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Introduction

Morse theory starts with M. Morse’s research for differentiable functions on manifolds

that recover the topology of the manifold, results that Morse applied in the beginning

for studies regarding geodesics and which were utilized after by R. Bott for proving the

periodicity theorem for homotopy groups.

Throughout the years, the research has become more complex given the practical

applications unraveled by the development of advanced informational processes and graphical

modeling using computers.

Morse theory met a natural development based on its recognition as a useful tool

for studying the topology of manifolds. Thus, concepts were developed and results were

obtained for smooth circular functions, branch named circular Morse theory.

The mathematical object called Reeb graph is a concept with an amazing practical

applicability. It was used by the french mathematician G. Reeb in his studies for real

functions on a topological space. This field is currently in full expansion due to the

fact that is giving researchers a useful way of visualizing surfaces and by simplifying

the topology using existing computational power. Similar to Morse theory, the Reeb

graph found an expansion for circular maps, main researchers being E.Batista, J.Cost,

I.Meza-Sarmiento, U.Bauer, Y. Wang and many more.

This thesis is organized in three chapter, an annexe and a table of contents having 96

references.

First chapter, ”Elements of critical point theory”, has the purpose of a concise introduction

for notions used throughout the thesis. Main points reached are theorems form differential

topology such as the immersion theorem, the submersion theorem and the local diffeomorphism

theorem, the rank theorem, Morse’s lemma, Morse’s inequalities, handle decomposition

for a surface, types of critical points, homology and cohmology groups and also Lie groups

and Grassmann manifolds, all of them used for developing next chapters. Main references

used are D. Andrica [4], G. Cicortaş [33], Y. Matsumoto [69], J. Milnor [72], L. Tu [96].

First section contains fundamental notions such as local representation, critical point,

regular point, critical set, bifurcation set and also important results like the rank theorem
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Chapter 0

(1.1.2), the preimage theorem (1.1.4), the local immersion theorem (1.1.5), the local

submersion theorem (1.1.6) and the local diffeomorphism theorem (1.1.7).

Second section offers an in depth presentation over basic Morse theory elements:

non-degenerate critical point, Morse function, index and Morse’s lemma (1.2.1). Also

here were introduced three subsections. First one contains relevant theorems for handle

decomposition starting from a Morse function, second one is centered on illustrating

Morse’s inequalities presenting in this process notions like smooth manifold, deformation

retraction, chain complex and cochain complex, homology group and Betti number. Here

were included the universal coefficients theorem (1.2.7) and the Poincaré duality (1.2.8).

Last section presents the definition of Lie groups, translations and offers a list of Lie

groups used in Chapter 2 and also presents examples of important Lie homeomorphisms.

Third section contains in its first part, a description of grssmannian notion, together

with the particular cases G(1, n), G(2, n). Second section addresses Plücker embedding

for G(k, V ), eigenvalues and eigenvectors for a linear map, tensor product, wedge product

and total decomposition. Last section includes a short description of necessary notions

concerning lens spaces and particular cases of homeomorphic lens spaces used in Chapter

2 of this thesis.

Second chapter highlights the study of critical points for a circular function and has

the following structure: basic notions, proprieties and computations of ϕ−category for

particular manifolds. Second part of this chapter contains important concepts, proprieties,

theorems and computations for circular Morse-Smale category. Both notions are presented

for real Morse functions and also circular Morse functions. This chapter represent a mix

between classical elements and original notes presented in mathematical journals. Our

main references are Andrica [4], G. Cicortaş [33], P. Church [30], [31], L. Funar [6], C.

Pintea [12], [13], [76], G. Rassias [83], [84], V. Sharko [88], F. Tankens [95] and original

papers in collaboration with prof. dr. D Andrica and conf. dr. C. Pintea [8], [65].

First section offers a motivation for the ϕ-category notion of a pair of manifolds

(M,N), invariant propriety of ϕ(M) studied by F. Takens, Morse-Smale characteristic

for a manifold M following the presentation made by S.Smale, but also the applicability

of these notions for a circular Morse function.

The second section contains proprieties of ϕ-category for a manifold of a real and

circular function. Also, it presents inequalities concerning the product of manifolds,

applications and finally inequalities that connect all these notions for circular and real

maps.

Third section start by giving a wide perspective over the evolution of studies regarding

Morse theory and continues with notions such as differential form, 1-form, closed and exact
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Chapter 0

form, Morse form together with relevant examples for these concepts (Example 2.3.1 and

2.3.2). Last part of this section covers the fundamental group for a topological space and

the lift of an application.

The next three section are based on original papers written in collaboration. These

papers are D. Andrica, A. Lupescu, C. Pintea [8] and A. Lupescu, C. Pintea [65].

Section 2.4 presents computations for circular ϕ-category for particular manifolds:

product and direct sums, submultiplicativity propriety for ϕS1 and ends with detailed

examples of applications of such inequalities for particular cases given by the special

linear group, special orthogonal group, spin group of order n and Grassmann manifold

Gk,n.

Next section contains general elements concerning the real Morse-Smale category,

circular Morse-Smale characteristic for a manifold and theorems that offer a direct correspondence

between inequalities presented in the prior section and their applicability for Morse-Smale

category. Section 2.6 is based on original calculations of submultiplicativity propriety

for γS1 , original results and examples, followed by computations for particular cases of

Grassmann manifolds and Lie groups.

The last chapter is centered on the notion of Reeb graph, concept that has been highly

developed during past years, given it’s applicability for a large scale of fields like computer

graphics or computational geometry. As scientific references we used: U. Bauer [18], [19],

E.B. Batista, J.C.F. Costa, I.S Meza-Sarmiento [17], B. Fabio, C. Landi [41], M. Kaluba,

W. Marzantowicz, N. Silva [58], Y. Matsumoto, O. Saeki [70], L.P. Michalak [71] and V.V.

Sharko [90].

In the course of developing this part of our thesis, we presented original elements

such as the development of an algorithm used for constructing the Reeb graph for a real

function, together with examples incorporated in the paper [63] and the construction of

an algorithm for circular functions included in our paper [64].

This last chapter is structured in eight section and follows the general presentation

of a Reeb graph for real and circular functions, description of existing algorithms and is

based on innovative and original elements.

First section offers a general description, proprieties and relevant examples for the

Reeb graph of a real function on the sphere, torus and orientable surface of genus 2.

Second sections starts by organizing Reeb graphs in a category where the objects are

finite graphs together with maps monotonic on edges and the morphisms are maps that

preserve applications between spaces.

Main idea from Section 3.3 is presenting the Reeb graph as a useful tool that facilitates

the reconstruction of a surface when given a graph that contains all necessary information
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Chapter 0

for the geometrical representation, along with the recovery of surfaces topology. This

section illustrates the Reeb graph as a tree and gathers the information as follows:

types of connected components, types of families of paths, the Reeb graph from graph

theory perspective, applications and realizations theorems of the Reeb graphs using Morse

functions.

Section 3.4 proves the need of stability of a Reeb graph by introducing some metric. For

this specific purpose there were defined the following distances: interleaving , functional

distortion, bottleneck and edit distance. Theorem 3.4.2 presents the stability of bottleneck

distance and Theorem 3.4.3 and Corollary 3.4.1 show a connection between the first three

distances mentioned in the paper.

Sections 3.5 and 3.6 are focused on practical applications of Reeb graphs in computational

topology. Here we present an original algorithm for constructing a Reeb graph together

with examples for applying it and also a survey of existing algorithms, their complexity

and specific elements for each one of them. Last two sections contain elements for circular

Reeb graph, the construction algorithm for it and the equipped Reeb graph associated to

a simple Morse function on an orientable manifold.

This thesis contains also an annexe used for presenting the caption of video slides for

the construction algorithm for sphere, torus and orientable surface of genus 2, an in depth

analysis of handle decomposition on surfaces together with the geometrical representation

of each type of handle and a schematic representation (mind map) of essential notions

from each chapter.

I would like to emphasize the importance of Geometry research group that helped

immensely in the process of writing this thesis, giving me the opportunity to present my

ideas and results, to ask questions that led to the successful completion of my work. First

of all, I would like to thank prof. univ. dr. Dorin Andrica for his constant support,

availability and time but mostly for instructing and modeling me as a PhD student. Also

I would like to thank conf. dr. Paul Blaga for all his kind help, scientific materials that

he provided or recommended and also for all his time. I sincerely thank conf. dr. Cornel

Pintea and lect. dr. Daniel Văcăreţu for all the observations and suggestions offered while

writing scientific papers, that led to successfully finalizing this thesis.

Key words: Morse function, circular Morse function, ϕ-category, real Morse-Smale

characteristic, circular Morse-Smale characteristic, Reeb graph, Morse-Bott function.
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1. Critical set and bifurcation set

1.1 Critical set and bifurcation set

Morse theory is an important chapter for critical point theory and offers techniques

for recovering the topology of a manifold by analyzing the critical points corresponding

to a smooth function over the given manifold. An important reference for investigating

Morse theory is John Milnor’s book, published in 1960 [72]. For a good understanding of

basic concepts we used in this chapter, the book [69] of Y. Matsumoto.

The first section of this chapter presents basic notion of differential topology such as

smooth map, local representation, the rank of an application, regular point, critical point,

regular set, critical set and bifurcation set, immersion, submersion and diffeomorphism.

Also, we presented without proof the rank theorem, pre-image theorem, local immersion,

local submersion and local diffeomorphism. We used the references [4], [26], [33], [69], [96].

Definition 1.1.1 Let M a smooth m-dimensional manifold without boundary. A function

f : M → R is smooth if for any map (U,ϕ), the map fϕ = f ◦ ϕ−1 is smooth on

ϕ (U) ⊆ Rm.

The application fϕ is called the local representation of f in the chart (U,ϕ).

Definition 1.1.2 We call the rank of the function f in p, denoted by rankp(f), is

rankp(f) = rankϕ(p)(fϕ,ψ) = rankJ (fϕ,ψ) (ϕ(p))= dim Im (Tf)p.

Proposition 1.1.1 Let f : M → N be a smooth map. Then the function

rank(f) : M → Z, p 7→ rankp(f) is upper semi continuous.

We say the smooth application f : M → N has constant rank in p0 ∈M if it exists

an open neighborhood Up0 around p0, such that rankp(f) = rankp0(f), for all p in Up0 .
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Chapter 1 Critical set and bifurcation set

Theorem 1.1.2 (rank theorem) [4] Let f : M → N be a smooth map with constant

rank k ≤ min(m,n) in p0 ∈M . Then it exists a local representation of f around p0:

(z1, · · · , zm) 7→ (z1, · · · , zk, 0, · · · , 0).

Definition 1.1.3 A point p ∈M is called a regular point of f if rankp(f) is maximal,

meaning the following relation is true rankp(f) = min(m,n).

The set of regular points of an application f is denoted by R(f) and is called the

regular set of f . If the point p ∈ M is not regular, it is called critical, and the set of

such points represents the critical set of f , denoted by C(f).

We denote by B(f) = f (C(f)), the bifurcation set of map f .

The bifurcation set has the following proprieties, proven by A.Sard in [87]:

Theorem 1.1.3 The set B(f), has null Lebesque measure in the manifold N .

Theorem 1.1.4 (preimage theorem) [4] Let f : M → N be a smooth function with

m ≥ n and q /∈ B(f). Then the fiber f−1(q) is a (m− n)-dimensional submanifold of M

or the void set. Moreover, for any p ∈ f−1(q) we have Tp (f−1(q)) = Ker(df)p.

Definition 1.1.4 The map f : Mm → Nn with m ≤ n is called an immersion in p ∈M
if rangp(f) = m is maximal, meaning we have rankp(f) = m.

Theorem 1.1.5 (local immersion theorem) [4] Let f : Mm → Nn, with m ≤ n,

a smooth immersion in p0 ∈ M . Then f has constant rank in p0 and it exist a local

representation around p0 modeled in the following way

(z1, · · · , zm) 7→ (z1, · · · , zm, 0, · · · , 0) .

Definition 1.1.5 The map f : Mm → Nn with m ≥ n is a submersion in p ∈ M if

rankp(f) is maximal, meaning we have rankp(f) = n.

Theorem 1.1.6 (local submersion theorem) [4] Let f : Mm → Nn, with m ≥ n, is

a submersion in p0 ∈M . Then f has constant rank in p0 if it exists a local representation

around p0 looking like

(z1, · · · , zm) 7→ (z1, · · · , zn) .

Definition 1.1.6 Let f : M → N a smooth map. The map Tf : T (M) → T (N), is

called the tangent application of f , where

6



Chapter 1 Critical set and bifurcation set

Tf ([x, (U,ϕ), v]) =
[
f(x), d (ψ ◦ f ◦ ϕ−1)ϕ(x) (v)

]
for any chart (U,ϕ), (V, ψ) around x, respectively f(x).

Theorem 1.1.7 (local dipheomorphism theorem) [4] Let f : M → N a smooth

map such that in x ∈M , the tangent application Txf : TxM → Tf(x)N is an isomorphism.

Then we have the open neighborhoods U and V around x in M , respectively f(x) in N,

such that f
∣∣
U

: U → V is a diffeomorphism.

1.2 Non-degenerate critical points. Morse functions

This section is focused on Morse functions and introduces the following concepts:

Morse function, local minimum and local maximum, index, deformation, cellular complex

chain, chain morphism, homology group, Betti number, cohomology group and Lie group.

A central part of this section covers Morse’s lemma and Lie groups, used in the next

chapter of this thesis. Also, we have presented without proof universal coefficients theorem,

Poincaré duality, and examples of computations for critical points and calculations of

cohomology for particular cases of manifolds. For developing this section we used the

following references [4], [23], [33], [39], [52], [69], [72] and [94].

A critical point x is called non-degenerate for a smooth real function f : Mm → R
if it exist a chart (U,ϕ) around p such that the hessian matrix of the local representation

fϕ

H (fϕ) (ϕ(x)) =

(
∂2fϕ
∂xi∂xj

(ϕ(x)

)
1≤i,j≤m

is invertible,

so we have (detH(fϕ)(ϕ(x))) 6= 0. Otherwise the critical point x is called critical

degenerate. The matrix H (fϕ) (ϕ(x)) is symmetrical, so it has all eigenvalues real and

not zero.

Definition 1.2.1 A real function f : M → R, is called a Morse function if all its

critical points are non-degenerate. Moreover, the Morse function is called simple, if

every critical value is the result of a critical point.

Theorem 1.2.1 (Morse’s lemma) [69] Let f : Mm → R a smooth application and

p ∈ C(f) a non-degenerate critical point. Then it exists a local representation fϕ of f

displayed in the following way:

7



Chapter 1 Critical set and bifurcation set

fϕ = −x2
1 − x2

2 − · · · − x2
λ + x2

λ+1 + · · ·+ x2
m + f(p).

Definition 1.2.2 The number λ ∈ {0, 1, · · ·m} is called the index of the critical point

p. It represents the number of negative eigenvalues in the hessian matrix of fϕ.

The number λ does not depend on the local representation fϕ considered, so it

represents an invariant of the critical point.

Critical points of index 0 are the local minimum, and the ones of index m are the

local maximum.

1.2.1 Handle decomposition by utilizing Morse functions

For the purpose of presenting results concerning handle decomposition of a differentiable

manifolds we used the references [69] şi [72].

Theorem 1.2.2 Let M be a compact manifold. If f : M → R is a Morse function, then

f has a finite number of critical points.

Theorem 1.2.3 Let M be a closed surface and f a Morse function with two critical

points on M. Then the surface is diffeomorphic with the unit sphere S2. (See Image 1.1)

Image 1.1

Theorem 1.2.4 If on the close surface M we can define a Morse function f : M → R,

then M can be decomposed in a finite reunion of 0, 1 and 2-handles.

Observation 1.2.1 Let f : M → [a, b] be a Morse function without critical values on

[a, b]. Then the submanifolds Ma and Mb are diffeomorphic.
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Chapter 1 Critical set and bifurcation set

1.2.2 Morse’s inequalities

For the purpose of outlining Morse’s inequalities we will give a general presentation

of fundamental concepts following the references [4], [23], [33], [39], [69].

Definition 1.2.3 [52] It is called a chain complex for X, the semi-exact sequence:

· · · → Ci+1(X)
∂i+1→ Ci(X)

∂i→ · · · · · · → C1(X)
∂1→ C0(X)→ {0}

For a fixed integer i we consider the groups:

Zi(X) = {Ker∂i} şi Bi(X) = {Im∂i+1}

The homology group with integer coefficients of level i is the quotient group:

Hi(X) = Zi(X)/Bi(X).

Theorem 1.2.5 [69] Given two topological spaces X, Y and f, g : X → Y continuous

maps such that f ' g, then these maps will induce the same morphism at homology group

level:

f∗ = g∗ : Hq(X)→ Hq(Y )

If X is a finite cell complex, its homology group has the following structure:

Hq(X) ∼= Z⊕ · · · ⊕ Z⊕ T

where Z⊕ · · · ⊕ Z is its free part, and T is the torsion part.

The number of copies of Z, represents the rank of the group Hq(X) and it is named

Betti number of order q for X, so we have bq(X) = rankHq(X),∀q ∈ N
In this context, we introduce the Euler-Poincaré characteristic of X, as being the

alternate sum of Betti numbers, meaning:

χ(X) = b0 − b1 + b2 − · · ·

Proposition 1.2.6 [33] Given the following elements: Mm a smooth compact manifold,

f : M → R a smooth Morse function and p, q two regular values associated with the

function f , we can state the following inequalities:

1) The weak form of Morse’s inequalities: bk ≤ µk, k = 0, · · · ,m;

2) Morse’s inequalities: bk − bk−1 + · · · ± b0 ≤ µk − µk−1 + · · · ± µ0, k = 0, · · · ,m.
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Chapter 1 Critical set and bifurcation set

We consider Ci(X) the set of group morphisms f : Ci(X)→ Z.

Together with the addition operation, Ci(X) has a group structure, named the i-dimensional

cochain group.

The map δi : Ci(X)→ Ci+1(X) that associates to every i-dimensional co-chain f , an

(i+ 1)-dimensional chain f ◦ ∂i+1, it is called cochain morphism.

Definition 1.2.4 [69] It is called a cochain complex for X, the sequence composed from

border morphism and cochain groups having the following representation:

{0} → C0(X)
δ0→ · · · → C1(X)

δ1→ · · · · · · → Ci−1(X)
δi−1

→ Ci(X)
δi→ Ci+1(X)

δi+1

→ · · ·

For a fixed integer i, we introduce the following groups:

Zi(X) = Kerδi = {p ∈ Ci(X) : δi(p) = 0}

called the i-dimensional cocyclic group,

Bi(X) = Imδi+1 = {p ∈ Ci(X) : p = δii+ 1(p′), p′ ∈ Ci+1(X)}

called i-dimensional coborder group.

Therefore, we have the cohomology group of level i, as being the quotient group

defined by:

H i(X) = Zi(X)/Bi(X)

It is called cohomolgy class, denoted by [f ], an element in the group H i(X). This

class induces the morphism:

[f ] : Hi(X)→ Z

By fixing the set

Hom (Hi(X),Z) = {f : f : Hi(X)→ Z, f morphism}

we can introduce the morphism

k : H i(X)→ Hom (Hi(X),Z)

Theorem 1.2.7 (Universal coefficients theorem) [94] The morphism k presented

before is a surjective application. Moreover, its kernel represents the torsion part of

H i(X).

Theorem 1.2.8 (Poincaré duality) [94] Given the m-dimensional closed and orientable

manifold M we have the following isomorphism:

H i(M) ∼= Hm−i(M), i = 0, 1, · · · ,m.

10



Chapter 1 Critical set and bifurcation set

1.2.3 Lie groups of matrices

Matrix groups represent a connection between algebra and geometry, providing

examples and elegant representations for geometrical notions, simplifying their understanding.

In this context, the development of techniques for image processing, simplification of

geometrical instruments such as rotation matrices or the Reeb graph, have a big contribution

to the reduction of processing time for existing algorithms.

Definition 1.2.5 A smooth manifold together with the group structure, such that the

group operation ∗ · ∗ : M ×M → M and the operation for inverting an element ∗−1 :

M →M are smooth, is called Lie group.

Let (G1, ∗), (G2, ◦) two groups and the applications f : G1 → G2. The map f is called

group morphism if:

∀ x, y ∈ G1: f(x ∗ y) = f(x) ◦ f(y).

Definition 1.2.6 [21] Given G a group and g ∈ G we say that the map lg : G → G

given by lg(h) = gh is a left translation.

Similarly we have a right translation with g ∈ G, rg : G→ G, rg(h) = hg.

The next two sections are a general presentation for concepts like Grassmann manifolds

and lens spaces used in second chapter for computations of ϕ−category and circular

Morse-Smale category. We have presented briefly definitions like Grassmann manifold,

tonsorial product, wedge product, Plücker embedding and proprieties of lens spaces. For

the above mentioned concepts we used [24], [51], [61], [68], [81] and [82].

1.3 Grassmann manifolds

1.3.1 General description

The grassmannian notion appeared for the first time in the XIX century, introduced

by the german mathematician Julius Plücker in his studies over projective lines in P3.

Called Plücker coordinates, they appeared naturally in algebraic geometry and offer a one

to one correspondence between the lines from P3 and the points on the quadratic from the

projective space P5. The name of grassmannian comes from the german mathematician’s

name, Hermann Grassmann.

Definition 1.3.1 Given a vector space V , we call grassmannian, the set of all k-dimensional

linear subspaces of V, meaning:

G(k, V ) = {W ⊂ V : W ≤ V, dim(W ) = k} .

11



Chapter 1 Critical set and bifurcation set

1.3.2 Plücker’s embedding for G(k, V ) and the manifold structure

of grassmanian

Let f ∈ Ar(V ), g ∈ As(V ) two alternating applications. It is called wedge product

of f and g, the alternate map f ∧ g, where

f ∧ g =
1

k!p!
A(f ⊗ g),

and A is the alternating operator.

(f ∧ g)(v1, · · · , vk+p) =
1

k!p!

∑
σ∈Sk+p

(sgnσ)
(
f
(
vσ(1), · · · , vσ(k)

)
g
(
vσ(k+1), · · · , vσ(k+p)

))
.

The wedge product is associative, meaning

(f ∧ g) ∧ h = f ∧ (g ∧ h),

for all alternating maps f, g, h.

Also the operator is anticommutative,

f ∧ g = (−1)rsg ∧ f,

where f ∈ ΛrV şi g ∈ ΛsV .

We say that a multivector ω ∈ ΛkV has a total decomposition, if we can write:

ω = ω1 ∧ · · · ∧ ωk. Also v ∈ V is called divisor of ω, if it exists ϕ ∈ Λk−1V such that

ω = v ∧ ϕ.

We consider W ∈ G(k, V ) and a basis such that we associate to W the multivector

λ = v1 ∧ · · · ∧ vk, where W =< v1, · · · , vk >. It is called the Plücker embedding, the

map

ψ : G(k, V )→ P
(
ΛkV

)
,W =< v1, · · · , vk > 7→ [λ],

where [λ] is the subspace generated by v1 ∧ · · · ∧ vk.

Remark 1.3.1 The map ψ is an embedding because for [ω] = ψ(W ) we have:

W =
{
v ∈ V : v ∧ ω ∈ Λk+1V

}
. Also Im (ψ (G(k, V ))) represents a projection for all

vector spaces that have a total decomposition in ΛkV .

The coordinates P
(
∧kV

)
are called Plücker coordinates for the grassmannian from

G(k, V ).

For emphasizing the differential manifold structure of the grassmannian we attach to

every [ω] ∈ G(k, V ) a map: ϕω : V → Λk+1V such that ϕω(v) = v ∧ ω. Therefore, we

have ω ∈ G(k, V ) if and only if rank (ϕω) ≤ n − k, and the grassmannian is composed

as a finite intersection of projective hypersurfaces, so it has the structure of a smooth

manifold.

12



Chapter 1 Critical set and bifurcation set

1.4 Lens space

For presenting the following part we used the reference [24].

Given the spehere S2n−1 = {z = (z1, · · · , zn) ∈ Cn : ‖z‖ = 1}, the unit roots of order

p, ε = e
2πi
p and d1, · · · , dn integers coprime to p.

It is called lens space, denoted by L(p, d1, · · · dn), the quotient space of S2n−1 obtained

by Zp-free action defined by:

(z1, · · · , zn) 7→
(
e

2πid1
p · z1, · · · , e

2πidn
p · zn

)
.

Theorem 1.4.1 [68] The lens spaces L(p1; d1), L(p2; d2) are homotopy equivalent if and

only if

±d1d2 ≡ k2 (modp).

Moreover, if the two spaces are homeomorphic, then p1 = p2.

13



2. Critical points for circular maps

2.1 Motivating the notion of ϕ−category

Definition 2.1.1 Let F ⊆ C∞ (Mm, Nn) be a family of smooth maps. It is called the

ϕF-category of a pair (M,N):

ϕF(M,N) = min {µ(f) : f ∈ F} ,

where µ(f) is the cardinality of C(f), critical set of f .

It is obvious that ϕF (M,N) = 0 if and only if F contains immersions, submersions

and diffeomorphisms. Also 0 ≤ ϕF (M,N) ≤ ∞. Next, we will present the necessary

proprieties using the references [4], [30], [31], [32], [83], [84], [88] şi [93].

F.Takens studied the invariant ϕ(M) that comes from the particular case N = R and

the family F given by the algebra of real smooth functions on M , F(M) = C∞(M,R).

Computations related to this invariant were made in the paper [4].

Let N = R and F = Fm(M) ⊂ C∞(M,R), the set of all Morse functions on M . In this

case we have ϕF(M,R) = γ(M), called the Morse-Smale characteristic of a manifold

M , an important invariant of M . In the paper [92] S.Smale computed the Morse-Smale

characteristic for the particular case of a simple connected manifold of dimension bigger

than 5. A general computation for this invariant was not done until today.

Hydrodynamic problems occurred in Nivkov’s research, led to the case of N = S1

and also to the family of circular Morse functions on M , Fm(M,S1) ⊂ C∞(M,S1). In

this case, ϕF(M,S1) is denoted by γS1(M) and is called the circular Morse-Smale

characteristic of a manifold M . Therefore we have:

γS1(M) = min {µ(f) : f ∈ Fm(M,S1)}.

14



Chapter 2 Critical points for circular maps

2.2 ϕ−category and circular ϕ−category of a manifold

In this section we consider a smooth manifold M and f : M → R a smooth function

on M . We introduce the notions of ϕ−category of a pair of manifolds (M,N), circular

ϕ-category of a manifold together with relevant proprieties and theorems. The results

presented here, follow the work of authors Andrica D. [3], [4], Cicortaş G. [33], Pintea

C. [12], [13], [76], Funar L. [5], [6] and Tankens F. [95].

We have the following proprieties:

1. the ϕ-category is a differential invariant, meaning that if the manifolds M and N

are diffeomorphic then we have ϕ(M) = ϕ(N).

2. the ϕ-category is submultiplicative, so the following inequality is true

ϕ(M ×N) ≤ ϕ(M) · ϕ(N).

Example 2.2.1 We have the following examples:

1.According to the paper [16], over the 2-dimensional torus it can be construct a real

smooth function with three critical points: minimum, maximum and a degenerate point,

so ϕ(T2) = 3. It is also possible to find a height function that will immerse the torus in

R3, but this fact is not true for an embedding. Moreover, we have ϕ(Tn) = n+ 1, where

Tn = S1 × · · · × S1 is the n-dimensional torus.

2. The m-dimensional sphere admits a real function with exactly two critical points,

a minimum and a maximum and we have ϕ(Sm) = 2.

Theorem 2.2.1 If M is a m-dimensional compact manifold we have the inequality:

ϕ(M) ≤ m+ 1.

The notion of ϕ-category was extended in the paper [3] moving from the minimum

number or critical points of a real valued function on a manifold M , to the minimum

number of critical points for functions M → N , leading to the definition of ϕ−category

of a pair (M,N).

Definition 2.2.1 Let M and N be two smooth manifolds and f : M → N a smooth

function. We can define the ϕ-category of a pair(M,N) by

ϕ (M,N) = min {µ(f) : f ∈ C∞(M,N)} .
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Chapter 2 Critical points for circular maps

Theorem 2.2.2 Let M be a compact m-dimensional manifold and k a natural number

such that 2 ≤ k ≤ m. Then any map f ∈ C∞(M,Rk) has an infinite number of critical

points and we have ϕ
(
M,Rk

)
=∞.

Proposition 2.2.3 For a pair of spheres (Sm, S1), m ≥ 2, the minimum number of

possible critical points for smooth functions f : Sm → S1 is 2.

Definition 2.2.2 [10] Let M be a smooth manifold and f : M → S1 a smooth function.

We define the circular ϕ−category of M through the relation:

ϕS1(M) = min {µ(f) : f ∈ C∞ (M,S1)} .

Taking into consideration the theorem 2.2.1 and the above definition we have the

following inequalities:

ϕS1(M) ≤ ϕ(M) ≤ m+ 1.

Other results concerning the ϕ-category of a pairs of surfaces are given in the paper [7].

Families of pairs of differential manifolds having infinite ϕ-category are emphasized in the

papers [77] and [78].

Proposition 2.2.4 [10] Let M a connected smooth manifold having

Hom (π(M),Z) = 0. The we have the propriety

ϕS1(M) = ϕ(M).

In conclusion, this relation takes places when the fundamental group of M is a torsion

group.

2.3 Morse theory. Circular Morse theory

Morse theory offers ways of exploiting the topology of a manifold by analyzing differential

functions on a given manifold. In this manner we can extract information about handle

decomposition of a manifold and the CW-structure associated to it.

Next, we will present fundamental notions from Morse theory, like 1-form, closed form,

exact form, Morse form, circular Morse function, covering maps and lift of a function. Also

here we presented examples of closed forms and exact forms. This sections follows the

references [42], [43], [69], [72] şi [74] but also [25] which offers an algebraic perspective on

Morse functions.
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Chapter 2 Critical points for circular maps

Theorem 2.3.1 [44] Let ω =
m∑
i=1

fidxi be an exact smooth form. This form is closed if

and only if follows the integrability condition:

∂fj
∂xi

=
∂fi
∂xj

, pentru orice i, j = 1, · · · , n.

We define the set of zeros of a 1-form ω as

Z(ω) = {p ∈M : ωp = 0}.

Definition 2.3.1 Let M be a smooth manifold on which we define the closed 1-form ω.

ω is called Morse form if around any point p in M, it exist a neighborhood U and a

Morse function f : U → R for which we have ω
U

= df .

Similarly to real Morse function theory we have the following concepts

1. A zero of a form ω is called non-degenerate if it is a non-degenerate critical point

for any function f : U → R, that satisfies ω
U

= df .

2. The index of a non-degenerate zero p ∈ Z(ω) is the index of a critical point p of a

smooth function f : U → R. The index is a natural number between 0 and dim(M).

3. We denote by S(ω) the set of all zeros of a form ω, to which we associate the

cardinality denoted by m(ω).

Circular Morse theory appears as a particular case of real Morse theory in studies over

1-forms done by S. Novikov in 1980. The importance of this field is emphasized by the big

number of existing papers, giving to this concept a dynamical character and a practical

applicability for studies over manifold fibrations on the unit circle or dynamical zeta

functions. Among authors that contributed to the development of this field we mention

S.Novikov, A. Pajitnov, A. Ranicki, M. Farber.

Definition 2.3.2 It is called a circular Morse function, a smooth function, f : M →
S1, that has only non-degenerate critical points.

In the study of circular Morse theory we impose conditions on the type of critical

points, and therefore, the following notation appeared naturally. The set Ck(f), k =

0, . . . , n, represents the critical set of index k, and µk(f) is the cardinality of this set.

So C(f) contains the set of critical points of f , and its cardinality is given by:

µ(f) = µ0(f) + · · ·µn(f)
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Chapter 2 Critical points for circular maps

The real topological space R, together with the universal covering map of the circle:

exp : R→ S1, t 7→ e2πit

defines the covering of the unit circle S1.

Proposition 2.3.2 Let X be a compact connected subset of Rp, a smooth map f : (X, x0)→
(S1, 1) and t0 ∈ R. Then it exists a unique continuous map f̃ : (X, x0)→ (R, t0) for which

we have: f = exp ◦ f̃ = e2πif̃ .

The map f̃ from the previous proposition is called the lift of a map f .

The next two sections offer an estimation about the minimum number of critical

points for a circular function on products of manifolds, using the minimum number of

critical points for circular functions, defined on each of the named manifolds. Similar

computations were done for real functions in the original paper [8], having the purpose of

establishing the same results for circular Morse functions.

As a starting point for this analysis we used Takens’ inequality proven in his thesis [95],

stating that:

cat(M) ≤ ϕ(M) ≤ dim(M) + 1,

where cat(M) is the Lusternik-Schnirelmann category, or shortly LS-category. We remember

that the category of a space X represents the smallest natural number such that X =⋃n
i=0 Ui, where Ui are open and contractible sets in X.

2.4 Computations regarding circular ϕ−category of

particular manifolds

2.4.1 Results concerning ϕ-category of products and direct sums

If k, l,m1, . . . ,mk ≥ 2, are integers, then the following relations are true:

1. ϕ
S1

(Sm1 × · · · × Smk)=ϕ(Sm1 × · · · × Smk) = k + 1;

2. ϕ
S1

(RPm1× · · · ×RPmk)=ϕ(RPm1× · · · ×RPmk) ≤ m1 +m2 + · · ·+mk + 1;

3. ϕ
S1

(L(7, 1)×S4)=ϕ(L(7, 1)×S4)=ϕ
S1

(L(7, 1)×S4)=ϕ(L(7, 1)×S4)=5, where L(r, s)

is the lens space 3 of type (r,s);

4. ϕ
S1

(RPk × Sl) = ϕ(RPk × Sl) ≤ k + 2.
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The proof for relations

ϕ(Sm1 × · · · × Smk) = k + 1

ϕ(L(7, 1)× S4) = ϕ(L(7, 1)× S4) = 5

was done by C. Gavrilă [47] (Proposition 4.6, Example 4.7) and the estimation

ϕ(RPk × Sl) ≤ k + 2

comes from [47] (Proposition 4.19). An immediate consequence of Proposition 2.2.4 is:

Corollary 2.4.1 If Mn
1 , . . . ,M

n
r , n ≥ 3, are connected manifolds with fundamental torsion

group, we have ϕ
S1

(M1# · · ·#Mr) = ϕ(M1# · · ·#Mr). Particularly the following is true:

ϕ
S1

(rRPn) = ϕ(rRPn) , where rRPn represents the connected sum RPn# · · ·#RPn of r

copies of RPn.

The following result is mentioned in the monograph [38, p. 221].

Lemma 2.4.1 If M are N are closed manifolds, then the following inequalities occur

ϕ(M#N) ≤ max{ϕ(M), ϕ(N)}.

Particularly we have : ϕ(X#X) ≤ ϕ(X) for any closed manifold X.

2.4.2 The submultiplicativity property for ϕ
S1 [65]

Let M , N be two manifolds and f : M → G and g : N → G two maps with values in

the Lie group (G, ·). We define the operation ”�” for f and g, by:

f � g : M ×N → G, (f � g)(x, y) = f(x)g(y).

Proposition 2.4.2 [45] Let M, N be two smooth manifolds with dim(M) = m, dim(N) =

n and a Lie group (G, ·) with dimension dim(G) ≤ min(m,n). For two smooth maps

A : M → G and B : N → G we have the following inclusion of critical sets:

C(A�B) ⊆ C(A)× C(B).

Corollary 2.4.2 For two manifolds M , N the following inequality is true:

ϕ
S1

(M ×N) ≤ ϕ
S1

(M)ϕ
S1

(N).

Moreover, if χ(M), χ(N) 6= 0, then ϕ
S1

(M ×N) ≥ 1.
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Example 2.4.1 Let M a smooth n-dimensional manifold and SO(n) and Spin(n) special

orthogonal group, respectively spin group of order n. If n ≥ 2, then the following

inequalities are true:

1. ϕ
S1

(M × Sn) ≤ 2ϕ
S1

(M);

If χ(M) 6= 0, then ϕ
S1

(M × Sn) ≥ 1;

2. ϕ
S1

(M × SO(n)) ≤ 2n−1ϕ
S1

(M);

3. ϕ
S1

(M × Spin(n)) ≤ 2nϕ
S1

(M);

4. If n ≥ 3, m ≥ 3 and 1 ≤ k ≤ n− 1, 1 ≤ p ≤ m− 1 then

ϕ
S1

(Gk,n ×M) ≤
(
n+ k

k

)
ϕ
S1

(M),

where Gk,n represents the Grassmann manifold of all k-dimensional subspaces of Rn+k.

2.5 Circular Morse-Smale characteristic

In this section, we consider M a smooth n-dimensional manifold without boundary and

f : M → R a Morse function on M . Then:

µ(f) = µ0(f) + µ1(f) + · · ·+ µn(f)

where µk(f) represents the number of critical points of index k.

Definition 2.5.1 We denoted by γ(M), the minimum number of possible critical points

for all Morse functions. The number γ(M) is called real Morse-Smale characteristic

of a manifold M and so we have:

γ(M) = min {µ(f), f : M → R} ,

that corresponds to the case N = R mentioned in Section 2.1.

We emphasize the number

γi(M) = min {µi(f), f : M → R} .

Considering the presented elements, it is obvious that for any compact manifold we

have γ0(M) = γn(M) = 1. Also, the following relation takes place:
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γ(M) ≥ γ0(M) + γ1(M) + · · ·+ γn(M).

Moreover, for smooth non-compact manifolds without border, the Morse-Smale characteristic

is 0.

Following the references [1], [2], [4], [9], [10] and [11] we present results that highlight

the invariant property of the numbers γ(M) şi γi(M).

We consider the smooth manifolds M , N , the diffeomorphism ψ and smooth maps f

and g such that the following diagram is commutative:

Proposition 2.5.1 1. The critical set of f is equal to the image of critical set of g

through the diffeomorphism ψ, namely:

C(f) = ψ (C(g))

2. The Morse indexes of critical points associated to the maps f and g throught the

diffeomorphism ψ are equal.

Our next theorem highlights the invariant character of γ and γi.

Theorem 2.5.2 Let M,N be two differential diffeomorphic manifolds. Then for any

natural number i ∈ {0, 1, · · · , n} we have: γ(M) = γ(N) and γi(M) = γi(N).

Paper [4] shows the following result for computing the Morse-Smale category.

Theorem 2.5.3 Let Mm, Nn be two smooth manifolds and γ, γi circular Morse-Smale

characteristics presented before. Then the following statements are true:

1. γi(M) = γm−i(M), for all i ∈ {0, 1, · · · ,m};
2. γ(M ×N) ≤ γ(M)γ(N);

3. γi (M ×N) ≤
∑

j+k=i γj(M)γk(N), for all i ∈ {0, 1, · · · ,m+ n}.
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Similarly we can define the circular Morse-Smale category corresponding to circular

Morse functions on a smooth manifold M as the number

γS1(M) = min {µ(f) : f : M → S1} .

Proposition 2.5.4 [11] If M̃ is a k-covering of M , then the following inequality takes

place

γS1

(
M̃
)
≤ k · γS1(M).

An alternate form of Morse inequalities for circular Morse function is given in the

paper [66]. An estimation of the number of non-degenerate critical points for a circular

Morse function is obtained in [67].

2.6 Calculations of circular Morse-Smale category

2.6.1 The submultiplicativity property for γ
S1 [65]

In Pajitnov’s book [74] we have the following description for a function f that lifts to

a real-valued Morse function F on M̃ . Let M be a smooth closed manifold, f : M → S1 a

circular Morse function and p : M̃ →M the infinite cyclic covering induced by f through

the universal covering exp : R→ S1, where exp(t) = e2πit. Therefore we have:

(2.1) f ◦ p = exp ◦F.

Proposition 2.6.1 Let f , g be two circular Morse functions that follow (2.1). Then

f � g is also a Morse function, and the third diagram which shows the lift of the function

f � g to F +G is commutative.

Corollary 2.6.1 Let M, N be two manifolds of dimension m, respectively n. We have:

γ
S1

(M ×N) ≤ γ
S1

(M)γ
S1

(N).
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Moreover, if χ(M), χ(N) 6= 0, then γS1(M ×N) ≥ 1.

Theorem 2.6.2 [10] The circular Morse-Smale characteristic of a closed surface

Σ 6= RP2 is given by γ
S1

(Σ) = |χ(Σ)| , where χ (Σ) is the Euler-Poincaré characteristic of

the surface Σ.

Proposition 2.6.3 [8] By U(n) and SU(n) we denoted the unitary group and special

unitary group. We have the following results:

1. n ≤ ϕ (U(n)) ≤ γ (U(n)) ≤ 2n;

2. n− 1 ≤ ϕ
S1

(SU(n)) = ϕ (SU(n)) ≤ γ (SU(n)) = γ
S1

(SU(n)) ≤ 2n−1.

Remark 2.6.1 The unitary group is diffeomorphic to SU(n)× S1. So

0 = ϕ
S1

(U(n)) < n ≤ ϕ (U(n)).

Considering the notations and computations given, we will present relations and

inequalities for special categories of manifolds and groups.

2.6.2 Particular categories of Grassmann manifolds

Proposition 2.6.4 [10] Let M be a smooth connected manifold. If M has the lifting

property Hom(π(M);Z) = 0, then ϕS1(M) = ϕ(M) and γS1(M) = γ(M). Also ϕS1(M) =

ϕ(M) and γS1(M) = γ(M), when the fundamental group of M is a torsion group.

Proposition 2.6.5 If n ≥ 2 is an integer, then

1. ϕ
S1

(Sn) = ϕ(Sn)=γ
S1

(Sn) = γ(Sn)=2;

2.
ϕ
S1

(RPn) = ϕ(RPn) = γ
S1

(RPn) = γ(RPn) = cat(RPn) =

ϕ
S1

(CPn) = ϕ(CPn) = γ
S1

(CPn) = γ(CPn) = cat(CPn) = n+ 1,

where cat(CPn) represents Lusternik-Schnirelmann category of the complex projective

space CPn.

To be observed that the equalities ϕ
S1

(RPn) = ϕ(RPn) = cat(RPn) = n+ 1 are proven

similarly in [10] by using the fundamental group structure of RPn, together with the Morse

function

Fn : RPn −→ R, Fn([x1 , . . . , xn+1 ]) =
x2

1 + 2x2
2 + · · ·+ nx2

n + (n+ 1)x2
n+1

x2
1 + x2

2 + · · ·+ x2
n + x2

n+1

,

whose critical points are found in the set C(Fn) = {[1, 0, . . . , 0], [0, 1, . . . , 0], . . . , [0, 0, . . . , 1]},
and the inequalities mentioned before ϕ(RPn) ≥ cat(RPn) ≥ n+ 1.
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Proposition 2.6.6 If n ≥ 3 and 1 ≤ k ≤ n− 1, then

ϕ
S1

(Gk,n) = ϕ (Gk,n) ≤ γ (Gk,n) = γ
S1

(Gk,n) ≤

(
n+ k

k

)
,

where Gk,n represents the Grassmann manifold of all k-dimensional subspaces of the space

Rn+k.

Corollary 2.6.2 If n = 1 or k = 1 or (n = 2 and k = 2p − 1 for an arbitrary p) or

(n = 2p− 1 and k = 2), then

n k ≤ ϕ
S1

(Gk,n) = ϕ (Gk,n) ≤ γ
S1

(Gk,n) = γ (Gk,n) ≤

(
n+ k

k

)
.

2.6.3 Particular categories of Lie groups

Proposition 2.6.7 If n ≥ 3, then the following relations are true:

ϕ
S1

(SO(n)) = ϕ (SO(n)) ≤ γ (SO(n)) = γ
S1

(SO(n)) ≤ 2n−1.

Corollary 2.6.3 9 ≤ ϕ (SO(5)) = ϕ
S1

(SO(5)) ≤ γ
S1

(SO(5)) = γ (SO(5)) ≤ 16.

Proposition 2.6.8 The following inequalities are true:

1. n ≤ ϕ (U(n)) ≤ γ (U(n)) ≤ 2n;

2. n− 1 ≤ ϕ
S1

(SU(n)) = ϕ (SU(n)) ≤ γ (SU(n)) = γ
S1

(SU(n)) ≤ 2n−1.

Remark 2.6.2 The inequality ϕ (U(n)) ≤ ϕ
S1

(U(n)), can be strict because the unitary

group is diffeomorphic but not isomorphic with the product SU(n)× S1 [69, p. 103] and

Proposition 2.6.4 cannot be applied, because the fundamental group for U(n) is Z.
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3. The Reeb graph of an application

The Reeb graph has its origins in the evolution of level sets of a real-valued function,

defined on a differential manifold. It was introduced by the french mathematicians Georges

Henri Reeb (12.XI.1920 - 6.XI.1993) in his paper [85] as a mathematical tool used while

studying real-valued Morse functions. Afterwards, it gain a bigger utility, being used

in fields like geometrical design assisted by mathematical software, computer graphics,

computational geometry and geometric thermodynamics.

Together with the evolution of technology a necessity of detection and processing

images has risen and the Reeb graph answers to this needs by storing only the necessary

information, reducing in this way the processing time of algorithms.

3.1 Basic notions and examples

Definition 3.1.1 Let X be a topological space and f : X → R a real valued function. We

define on X, the equivalence relation ”∼”: x ∼ y if and only if x and are placed in the

same connected component of the level set f−1(a), a ∈ R.

Notations: Let M be a smooth manifold and f : M → R a real smooth function. We

consider the following:

Mc = f−1(c), the set of level c of function f and M s
c a connected component of

this set;

M (c,c′) = {x ∈M | c < f(x) < c′}, a section defined on the interval (c, c′);

M c = {x ∈M | f(x) ≤ c}, the set of level c. Obviously the following relation takes

place

M =
⋃

−∞<c<∞
Mc.

Definition 3.1.2 Let X be a topological space, f : X → R a real valued function and

”∼” the equivalence relation mentioned in 3.1.1. It is called the Reeb graph of map f ,

the space X/ ∼ together with the quotient topology.
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Notation: In the references used, the Reeb graph of a f has been denoted by R(f)

or (X,f). We will use the notation R(f).

Let π : M → R(f) be the canonical projection on the manifold M of the Reeb graph

of a map f : M → R.

3.1.1 Exemple

Beside the cases of a Reeb graph defined by the height function on the sphere S2 and

torus T 2, we also present the following example:

3. The Reeb graph of a height function on the orientable surface of genus 2:

3.2 The Reeb graph category

The Reeb graphs form a category denoted by Reeb, where the objects are finite

graphs with real valued functions that are strictly monotonic on edges, and the morphisms

are functions preserving maps between the underlying spaces. More precisely [19], an

object of the category Reeb is a finite graph, seen as a topological space X, together

with a real valued function that is strictly monotonic on its edges. In what follows, we

use the notation R(f) for such an object. A morphism between R(f) and R(g), is a

function preserving maps ϕ : X → Y , meaning we have f = g ◦ ϕ.

The vertices of a Reeb graph represent classess of critical points of f . Moreover, f

induces the application f̃ : R(f)→ R such that f = f̃ ◦π. In the paper [90], the function

f̃ induces and orientation on the edges of a Reeb graph. For a finite orientable graph we

introduce the notions of inner degree, respectively outer degree denoted by degin(v),

degext(v), representing the number of edges that go in, respectively come out of a vertex

v. Therefore, the degree of a vertex v is defined by:

deg(v) = degin(v) + degext(v)
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Definition 3.2.1 [90] We say the graph Γ has a good orientation if is equiped with an

orientation given by the continuous function g : Γ→ R, such that g is strictly monotonic

on edges and has extrema only in edges of degree 1.

3.3 Proprieties and representations of the Reeb graph

on an application

In the following section, we will present important result for a Reeb graph, following

papers [19] and [58]. The way of defining connected components and types of paths, were

also used in the presentation of the algorithm from paper [63].

Definition 3.3.1 Let c be a critical value of f . We say that a connected component M s
c

is essential if contains at least one critical point, meaning

M s
c ∩ C(f) 6= ∅.

This component will be denoted by M es
c .

A graph is called connected if any two vertices are connected by a path. A connected

graph without cycles will be called from now on a tree.

Proposition 3.3.1 Let M be a smooth, compact manifold and f : M → R a smooth

function with isolated critical points. If c is a critical value, we consider the set:

A = M es
c ∩ C(f) = {a1, a2, . . . , an}

of critical points in the essential component associated to c. Then we have the following

properties:

1. Any path-connected component associated to a level set is a connected component.

2. For all ai, aj from the closure of the set (M es
c \ A), where ai 6= aj and any i, j ∈

{1, 2, . . . , n} can be connected by a path γ : I → M es
c such that γ(0) = ai, γ(1) = aj

where γ is an homeomorphism.

3. It exists K ⊂ M es
c a closed subspace homeomorphic to a tree for which A is the set

contained the vertices of the tree.

Corollary 3.3.1 For all ai, aj from A critical points, it exist an arc (regarded as the

composition of arcs that was described before) that connects them.
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3.3.1 Types of connected components

The connected component C from M (c,c′) is of type:

(I) or vertex component if contains a critical point;

(II) in all other cases;

(IIa) (oredge component) if f (cl(C)) ∩ C(f) = {c, c′}.
The above relation is equivalent to:

The type II component is of type IIa (or edge component) if

we have the following relations:

M es
c ∩ cl(C) 6= ∅ and M es

c′ ∩ cl(C) 6= ∅.

Proposition 3.3.2 For an edge-component C we have the diffeomorphism:

(Ma ∩ C)× (c, c′) ∼M (c,c′) ∩ C

Lemma 3.3.3 A type II component intersect only one other component from Mq, for

q ∈ (c, c′).

Corollary 3.3.2 M (c,c′) regarded as a manifold, has a finite number of connected components.

Proposition 3.3.4 It exist a one to one correspondence between type (IIa) components

of the manifold M and the edges of the graph R(f).

Let ”∼es” be the equivalence relation on M defined as:

x ∼es y ∈M if and only if x, y ∈M es
c , c ∈ C(f).

We denote by Mes = M/∼es the quotient space of the mentioned equivalence relation,

by πes : M → Mes canonical projection and fes : Mes → R the function defined by

fes ([x]) = f(x). Therefore we have fes ◦ πes = f .

Lemma 3.3.5 The Reeb graph for an essential function fes, denoted by Res(f) is the

same as the Reeb graph R(f) of the function f .

3.3.2 Types of families of paths

Definition 3.3.2 1) Let c, c′ ∈ Vcr(f) and γ1, γ2 two paths with

f (γ1(0)) = f (γ2(0)) = c′, f (γ1(1)) = f (γ2(1)) = c.
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A map H : I × I → M is called homotopy relative to essential components γ1 and

γ2 if:

(i) H is an homotopy between γ1 and γ2;

(ii) H(0, s) ∈M es
c′ and H(1, s) ∈M es

c , for all s ∈ I.

A path ε : I → M is a vertex-path if it is contained in an essential component of a

critical level.

A path γ is contractible relative to an essential component if it exists a

homotopy relative to a connected component from γ to a vertex-path.

2) For a type IIa component C of M (c,c′), we say thatγ is an edge-path if:

(i) γ(0) ∈M es
c′ and γ(1) ∈M es

c ;

(ii) γ ((0, 1)) ⊂ C

The edge-path is decreasing if f (γ(t)) < f (γ(t′)), for t > t′.

Definition 3.3.3 For a type IIa component, we say that γ : I → M is an extended

edge-path of C if:

1) γ(0) ∈M es
c′ and γ(1) ∈M es

c ;

2) it exists t0, t1 ∈ I, t0 < t1 such that:

- if f (γ(t)) = c′ ⇒ t ≤ t0;

- if f (γ(t)) = c⇒ t ≥ t1.

Moreover, we have γ(t) ∩M es
d = ∅ for d 6= c, c′.

Theorem 3.3.6 It exists a one to one correspondence between homotopy classes relative

to the essential components of edge-paths and the edges of the Reeb graph R(f). Also,

every homotopy class described, contains a decreasing path that connects two critical

points.

3.3.3 The Reeb graph from graph theory perspective

For emphasizing the graph structure of a Reeb graph we use the following two sets:

V(f) represents the set of homotopy classes relative to essential component of vertex-paths;

E(f) represents the set of homotopy classes relative to essential component of extend

edge-paths.

In this way we obtain the finite graph Γ(f) = {V (f), E(f)}.

Theorem 3.3.7 Between Γ(f) and the Reeb graphR(f) of f it exists a simplicial homeomorphism.

Proposition 3.3.8 The graph Γ(f) ⊂ M is homotopy equivalent to the graph R(f). So

we have the relation:
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β1(Γ) = |E| − |V |+ 1.

In the following subsection, we pursue the reasoning provided in the paper [71] that

allows us to present realization theorems for the Reeb graph. We will point out the notion

of Reeb number, maximization of number of loops in a Reeb graph and a way of bounding

the degree of vertices associated to the graph.

3.3.4 Applications. Interpretations [58], [71]

The paper [58] published in 2014 presents the following situation: For a real-valued

C1 function on a smooth manifold M , that has isolated critical points, the following

particularization for the domain can be made:

1) If M is the n-dimensional unit sphere Sn with n ≥ 2 or the real projective space or

the n-dimensional complex space RPn, respectively CPn, then R(f) is a tree.

2) If M is the n-dimensional torus Tn, then the Reeb graph is a tree or homotopy

equivalent to a circle.

3) If M is an orientable surface Σg of genus g, then the Reeb graph contains at most

2g cycles.

4) If M is an non-orientable surface Mg of genus g, then the Reeb graph contains at

most g cycles.

Lemma 3.3.9 Let [p] a point on an edge of the Reeb graph R(f). If R(f)\ {[p]} is

path-connected then M\π−1 {[p]} is also path-connected.

Corollary 3.3.3 Let [p1], · · · , [pr] points on edges of the Reeb graphR(f). IfR(f)\ {[p1], · · · , [pr]}
is connected, then M\π−1 {[p1], · · · , [pr]} is also connected.

Theorem 3.3.10 If Σg is an orientable surface of genus g, then the number of cycles in

R(f) is smaller or equal then g.

Let f : M → R be a C1 function on a closed smooth manifold. If f has exactly three

critical points, then R(f) is a tree with two edges.

Definition 3.3.4 It is called the Reeb number R(M) of a manifold, the number of loops

of the Reeb graph relatively to all real valued functions on M with finite number of critical

points. We have the relation

R(M) = max {β1 (R(f)) : f : M → Rhas finite number of critical points}.
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Lemma 3.3.11 [36] Let f : Σ→ R be a simple Morse function on the closed surface Σ.

If Σ = Σg, then β1 (R(f)) = g.

If Σ = Sg, then β1 (R(f)) ≤
[g

2

]
, where [x] is the floor of x.

Proposition 3.3.12 Let f : Σ→ R be a simple Morse function and Σ a closed surface.

To the critical point p, we associate the vertex v from the Reeb graph R(f). Then the

following proprieties are true:

(a) ind(p) = 0 or 2 if and only if deg(v) =1;

(b) ind(p) = 1 if and only if deg(v) =

{
3, if Σ is orientable

2 or 3, if Σ is non-orientable

The next three results contained in [71] offer results over the way in which the Reeb

graph of a simple Morse function maximizes the number of loops of the graph.

Lemma 3.3.13 Let M be a smooth closed manifold and f : M → R a function with

finite number of critical points on M . Then it exist a simple Morse function g : M → R
such that

β1 (R(g)) ≥ β1 (R(f))

We mention that for a Morse function, the simple Morse function can be obtained

without changing the critical points of f or their indexes, and g is different from f only

in the neighborhood of these points.

Corollary 3.3.4 The following relation takes place

R(M) = max {β1 (R(f)) : f : M → R simple Morse function}.

Corollary 3.3.5 If a surface Σ has the Euler characteristic χ(Σ) = 2− k, then

R(Σ) =
k

2
.

3.3.5 Realization theorems of a Reeb graph using Morse functions

The foundation for realization theorems for a Reeb graph using a Morse function has

been laid by S.Sharko in his paper [90], using construction techniques given by F. Takens

in [95]. Next, we will follow the steps from the paper [71] for establishing the conditions

under which the Reeb graph is isomorphic to a graphΓ.

Theorem 3.3.14 Let Γ be a finite graph equipped with a good orientation. Then it exists

a n-dimensională closed manifold M , (n ≥ 2) and a Morse function f : M → R such that

the Reeb graph R(f) is isomorphic to Γ.
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We consider the case of n = 2:

Proposition 3.3.15 Let Γ be a graph equipped with a good orientation and g = β1 (Γ).

Then it exists a closed surface Σ and a function f : Σ→ R having finite number of critical

points, such that the Reeb graph of f is isomorphic to Γ. The surface Σ is considered

orientable of genus g or non-orientable of genus 2g. If the graph Γ is a tree then the

surface is diffeomorphic to S2.

The following theorem describes the particular case of Γ0, meaning the graph with

two vertices and one edge. This graph is the only graph that does not appear on another

surface except the sphere. Moreover, we present a necessary and sufficient condition under

which the Reeb graph is isomorphic to Γ.

Theorem 3.3.16 Let Γ 6= Γ0 be a finite graph with good orientation and Σ a closed

surface. Then it exist a function f : Σ→ R with finite number of critical points such that

its Reeb graph R(f) is isomorphic to Γ if and only if β1 (Γ) ≤ R (Σ). If Γ = Γ0 then this

graph its realized only for Σ = S2.

Theorem 3.3.17 Let Γ 6= Γ0 be a finite graph with good orientation ∆2 the number of

vertices of degree 2 of Γ and let Σ a closed surface of genus g (orientable or non-orientable).

Then it exists a Morse function f : Σ → R such that its Reeb graph R(f) is isomorphic

to Γ if and only if

(i) g ≥ β1 (Γ) + ∆2, when Σ is orientable;

(ii) g ≥ 2β1 (Γ) + ∆2, when Σ is non-orientable.

Proposition 3.3.18 Let Σ a closed surface and Γ an orientable graph without loops such

that β1 (Γ) ≤ R (Σ). Then it exists a function f : Σ→ R with a finite number of critical

values such that f is an homeomorphism that keeps the orientation on Γ. If Γ has a

vertex w for which degin(w) and degout(w) are different from zero, then R(f) and Γ are

isomorphic.

The Reeb graph associated to the function f represents an useful tool, especially in

the case of surfaces, when their reconstruction is made starting from the Reeb graph [70].

Also, one of the most important qualities of a Reeb graph, is the fact that allows the

creations of a structure that incorporates information about the shape and geometrical

representation and also its topological interpretation.
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3.4 Distances between Reeb graphs

Research for Reeb graphs has known a powerful development that led to the necessity

of introducing metrics between the objects considered. Practical applications that use

Reeb graphs are imposing the analysis of differences between existing graphs. Also, the

actual collection of data, prone to errors, yields questions about the stability of this

graph. Modern approaches in literature are based on two types of reasoning: developing

heuristics for improving graphs resistant to perturbations and a more theoretical approach

by developing distances and pseudo-distances.

The following distances are highlighted in literature: interleaving distance, functional

distortion, bottleneck and edit distance. In this section the references used are: [18], [19],

[28] şi [41].

3.4.1 Interleaving distance

Let R(f) be the Reeb graph of a function and we consider

R(f)ε := R(f)× [−ε, ε].

We define the ε−smoothing of R(f) as the Reeb graph of perturbed function

fε : R(f)ε → R, (x, t) 7→ f(x) + t.

Therefore ε−smoothing is given by the quotient space R(f)ε/∼ and is denoted by

Uε(R(f)).

The following relation is ture:

Uε (Uε(R(f))) = U2ε(R(f)).

Definition 3.4.1 Let f : X → R and g : Y → R two real functions. It is called

ε-interleaving of the graphs R(f), R(g), a pair of maps that preserve applications

ϕ : X → Uε (R(f)) şi ψ : Y → Uε (R(g))

such that the following diagram is commutative:
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where:

i : R(f)→ Uε (R(f)), x 7→ [x, 0]

ϕε : Uε (R(f))→ U2ε (R(g)), [x, t] 7→ [ϕ(x), t]

In a similar way we can define the concepts for ψ.

Definition 3.4.2 The maps ϕ : R(f) → Uε (R(g)), ψ : R(g) → Uε (R(f)) are called

ε-interleaving, if ϕ and ψ preserve applications and the following diagram is commutative:

Definition 3.4.3 Given two Reeb graphsR(f),R(g), we define the interleaving distance

as

(3.1) dI (R(f),R(g)) = inf {ε : ∃ o ε− interleaving between R(f),R(g)}

3.4.2 Functional distorsion distance

Let π be a path between x and y in R(f) ∈ Reeb. It is called the the height of

path π the number
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(3.2) h(π) = max
x∈π

f(x)−min
x∈π

f(x)

With this number we define the distance:

(3.3) df (x, y) = min
π:x;y

h(π)

.

Definition 3.4.4 Let R(f),R(f) be two Reeb graphs and Φ : X → Y , Ψ : Y → X two

functions. We consider

(3.4) C(Φ,Ψ) = {(x, y) ∈ X × Y | Φ(x) = y sau Ψ(y) = x}

and

(3.5) D(Φ,Ψ) = sup
(x,y),(x′,y′)∈C(Φ,Ψ)

1

2
|df (x, x′)− dg(y, y′)| .

We introduce the functional distortion distance by

(3.6) dFD = inf
Φ,Ψ

max {D(Φ,Ψ), ‖f − g ◦ Φ‖∞ , ‖g − f ◦Ψ‖∞} .

The following theorem presents the relation between the metric interleaving distance

and functional distortion distance and is a very important result for the study of convergence

proprieties.

Theorem 3.4.1 [19] Let f : Mm → R, g : Nn → R be two smooth functions and their

Reeb graphs R(f), R(g). The following inequalities are true:

dI(f, g) ≤ dFD(f, g) ≤ 3dI(f, g).

3.4.3 Bottleneck distance

Bottleneck distance represents globally a pseudo-metric, but locally, in a small enough

neighborhood, is as efficient as any metric for differentiating between two Reeb graphs.

For presenting this type of distance it is necessary to introduce the concepts: Morse type

function, extended filtration, extended persistence diagram and the cost of a diagram. In

order to present the elements stated above we used the reference [28].
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Definition 3.4.5 Let X be a topological space and f : X → R a continuous function.

The function f is called Morse type function if we have the following proprieties:

a) it exists a finite set of critical values C(f), such that for any open interval (ai, ai+1)

it exists a compact and connected space Yi and an homeomorphism µi : Yi × (ai, ai+1) →
X(ai,ai+1) such that f

∣∣
X(ai,ai+1)

= π2 ◦ µ−1
i , for any natural number i;

b) µi is extended to a continuous map µi : Yi × [ai, ai+1] → X [ai,ai+1] considering that

for particular cases of i = 0 and i = n: µ0 is extended to µ0 : Y0 × (−∞, a0]→ X(−∞,a0],

respectively µn is extended to µn : Yn × [an,∞)→ X [an,∞);

c) every level set f−1(x) has a finitely generated homology.

Let f be the function described before. The family of level sets of f ,
{
X(−∞,a]

}
a∈R

defines a filtration, meaning we have X(−∞,a] ⊆ X(−∞,b], for all a ≤ b.

We introduce the sets Rop = {x̃ : x ∈ R} equipped with the order x̃ ≤ ỹ ⇔ x ≥ y and

RExt = R ∪ {+∞} ∪ Rop.

We define the extended filtration of f relative to RExt by: Fa = X(−∞,a], for a ∈ R,

F∞ = X ≡ (X,∅) and Fã =
(
X,X [ã,∞)

)
, for ã ∈ Rop. Fa is called the ordinary part

of this filtration, and Fã the relative part. Applying the homology functor H∗ on the

filtration, we obtain a module of extended persistence . For Morse type functions this

module is decomposed as direct sum of semi-open interval modules. We define extended

persistence diagram as the representation of any interbal from this module as a point

in the extended plane, having coordinated given by the interval’s borders.

We denote the extended persistence diagram by Dg(f) and we separate the filtration

parts as it follows:

a) the point p = (x, y) is called ordinary point if x, y ∈ R and p is above the diagonal

∆ = {(x, x) : x ∈ R};
b) the point p = (x, y) is called relative point if x, y ∈ Rop and p is under the diagonal

∆;

c) the point p = (x, y) is called extended if x ∈ R and y ∈ Rop can be place anywhere

in space, including on the diagonal ∆. We denote by Ext+(f), the extended points on ∆,

and by Ext−(f) the extended points that are not on ∆.

The persistence diagram can be written as:

Dg(f) = Ord(f) ∪Rel(f) ∪ Ext+(f) ∪ Ext−(f).

Let D, D’ two persistence diagrams. We say the subset Γ ⊆ D × D′ is a partial

match if for any point p ∈ D it exists at most one point p′ ∈ D′ such that (p, p′) ∈ Γ.

Moreover, Γ identifies only points of the same type and same homological dimension.
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The cost of Γ is defined by: cost(Γ) = max {maxδD(p),maxδD′(p
′)}, where δD(p) =

‖p− p′‖∞ if p is associated to p’ from D’ and δD(p) = d∞(p,∆), if p has no correspondent

in D’.

Definition 3.4.6 We name bottleneck distance between two persistence diagrams D

and D’, the number:

dB(D,D′) = infΓcost(Γ)

where Γ goes through all partial matchings between D and D’.

Theorem 3.4.2 (Stability theorem of bottleneck distance) [35]

For any Morse type function f, g : X → R we have

dB (Dg(f), Dg(g)) ≤ ‖f − g‖∞

Similarly, we define the bottleneck distance between the Reeb graph R(f) and R(g)

by

dB (R(f),R(g)) = dB (Dg(f), Dg(g)).

Theorem 3.4.3 [18] Let R(f), R(g) the Reeb graphs corresponding to f : X → R and

g : Y → R. We have the following inequalities:

1. dB (Dg0(f), Dg0(g)) ≤ dFD(f, g);

2. dB (ExDg1(f), ExDg1(g)) ≤ 3dFD(f, g).

where ExDg0 is the persistence diagram of order 0 and ExDg1 represents the first

persistence diagram associated to a map.

Taking into consideration the result from 3.4.1 and 3.4.3 we can state the following

corollary:

Corollary 3.4.1 The following inequalities are true:

1. dB (Dg0(f), Dg0(g)) ≤ 3dI(f, g);

2. dB (ExDg1(f), ExDg1(g)) ≤ 9dI(f, g).
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3.4.4 The edit distance

The edit distance was introduce for the first time in the paper [86] and represents a

useful tool for measuring differences between two graphs. Some practical applications of

this distance are pattern recognition, handwriting recognition, fingerprint identification

in databases and machine learning. The edit distance is a combinatorial distance that

offers the best estimation to this day for the differences between two graphs.

For presenting the next section we used the references [41], [46] and [86].

The edit distance is introduced on a graph of which vertices are labeled using the

correspondence lf : V (Γf ) → R, where lf is the restriction of f to the critical set C(f).

This type of graph is denoted by (R(f), lf ) and for any vertex of degree 3 we have at

least two adjacent vertices v1 şi v2 that follow the relation:

lf (v1) < lf (v) < lf (v2).

Definition 3.4.7 We say that two labeled graphs (R(f), lf ) and (R(g), lg) are isomorphic

if it exist an isomorphism ϕ : C(f)→ C(g) that preserves the label of vertices and edges.

According to [41] we have for types of elementary deformations illustrated as follows:

a) Deformation B (birth) that introduces new vertices between two existing vertices.

c(T ) =
|lg(u1)− lg(u2)|

2

b) Deformation D (death) that deletes vertices between two existing vertices

c(T ) =
|lf (u1)− lf (u2)|

2

c) Deformation R (relabeling) that changes the order of two existing vertices.

c(T ) = max |lf (v)− lg(v)|

d) Deformations Ki that transforms a graph in a symmetrical graph or reorganizes

the structure of a given graph.

c(T ) = max {|lf (u1)− lg(u1)| , |lf (u2)− lg(u2)|}

Proposition 3.4.4 [41] Let M be a connected, closed, orietables surface of genus g and

f : M → R a simple Morse function. If we have the graph (Γ, l) = T (Γf , lf ) obtained by

composing elementary deformations, then it exist a Morse function g : M → R for which

(Γg, lg) ∼= (Γ, l).
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It is called deformation of the graph (Γf , lf ) an ordered sequence T = (T1, T2, · · · , Tn)

made from elementary transformations that has a recursive actions as it follows : T1

represents an elementary transformation for which (Γf , lf ), T2 represents an elementary

transformation for which T1(Γf , lf ), · · · , respectively Tn represents an elementary transformation

for which Tn−1Tn−2 · · ·T1(Γf , lf ).

We will denote this by T ((Γf , lf ), (Γg, lg)) = {T = (T1, · · · , Tn : T (Γf , lf )} ∼= (Γg, lg).

Definition 3.4.8 It is called edit distance, the pseudo-metrics defined by:

dE ((Γf , lf ), (Γg, lg)) = inf
T∈T ((Γf ,lf ),(Γg ,lg))

c(T ).

The following result shows the stability of the edit distance.

Theorem 3.4.5 [41] For any Morse type simple function f, g : M → R we have

dE ((Γf , lf ), (Γg, lg)) ≤ max
p∈M
|f(p)− g(p)|

Considering all types of distances presented for real valued Morse functions f, g on a

surface M , we have the following connections between them:

i) dE ((Γf , lf ), (Γg, lg)) ≥ dB(Df , Dg), where Df and Dg are persistence diagrams for

f and g;

ii) dE ((Γf , lf ), (Γg, lg)) ≥ dFR(R(f),R(g)), where R(f) and R(g) represent the Reeb

graph of functions f and g.

3.5 The Reeb graph in computation topology

Classification of components for a Reeb graph led to a better understanding of the

evolution of level curves on a manifold and also to the necessary parameters for the

realization of a representation sketch. The main purpose of this section is to present

an algorithm of construction for a Reeb graph associated to a real valued function on a

compact surface without border in R3. The results from this section follow our paper [63],

work cited in [57].

3.5.1 Description of the algorithm

1. Identify critical points;

2. Arrange critical points in a vector v[i] in the same order that they appear when

tracing along the surface from absolute minimum to absolute maximum;
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3. Every entry in the vector has the following form: v[i] = (Pi; type), where type can

be:

• a for minimum, with the special type aA for the absolute minimum;

• b for a saddle point with the special types bi for the saddle that comes after

the absolute minimum and bp the saddle that comes after a minimum (note:

categ.sp). If the saddle does not come after any type of minimum, the type

will be obtained by alternating the order from the last saddle that falls in the

categ.sp.

• c for maximum, with the special type cA for the absolute maximum;

4. Pseudocode algorithm:

Entry data: X= surface, f= real valued function

Define a boolean function ver.type(P,Q) that compares the main type of two given

points;

Example: ver.type(a,aA)=true; ver.type (c,cA)=true, ver.type(bp, bi)= true, ver.type(a,c)=false;

Define a function point(v[i]) that returns the point Pi;

First result: v[i] = (Pi; type), n = lenght (v[i]);

Let i = natural number;

Initialize i=1;

While i < n

if type(v[i])=a

if ver.type(point(v[i]), point(v[i+1])) is false

then draw element I;

i=i+1;

else draw element II;

i=i+2;

if type(v[i])=bi and type(v[i+1])=bp

then draw element III;

i=i+1;

if type(v[i])=bp and type(v[i+1])=bi
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then draw element I;

i=i+1;

if type(v[i])=b and v[i+1]=c

if ver.type(point(v[i+1]), point(v[i+2])) is false

then draw element I;

i=i+1;

else draw element IV;

i=i+2;

3.6 Survey on the existing algorithms for a Reeb

graph of real valued functions

The survey on the complexity of existing algorithms , presented in this section, is

based on out paper [64].

The Reeb graph’s importance has led to an expansion of algorithms and research

towards the simplification and summarization of techniques. Given the fact that the

volume of data needed to be computed has increased drastically, the complexity of

algorithms is among one of the first concerns when constructing a representation technique

for Reeb graphs. In this section we will present a selection of the most common algorithms

together with their complexity.

In 2003 Carr, Snoeyink and Axen [27] proposed an algorithm for computing contour

trees using a technique of joining an splitting the trees and forming a final contour tree.

Given that v is the number of vertices, e the number of edges, n the number of supernodes
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and f(n) the slow-growing inverse Ackerman function the algorithm provides a complexity

of type

O (vlg(v) + e+ nf(n))

Another popular method was introduced by Kunii and Shinagawa in the paper [60].

The algorithm works by keeping a record of the triangles that have common points with

the level set while tracing the complexity in order of function values. For 2-dimensional

manifold the initial complexity was O(n2) with a generalization with the parameters v-the

number of vertices and n the size of vertices, edges and triangles, providing a running

time of O (vn). Paper [?] offers an improvement for the special case of 2-dimensional

manifolds by obtaining the complexity O (mln(v)). Also, using a more complex technique

Doraiswamy and Natarajan [40] managed to obtain the complexityO (mlg(m)(lg(lg(m)))3)

.

The paper [75] provided an algorithm for 3 dimensional manifold considering il to be

the number of independent loops of the graph and obtaining a complexity ofO (mlg(m) + ilm).

A different approach was offered by J.Cheng [29] by eliminating the old technique of

swiping the contour trees and replacing it with a surjection from the manifold to the

Reeb graph. And finally the more recent approach of Hajij and Rosen [49] considers an

algorithm that requires an easy implementation and takes up a the least memory storage

compared to existing algorithms.

3.7 The Reeb graph for circular functions

Definition 3.7.1 Let M be a smooth n-dimension manifold and f, g : M → R smooth

functions. We say that f and g are topological equivalent if it exists an homeomorphism

h : M →M and k : R→ R such that the following relation is ture:

Following the work [17], we will further present some useful notations and helping

concepts that will help with introducing the realization theorem a the Reeb graph for a

simple circular Morse-Bott function on S2.
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A submanifold N ⊂M is called critical non-degenerate for the function f : M → R
if for any point p ∈ N , the matrix (Hf)p

∣∣
N

is invertible. A point p ∈M is called critical

for f , if the rank of the application df(p) is not maximal. A real value b is called critical

for f if f−1(b) has at least one critical point of f .

A function f : M → R is called simple, if it exists a unique connected component that

contains critical points at that critical level. Moreover, a critical fiber is called reducible,

if all the fibers from its neighborhood are homeomorphic to it.

Definition 3.7.2 We say that a smooth submanifold S ⊂ C(f) where f : M → R is

smooth, is a smooth critical non-degenerate submanifold if

i) S has no boundary;

ii) S is compact and connected;

iii) for any point p ∈ S, we have Tp(S) = ker ((Hf)p)

Considering the above elements we introduce the following central notion for this

section:

Definition 3.7.3 It is called a Morse-Bott function (shortly MB function), a function

f that has in its critical set C(f) only isolated points or non-degenerate critical submanifolds.

It is obvious that any round function is a Morse-Bott function. We remember that a

smooth function is called rotund if its critical set is a reunion of non-degenerate critical

circles.

Proposition 3.7.1 The critical set of the Morse-Bott function f : M2 → R can be

classified as it follows:

1. critical circles, meaning points that can be found in a critical submanifold

homeomorphic to S1;

2. isolated critical extrema (minimum or maximum);

3. saddle points, meaning isolated critical points of index 1.

Next we will present important notions and relevant examples for constructing the

Reeb Morse-Bott graph for simple circular Morse-Bott functions. Considering the paper

[17], we will expose the classification problem for simple Morse-Bott functions from S2 to

S1.

Definition 3.7.4 Let M2 an orientable closed surface. A circular function f : M → S1 is

called circular Morse-Bott function if for any point x ∈M , exists a neighborhood V
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of f(x) and a diffeomorphism φ : V → R, such that for any U = f−1(V ), the application

φ ◦
(
f
∣∣
U

)
is a real Morse-Bott function.

Given a simple Morse-Bott function f : S2 → S1 we can depict the following conclusions:

i) f is not a regular map;

ii) the non-degenerate critical submanifolds with finite number of points are homeomorphic

to S1.

So the critical set C(f) can be devided into three main section: singular circles,

extrema and saddle points.

The classification problem for Morse functions, studied by Arnold in [14], [15] and

Sharko in [89], [90] (see also the monograph [88]) using the Reeb graph can be extend,

using the generalized Reeb graph for simple circular Morse-Bott functions. Similarly to

the definition 3.1.2 given for real valued functions, we can highlight the graph structure

of the quotient space S2/ ∼ associated to the simple Morse-Bott function f : S2 → S1,

as it follows:

i) for a critical value c ∈ S1, the vertices of the graph are connected components of

the level curves f−1(c);

ii) for a regular value c ∈ S1, the edges of the graph are connected components

associated to the level f−1(c).

A similar representation associated to this types of connected component for a Reeb

graph of a real valued function [63] is presented in the paper [17] considering four types

of existing vertices.

Definition 3.7.5 The graph defined on the quotient space S2/ ∼ together with the classification

of edges and vertices is called the Reeb MB graph associated to the circular Morse-Bott

function f : S2 → S1.

The Reeb graph of a simple Morse-Bott function f : S2 → S1 is a tree, because the

Euler-Poincaré characteristic of the graph is equal to 1.

Considering that the labeling of elements of a Reeb graph is dependent on the chosen

orientation for the surface and also on the choice of the basis point for pointing out the

concept of isomorphism between two MB Reeb graphs. Therefore we call an isomorphism

between the Reeb graphs associated to the functions f, g : S2 → S1, a one to one map

between the vertex-sets of the two graphs following the condition that the images of two

adjacent vertices from the graph induced by f are adjacent on the graph induced by g.

The following sketch of the algorithms id taken from our paper [64].
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3.7.1 Description of algorithm

In order to give a better understanding to circular Morse-Bott functions and the

applicability of this concept for practical purposes we will describe the algorithm and

present three examples using the pre-defined components: extrema, saddle point, regular

point with critical values as image and regular point with singular circle as image. The

basic steps are the following:

11) identifying the critical points;

2) choosing an orientation for tracing the surface;

3) arranging the points into a vector v[i] = (Pi, type);

4) identifying the type to each corresponding critical point:

m = minimum, M = maximum with pre-defined component of type I;

s = saddle point with component type II;

prc = regular point having image a critical value with component III;

prs = regular point having image a singular circle with component IV;

Remark: For components of type IV the Reeb graph will always start and end with

symbol of singular circle ◦, therefor it will switch the order with the next point appearing

on the circle used for making the radial projection. This component will also mark 3

points on the Reeb graph, the one corresponding to the singular circle ◦ and another two

for each branch. The two double points will be marked as prsaux.

3.8 The Reeb graph associated to a Morse function

on an orientable surface with boundary

The research of critical points for smooth functions on closed manifolds and their

classification represents a very popular theme in differentiable topology and other fields

of mathematics. In 1934 Morse found a canonical representation of functions in the

neighborhood of non-degenerate critical points as second degree polynomials, followed

later by other mathematicians like Bolsinov and Fomenko [22] that introduced concepts

like atom, f -atom and frame equivalences using fibers. This section uses as its main

reference the paper [54] but also the works [53], [59] şi [80].

Let M,N be two compact smooth manifolds and f : M → R, respectively g : N → R
smooth functions. f şi g are called layer equivalent if it exists an homeomorphism

λ : M → N , that takes every connected component from the level set of f in connected

component from the level set of g, preserving the direction in which the functions increase.

By restricting f to the set f−1(c− ε, c+ ε), where c is a critical value of f and ε > 0 small
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enough such that the segment line [c− ε, c+ ε] does not contain other critical value beside

c, we obtain the layered equivalence classes called atoms or f-atoms. If λ preservers the

orientation of f and g they are called O-equivalent, and the class of O-equivalence of

the pair
(
U, f

∣∣
U

)
is called O-atom for the orientable surface.

Considering the definition of topological equivalent functions, introduced in Section

3.7.1, we say that two functions f and g are called topological O-equivalent if the

homeomorphism h preserves orientation on the surface M . The papers [55], [79], [80], [89]

investigate topological properties of the Reeb graph like a special equivalence class called

m-equivalences that have a large applicability for fields like dynamic systems.

Definition 3.8.1 [54] Let M2 be a smooth surface with boundary and f : M → R Morse

function. f is called a m-function if all its critical points are interior, the restriction on

the border f∂ of the function f is also Morse and any critical level of f does not contain

critical points of f∂.

The authors B. Hladysh and A. Prishlyak define in the paper [54] the class of Ω(M)

functions as simple smooth functions f : M → R on an orientable, smooth, compact,

connected and without border that satisfies the following properties:

a) if p0 ∈ C(f) is not on the border ∂M , then its a critical non-degenerate point for

f ;

b) if p0 ∈ C(f) is on the border ∂M , then its a critical non-degenerate point fo f but

also for its restriction f
∣∣
∂M

of f on the border;

c) if p0 ∈ C(f
∣∣
∂M

) then p0 ∈ C(f).

Theorem 3.8.1 [54] For a smooth, orientable, compact surface M2, we have the following:

a) for an arbitrary function f ∈ Ω(M), it exists g : M → R a m-function, such that f

and g are topological equivalent;

b) for g : M → R a arbitrary m-function, it exist a function f ∈ Ω(M) such that f

and g are topological equivalent.

The components of level lines for a function f ∈ Ω(M) are called layers. These layers

are divided in type I layers if they correspond to connected components homeomorphic

to line segment and of type II components if they come from components homeomorphic

to S1. Similarly, the edges of a graph are classified as type I or II.

Definition 3.8.2 [54] Vertices of degree 3 and 4 of a graph Γf incidents from an edge

of type I are called type Y edges, respectively tip X. In the image below we can observe

the notation given for a type X vertex.
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Therefore, we call an equipped Reeb graph associated to the function f ∈ Ω(M),

the graph Γf equipped with the division of edges in types, the orientation and cyclic

ordering of vertices of type Y respectively X.

The vertices v of the graph γf can be classified according to their degree as it follows:

- minimum and maximum if deg(v) = 1;

- points on the border if deg(v) = 2;

- saddle point (interior or on the border, vertex of type Y) if deg(v) = 3;

- interior saddle point (vertex of type X) if deg(v) = 4.

According to the paper [54] there are 7 possible atoms and 13 simple O-atoms, and

their classification depends on the index of the critical point and its belonging to the

boundary of the surface. We will present a survey of such atoms together with their Reeb

graph and the way gluing a component affect the invariants genus (g), number of border

connected components ∂ and (c) number of connected components of the surface Mt.

If p0 ∈ ∂M we have three atoms of type A,B,C with 6 corresponding O-atoms

A1, A2, B1, B2, C1 and C2 with the following representation

If p0 /∈ ∂M the atoms do not intersect the border and we have two types of atoms:

D,E and 4 O-atoms D1, D2, E1 and E2 represented like
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If p0 /∈ ∂M and the atoms intersect the border and we have two types of atoms: F,G

and 3 O-atoms F1, F2 şi G = G1 = G2 with the representation

The orientation of atoms is given by the orientation of the space. Otherwise, we will

choose the trigonometric orientation for circles and inferior semicircles and clockwise for

for circles and superior semicircles.

Definition 3.8.3 If two equipped Reeb graphs Γf and Γg associated to the functions f

and g are called equivalent by the isomorphism ϕ : Γf → Γg if the map ϕ:

- preserves the division of edges;

- preserves the order of cycles on edges for every vertex of type X and Y;

- preserves the division of vertices.

Theorem 3.8.2 [54]

Given two compact manifolds with border M,N and the functions f ∈ Ω(M), g ∈
Ω(N), we say that fand g are O-equivalent if and only if the associated Reeb graphs,

Γf ,Γg are equivalent. Moreover, if the isomorphism ϕ preserves the labeling of vertices,

the graph is called equivalent ordered.
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The pair of numbers (i, j) is called the vertex index for the vertex v of an orientable

graph, where i represents the interior degree and j the exterior one. The authors of the

paper [54] have introduced the notion Γ≤4
n for the graphs with n vertices and i + j ≤ 4.

Therefore the graph will have vertices of the following types (1, 1), (1, 2), (2, 1), (2, 2) and

at least one vertex of type (0, 1) and (1, 0). For the graph presented before we have the

following possible operations:

- O1: addition of a vertex and the vertex corresponding to it;

- O2: division of an edge by an interior point that becomes the new vertex;

- O3: division of an edge without the addition of new vertices.

Any operation on the graph γ ∈ Γ≤4
n is composed by a finite sequences of operations

for the list O1, O2, O2, O
−1
1 , O−1

2 şi O−1
3 .

Any graph γ ∈ Γ≤4
n can be obtained from the graph γ ∈ Γ≤4

2 (see the below image) by

a finite number of operations from the above list. Therefore, it exist 57 O-non-equivalent

m−functions presented in detail in the paper [54].
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