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Introduction

Geometry is a domain in which groups were used systematically, and the study of

Lie groups was founded in 1884 by the Norwegian mathematician Sophus Lie. The main

examples of Lie groups being general linear groups GL(n,R) and GL(n,C).

Lie groups are used in many domanis of mathematics and modern physics. They are

applied in engineering where they are used as configuration space of mechanical systems,

and in physics where they are used as symmetry groups associated with conservation laws.

Many of these applications are essentially based on the use of exponential maps.

In Lie theory, the exponential map is an essential tool, because it makes the connec-

tion between an element in Lie algebra and the corresponding element in the Lie group.

Although the existence of an exponential map is guaranteed for any Lie group, finding an

explicit formula is a difficult problem. However, for some Lie groups of small dimension

there are explicit formulas for the exponential map, the most known being the Rodrigues

formula for the exponential of the rotation group SO(3,R).

Applying the Hamilton-Cayley theorem, the exponential map becomes a polynomial

of X, thus the problem of determining a formula for the exponential map, known as

the Rodrigues problem, given in formula (3.3), is reduced to the problem of finding the

coefficients a0(X), . . . , an−1(X).

The purpose of this paper is to generalize this problem and to determine the Rodrigues

coefficients. Thus, the thesis brings out original contributions related to the Rodrigues

problem for matrix functions, presenting new methods for computing the Rodrigues co-

efficients, based on the trace and on the Hermite interpolation polynomial.

A new way to determine Rodrigues coefficients is the trace method presented in

Theorem 3.1. The idea is to reduce the problem to a linear system, having as unknowns the

Rodrigues coefficients. The Hermite interpolation polynomial method is based on the fact

that the problem of determining the Rodrigues coefficients when we know the spectrum

of the matrix X is equivalent to find the algebraic form of the Hermite polynomial. The

Rodrigues type formulas for the Cayley transform of the groups SO(n) and SE(n) are

studied in the last chapter.

This thesis develops the ideas above presented and it is organized into four chapters

as follows.

The first chapter, entitled Matrix Functions, consists in six sections in which are pre-

sented the notions and the fundamental results which are necessary in our presentation.
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The notion of matrix function plays an important role in many domains of mathematics

with numerous applications in science and engineering, especially in control theory and in

the theory of differential equations. In the first section are presented the Jordan canonical

form (subsection 1.1.1) and the definition of a matrix function using the Jordan canonical

form (Definition 1.3). The second section is dedicated to the polynomial matrix func-

tions, where it is highlighted the role of the characteristic polynomial and of the minimal

polynomial. We introduce the anulator polynomial and the minimal polynomial and we

present some of their properties. We also introduce the notion of function defined on the

spectrum of a matrix. Matrix functions are also defined using the Hermite interpolation

(Definition 1.6), and the examples presented have the role of bringing clarifications. Defi-

nition of the matrix functions using the Cauchy’s integral formula is presented in Section

1.3, the definition of a matrix function as a power series is illustrated in Section 1.4 and

these definitions are accompanied by examples. Section 1.5 is devoted to bring out the

connection between these definitions, Theorem 1.6 presenting the equivalence of the given

definitions for the matrix function. The last section presents Schwerdtfeger’s formula

(1.17) and an extension, as well as the implementation in MATHEMATICA of the com-

putation of Frobenius covariates and of the obtained formula. Among the references used

we mention O.L. Chender (Broaina) [13], G.H. Golub, C.F. Van Loan [22], N.J. Higham

[24], R.A. Horn, Ch.R. Johnson [28], [29], [30], P. Lancaster, M. Tismenetsky [35], R.F.

Rinehart [58].

Chapter 2, Matrix Lie Groups. The Exponential Application, is structured in five

sections in which are presented results regarding the matrix Lie groups, the exponential

map and the surjectivity problem. In the first section are highlighted known results

regarding the exponential map for square matrices with real or complex entries as well

as the proofs of the main properties (Lemma 2.1, Lemma 2.2, Lemma 2.3, Lemma 2.4,

Lemma 2.5). Section 2.2 is dedicated to the general linear real group GL(n,R). There

are also presented the special linear group SL(n,R), the orthogonal group O(n), the

special orthogonal group SO(n), and their Lie algebras, highlighting some properties of

the exponential maps. In Section 2.3 it is defined the special Euclidean group SE(n) of

affine functions induced by the orthogonal transformations, also called rigid motions, and

the corresponding Lie algebra. The groups SE(2) and SE(3) play a fundamental role in

robotics, dynamics and in the motion interpolation process. In Section 2.4 are presented

the complex linear group GL(n,C) and its subgroup SL(n,C), group of units U(n) and

its subgroup SU(n) (Definition 2.2). These are all Lie groups, and their corresponding

Lie algebras and the exponential maps are well defined. The last section is deading to the

surjectivity problem of the exponential map. Theorem 2.1, Theorem 2.2, and Theorem

2.3 illustrate the problem of determining the image of the exponential map for the matrix

Lie groups. The groups GL(n,R), n ≥ 2, and SL(n,R), n ≥ 2 are not exponential. In

Theorems 2.4, 2.6, 2.7 are presented and proved the results regarding the surjectivity of

the exponential map. Among the references used in the elaboration of this chapter we
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mention D. Andrica and L. Mare [5], D. Andrica, R.-A. Rohan [6], H.L. Lai [34], L. Mare

[38], S. Mondal [42], M. Moskowitz, M. Wüstner [43], M. Nishikawa [44], [45], [46], [47],

[48], [49], S. Rădulescu, D. Andrica [57], M. Wüstner [65], [66], [67].

Chapter 3 is suggestively titled Rodrigues Formulas for Matrix Functions. Methods

for Determination of Rodrigues Coefficients. This chapter is organized in six sections.

The first section introduces the Rodrigues problem for matrix functions and presents the

Rodrigues coefficients, as well as their invariance in relation to the matrix conjugation

operation. In the second section is presented a new method of determining Rodrigues

coefficients, result based on the paper D. Andrica, R.-A. Rohan [7]. In Theorem 3.1 we

present, if the eigenvalues of the matrix are pairwise distinct, a direct method of determin-

ing the general Rodrigues coefficients reducing the Rodrigues problem to the system (3.7).

Then, Theorem 3.2 gives explicit formulas in terms of fundamental symmetric polynomials

of the eigenvalues of the matrix. These formulas allow us to consider the degenerate cases

(that is the situations when the eigenvalues have multiplicities) and to obtain formulas

for the coefficients. Section 3.3 illustrates the particular cases n = 2, 3, 4 for which the

computation are effectively presented. In Section 3.4 are studied the possible degenerated

cases. Sections 3.5 and 3.6 are dedicated to the Hermite interpolation polynomial method

and to the special case of the exponential map for the special orthogonal group. The

special orthogonal group SO(n) has important applications in mechanics, its elements

being also called the rotation matrices. After presenting the classical cases n = 2, 3, the

Rodrigues formula is given in the cases n = 4 and n = 5, taking into account all possible

situations. The MATHEMATICA program was used to perform the computation. The

main reference used in this chapter is our paper D. Andrica, O.L. Chender (Broaina) [4].

Other references are D. Andrica, I.N. Casu [2], D. Andrica, R.-A. Rohan [7], T. Bröcker,

T. tom Dieck [12], C. Chevalley [14], O. Furdui [17], J. Gallier, D. Xu [19], S. Kida, E.

Trimandalawati, S. Ogawa [31], M.-J. Kim, M.-S. Kim, A. Shin [32], [33], B. Jütler [36],

[37], J.E. Marsden s, i T.S. Raţiu [41], F.C. Park, B. Ravani [51], [52], L.I. Piscoran [53],

V. Pop, O. Furdui [55], E.J. Putzer [56], R.-A. Rohan [59], F. Warner [62], R. Vein, P.

Dale [63], M. Wüstner [64].

Chapter 4 is entitled The Cayley Transform and the Rodrigues Type Formulas. In

the first section we present the Cayley transform of the group SO(n) and we show that

this map is well defined. Theorem 4.1 shows that the Cayley transform is bijective and

its inverse is given. In Section 4.2 we define the Cayley transform type for the special

Euclidean group SE(n) in connection with the Cayley transform of SO(n). Section 4.3

is devoted to the generalization of this notion and some properties are presented. The

Rodrigues formulas for the Cayley transform are obtained in Section 4.4. For the group

SO(n) these formulas are given in the special cases n = 2, 3, 4. For the group SE(n) the

cases n = 2 and n = 3 are treated. The presentation follows our work [3]. Among the

references used in this chapter we mention R.-A. Rohan [60].

This paper does not exhaust the subject. It brings a contribution in the field and
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opens new horizons for knowledge.

In the elaboration of this paper I enjoyed the support and collaboration provided by
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to express my gratitude and respect for the recommendations and indications I had in
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Finally, I would like to thank my family for their support, for their trust and for

accepting all the sacrifices required by my involvement in the activities related to the
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Chapter 1

Matrix Functions

The concept of matrix function plays an important role in many domains of mathe-

matics with numerous applications in science and engineering, especially in control theory

and in the theory of the differential equations in which exp(tA) has an important role. An

example is given by the nuclear magnetic resonance described by the Solomon equations

dM/dt = −RM,M(0) = I,

where M(t) is the matrix of intensities and R is the matrix of symmetrical relaxation.

Given a scalar function f : D → R we define the matrix f(A) ∈ Mn(C), formally

replacing x with A. For example, for f(x) = x+1
x−1

, x 6= 1, we have f(A) = (A+ I)(A− I)−1

if 1 /∈ σ(A), where we denoted by σ(A) the set of eigenvalues of A, i.e. the spectrum of A.

Similarly, the scalar functions defined by a series of powers generate matrix functions.

If

f(x) = log(1 + x) = x− x2

2
+
x3

3
− x4

4
+ . . . ,

then

f(A) = log(1 + A) = A− A2

2
+
A3

3
− A4

4
+ . . . .

It can be shown that this series converges if and only if ρ(A) < 1, where ρ(A) is the

spectral radius of the matrix A.

Numerous series of powers have infinite convergence radius. For example, we have

cos x = 1− x2

2!
+
x4

4!
− . . .

and this generates the matrix function

cosA = I − A2

2!
+
A4

4!
− . . .

Again it can be shown that this makes sense for any matrix A ∈Mn(C).

This direct approach to defining a matrix function is sufficient for a wide range of

functions, but does not provide a general definition. It also does not necessarily provide
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a correct way to numerically evaluate the matrix f(A). In this chapter we will consider

alternative definitions for the notion of matrix functions.

In the six sections are presented the notions and the fundamental results which are

necessary in our presentation. In the first section are presented the Jordan canonical

form (subsection 1.1.1) and the definition of a matrix function using the Jordan canonical

form (Definition 1.3). The second section is dedicated to the polynomial matrix func-

tions, where it is highlighted the role of the characteristic polynomial and of the minimal

polynomial. We introduce the anulator polynomial and the minimal polynomial and we

present some of their properties. We also introduce the notion of function defined on the

spectrum of a matrix. Matrix functions are also defined using the Hermite interpolation

(Definition 1.6), and the examples presented have the role of bringing clarifications. Defi-

nition of the matrix functions using the Cauchy’s integral formula is presented in Section

1.3,the definition of a matrix function as a power series is illustrated in Section 1.4 and

these definitions are accompanied by examples. Section 1.5 is devoted to bring out the

connection between these definitions, Theorem 1.6 is presenting the equivalence of the

given definitions for the matrix function. The last section presents the Schwerdtfeger’s

formula (1.17) and an extension, as well as the implementation in MATHEMATICA of

the computation of the Frobenius covariates and of the obtained formula. Among the ref-

erences used we mention O.L. Chender (Broaina) [13], G.H. Golub, C.F. Van Loan [22],

N.J. Higham [24], R.A. Horn, Ch.R. Johnson [28], [29], [30], P. Lancaster, M. Tismenetsky

[35], R.F. Rinehart [58].

1.1 Definitions for f (A)

A matrix function can be defined in different ways, the following three being the most

useful for the developments in this paper.

1.1.1 The Jordan canonical form

Many problems involving a matrix A can be easily solved if the matrix is diagonal-

izable. But not every square matrix is diagonalizable over C or over R. However, using

similarity transformations any square matrix can be brought to a matrix that is ”almost

diagonal” in a certain sense. This almost diagonal matrix is known as the Jordan canonical

form and is important both theoretically and for practical applications.

Definition 1.1. The matrix

Jk(λk) =




λk 1 . . . 0

0 λk
. . .

. . . . . . 1

0 . . . 0 λk




∈Mn(C) (1.1)
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it is called Jordan block of dimension nk with eigenvalue λk. The scalar λk appears nk

times on the main diagonal and +1 appears (nk−1) times on the superdiagonal. All other

entries are 0.

Definition 1.2. A vector x different from zero is called generalized eigenvector of

rank k of A associated with eigenvalue λ if we have

(A− λIn)
kx = On and (A− λIn)

k−1x 6= On.

1.1.2 The definition of a matrix function using Jordan canonical

form

Definition 1.3. Let f be defined on a neighborhood of the spectrum of A ∈Mn(C). If A

has the Jordan canonical form J , then

f(A) = Xf(J)X−1 = Xdiag(f(Jk(λk)))X
−1 (1.2)

where

f(Jk) = f(Jk(λk)) =




f(λk) f ′(λk) . . . f (nk−1)(λk)
(nk−1)!

f(λk)
. . .

...
. . . f ′(λk)

f(λk)




(1.3)

The right member of the relation (1.2) is independent of the choice of X and J .

1.2 Polynomial matrix functions

Two important polynomials are associated with a quadratic matrix: the characteristic

polynomial and the minimal polynomial. These polynomials play a special role in solving

various matrix theory problems.

Definition 1.4. A polynomial ψ is called anulator polynomial of square matrix A ∈
Mn(C) if

ψ(A) = On. (1.4)

An anulator polynomial ψA which is monic and of minimum degree is called the minimal

polynomial of A.

The minimal polynomial is unique. From the Hamilton-Cayley theorem, the char-

acteristic polynomial pA is an anulator polynomial of A, but this is not generally the

minimal polynomial of A.

The following simple properties take place and we present them without proof.
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Lemma 1.1. Any anulator polynomial of a matrix is divisible by the minimal polynomial.

Lemma 1.2. The minimal polynomial of the Jordan block of order m with eigenvalue λ

is (t− λ)m.

Lemma 1.3. Let be A ∈ Mn(C) and λ1, λ2, . . . , λs the distinct eigenvalues of A. Then

the minimal polynomial of A is

ψ(λ) =
s∏

i=1

(λ− λi)
ni (1.5)

where ni is the size of the largest Jordan block in which λi appears.

Theorem 1.1. [28, p. 86, Theorem 2.4.2] Let A ∈ Mn(C) be a square matrix and

pA(λ) = det(λIn − A) its characteristic polynomial. Then pA(A) = On.

Any polynomial p with complex coefficients,

p(t) = a0 + a1t+ . . .+ am−1t
m−1 + amt

m, am 6= 0 (1.6)

determines a matrix polynomial by simply replacing t with A in (1.6)

p(A) = amA
m + am−1A

m−1 + . . .+ a0In (1.7)

More generally, for a function f defined on an open disk containing the spectrum of A,

we can define the matrix function f(A) by the following theorem.

Theorem 1.2. [22, p. 565, Theorem 11.2.3] If f is defined by

f(t) =
∞∑

i=0

ait
i

on an open disk containing σ(A), then

f(A) =
∞∑

i=0

aiA
i.

Definition 1.5. The values f (j)(λi), i = 1, . . . , s, j = 0, . . . , ni − 1 are called the values of

the function f and its derivatives on the spectrum of A. If these values exist we say that

f is defined on the spectrum of A.

We notice that the minimal polynomial ψA takes the value zero on the spectrum of A.

Theorem 1.3. [24, p. 5, Theorem 1.3] For polynomials p and q and A ∈Mn(C) we have

p(A) = q(A) if and only if p and q take the same values on the spectrum of A.
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1.2.1 Matrix functions defined using Hermite interpolation

Definition 1.6. Let f be defined on the spectrum of A ∈ Mn(C). Then f(A) = r(A),

where r is the Hermite interpolation polynomial that satisfies the interpolation conditions

r(j)(λi) = f (j)(λj), i = 1, . . . , s, j = 0, . . . , ni − 1,

where λ1, . . . , λs are the distinct eigenvalues of A with the multiplicities n1, . . . ns.

We observe that the polynomial r depends on A due to the values of the function f

on the spectrum of A.

We will now mention two important properties of the matrix functions discussed in

[35, p. 310, Theorem 1, Theorem 2].

Lemma 1.4. [35, p. 310, Theorem 2] If A,B,X ∈Mn(C), where B = XAX−1 and f is

defined on the spectrum of A, then

f(B) = Xf(A)X−1. (1.8)

Lemma 1.5. [35, p. 310, Theorem 1] If A ∈Mn(C) is a matrix in blocks on the diagonal

A = diag(A1, A2, . . . , As)

where A1, A2, . . . , As are square matrices, then

f(A) = diag(f(A1), f(A2), . . . , f(As)). (1.9)

1.3 Matrix functions defined using Cauchy’s integral

formula

The Cauchy’s integral formula is an elegant result of complex analysis that states that

under certain conditions, the value of a function can be determined using an integral.

Given a function f(z) we can determine the value f(a) through

f(a) =
1

2πi

∫

Γ

f(z)

z − a
dz, (1.10)

where Γ is a simple closed curve around a and f is analytic on and inside Γ. This formula

extends to the case of the matrices.

Definition 1.7. Let Ω ⊂ C be a domain and f : Ω → C a analytic function. Let A ∈
Mn(C) be diagonalizable so that all eigenvalues of A are in Ω. We define f(A) ∈ Mn(R)
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through

f(A) =
1

2πi

∫

Γ

f(z)(zIn − A)−1dz, (1.11)

where (zIn − A)−1 is the resolvente of A in z and Γ ⊂ Ω is a simple closed curve around

the spectrum σ(A), oriented in the opposite trigonometric direction.

Computation of the integrals in f(A) it is difficult to evaluate especially for n ≥ 3.

Theorem 1.4. [30, p. 427, Theorem 6.2.28] Let A ∈ Mn(C) be a diagonalizable matrix

and f an analytic function on a domain that contains the eigenvalues of A. Then

f(A) = Xf(Λ)X−1,

where A = XΛX−1, with Λ = diag(λ1, λ2, . . . , λn) and f is defined by the Cauchy’s integral

formula.

In conclusion the theorem above says that f(A) is similar to the matrix f(Λ).

1.4 Matrix functions defined as power series

The following result allows us to define f(A) if f has a development in power series.

Theorem 1.5. [22, p. 565, Theorem 11.2.3] If the function f is given by

f(z) =
∞∑

k=0

ckz
k

on an open disk containing the eigenvalues of A, then

f(A) =
∞∑

k=0

ckA
k.

1.5 The equivalence of definitions for the matrix

function

If A ∈ Mn(C) and f is an analytic function on a domain that contains the spectrum

of A, we saw that there are three ways to define the matrix f(A).

R.F. Rinehart [58] showed that the three definitions are equivalent.

Theorem 1.6. Let be A ∈ Mn(C). Let f be an analytical function defined on a domain

containing the spectrum of A. We denote by

1. fJ(A) the matrix f(A) obtained using the definition with the Jordan canonical form;

12



2. fH(A) the matrix f(A) obtained using the definition with the Hermite’s interpolation

polynomial;

3. fC(A) the matrix f(A) obtained using the definition with the Cauchy’s integral for-

mula.

Then

fJ(A) = fH(A) = fC(A). (1.12)

To prove this theorem we need some preliminary results. We will first consider the value

of f on a diagonal matrix.

Lemma 1.6. [30, p. 385] Let be A ∈ Mn(C) = diag(λ1, λ2, . . . , λn) and f an analytical

function defined on a domain containing the spectrum of A. Then

fC(A) = fH(A) = fJ(A) = diag(f(λ1), . . . , f(λn)). (1.13)

Then it is shown that the three definitions interact with the similarities in the same way.

Lemma 1.7. [30, p. 412, Theorem 6.2.9(c)] Let be A ∈ Mn(C) and f an analytical

function defined on a domain containing the spectrum of A. Then the following relations

holds

fJ(XAX
−1) = XfJ(A)X

−1 (1.14)

fH(XAX
−1) = XfH(A)X

−1 (1.15)

fC(XAX
−1) = XfC(A)X

−1 (1.16)

for any nonsingular matrix X ∈Mn(C).

We can generalize the idea to evaluate matrix functions using the relation

f(XAX−1) = Xf(A)X−1. Then it is proved that fJ(A) = fH(A) = fC(A) when A

it is diagonalizable [30, p. 407].

Lemma 1.8. [30, p. 408] Let be A ∈ Mn(C) and ǫ > 0. Then there is a matrix

Aǫ ∈Mn(C) such that

‖Aǫ − A‖ ≤ ǫ,

where Aǫ has distinct eigenvalues and is therefore diagonalizable.

The continuity properties of fH and fC are established, to show that fH(A) = fC(A)

in the nondiagonalizable case.

Lemma 1.9. [30, p. 396, Theorem 6.1.28] [30, p. 427, Theorem 6.2.28] Let be A ∈
Mn(C) and f an analytical function defined on a domain containing the spectrum of A.

Then the matrix functions fH and fC are continuous in A.
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1.6 The Schwerdtfeger formula and an extension

During recent years, there has been a considerably amount of research concerning the

functions of matrices as they provide solutions to systems of linear differential equations.

For example, the solution of y′ = Ay with y(0) = x is given by y(t) = exp(tA), where

exp(tA) is the exponential of the matrix tA defined in Section 1.4. Similary, we would like

to find explicit forms for cos(tA), sin(tA), and in general for f(tA). Schwerdtfeger proves

that for any holomorphic function f and for any matrix A ∈ Mn(C) the formula (1.17)

holds, where µ is the number of distinct eigenvalues λj of A, rj is the multiplicity of λj

and Aj are the Frobenious covariants of A. Here Γj is a smooth closed curve around the

complex number λj. In this section we use formula (1.17) to derive formula 1.19 and to

study some matrix functions.

We follow the results and the presentation of our paper [13].

The function f defined on the positive real numbers f : R+ → C, such that f is

integrable on [0, T ] for all T > 0, and there exist constants α ∈ R and M > 0 such that

|f(t)| ≤Meαt for t ≥ 0

is called exponentially bounded.

In 1961, Schwerdtfeger (see [29]) proved that for any holomorphic function f and for

any matrix A ∈Mn(C) the following formula holds

f(A) =

µ∑

j=1

Aj

rj−1∑

k=0

1

k!
f (k)(λj)(A− λjIn)

k, (1.17)

where µ is the number of distinct eigenvalues λj of A, rj is the multiplicity of λj and

Aj =
1

2πi

∫

Γj

(sIn − A)−1ds =
1

2πi

∫

Γj

L[etA](s)ds (1.18)

are the Frobenius covariants of A. Here Γj is a smooth closed curve around the complex

number λj and L denote the Laplace transform.

To compute the Frobenius covariants we use the Penrose generalized inverse matrix.

Theorem 1.7. (Penrose generalized inverse matrix) If A ∈ Mn(C), then there exists a

unique matrix X ∈Mn(C) that satisfies the following equations:

(i) AXA = A;

(ii) XAX = X;

(iii) (AX)∗ = AX;

(iv) (XA)∗ = XA,

where B∗ is the conjugate transpose of B.

The matrix X is said to be the generalized inverse of A, and it is denoted by A†.
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Theorem 1.8. (Penrose) If A ∈Mn(C) and λj ∈ σ(A), then

Aj = (Fλj
Eλj

)†,

where Eλj
= (In− (A−λjIn)rj)†(A−λjIn)rj and Fλj

= (In− (A−λjIn)rj)((A−λjIn)rj)†.

Now, we present the extended Schwerdtfeger formula which follows our paper [13].

Theorem 1.9. Let f : D ⊆ C → C be holomorphic, where D is an open and connected

set. If A ∈Mn(C) such that σ(A) ⊂ D and t ∈ R∗, then

f(tA) =

µ∑

j=1

Aj

rj−1∑

k=0

1

k!
f (k)(tλj)t

k(A− λjIn)
k, (1.19)

where µ denotes the number of different eigenvalues λj of A, rj is the multiplicity of λj,

and

Aj :=
1

2πi

∫

Γj

(sIn − A)−1ds =
1

2πi

∫

Γj

L[etA](s)ds (1.20)

are the Frobenius covariants of A. Here Γj is a closed smooth curve enclosing λj only.

Proof. Applying formula (1.17) for matrix tA we have

f(tA) =
n∑

j=1

(tA)j

rj−1∑

k=0

1

k!
f (k)(tλj)(tA− tλjIn)

k =

µ∑

j=1

Aj

rj−1∑

k=0

1

k!
f (k)(tλj)t

k(A− λjIn)
k,

where we have used the property σ(tA) = tσ(A) and Theorem 1.8.

1.6.1 The MATHEMATICA implementation

In the first code we have the MATHEMATICA implementation for the Frobenious

covariants of a given matrix A defined by formula (1.18) for a given λj ∈ σ(A).

The second code shows the MATHEMATICA implementation for the formula (1.19).

Notice that the line 21 can be adjusted to use different holomorphic functions.
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Chapter 2

Matrix Lie Groups. The Exponential

Map

This chapter is structured in five sections in which are presented results regarding

the matrix Lie groups, the exponential map and the surjectivity problem. In the first

section are highlighted known results regarding the exponential map for square matrices

with real or complex entries as well as the proofs of the main properties (Lemma 2.1,

Lemma 2.2, Lemma 2.3, Lemma 2.4, Lemma 2.5). Section 2.2 is dedicated to the general

linear real group GL(n,R). There are also presented the special linear group SL(n,R),

the orthogonal group O(n), the special orthogonal group SO(n), and their Lie algebras,

highlighting some properties of the exponential maps. In Section 2.3 it is defined the spe-

cial Euclidean group SE(n) of affine functions induced by the orthogonal transformations,

also called rigid motions, and the corresponding Lie algebra. In Section 2.4 are presented

the complex linear group GL(n,C) and its subgroup SL(n,C), group of units U(n) and

its subgroup SU(n) (Definition 2.2). The last section is deading to the surjectivity prob-

lem of the exponential map. Theorem 2.1, Theorem 2.2, and Theorem 2.3 illustrate the

problem of determining the image of the exponential map for the matrix Lie groups. In

Theorems 2.4, 2.6, 2.7 are presented and proved the results regarding the surjectivity of

the exponential map. Among the references used in the elaboration of this chapter we

mention D. Andrica and L. Mare [5], D. Andrica, R.-A. Rohan [6], H.L. Lai [34], L. Mare

[38], S. Mondal [42], M. Moskowitz, M. Wüstner [43], M. Nishikawa [44], [45], [46], [47],

[48], [49], S. Rădulescu, D. Andrica [57], M. Wüstner [65], [66], [67].

2.1 The exponential map

Given a matrix A = (aij) ∈Mn(K) where K = R or K = C, we define the exponential

map of A, denoted by eA, or exp A, as the matrix defined by the formal series

eA =
∞∑

p=0

1

p!
Ap,
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considering A0 = In. The following lemma shows that the series from the above definition

is absolutely convergent.

Lemma 2.1. For A = (aij) ∈ Mn(K) where K = R or K = C, we define the number

µ = max
{∣∣a(p)ij

∣∣ : 1 ≤ i, j ≤ n
}
, where Ap =

(
a
(p)
ij

)
. Then the following inequalities occur∣∣a(p)ij

∣∣ ≤ (nµ)p for any 1 ≤ i, j ≤ n. As a consequence, for any i, j, with 1 ≤ i, j ≤ n, the

series
∑∞

p=0

a
(p)
ij

p!
is absolutely convergent, and thus the exponential map of the matrix A is

well definied.

With a proof similar to that of Lema 2.1 we obtain the following result: If A ∈Mn(C),

the series
∑∞

p=0
tp

p!
Ap, where t ∈ R, converges evenly over any compact interval. Moreover,

the function t 7→ etA it is differentiable and the following relation occurs

d

dt
etA = AetA.

A fundamental property of the exponential map shows that if λ1, . . . , λn are the eigen-

values of the matrix A, then the eigenvalues of the exponential map eA are eλ1 , . . . , eλn .

In order to prove this property we need the folowing results.

Lemma 2.2. Let be A,U ∈ Mn(K) where K = R or K = C. Assume that the matrix U

is invertible. Then the following relation occur

eUAU−1

= UeAU−1.

Lemma 2.3. Given a matrix A ∈Mn(C), there exists an invertible matrix P and a upper

triangular matrix T such that

A = PT−1P.

Remark 2.1. If E is a Hermitian space, the proof of Lemma 2.3 can be easily adapted to

prove that there exists an orthonormal basis {u1, . . . , un} against which the matrix of the

map f is upper triangular. In other words, there exists a unitary matrix U and a upper

triangular matrix T such that A = UTU−1, result known as Schur’s Lemma. Using this

result we can get to the fact that if A is a Hermitian matrix, then there exists an unitary

matrix U and a diagonal matrix D with real entries such that A = UDU∗.

Lemma 2.4. Let be the square matrix A ∈ Mn(C). If λ1, . . . , λn are the eigenvalues of

A, then eλ1 , . . . , eλn are the eigenvalues of the matrix eA. More, if u is an eigenvector of

matrix A corresponding to λi, then u is an eigenvector of matrix eA of the eigenvalue eλi.

As an imediate consequence we show the relation holds

det(eA) = etr(A),
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where tr(A) is the trace of the matrix A, i.e. the sum a11 + · · ·+ ann of the entries on the

main diagonal, so the sum of the eigenvalues of A. Result that the matrix eA is always

invertible.

Lemma 2.5. For any matrix A,B ∈Mn(C) which commutes, i.e. AB = BA, we have

eA+B = eAeB. (2.1)

Using Lemma 2.4 and the fact that the matrices A s, i −A commutes, we have eAe−A =

eA+(−A) = e0n = In, which shows that the matrix inverse eA is e−A, i.e. we have the

relation

(eA)−1 = e−A. (2.2)

Remark 2.2. 1. We can prove the formula (2.2) noting that for any t ∈ R, we have

d

dt
(etAe−tA) = AetAe−tA + etA(−Ae−tA) = (A− A)etAe−tA = On,

so the function g(t) = etAe−tA is constant on R, and we have g(t) = g(0) = In. We

consider t = 1 in relation etAe−tA = In and we obtain the formula (2.2).

2. An alternative proof for Lemma 2.5 can be obtained as follows. For any t ∈ R, we

have

d

dt
et(A+B)e−tAe−tB = (A+ B)et(A+B)e−tAe−tB − et(A+B)Ae−tAe−tB

− et(A+B)e−tABe−tB = (A+ B − (A+B))et(A+B)e−tAe−tB = On,

because immediately result that if A and B commutes, then the matrices A, et(A+B) and

B, e−tA and B, et(A+B) commutes.

Results that the function h(t) = et(A+B)e−tAe−tB is constant on R, so h(t) = h(0) = In.

Thus, e−tAe−tB = (et(A+B))−1 = e−t(A+B) and for t = −1 we obtain the desired formula.

3. In the case in which the matrices A and B does not commute, the Baker-Cambell-

Hausdorff formula holds

eAeB = eA+B+ 1
2
[A,B]+ 1

12
[A,[A,B]]+ 1

12
[B,[B,A]]+...,

where [X, Y ] = XY − Y X is the matrix commutator X and Y .

2.2 The general linear real group GL(n,R)

The set of the invertible square matrices of order n, with real entries, forms a group un-

der multiplication, denoted byGL(n,R). The subset of matrices from the groupGL(n,R)

with the value of determinant equal to +1 is a subgroup ofGL(n,R), denoted by SL(n,R).

It is easy to verify that the set of orthogonal square matrices of order n, is a subgroup
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of GL(n,R), denoted by O(n). The subset of the group O(n) formed from matrices

which have the value of the determinant equal with +1 is a subgroup of O(n), denoted

by SO(n). The matrices from the group SO(n) are also called the rotation matrices. We

show that the set of square matrices of order n, with real entries and which have trace null

forms a vector space together with the classical operation of addition and multiplication

with scalars. The same can be shown immediately that the set of antisymmetric matrices

forms a vector space.

The group GL(n,R) is called the general linear real group and his subgroup SL(n,R)

is called the special linear group. The group O(n) of the orthogonal matrices is called

the orthogonal group and his subgroup SO(n) is called the special orthogonal group (or

the rotation group). The vector space of the square matrices, of dimension n, with real

entries and with null trace is denoted by sl(n,R) and the vector space of antisymmetric

square matrices, of dimension n is denoted by so(n).

For the notations sl(n,R) and so(n) we need some further explanation. The groups

GL(n,R), SL(n,R), O(n) and SO(n) are also topological groups, which means that there

are topological spaces (seen as subspaces of Rn2
), and the multiplication and the inverse

are continuous operations. This groups are Lie groups. The real vector spaces sl(n,R)

and so(n) are Lie algebras. The structure of Lie algebra is given by Lie bracket, which in

this case is the usual commutator of matrices defined by [A,B] = AB −BA.

In fact, the Lie algebra of a Lie group is the tangent space to the unit element of the

group seen as differentiable manifold, i.e. the space of all vectors tangents to the unit

element (in this case the identity matrix In). In a sense, the Lie algebra is a linearization

of the Lie group.

In general, let G be a Lie grup with corresponding Lie algebra g. It’s known that the

exponential map exp : g → G is defined by exp(X) = γX(1), where X ∈ g and γX is the

subgroup of G with a parameter corresponding to X. We recall the following properties

of the exponential map:

1) γx(t) = exp(tX), for any t ∈ R and any X ∈ g;

2) exp(sX) exp(tX) = exp(s+ t)X, for any s, t ∈ R and any X ∈ g;

3) exp(−tX) = (exp tX)−1, for any t ∈ R and any X ∈ g;

4) exp : g → G is a smooth application which is a local diffeomorphism in 0 ∈ g and

exp(0) = e, where e is the neutral element of the group G;

5) the image exp(g) of the exponential map generates the connected component Ge of

the unity e ∈ G;

6) if f : G1 → G2 is a morphism of Lie groups and f∗ : L(g1) → L(g2) is the morphism

of Lie algebras induced by f , then the following diagram is commutative
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g1
f∗

//

exp1

��

g2

exp2

��

G1
f

// G2

we have the relation f ◦ exp1 = exp2 ◦f∗.
The exponential map allows a parametrization of the Lie group elements with the

simpler objects of the Lie algebra. The exponential map on various Lie groups has multiple

applications in mechanics [1], image processing [18] and in describing other processes from

real world [19], [20].

The Lie algebra gl(n,R) of group GL(n,R) consists in the set of square matrices of

order n, with real elements. It can be easilly shown that the map exp : gl(n,R) →
GL(n,R) is defined by the formula exp(A) = eA. This is correctly defined because we

saw that we have det(eA) = etr(A) 6= 0. Moreover, from the property 6) from above,

results that the exponential maps exp : so(n) → SO(n), exp : sl(n,R) → SL(n,R) and

exp : o(n) → O(n) are restriction of exp : gl(n,R) → GL(n,R).

The map exp : o(n) → O(n) is correctly defined because from the property

exp tA = texpA, results that we have

t(expA) expA = (exp tA) expA = exp( tA+ A) = expOn = In,

i.e. expA is a rotation matrix if A is an antisymmetric matrix.

Furthermore, for the map exp : so(n) → SO(n) we have det expA = etr(A) = 1,

because the entries on the main diagonal of A are all zero, so tr(A) = 0.

For the exponential map exp : sl(n,R) → SL(n,R), obviously we have det expA =

etr(A) = 1, because again tr(A) = 0.

The references used in the presentation of matrix groups are A. Baker [10], M.L. Curtis

[15], F.R. Gantmacher [21].

2.3 The special Euclidean group SE(n)

In this section we present the group SE(n) of affine maps induced by orthogonal

transformations, also called rigid motions, and the corresponding Lie algebra. The groups

SE(2) and SE(3) plays a fundamental role in robotics, dynamics and in the process of

interpolation of movement.

First we recall the usual method of representing the affine maps of the space Rn in

terms given by square matrices of size n+ 1.

Definition 2.1. The set of affine maps ρ of the space Rn, defined by ρ(X) = RX + U,

where R is a rotation matrix, i.e. R ∈ SO(n) and U is a vector from Rn, forms a group

20



in relation to the composition operation, called the group of direct affine isometries

(or rigid movements) or the special Euclidean group. This is denoted by SE(n).

Each rigid motion can be represented by a square matrix of size n + 1 decomposed

into blocks like (
R U

0 1

)
,

we have (
ρ(X)

1

)
=

(
R U

0 1

)(
X

1

)
,

if and only if ρ(X) = RX + U.

The vector space of square matrices of order n+1, with real entries, decomposed into

blocks like

A =

(
Ω U

0 0

)
,

where Ω is an antisymmetric matrix and U is a vector in space Rn is denoted by se(n).

The group SE(n) is a Lie group, and its corresponding Lie algebra is se(n).

We will show that the exponential map exp : se(n) → SE(n) is correctly defined. First

we prove the following lemma.

Lemma 2.6. Given a square matrix of order n+ 1, defined in blocks like

A =

(
Ω U

0 0

)
,

where Ω is an antisymmetric matrix and U is a vector in space Rn, the following relation

holds

Ak =

(
Ωk Ωk−1U

0 0

)
, (2.3)

unde Ω0 = In.

As a consequence we have

expA =

(
expΩ V U

0 1

)
, (2.4)

where

V = In +
∞∑

k=1

1

(k + 1)!
Ωk =

∫ 1

0

exp tΩdt (2.5)

2.4 The groups GL(n,C), SL(n,C), U(n) and SU(n)

The set of square matrices, of the order n, with complex and invertible elements form

a group in relation to multiplication, denoted by GL(n,C). Its subset consists of those
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matrices whose determinant has value +1 is a subgroup ofGL(n,C), denoted by SL(n,C).

It is easy to verify that the subset of unitary matrices, i.e. those that verify the relation

A tĀ = In, where Ā is conjugated of the matrix A, forms a subgroup denoted by U(n).

The subset of the group U(n) which contains matrices with the value of the determinant

equal to +1 is a subgroup ofU(n), denoted by SU(n). We can verify that the set of square

matrices, of the order n, with complex entries that have zero trace form a real vector space

together with the addition and multiplication operation with real scalars. Similarly, we

have the same property for symmetric Hermitian matrices and for symmetric hermitian

matrices with zero trace.

Definition 2.2. The group GL(n,C) is called the general linear complex group and

his subgroup SL(n,C) is called the special linear complex group. The group of unitary

matrices U(n) is called the unitary group and his subgroup SU(n) is called the special

unitary group.

The real vector space of square matrices, of dimension n, with complex entries that

have zero trace is denoted by sl(n,C), the space of the antisymmetric Hermitian matrices

is denoted by u(n) and the real vector space defined by the intersection u(n) ∩ sl(n,C) is

denoted by su(n).

Remark 2.3. 1. As in the real case, the groups GL(n,C), SL(n,C), U(n) and SU(n)

are topological groups (seen as subspaces of R2n2
), in fact real smooth manifolds. They

possess a Lie group structure. The real vector spaces sl(n,C), u(n) and su(n) are Lie

algebras associated with groups SL(n,C), U(n) and SU(n). The structure of Lie algebra

is given by the Lie bracket, which is defined by the usual commutator of matrices

[A,B] = AB −BA.

2. It is also possible to define complex Lie groups, which means that they are topo-

logical groups and smooth complex manifolds. It is proved that the groups GL(n,C) and

SL(n,C) are complex manifolds while groups U(n) and SU(n) do not have this property.

The properties of the exponential map play an important role in the study of complex

Lie groups. As in the real case, the exponential maps for these groups are the restrictions

of the standard map exp : gl(n,C) → GL(n,C), discussed in Section 2.1, where gl(n,C) =

Mn(C).

Because we have det(expA) = etrA, results that the map exp : sl(n,C) → SL(n,C) is

correctly defined.

If A ∈ Mn(C), we note A∗ = tĀ. Let’s show now that the map exp : u(n) → U(n) is

correctly defined. From relation (expA)∗ = expA∗, if A ∈ u(n), we have

(expA)∗ = expA∗ = exp(−A),

we get (expA)∗(expA) = exp(−A) expA = exp(−A+ A) = In,
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so expA ∈ U(n).

It is obvious that the map exp : su(n) → SU(n) is well defined.

2.5 The surjectivity problem of the exponential map

From property 5) in Section 2.2 of exponential map of a Lie group it follows that the

following two problems are of particular importance.

Problem 1. Find the conditions for the Lie group G so that the exponential map is

surjective.

Problem 2. In the case in which is not surjective, determine the image E(G) =

exp(g).

J. Dixmier first posed the problem of determining the image of the exponential map

for solvable Lie groups that are simply connected. Only in a few special situations we

have G = E(G), and groups with this property are called exponential Lie groups. A

monograph dedicated to exponential Lie groups is [64]. Compact and connected Lie

groups are exponential [12]. Many of the rank 1 Lie groups that have a free center and

are simply connected have the same property [11], [25]. The problem is very complicated

in the case of semi-simple groups of rank ≥ 2 and in the case of mixed groups.

These issues are of special interest being studied by several authors, among whom we

mention N.J. Higham [23], K.H. Hofmann, A. Mukhergea [26], K.H. Hofmann, W.A.F.

Rupert [27], M. Wüstner [65], [66].

In this section we will discuss these problems for the matrix groups reviewed in the

previous sections.

2.5.1 The group GL(n,R), n ≥ 2, is not exponential

For X ∈ Mn(R) = gl(n,R) result that trX ∈ R and so det(exp(X)) > 0. Thus,

exp : gl(n,R) → GL+(n,R), where GL+(n,R) is the subgroup of GL(n,R) defined

by non-singular matrices with the strictly positive determinant. Therefore, we have the

inclusion exp(Mn(R)) ⊆ GL+(n,R). This is normal if we consider the property 4) of the

exponential map in general, mentioned in Section 2.2. So GL(n,R) is not exponential.

For n = 1 we have the identifications exp(M1(R)) = R and GL+(1,R) = (0,+∞), so

in this case exp : R → (0,+∞) is surjective.

The determination of the set E(GL(n,R)) is interesting if n ≥ 2.

The result that completely solves this problem was initially obtained by M. Nishikawa

in [44], starting from the paper [50], and reproved independent by D. Andrica and L.

Mare [5].

Theorem 2.1. We consider the matrix A ∈ GL+(n,R), n ≥ 2. Then A ∈ E(GL(n,R)) if

and only if the blocks corresponding to the negative eigenvalues of its Jordan decomposition

appear with even multiplicity.
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For example, for the matrix

A =

(
−1 0

0 −2

)
,

we have A ∈ GL+(2,R), but A /∈ E(GL(2,R)).

Another characterization for the set E(GL(n,R)) is contained in the following result

(see the papers [39] and [40]).

Theorem 2.2. We have A ∈ E(GL(n,R)) if and only if the equation X2 = A has

solutions in GL(n,R).

2.5.2 The group SL(n,R), n ≥ 2, is not exponential

The group SL(n,R) is connected, but is not compact. We will show that the expo-

nential map exp : sl(2,R) → SL(2,R) is not surjective. If

X =

(
a b

c −a

)
∈ sl(2,R),

then is observed that

X2 = (a2 + bc)I2 = − det(X)I2.

When a2 + bc = 0 we have Xp = O2 for any p ≥ 2, so

expX = I2 +X.

If a2 + bc < 0, let be ω > 0 such that ω2 = −(a2 + bc). Then

expX = (cosω)I2 +
sinω

ω
X.

If a2 + bc > 0, let be ω =
√
a2 + bc. Then

expX = (chω)I2 +
shω

ω
X.

This matrix function is not surjective. Indeed, we have tr(expX) = 2 cosω if a2+ bc < 0,

tr(expX) = 2chω if a2 + bc > 0 and tr(expX) = 2 if a2 + bc = 0.

Therefore, for any matrix with zero trace the following relation holds

tr(expX) ≥ −2,

so any matrix A with the determinant equal to 1 and whose trace has a value less than

−2 is not exponential of a matrix X with zero trace.

A result of the form of theorem 2.2 it also takes place for the group SL(n,R) (see
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[39]).

Theorem 2.3. We have A ∈ E(SL(n,R)) if and only if the equation X2 = A has

solutions in SL(n,R).

2.5.3 The group SO(n) is exponential

This property results from the fact that SO(n) is compact and connected (see [12],

[59]). We further present an elementary proof.

Theorem 2.4. The special orthogonal group SO(n) is exponential.

For any square antisymmetric matrix, of the order 3, with real entries

A =




0 −c b

c 0 −a
−b a 0


 ,

we consider the number θ =
√
a2 + b2 + c2 and the matrix

B =



a2 ab ac

ab b2 bc

ac bc c2


 .

Takes place the following result known as the Rodrigues formula(1840).

Theorem 2.5. With the above notations, the exponential map exp : so(3) → SO(3) is

given by

expA = (cos θ)I3 +
sin θ

θ
A+

(1− cos θ)

θ2
B.

Equivalently, we can write the formula in the form

expA = I3 +
sin θ

θ
A+

(1− cos θ)

θ2
A2,

if θ 6= 0.

The surjectivity of the exponential map on the group SO(n) is an important property

that implies the existence of a local inverse function, denoted by ln, ln : SO(n) → so(n)

which has interesting applications. In the paper of J.Gallier, D.Xu [19] is mentioned that

the functions exp and ln for the group SO(n) can be used in motion interpolation (see

M.-J. Kim, M.-S. Shin [32], [33] and F.C. Park, B. Ravani [51],[52]). Motion interpolation

and rational motions were also studied by B. Jüttler [36], [37]. Also, the surjectivity of

the exponential map of the group SO(n) gives us the possibility to describe the rotations

of Euclidean space Rn (see R.-A. Rohan [59]). The connection with non-commutative

differential geometry is given by the paper of L.I. Piscoran [53].
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2.5.4 The group SE(n), n ≥ 2, is exponential

Theorem 2.6. The exponential map exp : se(n) → SE(n) is surjective.

In the case n = 3, being given an antisymmetric matrix

Ω =




0 −c b

c 0 −a
−b a 0


 ,

let be θ =
√
a2 + b2 + c2. It is easy to show that if θ = 0, then

expA =

(
I3 U

0 1

)
.

If θ 6= 0, using that Ω3 = −θ2Ω, we obtain

expΩ = I3 +
sin θ

θ
Ω +

1− cos θ

θ2
Ω2

and

V = I3 +
1− cos θ

θ2
Ω +

θ − sin θ

θ3
Ω2.

2.5.5 The groups U(n) and SU(n) are exponential

Theorem 2.7. The exponential maps

exp : u(n) → U(n) and exp : su(n) → SU(n)

are surjective.

The following result shows that any positively defined Hermitian matrix A has the

form expB, where B it is a uniquely determined Hermitian matrix.

Theorem 2.8. For any Hermitian matrix B, the matrix expB is a positively defined

Hermitian matrix. For any positively defined Hermitian matrix A, there is a unique

Hermitian matrix determined by B so the relation A = expB holds.
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Chapter 3

Rodrigues Formulas for Matrix

Functions. Methods for

Determination of Rodrigues

Coefficients

This chapter is organized in six sections. The first section introduces the Rodrigues

problem for matrix functions and presents the Rodrigues coefficients. In Theorem 3.1 we

present, if the eigenvalues of the matrix are pairwise distinct, a direct method to determine

the general Rodrigues coefficients reducing the Rodrigues problem to the system (3.7).

Then, Theorem 3.2 gives explicit formulas in terms of fundamental symmetric polynomials

of the eigenvalues of the matrix. These formulas allow us to consider the degenerate cases

(that is the situations when the eigenvalues have multiplicities) and to obtain formulas

for the coefficients. Section 3.3 illustrates the particular cases n = 2, 3, 4 for which the

computation are effectively presented. In Section 3.4 are studied the possible degenerated

cases. Sections 3.5 and 3.6 are dedicated to the Hermite interpolation polynomial method

and to the special case of the exponential map for the special orthogonal group. The

special orthogonal group SO(n) has important applications in mechanics, its elements

being also called the rotation matrices. After presenting the classical cases n = 2, 3, the

Rodrigues formula is given in the cases n = 4 and n = 5, taking into account all possible

situations. The MATHEMATICA program was used to perform the computation. The

main reference used in this chapter is our paper D. Andrica, O.L. Chender (Broaina) [4].

Other references are D. Andrica, I.N. Casu [2], D. Andrica, R.-A. Rohan [7], T. Bröcker,

T. tom Dieck [12], C. Chevalley [14], O. Furdui [17], J. Gallier, D. Xu [19], S. Kida, E.

Trimandalawati, S. Ogawa [31], M.-J. Kim, M.-S. Kim, A. Shin [32], [33], B. Jütler [36],

[37], J.E. Marsden s, i T.S. Raţiu [41], F.C. Park, B. Ravani [51], [52], L.I. Piscoran [53],

V. Pop, O. Furdui [55], E.J. Putzer [56], R.-A. Rohan [59], F. Warner [62], R. Vein, P.

Dale [63], M. Wüstner [64].
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3.1 The Rodrigues problem for matrix functions

We saw that the exponential map exp : gl(n,R) = Mn(R) → GL(n,R) is defined by

(see C. Chevalley [14], J.E. Marsden and T.S. Raţiu [41], or F. Warner [62])

exp(X) =
∞∑

k=0

1

k!
Xk. (3.1)

According to the well-known Hamilton-Cayley theorem, it follows that every power

Xk, k ≥ n, is a linear combination of powers X0, X1,. . ., Xn−1, hence we can write

exp(X) =
n−1∑

k=0

ak(X)Xk, (3.2)

where the real coefficients a0(X), . . . , an−1(X) are uniquely defined and depend on the

matrix X. From this formula, it follows that exp(X) is a polynomial of X with coefficients

functions of X. The problem to find a formula for exp(X) is reduced to the problem to

determine the coefficients a0(X), . . . , an−1(X). We will call this general problem, the

Rodrigues problem, and the numbers a0(X), . . . , an−1(X) Rodrigues coeffiicients of the

exponential map with respect to the matrix X ∈Mn(R).

The origin of this problem is the classical Rodriques formula obtained in 1840 for the

special orthogonal group SO(3):

exp(X) = I3 +
sin θ

θ
X +

1− cos θ

θ2
X2,

where
√
2θ = ‖X‖ and we denoted by ‖X‖ Frobenius norm of the matrix X (see Theorem

2.5). From the many arguments pointing out the importance of this formula we mention

here the study of the rigid body rotation in R3, and the parametrization of the rotations

in R3.

The general idea of construction of such kind of matrix function is to consider an

analytic function f(z) = α0 + α1z + · · · + αmz
m + · · · , such that the induced series

f̃(X) = α0In + α1X + · · · + αmX
m + · · · are convergent in an open subset of Mn(R).

Then, via Hamilton-Cayley-Frobenius theorem we can write a reduced form for this matrix

f̃(X):

f̃(X) =
n−1∑

k=0

a
(f)
k (X)Xk. (3.3)

We call the above relation, the Rodrigues formula with respect to f̃ . The numbers

a
(f)
0 (X), . . . , a

(f)
n−1(X) are the Rodrigues coefficients of the map f̃ with respect to the matrix

X ∈Mn(R). Clearly, the real coefficients a
(f)
0 (X), . . . , a

(f)
n−1(X) are uniquely defined, they

depend on the matrix X, and f̃(X) is a polynomial of X.

An important property of the Rodrigues coefficients is the invariance under the matrix

conjugacy and we have:
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Proposition 3.1. For every invertible matrix U the following relations hold

a
(f)
k (UXU−1) = a

(f)
k (X), k = 0, . . . , n− 1. (3.4)

3.2 The trace method in determination of Rodrigues

coefficients

In this section we will present a new way to determine the general Rodrigues coefficients

a
(f)
0 (X), . . . , a

(f)
n−1(X) introduced in (3.3). Following the paper [7], our main idea consists in

the reduction of relation (3.3) to a linear system with the unknowns a
(f)
0 (X), . . . , a

(f)
n−1(X).

Concrete applications in obtaining the Rodrigues formula for the Lorentz group were given

in the paper [8].

In this respect we multiply both sides of (3.3) by the matrix power Xj , j = 0, . . . , n−1

and we obtain the matrix relations

Xj f̃(X) =
n−1∑

k=0

a
(f)
k Xk+j, j = 0, . . . , n− 1, (3.5)

where a
(f)
k = a

(f)
k (X), k = 0, . . . , n − 1. Now, considering the matrix trace in the both

sides of (3.5) we obtain the linear system

n−1∑

k=0

tr(Xk+j)a
(f)
k = tr(Xj f̃(X)), j = 0, . . . , n− 1, (3.6)

where the coefficients are functions of the matrix X. Now, assume that λ1, . . . , λn are the

eigenvalues of matrix X. Then, it is well-known that the matrix Xk+j has the eigenvalues

λk+j
1 , . . . , λk+j

n , and the matrix Xj f̃(X) has the eigenvalues λj1f(λ1), . . . , λ
j
nf(λn) (see

[29]).

Indeed, the function fj : C → C, fj(z) = zjf(z) is analytic, hence the eigenvalues of

the matrix fj(X) are fj(λ1), . . . , fj(λn) and we have fj(λs) = λjsf(λs), s = 1, . . . , n.

According to the considerations above, the system (3.6) is equivalent to

n−1∑

k=0

(
n∑

s=1

λk+j
s

)
a
(f)
k =

n∑

s=1

λjsf(λs), j = 0, . . . , n− 1. (3.7)

From the system (3.7) we obtain the following result concerning the solution to the general

Rodrigues problem with respect to the function f (see [4]).

Theorem 3.1. 1) The Rodrigues coefficients in formula (3.3) are solutions to the system

(3.7).

2) If the eigenvalues λ1, . . . , λn of the matrix X are pairwise distinct, then the Ro-

drigues coefficients a
(f)
0 (X), . . . , a

(f)
n−1(X) are perfectly determined by the system (3.7) and
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they are given by the formulas

a
(f)
k (X) =

V
(f)
n,k (λ1, . . . , λn)

Vn (λ1, . . . , λn)
, k = 0, . . . , n− 1, (3.8)

where Vn (λ1, . . . , λn) is the Vandermonde determinant of order n, and V
(f)
n,k (λ1, . . . , λn)

is the determinant of order n obtained from Vn (λ1, . . . , λn) by replacing the line k + 1 by

f(λ1), . . . , f(λn).

3) If the eigenvalues λ1, . . . , λn of the matrix X are pairwise distinct, then the Ro-

drigues coefficients a
(f)
0 (X), . . . , a

(f)
n−1(X) are linear combinations of f(λ1), . . . , f(λn) hav-

ing the coefficients rational functions of λ1, . . . , λn, i.e. we have

a
(f)
k (X) = b

(1)
k (X)f(λ1) + . . .+ b

(n)
k (X)f(λn), k = 0, . . . , n− 1, (3.9)

where b
(1)
k , . . . , b

(n)
k ∈ Q [λ1, . . . , λn].

Expanding the determinant V
(f)
n,k (λ1, . . . , λn) in Theorem 3.1 2) with respect to the

line k + 1 it follows

a
(f)
k (X) =

1

Vn

n∑

j=1

(−1)k+j+1LVn−1(λ1, . . . , λ̂j , . . . , λn)f(λj), (3.10)

where LVn−1(λ1, . . . , λ̂j, . . . , λn)f(λj) is the (k + 1) lacunary Vandermonde determinant

in the variables λ1, . . . , λ̂j, . . . , λn, i.e. the determinant obtained from Vn (λ1, . . . , λn) by

cutting out the row k + 1 and the column j. Applying the well-known formula (see the

reference [63])

LVn−1(λ1, . . . , λ̂j, . . . , λn) = sn−k−1(λ1, . . . , λ̂j, . . . , λn)Vn−1(λ1, . . . , λ̂j , . . . , λn),

where sl is the l-th symmetric polynomial in the n− 1 variabiles λ1, . . . , λ̂j , . . . , λn, where

λj is missing, we obtain the following result which completely solves the general problem

in the case when the eigenvalues λ1, . . . , λn of the matrix X are pairwise distinct.

Theorem 3.2. For every k = 0, . . . , n− 1, the following formulas hold

a
(f)
k (X) =

n∑

j=1

(−1)k+j+1Vn−1(λ1, . . . , λ̂j, . . . , λn)sn−k−1(λ1, . . . , λ̂j , . . . , λn)

Vn(λ1, . . . , λn)
f(λj), (3.11)

where sl denotes the l-th symmetric polynomial, and λ̂j means that in the Vandermonde

determinant Vn−1 the variable λj is omitted.
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3.3 The particular cases n = 2, 3, 4

Clearly, when X = On, we have f̃(X) = α0In, and in this situation a
(f)
0 (X) =

α0, a
(f)
1 (X) = · · · = a

(f)
n−1(X) = 0.

In this section we assume that the eigenvalues λ1, . . . , λn of the matrix X are pairwise

distinct. We follow the presentation from the paper [4].

3.3.1 The case n = 2

General Rodrigues formula

f̃(X) = (
λ2

λ2 − λ1
f(λ1)−

λ1
λ2 − λ1

f(λ2))I2 + (− 1

λ2 − λ1
f(λ1) +

1

λ2 − λ1
f(λ2))X. (3.12)

This formula appears [55, Theorem 4.7, page 194] and in paper [17].

3.3.2 The case n = 3

The corresponding general Rodrigues formula

f̃(X) = (
λ2λ3

(λ2 − λ1)(λ3 − λ1)
f(λ1)−

λ1λ3
(λ2 − λ1)(λ3 − λ2)

f(λ2)+
λ1λ2

(λ3 − λ1)(λ3 − λ2)
f(λ3))I3+

(− λ2 + λ3
(λ2 − λ1)(λ3 − λ1)

f(λ1) +
λ3 + λ1

(λ2 − λ1)(λ3 − λ2)
f(λ2)−

λ1 + λ2
(λ3 − λ1)(λ3 − λ2)

f(λ3))X+

(
1

(λ2 − λ1)(λ3 − λ1)
f(λ1)−

1

(λ2 − λ1)(λ3 − λ2)
f(λ2) +

1

(λ3 − λ1)(λ3 − λ2)
f(λ3))X

2.

3.3.3 The case n = 4

a
(f)
0 (X) =

λ2λ3λ4
(λ2 − λ1)(λ3 − λ1)(λ4 − λ1)

f(λ1)−
λ1λ3λ4

(λ2 − λ1)(λ3 − λ2)(λ4 − λ2)
f(λ2)+

λ1λ2λ4
(λ3 − λ1)(λ3 − λ2)(λ4 − λ3)

f(λ3)−
λ1λ2λ3

(λ4 − λ1)(λ4 − λ2)(λ4 − λ3)
f(λ4),

a
(f)
1 (X) = − λ2λ3 + λ2λ4 + λ3λ4

(λ2 − λ1)(λ3 − λ1)(λ4 − λ1)
f(λ1) +

λ1λ3 + λ1λ4 + λ3λ4
(λ2 − λ1)(λ3 − λ2)(λ4 − λ2)

f(λ2)−

λ1λ2 + λ1λ4 + λ2λ4
(λ3 − λ1)(λ3 − λ2)(λ4 − λ3)

f(λ3) +
λ1λ2 + λ1λ3 + λ2λ3

(λ4 − λ1)(λ4 − λ2)(λ4 − λ3)
f(λ4),
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a
(f)
2 (X) =

λ2 + λ3 + λ4
(λ2 − λ1)(λ3 − λ1)(λ4 − λ1)

f(λ1)−
λ1 + λ3 + λ4

(λ2 − λ1)(λ3 − λ2)(λ4 − λ2)
f(λ2)+

λ1 + λ2 + λ4
(λ3 − λ1)(λ3 − λ2)(λ4 − λ3)

f(λ3)−
λ1 + λ2 + λ3

(λ4 − λ1)(λ4 − λ2)(λ4 − λ3)
f(λ4),

a
(f)
3 (X) = − 1

(λ2 − λ1)(λ3 − λ1)(λ4 − λ1)
f(λ1) +

1

(λ2 − λ1)(λ3 − λ2)(λ4 − λ2)
f(λ2)−

1

(λ3 − λ1)(λ3 − λ2)(λ4 − λ3)
f(λ3) +

1

(λ4 − λ1)(λ4 − λ2)(λ4 − λ3)
f(λ4),

and the corresponding general Rodrigues formula but we do not write it here because of

the space reason.

3.4 The degenerate cases n = 2, 3, 4

In this section we show how to obtain the general Rodrigues coefficients when the

eigenvalues λ1, · · · , λn of the matrix X are not distinct, when n = 2, 3, 4. We follow the

presentation from the paper [4].

3.4.1 The case n = 2

Assume that λ1 = λ2. Then the corresponding general Rodrigues coefficients can be

obtained from the formulas in subsection 3.3.1 for λ2 → λ1. Using the formula of the

derivative of a functional determinant we get

a
(f)
0 (X) =

∣∣∣∣∣
f(λ1) f ′(λ1)

λ1 1

∣∣∣∣∣ = f(λ1)− λ1f
′(λ1)

a
(f)
1 (X) =

∣∣∣∣∣
1 0

f(λ1) f ′(λ1)

∣∣∣∣∣ = f ′(λ1).

This formula appear in [55, Theorem 4.8, page 194] and in paper [17].

3.4.2 The case n = 3

In this case we have to consider the folowing two possibilities, if we dont take into

account the permutations of the eigenvalues λ1, λ2, λ3.

The case λ1 = λ2 6= λ3

The corresponding general Rodrigues coefficients can be obtained from the formulas

in subsection 3.3.2 for λ2 → λ1. Using again the formula of the derivative of a functional
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determinant we get

a
(f)
0 (X) =

λ23 − 2λ1λ3
(λ3 − λ1)2

f(λ1)−
λ1λ3
λ3 − λ1

f ′(λ1) +
λ21

(λ3 − λ1)2
f(λ3)

a
(f)
1 (X) =

2λ1
(λ3 − λ1)2

f(λ1) +
λ23

(λ3 − λ1)2
f ′(λ1) +

2λ1
(λ3 − λ1)2

f(λ3)

a
(f)
2 (X) = − 1

(λ3 − λ1)2
f(λ1)−

1

λ3 − λ1
f ′(λ1) +

1

(λ3 − λ1)2
f(λ3).

The case λ1 = λ2 = λ3

We use the formulas obtained in 3.4.2 for λ3 → λ1, and we obtain

a
(f)
0 (X) = f(λ1)− λ1f

′(λ1) +
1

2
λ21f

′′(λ1), a
(f)
1 (X) = f ′(λ1)− λ1f

′′(λ1), a
(f)
2 (X) =

1

2
f ′′(λ1)

and the corresponding Rodrigues formula.

3.4.3 The case n = 4

In this case we have to consider the following four possibilities, without taking into

account the permutations of the eigenvalues λ1, λ2, λ3, λ4.

The case λ1 = λ2 6= λ3 6= λ4

The general Rodrigues coefficients can be obtained from the formulas in subsection

3.3.3 for λ2 → λ1 and using the formula of the derivative of a functional determinant. We

get

a
(f)
0 (X) =

λ3λ4(3λ
2
1 + λ3λ4 − 2λ1(λ3 + λ4))

(λ3 − λ1)2(λ4 − λ1)2
f(λ1)−

λ1λ3λ4
(λ3 − λ1)(λ4 − λ1)

f ′(λ1)

+
λ21λ4

(λ3 − λ1)2(λ4 − λ3)
f(λ3)−

λ21λ3
(λ4 − λ1)2(λ4 − λ3)

f(λ4),

a
(f)
1 (X) =

−λ1(3λ1(λ3 + λ4)− 2(λ23 + λ3λ4 + λ24))

(λ3 − λ1)2(λ4 − λ1)2
f(λ1) +

λ3λ4 + λ1(λ3 + λ4)

(λ3 − λ1)(λ4 − λ1)
f ′(λ1)

− λ1(λ1 + 2λ4)

(λ3 − λ1)2(λ4 − λ3)
f(λ3) +

λ1(λ1 + 2λ3)

(λ4 − λ1)2(λ4 − λ3)
f(λ4),

a
(f)
2 (X) =

3λ21 − λ23 − λ3λ4 − λ24
(λ3 − λ1)2(λ4 − λ1)2

f(λ1)−
(λ1 + λ3 + λ4)

(λ3 − λ1)(λ4 − λ1)
f ′(λ1)
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+
2λ1 + λ4

(λ3 − λ1)2(λ4 − λ3)
f(λ3)−

2λ1 + λ3
(λ4 − λ1)2(λ4 − λ3)

f(λ4),

a
(f)
3 (X) =

−2λ1 + λ3 + λ4
(λ3 − λ1)2(λ4 − λ1)2

f(λ1) +
1

(λ3 − λ1)(λ4 − λ1)
f ′(λ1)

− 1

(λ4 − λ3)(λ3 − λ1)2
f(λ3) +

1

(λ4 − λ3)(λ4 − λ1)2
f(λ4).

The case λ1 = λ2 = λ3 6= λ4

We use the formulas in the case 3.4.3 for λ3 → λ1, and obtain

a
(f)
0 (X) =

λ31 + (λ4 − λ1)
3

(λ4 − λ1)3
f(λ1)+

λ1λ4(2λ1 − λ4)

(λ4 − λ1)2
f ′(λ1)+

λ21λ4
2(λ4 − λ1)

f ′′(λ1)−
λ31

(λ4 − λ1)3
f(λ4),

a
(f)
1 (X) =

−3λ21
(λ4 − λ1)3

f(λ1)+
−2λ21 − 2λ1λ4 + λ24

(λ4 − λ1)2
f ′(λ1)−

λ1(λ1 + 2λ4)

2(λ4 − λ1)
f ′′(λ1)+

3λ21
(λ4 − λ1)3

f(λ4),

a
(f)
2 (X) =

3λ1
(λ4 − λ1)3

f(λ1) +
3λ1

(λ4 − λ1)2
f ′(λ1) +

2λ1 + λ4
2(λ4 − λ1)

f ′′(λ1)−
3λ1

(λ4 − λ1)3
f(λ4),

a
(f)
3 (X) ==

−1

(λ4 − λ1)3
f(λ1)−

1

(λ4 − λ1)2
f ′(λ1)−

1

2(λ4 − λ1)
f ′′(λ1) +

1

(λ4 − λ1)3
f(λ4).

The case λ1 = λ2 = λ3 = λ4

We use the formulas obtained in the previous case for λ4 → λ1, and we get

a
(f)
0 (X) = 2f(λ1)− 2λ1f

′(λ1) + λ21f
′′(λ1)−

λ31
3
f ′′′(λ1),

a
(f)
1 (X) = 2f ′(λ1)− 2λ1f

′′(λ1) + λ21f
′′′(λ1),

a
(f)
2 (X) = f ′′(λ1)− λ1f

′′′(λ1),

a
(f)
3 (X) =

1

3
f ′′′(λ1).

The case λ1 = λ2, λ3 = λ4 s
,
i λ2 6= λ4

The general Rodrigues coefficients can be obtained from the formulas in subsection

3.4.3 for λ4 → λ3. We obtain
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a
(f)
0 (X) =

λ23(−3λ1 + λ3)

(λ3 − λ1)3
f(λ1)−

λ1λ
2
3

(λ3 − λ1)2
f ′(λ1)−

λ21(λ1 − 3λ3)

(λ3 − λ1)3
f(λ3)−

λ21λ3
(λ3 − λ1)2

f ′(λ3),

a
(f)
1 (X) ==

6λ1λ3
(λ3 − λ1)3

f(λ1)+
λ3(2λ1 + λ3)

(λ3 − λ1)2
f ′(λ1)−

6λ1λ3
(λ3 − λ1)3

f(λ3)+
λ1(λ1 + 2λ3)

(λ3 − λ1)2
f ′(λ3),

a
(f)
2 (X) =

−3(λ1 + λ3)

(λ3 − λ1)3
f(λ1)−

λ1 + 2λ3
(λ3 − λ1)2

f ′(λ1) +
3(λ1 + λ3)

(λ3 − λ1)3
f(λ3)−

2λ1 + λ3
(λ3 − λ1)2

f ′(λ3),

a
(f)
3 (X) =

2

(λ3 − λ1)3
f(λ1) +

1

(λ3 − λ1)2
f ′(λ1)−

2

(λ3 − λ1)3
f(λ3) +

1

(λ3 − λ1)2
f ′(λ3).

3.5 The Hermite interpolating polynomial method

Assume that the function f is defined on spectrum of matrix X ∈Mn(C). Considering

Theorem 1.6 we have f̃(X) = r(X), where r is the Hermite interpolating polynomial that

satisfies the conditions

r(j)(λi) = f (j)(λi), i = 1, . . . , s, j = 0, . . . , ni − 1

where λ1, . . . , λs are distinct eigenvalues of X with multiplicities n1, . . . , ns and n1+ · · ·+
ns = n.

In this case the Rodrigues coefficients a
(f)
0 (X), . . . , a

(f)
n (X) of the map f̃ for the ma-

trix X are the coefficients of the Hermite polynomial defined by the above interpolation

conditions. This is defined by

r(t) =
s∑

i=1

[(
ni−1∑

j=0

1

j!
Φ

(j)
i (λi)(t− λi)

j

)
∏

j 6=i

(t− λj)
nj

]
(3.13)

where Φi(t) = f(t)/
∏
j 6=i

(t− λj)
nj .

If the eigenvalues of the matrix X are pairwise distinct, then the Hermite polynomial

r is reduced to Lagrange interpolating polynomial with conditions r(λi) = f(λi), i =

1, . . . , n,

r(t) =
n∑

i=1

f(λi)li(t), (3.14)

where li are the Lagrange fundamental polynomials defined by
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li(t) =
n∏

j=1
j 6=i

t− λj
λi − λj

, i = 1, . . . , n. (3.15)

3.5.1 The complexity of the Rodrigues problem

The determination of the algebraic form of the Hermite polynomial given by (3.13)

is a problem equivalent to the problem of determining the Rodrigues coefficients of the

map f̃ when the eigenvalues of the matrix X are known. How the effective determination

of the spectrum of the matrix X involves solving an algebraic equation of degree n, we

can say that the Rodrigues problem has greater complexity than the problem of explicitly

determining the coefficients of the Hermite polynomial for the general context. This is a

complicated problem if n and the multiplicities n1, . . . , ns are greater (see [31]).

On the other hand, the Frobenius covariants Xj are polynomials in X, so we have

Xj = pj(X), j = 1, . . . , µ. Developing (X − λjIn)
k in Schwerdtfeger formula (1.17) we

obtain
n−1∑

k=0

a
(f)
k (X)Xk =

µ∑

j=1

pj(X)

mj−1∑

k=0

1

k!
f (k)(λj)

k∑

s=0

(−1)sCs
kλ

s
jX

k−s.

Identifying the coefficient of Xk in this relation, we obtain the Rodrigues coefficients

a
(f)
k (X), for k = 0, . . . , n − 1. This approach provides another image of the complexity

of the Rodrigues problem by reducing it to the determination of the polynomials pj, j =

1, . . . , µ.

If the eigenvalues of the matrix X are pairwise distinct, the formulas (3.8) and (3.11)

give the explicit form for the coefficients of the Lagrange polynomial that satisfies the

above interpolation conditions.

We further illustrate this method for the degenerate case presented for n = 4 in

subsection 3.4.3 corresponding to the situation λ1 = λ2 6= λ3 6= λ4. The interpolation

conditions are r(λ1) = f(λ1), r
′(λ1) = f ′(λ1), r(λ3) = f(λ3), r(λ4) = f(λ4).

The Hermite’s interpolation polynomial is

r(t) =

{
f(λ1)

(λ3 − λ1)(λ4 − λ1)
+

[(
1

(λ3 − λ1)2(λ4 − λ1)
+

1

(λ3 − λ1)(λ4 − λ1)2

)
f(λ1)+

f ′(λ1)

(λ3 − λ1)(λ4 − λ1)

]
(t− λ1)

}
(t− λ3)(t− λ4)−

f(λ3)

(λ3 − λ1)2(λ4 − λ1)
(t− λ1)

2(t− λ4)

+
f(λ4)

(λ4 − λ1)2(λ4 − λ3)
(t− λ1)

2(t− λ3).

By calculating the coefficients of the polynomial r we find the formulas corresponding

to this case in the subsection 3.4.3.

36



3.5.2 Solving the Rodrigues problem for eigenvalues with dou-

ble multiplicity

In this subsection, we consider that the function f is defined on the spectrum of the

matrix X ∈ M2s(C) and distinct eigenvalues λ1, . . . , λs of X have double multiplicity,

that is, we have n1 = · · · = ns = 2. In this case the Hermite interpolation polynomial r

satisfies the conditions

r(λi) = f(λi), r
′(λi) = f ′(λi), i = 1, . . . , s

and the formula (3.13) becomes

r(t) =
s∑

i=1

[f(λi) (1− 2l′i(λi)(t− λi)) + f ′(λi)(t− λi)] l
2
i (t), (3.16)

where li are the fundamental Lagrange polynomials defined in (3.15).

We notice that the formula(3.16) it can be written in the form

r(t) =
s∑

i=1

(Ait+ Bi)ri(t), (3.17)

where

Ai =
1

s∏
j=1
j 6=i

(λi − λj)2
[f ′(λi)− 2f(λi)l

′
i(λi)] ,

Bi =
1

s∏
j=1
j 6=i

(λi − λj)2
[f(λi) (1 + 2λil

′
i(λi))− λif

′(λi)]

and ri is the polynomial
s∏

j=1
j 6=i

(t− λj)
2, i = 1, . . . , s.

On the other hand we have li(λi) = 1 and

l′i(t)

li(t)
=

s∑

j=1
j 6=i

1

t− λj
, i = 1, . . . , s,

so we get

l′i(t) =
s∑

j=1
j 6=i

1

λi − λj
, i = 1, . . . , s. (3.18)

To obtain the algebraic form of the polynomial ri notice that we can write
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ri(t) =
s∏

j=1
j 6=i

(t−λj)2 =
s∏

j=1
j 6=i

(t−λj)(t−λj) = t2s−2−σi,1t2s−1+σi,2t
2s−2−· · ·+σi,2s−2, (3.19)

where σi,k(λ1, . . . , λs) = sk(λ1, λ1, . . . , λ̂i, λ̂i, . . . , λs, λs) is the symmetric polynomial of

order k in 2s − 2 variable λ1, λ1, . . . , λ̂i, λ̂i, . . . , λs, λs, of which λi is missing, for all k =

1, . . . , 2s− 2.

Combining formulas (3.17) and (3.19) we obtain

r(t) =
s∑

i=1

(Ait+ Bi)(t
2s−2 − σi,1t

2s−1 + σi,2t
2s−2 − · · ·+ σi,2s−2)

=

(
s∑

i=1

Ai

)
t2s−1 +

s∑

i=1

(−Aiσi,1 + Bi)t
2s−2 + · · ·

+
s∑

i=1

(Aiσi,2 − Biσi,1)t
2s−3 + · · ·+

s∑

i=1

(Aiσi,2s−2 − Biσi,2s−3)t+

+
s∑

i=1

Biσi,2s−2.

Thus we obtain the following result which completely solves the Rodrigues general

problem if the eigenvalues λ1, . . . , λs are distinct and have double multiplicity.

Theorem 3.3. For any k = 0, 1, . . . , n− 1, we have

a
(f)
k (X) = (−1)k+1

s∑

i=1

1
s∏

j=1
j 6=i

(λi − λj)2






f

′(λi)− 2f(λi)
s∑

j=1
j 6=i

1

λi − λj


 σi,2s−k−1

−


f(λi)


1 + 2λi

s∑

j=1
j 6=i

1

λi − λj


− λif

′(λi)


 σi,2s−k−2





(3.20)

Corollary 3.1. If the eigenvalues λ1, . . . , λs of the matrix X ∈ Mn(C), n = 2s,

are pairwise distinct and have double multiplicity, than the Rodrigues coefficients

a
(f)
0 (X), . . . , a

(f)
n−1(X) are linear combinations of f(λ1), . . . , f(λs), f

′(λ1), . . . , f
′(λs) hav-

ing the coefficients rational functions of λ1, . . . , λs, that is, we have

a
(f)
k (X) = b

(1)
k (X)f(λ1) + · · ·+ b

(s)
k (X)f(λs) + c

(1)
k (X)f ′(λ1) + · · ·+ c

(s)
k f ′(λs),

where b
(1)
k , . . . , b

(s)
k , c

(1)
k , . . . , c

(s)
k ∈ Q[λ1, . . . , λs], k = 0, . . . , n− 1.
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Next we present the formulas (3.19) to determine the coefficient a
(f)
0 (X) in the case

n = 4 presented in subsection 3.4.3 for λ1 = λ3, λ2 = λ4 and λ1 6= λ2. In this situation we

have

σ1,1(λ1, λ2) = σ1(λ̂1, λ̂1, λ2, λ2) = 2λ2, σ1,2(λ1, λ2) = σ2(λ̂1, λ̂1, λ2, λ2) = λ22,

σ2,1(λ1, λ2) = σ1(λ1, λ1, λ̂2, λ̂2) = 2λ1, σ2,2(λ1, λ2) = σ2(λ1, λ1, λ̂2, λ̂2) = λ21.

Applying the formula(3.20) we find the coefficient a
(f)
0 (X) in the form

a
(f)
0 (X) =

1

(λ1 − λ2)2

[
f(λ1)

(
λ22 +

2λ1λ
2
2

λ1 − λ2

)
− λ1λ

2
2f

′(λ1)+

+ f(λ2)

(
λ21 +

2λ21λ2
λ2 − λ1

)
− λ21λ2f

′(λ2)

]
=

=
λ22(−3λ1 + λ2)

(λ2 − λ1)3
f(λ1)−

λ1λ
2
2

(λ2 − λ1)2
f ′(λ1)+

+
−λ21(λ1 − 3λ2)

(λ2 − λ1)3
f(λ2)−

λ21λ2
(λ2 − λ1)2

f ′(λ2).

3.5.3 The determinant formula for Rodrigues coefficients in the

case of eigenvalues with double multiplicity

The formulas (3.20) can be written in a compact and uniform form by using conve-

niently chosen determinants. The starting point is the formula (3.8) applicated for the

function f defined on the spectrum of the matrix X ∈ M2s(C) which we assume is ana-

lytical. We consider the distinct eigenvalues λ1, λ
′
1, λ2, λ

′
2, . . . , λs, λ

′
s of the matrix X and

we make successively λ′1 → λ1, λ
′
2 → λ2, . . . , λ

′
s → λs. Using the derivative formula of a

functional determinant and l’Hospital’s rule we obtain the following result.

Theorem 3.4. If the eigenvalues λ1, . . . , λs of the matrix X are pairwise distinct, then

the Rodrigues coefficients a
(f)
0 (X), . . . , a

(f)
n−1(X) are given by

a
(f)
k (X) =

1∏
1≤i<j≤s

(λj − λi)2
detU

(f,f ′)
n,k (λ1, . . . , λs) (3.21)

where U
(f,f ′)
n,k (λ1, . . . , λs) is the n× n matrix defined in n× 2 blocks

U
(f,f ′)
n,k (λ1, . . . , λs) =

([
U

(f,f ′)
k (λ1)

]
. . .
[
U

(f,f ′)
k (λs)

])
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and the block U
(f,f ′)
k is given by

U
(f,f ′)
k (λj) =




1 0

λj 1
...

...

f(λj) f ′(λj)
...

...

λn−1
j (n− 1)λn−2

j




, j = 1, . . . , s. (3.22)

The entries f(λj), f
′(λj) are found on the line k+1, and the entries situated on the second

column are obtained by derivation in relation to λj of the corresponding entries on the

first column.

To illustrate the formula (3.21), we consider n = 6, the analytical function f is defined

on the spectrum of the matrix X ∈ M6(C) with distinct eigenvalues each with double

multiplicity λ1, λ2, λ3. The blocks (3.22) defined by the 6 × 2 matrices which give the

Rodrigues coefficient a
(f)
1 (X) from formula (3.21) are

U
(f,f ′)
1 (λ1) =




1 0

f(λ1) f ′(λ1)

λ21 2λ1

λ31 3λ21

λ41 4λ31

λ51 5λ41




, U
(f,f ′)
1 (λ2) =




1 0

f(λ2) f ′(λ2)

λ22 2λ2

λ32 3λ22

λ42 4λ32

λ52 5λ42




, U
(f,f ′)
1 (λ3) =




1 0

f(λ3) f ′(λ3)

λ23 2λ3

λ33 3λ23

λ43 4λ33

λ53 5λ43




From formula (3.21) we obtain

a
(f)
1 (X) =

1

(λ2 − λ1)2(λ3 − λ1)2(λ3 − λ2)2
det
([
U

(f,f ′)
1 (λ1)

] [
U

(f,f ′)
1 (λ2)

] [
U

(f,f ′)
1 (λ3)

])
.

3.6 The exponential map of the special orthogonal

group SO(n)

We saw in Section 2.2 that the set of the real n × n orthogonal matrices forms a Lie

group under multiplication, denoted by O(n). The subset of O(n) consisting of those

matrices having the determinant equal to +1 is a subgroup, denoted by SO(n) and called

the special orthogonal group of the Euclidean space Rn. SO(n) is an important group used

in Mechanics (see the famous book of V.I.Arnold [9]) and in other research directions.

Due to geometric reasons, the matrices in SO(n) are also called rotation matrices.

The Lie algebra so(n) of SO(n) consists in all skewsymmetric matrices in Mn(R),

and the Lie bracket is the standard matrices commutator defined by [A,B] = AB −BA.

The exponential map exp : so(n) → SO(n) is defined by the restriction exp |so(n) of the
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exponential map exp : gl(n,R) → GL(n,R) (see Section 1.1).

In what follows we apply the results obtained in Sections 3.2−3.4 to get the Rodrigues

formulas for the exponential map on the special orthogonal group SO(n). The matrices

from the Lie algebra so(n) have two essential properties which simplify the computation

of the Rodrigues coefficients:

• If n is odd, then they are singular, i.e. they have one eigenvalue equal to 0 (possible

with a multiplicity);

• The non-zero eigenvalues are purely imaginary and, of course, conjugated.

Some particular cases have been studied in the papers [54] and [61].

3.6.1 The classical cases n = 2, 3

When n = 2, a skew-symmetric matrix X 6= O2 can be written as

X =

(
0 a

−a 0

)
, a ∈ R∗,

having the eigenvalues λ1 = ai, λ2 = −ai.
From the formulas derived in subsection 3.3.1 we immediately obtain

a0 =
λ2e

λ1 − λ1e
λ2

λ2 − λ1
=

1

2

(
eai + e−ai

)
= cos a,

a1 =
eλ1 − eλ2

λ1 − λ2
=
eai − e−ai

2ai
=

sin a

a
,

and then the corresponding Rodrigues formula is

exp(X) = (cos a)I2 +
sin a

a
X.

When n = 3, a real skew-symmetric matrix X is of the form

X =




0 −c b

c 0 −a
−b a 0


 ,

having the characteristic polynomial

pX(t) = t3 + (a2 + b2 + c2)t = t3 + θ2t,

where θ =
√
a2 + b2 + c2. The eigenvalues of X are λ1 = θi, λ2 = −θi, λ3 = 0. It is clear

that X = O3 if and only if θ = 00, hence it suffices to consider only the situation θ 6= 0.
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Because θ 6= 0, using the formulas obtained in subsection 3.3.1, it follows that

a0 = 1, a1 =
sin θ

θ
, a2 =

1− cos θ

θ2
,

giving the well-known classical formula due to Rodrigues

exp(X) = I3 +
sin θ

θ
X +

1− cos θ

θ2
X2.

also trated in the Section 2.3.

3.6.2 The case n = 4

The general form of a matrix X ∈ so(4) is

X =




0 a b c

−a 0 d e

−b −d 0 f

−c −e −f 0



,

and the corresponding characteristic polynomial is given by

pX(t) = t4 + (a2 + b2 + c2 + d2 + e2 + f 2)t2 + (af − be+ cd)2.

Let λ1,2 = ±αi, λ3,4 = ±βi be the eigenvalues of the matrix X, where α, β ∈ R. It is

clear that the real numbers α and β can be effectively determined in terms of a, b, c, d, e, f

by solving the equation pX(t) = 0.

We consider the following three cases

Case 1. If |α| 6= |β|, α, β ∈ R∗, then using the formulas in subsection 3.3.3, after

simple computations we obtain the Rodrigues coefficients

a0 =
β2 cosα− α2 cos β

β2 − α2
, a1 =

β3 sinα− α3 sin β

αβ(β2 − α2)
,

a2 =
cosα− cos β

β2 − α2
, a3 =

β sinα− α sin β

αβ(β2 − α2)
.

In this case it follows the corresponding Rodrigues formula in the form

exp(X) =
β2 cosα− α2 cos β

β2 − α2
I4 +

β3 sinα− α3 sin β

αβ(β2 − α2)
X (3.23)

+
cosα− cos β

β2 − α2
X2 +

β sinα− α sin β

αβ(β2 − α2)
X3.

This formula was obtained by D. Andrica s, i R.-A. Rohan [7] using Putzer’s method

(see [56]).

Case 2. If α 6= 0 and β = 0, then we will use the formulas in subsection 3.4.3 when
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λ1 6= λ2 6= λ3 = λ4, and obtain

a0 = 1, a1 = 1, a2 =
1− cosα

α2
, a3 =

α− sinα

α3
. (3.24)

Therefore, the corresponding Rodrigues formula to this case is

exp(X) = I4 +X +
1− cosα

α2
X2 +

α− sinα

α3
X3. (3.25)

Case 3. If α = β 6= 0, then we will use the formulas in subsection 3.4.3 for λ1 =

λ3, λ2 = λ4, λ1 6= λ2, and after simple computations we get

a0 =
α sinα + 2 cosα

2
, a1 =

3 sinα− α cosα

2α
, a2 =

sinα

2α
, a3 =

sinα− α cosα

2α3
, (3.26)

hence the Rodrigues formula is

exp(X) =
α sinα + 2 cosα

2
I4 +

3 sinα− α cosα

2α
X +

sinα

2α
X2 +

sinα− α cosα

2α3
X3.

(3.27)

Note that in the paper [7] the formulas (3.25), (3.26), (3.27) are derived by using

so-called Putzers method (see [56]).

3.6.3 The case n = 5

The approach of this case was not made in the paper [4] and we present in detail in

this subsection.

The general form of a matrix X ∈ so(5) is

X =




0 a b c d

−a 0 e f g

−b −e 0 h j

−c −f −h 0 k

−d −g −j −k 0



,

with the corresponding characteristic polynomial given by

pX(t) = det(tI5 −X) = t5 + (a2 + b2 + c2 + d2 + e2 + f 2 + g2 + h2 + j2 + k2)t3+

(c2e2 + d2e2 − 2bcef + b2f 2 + d2f 2 − 2bdeg − 2cdfg + b2g2 + c2g2 + 2aceh

− 2abfh+ a2h2 + d2h2 + g2h2 + 2adej − 2abgj − 2cdhj − 2fghj + a2j2 + c2j2

+ f 2j2 + 2adfk − 2acgk + 2bdhk + 2eghk − 2bcjk − 2efjk + a2k2 + b2k2 + e2k2)t

Let λ1,2 = ±αi, λ3,4 = ±βi, λ5 = 0 be the eigenvalues of the matrix X, where α, β ∈ R.

Solving the ecuation pX(t) = 0, we obtain α and β as functions of a, b, c, d, e, f, g, h, j, k.
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To determine the Rodrigues coefficients we consider the following three cases.

Case 1. If |α| 6= |β|, α, β ∈ R∗, then using formula (3.8) we have

V5(αi,−αi, βi,−βi, 0) = −4α3β3(β2 − α2)2

and we obtain

a0(X) =
V5,0(αi,−αi, βi,−βi, 0)
V5(αi,−αi, βi,−βi, 0)

=
4α3β3(β2 − α2)2

4α3β3(β2 − α2)2
= 1

a1(X) =
V5,1(αi,−αi, βi,−βi, 0)
V5(αi,−αi, βi,−βi, 0)

=
β3 sinα− α3 sin β

αβ(β2 − α2)

a2(X) =
V5,2(αi,−αi, βi,−βi, 0)
V5(αi,−αi, βi,−βi, 0)

=
β4 cosα− α4 cos β + α4 − β4

α2β2(β2 − α2)

a3(X) =
V5,3(αi,−αi, βi,−βi, 0)
V5(αi,−αi, βi,−βi, 0)

=
β sinα− α sin β

αβ(β2 − α2)

a4(X) =
V5,4(αi,−αi, βi,−βi, 0)
V5(αi,−αi, βi,−βi, 0)

=
β2 cosα− α2 cos β + α2 − β2

α2β2(β2 − α2)
.

The corresponding Rodrigues formula to this case is

exp(X) = I5 +
β3 sinα− α3 sin β

αβ(β2 − α2)
X +

β4 cosα− α4 cos β + α4 − β4

α2β2(β2 − α2)
X2

+
β sinα− α sin β

αβ(β2 − α2)
X3 +

β2 cosα− α2 cos β + α2 − β2

α2β2(β2 − α2)
X4.

Case 2. If α = β, α, β ∈ R∗, the eigenvalues of the matrix X are given by λ1 = λ3 =

αi, λ2 = λ4 = −αi, λ5 = 0. Therefore, we have double multiplicity for αi, αi,−αi,−αi
and simple for 0.

Consider the real numbers ǫ, ǫ′ such that αi, αi + ǫ,−αi,−αi + ǫ′, 0 are distinct. In

this situation we have

V5(αi, αi+ ǫ,−αi,−αi+ ǫ′, 0) = −2α3iǫ(2αi+ ǫ)(αi+ ǫ)ǫ′(2αi+ ǫ− ǫ′)(αi− ǫ′)(2αi− ǫ′)

Applying Theorem 3.1. 1) we get

a
(f)
k (Xǫ,ǫ′) =

V
(f)
5,k (αi, αi+ ǫ,−αi,−αi+ ǫ′, 0)

V5(αi, αi+ ǫ,−αi,−αi+ ǫ′, 0)

= −
V

(f)
5,k (αi, αi+ ǫ,−αi,−αi+ ǫ′, 0)

2α3i(2αi+ ǫ)(αi+ ǫ)ǫ′(2αi+ ǫ− ǫ′)(αi− ǫ′)(2αi− ǫ′)ǫ′
, k = 0, 1, 2, 3, 4

where f(z) = ez and Xǫ,ǫ′ is the matrix with distinct eigenvalues αi, αi+ǫ,−αi,−αi+ǫ′, 0.
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For ǫ→ 0, result

a
(f)
k (X0,ǫ′) =

det
([
U

(f,f ′)
k (αi)

] [
U

(f)
k (−αi)

] [
U

(f)
k (−αi+ ǫ′)

] [
U

(f)
k (0)

])

4α5i(2αi− ǫ′)(αi− ǫ′)(2αi− ǫ′)
, (3.28)

where U
(f,f ′)
k (z) is the 5× 2 block given by

U
(f,f ′)
k (z) =




1 0
...

...

ez ez

...
...

z4 4z3




obtained from formula (3.22), and U
(f)
k (z) is the 5× 1 block defined by

U
(f)
k (z) =




1
...

ez

...

z4




.

For ǫ′ → 0, we obtain

a
(f)
k (X0,0) =

1

16α8
det
([
U

(f,f ′)
k (αi)

] [
U

(f,f ′)
k (−αi)

] [
U

(f)
k (0)

])
, (3.29)

where X0,0 = X s, i k = 0, 1, 2, 3, 4.

By explicitly writing the formulas (3.29) we find

a0(X) = 1, a1(X) =
3 sinα− α cosα

2α
, a2(X) = −α sinα + 4 cosα

2α2
,

a3(X) =
sinα− α cosα

2α3
, a4(X) = −α sinα + 2 cosα

2α4
,

where the determinants were computed using MATHEMATICA.

The corresponding Rodrigues formula to this case is

exp(X) = I5 +
3 sinα− α cosα

2α
X − α sinα + 4 cosα

2α2
X2+

+
sinα− α cosα

2α3
X3 − α sinα + 2 cosα

2α4
X4.

Case 3. If β = 0 and α ∈ R∗, the eigenvalues of the matrix X are given by λ1 =

αi, λ2 = −αi, λ3 = λ4 = λ5 = 0.

Consider the distinct and nonzero real numbers ǫ, ǫ′. Then αi,−αi, 0, ǫ, ǫ′ are distinct
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and we have

V5(αi,−αi, 0, ǫ, ǫ′) = −2α3i(ǫ2 + α2)(ǫ′2 + α2)ǫǫ′(ǫ′ − ǫ).

Applying Theorem 3.1. 1), it follows

a
(f)
k (Xǫ,ǫ′) =

V
(f)
5,k (αi,−αi, 0, ǫ, ǫ′)
V5(αi,−αi, 0, ǫ, ǫ′)

(3.30)

= −
V

(f)
5,k (αi,−αi, 0, ǫ, ǫ′)

−2α3i(ǫ2 + α2)(ǫ′2 + α2)ǫǫ′(ǫ′ − ǫ)
, k = 0, 1, 2, 3, 4,

where f(z) = ez and Xǫ,ǫ′ is the matrix with distinct eigenvalues αi,−αi, 0, ǫ, ǫ′. For

ǫ→ 0, we obtain

a
(f)
k (X0,ǫ′) = −

det
([
U

(f)
k (αi)

] [
U

(f)
k (−αi)

] [
U

(f,f ′)
k (0)

] [
U

(f)
k (ǫ′)

])

2α5i(ǫ′2 + α2)(ǫ′)2
, (3.31)

where U
(f)
k (z) and U

(f,f ′)
k (z) are the 5 × 1 block and the 5 × 2 block defined in Case 2.

For ǫ′ → 0, from formula (3.31) it follows

a
(f)
k (X0,0) = −

det
([
U

(f)
k (αi)

] [
U

(f)
k (−αi)

] [
U

(f,f ′,f ′′)
k (0)

])

4α7i
, (3.32)

where U
(f,f ′,f ′′)
k (z) is the 5× 3 block given by

U
(f,f ′,f ′′)
k (z) =




1 0 0
...

...
...

ez ez ez

...
...

...

z4 4z3 12z2




where the second column is the derivative of the first column, and the third column is

the second derivative of the first column. Clearly, we have X0,0 = X, so the formulas

(3.32) give the Rodrigues coefficients in this case.

Writing the formulas explicitly (3.32) we find

a0(X) = 1, a1(X) = 0, a2(X) = 0,

a3(X) = −sinα

α3
, a4(X) =

cosα− 1

α4
.

The corresponding Rodrigues formula to this case is

exp(X) = I5 −
sinα

α3
X3 +

cosα− 1

α4
X4.
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Chapter 4

The Cayley Transform and the

Rodrigues Type Formulas

In this chapter we present in first section the Cayley transform of the group SO(n).

In Section 4.2 we define the Cayley transform type for the special Euclidean group SE(n)

in connection with the Cayley transform of SO(n). Section 4.3 is devoted to the general-

ization of this notion and some properties are presented. The Rodrigues formulas for the

Cayley transform are obtained in Section 4.4. For the group SO(n) these formulas are

given in the special cases n = 2, 3, 4. For the group SE(n) the cases n = 2 and n = 3 are

treated. The presentation follows our work [3]. Among the references used in this chapter

we mention R.-A. Rohan [60].

4.1 The classical Cayley transform of the group

SO(n)

As we have already mentioned in the previous section, the matrices of the SO(n)

group describe the rotations as movements in the space Rn. If the matrix A belongs to

the Lie Algebra so(n) of the Lie group SO(n), then the matrix In − A is invertible.

Indeed, the eigenvalues λ1, ..., λn of the matrix A are 0 or purely imaginary, so the

eigenvalues of the matrix In − A are 1− λ1, ..., 1− λn. They are clearly different from 0,

therefore we have det(In − A) = (1− λ1)...(1− λn) 6= 0, so In − A is invertible.

The map Cay : so(n) → SO(n), defined by

Cay(A) = (In +A)(In − A)−1

is called the Cayley transform of the group SO(n).

Denote by
∑

the subset of the group SO(n) containing the matrices with eigenvalue

−1. Clearly, we have R ∈∑ if and only if the matrix In +R is singular.

Theorem 4.1. The map Cay : so(n) → SO(n) \ Σ is bijective and its inverse is Cay−1 :

SO(n) \∑→ so(n), where Cay−1(R) = (R + In)
−1(R− In).
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4.2 The Cayley transform of the special Euclidean

group SE(n)

In this section we will define the Cayley transform for the special Euclidean group

SE(n). By analogy with the special orthogonal group SO(n), we define the map Cayn+1 :

se(n) → SE(n), where

Cayn+1(S) = (In+1 + S)(In+1 − S)−1

we will call this map the Cayley transform of the group SE(n).

The connection between the maps Cay : so(n) → SO(n) s, i Cayn+1 : se(n) → SE(n)

is given by formula

Cayn+1(S) =

(
Cay(A) (R + In)u

0 1

)
.

4.3 The generalized Cayley transform

We say that the matrix A ∈ M(n,K) is orthogonal if AA∗ = id, where A∗ = Āt is

the transpose conjugate, and K = R,C or H, where H is the quaternion algebra. Thus

a matrix can be identified with an K liniar map Kn → Kn which invariates the product

〈v, w〉 = v∗w. Denote by O(n,K) the Lie group of orthogonal matrices. Depending on

K this group corresponds to orthogonal group O(n), group of units U(n) or symplectic

group Sp(n), as the K = R,C, and H.

Let A ∈ O(n,K) be an orthogonal matrix, where K is R, C or H.

Definition 4.1. Denote by Ω(A) ⊂M(n,K) the open set of matrices X with the property

that A+X is invertible. The Cayley map centered in A is the function

cA : Ω(A) → Ω(A∗)

given by

cA(X) = (I − A∗X)(A+X)−1.

The classical Cayley map correspond with A = In. As we will see in the next propo-

sition, the map cA is well defined and is invertible with c−1
A = cA∗ .

Proposition 4.1. For X ∈ Ω(A) the following properties holds:

1. cA(X) = (A+X)−1(I −XA∗);

2. the matrix inverse A∗ + cA(X) is 1
2
(A+X);
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3. cA(X) ∈ Ω(A∗);

4. cA is a diffeomorphism with c−1
A = cA∗.

We will also need the following interesting property, which is easy to prove.

Proposition 4.2. For X ∈ Ω(A) the properties holds:

1. X∗ ∈ Ω(A∗) s, i cA∗(X∗) = cA(X)∗;

2. for any matrix U ∈ O(n,K) we have UXU∗ ∈ Ω(UAU∗) and

cUAU∗(UXU∗) = UcA(X)U∗;

3. if the matrix X is invertible, then X−1 ∈ Ω(A∗) because

(A∗ +X−1)−1 = A(A+X)−1X.

Moreover, we have cA∗(X−1) = −AcA(X)A.

4.4 Rodrigues type formulas for the Cayley trans-

form

4.4.1 Computations for the group SO(n) in small dimension

The formulas obtained in this subsection are taken from our paper [3]. Obviously the

Cayley transform is obtained from the analytical function

f(z) =
1 + z

1− z
= 1 + 2z + 2z2 + · · · , |z| < 1,

so we can apply the results from the Sections 3.2-3.4. Because the inverse of the matrix

In − A can be written in the form

(In − A)−1 = In + A+ A2 + ...

for a sufficiently small neighborhood of On, from the Hamilton-Cayley theorem it follows

that the Cayley transform of A can be written in the polynomial form

Cay(A) = b0(A)In + b1(A)A+ ...+ bn−1(A)A
n−1 (4.1)

where the coefficients b0, ..., bn−1 are uniquely determined and depend on the matrix A.

We will call these numbers, as in the general case, the Rodrigues coefficients of A with

respect to the Cayley transform.

The cases n = 2, 3
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We will continue by the presentation of the particular cases n = 2 and n = 3. We

saw that, in general, for A = On, we have Cay(A) = In, so b0(On) = 1, b1(On) = ... =

bn−1(On) = 0.

In the case n = 2, we consider the antisymmetric matrix A 6= O2, where

A =

(
0 a

−a 0

)
, a ∈ R∗,

with eigenvalues λ1 = ai, λ2 = −ai. From the formulas derived in subsection 3.3.1 we

obtain

b0 =
1− a2

1 + a2
s, i b1 =

1

1 + a2
,

thus, the Rodrigues type formula for the Cayley transform is

Cay(A) =
1− a2

1 + a2
I2 +

2

1 + a2
A. (4.2)

For n = 3 any real antisymmetric matrix X is of the form

A =




0 −c b

c 0 −a
−b a 0


 ,

with the characteristic polynomial pA(t) = t3 + θ2t, unde θ =
√
a2 + b2 + c2. The eigen-

values of the matrix A are λ1 = θi, λ2 = −θi, λ3 = 0. We have A = O3 if and only if

θ = 0, so it is enough to consider only the situation in which θ 6= 0. Using the formulas

obtained in subsection 3.3.2, it follows

b0 = 1, b1 =
2

1 + θ2
, b2 =

2

1 + θ2
.

and the Rodrigues type formula for the Cayley transform of the group SO(3) este

Cay(A) = I3 +
2

1 + θ2
A+

2

1 + θ2
A2. (4.3)

Formula (4.3) offers the possibility to obtain another form for the inverse of Cayley

transform. Indeed, let be R ∈ SO(3) such that

R = I3 +
2

1 + θ2
A+

2

1 + θ2
A2,

where A A is an antisymmetric matrix. Considering the matrix transpose in both sides

of the above relation and taking into account that tA = −A, we obtain

R−t R =
4

1 + θ2
A. (4.4)

On the other hand, we have
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tr(R) = 3− 4θ2

1 + θ2
= −1 +

4

1 + θ2
,

and by replacing in the relation (4.4), we get the formula

Cay−1(R) =
1

1 + tr(R)
(R−t R). (4.5)

Formula (4.5) makes sense for rotations R ∈ SO(3) for which 1 + tr(R) 6= 0. If R

is a rotation of angle α, then we have tr(R) = 1 + 2 cosα, so the application Cay−1 is

not defined for the rotations of angle α = ±π. Because in the domain where is defined,

the application Cay is bijective, it follows that the antisymmetric matrices from so(3)

can be used as coordinates for rotations. Considering the Lie algebra isomorphism “̂ ”

between (R3,×) and (so(3), [·, ·]), where ” × ” denote the vector product, defined by

v ∈ R3 → v̂ ∈ so(3), where v is considered a column

v =



x1

x2

x3




and v̂ is defined by

v̂ =




0 −x3 x2

x3 0 −x1
−x2 x1 0


 ,

by composing the applications

R3 ̂−→ so(3)
Cay−−→ SO(3)

we get a vectorial parameterization of rotations from SO(3). This is very useful in solving

mechanical problems.

The case n = 4

As in subsection 3.6.2, for a skew-symmetric matrix A ∈ so(4), let λ1,2 = ±αi, λ3,4 =
±βi be the eigenvalues of the matrix A, where α, β ∈ R. We consider the following three

situations.

1. If |α| 6= |β|, α, β ∈ R∗, then using the formulas in subsection 3.3.3, we obtain

b0 =
1 + α2 + β2 − α2β2

(1 + α2)(1 + β2)
, b1 =

2(1 + α2 + β2)

(1 + α2)(1 + β2)

b2 =
2

(1 + α2)(1 + β2)
, b3 =

2

(1 + α2)(1 + β2)
,

and the corresponding Rodrigues formula
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Cay(A) =
1 + α2 + β2 − α2β2

(1 + α2)(1 + β2)
I4 +

2(1 + α2 + β2)

(1 + α2)(1 + β2)
A+

2

(1 + α2)(1 + β2)
A2 +

2

(1 + α2)(1 + β2)
A3.

2. If α 6= 0 and β = 0, then we will use the formulas in subsection 3.4.3 when

λ1 6= λ2 6= λ3 = λ4, and we obtain

b0 = 1, b1 = 2, b2 =
2

1 + α2
, b3 =

2

1 + α2
.

The Rodrigues formula in this case is

Cay(A) = I4 + 2A+
2

(1 + α2)
A2 +

2

(1 + α2)
A3.

3. If α = β 6= 0, then we will use the formulas in subsection 3.4.3 for λ1 = λ3, λ2 =

λ4, λ1 6= λ2, and after simple computations we get

b0 =
1 + 2α2 − α4

(1 + α2)2
, b1 =

2(2α2 + 1)

(1 + α2)2
, b2 =

2

(1 + α2)2
, b3 =

2

(1 + α2)2
,

and the corresponding Rodrigues formula

Cay(A) =
1 + 2α2 − α4

(1 + α2)2
I4 +

2(2α2 + 1)

(1 + α2)2
A+

2

(1 + α2)2
A2 +

2

(1 + α2)2
A3.

4.4.2 Computations for the group SE(n) in small dimension

As for the classical map Cay : so(n) → SO(n), we can obtain the effective Rodrigues

formulas for the map Cayn+1 : se(n) → SE(n), for small values of n. Using the observation

in section 5.1 of the paper R.-A. Rohan [60], we obtain this for a matrix S ∈ se(n) defined

in blocks as above. Its characteristic polynomial pS satisfies the relation pS(t) = tpA(t).

The Rodrigues formula for the map Cayn+1 : se(n) → SE(n) has the form

Cayn+1(S) = c0In+1 + c1S + . . .+ cnS
n,

where the coefficients c0, c1, . . . , cn depend on the matrix A.

For n = 2, we consider the antisimetric matrix A 6= O2, where

A =

(
0 a

−a 0

)
, a ∈ R∗.

Using the above observation, it follows that the matrix S ∈ se(2) has the eigenvalues

λ1 = ai, λ2 = −ai, λ3 = 0, and the corresponding Rodrigues formula has the form

Cay3(S) = c0I3 + c1S + c2S
2.
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We obtained a result analogous to that in the Theorem 3.1, which is reduced to the system





S0c0 + S1c1 + S2c2 = 1 + 1+λ1

1−λ1
+ 1+λ2

1−λ2

S1c0 + S2c1 + S3c2 = 1 + 1+λ1

1−λ1
+ 1+λ2

1−λ2

S2c0 + S3c1 + S4c2 = λ21
1+λ1

1−λ1
+ λ22

1+λ2

1−λ2

which has the solution

c0 = 1, c1 =
1

1 + a2
, c2 =

1

1 + a2

So the Rodrigues formula for the map Cay3 is

Cay3 = I3 +
1

1 + a2
S +

1

1 + a2
S2. (4.6)

For n = 3, we consider the antisimetric matrix

A =




0 −c b

c 0 −a
−b a 0


 ,

with the characteristic polynomial pA(t) = t3+ θ2t, where θ =
√
a2 + b2 + c2. The matrix

S ∈ se(3) has the characteristic polynomial pS(t) = tpA(t) = t4 + θ2t2, with eigenvalues

λ1 = θi, λ2 = −θi, λ3 = 0, λ4 = 0. The Rodrigues formula has the form

Cay4(S) = c0I4 + c1S + c2S
2 + ccS

3.

After a similar computation, we obtain the formula

Cay4(S) = I3 + 2S +
2

1 + θ2
S2 +

2

1 + θ2
S3. (4.7)

As for the Cayley transform of the group SO(n), denote by Σn+1 the set of matrices from

SE(n) which have the eigenvalue −1. Obviously, we have M ∈ SE(n) if and only if the

matrix In+1 +M is singular. A proof similar to that of Theorem 3.1 leads us to

Theorem 4.2. The map Cayn+1 : se(n) → SE(n) \ Σn+1 is bijective and its inverse is

given by

Cayn+1(M) =

(
Cay−1M (R + In)

−1t

0 0

)

where the matrix M is defined in blocks by

S =

(
R t

0 1

)
.
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[66] M. Wüstner, On the surjectivity of the exponential function of solvable Lie groups,

Math. Nachr. 192, 1998, 255-266.
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