

„BABEȘ - BOLYAI” UNIVERSITY OF CLUJ-NAPOCA

DOCTORAL SCHOOL OF ECONOMICS AND BUSINESS ADMINISTRATION

DOCTORAL THESIS

-Summary-

Towards a Semantic Edge Processing of Sensor Data in Smart

Environments: a Design Science Approach

Scientific Advisor:

Prof. PhD Nicolae Tomai

PhD Candidate:

Zălhan Paula-Georgiana

Cluj-Napoca

2020

Summary contents

1. Introduction ... 1

2. Stream Processing in IoT ... 5

3. Semantic Technologies for IoT ... 8

4. State-of-the-art in Semantic Stream Processing .. 11

5. Design and Implementation of the Semantic Stream Processing pipeline 13

6. Use Cases in IoT Smart Environments .. 19

7. Conclusions and future work ... 23

Keywords

Internet of Things (IoT), Edge computing, Semantic stream processing, sensor data, semantic

annotation, Semantic Sensor Network (SSN) ontology, Apache Kafka, Design Science Research

methodology.

Thesis contents

1. Introduction

1.1. Problem statement

1.2. Research questions

1.3. Contributions on this research

1.4. Thesis outline

2. Stream Processing in IoT

2.1. Theoretical foundation of stream processing in IoT

2.1.1. Stream

2.1.2. Stream Processing

2.1.3. The characteristics of stream data in IoT

2.2. Event-driven patterns for real-time Big Data analytics

2.2.1. The Lambda architecture

2.2.2. The Kappa architecture

2.3. IoT data protocols and standards

2.4. The general Big Data processing pipeline in IoT

3. Semantic Technologies for IoT

3.1. Resource Description Framework

3.2. RDF Schema

3.3. Web Ontology Language

3.3.1. Classes

3.3.2. Properties

3.3.3. Facts about things

3.4. Semantic Sensor Network Ontology

4. State-of-the-art in Semantic Stream Processing

4.1. RDF Stream Processing

4.1.1. Centralized RSP engines

4.1.2. Distributed RSP engines

4.1.3. Middleware solutions

4.2. Stream Reasoning

5. Design and Implementation of the Semantic Stream Processing pipeline

5.1. Methodology

5.2. Proposed solution overview: a semantic stream processing pipeline

5.2.1. Data sources

5.2.2. Data collection and stream processing

5.2.3. Data storage

5.2.4. Data analysis

5.3. Proposed SSN ontology extensions

5.4. Solution implementation

5.4.1. Kafka cluster setup

5.4.1.1. Single node – single broker configuration

5.4.1.2. Single node – multiple brokers configuration

5.4.2. Alternative pipeline architectures

5.4.2.1. Writing producers

5.4.2.2. Writing consumers

5.5. Solution validation

6. Use Cases in IoT Smart Environments

6.1. Introduction

6.2. Smart Airport

6.2.1. Scenario description

6.2.2. Design decisions

6.2.3. Experimental setup and results

6.2.3.1. Experimental setup

6.2.3.2. Result analysis

6.3. Smart Factory

6.3.1. Scenario description

6.3.2. Design decisions

6.3.3. Experimental setup and results

6.3.3.1. Experimental setup

6.3.3.2. Result analysis

7. Conclusions and future work

A Appendix Sample Source Code of RDF Streams Producer

B Appendix Sample Source Code of RDF Streams Consumer

Bibliography

Publications list

I. List of publications related to the thesis contents

1. P.-G. Zălhan, G. C. Silaghi and R. A. Buchmann. Marrying Big Data with Smart Data in

Sensor Stream Processing. In A. Siarheyeva, C. Barry, M. Lang, H. Linger, & C. Schneider

(Eds.), Information Systems Development: Information Systems Beyond 2020 (ISD2019

Proceedings). ISD’19. Toulon, France: ISEN Yncréa Méditerranée: AIS eLibrary. URL:

https://aisel.aisnet.org/isd2014/proceedings2019/ManagingISD/8/.

2. P. -G. Zălhan, Transforming Big Data into knowledge using semantic stream processing

technology: challenges and early progress. In Proceedings of the 18th International

Conference on INFORMATICS in ECONOMY (IE 2019) Education Research & Business

Technologies, 2019, pp. 365-370, ISSN 2284-7472.

II. Other relevant publications

1. P.-G. Zălhan, Building a LVCSR System for Romanian: methods and challenges, Journal

of Public Administration, Finance and Law (JoPAFL), no. 10/2016, pp. 181-191, 2016,

ISSN 2285 – 2204.

2. C.-C. Osman, P.-G. Zălhan, From Natural Language Text to visual models: A survey

issues and approaches, Informatică Economică Journal, vol. 20, no. 4, pp. 44-61, 2016,

ISSN 1453-1305.

1

1. Introduction

In today’s digital world, we are witnessing an exponential growth of Internet of Things (IoT) data

which is generated with fast rate in smart environments. The growth of IoT data is caused by the

large-scale IoT adoption, as the number of devices connected to the Internet, including sensors and

machines, continues to grow at a steady pace. IoT data statistics provided by research organizations

such as Cisco - which is the worldwide leader in IT, networking, and cybersecurity solutions -

show that 5 quintillion bytes of data are produced every day (Stack, 2018). Moreover, the dramatic

acceleration of IoT generated data is also anticipated by Cisco which projects that 500 billion of

IoT devices are expected to be connected to the Internet by 2030 (Cisco, 2018).

Despite the fact that the IoT domain is considered being a hot research topic, the complexity

of this domain raise significant challenges that could forbid achieving its potential benefits. A

recent survey (Noura, Atiquzzaman and Gaedke, 2019) on state-of-the-art solutions to facilitate

IoT interoperability, shows that even though researchers have proposed numerous approaches and

technologies to overcome IoT interoperability issues, research challenges still remain. The

surveyed IoT solutions are focusing less on semantic interoperability. Moreover, the most popular

IoT solutions do not consider the edge computing paradigm for speeding up and enhancing the

efficiency of data analysis.

Large sets of complex data, known as Big Data, need to be processed, stored and presented

into an efficient form with minimum time lag. If in the beginning, the Big Data ecosystem was just

a collection of tools and techniques that were meant to manage large volumes of data, nowadays,

the velocity property of IoT data must be also considered, by developing Big Data analytics

solutions that are capable to collect and process streaming data in real-time. These solutions

enhance the decision-making processes, bringing competitive advantages to businesses leaders.

However, developing such solutions need to take into consideration the stream’s characteristics

that make the harvesting of data a challenging task. The heterogeneous nature of data originating

from various sources leads to interoperability problems between IoT applications.

Integrating data from different sources using domain specific knowledge enables applications

to better understand the environment where the data was generated. In this way, domain experts

2

or business leaders can take correct decisions, efficiently. Understanding the data context,

potentially enables applications to take real-time decisions. The Semantic Web (SW) community

channels its efforts to build models and techniques that transform data streams coming from

various IoT devices (e.g. sensors) into machine-understandable descriptions. By means of

semantic annotation, the sensor data are enriched with additional information and turned into

machine-processable and machine-understandable descriptions that are easy to interpret, integrate

and reuse by computers. The annotated sensor streams can be persisted into a triplestore for further

inference using the SPARQL query language.

The main objective of our research will be to build a system that is capable to collect, process,

store and present IoT large-scale data in an efficient and easily interpretable form. A stream data

processing pipeline covers all aspects of an integral data processing chain, from the moment when

a newly data was generated up to the moment when the data is prepared for final consumption.

Moving raw data from the real-time sources to a target data store for further analysis and

visualization must be achieved in a reliable and scalable way. In retrospect, this research aims to

design a scalable, high-throughput, low-latency data pipeline which includes sensor data

collection, semantic annotation of sensor data, data storage and query processing.

To achieve the research aim, this research follows the Design Science Research (DSR)

paradigm because this research paradigm is considered appropriate when research aims to develop

solutions for the needs of the ’business’ and its environment in the field of Information Systems

(IS). The design problem is to overcome the semantic IoT interoperability issue by delivering a

novel data pipeline that fulfills the low-latency requirement in order to provide timely and valuable

insights from the underlying data to decision makers.

In order to fulfill the thesis aim, we address the following research questions:

1. How a low-latency stream processing pipeline can be devised in order to sustain the

semantic enrichment of the large-scale sensor data generated in a smart environment?

2. Can we identify the proper place in a data pipeline where to execute the semantic sensor

data annotation for faster data analysis?

3. How a semantic edge environment can be designed and managed to support real-time

data processing and workflow execution of sensor data?

3

Given the above-described research questions, we pursued to study the following:

1. To identify requirements and gaps in the field of semantic processing of stream data.

2. To achieve semantic interoperability with IS that rely on the annotated streams.

3. To evaluate the performance of the proposed pipeline through real-world use cases from

the IoT domain.

4. To propose possible future work and enhancements that are meaningful to continue

improving the proposed pipeline.

The present thesis enlarges the state-of-the-art with respect to the topic of semantic stream

processing with the following contributions:

1. Provides a literature review on semantic stream processing highlighting the scientific

efforts that were made at the intersection of IoT stream processing and semantic

technology.

2. Extends the Semantic Sensor Network (SSN) ontology identified in the literature with

additional classes and properties, in which some are scenario-independent and other are

targeting specific use cases, to create a hierarchy of sensor, observation, feature-of-

interest and platform classes, as well as relationships between sensors and their critical

observations, between sensors and their features-of-interest, and between different

features-of-interest.

1. Designs an architecture of the proposed artifact and the main components of the

architecture include sensor data collection, semantic annotation, data storage and query

processing.

2. Develops a Proof of Concept (PoC) for the proposed architecture demonstrating that the

semantic edge processing of sensor streams can be achieved in the development phase of

the DSR process iteration.

3. Validates the implemented prototypes according to the Design Science principles using

two different business scenarios.

The content of the thesis is organized as follows:

Chapter 2 presents the stream processing concepts with their application in the IoT domain.

We explain the meaning of a stream and its essential characteristics, then we describe the stream

processing paradigm and the existing stream processing architectures devised for real-time

4

processing systems. This chapter also provides the list of IoT protocols and standards, as well as

the general architecture of a Big Data processing pipeline.

Chapter 3 provides the theoretical aspects regarding the SW standards and models for semantic

annotation, focusing more on the concepts provided by the SSN ontology.

In Chapter 4 we provide a structured literature review which highlights the adopted approaches

and the proposed solutions in building a semantic stream processing system.

In Chapter 5 we describe the adopted methodology, the proposed solution, the performance

metrics taken into consideration when validating our solution, and the proposed extensions of the

SSN ontology.

In Chapter 6 we present the design decisions of a smart airport and a smart factory, and discuss

the experimental results obtained when evaluating the performance of the proposed semantic

stream processing pipeline.

Chapter 7 comprises the conclusions of our research effort and includes possible future work

and enhancements.

5

2. Stream Processing in IoT

This section presents the theoretical foundation regarding the stream processing paradigm. We will

use the concepts defined here to build a semantic stream processing pipeline architecture in

Chapter 5. It is important to choose the right data processing architecture and to know which the

main stages are involved when building a stream processing pipeline.

2.1. Theoretical foundation of stream processing in IoT

Stream processing paradigm (Liu, Dastjerdi and Buyya, 2016) was proposed by research

communities as a Big Data solution to process large volumes of data within a time-constraint using

distributed resources. Stream processing is the opposite for batch processing, which is not capable

of processing dynamic data generated at fast rate. Stream processing is the ideal solution for

managing IoT ecosystems as it has the ability to analyze massive amounts of data from multiple

sources in real-time.

However, stream data generated in IoT environments has complex features which make

handling of it challenging. The characteristics of data streams such as dynamicity, continuousness,

heterogeneity, volatility have to be taken into consideration along with their implications when

designing a stream processing system. The streaming architecture must be able to process the data

in motion, as soon as it becomes available, in order to respond to-the-second at the dynamicity of

the IoT environment. Since the data streams are processed in a timely fashion, the infrastructure

must handle stream imperfections on the fly including delayed, missing or out-of-order data

(Stonebraker, Cetintemel and Zdonik, 2005). The stream, which is a never-ending sequence of

time-varying data elements, is continuously carried through the processing pipeline and is

periodically updated as new data becomes available. Furthermore, data streams are collected from

heterogeneous data sources and exist in different formats such as photos, videos, audio, text, etc.

2.2. Event-driven patterns for real-time Big Data analytics

In contrast to the traditional service-oriented architecture (SOA) that restricts the flexibility and

the scalability of a system because of its synchronous request-response mechanism (Jerry, 2019),

6

the event-driven architecture (EDA) is used to build highly scalable and highly adaptable system

because it can handle the data streams into an asynchronous way. In EDA, an event represents a

real-world observation that describes a fact that physically happened in an environment. There are

two types of event-driven architectures: Lambda architecture and Kappa architecture. The Lambda

architecture (Marz and Warren, 2015) integrates real-time and batch data analysis using three

distinct layers of processing, while the Kappa architecture (Kreps, 2014), which is a simplified

alternative to the Lambda architecture, eliminates the batch layer. Usually, the Kappa architecture

is used to design systems that need to handle distinct and complex events in real-time.

2.3. IoT data protocols and standards

IoT protocols that were especially developed to ensure successful data communication between

connected devices are the following:

 Message Queuing Telemetry Transport (MQTT) – lightweight protocol for machine-to-

machine communication (M2M) of constrained devices in edge environments.

 Message Queuing Telemetry Transport-Sensor Network (MQTT-SN) – specialized

version of MQTT designed for Wireless Sensor Networks, with low cost, battery-

operated devices (Govindan and Azad, 2015; Stanford-Clark and Truong, 2013).

 Constrained Application Protocol (CoAP) – the most recent application protocol which

was proposed for use in resource-constrained devices

 Advanced Message Queuing Protocol (AMQP) – is an open standard application protocol

for message-oriented middleware environments (Firouzi, Chakrabarty and Nassif, 2020).

2.4. The general Big Data processing pipeline in IoT

A Big Data processing pipeline must be able to capture, transform, store and present relevant data

so that it can be used to gain real-time insights. Figure 1 presents our general data processing

pipeline which comprises several stages including data ingestion, data processing, data storage,

and data visualization.

7

Figure 1. The general Big Data processing pipeline (Zălhan, 2019)

In the ingestion stage, raw data-streams are collected from heterogeneous sources, such as

social media platforms, wireless sensor networks or other connected IoT devices. In the data

processing stage, complex data transformations are applied on multiple input streams and multiple

stream records using streaming operators such as filter, aggregation, and join. These operations

can be restricted on a finite portion of a stream called window. To ensure real-time processing with

very quick response time, the data streams must be processed in parallel by multiple machines in

a cluster. The purpose of the data storage stage is to persist relevant data into a highly-scalable

distributed database for later and complex data analysis. The data visualization or presentation

stage has the role to create an interface of the stream processing system, where advanced analytics

and monitoring platforms can be used to gain meaningful insights over the stored data. This

interface can be a dashboard for continuous real-time data monitoring, or an alert tool for notifying

consumers to take rapid actions when critical patterns are discovered in the underlying data.

8

3. Semantic Technologies for IoT

This chapter presents the theoretical framework regarding the SW standards and models. We will

use the concepts defined here to achieve the semantic modeling task by annotating the raw stream

data that traverses the semantic stream processing pipeline presented in Chapter 5. The semantic

enrichment of device data with additional data from external sources, such as vocabularies and

ontologies, help developers to design and implement interoperable IoT applications. Providing

explicit descriptions of sensor measurements helps users and machines to understand in a unified

way the context where the heterogeneous data was generated.

3.1. Resource Description Framework

The Resource Description Framework (RDF) model (Klyne, Carroll and McBride, 2009) helps to

create graph-based representations about Web resources, using a variety of syntax notations and

data serialization formats. The underlying structure of an RDF data model consists of expressions

in the form of subject-predicate-object, known as triples (Domingue, Fensel and Hendler, 2011)

where the predicate describes the relationship between the subject and the object. A collection of

triples forms a directed, labeled graph, where the RDF nodes are its subjects and objects. For

storing RDF graphs, different serialization formats exist, such as Turtle. The basic RDF vocabulary

contains a predefined set of classes and properties that can be used to construct RDF statements

about relationships between different resources.

3.2. RDF Schema

RDF Schema (RDFS) is a data-modeling vocabulary that extends the basic RDF with additional

classes and properties to allow describing the meaning of resources and the relationship between

them. These resources are used to determine characteristics of other resources, such as domains

and ranges of properties. The standard properties named "rdfs:domain" (domain) and "rdfs:range"

(range) can be used to specify restrictions on the subjects and objects of RDF triples. The

"rdfs:subClassOf" and "rdfs:subPropertyOf" properties are used to create class and property

hierarchies. There are other RDF vocabularies which are frequently used when building SW

9

applications. For example, Schema.org vocabulary contains a list of predefined terms to describe

concepts such as Person, Employee, Organization, etc.

3.3. Web Ontology Language

RDFS vocabulary provides simple semantics for IoT applications by allowing users to define

classes that may have multiple subclasses and super classes, and properties that may have multiple

subproperties, domains and ranges. Web Ontology Language (OWL) (Motik et al., 2009) extends

RDFS with richer semantics which are needed to achieve interoperability between various

components of a smart system (Li and Zhong, 2004). The OWL and RDFS standard terms can be

used to build class or property axioms (i.e. statements whose subject is a class or a property). For

example, the "owl:inverseOf" standard property provided by OWL used to define inverse relations

between properties, i.e. define relations in both directions.

3.4. Semantic Sensor Network Ontology

The Semantic Sensor Network (SSN) ontology (Haller et al., 2017) is a key enabling SW

technology for sensor networks, as it facilitates semantic interoperability, integration and

reasoning upon sensor data. SSN ontology focuses on describing physical sensor networks, such

as sensors, observations that result from sensing, and deployments in which sensors are used. The

SSN ontology includes a self-contained core ontology called SOSA (Sensor, Observation, Sample,

and Actuator) (Janowicz, Haller, Cox, Le Phuoc, and Lefrançois, 2019) for its basic classes and

properties. There are several SOSA terms related to modeling observations and other concepts:

 sosa:Sensor – the Sensor class represents the concept of a sensing device.

 sosa:Platform –a platform represents an entity that hosts other entities, such as sensors.

 sosa:FeatureOfInterest – the thing whose property is being calculated when an

observation result has arrived in the environment.

 sosa:ObservableProperty – an observable characteristic of a feature-of-interest.

 sosa:Observation – the Observation concept represents the activity of estimating or

calculating a value of a propriety of a feature-of-interest.

 sosa:Result – the Result concept represents the result of an observation.

10

 sosa:Procedure – the notion of Procedure can describe a workflow, an algorithm, or a

computational method that specifies how to make an observation; it also specifies the

steps that need to be executed in order to arrive at a result.

SOSA properties are defined in both ways, from domain to range. For example, the

"sosa:madeObservation" core property specifies the relationship between a sensor and an

observation made by that sensor. In contrast, the "sosa:madeBySensor" inverse property connects

observations to sensors. To model the observation value generated in an IoT environment, the

"sosa:hasResult" property links an observation with the result which contains the sensed value.

The "sosa:hasResult" is used to model complex information about an observation, namely what

the physical sensor measures in the environment (domain phenomena), which is the unit of

measure of the sensor value or where was the sensor value being captured (sensor location).

The SSN ontology is built on top of SOSA and introduces additional terms related to modeling

observations: "ssn:Stimulus", "ssn:Input", "ssn:Output", "ssn:System", "ssn:Deployment", for

describing a real-world event that ’triggers’ the sensor, information that is provided as input or is

obtained as output of a procedure, pieces of infrastructure that implement procedures, deployment

of one or more systems.

Regardless the efforts being spent to enrich the existing SSN ontology, according to the W3C’s

final report (Vadivel and Subramanian, 2017), this ontology has some limitations:

 The SSN ontology excludes a hierarchy of sensor types, or domain types (i.e. subclasses

of ssn:FeatureOfInterest).

 Common terms to represent sensor measurements, unit types, or location are not included

in the SSN ontology.

11

4. State-of-the-art in Semantic Stream Processing

Based on a structured literature review on semantic stream processing, in this chapter we develop

a theoretical framework that will be helpful in understanding and analyzing the scientific efforts

made in the domain of Semantic Stream Processing. This analysis will constitute the foundation

for further identifying the issues and gaps in the current research literature. This systematic review

includes high-rated scientific conferences and journals.

Semantic Stream Processing (SSP) is defined by (Le Phuoc and Hauswirth, 2019) as a set of

models, principles and techniques used to analyze and process data streams by exploiting the

meaning of the stream data elements. Focusing on the progress that has been made in the field of

SSP to deal with highly dynamic data that needs to be processed in a timely fashion, the most

consolidated research findings include: (1) extensions of the RDF model and the SPARQL query

language, which are produced and implemented by a corresponding number of RDF Stream

Processing engines, and (2) several inference techniques proposed under the Stream Reasoning

label to gain new insights over the streaming data.

In the following we will point to some of the limitations identified in the above-studied

literature. The main scientific contribution of our thesis will be to address these limitations and

propose an alternative solution.

4.1. RDF Stream Processing

The RDF Stream Processing (RSP) research trend or Linked Data Stream Processing (Le-Phuoc,

Parreira and Hauswirth, 2012) proposes several RSP engines that use the RDF model in

representing stream data and execute continuous SPARQL queries over the RDF streams, using

various approaches.

The first RSP engines were centralized systems designed to run on a single machine by

applying continuous queries over RDF streams using SPARQL extensions. All these engines

extend the standard SPARQL grammar with additional features such as aggregation capabilities,

window operators, and the possibility to combine multiple streams. These systems are built on top

of existing Data Stream Management Systems (DSMS) to process the dynamic part of the query,

12

and RDF triple storage to evaluate the static part of the query. However, these systems are unable

to handle large volumes of data coming from heterogeneous sources and to execute multiple

continuous queries over RDF data streams in a distributed environment.

To remedy the limitations of centralized RSP engines and improve the performance of existing

RSP systems, distributed RSP engines were designed to enable concurrent queries over the

incoming data. Distributed RSP engines are based on a cluster computing infrastructure to perform

parallel processing over streams. However, some of the proposed system focuses only on dynamic

data.

Meanwhile, were proposed several solutions that collect data streams in real-time from

different sources, process and send data to various destination systems using a middleware

component. Some of the middleware solutions support semantic annotation of sensor data using

the SSN ontology which is extended with constructs for modeling the measurements of

temperature, humidity, light, and voltage sensors. Other solutions use a cloud infrastructure to

perform the semantic modeling and to execute SPARQL queries over the annotated streams.

However, none of the existing systems do not consider the edge computing paradigm for speeding

up and enhancing the efficiency of data analysis.

4.2. Stream Reasoning

Stream reasoners extend the traditional RSP engines with rule-based, logical, reasoning

capabilities. Some of the systems use reasoning languages that extend the first and the second order

logics with generic window operators. Some authors use approaches based on stream reasoning

models and techniques to process semantically-enriched data streams for supporting decision

making in smart environments (e.g. a smart city). Stream reasoning is combined with machine

learning techniques, such as supervised stream learning for stream data classification.

13

5. Design and Implementation of the Semantic Stream Processing pipeline

In this chapter we describe the adopted methodology when building the semantic stream

processing pipeline. We present the proposed system architecture by highlighting its main

components and the technologies that were used in the implementation process. We describe the

proposed extensions of the SSN ontology that were introduced in this work to model scenario

independent and scenario-specific concepts related to sensor networks. We briefly describe the

system configurations, and the alternative pipeline architectures that we consider in Chapter 6

when evaluation where is preferable to execute the semantic annotation task. Lastly, we discuss

the performance metrics that were chosen to validate or SSP pipeline.

5.1. Methodology

When building the Semantic Stream Processing (SSP) pipeline, the Design Science Research

(DSR) paradigm (Wieringa, 2014) was adopted, following an iterative development cycle with the

explicit intention of improving the pipeline’s performance which is empirically investigated taking

into consideration two IoT application scenarios: a smart airport and a smart factory. The

stakeholders are the emergency response teams which need to rapidly react for the rescue of

persons in case of critical observations have been sensed (and reasoned upon) within the smart

environment.

According to (Peffers, Tuunanen, Rothenberger, and Chatterjee, 2007), after identifying the

research problem, stating the motivations and defining the objectives, the next step in the DSR

process is to design and develop the artifact. The implemented SSP pipeline using Apache Kafka,

as a distributed streaming platform, and GraphDB, as a semantic database server, represents an

instantiation artifact (March and Smith, 1995; Hevner, March, Park, and Ram, 2004).

In order to achieve a suitable solution, it is necessary that the solution is developed iteratively

and is validated. This research utilizes two iterations prior to the construction of the final solution

pipeline. In each iteration, a prototype is implemented and evaluated based on some criteria.

Iteration one uses a smart airport use case to develop a scalable SSP pipeline following the Big

Data reference architecture. We assess the viability of the pipeline conducting several experiments

14

under various Kafka cluster configurations. The result of the validation process on the performance

of the first prototype using the scalability metric shows that the distributed Kafka cluster

configuration manages to support the semantic enrichment of sensor data. This Kafka cluster

configuration is used as input for the second iteration which utilizes a smart factory use case to

develop a low-latency SSP pipeline. To investigate where is it preferable to execute the semantic

annotation in order to deliver faster insights of the underlying sensor data, two alternative

architectures were implemented: semantic annotation after the raw sensor data is ingested into the

system, and semantic annotation directly on the sensing devices output by means of semantic edge

computing. We evaluate the performance of the alternative pipeline architectures using throughput

and response time metrics. Iteration two improves the developed pipeline in terms of speed and

data analysis demonstrating the pipeline’s efficiency. Iteration two represents the final artifact of

this research.

5.2. Proposed solution overview: a semantic stream processing pipeline

The main components of the proposed SSP pipeline are illustrated in Figure 2. Data sources are

represented by various sensors installed in a smart environment. In this thesis, wearable sensors

are used in combination with ambient sensors to support the target IoT application cases.

Geolocated audio sensors are taken into consideration to support the smart airport use case, while

the heartbeat, location and proximity sensors are used to build a smart factory ecosystem.

Figure 2. Proposed semantic sensor stream processing pipeline

(Zălhan, Silaghi, & Buchmann, 2019)

15

The continuous data gathered from sensor data sources is collected and processed by a

distributed data ingestion system for later analysis. In this thesis, Apache Kafka (Narkhede,

Shapira, and Palino, 2017) is employed for ingesting the sensor streams because it is able to handle

large-scale data in real-time. Also, Kafka stores data streams in a fault-tolerant manner using the

replication mechanism guarding against data loss.

The basic architecture of Kafka is organized around a few key terms: topics, producers,

consumers, and brokers. The message is the unit of data within Kafka. All Kafka messages are

organized into topics. Topics can be broken down into a number of partitions containing sequences

of messages that are spread over multiple servers working in parallel. Each partition can be

optionally replicated across a configurable number of servers to guarantee fault tolerance. Thus,

partitions are the modality in which Kafka provides scalability and replication.

Apache Kafka, as high-throughput distributed messaging system, is based on the

publish/subscribe model, where several producers write messages into topics, and several

consumers read the messages that were previously published by producers. Internally, Kafka runs

as a cluster which connects multiple producers and consumers to one or more servers, known as

brokers which receive messages from producers and then commits the messages to storage on disk.

Kafka uses Apache Zookeeper to store metadata about the Kafka brokers and consumer details.

To provide machine-readable and machine-interpretable descriptions of the ingested data, the

streaming data previously collected are turned into useful information using semantic data

annotations with the extended SSN ontology. The semantic descriptions for sensor streams are

persisted into a semantic graph database for reasoning, later analysis or integration with a legacy

IS (e.g., a notification system). In this thesis, we chose the GraphDB semantic database server to

store the annotated streams. According to recent survey (Bellini and Nesi, 2008) on performance

evaluation of currently available RDF stores, GraphDB outperforms existing semantic database

servers when considering the loading and indexing time for triplestore initialization. Load times

may increase causing a delay in deliver data at the expected time.

To access the sensor data and the legacy data stored as triples, the SPARQL client allows

querying the RDF descriptions of the large integrated dataset. The semantic streams stored in the

RDF graph database are retrieved and manipulated using SPARQL query language and SPARQL-

based rules to further explore the semantic descriptions in order to infer new knowledge and useful

insights.

16

5.3. Proposed SSN ontology extensions

Because the SSN ontology does not model a hierarchy of sensor types, nor domain types and does

not differentiate between sensor observations that have critical values and sensor observation

values that reveal normal observed ranges, we propose some extensions to the existing SSN

ontology to enable:

 hierarchy of sensor, observation, feature-of-interest and platform classes

 linking directly between sensors and features-of-interest, relationships between sensors and

critical observations, as well as relationships between different features-of-interest.

To overcome the limitations of the existing SSN ontology, we extend its syntax with additional

classes and properties in which some are scenario-independent and other are targeting specific use

cases. The knowledge base is enriched with a set of axioms, defining RDF statements built with

standard terms to establish machine-readable meaning for SSN properties and classes.

We create multiple axioms using the "rdfs:subClassOf" standard property provided by the

RDFS vocabulary to build a hierarchy of sensor classes, defining the Wearable Sensor concept

which represents sensors attached to human body, and the Ambient Sensor concept to model

sensors deployed into the physical environment. Also, more specialized sensor types are defined

to support specific IoT use cases.

In order to detect critical patterns in a smart environment, the sensor readings are compared

with threshold limits that define the normal observed ranges. Thus, we create a taxonomy of

observations by categorizing sensor observations into lower critical observations or upper critical

observations based on the sensor values generated into the environment.

We extend the "sosa:FeatureOfInterest" standard class to create a hierarchy of features-of-

interest in order to distinguish between active and passive things whose properties are being

observed. We model living, breathing entities such as actors and employees. In this process, we

use the Person concept provided by the Schema.org vocabulary. Similarly, we model passive

entities such as fixed equipment, buildings and indoor environments. For each active and passive

things we introduce more specialized entities to support different IoT uses cases.

We also define new relationships between proposed concepts with the help of the

"rdfs:subPropertyOf" standard property. Each proposed property is defined from domain to range.

We introduce a new property to describe the relationship between a sensor and its critical

observation (upper or lower critical). Also, we introduce new property describing relationships

17

between various features-of-interest (active or passive) and sensors. Some of proposed properties

have inverse properties to facilitate graph navigation. To define these relations in both directions

we use the "owl:inverseOf" provided by the OWL standard terminology.

Furthermore, we define relationships between fixed equipment and the environment in which

they are stored, between an actor and the environment in which it acts. Also, we define a hierarchy

of observable characteristics of features-of-interest. These observable characteristics link sensor

observations to observation results.

5.4. Solution implementation

Kafka cluster configurations are made using the Confluent1 platform which is used to build real-

time data pipelines and streaming applications by integrating data from multiple data sources. We

implement two different Kafka cluster setups: (1) single node – single broker configuration; and

(2) single node – multiple brokers configuration. These configurations will be validated later, in

chapter 6, where we investigate the most suitable Kafka cluster configuration to support the

semantic annotation of large-scale sensor data.

For identifying the place in the pipeline where is preferable to execute the semantic modeling

task, we have implemented two alternative pipeline architectures:

(1) Semantic modeling on consumer side – where Kafka producers generate and publish

sensor streams into topics, while Kafka consumers subscribe to these topics, then read,

annotate the sensor streams and store the corresponding RDF streams triplestore.

(2) Semantic modeling on producer side – where Kafka producers generate, annotate sensor

streams and publish the corresponding RDF streams into topics, while Kafka consumers

subscribe to these topics, then read and persist the RDF streams in triplestore.

In both pipeline architectures, sensor streams conform to a schema which contains several

attributes: sensor identifier, sensor type, the number of the platform that host various sensors,

stream identifier, sensor value, as well as the timestamp marking the time when the sensor value

was generated into the smart environment.

1 https://www.confluent.io/product/confluent-platform

18

To simulate the streaming data coming from various sensors deployed in a smart environment,

we have defined Kafka producers and consumers using the main classes exposed by the Kafka-

python2 library.

5.5. Solution validation

The proposed pipeline’s performance is evaluated using various metrics: throughput, scalability

and execution time. The ingestion system that feeds continuously the pipeline with sensor streams

must be capable to process high-throughput data. Furthermore, the processing pipeline should

scale to very high throughput. Apache Kafka, as a data collection and stream processing

component of our data pipeline, was designed for Big Data use cases which need horizontal

scalability for both message senders and message receivers. Also, we are interested to determine

the necessarily amount of time to generate a message in dependence to where the semantic

modeling task is achieved.

2 http://github.com/dpkp/kafka-python

19

6. Use Cases in IoT Smart Environments

In this chapter, we present two IoT application cases to illustrate how the SSP pipeline introduced

in Chapter 5 can be used in practice. The IoT use cases chosen in thesis belong to different

categories of smart cases of IoT. The smart airport application case falls into the governance

application category of IoT use cases, while the smart factory application case belongs to the class

of industrial use cases of IoT. First we describe the scenario of each IoT application case, then we

present the corresponding design decisions, and lastly we discuss the experimental results.

6.1. Smart Airport

In order to effectively prevent future terrorist attacks, the infrastructure of a smart airport is

designed with audio sensors and modern technologies, such as Automatic Speech Recognition

(ASR) and geo-localization technology. The purpose of ASR technology in the smart airport

context is to detect suspicious conversations of passengers and alert security operators to take rapid

actions in case critical patterns are detected into the underlying uttered discourse. The speech

recognition component is out of scope for this research study, as we focus on the semantic

integration architecture and parallelization of the semantic annotation effort. We use previous

project experience (Zălhan, Stan, Teodorescu, Saupe, & Duma, 2016) regarding the building of an

ASR system and the development of such a component is part of the future work.

To simulate the streaming data from the geolocated audio sensors deployed in a smart airport,

we have used Producer and Consumer APIs that support custom implementations to write and read

streams of data in the Kafka cluster. The published messages are written into a topic. In Figure 3,

we present the semantic model of a raw audio sensor stream originally written in JSON format.

Because some aspects such as sensor value units and measurements, or dynamic behaviors such

as sensor location, are not tackled by the existing SSN ontology, in the semantic annotation process

of sensor data we use the „Quantities, Units, Dimensions and Data Types” (QUDT)3 vocabulary

3 http://www.qudt.org/

20

to model acoustic units, and geospatial vocabularies such as GeoSPARQL4 to model the location

of an audio sensor in the smart airport environment.

Figure 3. Description of an audio sensor observation (Zălhan, Silaghi, și Buchmann, 2019)

The resulted RDF descriptions are published into GraphDB for later analysis and querying.

The data stored in the RDF graph database is retrieved and manipulated using SPARQL query

language which is used to infer new information and knowledge from the existing one by executing

various queries over the RDF statements. Using a more complex query, the system notifies the

security operators responsible with the sector where an upper critical observation was made by

sending them a message on their telephone. When defining this query, we semantically lift the

airport legacy database to connect it with the graph that describes sensor data.

We use the smart airport ecosystem to decide which is the most suitable Kafka-based scenario

for achieving the semantic modeling task. Two different Kafka cluster configurations were set up:

(1) single node – single broker Kafka cluster configuration; (2) single node – multiple brokers

Kafka cluster configuration. The experimental results from Figure 4 show that in the second Kafka

scenario, the Kafka cluster manages to cope with ingesting large volumes of sensor data by

distributing the write load over brokers that are working in parallel. Moreover, the distributed

configuration of the Kafka cluster sustains the semantic annotation of massive amounts of sensor

data using multiple consumer instances that concurrently read the topic messages.

4https://www.opengeospatial.org/standards/geosparql

21

Figure 4. The number of producers versus the number of published or consumed messages in

both Kafka-based scenarios

6.2. Smart Factory

The smart factory ecosystem is focused on worker’s safety by monitoring health status in real-time

using heartbeat, location and proximity sensors. The motivating design problem context is to

support a smart factory with a safer workspace allowing emergency interventions and incident

management during natural disasters, where ambient and wearable sensors become relevant for

preventing workplace injuries or death of employees. Heartbeat and localization sensors are

attached to a worker’s body to monitor its heart rate, and its spatial coordinates. Proximity sensors

are attached to factory machinery to detect the presence of a human body over a distance, such as

a worker walking too close to a piece of heavy machinery due to limited visibility

To simulate the data streaming from the aforementioned sensors deployed in a smart factory

ecosystem, we have crated Kafka producers and consumers that write and read streams of data in

a Kafka cluster. The generated messages are written by producers in different topics. The semantic

annotation scheme of sensor streams, originally written in JSON format, is similar to the one used

in the smart airport application case. We use the QUDT vocabulary to provide machine-readable

access to unit and unit type information (beat per minute for a heartbeat sensor, and the distance

in centimeters for proximity sensor), as well as the WGS84 Geo Positioning5 geospatial vocabulary

to model the dynamic location of factory worker.

Once the semantic descriptions are persisted into the triplestore, the resulted knowledge base

can be further explored through SPARQL-based reasoning to gain useful insights. We define

5https://www.w3.org/2003/01/geo/wgs84_pos

22

complex SPARQL queries to retrieve the spatial coordinates of a worker whose heartbeat sensor

has detected a lower critical observation. Also, we execute SPARQL queries for identifying the

closest worker as sensed by a heavy machine’s proximity sensor.

In the smart factory application case, we focus on the core processing pipeline to identify where

is preferable to process the raw sensor data. To assess the viability of the SSP pipeline, two

different architectures were implemented: semantic modeling on consumer side (S1); and semantic

modeling on producer side (S2). In S2 architecture, raw sensor streams are semantically processed

at the edge of the sensor network, near the sensing devices.

Table 1. Annotated messages and corresponding RDF triples in both implemented architectures

Producers

S1 S2 Throughput

multiplication Messages RDF triples Messages RDF triples

10 529 8993 5703 96951 10,78

20 558 9486 6253 106301 11,21

30 696 11832 6207 105519 8,92

40 579 9843 6023 102391 10,40

50 357 6069 6043 102731 16,93

60 652 11084 5714 97138 8,76

70 707 12019 5902 100334 8,35

80 851 14467 5904 100368 6,94

90 751 12767 5911 100487 7,87

100 705 11985 6091 103547 8,64

Table 1 summarizes the number of annotated messages and their corresponding RDF triples,

in the alternative architectures (S1 and S2). It can be seen that when the semantic modeling is

accomplished by edge sensors, even ten times more annotated messages are generated (and

implicitly, the number of corresponding RDF triples it is about ten times larger. In the semantic

edge architecture, the data does not waste time to travel through the pipeline because the semantic

annotation is performed locally, on edge sensors.

23

7. Conclusions and future work

In this thesis, we proposed a novel semantic stream processing pipeline for sensor data and offered

two interesting application cases to evaluate its performance. The architecture of the proposed

pipeline contains multiple components that cover all aspects of an integral data processing chain:

data collection, semantic annotation, RDF data storage and query processing of sensor streams.

Throughout the entire research we have been directing our efforts towards achieving all the

proposed objectives.

Based on a literature review with respect of semantic stream processing, we have analyzed

existing authors’ approaches for processing in real-time large volumes of sensor data continuously

generated by heterogeneous data sources de date and extracting useful information from

underlying data. Moreover, we have identified the limitations of existing semantic stream

processing systems. The existing systems do not consider the edge computing paradigm for

speeding up and enhancing the efficiency of data analysis. Also, the SSN ontology identified in

the literature does not model sensor types, data measurements units, location, mobility and other

dynamic behaviors. We overcome these limitations by extending the SSN ontology with new

classes and properties to model sensor types, specific domains, critical observations and

relationships between them.

Our middleware solution for semantic processing of sensor data uses another distributed

messaging system called Apache Kafka, because it has better throughput, built-in partitioning for

parallel data consumption than most messaging system have, which makes it suitable to build low-

latency processing pipelines. Another aspect that differentiates our solution from other existing

middleware solutions is the combined approach for semantic annotation mixing the SSN ontology

with other vocabularies.

To obtain semantic interoperability with SI that rely on the annotated sensor streams, we

integrate the sensor data graph with legacy databases to support the development of a Hybrid

Semantic System for Incident Management. In this process, we hybridize the existing SSN

ontology with additional terms from other vocabularies to model information about individual

persons belonging to emergency intervention teams that act in a smart environment.

24

The next goal is to setup a highly-distributed Kafka solution that consists of multiple nodes

with multiple brokers. This configuration is desirable to advance the technological readiness

level of our proposal and is on-going work that will employ a high-performance computing

infrastructure.

25

References

Bellini, P., & Nesi, P. (2008). Performance assessment of rdf graph databases for smart city

services. (Elsevier, Ed.) Journal of Visual Languages and Computing, 45, 24-38.

Cisco. (2018, February). Cisco Edge-to-Enterprise IoT Analytics for Electric Utilities Solution

Overview. Preluat pe March 25, 2020, de pe Cisco:

https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/big-

data/solution-overview-c22-740248.html

Domingue, J., Fensel, D., & Hendler, J. (2011). Handbook of Semantic Web Technologies.

Springer.

Firouzi, F., Chakrabarty, K., & Nassif, S. (2020). Intelligent Internet of Things: from Device to

Fog and Cloud. Springer.

Govindan, K., & Azad, A. P. (2015). End-to-end service assurance in IoT MQTT-SN. 2015 12th

Annual IEEE Consumer Communications and Networking Conference (CCNC) (pg. 290-

296). IEEE Press.

Haller, A., Janowicz, K., Cox, S., Le Phuoc, D., Taylor, K., & Lefrançois, M. (2017, October

19). Semantic Sensor Network Ontology. Preluat de pe W3C Recommendation:

https://www.w3.org/TR/vocab-ssn/

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information Systems

Research. MIS Quarterly, 28(1), 75-105.

Janowicz, K., Haller, A., Cox, S. J., Le Phuoc, D., & Lefrançois, M. (2019). SOSA: A

lightweight ontology for sensors, observations, samples, and actuators. Journal of Web

Semantics, 56, 1-10.

Jerry, M. (2019, March). SOA vs. EDA: Is Not Life Simply a Series of Events? Preluat pe March

5, 2020, de pe Confluent: https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-

series-of-events

Klyne, G., Carroll, J. J., & McBride, B. (2009). Resource description framework (rdf): concepts

and abstract syntax, 2004. Preluat de pe http://www. w3. org/TR/2004/REC-rdf-

concepts-20040210

Kreps, J. (2014, July 2). Questioning the Lambda Architecture. Preluat pe August 6, 2019, de pe

O'Reilly: https://www.oreilly.com/ideas/questioning-the-lambda-architecture

Le Phuoc, D., & Hauswirth, M. (2019). Semantic Stream Processing. În S. Sakr, & A. Y.

Zomaya, Encyclopedia of Big Data Technologies. Springer. doi:10.1007/978-3-319-

63962-8_287-1

26

Le-Phuoc, D., Parreira, J. X., & Hauswirth, M. (2012). Linked Stream Data Processing.

Reasoning Web. Semantic Technologies for Advanced Query Answering, (pg. 245-289).

Vienna. doi:10.1007/978-3-642-33158-9_7

Li, Y., & Zhong, N. (2004). Web mining model and its applications for information gathering.

Knowledge-Based Systems, 17(5), 207-217.

Liu, X., Dastjerdi, A., & Buyya, R. (2016). Stream processing in IoT: Foundations, state-of-the-

art, and future directions. În R. Buyya, & A. Dastjerdi, Internet of Things: Principles and

paradigms (pg. 145-161). Elsevier.

March, S. T., & Smith, G. F. (1995). Design and natural science research on information

technology. Decision support systems, 15(4), 251-266.

Marz, N., & Warren, J. (2015). Big Data: Principles and best practices of scalable real-time

data systems. New York: Manning Publications Co.

Motik, B., Patel-Schneider, P. F., Parsia, B., Bock, C., Fokoue, A., Haase, P., . . . Sattler, U.

(2009). OWL 2 web ontology language: Structural specification and functional-style

syntax. W3C recommendation, 27(65), 159.

Narkhede, N., Shapira, G., & Palino, T. (2017). Kafka: the definitive guide: real-time data and

stream processing at scale. O'Reilly Media, Inc.

Noura, M., Atiquzzaman, M., & Gaedke, M. (2019). Interoperability in Internet of Things:

Taxonomies and Open Challenges. Mobile Networks and Applications, 24(3), 796-809.

doi:10.1007/s11036-018-1089-9

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A Design Science

Research Methodology for Information Systems Research. Journal of Management

Information Systems, 24(3), 45-77. doi:10.2753/MIS0742-1222240302

Stack, T. (2018, February). Internet of Things (IoT) Data Continues to Explode Exponentially.

Who Is Using That Data and How? Preluat pe April 25, 2020, de pe Cisco Blogs:

https://blogs.cisco.com/datacenter/internet-of-things-iot-data-continues-to-explode-

exponentially-who-is-using-that-data-and-how#comments

Stanford-Clark, A., & Truong, H. L. (2013). MQTT for sensor networks (MQTT-SN) protocol

specification. International business machines (IBM) Corporation version, 1, 2.

Stonebraker, M., Cetintemel, U., & Zdonik, S. (2005). The 8 requirements of real-time stream

processing. ACM Sigmod Record, 34(4), 42-47.

Vadivel, V., & Subramanian, S. (2017). Semantic Technologies for IoT. În B. Tripathy, & J.

Anuradha, Internet of Things (IoT): Technologies, Applications, Challenges, and

Solutions (pg. 265-294). CRC Press.

Wieringa, R. J. (2014). Design science methodology for information systems and software

engineering. Springer.

27

Zălhan, P.-G. (2019). Transforming Big Data into knowledge using semantic stream processing

technology: challenges and early progress. Proceedings of the 18th International

Conference on INFORMATICS in ECONOMY (IE 2019) Education Research & Business

Technologies, (pg. 365-370). București.

Zălhan, P.-G., Silaghi, G. C., & Buchmann, R. A. (2019). Marrying Big Data with Smart Data in

Sensor Stream Processing. A. Siarheyeva, C. Barry, M. Lang, H. Linger, & C. Schneider

(Eds.), Information Systems Development: Information Systems Beyond 2020 (ISD2019

Proceedings). Toulon, France. Preluat de pe

https://aisel.aisnet.org/isd2014/proceedings2019/ManagingISD/8/

Zălhan, P.-G., Stan, A., Teodorescu, L.-R., Saupe, A.-B., & Duma, M. (2016). A Kaldi-based

ASR Solution for the Romanian Judicial System. International Conferece on

INFORMATICS in ECONOMY (IE 2016): Education, Research & Business

Technologies, (pg. 191-197). Cluj-Napoca.

