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1. Introduction 
 

 

 

In today’s digital world, we are witnessing an exponential growth of Internet of Things (IoT) data 

which is generated with fast rate in smart environments. The growth of IoT data is caused by the 

large-scale IoT adoption, as the number of devices connected to the Internet, including sensors and 

machines, continues to grow at a steady pace. IoT data statistics provided by research organizations 

such as Cisco - which is the worldwide leader in IT, networking, and cybersecurity solutions - 

show that 5 quintillion bytes of data are produced every day (Stack, 2018). Moreover, the dramatic 

acceleration of IoT generated data is also anticipated by Cisco which projects that 500 billion of 

IoT devices are expected to be connected to the Internet by 2030 (Cisco, 2018). 

Despite the fact that the IoT domain is considered being a hot research topic, the complexity 

of this domain raise significant challenges that could forbid achieving its potential benefits. A 

recent survey (Noura, Atiquzzaman and Gaedke, 2019) on state-of-the-art solutions to facilitate 

IoT interoperability, shows that even though researchers have proposed numerous approaches and 

technologies to overcome IoT interoperability issues, research challenges still remain. The 

surveyed IoT solutions are focusing less on semantic interoperability. Moreover, the most popular 

IoT solutions do not consider the edge computing paradigm for speeding up and enhancing the 

efficiency of data analysis. 

Large sets of complex data, known as Big Data, need to be processed, stored and presented 

into an efficient form with minimum time lag. If in the beginning, the Big Data ecosystem was just 

a collection of tools and techniques that were meant to manage large volumes of data, nowadays, 

the velocity property of IoT data must be also considered, by developing Big Data analytics 

solutions that are capable to collect and process streaming data in real-time. These solutions 

enhance the decision-making processes, bringing competitive advantages to businesses leaders. 

However, developing such solutions need to take into consideration the stream’s characteristics 

that make the harvesting of data a challenging task. The heterogeneous nature of data originating 

from various sources leads to interoperability problems between IoT applications.  

Integrating data from different sources using domain specific knowledge enables applications 

to better understand the environment where the data was generated. In this way, domain experts 
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or business leaders can take correct decisions, efficiently. Understanding the data context, 

potentially enables applications to take real-time decisions. The Semantic Web (SW) community 

channels its efforts to build models and techniques that transform data streams coming from 

various IoT devices (e.g. sensors) into machine-understandable descriptions. By means of 

semantic annotation, the sensor data are enriched with additional information and turned into 

machine-processable and machine-understandable descriptions that are easy to interpret, integrate 

and reuse by computers. The annotated sensor streams can be persisted into a triplestore for further 

inference using the SPARQL query language. 

The main objective of our research will be to build a system that is capable to collect, process, 

store and present IoT large-scale data in an efficient and easily interpretable form. A stream data 

processing pipeline covers all aspects of an integral data processing chain, from the moment when 

a newly data was generated up to the moment when the data is prepared for final consumption. 

Moving raw data from the real-time sources to a target data store for further analysis and 

visualization must be achieved in a reliable and scalable way. In retrospect, this research aims to 

design a scalable, high-throughput, low-latency data pipeline which includes sensor data 

collection, semantic annotation of sensor data, data storage and query processing. 

To achieve the research aim, this research follows the Design Science Research (DSR) 

paradigm because this research paradigm is considered appropriate when research aims to develop 

solutions for the needs of the ’business’ and its environment in the field of Information Systems 

(IS). The design problem is to overcome the semantic IoT interoperability issue by delivering a 

novel data pipeline that fulfills the low-latency requirement in order to provide timely and valuable 

insights from the underlying data to decision makers.  

In order to fulfill the thesis aim, we address the following research questions: 

1. How a low-latency stream processing pipeline can be devised in order to sustain the 

semantic enrichment of the large-scale sensor data generated in a smart environment?  

2. Can we identify the proper place in a data pipeline where to execute the semantic sensor 

data annotation for faster data analysis?  

3. How a semantic edge environment can be designed and managed to support real-time 

data processing and workflow execution of sensor data?  
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Given the above-described research questions, we pursued to study the following: 

1. To identify requirements and gaps in the field of semantic processing of stream data. 

2. To achieve semantic interoperability with IS that rely on the annotated streams. 

3. To evaluate the performance of the proposed pipeline through real-world use cases from 

the IoT domain.  

4. To propose possible future work and enhancements that are meaningful to continue 

improving the proposed pipeline.  

The present thesis enlarges the state-of-the-art with respect to the topic of semantic stream 

processing with the following contributions: 

1. Provides a literature review on semantic stream processing highlighting the scientific 

efforts that were made at the intersection of IoT stream processing and semantic 

technology.  

2. Extends the Semantic Sensor Network (SSN) ontology identified in the literature with 

additional classes and properties, in which some are scenario-independent and other are 

targeting specific use cases, to create a hierarchy of sensor, observation, feature-of-

interest and platform classes, as well as relationships between sensors and their critical 

observations, between sensors and their features-of-interest, and between different 

features-of-interest. 

1. Designs an architecture of the proposed artifact and the main components of the 

architecture include sensor data collection, semantic annotation, data storage and query 

processing.  

2. Develops a Proof of Concept (PoC) for the proposed architecture demonstrating that the 

semantic edge processing of sensor streams can be achieved in the development phase of 

the DSR process iteration. 

3. Validates the implemented prototypes according to the Design Science principles using 

two different business scenarios. 

The content of the thesis is organized as follows: 

Chapter 2 presents the stream processing concepts with their application in the IoT domain. 

We explain the meaning of a stream and its essential characteristics, then we describe the stream 

processing paradigm and the existing stream processing architectures devised for real-time 
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processing systems. This chapter also provides the list of IoT protocols and standards, as well as 

the general architecture of a Big Data processing pipeline. 

Chapter 3 provides the theoretical aspects regarding the SW standards and models for semantic 

annotation, focusing more on the concepts provided by the SSN ontology. 

In Chapter 4 we provide a structured literature review which highlights the adopted approaches 

and the proposed solutions in building a semantic stream processing system. 

In Chapter 5 we describe the adopted methodology, the proposed solution, the performance 

metrics taken into consideration when validating our solution, and the proposed extensions of the 

SSN ontology. 

In Chapter 6 we present the design decisions of a smart airport and a smart factory, and discuss 

the experimental results obtained when evaluating the performance of the proposed semantic 

stream processing pipeline. 

Chapter 7 comprises the conclusions of our research effort and includes possible future work 

and enhancements. 
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2. Stream Processing in IoT 
 

 

 

This section presents the theoretical foundation regarding the stream processing paradigm. We will 

use the concepts defined here to build a semantic stream processing pipeline architecture in 

Chapter 5. It is important to choose the right data processing architecture and to know which the 

main stages are involved when building a stream processing pipeline. 

 

2.1.  Theoretical foundation of stream processing in IoT 

Stream processing paradigm (Liu, Dastjerdi and Buyya, 2016) was proposed by research 

communities as a Big Data solution to process large volumes of data within a time-constraint using 

distributed resources. Stream processing is the opposite for batch processing, which is not capable 

of processing dynamic data generated at fast rate. Stream processing is the ideal solution for 

managing IoT ecosystems as it has the ability to analyze massive amounts of data from multiple 

sources in real-time. 

However, stream data generated in IoT environments has complex features which make 

handling of it challenging. The characteristics of data streams such as dynamicity, continuousness, 

heterogeneity, volatility have to be taken into consideration along with their implications when 

designing a stream processing system. The streaming architecture must be able to process the data 

in motion, as soon as it becomes available, in order to respond to-the-second at the dynamicity of 

the IoT environment. Since the data streams are processed in a timely fashion, the infrastructure 

must handle stream imperfections on the fly including delayed, missing or out-of-order data 

(Stonebraker, Cetintemel and Zdonik, 2005). The stream, which is a never-ending sequence of 

time-varying data elements, is continuously carried through the processing pipeline and is 

periodically updated as new data becomes available. Furthermore, data streams are collected from 

heterogeneous data sources and exist in different formats such as photos, videos, audio, text, etc. 

 

2.2. Event-driven patterns for real-time Big Data analytics 

In contrast to the traditional service-oriented architecture (SOA) that restricts the flexibility and 

the scalability of a system because of its synchronous request-response mechanism (Jerry, 2019), 
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the event-driven architecture (EDA) is used to build highly scalable and highly adaptable system 

because it can handle the data streams into an asynchronous way. In EDA, an event represents a 

real-world observation that describes a fact that physically happened in an environment. There are 

two types of event-driven architectures: Lambda architecture and Kappa architecture. The Lambda 

architecture (Marz and Warren, 2015) integrates real-time and batch data analysis using three 

distinct layers of processing, while the Kappa architecture (Kreps, 2014), which is a simplified 

alternative to the Lambda architecture, eliminates the batch layer. Usually, the Kappa architecture 

is used to design systems that need to handle distinct and complex events in real-time.  

 

2.3. IoT data protocols and standards 

IoT protocols that were especially developed to ensure successful data communication between 

connected devices are the following: 

 Message Queuing Telemetry Transport (MQTT) – lightweight protocol for machine-to-

machine communication (M2M) of constrained devices in edge environments. 

 Message Queuing Telemetry Transport-Sensor Network (MQTT-SN) – specialized 

version of MQTT designed for Wireless Sensor Networks, with low cost, battery-

operated devices (Govindan and Azad, 2015; Stanford-Clark and Truong, 2013). 

 Constrained Application Protocol (CoAP) –  the most recent application protocol which 

was proposed for use in resource-constrained devices 

 Advanced Message Queuing Protocol (AMQP) – is an open standard application protocol 

for message-oriented middleware environments (Firouzi, Chakrabarty and Nassif, 2020). 

 

2.4.  The general Big Data processing pipeline in IoT 

A Big Data processing pipeline must be able to capture, transform, store and present relevant data 

so that it can be used to gain real-time insights. Figure 1 presents our general data processing 

pipeline which comprises several stages including data ingestion, data processing, data storage, 

and data visualization. 
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Figure 1. The general Big Data processing pipeline (Zălhan, 2019) 

 

In the ingestion stage, raw data-streams are collected from heterogeneous sources, such as 

social media platforms, wireless sensor networks or other connected IoT devices. In the data 

processing stage, complex data transformations are applied on multiple input streams and multiple 

stream records using streaming operators such as filter, aggregation, and join. These operations 

can be restricted on a finite portion of a stream called window. To ensure real-time processing with 

very quick response time, the data streams must be processed in parallel by multiple machines in 

a cluster. The purpose of the data storage stage is to persist relevant data into a highly-scalable 

distributed database for later and complex data analysis. The data visualization or presentation 

stage has the role to create an interface of the stream processing system, where advanced analytics 

and monitoring platforms can be used to gain meaningful insights over the stored data. This 

interface can be a dashboard for continuous real-time data monitoring, or an alert tool for notifying 

consumers to take rapid actions when critical patterns are discovered in the underlying data. 
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3. Semantic Technologies for IoT 
 

 

 

This chapter presents the theoretical framework regarding the SW standards and models. We will 

use the concepts defined here to achieve the semantic modeling task by annotating the raw stream 

data that traverses the semantic stream processing pipeline presented in Chapter 5. The semantic 

enrichment of device data with additional data from external sources, such as vocabularies and 

ontologies, help developers to design and implement interoperable IoT applications. Providing 

explicit descriptions of sensor measurements helps users and machines to understand in a unified 

way the context where the heterogeneous data was generated. 

 

3.1. Resource Description Framework 

The Resource Description Framework (RDF) model (Klyne, Carroll and McBride, 2009) helps to 

create graph-based representations about Web resources, using a variety of syntax notations and 

data serialization formats. The underlying structure of an RDF data model consists of expressions 

in the form of subject-predicate-object, known as triples (Domingue, Fensel and Hendler, 2011) 

where the predicate describes the relationship between the subject and the object. A collection of 

triples forms a directed, labeled graph, where the RDF nodes are its subjects and objects. For 

storing RDF graphs, different serialization formats exist, such as Turtle. The basic RDF vocabulary 

contains a predefined set of classes and properties that can be used to construct RDF statements 

about relationships between different resources. 

 

3.2. RDF Schema 

RDF Schema (RDFS) is a data-modeling vocabulary that extends the basic RDF with additional 

classes and properties to allow describing the meaning of resources and the relationship between 

them. These resources are used to determine characteristics of other resources, such as domains 

and ranges of properties. The standard properties named "rdfs:domain" (domain) and "rdfs:range" 

(range) can be used to specify restrictions on the subjects and objects of RDF triples. The 

"rdfs:subClassOf" and "rdfs:subPropertyOf" properties are used to create class and property 

hierarchies. There are other RDF vocabularies which are frequently used when building SW 
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applications. For example, Schema.org vocabulary contains a list of predefined terms to describe 

concepts such as Person, Employee, Organization, etc. 

 

3.3. Web Ontology Language 

RDFS vocabulary provides simple semantics for IoT applications by allowing users to define 

classes that may have multiple subclasses and super classes, and properties that may have multiple 

subproperties, domains and ranges. Web Ontology Language (OWL) (Motik et al., 2009) extends 

RDFS with richer semantics which are needed to achieve interoperability between various 

components of a smart system (Li and Zhong, 2004). The OWL and RDFS standard terms can be 

used to build class or property axioms (i.e. statements whose subject is a class or a property). For 

example, the "owl:inverseOf" standard property provided by OWL used to define inverse relations 

between properties, i.e. define relations in both directions. 

 

3.4. Semantic Sensor Network Ontology 

The Semantic Sensor Network (SSN) ontology (Haller et al., 2017) is a key enabling SW 

technology for sensor networks, as it facilitates semantic interoperability, integration and 

reasoning upon sensor data. SSN ontology focuses on describing physical sensor networks, such 

as sensors, observations that result from sensing, and deployments in which sensors are used. The 

SSN ontology includes a self-contained core ontology called SOSA (Sensor, Observation, Sample, 

and Actuator) (Janowicz, Haller, Cox, Le Phuoc, and Lefrançois, 2019) for its basic classes and 

properties. There are several SOSA terms related to modeling observations and other concepts: 

 sosa:Sensor – the Sensor class represents the concept of a sensing device. 

 sosa:Platform –a platform represents an entity that hosts other entities, such as sensors. 

 sosa:FeatureOfInterest – the thing whose property is being calculated when an 

observation result has arrived in the environment. 

 sosa:ObservableProperty – an observable characteristic of a feature-of-interest. 

 sosa:Observation – the Observation concept represents the activity of estimating or 

calculating a value of a propriety of a feature-of-interest. 

 sosa:Result – the Result concept represents the result of an observation. 
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 sosa:Procedure – the notion of Procedure can describe a workflow, an algorithm, or a 

computational method that specifies how to make an observation; it also specifies the 

steps that need to be executed in order to arrive at a result. 

SOSA properties are defined in both ways, from domain to range. For example, the 

"sosa:madeObservation" core property specifies the relationship between a sensor and an 

observation made by that sensor. In contrast, the "sosa:madeBySensor" inverse property connects 

observations to sensors. To model the observation value generated in an IoT environment, the 

"sosa:hasResult" property links an observation with the result which contains the sensed value. 

The "sosa:hasResult" is used to model complex information about an observation, namely what 

the physical sensor measures in the environment (domain phenomena), which is the unit of 

measure of the sensor value or where was the sensor value being captured (sensor location). 

The SSN ontology is built on top of SOSA and introduces additional terms related to modeling 

observations: "ssn:Stimulus", "ssn:Input", "ssn:Output", "ssn:System", "ssn:Deployment", for 

describing a real-world event that ’triggers’ the sensor, information that is provided as input or is 

obtained as output of a procedure, pieces of infrastructure that implement procedures, deployment 

of one or more systems. 

Regardless the efforts being spent to enrich the existing SSN ontology, according to the W3C’s 

final report (Vadivel and Subramanian, 2017), this ontology has some limitations: 

 The SSN ontology excludes a hierarchy of sensor types, or domain types (i.e. subclasses 

of ssn:FeatureOfInterest). 

 Common terms to represent sensor measurements, unit types, or location are not included 

in the SSN ontology.  
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4. State-of-the-art in Semantic Stream Processing 
 

 

 

Based on a structured literature review on semantic stream processing, in this chapter we develop 

a theoretical framework that will be helpful in understanding and analyzing the scientific efforts 

made in the domain of Semantic Stream Processing. This analysis will constitute the foundation 

for further identifying the issues and gaps in the current research literature. This systematic review 

includes high-rated scientific conferences and journals. 

Semantic Stream Processing (SSP) is defined by (Le Phuoc and Hauswirth, 2019) as a set of 

models, principles and techniques used to analyze and process data streams by exploiting the 

meaning of the stream data elements. Focusing on the progress that has been made in the field of 

SSP to deal with highly dynamic data that needs to be processed in a timely fashion, the most 

consolidated research findings include: (1) extensions of the RDF model and the SPARQL query 

language, which are produced and implemented by a corresponding number of RDF Stream 

Processing engines, and (2) several inference techniques proposed under the Stream Reasoning 

label to gain new insights over the streaming data. 

In the following we will point to some of the limitations identified in the above-studied 

literature. The main scientific contribution of our thesis will be to address these limitations and 

propose an alternative solution. 

 

4.1. RDF Stream Processing 

The RDF Stream Processing (RSP) research trend or Linked Data Stream Processing (Le-Phuoc, 

Parreira and Hauswirth, 2012) proposes several RSP engines that use the RDF model in 

representing stream data and execute continuous SPARQL queries over the RDF streams, using 

various approaches. 

The first RSP engines were centralized systems designed to run on a single machine by 

applying continuous queries over RDF streams using SPARQL extensions. All these engines 

extend the standard SPARQL grammar with additional features such as aggregation capabilities, 

window operators, and the possibility to combine multiple streams. These systems are built on top 

of existing Data Stream Management Systems (DSMS) to process the dynamic part of the query, 
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and RDF triple storage to evaluate the static part of the query. However, these systems are unable 

to handle large volumes of data coming from heterogeneous sources and to execute multiple 

continuous queries over RDF data streams in a distributed environment. 

To remedy the limitations of centralized RSP engines and improve the performance of existing 

RSP systems, distributed RSP engines were designed to enable concurrent queries over the 

incoming data. Distributed RSP engines are based on a cluster computing infrastructure to perform 

parallel processing over streams. However, some of the proposed system focuses only on dynamic 

data. 

Meanwhile, were proposed several solutions that collect data streams in real-time from 

different sources, process and send data to various destination systems using a middleware 

component. Some of the middleware solutions support semantic annotation of sensor data using 

the SSN ontology which is extended with constructs for modeling the measurements of 

temperature, humidity, light, and voltage sensors. Other solutions use a cloud infrastructure to 

perform the semantic modeling and to execute SPARQL queries over the annotated streams. 

However, none of the existing systems do not consider the edge computing paradigm for speeding 

up and enhancing the efficiency of data analysis. 

 

4.2. Stream Reasoning 

Stream reasoners extend the traditional RSP engines with rule-based, logical, reasoning 

capabilities. Some of the systems use reasoning languages that extend the first and the second order 

logics with generic window operators. Some authors use approaches based on stream reasoning 

models and techniques to process semantically-enriched data streams for supporting decision 

making in smart environments (e.g. a smart city). Stream reasoning is combined with machine 

learning techniques, such as supervised stream learning for stream data classification. 
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5. Design and Implementation of the Semantic Stream Processing pipeline 
 

 

 

In this chapter we describe the adopted methodology when building the semantic stream 

processing pipeline. We present the proposed system architecture by highlighting its main 

components and the technologies that were used in the implementation process. We describe the 

proposed extensions of the SSN ontology that were introduced in this work to model scenario 

independent and scenario-specific concepts related to sensor networks. We briefly describe the 

system configurations, and the alternative pipeline architectures that we consider in Chapter 6 

when evaluation where is preferable to execute the semantic annotation task. Lastly, we discuss 

the performance metrics that were chosen to validate or SSP pipeline. 

 

5.1.  Methodology 

When building the Semantic Stream Processing (SSP) pipeline, the Design Science Research 

(DSR) paradigm (Wieringa, 2014) was adopted, following an iterative development cycle with the 

explicit intention of improving the pipeline’s performance which is empirically investigated taking 

into consideration two IoT application scenarios: a smart airport and a smart factory. The 

stakeholders are the emergency response teams which need to rapidly react for the rescue of 

persons in case of critical observations have been sensed (and reasoned upon) within the smart 

environment.  

According to (Peffers, Tuunanen, Rothenberger, and Chatterjee, 2007), after identifying the 

research problem, stating the motivations and defining the objectives, the next step in the DSR 

process is to design and develop the artifact. The implemented SSP pipeline using Apache Kafka, 

as a distributed streaming platform, and GraphDB, as a semantic database server, represents an 

instantiation artifact (March and Smith, 1995; Hevner, March, Park, and Ram, 2004). 

In order to achieve a suitable solution, it is necessary that the solution is developed iteratively 

and is validated. This research utilizes two iterations prior to the construction of the final solution 

pipeline. In each iteration, a prototype is implemented and evaluated based on some criteria. 

Iteration one uses a smart airport use case to develop a scalable SSP pipeline following the Big 

Data reference architecture. We assess the viability of the pipeline conducting several experiments 
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under various Kafka cluster configurations. The result of the validation process on the performance 

of the first prototype using the scalability metric shows that the distributed Kafka cluster 

configuration manages to support the semantic enrichment of sensor data. This Kafka cluster 

configuration is used as input for the second iteration which utilizes a smart factory use case to 

develop a low-latency SSP pipeline. To investigate where is it preferable to execute the semantic 

annotation in order to deliver faster insights of the underlying sensor data, two alternative 

architectures were implemented: semantic annotation after the raw sensor data is ingested into the 

system, and semantic annotation directly on the sensing devices output by means of semantic edge 

computing. We evaluate the performance of the alternative pipeline architectures using throughput 

and response time metrics. Iteration two improves the developed pipeline in terms of speed and 

data analysis demonstrating the pipeline’s efficiency. Iteration two represents the final artifact of 

this research. 

 

5.2. Proposed solution overview: a semantic stream processing pipeline 

The main components of the proposed SSP pipeline are illustrated in Figure 2. Data sources are 

represented by various sensors installed in a smart environment. In this thesis, wearable sensors 

are used in combination with ambient sensors to support the target IoT application cases. 

Geolocated audio sensors are taken into consideration to support the smart airport use case, while 

the heartbeat, location and proximity sensors are used to build a smart factory ecosystem. 

 

Figure 2. Proposed semantic sensor stream processing pipeline  

(Zălhan, Silaghi, & Buchmann, 2019) 
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The continuous data gathered from sensor data sources is collected and processed by a 

distributed data ingestion system for later analysis. In this thesis, Apache Kafka (Narkhede, 

Shapira, and Palino, 2017) is employed for ingesting the sensor streams because it is able to handle 

large-scale data in real-time. Also, Kafka stores data streams in a fault-tolerant manner using the 

replication mechanism guarding against data loss. 

The basic architecture of Kafka is organized around a few key terms: topics, producers, 

consumers, and brokers. The message is the unit of data within Kafka. All Kafka messages are 

organized into topics. Topics can be broken down into a number of partitions containing sequences 

of messages that are spread over multiple servers working in parallel. Each partition can be 

optionally replicated across a configurable number of servers to guarantee fault tolerance. Thus, 

partitions are the modality in which Kafka provides scalability and replication. 

Apache Kafka, as high-throughput distributed messaging system, is based on the 

publish/subscribe model, where several producers write messages into topics, and several 

consumers read the messages that were previously published by producers. Internally, Kafka runs 

as a cluster which connects multiple producers and consumers to one or more servers, known as 

brokers which receive messages from producers and then commits the messages to storage on disk. 

Kafka uses Apache Zookeeper to store metadata about the Kafka brokers and consumer details. 

To provide machine-readable and machine-interpretable descriptions of the ingested data, the 

streaming data previously collected are turned into useful information using semantic data 

annotations with the extended SSN ontology. The semantic descriptions for sensor streams are 

persisted into a semantic graph database for reasoning, later analysis or integration with a legacy 

IS (e.g., a notification system). In this thesis, we chose the GraphDB semantic database server to 

store the annotated streams. According to recent survey (Bellini and Nesi, 2008) on performance 

evaluation of currently available RDF stores, GraphDB outperforms existing semantic database 

servers when considering the loading and indexing time for triplestore initialization. Load times 

may increase causing a delay in deliver data at the expected time. 

To access the sensor data and the legacy data stored as triples, the SPARQL client allows 

querying the RDF descriptions of the large integrated dataset. The semantic streams stored in the 

RDF graph database are retrieved and manipulated using SPARQL query language and SPARQL-

based rules to further explore the semantic descriptions in order to infer new knowledge and useful 

insights. 
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5.3. Proposed SSN ontology extensions 

Because the SSN ontology does not model a hierarchy of sensor types, nor domain types and does 

not differentiate between sensor observations that have critical values and sensor observation 

values that reveal normal observed ranges, we propose some extensions to the existing SSN 

ontology to enable: 

 hierarchy of sensor, observation, feature-of-interest and platform classes 

 linking directly between sensors and features-of-interest, relationships between sensors and 

critical observations, as well as relationships between different features-of-interest. 

To overcome the limitations of the existing SSN ontology, we extend its syntax with additional 

classes and properties in which some are scenario-independent and other are targeting specific use 

cases. The knowledge base is enriched with a set of axioms, defining RDF statements built with 

standard terms to establish machine-readable meaning for SSN properties and classes. 

We create multiple axioms using the "rdfs:subClassOf" standard property provided by the 

RDFS vocabulary to build a hierarchy of sensor classes, defining the Wearable Sensor concept 

which represents sensors attached to human body, and the Ambient Sensor concept to model 

sensors deployed into the physical environment. Also, more specialized sensor types are defined 

to support specific IoT use cases. 

In order to detect critical patterns in a smart environment, the sensor readings are compared 

with threshold limits that define the normal observed ranges. Thus, we create a taxonomy of 

observations by categorizing sensor observations into lower critical observations or upper critical 

observations based on the sensor values generated into the environment. 

We extend the "sosa:FeatureOfInterest" standard class to create a hierarchy of features-of- 

interest in order to distinguish between active and passive things whose properties are being 

observed. We model living, breathing entities such as actors and employees. In this process, we 

use the Person concept provided by the Schema.org vocabulary. Similarly, we model passive 

entities such as fixed equipment, buildings and indoor environments. For each active and passive 

things we introduce more specialized entities to support different IoT uses cases. 

We also define new relationships between proposed concepts with the help of the 

"rdfs:subPropertyOf" standard property. Each proposed property is defined from domain to range. 

We introduce a new property to describe the relationship between a sensor and its critical 

observation (upper or lower critical). Also, we introduce new property describing relationships 
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between various features-of-interest (active or passive) and sensors. Some of proposed properties 

have inverse properties to facilitate graph navigation. To define these relations in both directions 

we use the "owl:inverseOf" provided by the OWL standard terminology. 

Furthermore, we define relationships between fixed equipment and the environment in which 

they are stored, between an actor and the environment in which it acts. Also, we define a hierarchy 

of observable characteristics of features-of-interest. These observable characteristics link sensor 

observations to observation results. 

 

5.4.  Solution implementation 

Kafka cluster configurations are made using the Confluent1 platform which is used to build real-

time data pipelines and streaming applications by integrating data from multiple data sources. We 

implement two different Kafka cluster setups: (1) single node – single broker configuration; and 

(2) single node – multiple brokers configuration. These configurations will be validated later, in 

chapter 6, where we investigate the most suitable Kafka cluster configuration to support the 

semantic annotation of large-scale sensor data.  

For identifying the place in the pipeline where is preferable to execute the semantic modeling 

task, we have implemented two alternative pipeline architectures: 

(1) Semantic modeling on consumer side – where Kafka producers generate and publish 

sensor streams into topics, while Kafka consumers subscribe to these topics, then read, 

annotate the sensor streams and store the corresponding RDF streams triplestore. 

(2) Semantic modeling on producer side – where Kafka producers generate, annotate sensor 

streams and publish the corresponding RDF streams into topics, while Kafka consumers 

subscribe to these topics, then read and persist the RDF streams in triplestore. 

In both pipeline architectures, sensor streams conform to a schema which contains several 

attributes: sensor identifier, sensor type, the number of the platform that host various sensors, 

stream identifier, sensor value, as well as the timestamp marking the time when the sensor value 

was generated into the smart environment. 

                                                           
1 https://www.confluent.io/product/confluent-platform 
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To simulate the streaming data coming from various sensors deployed in a smart environment, 

we have defined Kafka producers and consumers using the main classes exposed by the Kafka-

python2 library. 

 

5.5.  Solution validation 

The proposed pipeline’s performance is evaluated using various metrics: throughput, scalability 

and execution time. The ingestion system that feeds continuously the pipeline with sensor streams 

must be capable to process high-throughput data. Furthermore, the processing pipeline should 

scale to very high throughput. Apache Kafka, as a data collection and stream processing 

component of our data pipeline, was designed for Big Data use cases which need horizontal 

scalability for both message senders and message receivers. Also, we are interested to determine 

the necessarily amount of time to generate a message in dependence to where the semantic 

modeling task is achieved. 

  

                                                           
2 http://github.com/dpkp/kafka-python 
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6. Use Cases in IoT Smart Environments 
 

 

 

In this chapter, we present two IoT application cases to illustrate how the SSP pipeline introduced 

in Chapter 5 can be used in practice. The IoT use cases chosen in thesis belong to different 

categories of smart cases of IoT. The smart airport application case falls into the governance 

application category of IoT use cases, while the smart factory application case belongs to the class 

of industrial use cases of IoT. First we describe the scenario of each IoT application case, then we 

present the corresponding design decisions, and lastly we discuss the experimental results. 

 

6.1. Smart Airport 

In order to effectively prevent future terrorist attacks, the infrastructure of a smart airport is 

designed with audio sensors and modern technologies, such as Automatic Speech Recognition 

(ASR) and geo-localization technology. The purpose of ASR technology in the smart airport 

context is to detect suspicious conversations of passengers and alert security operators to take rapid 

actions in case critical patterns are detected into the underlying uttered discourse. The speech 

recognition component is out of scope for this research study, as we focus on the semantic 

integration architecture and parallelization of the semantic annotation effort. We use previous 

project experience (Zălhan, Stan, Teodorescu, Saupe, & Duma, 2016) regarding the building of an 

ASR system and the development of such a component is part of the future work. 

To simulate the streaming data from the geolocated audio sensors deployed in a smart airport, 

we have used Producer and Consumer APIs that support custom implementations to write and read 

streams of data in the Kafka cluster. The published messages are written into a topic. In Figure 3, 

we present the semantic model of a raw audio sensor stream originally written in JSON format. 

Because some aspects such as sensor value units and measurements, or dynamic behaviors such 

as sensor location, are not tackled by the existing SSN ontology, in the semantic annotation process 

of sensor data we use the „Quantities, Units, Dimensions and Data Types” (QUDT)3 vocabulary 

                                                           
3 http://www.qudt.org/ 
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to model acoustic units, and geospatial vocabularies such as GeoSPARQL4 to model the location 

of an audio sensor in the smart airport environment. 

 

Figure 3. Description of an audio sensor observation (Zălhan, Silaghi, și Buchmann, 2019) 

 

The resulted RDF descriptions are published into GraphDB for later analysis and querying. 

The data stored in the RDF graph database is retrieved and manipulated using SPARQL query 

language which is used to infer new information and knowledge from the existing one by executing 

various queries over the RDF statements. Using a more complex query, the system notifies the 

security operators responsible with the sector where an upper critical observation was made by 

sending them a message on their telephone. When defining this query, we semantically lift the 

airport legacy database to connect it with the graph that describes sensor data. 

We use the smart airport ecosystem to decide which is the most suitable Kafka-based scenario 

for achieving the semantic modeling task. Two different Kafka cluster configurations were set up: 

(1) single node – single broker Kafka cluster configuration; (2) single node – multiple brokers 

Kafka cluster configuration. The experimental results from Figure 4 show that in the second Kafka 

scenario, the Kafka cluster manages to cope with ingesting large volumes of sensor data by 

distributing the write load over brokers that are working in parallel. Moreover, the distributed 

configuration of the Kafka cluster sustains the semantic annotation of massive amounts of sensor 

data using multiple consumer instances that concurrently read the topic messages. 

                                                           
4https://www.opengeospatial.org/standards/geosparql 
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Figure 4. The number of producers versus the number of published or consumed messages in 

both Kafka-based scenarios 

 

6.2.  Smart Factory 

The smart factory ecosystem is focused on worker’s safety by monitoring health status in real-time 

using heartbeat, location and proximity sensors. The motivating design problem context is to 

support a smart factory with a safer workspace allowing emergency interventions and incident 

management during natural disasters, where ambient and wearable sensors become relevant for 

preventing workplace injuries or death of employees. Heartbeat and localization sensors are 

attached to a worker’s body to monitor its heart rate, and its spatial coordinates. Proximity sensors 

are attached to factory machinery to detect the presence of a human body over a distance, such as 

a worker walking too close to a piece of heavy machinery due to limited visibility  

To simulate the data streaming from the aforementioned sensors deployed in a smart factory 

ecosystem, we have crated Kafka producers and consumers that write and read streams of data in 

a Kafka cluster. The generated messages are written by producers in different topics. The semantic 

annotation scheme of sensor streams, originally written in JSON format, is similar to the one used 

in the smart airport application case. We use the QUDT vocabulary to provide machine-readable 

access to unit and unit type information (beat per minute for a heartbeat sensor, and the distance 

in centimeters for proximity sensor), as well as the WGS84 Geo Positioning5 geospatial vocabulary 

to model the dynamic location of factory worker.  

Once the semantic descriptions are persisted into the triplestore, the resulted knowledge base 

can be further explored through SPARQL-based reasoning to gain useful insights. We define 

                                                           
5https://www.w3.org/2003/01/geo/wgs84_pos 
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complex SPARQL queries to retrieve the spatial coordinates of a worker whose heartbeat sensor 

has detected a lower critical observation. Also, we execute SPARQL queries for identifying the 

closest worker as sensed by a heavy machine’s proximity sensor. 

In the smart factory application case, we focus on the core processing pipeline to identify where 

is preferable to process the raw sensor data. To assess the viability of the SSP pipeline, two 

different architectures were implemented: semantic modeling on consumer side (S1); and semantic 

modeling on producer side (S2). In S2 architecture, raw sensor streams are semantically processed 

at the edge of the sensor network, near the sensing devices. 

Table 1. Annotated messages and corresponding RDF triples in both implemented architectures 

Producers 

S1 S2 Throughput 

multiplication Messages RDF triples Messages RDF triples 

10 529 8993 5703 96951 10,78 

20 558 9486 6253 106301 11,21 

30 696 11832 6207 105519 8,92 

40 579 9843 6023 102391 10,40 

50 357 6069 6043 102731 16,93 

60 652 11084 5714 97138 8,76 

70 707 12019 5902 100334 8,35 

80 851 14467 5904 100368 6,94 

90 751 12767 5911 100487 7,87 

100 705 11985 6091 103547 8,64 

 

Table 1 summarizes the number of annotated messages and their corresponding RDF triples, 

in the alternative architectures (S1 and S2). It can be seen that when the semantic modeling is 

accomplished by edge sensors, even ten times more annotated messages are generated (and 

implicitly, the number of corresponding RDF triples it is about ten times larger. In the semantic 

edge architecture, the data does not waste time to travel through the pipeline because the semantic 

annotation is performed locally, on edge sensors.   
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7. Conclusions and future work 
 

 

 

In this thesis, we proposed a novel semantic stream processing pipeline for sensor data and offered 

two interesting application cases to evaluate its performance. The architecture of the proposed 

pipeline contains multiple components that cover all aspects of an integral data processing chain: 

data collection, semantic annotation, RDF data storage and query processing of sensor streams. 

Throughout the entire research we have been directing our efforts towards achieving all the 

proposed objectives. 

Based on a literature review with respect of semantic stream processing, we have analyzed 

existing authors’ approaches for processing in real-time large volumes of sensor data continuously 

generated by heterogeneous data sources de date and extracting useful information from 

underlying data. Moreover, we have identified the limitations of existing semantic stream 

processing systems. The existing systems do not consider the edge computing paradigm for 

speeding up and enhancing the efficiency of data analysis. Also, the SSN ontology identified in 

the literature does not model sensor types, data measurements units, location, mobility and other 

dynamic behaviors. We overcome these limitations by extending the SSN ontology with new 

classes and properties to model sensor types, specific domains, critical observations and 

relationships between them.  

Our middleware solution for semantic processing of sensor data uses another distributed 

messaging system called Apache Kafka, because it has better throughput, built-in partitioning for 

parallel data consumption than most messaging system have, which makes it suitable to build low-

latency processing pipelines. Another aspect that differentiates our solution from other existing 

middleware solutions is the combined approach for semantic annotation mixing the SSN ontology 

with other vocabularies. 

To obtain semantic interoperability with SI that rely on the annotated sensor streams, we 

integrate the sensor data graph with legacy databases to support the development of a Hybrid 

Semantic System for Incident Management. In this process, we hybridize the existing SSN 

ontology with additional terms from other vocabularies to model information about individual 

persons belonging to emergency intervention teams that act in a smart environment. 
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The next goal is to setup a highly-distributed Kafka solution that consists of multiple nodes 

with multiple brokers. This configuration is desirable to advance the technological readiness 

level of our proposal and is on-going work that will employ a high-performance computing 

infrastructure.  
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