ, the integral operator Tδ,n, defined
by (2.1.4) is in the class S.

Letting n = 1, α1 − 1 = β1 = γ1 and b1 = b in Theorem 2.5.6, we obtain the next corollary:

Corollary 2.5.6.1. Let α be complex number, Reα > 0, M ≥ 1, N ≥ 1, P ≥ 1, Q ≥ 1 positive real
numbers, with

Reα ≥ [2 |α− 1| (M +N + 2P + 2Q+ 3) + 2 |α− 1| b (N + P +Q+ 3)] .

If g, h, k ∈ Gb, 0 < b ≤ 1 , f ∈ A and∣∣∣∣z2f ′(z)

[f(z)]2
− 1

∣∣∣∣ < 1,

∣∣∣∣z2g′(z)

[g(z)]2
− 1

∣∣∣∣ < 1,

∣∣∣∣z2h′(z)

[h(z)]2
− 1

∣∣∣∣ < 1,

∣∣∣∣z2k′(z)

[k(z)]2
− 1

∣∣∣∣ < 1

|f(z)| ≤M, |g(z)| ≤ N, |h(z)| ≤ P, |k(z)| ≤ Q,

for all z ∈ U, then the integral operator T , defined by (2.2.23) is in the class S.
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Theorem 2.5.7. Let αi, βi, γi, δi be complex numbers, δ ∈ C with

Reδ ≥
n∑
i=1

[|αi − 1|+ (2bi + 1) |βi|+ 2 |γi|+ (4bi + 2) |δi|]

and let c ∈ C be such that

|c| ≤ 1− 1

Reδ

n∑
i=1

[|αi − 1|+ (2bi + 1) |βi|+ 2 |γi|+ (4bi + 2) |δi|] .

If gi, hi, ki ∈ Gbi , 0 < bi ≤ 1, fi ∈ A and∣∣∣∣zf ′i(z)

fi(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zg′i(z)

gi(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zh′i(z)

hi(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zk′i(z)

ki(z)
− 1

∣∣∣∣ < 1,

for all z ∈ U, i = 1, n, then the integral operator Tδ,n, defined by (2.1.4) is in the class S.

Putting n = 1, α1 − 1 = β1 = γ1 and b1 = b in Theorem 2.5.7, we obtain the next corollary:

Corollary 2.5.7.1. Let α ∈ C∗ with

Reα ≥ 6 |α− 1| (b+ 1)

and let c ∈ C be such that
|c| ≤ 1− 6

Reα
|α− 1| (b+ 1) .

If g, h, k ∈ Gb, 0 < b ≤ 1, f ∈ A and∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zk′i(z)

ki(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zh′(z)

h(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zk′(z)

k(z)
− 1

∣∣∣∣ < 1,

for all z ∈ U, then the integral operator T , defined by (2.2.23) is in the class S.

Theorem 2.5.8. Let αi, βi, γi, δi be complex numbers, Mi ≥ 1, Ni ≥ 1, Pi ≥ 1, Qi ≥ 1 positive real
numbers, δ ∈ C with

Reδ ≥
n∑
i=1

[|αi − 1| (2Mi + 1) + (bi |βi|+ |βi|) (2Ni + 1)] +

+
n∑
i=1

[(|γi|+ |δi| bi + |δi|) (2Pi + 2Qi + 2) + bi |βi|+ 2bi |δi|]

and let c ∈ C be such that

|c| ≤ 1− 1

Reδ

n∑
i=1

[|αi − 1| (2Mi + 1) + (bi |βi|+ |βi|) (2Ni + 1)]−

− 1

Reδ

n∑
i=1

[(|γi|+ |δi| bi + |δi|) (2Pi + 2Qi + 2) + bi |βi|+ 2bi |δi|] .

If gi, hi, ki ∈ Gbi , 0 < bi ≤ 1 , fi ∈ A and∣∣∣∣z2f ′i(z)

[fi(z)]2
− 1

∣∣∣∣ < 1,

∣∣∣∣z2g′i(z)

[gi(z)]2
− 1

∣∣∣∣ < 1,

∣∣∣∣z2h′i(z)

[hi(z)]2
− 1

∣∣∣∣ < 1,

∣∣∣∣z2k′i(z)

[ki(z)]2
− 1

∣∣∣∣ < 1,

for all z ∈ U, i = 1, n, then the integral operator Tδ,n defined by (2.1.4) is in the class S.
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Letting n = 1, α1 − 1 = β1 = γ1 and b1 = b in Theorem 2.5.8, we obtain the next corollary:

Corollary 2.5.8.1. Let α ∈ C∗, M ≥ 1, N ≥ 1 , P ≥ 1, Q ≥ 1 positive real numbers, with

Reα ≥ [2 |α− 1| (M +N + 2P + 2Q+ 3) + 2 |α− 1| b (N + P +Q+ 3)]

and let c ∈ C be such that

|c| ≤ 1− 1

Reα
[2 |α− 1| (M +N + 2P + 2Q+ 3) + 2 |α− 1| b (N + P +Q+ 3)] .

If g, h, k ∈ Gb, 0 < b ≤ 1 , f ∈ A and∣∣∣∣z2f ′(z)

[f(z)]2
− 1

∣∣∣∣ < 1,

∣∣∣∣z2g′(z)

[g(z)]2
− 1

∣∣∣∣ < 1,

∣∣∣∣z2h′(z)

[h(z)]2
− 1

∣∣∣∣ < 1,

∣∣∣∣z2k′(z)

[k(z)]2
− 1

∣∣∣∣ < 1,

for all z ∈ U, then the integral operator T , defined by (2.2.23) is in the class S.

2.6 Univalence conditions for the classS(p)

This section contains sufficient conditions of univalence of the four integral operators if the func-
tions involved belong to the class of functions Sp, 0 < p ≤ 2.

Theorem 2.6.1. Let fi, gi ∈ A, where fi, hi be in the class S (pi), 0 < pi ≤ 2, iar Mi, Ni are real
positive numbers and δ, αi, βi, γi, c be complex numbers for all i = 1, n, with

Reδ >
n∑
i=1

{|αi − 1| [(1 + pi)Mi + 1] + |βi|+ |γi| [(1 + pi)Ni + 1]} , |c| ≤ 1, c 6= −1.

If

|fi (z)| < Mi, |gi (z)| < Ni,

∣∣∣∣g′′
i (z)

g
′
i(z)

∣∣∣∣ ≤ 1,

and

|c| ≤ 1− 1

Reδ

n∑
i=1

{|αi − 1| [(1 + pi)Mi + 1] + |βi|+ |γi| [(1 + pi)Ni + 1]}

for all z ∈ U, i = 1, n, then the integral operatorMδ,n, defined by (2.1.1) is in the class S.

Letting Mi = Ni = 1 in Theorem 2.6.1, we obtain the next corollary:

Corollary 2.6.1.1. Let fi, gi ∈ S (pi), 0 < pi ≤ 2 and δ, αi, βi, γi, c be complex numbers for all i = 1, n,
with

Reδ >
n∑
i=1

[(pi + 2) (|αi − 1|+ |γi|) + |βi|] , |c| ≤ 1.

If

|fi (z)| < 1, |gi (z)| < 1,

∣∣∣∣g′′
i (z)

g
′
i(z)

∣∣∣∣ ≤ 1,
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and

|c| ≤ 1− 1

Reδ

n∑
i=1

[(pi + 2) (|αi − 1|+ |γi|) + |βi|] ,

oricare ar fi z ∈ U, i = 1, n, then the integral operatorMδ,n, defined by (2.1.1) is in the class S .

If we consider n = 1 and α1 − 1 = β1 = γ1 in Theorem 2.6.1, we obtain the next corollary:

Corollary 2.6.1.2. Let f, g ∈ S (p), 0 < p ≤ 2, M,N positive real numbers and α, c complex numbers,
with

Reα > |α− 1| [(1 + p)M + (1 + p)N + 3] , |c| ≤ 1.

If

|f (z)| < M, |g (z)| < N,

∣∣∣∣g′′
(z)

g′(z)

∣∣∣∣ ≤ 1,

and
|c| ≤ 1− 1

Reα
|α− 1| [(1 + p)M + (1 + p)N + 3] ,

for all z ∈ U, then the integral operatorM, defined by (2.2.5) is in the class S.

Theorem 2.6.2. Let fi, gi, hi ∈ A, where fi, gi, hi be in the class S (pi), 0 < pi ≤ 2, Mi, Ni, Pi are real
positive numbers and δ, αi, βi, γi, c be complex numbers for all i = 1, n, with

Reδ >
n∑
i=1

{
|αi − 1|

[(
Mi +N2

i

)
(1 + pi) + 1

]
+ |βi|+ |γi| [(1 + pi)Pi + 1]

}
, |c| ≤ 1, c 6= −1.

If

|fi (z)| < Mi, |gi (z)| < Ni,

∣∣∣∣h′′
i (z)

h
′
i(z)

∣∣∣∣ ≤ 1, |hi (z)| < Pi

and

|c| ≤ 1− 1

Reδ

n∑
i=1

{
|αi − 1|

[(
Mi +N2

i

)
(1 + pi) + 1

]
+ |βi|+ |γi| [(1 + pi)Pi + 1]

}
,

for all z ∈ U, i = 1, n, then the integral operator Cδ,n, defined by (2.1.2) is in the class S.

Letting Mi = Ni = Pi = 1 in Theorem 2.6.2, we obtain the next corollary:

Corollary 2.6.2.1. Let fi, gi, hi ∈ S (pi), 0 < pi ≤ 2 and δ, αi, βi, γi, c be complex numbers for all
i = 1, n, with

Reδ >
n∑
i=1

[(2pi + 3) |αi − 1|+ |βi|+ (pi + 2) |γi|] , |c| ≤ 1.

If

|fi (z)| ≤ 1, |gi (z)| ≤ 1,

∣∣∣∣h′′
i (z)

h
′
i(z)

∣∣∣∣ ≤ 1, |hi (z)| ≤ 1

and

|c| ≤ 1− 1

Reδ

n∑
i=1

[(2pi + 3) |αi − 1|+ |βi|+ (pi + 2) |γi|] ,

for all z ∈ U, i = 1, n, then the integral operator Cδ,n, defined by (2.1.2) is in the class S.
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Letting n = 1, δ = γ = α and α1 − 1 = β1 = γ1 in Theorem 2.6.2, we obtain the next corollary:

Corollary 2.6.2.2. Let f, g, h ∈ S (p), 0 < p ≤ 2, M,N,P be real positive numbers and α, c complex
numbers, with

Reα > |α− 1|
[(
M +N2 + P

)
(1 + p) + 3

]
, |c| ≤ 1.

If

|f (z)| < M, |g (z)| < N,

∣∣∣∣h′′
(z)

h′(z)

∣∣∣∣ ≤ 1, |h (z)| < P

and
|c| ≤ 1− 1

Reα
|α− 1|

[(
M +N2 + P

)
(1 + p) + 3

]
,

for all z ∈ U, then the integral operator C, defined by (2.2.10) is in the class S.

Theorem 2.6.3. Let fi, gi, hi, ki ∈ A, where gi, hi, ki be in the class S (pi), 0 < pi ≤ 2, Mi, Ni, Pi are
real positive numbers and δ, αi, βi, γi, c be complex numbers for all i = 1, n, with

Reδ >
n∑
i=1

{
|αi − 1|

[
(1 + pi)M

2
i + 1

]
+ |βi| [(Ni + Pi) (1 + pi) + 2] + 2 |γi|

}
, |c| ≤ 1, c 6= −1.

If

|gi (z)| < Mi, |hi (z)| < Ni, |ki (z)| < Pi,

∣∣∣∣f ′′
i (z)

f
′
i (z)

∣∣∣∣ ≤ 1,

∣∣∣∣h′′
i (z)

h
′
i(z)

∣∣∣∣ ≤ 1,

∣∣∣∣k′′
i (z)

k
′
i(z)

∣∣∣∣ ≤ 1

and

|c| ≤ 1− 1

Reδ

n∑
i=1

{
|αi − 1|

[
(1 + pi)M

2
i + 1

]
+ |βi| [(Ni + Pi) (1 + pi) + 2] + 2 |γi|

}
,

for all z ∈ U, i = 1, n, then the integral operator Gδ,n, defined by (2.1.3) is in the class S.

Putting Mi = Ni = Pi = 1 in Theorem 2.6.3, we obtain the next corollary:

Corollary 2.6.3.1. Let fi, gi, hi, ki ∈ S (pi), 0 < pi ≤ 2 and δ, αi, βi, γi, c be complex numbers for all
i = 1, n, with

Reδ >
n∑
i=1

[|αi − 1| (2 + pi) + 2 |βi| (2 + pi) + 2 |γi|] , |c| ≤ 1.

If

|gi (z)| < 1, |hi (z)| < 1, |ki (z)| < 1,

∣∣∣∣f ′′
i (z)

f
′
i (z)

∣∣∣∣ ≤ 1,

∣∣∣∣h′′
i (z)

h
′
i(z)

∣∣∣∣ ≤ 1,

∣∣∣∣k′′
i (z)

k
′
i(z)

∣∣∣∣ ≤ 1

and

|c| ≤ 1− 1

Reδ

n∑
i=1

[|αi − 1| (2 + pi) + 2 |βi| (2 + pi) + 2 |γi|] ,

for all z ∈ U and i = 1, n, then the integral operator Gδ,n, defined by (2.1.3) is in the class S.
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If we consider n = 1, δ − 1 = γ = α and α1 − 1 = β1 = γ1 in Theorem 2.6.3, we obtain the next
corollary:

Corollary 2.6.3.2. Let f, g, h, k ∈ S (p), 0 < p ≤ 2, M,N,P are real positive numbers and α, c be
complex numbers for all

Reα > |α− 1|
[
(1 + p)

(
M2 +N + P

)
+ 5
]
, |c| ≤ 1.

If

|g (z)| < M, |h (z)| < N, |k (z)| < P,

∣∣∣∣f ′′
(z)

f ′(z)

∣∣∣∣ ≤ 1,

∣∣∣∣h′′
(z)

h′(z)

∣∣∣∣ ≤ 1,

∣∣∣∣k′′
(z)

k′(z)

∣∣∣∣ ≤ 1

and
|c| ≤ 1− 1

Reα
|α− 1|

[
(1 + p)

(
M2 +N + P

)
+ 5
]
,

for all z ∈ U, then the integral operator G, defined by (2.2.16) is in the class S.

Theorem 2.6.4. Let fi, gi, hi, ki ∈ A, with fi, hi, ki, be in the class S (pi), 0 < pi ≤ 2, Mi, Ni, Pi are
real positive numbers and δ, αi, βi, γi, δi, c be complex numbers for all i = 1, n, with

Reδ >
n∑
i=1

{|αi − 1| [Mi (1 + pi) + 1] + |βi|+ |γi| [(Ni + Pi) (1 + pi) + 2] + 2 |δi|} ,

for |c| ≤ 1, c 6= −1. If

|fi (z)| < Mi, |hi (z)| < Ni, |ki (z)| < Pi,

∣∣∣∣g′′
i (z)

g
′
i(z)

∣∣∣∣ ≤ 1,

∣∣∣∣h′′
i (z)

h
′
i(z)

∣∣∣∣ ≤ 1,

∣∣∣∣k′′
i (z)

k
′
i(z)

∣∣∣∣ ≤ 1,

and

|c| ≤ 1− 1

Reδ

n∑
i=1

{|αi − 1| [Mi (1 + pi) + 1] + |βi|+ |γi| [(Ni + Pi) (1 + pi) + 2] + 2 |δi|} ,

for all z ∈ U, i = 1, n, then the integral operator Tδ,n, defined by (2.1.4) is in the class S.

Letting Mi = Ni = Pi = 1 in Theorem 2.6.4, we obtain the next corollary:

Corollary 2.6.4.1. Let fi, gi, hi, ki ∈ S (pi), 0 < pi ≤ 2 and δ, αi, βi, γi, δi, c be complex numbers for all
i = 1, n, with

Reδ >
n∑
i=1

[|αi − 1| (pi + 2) + |βi|+ 2 |γi| (pi + 2) + 2 |δi|] , |c| ≤ 1.

If

|fi (z)| < 1, |hi (z)| < 1, |ki (z)| < 1,

∣∣∣∣g′′
i (z)

g
′
i(z)

∣∣∣∣ ≤ 1,

∣∣∣∣h′′
i (z)

h
′
i(z)

∣∣∣∣ ≤ 1,

∣∣∣∣k′′
i (z)

k
′
i(z)

∣∣∣∣ ≤ 1,

and

|c| ≤ 1− 1

Reδ

n∑
i=1

[|αi − 1| (pi + 2) + |βi|+ 2 |γi| (pi + 2) + 2 |δi|] ,

for all z ∈ U, i = 1, n, then the integral operator Tδ,n, defined by (2.1.4) is in the class S.
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If we consider n = 1 and α1 − 1 = β1 = γ1 in Theorem 2.6.4, we obtain the next corollary:

Corollary 2.6.4.2. Let f, g, h, k ∈ S (p), 0 < p ≤ 2, M,N,P are real positive numbers and α, c be
complex numbers, for all

Reα > {|α− 1| [(M +N + P ) (1 + p) + 6]} , |c| ≤ 1.

If

|f (z)| < M, |h (z)| < N, |k (z)| < P,

∣∣∣∣g′′
(z)

g′(z)

∣∣∣∣ ≤ 1,

∣∣∣∣h′′
(z)

h′(z)

∣∣∣∣ ≤ 1,

∣∣∣∣k′′
(z)

k′(z)

∣∣∣∣ ≤ 1,

and
|c| ≤ 1− 1

Reα
{|α− 1| [(M +N + P ) (1 + p) + 6]} ,

for all z ∈ U, then the integral operator T , defined by (2.2.23) is in the class S.

2.7 Univalence conditions for classes B(µ) and Sµ

This paragraph describes sufficient conditions of univalence for the four integral operators whose
functions belong to the classes of functions. B(µ), 0 ≤ µ < 1 and Sµ, 0 < µ ≤ 1.

Theorem 2.7.1. Let γ, δ, αi, βi, γi be complex numbers, c = Reγ > 0, i = 1, n and fi, gi be in the class
B(µi), 0 ≤ µi < 1, i = 1, n satisfy the inequality

n∑
i=1

(1− µi) (2 |αi − 1|+ 3 |βi|+ 2 |γi|) ≤
{
c, if 0 < c < 1

2
1
2

if 1
2
< c <∞,

then for all δ complex numbers, Reδ ≥ Reγ, the integral operatorMδ,n, given by (2.1.1) is analytic and
univalent in S.

Theorem 2.7.2. Let γ, δ, αi, βi, γi be complex numbers and the analytic functions fi, gi be in the class
Sµi , 0 < µi ≤ 1, i = 1, n satisfy the inequality∣∣∣∣zg′′i (z)

g
′
i(z)

∣∣∣∣ < |z|
If γ ∈ C, with Reγ = c > 0 and

n∑
i=1

(µi |αi − 1|+ |βi|+ µi |γi|) ≤
(2c+ 1)

2c+1
2c

2
,

then for any complex number δ, Reδ ≤ c, the general integral operator Mδ,n, defined by (2.1.1) is
analytic and univalent in U.

Letting n = 1, δ = γ = α and αi − 1 = βi = γi in Theorem 2.7.2, we obtain the next corollary:
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Corollary 2.7.2.1. Let be the analytic functions f , g be in the class Sµ, 0 < µ ≤ 1 satisfy the inequality∣∣∣∣zg′′(z)

g′(z)

∣∣∣∣ < |z| .
If α ∈ C, where Reα = c > 0 and

|α− 1| (2µ+ 1) ≤ (2c+ 1)
2c+1
2c

2
,

then the integral operatorM, defined by (2.2.5) is analytic and univalent in U.

Theorem 2.7.3. Let be the analytic functions fi, gi be in the class B(µi), 0 ≤ µi < 1, i = 1, n and
δ, γ, αi, βi, γi be complex numbers, with δ 6= 0. Suppose that Mi ≥ 1, Ni ≥ 1 are positive real numbers,
with Reγ = c > 0 and

Reδ ≥
n∑
i=1

{|αi − 1| [(2− µi)Mi + 1] + |βi|+ |γi| [(2− µi)Ni + 1]} .

If

|fi (z)| ≤Mi, |gi (z)| ≤ Ni,

∣∣∣∣zg′′
i (z)

g
′
i (z)

∣∣∣∣ ≤ 1, z ∈ U, i = 1, n

and

|c| ≤ 1− 1

Reδ

n∑
i=1

{|αi − 1| [(2− µi)Mi + 1] + |βi|+ |γi| [(2− µi)Ni + 1]} , c ∈ C, c 6= 0,

then the integral operatorMδ,n, defined by (2.1.1) is analytic and univalent in S.

Putting n = 1 and δ = γ = λ, in Theorem 2.7.3, we obtain the next corollary:

Corollary 2.7.3.1. Let be the analytic functions f , g be in the class B(µ), 0 ≤ µ < 1 and λ, α, β, γ be
complex numbers, with λ 6= 0. Suppose that M ≥ 1, N ≥ 1 are positive real numbers, with

Reλ ≥ {|α− 1| [(2− µ)M + 1] + |β|+ |γ| [(2− µ)N + 1]} .

If

|f (z)| ≤M, |g (z)| ≤ N,

∣∣∣∣zg′′
(z)

g′ (z)

∣∣∣∣ ≤ 1, z ∈ U

and

|c| ≤ 1− 1

Reλ
{|α− 1| [(2− µ)M + 1] + |β|+ |γ| [(2− µ)N + 1]} , c ∈ C, c 6= 0

then the integral operatorM, defined in

M∗(z) =

∫ z

0

[(
f(t)

t

)α−1

(g′(t))
β

(
g(t))

t

)γ]
dt (2.7.1)

is in the class S.
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Theorem 2.7.4. Let γ, δ, αi, βi, γi, c = Reγ > 0 be complex numbers and the analytic functions fi, gi,
hi be in the class B(µi), 0 ≤ µi < 1 and gi(z) ∈ R(µi), i = 1, n satisfy the inequality

n∑
i=1

(1− µi) (2 |αi − 1|+ 3 |βi|+ 2 |γi|) + 2 |αi − 1| ≤
{
c, if 0 < c < 1

2
,

1
2

if 1
2
< c <∞,

then for any complex number δ, Reδ ≥ Reγ, the general integral operator Cδ,n, defined by (2.1.2) is in
the class S.

Theorem 2.7.5. Let γ, δ, αi, βi, γi be complex numbers and the analytic functions fi, gi, hi be in the class
Sµi , 0 < µi ≤ 1, i = 1, n satisfy the inequality

|gi(z)| ≤ 1,

∣∣∣∣zh′′i (z)

h
′
i(z)

∣∣∣∣ < |z| .
If γ ∈ C with Reγ = c > 0 and

n∑
i=1

[(2µi + 1) |αi − 1|+ |βi|+ µi |γi|] ≤
(2c+ 1)

2c+1
2c

2
,

then for any complex number δ, Reδ ≤ c, the general integral operator Cδ,n, given by (2.1.2) is analytic
and univalent in U.

Letting n = 1, δ = γ = α and αi − 1 = βi = γi in Theorem 2.7.5, we obtain the next corollary:

Corollary 2.7.5.1. Let be the analytic functions f , g and h be in the class Sµ, 0 < µ ≤ 1 satisfy the
inequality

|g(z)| ≤ 1,

∣∣∣∣zh′′(z)

h′(z)

∣∣∣∣ < |z| .
If α ∈ C with Reα = c > 0 and

|α− 1| (3µ+ 2) ≤ (2c+ 1)
2c+1
2c

2
,

the integral operator C, defined by (2.2.10) is analytic and univalent in U.

Theorem 2.7.6. Let be the analytic functions fi, gi and hi be in the class B(µi), 0 ≤ µi < 1, i = 1, n
and δ, γ, αi, βi, γi be complex numbers, with δ 6= 0. Suppose that Mi ≥ 1, Ni ≥ 1, Pi ≥ 1 are positive
real numbers, with i = 1, n, with Reγ = c > 0 and

Reδ ≥
n∑
i=1

{
|αi − 1|

[
(2− µi)

(
Mi +N2

i

)
+ 1
]

+ |βi|+ |γi| [(2− µi)Pi + 1]
}
.

If

|fi (z)| ≤Mi, |gi (z)| ≤ Ni, |hi (z)| ≤ Pi,

∣∣∣∣zh′′
i (z)

h
′
i (z)

∣∣∣∣ ≤ 1,

for all z ∈ U, i = 1, n and

|c| ≤ 1− 1

Reδ

n∑
i=1

{
|αi − 1|

[
(2− µi)

(
Mi +N2

i

)
+ 1
]

+ |βi|+ |γi| [(2− µi)Pi + 1]
}
,

c ∈ C, c 6= 0, then the integral operator Cδ,n, defined by (2.1.2) is in the class S.
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If we consider n = 1 and δ = γ = α in Theorem 2.7.6, we obtain the next corollary:

Corollary 2.7.6.1. Let be the analytic functions f , g and h be in the class B(µ), 0 ≤ µ < 1 and λ, α, β, γ
be complex numbers, with λ 6= 0. Suppose that M ≥ 1, N ≥ 1, P ≥ 1 are positive real numbers and

Reλ ≥
{
|α− 1|

[
(2− µ)

(
M +N2

)
+ 1
]

+ |β|+ |γ| [(2− µ)P + 1]
}

If

|f (z)| ≤M, |g (z)| ≤ N, |g (z)| ≤ P,

∣∣∣∣zh′′
(z)

h′ (z)

∣∣∣∣ ≤ 1, z ∈ U

and

|c| ≤ 1− 1

Reλ

{
|α− 1|

[
(2− µ)

(
M +N2

)
+ 1
]

+ |β|+ |γ| [(2− µ)P + 1]
}
, c ∈ C, c 6= 0,

then the integral operator C∗, defined in

C∗(z) =

∫ z

0

[(
f(t)

t
eg(t)

)α−1

(h′(t))
β

(
h(t))

t

)γ]
dt, (2.7.2)

is in the class S.

Theorem 2.7.7. Let γ, δ, αi, βi, γi, c = Reγ > 0 be complex numbers and the analytic functions fi, hi,
ki be in the class B(µi), 0 ≤ µi < 1, gi(z) ∈ R(µi), i = 1, n satisfy the inequality

n∑
i=1

(1− µi) (3 |αi − 1|+ 4 |βi|+ 6 |γi|) + 2 |αi − 1| ≤
{
c, if 0 < c < 1

2
1
2

if 1
2
< c <∞,

then for any complex number δ, Reδ ≥ Reγ, the integral operator Gδ,n, defined by (2.1.3) is in the class
S.

Theorem 2.7.8. Let γ, δ, αi, βi, γi be complex numbers and the analytic functions fi, gi, hi, ki be in the
class Sµi , 0 < µi ≤ 1, i = 1, n satisfy the inequality

|gi(z)| ≤ 1,

∣∣∣∣zf ′′i (z)

f
′
i (z)

∣∣∣∣ < |z| , ∣∣∣∣zh′′i (z)

h
′
i(z)

∣∣∣∣ < |z| , ∣∣∣∣zk′′i (z)

k
′
i(z)

∣∣∣∣ < |z| .
If γ ∈ C, with Reγ = c > 0 and

n∑
i=1

[(2 + µi) |αi − 1|+ 2µi |βi|+ 2 |γi|] ≤
(2c+ 1)

2c+1
2c

2
,

then for any complex number δ, Reδ ≤ c, the integral operator Gδ,n, defined by (2.1.3) is analytic and
univalent in U.

Letting n = 1, δ = γ = α and αi − 1 = βi = γi in Theorem 2.7.8, we obtain the next corollary:

54



Corollary 2.7.8.1. Let be the analytic functions f , g, h, k be in the class Sµ, 0 < µ ≤ 1 satisfy the
inequality

|g(z)| ≤ 1,

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ < |z| , ∣∣∣∣zh′′(z)

h′(z)

∣∣∣∣ < |z| , ∣∣∣∣zk′′(z)

k′(z)

∣∣∣∣ < |z| .
Dacă α ∈ C with Reα = c > 0 and

|α− 1| (3µ+ 4) ≤ (2c+ 1)
2c+1
2c

2
,

then the integral operator G, defined by (2.2.16) is analytic and univalent in U.

Theorem 2.7.9. Let be the analytic functions fi, gi, hi, ki be in the class B(µi), 0 ≤ µi < 1 and
δ, γ, αi, βi, γi be complex numbers, with δ 6= 0. Suppose that Mi ≥ 1, Ni ≥ 1, Pi ≥ 1 are positive real
numbers and i = 1, n, with Reγ = c > 0 and

Reδ ≥
n∑
i=1

{
|αi − 1|

[
1 + (2− µi)M2

i

]
+ |βi| [(2− µi) (Ni + Pi) + 2] + 2 |γi|

}
.

If
|gi (z)| ≤Mi, |hi (z)| ≤ Ni, |ki (z)| ≤ Pi,∣∣∣∣zf ′′

i (z)

f
′
i (z)

∣∣∣∣ ≤ 1,

∣∣∣∣zh′′
i (z)

h
′
i (z)

∣∣∣∣ ≤ 1,

∣∣∣∣zk′′
i (z)

k
′
i (z)

∣∣∣∣ ≤ 1, z ∈ U, i = 1, n

and

|c| ≤ 1− 1

Reδ

n∑
i=1

{
|αi − 1|

[
1 + (2− µi)M2

i

]
+ |βi| [(2− µi) (Ni + Pi) + 2] + 2 |γi|

}
, c ∈ C, c 6= 0,

then the integral operator Gδ,n, defined by (2.1.3) is in the class S.

Letting n = 1 and δ = γ = λ in Theorem 2.7.9, we obtain the next corollary:

Corollary 2.7.9.1. Let be the analytic functions f , g, h, k be in the class B(µ), 0 ≤ µ < 1, and λ, α, β, γ
be complex numbers, with λ 6= 0. Suppose that M ≥ 1, N ≥ 1, P ≥ 1 are positive real numbers and

Reλ ≥
{
|α− 1|

[
1 + (2− µ)M2

]
+ |β| [(2− µ) (N + P ) + 2] + 2 |γ|

}
.

If
|g (z)| ≤M, |h (z)| ≤ N, |k (z)| ≤ P,∣∣∣∣zf ′′

(z)

f ′ (z)

∣∣∣∣ ≤ 1,

∣∣∣∣zh′′
(z)

h′ (z)

∣∣∣∣ ≤ 1,

∣∣∣∣zk′′
(z)

k′ (z)

∣∣∣∣ ≤ 1, z ∈ U

and

|c| ≤ 1− 1

Reλ

{
|α− 1|

[
1 + (2− µ)M2

]
+ |β| [(2− µ) (N + P ) + 2] + 2 |γ|

}
, c ∈ C, c 6= 0

then the integral operator G∗, defined by

G∗(z) =

∫ z

0

[(
f ′(t)eg(t)

)α−1
(
h(t)

k(t)

)β (
h′(t))

k′(t)

)γ]
dt, (2.7.3)

is in the class S.
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Theorem 2.7.10. Let γ, δ, αi, βi, γi, δi be complex numbers, c = Reγ > 0, i = 1, n and fi, gi, hi, ki be
in the class B(µi), 0 ≤ µi < 1, i = 1, n satisfy the inequality

n∑
i=1

(1− µi) (2 |αi − 1|+ 3 |βi|+ 4 |γi|+ 6 |δi|) ≤
{
c, if 0 < c < 1

2
1
2

if 1
2
< c <∞ ,

then for any complex number δ, Reδ ≥ Reγ, the integral operator Tδ,n, defined by (2.1.4) is in the class
S.

Theorem 2.7.11. Let γ, δ, αi, βi, γi, δi be complex numbers and fi, gi, hi, ki be in the class Sµi , 0 < µi ≤
1, i = 1, n satisfy the inequality∣∣∣∣zg′′i (z)

g
′
i(z)

∣∣∣∣ < |z| , ∣∣∣∣zh′′i (z)

h
′
i(z)

∣∣∣∣ < |z| , ∣∣∣∣zk′′i (z)

k
′
i(z)

∣∣∣∣ < |z| .
If γ ∈ C, with Reγ = c > 0 and

n∑
i=1

(µi |αi − 1|+ |βi|+ 2µi |γi|+ 2 |δi|) ≤
(2c+ 1)

2c+1
2c

2
,

then for any complex number δ, Reδ ≤ c, the integral operator Tδ,n, defined by (2.1.4) is analytic and
univalent in U.

If we consider n = 1, δ = γ = α and αi − 1 = βi = γi in Theorem 2.7.11, we obtain the next
corollary:

Corollary 2.7.11.1. Let be the analytic functions f , g, h, k be in the class Sµ, 0 < µ ≤ 1 satisfy the
inequality ∣∣∣∣zg′′(z)

g′(z)

∣∣∣∣ < |z| , ∣∣∣∣zh′′(z)

h′(z)

∣∣∣∣ < |z| , ∣∣∣∣zk′′(z)

k′(z)

∣∣∣∣ < |z| .
If α ∈ C, with Reα = c > 0 and

3 |α− 1| (µ+ 1) ≤ (2c+ 1)
2c+1
2c

2
,

then the integral operator T , defined by (2.2.23) is analytic and univalent in U.

Theorem 2.7.12. Let be the analytic functions fi, gi, hi, ki be in the class B(µi), 0 ≤ µi < 1, i = 1, n
and δ, γ, αi, βi, γi, δi be complex numbers, with δ 6= 0. Suppose that Mi ≥ 1, Ni ≥ 1, Pi ≥ 1are positive
real numbers and i = 1, n, with Reγ = c > 0 and

Reδ ≥
n∑
i=1

{|αi − 1| [(2− µi)Mi + 1] + |βi|+ |γi| [(2− µi)Ni + (2− µi)Pi + 2] + 2 |δi|} .

If

|fi (z)| ≤Mi, |hi (z)| ≤ Ni, |ki (z)| ≤ Pi,

∣∣∣∣zg′′
i (z)

g
′
i (z)

∣∣∣∣ ≤ 1,

∣∣∣∣zh′′
i (z)

h
′
i (z)

∣∣∣∣ ≤ 1,

∣∣∣∣zk′′
i (z)

k
′
i (z)

∣∣∣∣ ≤ 1,
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for all z ∈ U, i = 1, n and

|c| ≤ 1− 1

Reδ

n∑
i=1

{|αi − 1| [(2− µi)Mi + 1] + |βi|}−

− 1

Reδ

n∑
i=1

{|γi| [(2− µi)Ni + (2− µi)Pi + 2] + 2 |δi|} , c ∈ C, c 6= 0,

then the integral operator Tδ,n, defined by (2.1.4) is in the class S.

Letting n = 1 and δ = γ = λ, in Theorem 2.7.12, we obtain the next corollary:

Corollary 2.7.12.1. Let be the analytic functions f , g, h, k be in the class B(µ), 0 ≤ µ < 1, be complex
numbers, with λ, α, β, γ, , δ, with λ 6= 0. Suppose that M ≥ 1, N ≥ 1, P ≥ 1 are positive real numbers
and

Reλ ≥ {|α− 1| [(2− µ)M + 1] + |β|+ |γ| [(2− µ)N + (2− µ)P + 2] + |δ|} .

If
|f (z)| ≤M, |h (z)| ≤ N, |k (z)| ≤ P,∣∣∣∣zg′′

(z)

g′ (z)

∣∣∣∣ ≤ 1,

∣∣∣∣zh′′
(z)

h′ (z)

∣∣∣∣ ≤ 1,

∣∣∣∣zk′′
(z)

k′ (z)

∣∣∣∣ ≤ 1, z ∈ U

and

|c| ≤ 1− 1

Reλ
{|α− 1| [(2− µ)M + 1] + |β|+ |γ| [(2− µ)N + (2− µ)P + 2] + |δ|} , c ∈ C, c 6= 0,

then the integral operator T , defined by

T ∗(z) =

∫ z

0

[(
f(t)

t

)α−1 (
g(t)′

)β (h(t)

k(t)

)γ (
h′(t))

k′(t)

)δ]
dt, (2.7.4)

is in the class S.

2.8 Univalence conditions for the class B(µ, α)

This paragraph presents sufficient conditions of univalence for the integral operators of this paper
in the situation when their functions belong to the class of functions. B(µ, α), 0 ≤ α < 1, µ ≥ 0.

Theorem 2.8.1. Let δ, γ, αi, βi, γi ∈ C, c = Reγ > 0 and Mi, Ni, Pi ≥ 1, i = 1, n are positive real
numbers, such that

(2c+ 1)
2c+1
2c

n∑
i=1

|αi − 1|
[
1 + (2− λi)Mµi−1

i

]
+ 2c

n∑
i=1

|βi|Ni+

+ (2c+ 1)
2c+1
2c

n∑
i=1

{
|γi|
[
1 + (2− ηi)P νi−1

i

]}
≤ c (2c+ 1)

2c+1
2c .

57



If fi ∈ B (µi, λi), gi ∈ B (νi, ηi), 0 ≤ λi, ηi < 1, µi, νi ≥ 0 satisfies

|fi (z)| < Mi,

∣∣∣∣g′′
i (z)

g
′
i(z)

∣∣∣∣ ≤ Ni, |gi (z)| < Pi,

for all z ∈ U, i = 1, n, then for any complex number δ, Reδ ≥ Reγ, the functionMδ,n, defined by (2.1.1)
is in the class S.

Putting µi = νi = Mi = Ni = Pi = 1 and ηi = λi for all i = 1, n in Theorem 2.8.1, we obtain the
next corollary:

Corollary 2.8.1.1. Let δ, γ, αi, βi, γi ∈ C, c = Reγ > 0 and 0 ≤ λi < 1, i = 1, n, such that

(2c+ 1)
2c+1
2c

n∑
i=1

(3− λi) (|αi − 1|+ |γi|) + 2c
n∑
i=1

|βi| ≤ c (2c+ 1)
2c+1
2c .

If fi, gi ∈ S∗ (λi) and

|fi (z)| < 1,

∣∣∣∣g′′
i (z)

g
′
i(z)

∣∣∣∣ ≤ 1, |gi (z)| < 1,

for all z ∈ U, i = 1, n, then for any complex number δ, Reδ ≥ Reγ, the functionMδ,n, defined by (2.1.1)
is in the class S.

Theorem 2.8.2. Let c, δ, αi, βi, γi ∈ C, Reδ > 0 and Mi, Ni, Pi ≥ 1, i = 1, n are positive real numbers.
Suppose that fi ∈ B (µi, λi), gi ∈ B (νi, ηi), 0 ≤ λi, ηi < 1, µi, νi ≥ 0 satisfy

|fi (z)| < Mi,

∣∣∣∣zg′′
i (z)

g
′
i(z)

∣∣∣∣ < Ni, |gi (z)| < Pi.

If

Reδ ≥
n∑
i=1

{
|αi − 1|

[
1 + (2− λi)Mµi−1

i

]
+ |βi|Ni + |γi|

[
1 + (2− ηi)P νi−1

i

]}
and

|c| ≤ 1− 1

Reδ

n∑
i=1

{
|αi − 1|

[
1 + (2− λi)Mµi−1

i

]
+ |βi|Ni + |γi|

[
1 + (2− ηi)P νi−1

i

]}
,

for all z ∈ U, i = 1, n, then the functionMδ,n, defined by (2.1.1) is in the class S.

Letting µi = νi = Mi = Ni = Pi = 1 and ηi = λi for all i = 1, n in Theorem 2.8.3, we obtain the
next corollary:

Corollary 2.8.2.1. Let c, δ, αi, βi, γi ∈ C with Reδ > 0. Suppose that fi, gi ∈ S∗ (λi), 0 ≤ λi < 1 satisfy

|fi (z)| < 1,

∣∣∣∣zg′′
i (z)

g
′
i(z)

∣∣∣∣ < 1, |gi (z)| < 1.
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If

Reδ ≥
n∑
i=1

[(3− λi) (|αi − 1|+ |γi|) + |βi|]

and

|c| ≤ 1− 1

Reδ

n∑
i=1

[(3− λi) (|αi − 1|+ |γi|) + |βi|] ,

for all z ∈ U, i = 1, n, then the functionMδ,n, defined by (2.1.1) is in the class S.

If we consider n = 1 and αi − 1 = βi = γi = δ in Theorem 2.8.3, we obtain the next corollary:

Corollary 2.8.2.2. Let c, δ ∈ C with Reδ > 0 and M,N,P ≥ 1 are positive real numbers. Suppose that
f ∈ B (µ, λ), g ∈ B (ν, η), 0 ≤ λ, η < 1, µ, ν ≥ 0 satisfy

|f (z)| < M,

∣∣∣∣zg′′
(z)

g′(z)

∣∣∣∣ < N, |g (z)| < P.

If
Reδ ≥ |δ|

[
(2− λ)Mµ−1 + (2− η)P ν−1 +N + 2

]
and

|c| ≤ 1− |δ|
Reδ

[
(2− λ)Mµ−1 + (2− η)P ν−1 +N + 2

]
,

for all z ∈ U, then the integral operatorM, defined by (2.2.5) is in the class S .

Theorem 2.8.3. Let δ, αi, βi, γi ∈ C, c = Reδ > 0, M0 the positive solution of the equation (1.1.1.),
M0 = 1, 5936... and fi ∈ B (µi, λi), gi ∈ B (νi, ηi), 0 ≤ λi, ηi < 1, µi, νi ≥ 0 for all z ∈ U, i = 1, n.
Suppose also that

|fi (z)| < Mi,

∣∣∣∣g′′
i (z)

g
′
i(z)

∣∣∣∣ < M0,

where Mi are positive real numbers. If

1

c

n∑
i=1

[
|αi − 1| (2− λi)Mµi−1

i + |βi|
]

+
2

(2c+ 1)
2c+1
2c

n∑
i=1

|γi|M0 ≤ 1,

then the functionMδ,n, defined by (2.1.1) is in the class S.

Theorem 2.8.4. Let δ, γ, αi, βi, γi ∈ C, c = Reγ > 0 and Mi, Ni, Pi, Qi ≥ 1, i = 1, n positive real
numbers, such that

(2c+ 1)
2c+1
2c

n∑
i=1

{
|αi − 1|

[
1 + (2− λi)Mµi−1

i

]
+ |γi|

[
1 + (2− ρi)Qθi−1

i

]}
+

+2c
n∑
i=1

[|αi − 1| (2− ηi)Nνi
i + |βi|Pi] ≤ c (2c+ 1)

2c+1
2c .

If fi ∈ B (µi, λi), gi ∈ B (νi, ηi), hi ∈ B (θi, ρi), 0 ≤ λi, ηi, ρi < 1, µi, νi, θi ≥ 0 satisfies

|fi (z)| < Mi, |gi (z)| < Ni,

∣∣∣∣h′′
i (z)

h
′
i(z)

∣∣∣∣ ≤ Pi, |hi (z)| < Qi,

for all z ∈ U, i = 1, n, then for any complex number δ, Reδ ≥ Reγ, the function Cδ,n, defined by (2.1.2)
is in the class S.
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Letting µi = νi = θi = Mi = Ni = Pi = Qi = 1 and ρi = ηi = λi for all i = 1, n in Theorem
2.8.5, we obtain the next corollary:

Corollary 2.8.4.1. Let δ, γ, αi, βi, γi ∈ C, c = Reγ > 0 and 0 ≤ λi < 1, i = 1, n, such that

(2c+ 1)
2c+1
2c

n∑
i=1

(3− λi) (|αi − 1|+ |γi|) + 2c
n∑
i=1

[|αi − 1| (2− λi) + |βi|] ≤ c (2c+ 1)
2c+1
2c .

If fi, gi, hi ∈ S∗ (λi) and

|fi (z)| < 1, |gi (z)| < 1,

∣∣∣∣h′′
i (z)

h
′
i(z)

∣∣∣∣ ≤ 1, |hi (z)| < 1,

for all z ∈ U, i = 1, n, then for any complex number δ, Reδ ≥ Reγ, the function Cδ,n, defined by (2.1.2)
is in the class S.

Theorem 2.8.5. Let c, δ, αi, βi, γi ∈ C, Reδ > 0 and Mi, Ni, Pi, Qi ≥ 1, i = 1, n are positive real
numbers. Suppose that fi ∈ B (µi, λi), gi ∈ B (νi, ηi), hi ∈ B (θi, νi), 0 ≤ λi, ηi, ρi < 1, µi, νi, θi ≥ 0
satisfies

|fi (z)| < Mi,
∣∣∣zg′

i (z)
∣∣∣ < Ni,

∣∣∣∣zh′′
i (z)

h
′
i(z)

∣∣∣∣ < Pi, |hi (z)| < Qi,

for all z ∈ U, i = 1, n. If

Reδ ≥
n∑
i=1

{
|αi − 1|

[
1 + (2− λi)Mµi−1

i +Ni

]
+ |βi|Pi + |γi|

[
1 + (2− ρi)Qθi−1

i

]}
and

|c| ≤ 1− 1

Reδ

n∑
i=1

{
|αi − 1|

[
1 + (2− λi)Mµi−1

i +Ni

]
+ |βi|Pi + |γi|

[
1 + (2− ρi)Qθi−1

i

]}
,

for all z ∈ U, i = 1, n, then the function Cδ,n, defined by (2.1.2) is in the class S.

If we consider µi = νi = θi = Mi = Ni = Pi = Qi = 1 and ρi = ηi = λi for all i = 1, n in
Theorem 2.8.6, we obtain the next corollary:

Corollary 2.8.5.1. Let c, δ, αi, βi, γi ∈ C with Reδ > 0. Suppose that fi, gi, hi ∈ S∗ (λi), 0 ≤ λi < 1
satisfies

|fi (z)| < 1,
∣∣∣zg′

i (z)
∣∣∣ < 1,

∣∣∣∣zh′′
i (z)

h
′
i(z)

∣∣∣∣ < 1, |hi (z)| < 1, .

If

Reδ ≥
n∑
i=1

[(4− λi) |αi − 1|+ |βi|+ |γi| (3− λi)]

and

|c| ≤ 1− 1

Reδ

n∑
i=1

[(4− λi) |αi − 1|+ |βi|+ |γi| (3− λi)] ,

for all z ∈ U, i = 1, n, then the function Cδ,n, defined by (2.1.2) is in the class S.
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Putting n = 1 and αi − 1 = βi = γi = δ in Theorem 2.8.6, we obtain the next corollary:

Corollary 2.8.5.2. Let c, δ ∈ C with Reδ > 0 and M,N,P,Q ≥ 1 are positive real numbers. Suppose
that f ∈ B (µ, λ), g ∈ B (ν, η), h ∈ B (θ, ρ), 0 ≤ λ, η, ρ < 1, µ, ν, θ ≥ 0 satisfy

|f (z)| < M,
∣∣∣zg′

(z)
∣∣∣ < N,

∣∣∣∣zh′′
(z)

h′(z)

∣∣∣∣ < P, |h (z)| < Q.

for all z ∈ U. If
Reδ ≥ |δ|

[
(2− λ)Mµ−1 + (2− ρ)Qθ−1 +N + P + 2

]
and

|c| ≤ 1− |δ|
Reδ

[
(2− λ)Mµ−1 + (2− ρ)Qθ−1 +N + P + 2

]
,

then the integral operator C, defined by (2.2.10) is in the class S.

Theorem 2.8.6. Let δ, αi, βi, γi ∈ C, c = Reδ > 0, M0 the positive solution of the equation (1.1.1),
M0 = 1, 5936... and fi ∈ B (µi, λi), gi ∈ B (νi, ηi), hi ∈ A, 0 ≤ λi, ηi < 1, µi, νi ≥ 0 for all z ∈ U,
i = 1, n. Suppose also that

|fi (z)| < Mi, |gi (z)| < Ni,

∣∣∣∣h′′
i (z)

h
′
i(z)

∣∣∣∣ < M0,

where Mi, Ni are positive real numbers. If

1

c

n∑
i=1

{
|αi − 1|

[
1 + (2− λi)Mµi−1

i

]
+ |γi|

}
+

+
2

(2c+ 1)
2c+1
2c

n∑
i=1

[|βi|M0 + |γi| |αi − 1| (2− ηi)N νi
i ] ≤ 1,

then the function Cδ,n, defined by (2.1.2) is in the class S.

Theorem 2.8.7. Let δ, γ, αi, βi, γi ∈ C, c = Reγ > 0 and Mi, Ni, Pi, Qi, Ri, Si ≥ 1, i = 1, n positive
real numbers, such that

(2c+ 1)
2c+1
2c

n∑
i=1

|βi|
[
(2− ηi)P νi−1

i + (2− ρi)Qθi−1
i + 2

]
+

+2c
n∑
i=1

{|αi − 1| [Mi + (2− λi)Nµi
i ] + |γi| (Ri + Si)} ≤ c (2c+ 1)

2c+1
2c .

If fi ∈ A, gi ∈ B (µi, λi), hi ∈ B (νi, ηi), ki ∈ B (θi, ρi), 0 ≤ λi, ηi, ρi < 1, µi, νi, θi ≥ 0 satisfies∣∣∣∣f ′′
i (z)

f
′
i (z)

∣∣∣∣ ≤Mi, |gi (z)| < Ni, |hi (z)| < Pi, |ki (z)| < Qi,

∣∣∣∣h′′
i (z)

h
′
i(z)

∣∣∣∣ ≤ Ri,

∣∣∣∣k′′
i (z)

k
′
i(z)

∣∣∣∣ ≤ Si,

for all z ∈ U, i = 1, n, then for any complex number δ, Reδ ≥ Reγ, the function Gδ,n, defined by (2.1.3)
is in the class S.
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Letting µi = νi = θi = Mi = Ni = Pi = Qi = Ri = Si = 1 and ρi = ηi = λi for all i = 1, n in
Theorem 2.8.8, we obtain the next corollary:

Corollary 2.8.7.1. Let δ, γ, αi, βi, γi ∈ C, c = Reγ > 0 and 0 ≤ λi < 1, i = 1, n, such that

(2c+ 1)
2c+1
2c

n∑
i=1

2 |βi| (3− λi) + 2c
n∑
i=1

[|αi − 1| (3− λi) + 2 |γi|] ≤ c (2c+ 1)
2c+1
2c .

If fi ∈ A, gi,hi, ki ∈ S∗ (λi) and∣∣∣∣f ′′
i (z)

f
′
i (z)

∣∣∣∣ ≤ 1, |gi (z)| < 1, |hi (z)| < 1, |ki (z)| < 1,

∣∣∣∣h′′
i (z)

h
′
i(z)

∣∣∣∣ ≤ 1,

∣∣∣∣k′′
i (z)

k
′
i(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, i = 1, n, then for any complex number δ, Reδ ≥ Reγ, the function Gδ,n, defined by (2.1.3)
is in the class S.

Theorem 2.8.8. Let c, δ, αi, βi, γi ∈ C, Reδ > 0 and Mi, Ni, Pi, Qi, Ri, Si ≥ 1, i = 1, n are positive real
numbers. Suppose that fi ∈ A, hi ∈ B (µi, λi), ki ∈ B (νi, ηi), gi ∈ B (θi, ρi), 0 ≤ λi, ηi, ρi < 1,
µi, νi, θi ≥ 0 satisfies∣∣∣∣zf ′′

i (z)

f
′
i (z)

∣∣∣∣ < Mi,
∣∣∣zg′

i (z)
∣∣∣ < Ni, |hi (z)| < Pi, |ki (z)| < Qi,

∣∣∣∣zh′′
i (z)

h
′
i(z)

∣∣∣∣ < Ri,

∣∣∣∣zk′′
i (z)

k
′
i(z)

∣∣∣∣ < Si,

for all z ∈ U, i = 1, n. If

Reδ ≥
n∑
i=1

{
|αi − 1| (Mi +Ni) + |βi|

[
(2− λi)P µi−1

i + (2− ηi)Qνi−1
i + 2

]
+ |γi| (Ri + Si)

}
and

|c| ≤ 1− 1

Reδ

n∑
i=1

{
|αi − 1| (Mi +Ni) + |βi|

[
(2− λi)P µi−1

i

]}
+

− 1

Reδ

n∑
i=1

{
|βi|
[
(2− ηi)Qνi−1

i + 2
]

+ |γi| (Ri + Si)
}
,

for all z ∈ U, i = 1, n, then the function Gδ,n, defined by (2.1.3) is in the class S.

Putting µi = νi = θi = Mi = Ni = Pi = Qi = Ri = Si = 1 and ρi = ηi = λi for all i = 1, n in
Theorem 2.8.9, we obtain the next corollary:

Corollary 2.8.8.1. Let c, δ, αi, βi, γi ∈ C with Reδ > 0. Suppose that gi, hi, ki ∈ S∗ (λi), 0 ≤ λi < 1
and fi ∈ A satisfies∣∣∣∣zf ′′

i (z)

f
′
i (z)

∣∣∣∣ < 1,
∣∣∣zg′

i (z)
∣∣∣ < 1, |hi (z)| < 1, |ki (z)| < 1,

∣∣∣∣zh′′
i (z)

h
′
i(z)

∣∣∣∣ < 1,

∣∣∣∣zk′′
i (z)

k
′
i(z)

∣∣∣∣ < 1.

If

Reδ ≥ 2
n∑
i=1

[|αi − 1|+ |βi| (3− λi) + |γi|]

and

|c| ≤ 1− 2

Reδ

n∑
i=1

[|αi − 1|+ |βi| (3− λi) + |γi|] ,

for all z ∈ U, i = 1, n, then the function Gδ,n, defined by (2.1.3) is in the class S.
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If we consider n = 1 and αi − 1 = βi = γi = δ in Theorem 2.8.9, we obtain the next corollary:

Corollary 2.8.8.2. Let c, δ ∈ C with Reδ > 0 and M,N,P,Q,R, S ≥ 1are positive real numbers.
Suppose that f ∈ A, h ∈ B (µ, λ), k ∈ B (ν, η), g ∈ B (θ, ρ), 0 ≤ λ, η, ρ < 1, µ, ν, θ ≥ 0 such that∣∣∣∣zf ′′

(z)

f ′(z)

∣∣∣∣ < M,
∣∣∣zg′

(z)
∣∣∣ < N, |h (z)| < P, |k (z)| < Q,

∣∣∣∣zh′′
(z)

h′(z)

∣∣∣∣ < R,

∣∣∣∣zk′′
(z)

k′(z)

∣∣∣∣ < S,

for all z ∈ U. If

Reδ ≥ |δ|
[
M +N + (2− λ)P µ−1 + (2− η)Qν−1 +R + S + 2

]
and

|c| ≤ 1− |δ|
Reδ

[
M +N + (2− λ)P µ−1 + (2− η)Qν−1 +R + S + 2

]
,

then the integral operator G, defined by (2.2.16) is in the class S.

Theorem 2.8.9. Let δ, αi, βi, γi ∈ C, c = Reδ > 0, M0 the positive solution of the equation (1.1.1),
M0 = 1, 5936... and fi ∈ A, gi ∈ B (µi, λi), hi ∈ B (νi, ηi), ki ∈ B (θi, ρi), 0 ≤ λi, ηi, ρi < 1,
µi, νi, θi ≥ 0, for all z ∈ U, i = 1, n. Suppose also that∣∣∣∣f ′′

i (z)

f
′
i (z)

∣∣∣∣ < M0, |gi (z)| < Mi,

∣∣∣∣h′′
i (z)

h
′
i(z)

∣∣∣∣ < M0,

∣∣∣∣k′′
i (z)

k
′
i(z)

∣∣∣∣ < M0,

where Mi are positive real numbers. If

1

c

n∑
i=1

|βi|+
2

(2c+ 1)
2c+1
2c

n∑
i=1

{|αi − 1| [M0 + (2− λi)Mµi
i ] + 2M0 |γi|} ≤ 1,

then the function Gδ,n, defined by (2.1.3) is in the class S.

Theorem 2.8.10. Let δ, γ, αi, βi, γi, δi ∈ C, c = Reγ > 0 and Mi, Ni, Pi, Qi, Ri, Si ≥ 1, i = 1, n,
positive real numbers, such that

(2c+ 1)
2c+1
2c

n∑
i=1

{
|αi − 1|

[
1 + (2− λi)Mµi−1

i

]
+ |γi|

[
2 + (2− ηi)P νi−1

i

]}
+

+ (2c+ 1)
2c+1
2c

n∑
i=1

|γi| (2− ρi)Qθi−1
i + 2c

n∑
i=1

[|βi|Ni + |δi| (Ri + Si)] ≤ c (2c+ 1)
2c+1
2c .

If fi ∈ B (µi, λi) , gi ∈ A, hi ∈ B (νi, ηi), ki ∈ B (θi, ρi), 0 ≤ λi, ηi, ρi < 1, µi, νi, θi ≥ 0 satisfies

|fi (z)| < Mi,

∣∣∣∣g′′
i (z)

g
′
i(z)

∣∣∣∣ ≤ Ni, |hi (z)| < Pi, |ki (z)| < Qi,

∣∣∣∣h′′
i (z)

h
′
i(z)

∣∣∣∣ ≤ Ri,

∣∣∣∣k′′
i (z)

k
′
i(z)

∣∣∣∣ ≤ Si,

for all z ∈ U, i = 1, n, then for any complex number δ, Reδ ≥ Reγ, the function Tδ,n, defined by (2.1.4)
is in the class S.

Letting µi = νi = θi = Mi = Ni = Pi = Qi = Ri = Si = 1 and ρi = ηi = λi for all i = 1, n in
Theorem 2.8.11, we obtain the next corollary:
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Corollary 2.8.10.1. Let δ, γ, αi, βi, γi, δi ∈ C, c = Reγ > 0 and 0 ≤ λi < 1, i = 1, n, such that

(2c+ 1)
2c+1
2c

n∑
i=1

(3− λi) (|αi − 1|+ 2 |γi|) + 2c
n∑
i=1

(|βi|+ 2 |δi|) ≤ c (2c+ 1)
2c+1
2c .

If gi ∈ A, fi,hi, ki ∈ S∗ (λi), 0 ≤ λi < 1 and

|fi (z)| < 1,

∣∣∣∣g′′
i (z)

g
′
i(z)

∣∣∣∣ ≤ 1, |hi (z)| < 1, |ki (z)| < 1,

∣∣∣∣h′′
i (z)

h
′
i(z)

∣∣∣∣ ≤ 1,

∣∣∣∣k′′
i (z)

k
′
i(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, i = 1, n, then for any complex number δ, Reδ ≥ Reγ, the function Tδ,n, defined by (2.1.4)
is in the class S.

Theorem 2.8.11. Let c, δ, αi, βi, γi, δi ∈ C, Reδ > 0 and Mi, Ni, Pi, Qi, Ri, Si ≥ 1, i = 1, n are
positive real numbers. Suppose that fi ∈ B (µi, λi), gi ∈ A, hi ∈ B (νi, ηi), ki ∈ B (θi, ρi),
0 ≤ λi, ηi, ρi < 1, µi, νi, θi ≥ 0 satisfies

|fi (z)| < Mi,

∣∣∣∣zg′′
i (z)

g
′
i(z)

∣∣∣∣ < Ni, |hi (z)| < Pi, |ki (z)| < Qi,

∣∣∣∣zh′′
i (z)

h
′
i(z)

∣∣∣∣ < Ri,

∣∣∣∣zk′′
i (z)

k
′
i(z)

∣∣∣∣ < Si,

for all z ∈ U, i = 1, n. If

Reδ ≥
n∑
i=1

{
|αi − 1|

[
(2− λi)Mµi−1

i + 1
]

+ |βi|Ni

}
+

+
n∑
i=1

{
|γi|
[
(2− ηi)P νi−1

i + (2− ρi)Qθi−1
i + 2

]
+ |δi| (Ri + Si)

}
and

|c| ≤ 1− 1

Reδ

n∑
i=1

{
|αi − 1|

[
(2− λi)Mµi−1

i + 1
]

+ |βi|Ni

}
−

− 1

Reδ

n∑
i=1

{
|γi|
[
(2− ηi)P νi−1

i + (2− ρi)Qθi−1
i + 2

]
+ |δi| (Ri + Si)

}
,

for all z ∈ U, i = 1, n, the function Tδ,n, defined by (2.1.4) is in the class S.

Putting n = 1 and αi − 1 = βi = γi = δ in Theorem 2.8.12, we obtain the next corollary:

Corollary 2.8.11.1. Let c, δ ∈ C with Reδ > 0 and M,N,P,Q,R, S ≥ 1 are positive real numbers.
Suppose that f ∈ B (µ, λ), g ∈ A, h ∈ B (ν, η), k ∈ B (θ, ρ), 0 ≤ λ, η, ρ < 1, µ, ν, θ ≥ 0 such that

|f (z)| < M,

∣∣∣∣zg′′
(z)

g′(z)

∣∣∣∣ < N, |h (z)| < P, |k (z)| < Q,

∣∣∣∣zh′′
(z)

h′(z)

∣∣∣∣ < R,

∣∣∣∣zk′′
(z)

k′(z)

∣∣∣∣ < S,

for all z ∈ U. If

Reδ ≥ |δ|
[
(2− λ)Mµ−1 + (2− η)P ν−1 + (2− ρ)Qθ−1 +N +R + S + 3

]
and

|c| ≤ 1− |δ|
Reδ

[
(2− λ)Mµ−1 + (2− η)P ν−1 + (2− ρ)Qθ−1 +N +R + S + 3

]
,

then the integral operator T , defined by (2.2.23) is in the class U.
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Theorem 2.8.12. Let δ, αi, βi, γi, δi ∈ C, c = Reδ > 0, M0 the positive solution of the equation (1.1.1),
M0 = 1, 5936... and fi ∈ B (µi, λi), gi, hi, ki ∈ A, 0 ≤ λi < 1, µi ≥ 0, for all z ∈ U, i = 1, n. Suppose
also that

|fi (z)| < Mi,

∣∣∣∣g′′
i (z)

g
′
i(z)

∣∣∣∣ < M0,

∣∣∣∣h′′
i (z)

h
′
i(z)

∣∣∣∣ < M0,

∣∣∣∣k′′
i (z)

k
′
i(z)

∣∣∣∣ < M0,

where Mi are positive real numbers. If

1

c

n∑
i=1

[
|αi − 1| (2− λi)Mµi−1

i + 2 |γi|
]

+
2

(2c+ 1)
2c+1
2c

n∑
i=1

[|βi|M0 + 2 |δi|M0] ≤ 1,

then the function Tδ,n, defined by (2.1.4) is in the class S .
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Chapter 3

Sufficient convexity conditions for new integral
operators

In this chapter we fix δ = 1 for integral operators defined in the relation (2.1.1)-(2.1.4) and we obtain the
following integral operators:

Mn(z) =

∫ z

0

n∏
i=1

[(
fi(t)

t

)αi−1

(gi
′(t))

βi

(
gi(t))

t

)γi]
dt. (3.0.1)

Cn(z) =

∫ z

0

n∏
i=1

[(
fi(t)

t
egi(t)

)αi−1

(hi
′(t))

βi

(
hi(t))

t

)γi]
dt. (3.0.2)

Gn(z) =

∫ z

0

n∏
i=1

[(
fi
′(t)egi(t)

)αi−1
(
hi(t)

ki(t)

)βi (hi′(t))
ki
′(t)

)γi]
dt, (3.0.3)

Tn(z) =

∫ z

0

n∏
i=1

[(
fi(t)

t

)αi−1

(g′i(t))
βi

(
hi(t)

ki(t)

)γi (hi′(t))
ki
′(t)

)δi]
dt. (3.0.4)

3.1 Convexity conditions for the class Gb

This paragraph includes the study of the convexity of the above integral operators, as long as their
functions belong to the classes Gb, 0 < b ≤ 1 and B(µ, α), µ ≥ 1, 0 ≤ α < 1.

Theorem 3.1.1. Let be the analytic functions fi, gi and gi ∈ Gbi , 0 < bi ≤ 1. For Mi, Ni ≥ 1, which
verify ∣∣∣∣zf ′

i (z)

fi(z)

∣∣∣∣ ≤Mi,

∣∣∣∣zg′
i(z)

gi(z)

∣∣∣∣ ≤ Ni,
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for all z ∈ U, i = 1, n, there are αi, βi, γi real positive numbers and αi > 1 so that

λ = 1−
n∑
i=1

[(αi − 1) (Mi + 1) + βi (biNi + 2bi +Ni + 1) + γi (Ni + 1)] > 0.

In these conditions, the integral operatorMn, defined by (3.0.1) is in the class K(λ).

Letting n = 1 and αi − 1 = βi = γi = α in Theorem 3.1.1, we obtain the next corollary:

Corollary 3.1.1.1. Let f, g ∈ A and g ∈ Gb, 0 < b ≤ 1. For M,N ≥ 1, which verify∣∣∣∣zf ′
(z)

f(z)

∣∣∣∣ ≤M,

∣∣∣∣zg′
(z)

g(z)

∣∣∣∣ ≤ N,

for all z ∈ U, there is α a real positive number so that

λ = 1− α (M + 2N + bN + 2b+ 3) > 0.

In these conditions, the integral operatorM, defined by (2.2.5) is in the class K(λ).

Theorem 3.1.2. Let fi, gi ∈ A and gi ∈ Gbi , 0 < bi ≤ 1. If∣∣∣∣zf ′
i (z)

fi(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zg′
i(z)

gi(z)
− 1

∣∣∣∣ < 1,

for all z ∈ U, i = 1, n, there are αi, βi, γi real positive numbers and αi ≥ 1 so that

λ = 1−
n∑
i=1

[(αi − 1) + βi (2bi + 1) + γi] > 0,

then the integral operatorMn, defined by (3.0.1) is in the class K(λ).

Putting n = 1 and αi − 1 = βi = γi = α in Theorem 3.1.2, we obtain the next corollary:

Corollary 3.1.2.1. Let f, g ∈ A and g ∈ Gb, 0 < b ≤ 1. If∣∣∣∣zf ′
(z)

f(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zg′
(z)

g(z)
− 1

∣∣∣∣ < 1,

for all z ∈ U there is α a real positive number so that

λ = 1− α (2b+ 3) > 0.

then the integral operatorM, defined by (2.2.5) is in the class K(λ).

Theorem 3.1.3. Let be the analytic functions fi, gi, hi and gi ∈ B(µi, λi), µi ≥ 1, 0 ≤ λi < 1 and
hi ∈ Gbi , 0 < bi ≤ 1. For Mi, Ni, Pi ≥ 1, which verify∣∣∣∣zf ′

i (z)

fi(z)

∣∣∣∣ ≤Mi, |gi(z)| < Ni,

∣∣∣∣zh′
i(z)

hi(z)

∣∣∣∣ ≤ Pi,

for all z ∈ U, i = 1, n, there are αi, βi, γi real positive numbers and αi > 1 so that

ρ = 1−
n∑
i=1

[(αi − 1) (Mi + (2− λi)Nµi
i + 1) + βi (bi (Pi + 2) + Pi + 1) + γi (Pi + 1)] > 0.

In these conditions, the integral operator Cn, defined by (3.0.2) is in the class K(ρ).

67



Letting n = 1 and αi − 1 = βi = γi = α in Theorem 3.1.3, we obtain the next corollary:

Corollary 3.1.3.1. Let f, g, h ∈ A and g ∈ B(µ, λ), µ ≥ 1, 0 ≤ λ < 1 and h ∈ Gb, 0 < b ≤ 1.For
M,N,P ≥ 1, which verify ∣∣∣∣zf ′

(z)

f(z)

∣∣∣∣ ≤M, |f(z)| < N,

∣∣∣∣zh′
(z)

h(z)

∣∣∣∣ ≤ P,

for all z ∈ U, there is α a real positive number so that

ρ = 1− α (M + (2− λ)Nµ + b(P + 2) + 2P + 3) > 0.

In these conditions, the integral operator C, defined by (2.2.10) is in the class K(ρ).

For µi = 0 in Theorem 3.1.3, we obtain the next corollary:

Corollary 3.1.3.2. Let fi, gi, hi ∈ A and gi ∈ Rλi , 0 ≤ λi < 1 and hi ∈ Gbi , 0 < bi ≤ 1. For
Mi, Ni, Pi ≥ 1, which verify∣∣∣∣zf ′

i (z)

fi(z)

∣∣∣∣ ≤Mi, |fi(z)| < Ni,

∣∣∣∣zh′
i(z)

hi(z)

∣∣∣∣ ≤ Pi,

for all z ∈ U, i = 1, n, there are αi, βi, γi real positive numbers and αi > 1 so that

ρ = 1−
n∑
i=1

[(αi − 1) (3 +Mi − λi) + βi (bi (Pi + 2) + Pi + 1) + γi (Pi + 1)] > 0.

In these conditions, the integral operator Cn, defined by (3.0.2) is in the class K(ρ).

For µi = 1 in Theorem 3.1.3, we obtain the next corollary:

Corollary 3.1.3.3. Let fi, gi, hi ∈ A and gi ∈ S∗λi , 0 ≤ λi < 1 and hi ∈ Gbi , 0 < bi ≤ 1. For
Mi, Ni, Pi ≥ 1, which verify∣∣∣∣zf ′

i (z)

fi(z)

∣∣∣∣ ≤Mi, |fi(z)| < Ni,

∣∣∣∣zh′
i(z)

hi(z)

∣∣∣∣ ≤ Pi,

for all z ∈ U, i = 1, n, there are αi, βi, γi real positive numbers and αi > 1 so that

ρ = 1−
n∑
i=1

[(αi − 1) (Mi + (2− λi)Ni + 1) + βi (bi (Ni + 2) + Pi + 1) + γi (Pi + 1)] > 0.

In these conditions, the integral operator Cn, defined by (3.0.2) is in the class K(ρ).

Theorem 3.1.4. Let fi, gi, hi ∈ A and hi ∈ Gbi , 0 < bi ≤ 1. If∣∣∣∣zf ′
i (z)

fi(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zg′
i(z)

gi(z)
− 1

∣∣∣∣ < 1, |gi(z)| ≤ Ni,

∣∣∣∣zh′
i(z)

hi(z)
− 1

∣∣∣∣ < 1,

for all z ∈ U, i = 1, n and αi, βi, γi real positive numbers and αi > 1 so that

ρ = 1−
n∑
i=1

[(αi − 1) (1 + 2Ni) + βi (2bi + 1) + γi] > 0,

then the integral operator Cn, defined by (3.0.2) is in the class K(ρ).
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Putting n = 1 and αi − 1 = βi = γi = α in Theorem 3.1.4, we obtain the next corollary:

Corollary 3.1.4.1. Let f, g, h ∈ A and h ∈ Gb, 0 < b ≤ 1. If∣∣∣∣zf ′
(z)

f(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zg′
(z)

g(z)
− 1

∣∣∣∣ < 1, |g(z)| ≤ N,

∣∣∣∣zh′
(z)

h(z)
− 1

∣∣∣∣ < 1,

for all z ∈ U there is α a real positive number so that

ρ = 1− α (2N + 2b+ 3) > 0.

then the integral operator C, defined by (2.2.10) is in the class K(ρ).

Theorem 3.1.5. Let be the analytic functions fi, gi, hi, ki and gi ∈ B(µi, λi), µi ≥ 1, 0 ≤ λi < 1 and
fi ∈ Gb1i , hi ∈ Gb2i , ki ∈ Gb3i , 0 < b1i, b2i, b3i ≤ 1. For Mi, Ni, Pi, Qi ≥ 1, which verify∣∣∣∣zf ′

i (z)

fi(z)

∣∣∣∣ ≤Mi, |gi(z)| < Ni,

∣∣∣∣zh′
i(z)

hi(z)

∣∣∣∣ ≤ Pi,

∣∣∣∣zk′
i(z)

ki(z)

∣∣∣∣ ≤ Qi,

for all z ∈ U, i = 1, n, there are αi, βi, γi real positive numbers and αi > 1 so that

ρ = 1−
n∑
i=1

(αi − 1) (b1iMi + 2b1i + 2Mi + (2− λi)Nµi
i + 1)−

−
n∑
i=1

[βi (Pi +Qi + 2) + γi (b2iPi + 2b2i + Pi + b3iQi + 2b3i +Qi + 2)] > 0.

In these conditions, the integral operator Gn, defined by (3.0.3) is in the class K(ρ).

Letting n = 1 and αi − 1 = βi = γi = α in Theorem 3.1.5, we obtain the next corollary:

Corollary 3.1.5.1. Let f, g, h, k ∈ A and g ∈ B(µ, λ), µ ≥ 1, 0 ≤ λ < 1 and f ∈ Gb1 , h ∈ Gb2 , k ∈ Gb3
0 < b1, b2, b3 ≤ 1. For M,N,P,Q ≥ 1, which verify∣∣∣∣zf ′

(z)

f(z)

∣∣∣∣ ≤M, |f(z)| < N,

∣∣∣∣zh′
(z)

h(z)

∣∣∣∣ ≤ P,

∣∣∣∣zk′
(z)

k(z)

∣∣∣∣ ≤ Q,

for all z ∈ U, there is α a real positive number so that

ρ = 1− α (b1M + b2P + b1Q+ 2b1 + 2b2 + 2b3 + 2M + 2P + 2Q+ 6 + 2Nµ − λNµ) > 0.

In these conditions, the integral operator G, defined by (2.2.16) is in the class K(ρ).

For µi = 0 in Theorem 3.1.5, we obtain the next corollary:

Corollary 3.1.5.2. Let fi, gi, hi, ki ∈ A and gi ∈ Rλi , 0 ≤ λi < 1 and fi ∈ Gb1i , hi ∈ Gb2i , ki ∈ Gb3i ,
0 < b1i, b2i, b3i ≤ 1. For Mi, Ni, Pi, Qi ≥ 1, which verify∣∣∣∣zf ′

i (z)

fi(z)

∣∣∣∣ ≤Mi, |gi(z)| < Ni,

∣∣∣∣zh′
i(z)

hi(z)

∣∣∣∣ ≤ Pi,

∣∣∣∣zk′
i(z)

ki(z)

∣∣∣∣ ≤ Qi,
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for all z ∈ U, i = 1, n, there are αi, βi, γi real positive numbers and αi > 1 so that

ρ = 1−
n∑
i=1

(αi − 1) (b1iMi + 2b1i + 2Mi + 4− λi)−

−
n∑
i=1

[βi (Pi +Qi + 2) + γi (b2iPi + 2b2i + Pi + b3iQi + 2b3i +Qi + 2)] > 0.

In these conditions, the integral operator G, defined by (3.0.3) is in the class K(ρ).

For µi = 1 in Theorem 3.1.5, we obtain the next corollary:

Corollary 3.1.5.3. Let fi, gi, hi, ki ∈ A and gi ∈ S∗λi , 0 ≤ λi < 1 and fi ∈ Gb1i , hi ∈ Gb2i , ki ∈ Gb3i ,
0 < b1i, b2i, b3i ≤ 1. For Mi, Ni, Pi, Qi ≥ 1, which verify∣∣∣∣zf ′

i (z)

fi(z)

∣∣∣∣ ≤Mi, |gi(z)| < Ni,

∣∣∣∣zh′
i(z)

hi(z)

∣∣∣∣ ≤ Pi,

∣∣∣∣zk′
i(z)

ki(z)

∣∣∣∣ ≤ Qi,

for all z ∈ U, i = 1, n, there are αi, βi, γi real positive numbers and αi > 1 so that

ρ = 1−
n∑
i=1

(αi − 1) (b1iMi + 2b1i + 2Mi + (2− λi)Ni + 2)−

−
n∑
i=1

[βi (Pi +Qi + 2) + γi (b2iPi + 2b2i + Pi + b3iQi + 2b3i +Qi + 2)] > 0.

In these conditions, the integral operator G, defined by (3.0.3) is in the class K(ρ).

Theorem 3.1.6. Let fi, gi, hi, ki ∈ A and fi, hi, ki ∈ Gbi , 0 < bi ≤ 1. If∣∣∣∣zf ′
i (z)

fi(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zg′
i(z)

gi(z)
− 1

∣∣∣∣ < 1, |gi(z)| ≤ Ni,

∣∣∣∣zh′
i(z)

hi(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zk′
i(z)

ki(z)
− 1

∣∣∣∣ < 1,

for all z ∈ U, i = 1, n, there are αi, βi, γi real positive numbers and αi > 1 so that

ρ = 1−
n∑
i=1

[(αi − 1) (2bi + 2Ni + 1) + 2βi + 2γi (2bi + 1)] > 0,

then the integral operator Gn, defined by (3.0.3) is in the class K(ρ).

Putting n = 1 and αi − 1 = βi = γi = α in Theorem 3.1.6, we obtain the next corollary:

Corollary 3.1.6.1. Let f, g, h, k ∈ A and f, hi, ki ∈ Gb, 0 < b ≤ 1. If∣∣∣∣zf ′
(z)

f(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zg′
(z)

g(z)
− 1

∣∣∣∣ < 1, |g(z)| ≤ N,∣∣∣∣zf ′
(z)

f(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zg′
(z)

g(z)
− 1

∣∣∣∣ < 1, |g(z)| ≤ N,

∣∣∣∣zh′
(z)

h(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zk′
(z)

k(z)
− 1

∣∣∣∣ < 1,

for all z ∈ U, there is α a real positive number so that

ρ = 1− α (2N + 6b+ 5) > 0,

then the integral operator G, defined by (2.2.16) is in the class K(ρ).
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Theorem 3.1.7. Let be the analytic functions fi, gi, hi, ki ∈ A and gi ∈ Gb1i , hi ∈ Gb2i , ki ∈ Gb3i ,
0 < b1i, b2i, b3i ≤ 1. For Mi, Ni, Pi, Qi ≥ 1, which verify∣∣∣∣zf ′

i (z)

fi(z)

∣∣∣∣ ≤Mi,

∣∣∣∣zg′
i(z)

gi(z)

∣∣∣∣ ≤ Ni,

∣∣∣∣zh′
i(z)

hi(z)

∣∣∣∣ ≤ Pi,

∣∣∣∣zk′
i(z)

ki(z)

∣∣∣∣ ≤ Qi,

for all z ∈ U, i = 1, n, there are αi, βi, γi, δi real positive numbers and αi > 1 so that

λ = 1−
n∑
i=1

[(αi − 1) (Mi + 1) + βi (b1iNi + 2b1i +Ni + 1)]−

−
n∑
i=1

[γi (Pi +Qi + 2) + δi (b2iPi + 2b2i + b3iQi + 2b3i + Pi +Qi + 2)] > 0.

In these conditions, the integral operator Tn, defined by (3.0.4) is in the class K(λ).

Letting n = 1 and αi − 1 = βi = γi = δi = α in Theorem 3.1.7, we obtain the next corollary:

Corollary 3.1.7.1. Let f, g, h, k ∈ A and g ∈ Gb1 , h ∈ Gb2 , k ∈ Gb3 , 0 < b1, b2, b3 ≤ 1. For
M,N,P,Q ≥ 1, which verify∣∣∣∣zf ′

(z)

f(z)

∣∣∣∣ ≤M,

∣∣∣∣zg′
(z)

g(z)

∣∣∣∣ ≤ N,

∣∣∣∣zh′
(z)

h(z)

∣∣∣∣ ≤ P,

∣∣∣∣zk′
(z)

k(z)

∣∣∣∣ ≤ Q,

for all z ∈ U, there is α a real positive number so that

λ = 1− α (M + b1N + 2b1 +N + 2P + 2Q+ b2P + 2b2 + b3Q+ 2b3 + 6) > 0.

In these conditions, the integral operator T , defined by (2.2.23) is in the class K(λ).

Theorem 3.1.8. Let fi, gi, hi, ki,∈ A and gi, hi, ki,∈ Gbi , 0 < bi ≤ 1. If∣∣∣∣zf ′
i (z)

fi(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zg′
i(z)

gi(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zh′
i(z)

hi(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zk′
i(z)

ki(z)
− 1

∣∣∣∣ < 1,

for all z ∈ U, i = 1, n there are αi, βi, γi, δi real positive numbers and αi > 1 so that

λ = 1−
n∑
i=1

[(αi − 1) + βi (2bi + 1) + 2γi + 2δi (2bi + 1)] > 0,

then the integral operator Tn, defined by (3.0.4) is in the class K(λ).

Putting n = 1 and αi − 1 = βi = γi = δi = α in Theorem 3.1.8, we obtain the next corollary:

Corollary 3.1.8.1. Let f, g, h, k ∈ A and g, h, k ∈ Gb, 0 < b ≤ 1. If∣∣∣∣zf ′
(z)

f(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zg′
(z)

g(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zh′
(z)

h(z)
− 1

∣∣∣∣ < 1,

∣∣∣∣zk′
(z)

k(z)
− 1

∣∣∣∣ < 1,

for all z ∈ U, there is α a real positive number so that

λ = 1− 6α (bi + 1) > 0,

then the integral operator T , defined by (2.2.23) is in the class K(λ).
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3.2 Convexity conditions for starlike functions

In this section we present sufficient conditions to ensure the convexity of the four integral operators
but also their order of convexity, considering the functions in the class of starlike functions S∗(α), 0 ≤
α < 1.

Theorem 3.2.1. Let fi ∈ S∗(µi), gi ∈ K(λi) and gi ∈ S∗(νi), 0 ≤ µi, λi, νi < 1. If αi, βi, γi are strictly
positive real numbers and αi > 1 so that

n∑
i=1

[(αi − 1)µi + βi (1− λi) + γiνi] < 1,

then the integral operatorMn, defined by (3.0.1) is convex by the order

ρ = 1−
n∑
i=1

[(αi − 1)µi + βi (1− λi) + γiνi] ,

for all i = 1, n.

Letting n = 1 and αi − 1 = βi = γi = α in Theorem 3.2.1, we obtain the next corollary:

Corollary 3.2.1.1. Let f ∈ S∗(µ), g ∈ K(λ) and g ∈ S∗(ν), 0 ≤ µ, λ, ν < 1. If α is a real positive
number so that

α (µ+ ν − λ+ 1) < 1,

then the integral operatorM, defined by (2.2.5) is convex by the order

1 + α (λ− µ− ν − 1) .

Theorem 3.2.2. Let fi ∈ S∗(µi), gi ∈ K(λi) and gi ∈ S∗(λi), 0 ≤ µi, λi < 1. If αi, βi, γi are strictly
positive real numbers and αi > 1 so that

n∑
i=1

[(αi − 1) (µi − 1) + βi (λi − 1) + γi (λi − 1)] < 1,

then the integral operatorMn, defined by (3.0.1) is convex by the order

1−
n∑
i=1

[(αi − 1) (µi − 1) + βi (λi − 1) + γi (λi − 1)] ,

for all i = 1, n.

Putting n = 1 and αi − 1 = βi = γi = α in Theorem 3.2.2, we obtain the next corollary:

Corollary 3.2.2.1. Let f ∈ S∗(µ), g ∈ K(λ) and g ∈ S∗(λ), 0 ≤ µ, λ < 1. If α is a real positive number
so that

α (µ+ 2λ− 3) < 1,

then the integral operatorM, defined by (2.2.5) is convex by the order

1− α (µ+ 2λ− 3) .
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Theorem 3.2.3. Let fi ∈ S∗ (αi − 1), zg′i ∈ S∗ (βi) and gi ∈ S∗ (γi), i = 1, n. If αi, βi, γi are positive
real numbers and αi ≥ 1, βi, γi ≥ 0 for all i = 1, n so that

0 <
n∑
i=1

[(αi − 1) + βi + γi] < 1,

then the integral operatorMn, defined by (3.0.1) is convex by the order

n∑
i=1

[
(αi − 1)2 + β2

i + γ2
i − αi − βi − γi + 1

]
+ 1.

Letting n = 1 and αi − 1 = βi = γi = α in Theorem 3.2.3, we obtain the next corollary:

Corollary 3.2.3.1. Let f, zg′, g ∈ S∗ (α). If α is a real positive number so that

0 < 3α < 1,

then the integral operatorM, defined by (2.2.5) is convex by the order

3α2 − 3α + 1.

Theorem 3.2.4. Let fi ∈ S∗(µi), gi ∈ S∗(νi), hi ∈ K(λi) and hi ∈ S∗(ηi), 0 ≤ µi, λi, νi, ηi < 1. If
αi, βi, γi are strictly positive real numbers and αi > 1 and |gi(z)| ≤ 1 so that

n∑
i=1

[(αi − 1) (µi + νi) + βi (1− λi) + γiηi] < 1,

then the integral operator Cn, defined by (3.0.2) is convex by the order

ρ = 1−
n∑
i=1

[(αi − 1) (µi + νi) + βi (1− λi) + γiηi] ,

for all i = 1, n.

Letting n = 1 and αi − 1 = βi = γi = α in Theorem 3.2.4, we obtain the next corollary:

Corollary 3.2.4.1. Let f ∈ S∗(µ), g ∈ S∗(ν), h ∈ K(λ) and h ∈ S∗(η), 0 ≤ µ, λ, ν, η < 1. If α is a
real positive number so that |g(z)| ≤ 1 so that

α (µ+ ν + η − λ+ 1) < 1,

then the integral operator C, defined by (2.2.10) is convex by the order

1 + α (λ− µ− ν − η − 1) .

Theorem 3.2.5. Let fi ∈ S∗(µi), gi ∈ S∗(νi), hi ∈ K(λi) and hi ∈ S∗(λi), 0 ≤ µi, λi, νi < 1. If
αi, βi, γi are strictly positive real numbers and αi > 1 and |gi(z)| ≤ 1 so that

n∑
i=1

[(αi − 1) (µi + νi − 1) + βi (λi − 1) + γi (λi − 1)] < 1,
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then the integral operator Cn,defined by (3.0.2) is convex by the order

1−
n∑
i=1

[(αi − 1) (µi + νi − 1) + βi (λi − 1) + γi (λi − 1)] ,

for all i = 1, n.

Putting n = 1 and αi − 1 = βi = γi = α in Theorem 3.2.5, we obtain the next corollary:

Corollary 3.2.5.1. Let f ∈ S∗(µ), g ∈ S∗(ν), h ∈ K(λ) and h ∈ S∗(λ), 0 ≤ µ, λ, ν < 1. If α is a real
positive number so that |g(z)| ≤ 1 so that

α (µ+ ν + 2λ− 3) < 1,

then the integral operator C, defined by (2.2.10) is convex by the order

1− α (µ+ ν + 2λ− 3) .

Theorem 3.2.6. Let fi, gi ∈ S∗ (αi − 1), zh′i ∈ S∗ (βi) and hi ∈ S∗ (γi), i = 1, n. If αi, βi, γi are
positive real numbers and αi ≥ 1, βi, γi ≥ 0 for all i = 1, n and Re (gi(z)) ≥ 1 so that

0 <
n∑
i=1

[(αi − 1) + βi + γi] < 1,

then the integral operator Cn, defined by (3.0.2) is convex by the order
n∑
i=1

[
2 (αi − 1)2 + β2

i + γ2
i − αi − βi − γi + 1

]
+ 1.

Letting n = 1 and αi − 1 = βi = γi = α in Theorem 3.2.6, we obtain the next corollary:

Corollary 3.2.6.1. Let f, g, h ∈ S∗ (α) and zh′i ∈ S∗ (α). If α is a real positive number so that
Re (g(z)) ≥ 1 so that

0 < 3α < 1,

then the integral operator C, defined by (2.2.10) is convex by the order

4α2 − 3α + 1.

Theorem 3.2.7. Let fi ∈ K(µi), gi ∈ S∗(νi), hi ∈ K(λi), hi ∈ S∗(ηi), ki ∈ K(ωi) and ki ∈ S∗(ξi),
0 ≤ µi, νi, ηi, λi, ωi, ξi < 1. If αi, βi, γi are positive real numbers and αi > 1 and |gi(z)| ≤ 1 so that

n∑
i=1

[(αi − 1) (νi − µi + 1) + βi (ηi + ξi) + γi (2− λi − ωi)] < 1,

then the integral operator Gn, defined by (3.0.3) is convex by the order

ρ = 1−
n∑
i=1

[(αi − 1) (νi − µi + 1) + βi (ηi + ξi) + γi (2− λi − ωi)] ,

for all i = 1, n.
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Letting n = 1 and αi − 1 = βi = γi = α in Theorem 3.2.7, we obtain the next corollary:

Corollary 3.2.7.1. Let f ∈ K(µ), g ∈ S∗(ν), h ∈ K(λ), h ∈ S∗(η), k ∈ K(ω), k ∈ S∗(ξ), 0 ≤
µ, ν, η, λ, ω, ξ < 1. If α is a real positive number and |g(z)| ≤ 1 so that

α (ν + η + ξ − µ− λ− ω + 3) < 1,

then the integral operator G, defined by (2.2.16) is convex by the order

1− α (ν + η + ξ − µ− λ− ω + 3) .

Theorem 3.2.8. Let fi ∈ K(µi), gi ∈ S∗(νi), hi ∈ K(λi), hi ∈ S∗(λi), ki ∈ K(ωi) and ki ∈ S∗(ωi),
0 ≤ µi, νi, λi, ωi < 1. If αi, βi, γi are positive real numbers and αi > 1 and |gi(z)| ≤ 1 so that

n∑
i=1

[(αi − 1) (µi + νi − 1) + (βi + γi) (λi − ωi)] < 1,

then the integral operator Gn, defined by (3.0.3) is convex by the order

1−
n∑
i=1

[(αi − 1) (µi + νi − 1) + (βi + γi) (λi − ωi)] ,

for all i = 1, n.

Putting n = 1 and αi − 1 = βi = γi = α in Theorem 3.2.8, we obtain the next corollary:

Corollary 3.2.8.1. Let fi ∈ K(µ), g ∈ S∗(ν), h ∈ K(λ), h ∈ S∗(λ), k ∈ K(ω) and k ∈ S∗(ω),
0 ≤ µ, ν, λ, ω < 1. If α is a real positive number and |g(z)| ≤ 1 so that

α (µ+ ν + 2λ− 2ω − 1) < 1,

then the integral operator G, defined by (2.2.16) is convex by the order

1− α (µ+ ν + 2λ− 2ω − 1) .

Theorem 3.2.9. Let zfi, gi ∈ S∗ (αi − 1), zh′i ∈ S∗ (γi), hi ∈ S∗ (βi), zk′i ∈ S∗ (γi) and ki ∈ S∗ (βi),
i = 1, n. If αi, βi, γi are positive real numbers and αi ≥ 1, βi, γi ≥ 0 for all i = 1, n and Re (gi(z)) ≥ 1
so that

0 <
n∑
i=1

[(αi − 1) + βi + γi] < 1,

then the integral operator Gn, defined by (3.0.3) is convex by the order

n∑
i=1

[
2 (αi − 1)2 − (αi − 1)

]
+ 1.

Letting n = 1 and αi − 1 = βi = γi = α in Theorem 3.2.9, we obtain the next corollary:
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Corollary 3.2.9.1. Let g, h, k ∈ S∗ (α) and zf ′i , zh
′
i, zk

′
i ∈ S∗ (α). If α is a real positive number and

Re (g(z)) ≥ 1 so that
0 < 3α < 1,

then the integral operator G, defined by (2.2.16) is convex by the order

2α2 − α + 1.

Theorem 3.2.10. Let fi ∈ S∗(µi), gi ∈ K(λi), hi ∈ S∗(νi), ki ∈ S∗(θi), hi ∈ K(ηi) and ki ∈ K(σi),
0 ≤ µi, νi, θi < 1, 0 ≤ λi, ηi, σi < 1. If αi, βi, γi, δi are positive real numbers and αi > 1 so that

n∑
i=1

[(αi − 1)µi + βi (1− λi) + γi (νi + θi) + δi (2− ηi − σi)] < 1,

then the integral operator Tn, defined by (3.0.4) is convex by the order

ρ = 1−
n∑
i=1

[(αi − 1)µi + βi (1− λi) + γi (νi + θi) + δi (2− ηi − σi)] ,

for all i = 1, n.

Letting n = 1 and αi − 1 = βi = γi = δi = α in Theorem 3.2.10, we obtain the next corollary:

Corollary 3.2.10.1. Let f ∈ S∗(µ), g ∈ K(λ), h ∈ S∗(ν), k ∈ S∗(θ), h ∈ K(η) and k ∈ K(σ),
0 ≤ µ, ν, θ < 1, 0 ≤ λ, η, σ < 1. If α is a real positive number so that

α (µ+ ν + θ − λ− η − σ + 3) < 1,

then the integral operator T , defined by (2.2.23) is convex by the order

1 + α (λ+ η + σ − µ− ν − θ − 3) .

Theorem 3.2.11. Let fi ∈ S∗(µi), gi ∈ K(λi), hi ∈ S∗(νi), ki ∈ S∗(θi), hi ∈ K(νi) and ki ∈ K(θi),
0 ≤ µi, λi, νi, θi < 1. If αi, βi, γi, δi are positive real numbers and αi > 1, so that

n∑
i=1

[(αi − 1) (µi − 1) + βi (λi − 1) + (γi + δi) (νi − θi)] < 1,

then the integral operator Tn, defined by (3.0.4) is convex by the order

1−
n∑
i=1

[(αi − 1) (µi − 1) + βi (λi − 1) + (γi + δi) (νi − θi)] ,

for all i = 1, n.

Letting n = 1 and αi − 1 = βi = γi = δi = α in Theorem 3.2.11, we obtain the next corollary:
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Corollary 3.2.11.1. Let f ∈ S∗(µ), g ∈ K(λ), h ∈ S∗(ν), k ∈ S∗(θ), h ∈ K(ν) and k ∈ K(θ),
0 ≤ µ, λ, ν, θ < 1. If α is a real positive number so that

α (µ+ λ+ 2ν − 2θ − 2) < 1,

then the integral operator T , defined by (2.2.23) is convex by the order

1− α (µ+ λ+ 2ν − 2θ − 2) .

Theorem 3.2.12. Let fi ∈ S∗ (αi − 1), zg′i ∈ S∗ (βi), hi ∈ S∗ (γi), zh′i ∈ S∗ (δi), ki ∈ S∗ (γi),
zk′i ∈ S∗ (δi) i = 1, n. If αi, βi, γi, δi are positive real numbers and αi ≥ 1, βi, γi, δi ≥ 0 for all i = 1, n
so that

0 <
n∑
i=1

[(αi − 1) + βi + γi + δi] < 1,

then the integral operator Tn, defined by (3.0.4) is convex by the order

n∑
i=1

[
(αi − 1)2 + β2

i − αi − βi + 1
]

+ 1.

If we consider n = 1 and αi − 1 = βi = γi = δi = α in Theorem 3.2.12, we obtain the next
corollary:

Corollary 3.2.12.1. Let f, h, k ∈ S∗ (α) and zg′, zh′, zk′i ∈ S∗ (α). If α is a real positive number so that

0 < 4α < 1,

then the integral operator T , defined by (2.2.23) is convex by the order

2α2 − 2α + 1.

3.3 Convexity conditions for the class SP(α, β)

This section contains sufficient convexity conditions for new integral operators with class functions
SP(α, β), α > 0, 0 ≤ β < 1.

Theorem 3.3.1. Let fi ∈ SP(α, β), gi ∈ SP(δ, η) and gi ∈ K (λi), α, δ > 0, 0 ≤ β, η, λi < 1 for all
i = 1, n. If αi, βi, γi are positive real numbers and αi > 1 so that

ρ = 1 +
n∑
i=1

[(αi − 1) (β − α− 1) + βi (λi − 1) + γi (η − δ − 1)] > 0,

then the integral operatorMn, defined by (3.0.1) is in the class K(ρ).

Letting n = 1 and αi − 1 = βi = γi = α in Theorem 3.3.1, we obtain the next corollary:
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Corollary 3.3.1.1. Let f ∈ SP(α, β), g ∈ SP(δ, η), and g ∈ K (λ), α, δ > 0, 0 ≤ β, η, λ < 1. If there
is a positive real number α so that

ρ = 1 + α (β + η − α− δ + λ− 3) > 0.

then the integral operatorM, defined by (2.2.5) is in the class K(ρ).

Theorem 3.3.2. Let fi ∈ SP (αi − 1), zg′i ∈ SP (βi) and gi ∈ SP (γi), i = 1, n. If αi, βi, γi are
positive real numbers and αi > 1, βi, γi > 0 for all i = 1, n so that

1 <
n∑
i=1

[αi + βi + γi] < 2,

then the integral operatorMn, defined by (3.0.1) is convex by the order

2−
n∑

1=1

(αi + βi + γi) .

Putting n = 1 and αi − 1 = βi = γi = α in Theorem 3.3.2, we obtain the next corollary:

Corollary 3.3.2.1. Let f, g ∈ SP (α) and zg′ ∈ SP (α). If α is a real positive number so that

0 < 3α < 1

then the integral operatorM, defined by (2.2.5) is convex by the order

1− 3α.

Theorem 3.3.3. Let fi ∈ SP(α, β), gi ∈ SP(γ, δ), hi ∈ K (λi) and hi ∈ SP(ν, η), α, γ, ν > 0,
0 ≤ β, δ, η, λi < 1 for all i = 1, n. If αi, βi, γi are positive real numbers and αi > 1 and Re (gi(z)) ≥ 1
so that

ρ = 1 +
n∑
i=1

[(αi − 1) (β + δ − α− γ − 1) + βi (λi − 1) + γi (η − ν − 1)] > 0,

then the integral operator Cn, defined by (3.0.2) is in the class K(ρ).

Letting n = 1 and αi − 1 = βi = γi = α in Theorem 3.3.3, we obtain the next corollary:

Corollary 3.3.3.1. Let f ∈ SP(α, β), g ∈ SP(γ, δ), h ∈ K (λ) and h ∈ SP(ν, η), α, γ, ν > 0,
0 ≤ β, δ, η, λ < 1. If there is a positive real number α and Re (g(z)) ≥ 1 so that

ρ = 1 + α (β + δ + η − α− γ − ν + λ− 3) > 0.

then the integral operator C, defined by (2.2.10) is in the class K(ρ).

Theorem 3.3.4. Let fi, gi ∈ SP (αi − 1), zh′i ∈ SP (βi) and hi ∈ SP (γi), i = 1, n. If αi, βi, γi are
positive real numbers and αi > 1, βi, γi > 0 for all i = 1, n and Re (gi(z)) ≥ 1 so that

0 <
n∑
i=1

[(αi − 1) + βi + γi] < 1,

then the integral operator Cn, defined by (3.0.2) is convex by the order

1−
n∑

1=1

(βi + γi) .
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Putting n = 1 and αi − 1 = βi = γi = α in Theorem 3.3.4, we obtain the next corollary:

Corollary 3.3.4.1. Let f, g, h ∈ SP (α) and zh′ ∈ SP (α). If α is a real positive number so that
Re (g(z)) ≥ 1 so that

0 < 3α < 1

then the integral operator C, defined by (2.2.10) is convex by the order

1− 2α.

Theorem 3.3.5. Let fi ∈ N (µi), gi ∈ SP(γ, δ), hi ∈ K (λi), hi ∈ SP(ν, η), ki ∈ K (σi), ki ∈
SP(θ, ξ), γ, ν, θ > 0, 0 ≤ µi, δ, η, ξ, λi, σi < 1 for all i = 1, n. If αi, βi, γi are positive real numbers and
αi > 1 and Re (gi(z)) ≥ 1 so that

ρ = 1 +
n∑
i=1

[(αi − 1) (µi + δ − γ − 1) + βi (η + θ − ν − ξ) + γi (λi − σi)] > 0,

then the integral operator Gn, defined by (3.0.3) is in the class K(ρ).

Letting n = 1 and αi − 1 = βi = γi = α in Theorem 3.3.5, we obtain the next corollary:

Corollary 3.3.5.1. Let f ∈ K(µ), g ∈ SP(γ, δ), h ∈ K (λ), h ∈ SP(ν, η), k ∈ K (σ), k ∈ SP(θ, ξ),
γ, ν, θ > 0, 0 ≤ µ, δ, η, ξ, λ, σ < 1.If there is a positive real number α and Re (g(z)) ≥ 1 so that

ρ = 1 + α (µ+ δ + η + θ + λ− γ − ν − ξ − σ − 1) > 0.

then the integral operator G, defined by (2.2.16) is in the class K(ρ).

Theorem 3.3.6. Let zfi, gi ∈ SP (αi − 1), hi, ki ∈ SP (βi) and zh′i, zk
′
i ∈ SP (γi), i = 1, n. If αi, βi, γi

are positive real numbers and αi > 1, βi, γi > 0 for all i = 1, n and Re (gi(z)) ≥ 1 so that

0 <
n∑
i=1

[αi + βi + γi − 1] < 1,

then the integral operator Gn, defined by (3.0.3) is convex by the order 1.

If we consider n = 1 and αi − 1 = βi = γi = α in Theorem 3.3.6, we obtain the next corollary:

Corollary 3.3.6.1. Let g, h, k ∈ SP (α) and zf ′, zh′, zk′ ∈ SP (α). If α is a real positive number so
that Re (g(z)) ≥ 1 so that

0 < 3α < 1

then the integral operator G, defined by (2.2.16) is convex by the order 1.

Theorem 3.3.7. Let fi ∈ SP(α, β), gi ∈ K (λi), hi ∈ SP(σ, η), ki ∈ SP(θ, ξ), , hi ∈ K (µi), ,
ki ∈ K (νi), α, σ, θ > 0, 0 ≤ β, η, ξ, λi, µi, νi < 1 for all i = 1, n. If αi, βi, γi, δi are positive real
numbers and αi > 1 so that

ρ = 1 +
n∑
i=1

[(αi − 1) (β − α− 1) + βi (λi − 1) + γi (θ − ξ − σ + η) + δi (µi − νi)] > 0

then the integral operator Tn, defined by (3.0.4) is in the class K(ρ).
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Letting n = 1 and αi − 1 = βi = γi = δi = α in Theorem 3.3.7, we obtain the next corollary:

Corollary 3.3.7.1. Let f ∈ SP(α, β), g ∈ K (λ), h ∈ SP(σ, η), k ∈ SP(θ, ξ), , h ∈ K (µ), k ∈ K (ν),
α, σ, θ > 0, 0 ≤ β, η, ξ, λ, µ, ν < 1. If there is a positive real number α so that

ρ = 1 + α (β + λ+ θ + η + µ− α− ξ − σ − ν − 2) > 0

then the integral operator T , defined by (2.2.23) is in the class K(ρ).

Theorem 3.3.8. Let fi ∈ SP (αi − 1), zg′i ∈ SP (βi), hi, ki ∈ SP (γi) and zh′i, zk
′
i ∈ SP (δi), i = 1, n.

If αi, βi, γi, δi are positive real numbers and αi > 1, βi, γi, δi > 0 for all i = 1, n so that

1 <
n∑
i=1

[αi + βi + γi + δi] < 2,

then the integral operator Tn, defined by (3.0.4) is convex by the order

2−
n∑

1=1

(αi + βi) .

Putting n = 1 and αi − 1 = βi = γi = δi = α in Theorem 3.3.8, we obtain the next corollary:

Corollary 3.3.8.1. Let f, h, k ∈ SP (α) and zg′, zh′, zk′ ∈ SP (α). If α is a real positive number so
that

0 < 4α < 1,

then the integral operator T , defined by (2.2.23) is convex by the order

1− 2α.

3.4 Convexity conditions for the class S∗β

This paragraph describes sufficient conditions for belonging to the class of convex functions Cµ(b),
for new integral operators with functions in the class S∗β(b), 0 ≤ β < 1, where b ∈ C− {0}.

Theorem 3.4.1. Let fi ∈ S∗δi(b), gi ∈ Cλi(b) and gi ∈ S∗λi(b), 0 ≤ λi, δi < 1, where b ∈ C− {0}. Also,
let αi, βi, γi are real numbers with αi > 1, for all i = 1, n. If

0 ≤ 1 +
n∑
i=1

[(αi − 1) (1− δi) + (βi + γi) (1− λi)] < 1,

then the integral operatorMn, defined by (3.0.1) is convex by the order Cµ(b), with

µ = 1 +
n∑
i=1

[(αi − 1) (1− δi) + (βi + γi) (1− λi)] ,

for all i = 1, n.
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Letting n = 1 and αi − 1 = βi = γi = α in Theorem 3.4.1, we obtain the next corollary:

Corollary 3.4.1.1. Let f ∈ S∗δ (b), g ∈ Cλ(b) and g ∈ S∗λ(b), 0 ≤ λ, δ < 1, where b ∈ C− {0}. Also, let
α a real positive number. If

0 ≤ 1 + α (3− δ − 2λ) < 1

then the integral operatorM, defined by (2.2.5) is convex by the order Cµ(b), with

µ = 1 + α (3− δ − 2λ) .

Theorem 3.4.2. Let fi ∈ S∗δi(b), gi ∈ S∗ηi(b), hi ∈ Cλi(b) and hi ∈ S∗λi(b), 0 ≤ λi, δi, ηi < 1, where

b ∈ C− {0}. Also, let αi, βi, γi are real numbers with αi > 1 for all i = 1, n. If
∣∣∣gi(z)b

∣∣∣ ≤ 1 and

0 ≤ 1 +
n∑
i=1

[(αi − 1) (3− δi − ηi) + (βi + γi) (1− λi)] < 1,

then the integral operator Cn, defined by (3.0.2) is convex by the order Cµ(b), with

µ = 1 +
n∑
i=1

[(αi − 1) (3− δi − ηi) + (βi + γi) (1− λi)] ,

for all i = 1, n.

Letting n = 1 and αi − 1 = βi = γi = α in Theorem 3.4.2, we obtain the next corollary:

Corollary 3.4.2.1. Let f ∈ S∗δ (b), g ∈ S∗η (b), h ∈ Cλ(b) and h ∈ S∗λ(b), 0 ≤ λ, δ, η < 1, where

b ∈ C− {0}. Also, let α a real positive number. If
∣∣∣g(z)b ∣∣∣ ≤ 1 and

0 ≤ 1 + α (5− δ − η − 2λ) < 1,

then the integral operator C, defined by (2.2.10) is convex by the order Cµ(b), with

µ = 1 + α (5− δ − η − 2λ) .

Theorem 3.4.3. Let fi ∈ Cµi(b), gi ∈ S∗ηi(b), hi ∈ Cλi(b), hi ∈ S∗λi(b), ki ∈ Cσi(b) and ki ∈ S∗σi(b),
0 ≤ µi, ηi, λi, σi < 1, where b ∈ C − {0}. Also, let αi, βi, γi are real numbers with αi > 1 for all
i = 1, n. If

∣∣∣gi(z)b

∣∣∣ ≤ 1 and

0 ≤ 1 +
n∑
i=1

[(αi − 1) (3− µi − ηi) + (βi + γi) (2− λi − σi)] < 1,

then the integral operator Gn, defined by (3.0.3) is convex by the order Cρ(b), with

ρ = 1 +
n∑
i=1

[(αi − 1) (3− µi − ηi) + (βi + γi) (2− λi − σi)] ,

for all i = 1, n.
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Letting n = 1 and αi − 1 = βi = γi = α in Theorem 3.4.3, we obtain the next corollary:

Corollary 3.4.3.1. Let f ∈ Cµ(b), g ∈ S∗η (b), h ∈ Cλ(b), h ∈ S∗λ(b), k ∈ Cσ(b) and k ∈ S∗σ(b),

0 ≤ µ, η, λ, σ < 1, where b ∈ C− {0}. Also, let α a real positive number. If
∣∣∣g(z)b ∣∣∣ ≤ 1 and

0 ≤ 1 + α (5− µ− η − 2λ− 2σ) < 1

then the integral operator G, defined by (2.2.16) is convex by the order Cρ(b), with

ρ = 1 + α (5− µ− η − 2λ− 2σ) .

Theorem 3.4.4. Let fi ∈ S∗ηi(b), gi ∈ Cλi(b), hi ∈ S∗ρi(b), hi ∈ Cρi(b), ki ∈ S∗νi(b), ki ∈ Cνi(b),
0 ≤ ηi, λi, ρi, νi < 1 and b ∈ C − {0}. Also, let αi, βi, γi, δi are real numbers with αi > 1 for all
i = 1, n. If

0 ≤ 1 +
n∑
i=1

[(αi − 1) (1− ηi) + βi (1− λi) + (γi + δi) (2− ρi − νi)] < 1,

then the integral operator Tn, defined by (3.0.4) is convex by the order Cµ(b), with

µ = 1 +
n∑
i=1

[(αi − 1) (1− ηi) + βi (1− λi) + (γi + δi) (2− ρi − νi)] ,

for all i = 1, n.

Letting n = 1 and αi − 1 = βi = γi = δi = α in Theorem 3.4.4, we obtain the next corollary:

Corollary 3.4.4.1. Let f ∈ S∗η (b), g ∈ Cλ(b), h ∈ S∗ρ(b), h ∈ Cρ(b), k ∈ S∗ν (b), k ∈ Cν(b), 0 ≤
η, λ, ρ, ν < 1 and b ∈ C− {0}. Also, let α a real positive number. If

0 ≤ 1 + α (6− η − λ− 2ρ− 2ν) < 1

then the integral operator T , defined by (2.2.23) is convex by the order Cµ(b), with

µ = 1 + α (6− η − λ− 2ρ− 2ν) .

3.5 Convexity conditions for the class SH(β)

This section contains sufficient convexity conditions for new integral operators with class functions
SH(β), β > 0.

Theorem 3.5.1. Let fi ∈ SH(δi), gi ∈ K(λi), gi ∈ SH(ηi), 0 < λi < 1 and δi, ηi > 0. Also, let αi, βi, γi
are real numbers with αi ≥ 1, βi, γi ≥ 0, for all i = 1, n. If

0 <
n∑
i=1

[− (αi − 1) (2δi + 1) + βi (λi − 1)− γi (2ηi + 1)] +
n∑
i=1

√
2 (δiαi + γiηi − δi) + 1 < 1,

then the integral operatorMn, defined by (3.0.1) is convex by the order
n∑
i=1

[− (αi − 1) (2δi + 1) + βi (λi − 1)− γi (2ηi + 1)] +
n∑
i=1

√
2 (δiαi + γiηi − δi) + 1.
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If we have n = 1 and αi − 1 = βi = γi = α in Theorem 3.5.1, we obtain the next corollary:

Corollary 3.5.1.1. Let f ∈ SH(δ), g ∈ K(λ), g ∈ SH(η), 0 < λ < 1 and δ, η > 0. Also, let α a real
positive number. If

0 ≤ α
[
λ− 2δ − 2η − 3 +

√
2 (δ + η)

]
+ 1 < 1

then the integral operatorM, defined by (2.2.5) is convex by the order

α
[
λ− 2δ − 2η − 3 +

√
2 (δ + η)

]
+ 1.

Theorem 3.5.2. Let fi ∈ SH(δi, νi), gi ∈ K(λi) and gi ∈ SH(ηi, θi), 0 < λi ≤ 1, 0 < νi, θi < 1 and
δi, ηi > 0. Also, let αi, βi, γi are real numbers with αi ≥ 1, βi, γi ≥ 0, for all i = 1, n. If

0 <
n∑
i=1

[− (αi − 1) (δi − νi + 1) + βi (λi − 1)− γi (ηi − θi + 1)] + 1 < 1,

then the integral operatorMn, defined by (3.0.1) is convex by the order

n∑
i=1

[− (αi − 1) (δi − νi + 1) + βi (λi − 1)− γi (ηi − θi + 1)] + 1.

Letting n = 1 and αi − 1 = βi = γi = α in Theorem 3.5.2, we obtain the next corollary:

Corollary 3.5.2.1. Let f ∈ SH(δ, ν), g ∈ K(λ), g ∈ SH(η, θ), 0 < λ ≤ 1, 0 < ν, θ < 1 and δ, η > 0.
Also, let α a real positive number. If

0 < α (ν + λ+ θ − δ − η − 3) + 1 < 1,

then the integral operatorM, defined by (2.2.5) is convex by the order

α (ν + λ+ θ − δ − η − 3) + 1.

Theorem 3.5.3. Let fi ∈ SH(δi), gi ∈ SH(νi), hi ∈ K(λi), hi ∈ SH(ηi), 0 < λi < 1 and δi, νi, ηi > 0.
Also, let αi, βi, γi are real numbers with αi ≥ 1, βi, γi ≥ 0, for all i = 1, n. If Re (gi(z)) ≥ 1 and

0 <
n∑
i=1

[− (αi − 1) (2δi + 2νi + 1) + βi (λi − 1)− γi (2ηi + 1)] +

+
n∑
i=1

√
2 ((αi − 1) (δi + νi) + γiηi) + 1 < 1,

then the integral operator Cn, defined by (3.0.2) is convex by the order

n∑
i=1

[− (αi − 1) (2δi + 2νi + 1) + βi (λi − 1)− γi (2ηi + 1)] +
n∑
i=1

√
2 ((αi − 1) (δi + νi) + γiηi) + 1.

If we have n = 1 and αi − 1 = βi = γi = α in Theorem 3.5.3, we obtain the next corollary:
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Corollary 3.5.3.1. Let f ∈ SH(δ), g ∈ SH(ν), h ∈ K(λ), h ∈ SH(η), 0 < λ < 1 and δ, ν, η > 0.
Also, let α a real positive number. If Re (g(z)) ≥ 1 and

0 ≤ α
[
λ− 2δ − 2ν − 2η − 3 +

√
2 (δ + ν + η)

]
+ 1 < 1,

then the integral operator C, defined by (2.2.10) is convex by the order

α
[
λ− 2δ − 2ν − 2η − 3 +

√
2 (δ + ν + η)

]
+ 1.

Theorem 3.5.4. Let fi ∈ SH(δi, σi), gi ∈ SH(νi, µi), hi ∈ K(λi), hi ∈ SH(ηi, θi), 0 < λi ≤ 1,
0 < σi, µi, θi < 1 and δi, νi, ηi > 0. Also, let αi, βi, γi are real numbers with αi ≥ 1, βi, γi ≥ 0, for all
i = 1, n. If Re (gi(z)) ≥ 1 and

0 <
n∑
i=1

[− (αi − 1) (δi + νi − σi − µi + 1) + βi (λi − 1)− γi (ηi − θi + 1)] + 1 < 1,

then the integral operator Cn, defined by (3.0.2) is convex by the order

n∑
i=1

[− (αi − 1) (δi + νi − σi − µi + 1) + βi (λi − 1)− γi (ηi − θi + 1)] + 1.

Letting n = 1 and αi − 1 = βi = γi = α in Theorem 3.5.4, we obtain the next corollary:

Corollary 3.5.4.1. Let f ∈ SH(δ, σ), g ∈ SH(ν, µ), h ∈ K(λ), h ∈ SH(η, θ), 0 < λ ≤ 1, 0 <
σ, µ, θ < 1 and δ, ν, η > 0. Also, let α a real positive number. If Re (g(z)) ≥ 1 and

0 < α (σ + µ+ λ+ θ − δ − ν − η − 3) + 1 < 1

then the integral operator C, defined by (2.2.10) is convex by the order

α (σ + µ+ λ+ θ − δ − ν − η − 3) + 1.

Theorem 3.5.5. Let fi ∈ K(µi), gi ∈ SH(νi), hi ∈ K(λi), hi ∈ SH(ηi), ki ∈ K(σi), ki ∈ SH(θi),
0 < µi, λi, σi < 1 and νi, ηi, θi > 0. Also, let αi, βi, γi are real numbers with αi ≥ 1, βi, γi ≥ 0, for all
i = 1, n. If Re (gi(z)) ≥ 1 and

0 <
n∑
i=1

[(αi − 1) (µi − 2νi − 1) + βi (−2ηi + 2θi) + γi (λi − σi)] +

+
n∑
i=1

√
2 [(αi − 1) νi + βi (ηi − θi)] + 1 < 1,

then the integral operator Gn, defined by (3.0.3) is convex by the order

n∑
i=1

[(αi − 1) (µi − 2νi − 1) + βi (−2ηi + 2θi) + γi (λi − σi)] +
n∑
i=1

√
2 [(αi − 1) νi + βi (ηi − θi)] + 1.

If we have n = 1 and αi − 1 = βi = γi = α in Theorem 3.5.5, we obtain the next corollary:
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Corollary 3.5.5.1. Let f ∈ K(µ), g ∈ SH(ν), h ∈ K(λ), h ∈ SH(η), k ∈ K(σ), k ∈ SH(θ),
0 < µ, λ, σ < 1 and ν, η, θ > 0. Also, let α a real positive number. If Re (g(z)) ≥ 1 and

0 ≤ α
[
2θ + λ− 2ν − 2η − σ − 1 +

√
2 (ν + η − θ)

]
+ 1 < 1

then the integral operator G, defined by (2.2.16) is convex by the order

α
[
2θ + λ− 2ν − 2η − σ − 1 +

√
2 (ν + η − θ)

]
+ 1.

Theorem 3.5.6. Let fi ∈ K(µi), gi ∈ SH(νi, δi), hi ∈ K(λi), hi ∈ SH(νi, ωi), ki ∈ K(σi), ki ∈
SH(θi, ξi), 0 < µi, λi, σi ≤ 1, 0 < δi, ωi, ξi < 1 and νi, ηi, θi > 0. Also, let αi, βi, γi are real numbers
with αi ≥ 1, βi, γi ≥ 0, for all i = 1, n. If Re (gi(z)) ≥ 1 and

0 <
n∑
i=1

[(αi − 1) (µi + δi − νi − 1) + βi (ωi + θi − ηi − ξi) + γi (λi − σi)] + 1 < 1,

then the integral operator Gn, defined by (3.0.3) is convex by the order

n∑
i=1

[(αi − 1) (µi + δi − νi − 1) + βi (ωi + θi − ηi − ξi) + γi (λi − σi)] + 1.

If we have n = 1 and αi − 1 = βi = γi = α in Theorem 3.5.6, we obtain the next corollary:

Corollary 3.5.6.1. Let f ∈ K(µ), g ∈ SH(ν, δ), h ∈ K(λ), h ∈ SH(ν, ω), k ∈ K(σ), k ∈ SH(θ, ξ),
0 < µ, λ, σ ≤ 1, 0 < δ, ω, ξ < 1 and ν, η, θ > 0. Also, let α a real positive number. If Re (g(z)) ≥ 1 and

0 < α (δ + µ+ ω + θ + λ− ν − η − σ − 1) + 1 < 1,

then the integral operator G, defined by (2.2.16) is convex by the order

α (δ + µ+ ω + θ + λ− ν − η − σ − 1) + 1.

Theorem 3.5.7. Let fi ∈ SH (µi), gi ∈ K (λi), hi ∈ SH (νi), ki ∈ SH (θi), hi ∈ K (ηi), ki ∈ K (ρi)
and 0 < λi, ηi, ρi < 1, µi, νi, θi > 0. Also, let αi, βi, γi, δi are real numbers with αi ≥ 1, βi, γi, δi ≥ 0,
for all i = 1, n. If

0 <
n∑
i=1

[− (αi − 1) (2µi + 1) + βi (λi − 1)− 2γi (νi − θi) + δi (ηi − ρi)] +

+
n∑
i=1

√
2 ((αi − 1)µi + γi (νi − θi)) + 1 < 1,

then the integral operator Tn, defined by (3.0.4) is convex by the order

n∑
i=1

[− (αi − 1) (2µi + 1) + βi (λi − 1)− 2γi (νi − θi) + δi (ηi − ρi)] +

+
n∑
i=1

√
2 [(αi − 1)µi + γi (νi − θi)] + 1.
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Letting n = 1 and αi − 1 = βi = γi = δi = α in Theorem 3.5.7, we obtain the next corollary:

Corollary 3.5.7.1. Let f ∈ SH (µ), g ∈ K (λ), h ∈ SH (ν), k ∈ SH (θ), h ∈ K (η), k ∈ K (ρ). Also,
let α a real positive number. If

0 < α
[
λ+ 2θ + η − 2µ− 2ν − ρ− 2 +

√
2 (µ+ ν − θ)

]
+ 1 < 1,

then the integral operator T , defined by (2.2.23) is convex by the order

α
[
λ+ 2θ + η − 2µ− 2ν − ρ− 2 +

√
2 (µ+ ν − θ)

]
+ 1.

Theorem 3.5.8. Let fi ∈ SH(µi, εi), gi ∈ K(λi), hi ∈ SH(νi, ξi), ki ∈ SH(θi, σi), hi ∈ K(ηi),
ki ∈ K(ρi), 0 ≤ λi, εi, ξi, σi < 1 and µi, νi, θi > 0. Also, let αi, βi, γi are real numbers with αi ≥ 1,
βi, γi, δi ≥ 0, for all i = 1, n. If

0 <
n∑
i=1

[− (αi − 1) (µi − εi + 1) + βi (λi − 1) + γi (ξi + θi − σi − νi) + δi (ηi − ρi)] + 1 < 1,

then the integral operator Tn, defined by (3.0.4) is convex by the order

n∑
i=1

[− (αi − 1) (µi − εi + 1) + βi (λi − 1) + γi (ξi + θi − σi − νi) + δi (ηi − ρi)] .

If we have n = 1 and αi − 1 = βi = γi = δi = α in Theorem 3.5.8, we obtain the next corollary:

Corollary 3.5.8.1. Let f ∈ SH(µ, ε), g ∈ K(λ), h ∈ SH(ν, ξ), k ∈ SH(θ, σ), h ∈ K(η), k ∈ K(ρ),
0 ≤ λ, ε, ξ, σ < 1 and µ, ν, θ > 0. Also, let α a real positive number. If

0 < α (ε+ ξ + λ+ θ + η − µ− σ − ν − ρ− 2) + 1 < 1

then the integral operator T , defined by (2.2.23) is convex by the order

α (ε+ ξ + λ+ θ + η − µ− σ − ν − ρ− 2) + 1.

3.6 Convexity conditions for alpha -convex functions

This paragraph describes sufficient convexity conditions for the studied integral operators, when
the functions involved belong to the alpha -convex function classMα, α ∈ R.

Theorem 3.6.1. Let fi ∈ S∗ (αi − 1) and gi ∈ Mγi , with 1 ≤ αi < 2 and βi = 1− γi, for all i = 1, n.
If

0 <
n∑
i=1

[
(αi − 1)2 − αi

]
+ 1 < 1,

then the integral operatorMn, defined by (3.0.1) is convex.
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Theorem 3.6.2. Let fi, gi ∈ S∗ (αi − 1) and hi ∈ Mγi , with 1 ≤ αi < 2 and βi = 1 − γi, for all
i = 1, n. If Re (gi(z)) ≥ 1 and

0 <
n∑
i=1

[
2 (αi − 1)2 − αi

]
+ 1 < 1,

then the integral operator Cn, defined by (3.0.2) is convexx.

Theorem 3.6.3. Let zf ′i , gi ∈ S∗ (αi − 1) and hi, ki ∈ Mβi , with 1 ≤ αi < 2 and βi = 1 − γi, for all
i = 1, n. If Re (gi(z)) ≥ 1 and

0 <
n∑
i=1

[
2 (αi − 1)2 − (αi − 1)

]
+ 1 < 1,

then the integral operator Gn, defined by (3.0.3) is convex.

Theorem 3.6.4. Let fi ∈ S∗ (αi − 1), zg′i ∈ S∗ (βi) and hi, ki ∈ Mγi , with 1 ≤ αi < 2, βi, γi, δi ≥ 0
and γi = 1− δi, for all i = 1, n. If

0 <
n∑
i=1

[
(αi − 1)2 + β2

i − αi − βi + 1
]

+ 1 < 1,

then the integral operator Tn, defined by (3.0.4) is convex.
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Chapter 4

Conditions to belong to the class N (β)

4.1 Conditions for analytic functions

This paragraph describes sufficient conditions to belong to the classN (β), β > 1, for new integral
operators with analytic functions.

Theorem 4.1.1. Let fi, gi ∈ A, gi ∈ N (λi). For any λi > 1 and fi, gi verifying conditions∣∣∣∣zf ′
i (z)

fi(z)
− 1

∣∣∣∣ ≤ 1,

∣∣∣∣zg′
i(z)

gi(z)
− 1

∣∣∣∣ ≤ 1,

for all z ∈ U, i = 1, n, there are αi, βi, γi real positive numbers and αi > 1 so that

µ =
n∑
i=1

[(αi − 1) + βi (λi − 1) + γi] + 1.

In these conditions the integral operatorMn, defined by (3.0.1) is in the class N (µ).

Letting n = 1 and αi − 1 = βi = γi = α in Theorem 4.1.1, we obtain the next corollary:

Corollary 4.1.1.1. Let f, g ∈ A and g ∈ N (λ). For any λ > 1 and f, g verifying conditions∣∣∣∣zf ′
(z)

f(z)
− 1

∣∣∣∣ ≤ 1,

∣∣∣∣zg′
(z)

g(z)
− 1

∣∣∣∣ ≤ 1,

for all z ∈ U, there is a number real positive α so that

µ = α (λ+ 1) + 1.

In these conditions the integral operatorM, defined by (2.2.5) is in the class N (µ).

Theorem 4.1.2. Let fi, gi, hi ∈ A, hi ∈ N (λi). For any λi > 1 and fi, gi, hi verifying conditions∣∣∣∣zf ′
i (z)

fi(z)
− 1

∣∣∣∣ ≤ 1,

∣∣∣∣zg′
i(z)

gi(z)
− 1

∣∣∣∣ ≤ 1,

∣∣∣∣zh′
i(z)

hi(z)
− 1

∣∣∣∣ ≤ 1, |gi(z)| ≤ 1,
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for all z ∈ U, i = 1, n, there are αi, βi, γi and αi > 1 so that

ρ =
n∑
i=1

[3 (αi − 1) + βi (λi − 1) + γi] + 1.

In these conditions the integral operator Cn, defined by (3.0.2) is in the class N (ρ).

Letting n = 1 and αi − 1 = βi = γi = α in Theorem 4.1.2, we obtain the next corollary:

Corollary 4.1.2.1. Let f, g, h ∈ A and h ∈ N (λ). For any λ > 1 and f, g, h verifying conditions∣∣∣∣zf ′
(z)

f(z)
− 1

∣∣∣∣ ≤ 1,

∣∣∣∣zg′
(z)

g(z)
− 1

∣∣∣∣ ≤ 1,

∣∣∣∣zh′
(z)

h(z)
− 1

∣∣∣∣ ≤ 1, |g(z)| ≤ 1,

for all z ∈ U, there is a number real positive α so that

ρ = α (λ+ 3) + 1.

In these conditions the integral operator C, defined by (2.2.10) is in the class N (ρ).

Theorem 4.1.3. Let fi, gi, hi, ki ∈ A, fi ∈ N (µi), hi ∈ N (λi) and ki ∈ N (σi). For any µi, λi, σi > 1
and gi, hi, ki verifying conditions∣∣∣∣zg′

i(z)

gi(z)
− 1

∣∣∣∣ ≤ 1,

∣∣∣∣zh′
i(z)

hi(z)
− 1

∣∣∣∣ ≤ 1,

∣∣∣∣zk′
i(z)

ki(z)
− 1

∣∣∣∣ ≤ 1, |gi(z)| ≤ 1,

for all z ∈ U, i = 1, n, there are αi, βi, γi real positive numbers and αi > 1 so that

ρ =
n∑
i=1

[(αi − 1) (µi + 1) + 2βi + γi (λi − σi)] + 1.

In these conditions the integral operator Gn, defined by (3.0.3) is in the class N (ρ).

Letting n = 1 and αi − 1 = βi = γi = α in Theorem 4.1.3, we obtain the next corollary:

Corollary 4.1.3.1. Let f, g, h, k ∈ A and f ∈ N (µ), h ∈ N (λ), k ∈ N (σ). For any µ, λ, σ > 1 and
g, h, k verifying conditions∣∣∣∣zg′

(z)

g(z)
− 1

∣∣∣∣ ≤ 1,

∣∣∣∣zh′
(z)

h(z)
− 1

∣∣∣∣ ≤ 1,

∣∣∣∣zk′
(z)

k(z)
− 1

∣∣∣∣ ≤ 1, |g(z)| ≤ 1,

for all z ∈ U, there is a number real positive α so that

ρ = α (µ+ λ− σ + 3) + 1.

In these conditions the integral operator G, defined by (2.2.16) is in the class N (ρ).
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Theorem 4.1.4. Let fi, gi, hi, ki ∈ A, gi ∈ N (λi), hi ∈ N (ρi), ki ∈ N (νi), i = 1, n. For any
λi, ρi, νi > 1 and fi, hi, ki verifying conditions∣∣∣∣zf ′

i (z)

fi(z)
− 1

∣∣∣∣ ≤ 1,

∣∣∣∣zh′
i(z)

hi(z)
− 1

∣∣∣∣ ≤ 1,

∣∣∣∣zk′
i(z)

ki(z)
− 1

∣∣∣∣ ≤ 1,

for all z ∈ U, i = 1, n, there are αi, βi, γi, δi real positive numbers and αi > 1 so that

µ =
n∑
i=1

[(αi − 1) + βi (λi − 1) + 2γi + δi (ρi − νi)] + 1.

In these conditions the integral operator Tn, defined by (3.0.4) is in the class N (µ).

Letting n = 1 and αi − 1 = βi = γi = δi = α in Theorem 4.1.4, we obtain the next corollary:

Corollary 4.1.4.1. Let f, g, h, k ∈ A and g ∈ N (λ), h ∈ N (ρ), k ∈ N (ν). For any λ, ρ, ν > 1 and
f, h, k verifying conditions∣∣∣∣zf ′

(z)

f(z)
− 1

∣∣∣∣ ≤ 1,

∣∣∣∣zh′
(z)

h(z)
− 1

∣∣∣∣ ≤ 1,

∣∣∣∣zk′
(z)

k(z)
− 1

∣∣∣∣ ≤ 1,

for all z ∈ U, there is a number real positive α so that

µ = α (λ+ ρ− ν + 2) + 1.

In these conditions the integral operator T , defined by (2.2.23) is in the class N (µ).

4.2 Conditions for belonging to the class functions SP(α, β)

This section contains sufficient conditions for belonging to the class N (β), β > 1,for new integral
operators with functions in the function class SP(α, β), α > 0, 0 ≤ β < 1.

Theorem 4.2.1. Let fi ∈ SP(α, β), gi ∈ SP(δ, η) and gi ∈ N (λi), α, δ, λi > 0, 0 ≤ β, η < 1. For any
real numbers Mi, Ni ≥ 1, which verify∣∣∣∣zf ′

i (z)

fi(z)

∣∣∣∣ ≤Mi,

∣∣∣∣zg′
i(z)

gi(z)

∣∣∣∣ ≤ Ni,

for all z ∈ U, i = 1, n, there are αi, βi, γi real positive numbers and αi > so that

ρ = 1 +
n∑
i=1

[(αi − 1) (Mi + 2α− 1) + βi (λi − 1) + γi (Ni + 2δ − 1)] > 1.

In these conditions the integral operatorMn, defined by (3.0.1) is in the class N (ρ).

If we consider n = 1 and αi − 1 = βi = γi = α in Theorem 4.2.1, we obtain the next corollary:
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Corollary 4.2.1.1. Let f ∈ SP(α, β), g ∈ SP(δ, η) and g ∈ N (λ), α, δ, λ > 0, 0 ≤ β, η < 1. For any
real numbers M,N ≥ 1, which verify∣∣∣∣zf ′

(z)

f(z)

∣∣∣∣ ≤M,

∣∣∣∣zg′
(z)

g(z)

∣∣∣∣ ≤ N,

for all z ∈ U, there is a number real positive α so that

ρ = 1 + α (M +N + 2α + 2δ + λ− 3) > 1.

In these conditions the integral operatorM, defined by (2.2.5) is in the class N (ρ).

Theorem 4.2.2. Let fi ∈ SP(α, β), gi ∈ SP(γ, δ), hi ∈ N (λi) and hi ∈ SP(ν, η), α, γ, ν, λi > 0,
0 ≤ β, δ, η < 1. For any real numbers Mi, Ni, Pi ≥ 1, which verify∣∣∣∣zf ′

i (z)

fi(z)

∣∣∣∣ ≤Mi,

∣∣∣∣zg′
i(z)

gi(z)

∣∣∣∣ ≤ Ni,

∣∣∣∣zh′
i(z)

hi(z)

∣∣∣∣ ≤ Pi, |gi(z)| ≤ 1,

for all z ∈ U, i = 1, n, there are αi, βi, γi there is a number real positive αi > 1 so that

ρ = 1 +
n∑
i=1

[(αi − 1) (Mi +Ni + 2α + 2γ − 1) + βi (λi − 1) + γi (Pi + 2ν − 1)] > 1.

In these conditions the integral operator Cn, defined by (3.0.2) is in the class N (ρ).

If we consider n = 1 and αi − 1 = βi = γi = αin Theorem 4.2.2, we obtain the next corollary:

Corollary 4.2.2.1. Let f ∈ SP(α, β), g ∈ SP(γ, δ), h ∈ N (λ) and h ∈ SP(ν, η), α, γ, ν, λ > 0,
0 ≤ β, δ, η < 1. For any real numbers M,N,P ≥ 1, which verify∣∣∣∣zf ′

(z)

f(z)

∣∣∣∣ ≤M,

∣∣∣∣zg′
(z)

g(z)

∣∣∣∣ ≤ N,

∣∣∣∣zh′
(z)

h(z)

∣∣∣∣ ≤ P, |g(z)| ≤ 1,

for all z ∈ U, there is a number real positive α so that

ρ = 1 + α (M +N + P + 2α + 2γ + 2ν + λ− 3) > 1.

In these conditions the integral operator C, defined by (2.2.10) is in the class N (ρ).

Theorem 4.2.3. Let fi ∈ N (µi), gi ∈ SP(γ, δ), hi ∈ N (λi), hi ∈ SP(ν, η), ki ∈ SP(θ, ξ) and
ki ∈ N (σi), µi, γ, ν, θ, λi, σi > 0, 0 ≤ δ, η, ξ < 1. For any real numbers Mi, Ni, Pi ≥ 1, which verify∣∣∣∣zg′

i(z)

gi(z)

∣∣∣∣ ≤Mi,

∣∣∣∣zh′
i(z)

hi(z)

∣∣∣∣ ≤ Ni,

∣∣∣∣zk′
i(z)

ki(z)

∣∣∣∣ ≤ Pi, |gi(z)| ≤ 1,

for all z ∈ U, i = 1, n, there are αi, βi, γi real positive numbers and αi > 1 so that

ρ = 1 +
n∑
i=1

[(αi − 1) (µi +Mi + 2γ − 1) + βi (Ni + Pi + 2ν + 4θ − 2ξ − 1) + γi (λi − σi)] > 1.

In these conditions the integral operator Gn, defined by (3.0.3) is in the class N (ρ).

91



If we consider n = 1 and αi − 1 = βi = γi = α in Theorem 4.2.3, we obtain the next corollary:

Corollary 4.2.3.1. Let f ∈ N (µ), g ∈ SP(γ, δ), h ∈ SP(µ, η), h ∈ N (λ), k ∈ SP(θ, ξ) and
k ∈ N (σ), µ, γ, ν, θ, λ, σ > 0, 0 ≤ δ, η, ξ < 1. For any real numbers M,N,P ≥ 1, which verify∣∣∣∣zg′

(z)

g(z)

∣∣∣∣ ≤M,

∣∣∣∣zh′
(z)

h(z)

∣∣∣∣ ≤ N,

∣∣∣∣zk′
(z)

k(z)

∣∣∣∣ ≤ P, |g(z)| ≤ 1,

for all z ∈ U, there is a number real positive α so that

ρ = 1 + α (µ+M +N + P + 2γ + 2ν + 4θ − 2ξ + λ− σ − 1) > 1.

In these conditions the integral operator G, defined by (2.2.16) is in the class N (ρ).

Theorem 4.2.4. Let fi ∈ SP(α, β), gi ∈ N (λi), hi ∈ SP(σ, η), ki ∈ SP(θ, ξ), hi ∈ N (µi) and
ki ∈ N (νi) α, σ, θ, λi, µi, νi > 0, 0 ≤ β, η, ξ < 1. For any real numbers Mi, Ni, Pi ≥ 1, which verify∣∣∣∣zf ′

i (z)

fi(z)

∣∣∣∣ ≤Mi,

∣∣∣∣zh′
i(z)

hi(z)

∣∣∣∣ ≤ Ni,

∣∣∣∣zk′
i(z)

ki(z)

∣∣∣∣ ≤ Pi,

for all z ∈ U, i = 1, n, there are αi, βi, γi, δi real positive numbers and αi > 1 so that

ρ = 1 +
n∑
i=1

[(αi − 1) (Mi + 2α− 1) + βi (λi − 1) + γi (Ni + Pi + 2σ + 4θ − 2ξ) + δi (µi − νi)] > 1.

In these conditions the integral operator Tn, defined by (3.0.4) is in the class N (ρ).

If we consider n = 1 and αi−1 = βi = γi = δi = α in Theorem 4.2.4, we obtain the next corollary:

Corollary 4.2.4.1. Let f ∈ SP(α, β), g ∈ N (λ), h ∈ SP(σ, η), k ∈ SP(θ, ξ), h ∈ N (µ) and
k ∈ N (ν) α, σ, θ, λ, µ, ν > 0, 0 ≤ β, η, ξ < 1. For any real numbers M,N,P ≥ 1, which verify∣∣∣∣zf ′

(z)

f(z)

∣∣∣∣ ≤M,

∣∣∣∣zh′
(z)

h(z)

∣∣∣∣ ≤ N,

∣∣∣∣zk′
(z)

k(z)

∣∣∣∣ ≤ P,

for all z ∈ U, there is a number real positive α so that

ρ = 1 + α (M +N + P + 2α + 2σ + 4θ + λ+ µ− ν − 2ξ − 2) > 1.

In these conditions the integral operator T , defined by (2.2.23) is in the class N (ρ).
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Chapter 5

Conditions for p-valent functions

5.1 Conditions for belonging to the class functions of convex p-
valent functions

In this section we present sufficient conditions for belonging to the class of p-valently convex func-
tions Kp(β), 0 ≤ β ≤ p, for new integral operators with functions in the class of p-valently starlike
functions S∗p(α), α < 1.

Let the integral operator

Mp,n(z) =

∫ z

0

ptp−1

n∏
i=1

[(
fi(t)

tp

)αi−1(
gi
′(t)

ptp−1

)βi (gi(t))
tp

)γi]
dt, (5.1.1)

where fi, gi are p-valent analytic functions in U and αi, βi, γi are complex numbers.

For p = 1 this integral operator becomesMn, defined by (3.0.1).

Theorem 5.1.1. Let fi, gi ∈ Ap, αi − 1, βi, γi > 0 and µi, λi, ηi < 1, for all i = 1, n. If fi ∈ S∗p (µi),
gi ∈ Kp(λi) and gi ∈ S∗p (ηi), thenMp,n ∈ Kp(ρ), where

ρ = 1−
n∑
i=1

[(αi − 1) (1− µi) + βi (1− λi) + γi (1− ηi)] .

Letting n = p = 1 and αi − 1 = βi = γi = α in Theorem 5.1.1, we obtain the next corollary:

Corollary 5.1.1.1. Let f, g ∈ A, α > 0 and µ, λ, η < 1. If f ∈ S∗(µ), g ∈ K(λ) and g ∈ S∗(η), then
the integral operatorM∈ K(ρ)

M(z) =

∫ z

0

[
f(t)

t
g′(t)

g(t))

t

]α
dt, (5.1.2)

where
ρ = 1− α (3− µ− λ− η) .
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We consider the integral operator:

Cp,n(z) =

∫ z

0

ptp−1

n∏
i=1

[(
fi(t)

tp(p−1)
egi(t)

)αi−1(
hi
′(t)

ptp−1

)βi (hi(t))
tp

)γi]
dt, (5.1.3)

where fi, gi, hi are p-valent analytic functions in U and αi, βi, γi are complex numbers.

For p = 1 this integral operator becomes Cn, defined by (3.0.2).

Theorem 5.1.2. Let fi, gi, hi ∈ Ap and αi − 1, βi, γi > 0. If fi ∈ S∗p(µi), gi ∈ S∗p (νi), hi ∈ Kp(λi),
hi ∈ S∗p (ηi) with µi, νi, λi, ηi < 1 and Re (gi(z)) ≥ 1, for all i = 1, n, then the integral operator
Cp,n ∈ Kp(ρ), where

ρ = 1−
n∑
i=1

[(αi − 1) (3− µi − νi) + βi (1− λi) + γi (1− ηi)] .

Letting n = p = 1 and αi − 1 = βi = γi = α in Theorem 5.1.2, we obtain the next corollary:

Corollary 5.1.2.1. Let f, g, h ∈ A, α > 0. If f ∈ S∗(µ), g ∈ S∗(ν), h ∈ K(λ), h ∈ S∗(η) with
µ, ν, λ, η < 1 and Re (g(z)) ≥ 1, then the integral operator C ∈ K(ρ), where

C(z) =

∫ z

0

[
f(t)

t
eg(t)h′(t)

h(t))

t

]α
dt, (5.1.4)

and
ρ = 1− α (5− µ− ν − λ− η) .

We consider the integral operator:

Gp,n(z) =

∫ z

0

n∐
i=1

[
ptp−1

(
fi
′(t)

ptp−1

egi(t)

tp−1

)αi−1(
hi(t)

ki(t)

)βi (hi′(t))
ki
′(t)

)γi]
dt, (5.1.5)

where fi, gi, hi, ki are p-valent analytic functions in U and αi, βi, γi are complex numbers.

For p = 1 this integral operator becomes Gn, defined by (3.0.3).

Theorem 5.1.3. Let fi, gi, hi, ki ∈ Ap, αi − 1, βi, γi > 0. If fi ∈ Kp(µi), gi ∈ S∗p (νi), hi ∈ Kp(λi),
hi ∈ S∗p (ηi), ki ∈ Kp(σi), ki ∈ S∗p (θi) with µi, νi, λi, ηi, σi, θi < 1 and Re (gi(z)) ≥ 1, for all i = 1, n,
then the integral operator Gp,n ∈ Kp(ρ), where

ρ = 1−
n∑
i=1

[(αi − 1) (3− µi − νi) + βi (θi − ηi) + γi (σi − λi)] .

Letting n = p = 1 and αi − 1 = βi = γi = α in Theorem 5.1.3, we obtain the next corollary:
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Corollary 5.1.3.1. Let f, g, h, k ∈ A, α > 0. If f ∈ K(µ), g ∈ S∗(ν), h ∈ K(λ), h ∈ S∗(η), k ∈ K(σ),
k ∈ S∗(θ) with µ, ν, λ, η, σ, θ < 1 and Re (g(z)) ≥ 1, then the integral operator G ∈ Kp(ρ), where

G(z) =

∫ z

0

[
f

′
(t)eg(t)

h(t)

k(t)

h′(t)

k′(t)

]α
dt, (5.1.6)

and
ρ = 1− α (3 + θ + σ − µ− ν − λ− η) .

We consider the integral operator:

Tp,n(z) =

∫ z

0

n∏
i=1

[
ptp−1

(
fi(t)

tp

)αi−1(
gi
′(t)

ptp−1

)βi (hi(t)
ki(t)

)γi (hi′(t))
ki
′(t)

)δi]
dt, (5.1.7)

where fi, gi, hi, ki are p-valent analytic functions in U and αi, βi, γi, δi are complex numbers.

For p = 1 this integral operator becomes Tn, defined by (3.0.4).

Theorem 5.1.4. Let fi, gi, hi, ki ∈ Ap, αi − 1, βi, γi, δi > 0. If fi ∈ S∗p (µi), gi ∈ Kp(λi), hi ∈ Kp(ωi),
hi ∈ S∗p (ηi), ki ∈ Kp(σi), ki ∈ S∗p (θi) with µi, λi, ωi, ηi, σi, θi < 1, for all i = 1, n, then the integral
operator Tp,n ∈ Kp(ρ), where

ρ = 1−
n∑
i=1

[(αi − 1) (1− µi) + βi (1− λi) + γi (θi − ηi) + δi (σi − ωi)] .

Letting n = p = 1 and αi − 1 = βi = γi = δi = α in Theorem 5.1.4, we obtain the next corollary:

Corollary 5.1.4.1. Let f, g, h, k ∈ A, α > 0. If f ∈ S∗(µ), g ∈ K(λ), h ∈ K(ω), h ∈ S∗(η), k ∈ K(σ),
k ∈ S∗(θ), with µ, λ, η, ω, σ, θ < 1, then the integral operator T ∈ Kp(ρ), where

T (z) =

∫ z

0

[
f(t)

t
g′(t)

h(t)

k(t)

h′(t)

k′(t)

]α
dt, (5.1.8)

and
ρ = 1− α (2 + θ + σ − µ− λ− η − ω) .

5.2 Conditions for belonging to the class functions Np(β)

In this paragraph we describe sufficient conditions for belonging to the class of p-valently functions
Np(β), for new integral operators with functions in the classes of p-valent functions Np(β) andMp(β),
β > 1.

Theorem 5.2.1. Let fi, gi ∈ Ap, αi − 1, βi, γi > 0 and µi, λi, ηi > 1, for all i = 1, n. If fi ∈ Mp(µi),
gi ∈ Np(λi) and gi ∈Mp(ηi), then the integral operatorMp,n ∈ Np(ρ), where

ρ = 1−
n∑
i=1

[(αi − 1) (µi − 1) + βi (λi − 1) + γi (ηi − 1)] .
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Theorem 5.2.2. Let fi, gi, hi ∈ Ap, αi − 1, βi, γi > 0. If fi ∈ Mp(µi), gi ∈ Mp(νi), hi ∈ Np(λi),
hi ∈ Mp(ηi) with µi, νi, λi, ηi > 1 and Re (gi(z)) ≤ 1, for all i = 1, n, then the integral operator
Cp,n ∈ Np(ρ), where

ρ = 1−
n∑
i=1

[(αi − 1) (µi + νi − 1) + βi (λi − 1) + γi (ηi − 1)] .

Theorem 5.2.3. Let fi, gi, hi, ki ∈ Ap, αi − 1, βi, γi > 0. If fi ∈ Np(µi), gi ∈ Mp(νi), hi ∈ Np(λi),
hi ∈Mp(ηi), ki ∈ Np(σi), ki ∈Mp(θi) with µi, νi, λi, ηi, σi, θi > 1 and Re (gi(z)) ≤ 1, for all i = 1, n,
then the integral operator Gp,n ∈ Np(ρ), where

ρ = 1−
n∑
i=1

[(αi − 1) (µi + νi − 1) + βi (ηi − θi) + γi (λi − σi)] .

Theorem 5.2.4. Let fi, gi, hi, ki ∈ Ap, αi−1, βi, γi, , δi > 0. If fi ∈Mp(µi), gi ∈ Np(λi), hi ∈ Np(ωi),
hi ∈ Mp(ηi), ki ∈ Np(σi), ki ∈ Mp(θi) with µi, λi, ηi, ωi, σi, θi > 1, for all i = 1, n, then the integral
operator Tp,n ∈ Np(ρ), where

ρ = 1−
n∑
i=1

[(αi − 1) (µi − 1) + βi (λi − 1) + γi (ηi − θi) + δi (ωi − σi)] .

5.3 Conditions for belonging to the class functions Kp(a, α)

In this section we present sufficient conditions for belonging to the class of convex p-valently func-
tions Kp(a, α), for new integral operators with functions in the class of p-valently starlike functions
S∗p (a, α), a ∈ C, α < 1.

Theorem 5.3.1. Let fi, gi ∈ Ap, αi − 1, βi, γi > 0 and µi, λi, ηi < 1, for all i = 1, n. If fi ∈ S∗p (a, µi),
gi ∈ Kp(a, λi) and gi ∈ S∗p (a, ηi), then the integral operatorMp,n ∈ Kp(a, ρ), where

ρ = 1−
n∑
i=1

[(αi − 1)µi + βiλi + γiηi] .

Letting n = p = 1 and αi − 1 = βi = γi = α in Theorem 5.3.1, we obtain the next corollary:

Corollary 5.3.1.1. Let f, g ∈ A, α > 0 and µ, λ, η < 1. If f ∈ S∗(a, µ), g ∈ K(a, λ) and g ∈ S∗(a, η),
then the integral operatorM∈ K(a, ρ), whereM defined by (5.1.2) and

ρ = 1− α (µ+ λ+ η) .

Theorem 5.3.2. Let fi, gi, hi ∈ Ap, αi − 1, βi, γi > 0. If fi ∈ S∗p (a, µi), gi ∈ S∗p (a, νi), hi ∈ Kp(a, λi),
hi ∈ S∗p(a, ηi) with µi, νi, λi, ηi < 1 and Re (gi(z)) ≥ 1, for all i = 1, n, then the integral operator
Cp,n ∈ Kp(a, ρ), where

ρ = 1−
n∑
i=1

[(αi − 1) (µi + νi + 1) + βiλi + γiηi] .
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Letting n = p = 1 and αi − 1 = βi = γi = α in Theorem 5.3.2, we obtain the next corollary:

Corollary 5.3.2.1. Let f, g, h ∈ A, α > 0. If f ∈ S∗(a, µ), g ∈ S∗(a, ν), h ∈ K(a, λ), h ∈ S∗(a, η)
with µ, ν, λ, η < 1 and Re (g)(z)) ≥ 1, then the integral operator C ∈ Kp(a, ρ), where C defined by
(5.1.4) and

ρ = 1− α (µ+ ν + λ+ η + 1) .

Theorem 5.3.3. Let fi, gi, hi, ki ∈ Ap, αi−1, βi, γi > 0. If fi ∈ Kp(a, µi), gi ∈ S∗p (a, νi), hi ∈ Kp(a, λi),
hi ∈ S∗p (a, ηi), ki ∈ Kp(a, σi), ki ∈ S∗p (a, θi) with µi, νi, λi, ηi, σi, θi < 1 and Re (gi(z)) ≥ 1, for all
i = 1, n, then the integral operator Gp,n ∈ Kp(a, ρ), where

ρ = 1−
n∑
i=1

[(αi − 1) (µi + νi + 1) + βi (ηi − θi) + γi (λi − σi)] .

Letting n = p = 1 and αi − 1 = βi = γi = α in Theorem 5.3.3, we obtain the next corollary:

Corollary 5.3.3.1. Let f, g, h, k ∈ A, α > 0. If f ∈ K(a, µ), g ∈ S∗(a, ν), h ∈ K(a, λ), h ∈ S∗(a, η),
k ∈ K(a, σ), k ∈ S∗(a, θ) with µ, ν, λ, η, σ, θ < 1 and Re (g(z)) ≥ 1, then the integral operator
G ∈ Kp(a, ρ), where G defined by (5.1.6) and

ρ = 1− α (µ+ ν + η + λ− θ − σ + 1) .

Theorem 5.3.4. Let fi, gi, hi, ki ∈ Ap, αi − 1, βi, γi, δi > 0. If fi ∈ S∗p (a, µi), gi ∈ Kp(a, λi), hi ∈
Kp(a, ωi), hi ∈ S∗p (a, ηi), ki ∈ Kp(a, σi), ki ∈ S∗p (a, θi) with µi, λi, ωi, ηi, σi, θi < 1, for all i = 1, n,
then the integral operator Tp,n ∈ Kp(a, ρ), where

ρ = 1−
n∑
i=1

[(αi − 1)µi + βiλi + γi (ηi − θi) + δi (ωi − σi)] .

Letting n = p = 1 and αi − 1 = βi = γi = δi = α in Theorem 5.3.4, we obtain the next corollary:

Corollary 5.3.4.1. Let f, g, h, k ∈ A, α > 0. If f ∈ S∗(a, µ), g ∈ K(a, λ), h ∈ K(a, ω), h ∈ S∗(a, η),
k ∈ K(a, σ), k ∈ S∗(a, θ), with µ, λ, ω, η, σ, θ < 1, then the integral operator T ∈ Kp(a, ρ), where

ρ = 1− α (µ+ λ+ ω + η − θ − σ) .

5.4 Conditions for belonging to the class p-valent starlike functions

In this section we present sufficient conditions for belonging to the class of p-valently starlike func-
tions S∗p (β), 0 ≤ β ≤ p, for new integral operators with functions in the class of p-valent analytic
functions Ap.

Theorem 5.4.1. Let fi, gi ∈ Ap and αi − 1, βi, γi > 0 positive real numbers, for all i = 1, n. If fi, gi
satisfies

Re
zf ′i(z)

fi(z)
< p+

1

2
∑n

i=1 (αi − 1)
, Re

zg′i(z)

gi(z)
< p+

1

2
∑n

i=1 γi
, Re

(
zg′′i (z)

g′i(z)
+ 1

)
< p− 3

4
∑n

i=1 βi
,

then the integral operatorMp,n is p-valently starlike in the open unit disk.
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Letting n = p = 1 and αi − 1 = βi = γi = α in Theorem 5.4.1, we obtain the next corollary:

Corollary 5.4.1.1. Let f, g ∈ A and α > 0 a positive real number. If f, g satisfies

Re
zf ′(z)

f(z)
< 1 +

1

2α
, Re

zg′(z)

g(z)
< 1 +

1

2α
, Re

(
zg′′(z)

g′(z)
+ 1

)
< 1− 3

4α
,

then the integral operatorM defined by (5.1.2) is starlike in the open unit disk.

Theorem 5.4.2. Let fi, gi ∈ Ap and αi − 1, βi, γi > 0 positive real numbers, for all i = 1, n. If fi, gi
satisfies∣∣∣∣zf ′i(z)

fi(z)
− p
∣∣∣∣ < p

2
∑n

i=1 (αi − 1)
,

∣∣∣∣zg′i(z)

gi(z)
− p
∣∣∣∣ < p

2
∑n

i=1 γi
,

∣∣∣∣zg′′i (z)

g′i(z)
− p+ 1

∣∣∣∣ < 1∑n
i=1 βi

,

for all z ∈ U, then the integral operatorMp,n is p-valently starlike in the open unit disk.

Letting n = p = 1 and αi − 1 = βi = γi = α in Theorem 5.4.2, we obtain the next corollary:

Corollary 5.4.2.1. Let f, g ∈ A and α > 0 a positive real number. If f, g satisfies∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < 1

2α
,

∣∣∣∣zg′(z)

g(z)
− 1

∣∣∣∣ < 1

2α
,

∣∣∣∣zg′′(z)

g′(z)

∣∣∣∣ < 1

α
,

for all z ∈ U, then the integral operatorM defined by (5.1.2) is starlike in the open unit disk.

Theorem 5.4.3. Let fi, gi, hi ∈ Ap and αi − 1, βi, γi > 0 positive real numbers, for all i = 1, n. If
fi, gi, hi satisfies

Re
zf ′i(z)

fi(z)
< p+

1

3
∑n

i=1 (αi − 1)
, Re

zg′i(z)

gi(z)
< p+

1

3
∑n

i=1 (αi − 1)
,

Re
(
zh′′i (z)

h′i(z)
+ 1

)
< p− 3

4
∑n

i=1 βi
, Re

zh′i(z)

hi(z)
< p+

1

3
∑n

i=1 γi
, |gi(z)| ≤ 1,

then the integral operator Cp,n is p-valently starlike in the open unit disk U.

Letting n = p = 1 and αi − 1 = βi = γi = α in Theorem 5.4.3, we obtain the next corollary:

Corollary 5.4.3.1. Let f, g, h ∈ A and α > 0 a positive real number. If f, g, h satisfies

Re
zf ′(z)

f(z)
< 1 +

1

3α
, Re

zg′(z)

g(z)
< 1 +

1

3α
,

Re
(
zh′′(z)

h′(z)
+ 1

)
< 1− 3

4α
, Re

zh′(z)

h(z)
< 1 +

1

3α
, |g(z)| ≤ 1,

then the integral operator C defined by (5.1.4) is starlike in the open unit disk.
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Theorem 5.4.4. Let fi, gi, hi ∈ Ap and αi − 1, βi, γi > 0 positive real numbers, for all i = 1, n. If
fi, gi, hi satisfies ∣∣∣∣zf ′i(z)

fi(z)
− p
∣∣∣∣ < p

4
∑n

i=1 (αi − 1)
,

∣∣∣∣zg′i(z)

gi(z)
− p
∣∣∣∣ < p

4
∑n

i=1 (αi − 1)
,

∣∣∣∣zh′i(z)

hi(z)
− p
∣∣∣∣ < p

4
∑n

i=1 γi
,

∣∣∣∣zh′′i (z)

h′i(z)
− p+ 1

∣∣∣∣ < 1∑n
i=1 βi

, |gi(z)| ≤ 1

4p
∑n

i=1 (αi − 1)
,

for all z ∈ U, then the integral operator Cp,n is p-valently starlike in the open unit disk.

Letting n = p = 1 and αi − 1 = βi = γi = α in Theorem 5.4.4, we obtain the next corollary:

Corollary 5.4.4.1. Let f, g, h ∈ A and α > 0 a positive real number. If f, g, h satisfies∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < 1

4α
,

∣∣∣∣zg′(z)

g(z)
− 1

∣∣∣∣ < 1

4α
,

∣∣∣∣z′h(z)

h(z)
− 1

∣∣∣∣ < 1

4α
,

∣∣∣∣zh′′(z)

h′(z)

∣∣∣∣ < 1

α
, |g(z)| ≤ 1

4α
,

for all z ∈ U, then the integral operator C defined by (5.1.4) is starlike in the open unit disk.

Theorem 5.4.5. Let fi, gi, hi, ki ∈ Ap and αi − 1, βi, γi > 0 positive real numbers, for all i = 1, n. If
fi, gi, hi, ki satisfies

Re
(
zf ′′i (z)

f ′i(z)
+ 1

)
< p− 3

4
∑n

i=1 (αi − 1)
, Re

zg′i(z)

gi(z)
< p+

1∑n
i=1 (αi − 1)

, Re
zh′i(z)

hi(z)
< p+

1∑n
i=1 βi

,

Re
zk′i(z)

ki(z)
< p+

1∑n
i=1 βi

, Re
(
zh′′i (z)

h′i(z)
+ 1

)
< p− 3

4
∑n

i=1 γi
,

Re
(
zk′′i (z)

k′i(z)
+ 1

)
< p− 3

4
∑n

i=1 γi
, |gi(z)| ≤ 1,

then the integral operator Gp,n is p-valently starlike in the open unit disk U.

Letting n = p = 1 and αi − 1 = βi = γi = α in Theorem 5.4.5, we obtain the next corollary:

Corollary 5.4.5.1. Let f, g, h, k ∈ A and α > 0 a positive real number. If f, g, h, k satisfies

Re
(
zf ′′(z)

f ′(z)
+ 1

)
< 1− 3

4α
, Re

zg′(z)

g(z)
< 1 +

1

α
, Re

zh′(z)

h(z)
< 1 +

1

α
,

Re
zk′(z)

k(z)
< 1 +

1

α
, Re

(
zh′′(z)

h′(z)
+ 1

)
< 1− 3

4α
, Re

(
zk′′(z)

k′(z)
+ 1

)
< 1− 3

4α
, |g(z)| ≤ 1,

then the integral operator G defined by (5.1.6) is starlike in the open unit disk.
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Theorem 5.4.6. Let fi, gi, hi, ki ∈ Ap and αi − 1, βi, γi > 0 positive real numbers, for all i = 1, n. If
fi, gi, hi, ki satisfies∣∣∣∣zf ′′i (z)

f ′i(z)
− p+ 1

∣∣∣∣ < 1

3
∑n

i=1 (αi − 1)
,

∣∣∣∣zg′i(z)

gi(z)
− p
∣∣∣∣ < p

4
∑n

i=1 (αi − 1)
,

∣∣∣∣zh′i(z)

hi(z)
− p
∣∣∣∣ < p

4
∑n

i=1 βi
,

∣∣∣∣zk′i(z)

ki(z)
− p
∣∣∣∣ < p

4
∑n

i=1 βi
,

∣∣∣∣zh′′i (z)

h′i(z)
− p+ 1

∣∣∣∣ < 1

3
∑n

i=1 γi
,

∣∣∣∣zh′′i (z)

h′i(z)
− p+ 1

∣∣∣∣ < 1

3
∑n

i=1 γi
, |gi(z)| ≤ 1

4p
∑n

i=1 (αi − 1)
,

for all z ∈ U, then the integral operator Gp,n is p-valently starlike in the open unit disk.

Letting n = p = 1 and αi − 1 = βi = γi = α in Theorem 5.4.6, we obtain the next corollary:

Corollary 5.4.6.1. Let f, g, h, k ∈ A and α > 0 a positive real number. If f, g, h, k satisfies∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ < 1

3α
,

∣∣∣∣zg′(z)

g(z)
− 1

∣∣∣∣ < 1

4α
,

∣∣∣∣zh′(z)

h(z)
− 1

∣∣∣∣ < 1

4α
,

∣∣∣∣zh′′(z)

h′(z)

∣∣∣∣ < 1

3α
,

∣∣∣∣zk′′(z)

k′(z)

∣∣∣∣ < 1

3α
, |g(z)| ≤ 1

4α
,

for all z ∈ U, then the integral operator G defined by (5.1.6) is starlike in the open unit disk.

Theorem 5.4.7. Let fi, gi, hi, ki ∈ Ap and αi− 1, βi, γi, δi > 0 positive real numbers, for all i = 1, n. If
fi, gi, hi, ki satisfies

Re
zf ′i(z)

fi(z)
< p+

1∑n
i=1 (αi − 1)

, Re
(
zg′′i (z)

g′i(z)
+ 1

)
< p− 3

4
∑n

i=1 βi
,

Re
zh′i(z)

hi(z)
< p+

1∑n
i=1 γi

, Re
zk′i(z)

ki(z)
< p+

1∑n
i=1 γi

,

Re
(
zh′′i (z)

h′i(z)
+ 1

)
< p− 3

4
∑n

i=1 δi
, Re

(
zk′′i (z)

k′i(z)
+ 1

)
< p− 3

4
∑n

i=1 δi
,

then the integral operator Tp,n is p-valently starlike in the open unit disk U.

Letting n = p = 1 and αi − 1 = βi = γi = δi = α in Theorem 5.4.7, we obtain the next corollary:

Corollary 5.4.7.1. Let f, g, h, k ∈ A and α > 0 a positive real number. If f, g, h, k satisfies

Re
zf ′(z)

f(z)
< 1 +

1

α
, Re

(
zg′′(z)

g′(z)
+ 1

)
< 1− 3

4α
, Re

zh′(z)

h(z)
< 1 +

1

α
, Re

zk′(z)

k(z)
< 1 +

1

α
,

Re
(
zh′′(z)

h′(z)
+ 1

)
< 1− 3

4α
, Re

(
zk′′(z)

k′(z)
+ 1

)
< 1− 3

4α
,

then the integral operator T defined by (5.1.8) is starlike in the open unit disk.
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Theorem 5.4.8. Let fi, gi, hi, ki ∈ Ap and αi− 1, βi, γi, δi > 0 positive real numbers, for all i = 1, n. If
fi, gi, hi, ki satisfies∣∣∣∣zf ′i(z)

fi(z)
− p
∣∣∣∣ < p

3
∑n

i=1 (αi − 1)
,

∣∣∣∣zg′′i (z)

g′i(z)
− p+ 1

∣∣∣∣ < 1

3
∑n

i=1 βi
,

∣∣∣∣zh′i(z)

hi(z)
− p
∣∣∣∣ < p

3
∑n

i=1 γi
,

∣∣∣∣zk′i(z)

ki(z)
− p
∣∣∣∣ < p

3
∑n

i=1 γi
,

∣∣∣∣zh′′i (z)

h′i(z)
− p+ 1

∣∣∣∣ < 1

3
∑n

i=1 δi
,

∣∣∣∣zk′′i (z)

k′i(z)
− p+ 1

∣∣∣∣ < 1

3
∑n

i=1 δi
,

for all z ∈ U, then the integral operator Tp,n is p-valently starlike in the open unit disk.

Letting n = p = 1 and αi − 1 = βi = γi = δi = α in Theorem 5.4.8, we obtain the next corollary:

Corollary 5.4.8.1. Let f, g, h, k ∈ A and α > 0 a positive real number. If f, g, h, k satisfies∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < 1

3α
,

∣∣∣∣zg′′(z)

g′(z)

∣∣∣∣ < 1

3α
,

∣∣∣∣zh′(z)

h(z)
− 1

∣∣∣∣ < 1

3α
,

∣∣∣∣zk′(z)

k(z)
− 1

∣∣∣∣ < 1

3α
,

∣∣∣∣zh′′(z)

h′(z)

∣∣∣∣ < 1

3α
,

∣∣∣∣zh′′(z)

h′(z)

∣∣∣∣ < 1

3α
,

for all z ∈ U, then the integral operator T defined by (5.1.8) is starlike in the open unit disk.

5.5 Conditions for belonging to the class p-valent close-to-convex
functions

In this section we present sufficient conditions of belonging to the class of close-to-convex p-valently
functions, for the new integral operators having the functions from the class of p-valent analytic func-
tions.

Theorem 5.5.1. Let fi, gi ∈ Ap and αi − 1, βi, γi > 0 positive real numbers, for all i = 1, n. If fi, gi
satisfies

Re
zf ′i(z)

fi(z)
< p+

a

2 (1 + a) (1− b)
∑n

i=1 (αi − 1)
, Re

zg′i(z)

gi(z)
< p+

a

2 (1 + a) (1− b)
∑n

i=1 γi
,

Re
(
zg′′i (z)

g′i(z)
+ 1

)
< p+

b

(1 + a) (1− b)
∑n

i=1 βi
,

for all a > 0, b ≥ 0, a+2b ≤ 1 and z ∈ U, then the integral operatorMp,n is p-valently close-to-convex
in the open unit disk.

Letting n = p = 1 and αi − 1 = βi = γi = α in Theorem 5.5.1, we obtain the next corollary:

Corollary 5.5.1.1. Let f, g ∈ A and α > 0 a positive real number. If f, g satisfies

Re
zf ′(z)

f(z)
< 1 +

a

2 (1 + a) (1− b)α
, Re

zg′(z)

g(z)
< 1 +

a

2 (1 + a) (1− b)α
,
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Re
(
zg′′(z)

g′(z)
+ 1

)
< 1 +

b

(1 + a) (1− b)α
,

for all a > 0, b ≥ 0, a + 2b ≤ 1 and z ∈ U, then the integral operator M defined by (5.1.2) is
close-to-convex in the open unit disk.

Theorem 5.5.2. Let fi, gi, hi ∈ Ap and αi − 1, βi, γi > 0 positive real numbers, for all i = 1, n. If
fi, gi, hi satisfies

Re
zf ′i(z)

fi(z)
< p+

a

3 (1 + a) (1− b)
∑n

i=1 (αi − 1)
, Re

zg′i(z)

gi(z)
< p+

a

3 (1 + a) (1− b)
∑n

i=1 (αi − 1)
,

Re
zh′i(z)

hi(z)
< p+

a

3 (1 + a) (1− b)
∑n

i=1 γi
, Re

(
zh′′i (z)

h′i(z)
+ 1

)
< p+

b

(1 + a) (1− b)
∑n

i=1 βi
,

|gi(z)| ≤ 1,

for all a > 0, b ≥ 0, a+ 2b ≤ 1 and z ∈ U, then the integral operator Cp,n is p-valently close-to-convex
in the open unit disk.

Letting n = p = 1 and αi − 1 = βi = γi = α in Theorem 5.5.2, we obtain the next corollary:

Corollary 5.5.2.1. Let f, g, h ∈ A and α > 0 a positive real number. If f, g, h satisfies

Re
zf ′(z)

f(z)
< 1 +

a

3 (1 + a) (1− b)α
, Re

zg′(z)

g(z)
< 1 +

a

3 (1 + a) (1− b)α
,

Re
zh′(z)

h(z)
< 1 +

a

3 (1 + a) (1− b)α
, Re

(
zh′′(z)

h′(z)
+ 1

)
< 1 +

b

(1 + a) (1− b)α
, |g(z)| ≤ 1,

for all a > 0, b ≥ 0, a + 2b ≤ 1 and z ∈ U, then the integral operator C defined by (5.1.4) is close-to-
convex in the open unit disk.

Theorem 5.5.3. Let fi, gi, hi, ki ∈ Ap and αi − 1, βi, γi > 0 positive real numbers, for all i = 1, n. If
fi, gi, hi, ki satisfies

Re
(
zf ′′i (z)

f ′i(z)
+ 1

)
< p+

b

(1 + a) (1− b)
∑n

i=1 (αi − 1)
, Re

zg′i(z)

gi(z)
< p+

a

(1 + a) (1− b)
∑n

i=1 (αi − 1)
,

Re
zh′i(z)

hi(z)
< p+

a

(1 + a) (1− b)
∑n

i=1 βi
, Re

zk′i(z)

ki(z)
< p+

a

(1 + a) (1− b)
∑n

i=1 βi
, |gi(z)| ≤ 1,

Re
(
zh′′i (z)

h′i(z)
+ 1

)
< p+

b

(1 + a) (1− b)
∑n

i=1 γi
, Re

(
zk′′i (z)

k′i(z)
+ 1

)
< p+

b

(1 + a) (1− b)
∑n

i=1 γi
,

for all a > 0, b ≥ 0, a+ 2b ≤ 1 and z ∈ U, then the integral operator Gp,n is p-valently close-to-convex
in the open unit disk.

Letting n = p = 1 and αi − 1 = βi = γi = α in Theorem 5.5.3, we obtain the next corollary:

102



Corollary 5.5.3.1. Let f, g, h, k ∈ A and α > 0 a positive real number. If f, g, h, k satisfies

Re
(
zf ′′(z)

f ′(z)
+ 1

)
< 1 +

b

(1 + a) (1− b)α
, Re

zg′(z)

g(z)
< 1 +

a

(1 + a) (1− b)α
,

Re
zh′(z)

h(z)
< 1 +

a

(1 + a) (1− b)α
, Re

zk′(z)

k(z)
< 1 +

a

(1 + a) (1− b)α
,

Re
(
zh′′(z)

h′(z)
+ 1

)
< 1+

b

(1 + a) (1− b)α
, Re

(
zk′′(z)

k′(z)
+ 1

)
< 1+

b

(1 + a) (1− b)α
, |g(z)| ≤ 1,

for all a > 0, b ≥ 0, a + 2b ≤ 1 and z ∈ U, then the integral operator G defined by (5.1.6) is close-to-
convex in the open unit disk.

Theorem 5.5.4. Let fi, gi, hi, ki ∈ Ap and αi− 1, βi, γi, δi > 0 positive real numbers, for all i = 1, n. If
fi, gi, hi, ki satisfies

Re
zf ′i(z)

fi(z)
+1 < p+

a

(1 + a) (1− b)
∑n

i=1 (αi − 1)
, Re

(
zg′′i (z)

g′i(z)
+ 1

)
< p+

b

(1 + a) (1− b)
∑n

i=1 βi
,

Re
zh′i(z)

hi(z)
< p+

a

(1 + a) (1− b)
∑n

i=1 γi
, Re

zk′i(z)

ki(z)
< p+

a

(1 + a) (1− b)
∑n

i=1 γi
,

Re
(
zh′′i (z)

h′i(z)
+ 1

)
< p+

b

(1 + a) (1− b)
∑n

i=1 δi
, Re

(
zk′′i (z)

k′i(z)
+ 1

)
< p+

b

(1 + a) (1− b)
∑n

i=1 δi
,

for all a > 0, b ≥ 0, a+ 2b ≤ 1 and z ∈ U, then the integral operator Tp,n is p-valently close-to-convex
in the open unit disk.

Letting n = p = 1 and αi − 1 = βi = γi = δi = α in Theorem 5.5.4, we obtain the next corollary:

Corollary 5.5.4.1. Let f, g, h, k ∈ A and α > 0 a positive real number. If f, g, h, k satisfies

Re
zf ′(z)

f(z)
< 1 +

a

(1 + a) (1− b)α
, Re

(
zg′′(z)

g′(z)
+ 1

)
< 1 +

b

(1 + a) (1− b)α
,

Re
zh′(z)

h(z)
< 1 +

a

(1 + a) (1− b)α
, Re

zk′(z)

k(z)
< 1 +

a

(1 + a) (1− b)α
,

Re
(
zh′′(z)

h′(z)
+ 1

)
< 1 +

b

(1 + a) (1− b)α
, Re

(
zk′′(z)

k′(z)
+ 1

)
< 1 +

b

(1 + a) (1− b)α
,

for all a > 0, b ≥ 0, a + 2b ≤ 1 and z ∈ U, then the integral operator T defined by (5.1.8) is
close-to-convex in the open unit disk.

5.6 Conditions for belonging to the class uniformly p-valent close-
to-convex functions

This paragraph contains sufficient conditions for belonging to the class of uniformly p-valent close-
to-convex functions, for the new integral operators having the functions from the class of p-valent analytic
functions.
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Theorem 5.6.1. Let fi, gi ∈ Ap and αi − 1, βi, γi > 0 positive real numbers, for all i = 1, n. If fi, gi
satisfies

Re
zf ′i(z)

fi(z)
< p+

1

2
∑n

i=1 (αi − 1)
, Re

zg′i(z)

gi(z)
< p+

1

2
∑n

i=1 γi
, Re

(
zg′′i (z)

g′i(z)
+ 1

)
< p− 2

3
∑n

i=1 βi
,

for all z ∈ U, then the integral operatorMp,n is uniformly p-valently close-to-convex in the open unit
disk.

Letting n = p = 1 and αi − 1 = βi = γi = α in Theorem 5.6.1, we obtain the next corollary:

Corollary 5.6.1.1. Let f, g ∈ A and α > 0 a positive real number. If f, g satisfies

Re
zf ′(z)

f(z)
< 1 +

1

2α
, Re

zg′(z)

g(z)
< 1 +

1

2α
, Re

(
zg′′(z)

g′(z)
+ 1

)
< 1− 2

3α
,

for all z ∈ U, then the integral operatorM defined by (5.1.2) is uniformly close-to-convex in the open
unit disk.

Theorem 5.6.2. Let fi, gi, hi ∈ Ap and αi − 1, βi, γi > 0 positive real numbers, for all i = 1, n. If
fi, gi, hi satisfies

Re
zf ′i(z)

fi(z)
< p+

1

3
∑n

i=1 (αi − 1)
, Re

zg′i(z)

gi(z)
< p+

1

3
∑n

i=1 (αi − 1)
,

Re
zh′i(z)

hi(z)
< p+

1

3
∑n

i=1 γi
, Re

(
zh′′i (z)

h′i(z)
+ 1

)
< p− 2

3
∑n

i=1 βi
, |gi(z)| ≤ 1,

for all z ∈ U, then the integral operator Cp,n in Theorem 5.6.1, we obtain the next corollary:.

Letting n = p = 1 and αi − 1 = βi = γi = α in Theorem 5.6.2, we obtain the next corollary:

Corollary 5.6.2.1. Let f, g, h ∈ A and α > 0 a positive real number. If f, g, h satisfies

Re
zf ′(z)

f(z)
< 1 +

1

3α
, Re

zg′(z)

g(z)
< 1 +

1

3α
,

Re
zh′(z)

h(z)
< 1 +

1

3α
, Re

(
zh′′(z)

h′(z)
+ 1

)
< 1− 2

3α
, |g(z)| ≤ 1,

for all z ∈ U, then the integral operator C defined by (5.1.4) is uniformly close-to-convex in the open
unit disk.

Theorem 5.6.3. Let fi, gi, hi, ki ∈ Ap and αi − 1, βi, γi > 0 positive real numbers, for all i = 1, n. If
fi, gi, hi, ki satisfies

Re
(
zf ′′i (z)

f ′i(z)
+ 1

)
< p− 2

3
∑n

i=1 (αi − 1)
, Re

zg′i(z)

gi(z)
< p+

1∑n
i=1 (αi − 1)

,

Re
zh′i(z)

hi(z)
< p+

1∑n
i=1 βi

, Re
zk′i(z)

ki(z)
< p+

1∑n
i=1 βi

, |gi(z)| ≤ 1,

Re
(
zh′′i (z)

h′i(z)
+ 1

)
< p− 2

3
∑n

i=1 γi
, Re

(
zk′′i (z)

k′i(z)
+ 1

)
< p− 2

3
∑n

i=1 γi
,

for all z ∈ U, then the integral operator Gp,n is uniformly p-valently close-to-convex in the open unit
disk.
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Letting n = p = 1 and αi − 1 = βi = γi = α in Theorem 5.6.3, we obtain the next corollary:

Corollary 5.6.3.1. Let f, g, h, k ∈ A and α > 0 a positive real number. If f, g, h, k satisfies

Re
(
zf ′′(z)

f ′(z)
+ 1

)
< 1− 2

3α
, Re

zg′(z)

g(z)
< 1 +

1

α
, Re

zh′(z)

h(z)
< 1 +

1

α
, Re

zk′(z)

k(z)
< 1 +

1

α
,

Re
(
zh′′(z)

h′(z)
+ 1

)
< 1− 2

3α
, Re

(
zk′′(z)

k′(z)
+ 1

)
< 1− 2

3α
, |g(z)| ≤ 1,

for all z ∈ U, then the integral operator Gdefined by (5.1.6) is uniformly close-to-convex in the open unit
disk.

Theorem 5.6.4. Let fi, gi, hi, ki ∈ Ap and αi− 1, βi, γi, δi > 0 positive real numbers, for all i = 1, n. If
fi, gi, hi, ki satisfies

Re
zf ′i(z)

fi(z)
< p+

1∑n
i=1 (αi − 1)

, Re
(
zg′′i (z)

g′i(z)
+ 1

)
< p− 2

3
∑n

i=1 βi
, Re

zh′i(z)

hi(z)
< p+

1∑n
i=1 γi

,

Re
zk′i(z)

ki(z)
< p+

1∑n
i=1 γi

, Re
(
zh′′i (z)

h′i(z)
+ 1

)
< p− 2

3
∑n

i=1 δi
, Re

(
zk′′i (z)

k′i(z)
+ 1

)
< p− 2

3
∑n

i=1 δi
,

for all z ∈ U, then the integral operator Tp,n is uniformly p-valently close-to-convex in the open unit
disk.

Letting n = p = 1 and αi − 1 = βi = γi = δi = α in Theorem 5.6.4, we obtain the next corollary:

Corollary 5.6.4.1. Let f, g, h, k ∈ A and α > 0 a positive real number. If f, g, h, k satisfies

Re
zf ′(z)

f(z)
< 1 +

1

α
, Re

(
zg′′(z)

g′(z)
+ 1

)
< 1− 1

3α
, Re

zh′(z)

h(z)
< 1 +

1

α
,

Re
zk′(z)

k(z)
< 1 +

1

α
, Re

(
zh′′(z)

h′(z)
+ 1

)
< 1− 2

3α
, Re

(
zk′′(z)

k′(z)
+ 1

)
< 1− 2

3α
,

for all z ∈ U, then the integral operator T defined by (5.1.8) is uniformly close-to-convex in the open
unit disk.
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[33] C. Bărbatu, D. Breaz, Convexity properties for a general integral operator. Annals of Mathematics,
submitted

107
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