UNIVERMTATEA BABEY-BOLYAI
BABES-BOLYAI TUDOMANYEGYETEM
BABES-BOLYAI UNIVERSITAT

TRADITIO ET EXCELLENTIA

Statistical Physics Methods for
understanding Complex
Networks

a dissertation presented
by
Istvan Papp
to
The Department of Physics

Scientific supervisor
Professor Dr. Zoltdn Néda

Babes-Bolyai University
Cluj-Napoca, Romania

April 2020






Statistical Physics Methods for understanding Complex
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Abstract

Computers went through a fast evolution in the last few decades and this also led to big advance-
ments in data based sciences. While databases grew quickly the scientific community learned to
handle easier large amount of data. This phenomenon also affected network sciences. Networks
grew with the amount of information gathered and completely changed how the scientific com-
munity thinks about networks. Complex systems nowadays commonly have network descriptions,
while in almost all domains from biology to computer science, engineering, economics, politics, etc.
rises at least one question, where the answer is included in finding the community structure. Tra-
ditional definition of these communities are based on their connectivity, members of a community
have more connections within the community than with the rest of the network. We implemented
the concept of Voronoi diagrams used mainly to divide geometric space onto network partition-
ing. We defined a metric system using the edge clustering coefficient as distances between nodes,
and introduced a local density measure based on these distances to identify the Voronoi gener-
ator nodes. Then we updated this method with a generalization of the seeds by selecting them
randomly and perform the Voronoi partitioning multiple times with different sets of seeds, giving
the ability of the algorithm to reach a fuzzy clustering property. We also studied human and in-
formation mobility through various experiments with some human travelling modes (road and air
transit) and data transferring measurements on the Internet. We examined the average speed as
function of the geodesic distance and transmission times of messages depending on the distance.
The results suggested a sub-linear trend in all cases. The cause of these trends is not only due to
the networks’ structure, delays also exist on individual nodes including the start and ending points.
For a better understanding of the Internet network’s features we introduced a model which was
capable of reproducing both the structure and the observed dynamic scaling characteristics. The
thesis contains three chapters: a motivation and introduction to the field; a theoretical and math-
ematical description of network clustering, arguing the benefits of networks embedded in space;

and the last chapter contains experiments and modelling on mobility networks and the Internet.
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Introduction

Social science, information theory, technology, biology, neuro-science, etc., all study systems that
can be represented as networks, and graph analysis has become crucial in understanding the fea-
tures of these systems [1, 2].

In almost all systems with graph representations rises at least one problem, where finding the
community structure of the network might play a key role in understanding it. An immediate
problem is distinguishing importance of publications in a citation network with overlapping disci-
plines. Communities also exist in several networked systems from biology to computer science,
engineering, economics, politics, etc.

Usually communities are defined as vertices connected more densely within their group than
compared to their average connectivity in the graph. The challenge in identifying any community
structure could be in the nature of its description, as it is qualitative, no widely accepted mathe-
matical definition has been developed yet [3]. While a large variety of community definitions and
detection methods exist [3], combining meaningful mathematical definitions with computation-
ally efficient algorithms remains a problem. Similar clustering problems also occur in data mining,
pattern recognition, machine learning and statistical data analysis [4, 5]. However, they are de-
fined in continuous metric spaces, leading to a simpler formulation. Voronoi diagrams [6] are used
commonly to divide metric space into subsections, called Voronoi cells.

Working with networks embedded in metric spaces are very important, not only for good clus-
tering, but they surround us in nature. Even human mobility and our communication channels
(as an immediate example the Internet) are networks embedded in metric space. From our every-
day experience we have learned, that the travelling time does not scale linearly with the travel
distance[7-9]. The cause of this is more intricate and includes various effects. To travel greater
distances we use highways, but most of the time is taken up by getting in and out of cities, hence
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closer cities might be connected also by increased travelling time. Similar situation is observable
on air traffic, large portion of the time is spent on taking off, landing and parking. The Internet
on the router level is also a complex network embedded in geographical space. Beside it's topo-
logical scaling properties ( scale-free degree distribution ) [10, 11], it also exhibits a dynamical
scaling, similar to the human mobility. Here we investigate these effects more extensively and
search into their observable causes using a variety of online databases and GPS tracking, and a
few experiments based on Internet control message protocol: Ping and Traceroute.

To explain this novel scaling law and other measurable topological properties of the Internet a
realistic model has to be built. Such a model must be based on realistic assumptions regarding the
wiring process and has to reproduce the measured topological properties of the Internet, including
the observed scaling of the communication speed with the distance.

The thesis contains two main chapters. The first contribution deals with mathematical descrip-
tion and application of our network clustering method. The second chapter contains experiments
and modeling regarding the scaling properties of travel networks and the Internet.



Community detection in complex
networks

2.1 Detection by graph Voronoi diagrams

To present the reasoning behind our clustering technique, we first demonstrate its essential as-
pects on a community detection problem defined in two-dimensional Euclidean space (see figure
2.1(a)).

Let us select G = (V, E) as a weighted, directed graph with V of NV vertices and a set £ of M
links. We denote by [(u, ) > 0 the weight of a link connecting vertex 1 and v. The length of a
path is acquired by adding up the weights of links constructing the path. We denote the distance
linking two vertices v; and v; as d(v;, v;), which is the length of shortest path connecting them.
This definition of a link length ensures that the network can be embedded into a metric space.
Naturally, the more straightforward selection of [ (1, v) is 0 when pand v are not connected; 1 when
they are directly joined. We select a group of S = (y1,72,...,7,) C V generator vertices. The
resulting Voronoi partitioning of the network G respecting S will be the splitting of V' into vertex
groups V1, Vs, ..., V, C V, where each group (Voronoi cell) belongs to a generator and satisfy: i)
Network G contains all Voronoi cells without overlapping; ii) All vertices in a cell are closer to
its generator vertex than any other seed. Detailed mathematical characteristics of Voronoi graph
diagrams are described in [6] along with distinct identification techniques and their corresponding
computational complexity.

To make efficient gain of our geometric approach, we need appropriate definition for distance
measurement that transforms vertex membership into segregation in metric space. Here we have
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2.1. Detection by graph Voronoi diagrams
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Figure 2.1: Locating Voronoi cell centers. (a) In order to find the best partitioning of the black
points in clusters we divide the plane in 12 x 25 squares and estimate the local density (number
of points) in every square. The squares are colored according to their density from green (0 dots)
to red (largest 6 dots). The square with the highest density in its vicinity within a radius (gray
circles, r = 4 up and r = 7 down in square units) becomes a generator square (marked white star).
The Voronoi tessellation is symbolized with blue lines. (b) Illustrating the mapping of algorithm
on networks: every node will have a local density, shown by the size of the vertices and the
mountains in the community labels. Lengths of connections are proportional with inverse edge-
clustering coefficient (marked by width of connections). Seed nodes are indicated by their local
density having the largest in their neighborhoods with radius »; < ry < r3. Clusters sequentially
merge together as r radius increases.

chosen to adjust one of the easiest, generally accepted and computationally very efficient measure:
the Edge Clustering Coefficient (ECC) proposed by [12]. The ECC of a link connecting vertex i and

vertex j is defined as
Zi,j

min[(k; — 1), (k; — 1)]
where k;, k; are the degrees of these two vertices, z; ; is the number of triangles to which the link
belongs and min[(k;—1), (k;—1)] is the number of possible triangles to which it could belong, since
it is the lower value of the degrees of the two adjacent vertices, minus one (the link examined).
The lower the ECC, the more probable it is to connect nodes in distinct clusters. Therefore, in our
graph Voronoi partitioning method, we specify connection length (weight) as inverse of the ECC.

Cij = (2.1)

Additional objective is to pick one seed vertex in each community. We have chosen a generator
node selection procedure using relative local density of the vertices [3], defined as:

m

Pi= (2.2)
where m is the internal degree (number of incoming links) of the neighbourhood a sub-network
containing first neighbours of vertex ¢, and & is the external degree (humber of outgoing links) of
the neighbourhood. This density is higher for nodes inside the center, dense part of communities,
as illustrated in figure 2.1(b). Just like in 2D space, generator vertices on the network will be se-
lected as the nodes with largest local density within the region of radius ». Overall, the detection
complexity of generator vertices remains much below O(M g) (for g Voronoi seeds), and partition-
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2.1. Detection by graph Voronoi diagrams

ing has complexity of O(N log N) [6], for detailed computational efficiency check the thesis.

As the publication by Fortunato et al. reasoned in [3], it is necessary to test community detection
methods both on benchmark graphs (produced with predetermined communities, ground-truth)
and on real-world networks. For benchmark testing please take a look at the thesis.

Detecting the community structure of real-world graphs however is not trivial. In addition, effi-
ciency of any method is more difficult to evaluate as the information of ground-truth is not avail-
able. New algorithms are therefore tested in comparison with previously acknowledged methods
through a quality measure. To be more specific, we have selected the modularity. The modularity
is defined as follows: @ = ;- > (Aij — P3)6(Vi, V;), here summing up over all pairs of nodes. A is
the adjacency matrix, m the total number of links in the network, and P;; stands for the expected
number of links between nodes i and j in the null model. Here meaning, the random graph model.
The ¢ function returns 1 if < and j nodes are in the same community that is V; =V}, returns 0 oth-
erwise [13]. We evaluated our algorithm on several real-world networks that are regularly used in

the literature, structurally and originally they are very distinct:

1. The well known network of friends inside the group of 34 members in the Zachary karate
club connected with 78 links [14].

2. Network of neurons from the nematode Caenorhabditis elegans [15, 16] containing 297
vertices and 2359 connections.

3. Protein-protein interaction network of yeast [17] comprising of 1845 nodes connected by
4405 links.

4. A revised version of the collaboration network between scientists on condensed matter
archive at www.arxiv.org. This network consists of 39576 vertices and 175692 edges, con-
structed on preprints which were published in the archive during 1 January 1995 - 31
March 2005 period [18].

5. Web of connections between American political blogs [19] including 1223 vertices and
19087 links.

We compared our algorithm with five commonly used methods (for more information see Ad-
dendum ): 1) the Louvain algorithm optimizing modularity [20]; 2) the label propagation algo-
rithm (LPA) [21]; 3) GANXIS or SLPA (speaker-listener label propagation algorithm) [22, 23]; 4)
link-communtiy detection [24] and 5) Infomap (IM) [25, 26]. Our approach performed as the sec-
ond best, the modularity it reaches is always above average. The only algorithm that has better
performance is Louvain, it was also expected, since it optimizes the very same quality function we
use to evaluate performance.



2.2. Detection by stochastic Voronoi diagrams
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Figure 2.2: Real-world network testing. Modularity obtained on all five real-world networks with
distinct methods (specified in the legend). (a) Q modularities in increasing order on every tested
network.(b) Shows the relative error (Q — (Q))/(Q), here (Q) represents the average of results for
all algorithms computed apart for every network.

2.2 Detection by stochastic Voronoi diagrams

For a given undirected network with NV vertices and M edges, we neglect the careful selection
of Voronoi seeds, instead we use a set of Voroni cells, where each set is obtained from arbitrarily
picked generators [27], with the following main steps: i) We randomly select a number of g vertices
from the network and use them as Voronoi seeds to perform a graph-Voronoi partitioning. ii) We
calculate the Voronoi cohesion matrix or the co-location probabilities from averaging over the
co-location matrix by repeating the tessellation R times (see figure 2.3).

For testing the method we took large non-directed random graphs with N — oo vertices or-
ganized in m non-overlapping but connected Erdés-Rényi (ER) type communities of size N; =
a;N, 0 < o; < 1 and connectivity featured by the link density matrix ¢;; = M;;/(N;N;), i,7 = 1,m,
meaning the probability of having a connection with endpoints in 7 and j modules. M;; represents
the number of links connecting the two modules, as a rule, an O(N?) dependence on network size.
We denote with ¢; the matrix’s diagonal elements, and we will refer to it as intra-module link densi-
ties while off-diagonal elements will be called as inter-module (bridge) link densities. The number
of bridge nodes in module i forming a bridge with module j is B;;. Let us define the following
events: i) X;; - two vertices from communities i and j, respectively, i, j = 1,m, are assigned to
the same Vronoi-cell; i) Gpyny..nnys Doy i = g - the g seed vertices are shared between m com-
munities so that n; seeds will get in module i. {G,,,,,...,,} is @ complete set of C;’”Q}H events. It
is equivalent to the amount of realizations for separating a linear chain of g equal balls by m — 1
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2.2. Detection by stochastic Voronoi diagrams

arbitrarily positioned barriers. C* indicates the binomial coefficient for the k-combinations of n
events. Accordingly:

Xij= Y. Xij Gunyom, - (2.3)
ninz...Nng
Then the probability of one vertex from community i and one from community j, belonging to the
same Voronoi-cell or shortly Voronoi-cohesion is:

Cij = P<le> - Z P(Xij|Gn1n2...ng>P(Gn1n2...ng) s

nin2..ng

which can be given in the form of:
c=V.g, (2.4)

where ¢,V and g are matrices of size N(N + 1)/2-by-1, N(N + 1)/2-by-CJ'" ", and CJ ) -by-1,
respectively. For the case study of extreme modularity please take a look at the thesis.

Let us examine a case of two equivalent modules, both with size N > 1 and connection density
q, and bridge density b. Next we have summarized some meaningful quantities of a vertex pair as
a function of their location (in module 1. or 2.). The first table collects the probability distribution
of their common distances. Presuming that they are both generator vertices the second table
contains the relative sizes of the matching Voronoi-cells in all of the modules:

Voronoi
cohesion

A NMNTNON~NO0OO N
-

e

NHOWOWONOU D WN =
=
COWVWONOUTH WN

==
N =

AFNMTINO~NOO O AN ANMTINON~NOOO AN A NMNMTNONOO O AN
— - — —

Figure 2.3: The basic idea for stochastic graph Voronoi diagrams. Figures show how the Voronoi
cohesion map is calculated using R number of tessellations. Every sub-figure shows a realization of
the binary colocation matrix generated with 2 seed nodes randomly chosen each time for example
(1, 5), (2, 7), ..., (5, 10). The values of the colocation matrix are 1 = white for nodes in same cell,
0 = black if nodes are in different cells. The average over all R matrices reveals the cohesion map
in other words the probabilities of nodes being in the same community.



2.2. Detection by stochastic Voronoi diagrams
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where s is the relative size of Voronoi-cell 1 in module 1 when the generator vertex 2 is located
in module 2. The value of s can be calculated by summing up the following contributions (figure
2.4(a)):

1. bq fraction of module 1 has direct connections to both of the generator nodes and is evenly
shared among the two Voronoi-cells;

2. ¢(1 —b) fraction has direct connections only to generator 1, as a result it contributes fully
to cell 1;

3. (1 — q)b has direct connection only to seed 2 therefore is not contributing to cell 1;

4. (1-b)(1—gq)is not connected directly to both generators. It will be divided between the two
generators proportionally to the number of shortest paths. The “modus operandi” node to
generator 1 can be from module 1 with a probability of ¢> and b? from module 2. Similar
values for the distant generator 2 are both &g, therefore, a fraction of (¢* + v*)/(q + b)? of
this domain corresponds to cell 1.

Adding up the contributions results:

qb 1—0b

[q° +b° +2¢°] . (2.5)

Constructing matrix ¢ from equation (2.4):

1/2 1—25(1—3) 1/2 1/4
V = 1/2 23(1—3) 1/2 , 8= 1/2
1/2 1—28(1—8) 1/2 1/4
Therefore 5
C11 = Co9 = Z — S(l - S) 5 (26)
1
Cig = Z_l + 8(1 — S) . (27)

whence the connection density dependent contrast is

v = % [1—4s(1—s)] . (2.8)

8



2.2. Detection by stochastic Voronoi diagrams
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Figure 2.4: Non-infinitesimal bimodular connection density. lllustration of how two Voronoi re-
gions share two equal in size ER-type modules, with non-infinitesimal inter-modular link density,
b. (b) Shows how the intramodular link densities, ¢; = ¢» = ¢, and intermodular link density, b in-
fluence the relative size of cell 1 in module 1 (described by equation (2.5)). (c) The corresponding
contrast calculated from equation (2.8). (d, e) Presents the intra- and intermodular Voronoi co-
hesions depending on the intermodular link density, b. Analytical results for several intramudular
connection densities from equations (2.6) and (2.7) are shown in comparison with simulations ob-
tained from large ensemble of 5000 tessellations, meaning 10 topologies and 500 generator node
sets on a network of N = 2 x 800 verices.
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2.2. Detection by stochastic Voronoi diagrams

If b = ¢, then the intra- and intermodular connection densities equate, v = 0, this means the
network is no longer modular. The the maximum contrast is v = 1/2, when the bridge size is
negligible. The striking feature of this technique is that the theory can be confirmed even by a
comparatively low network and ensemble size (figure 2.4).

(a) (b)
3 All pairs c 3 All pairs c
105 7// Intra pairs o 106 ’//. Intra pairs o
\\\ Inter pairs $ \\\l Inter pairs $
10° B 10° B
) v ) v
= I = 4
4
3 10 9 g 10
Y— % Y—
©10° o ©10°
(e} © o
Z .2 Z .2
10 10
10! 10
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
cohesion cohesion

Figure 2.5: Benchmark network cohesion matrix. (a) Cohesion histogram for every vertex pair from
the cohesion map of a benchmark network consisting of N = 500 nodes, M = 5000 connections,
and m = 9 modules [28, 29]. For the cohesion calculation g = 15 generators, and R = 3000 repeats
were implicated. Intra- and intermodular node pairs are colored based on the ground-truth. The
insets are cohesion and the inter-node distance matrices, ordered based on truth information and
here the larger values are closer to the main diagonal line. (b) Cohesion histogram calculated for the
exact same network but with the contrast boosting method(for more detail please check section
2.2.6 in the thesis).

After attaining effective convergence, the network’s community structure can be extracted from
the cohesion matrix. The easiest method is to put a threshold in the cohesion histogram (see figure
2.5 (a)). In figure 2.5(a) we plot the distribution of the Voronoi cohesion matrix elements for all
node pairs. For further optimization, after every 200 repeats we relocate a small percentage of low
correlated nodes’ connections to highly correlated unconnected node pairs. This way we increase
the intra-inter gap while keeping the community structure unharmed 2.5(b).

Communities can then be found the following way: 1. initially every node gets a separate com-
munity label; 2. in a loop over all vertices the label of a node is changed to another node’s label,
which has an unchanged label and has a similar cohesion value within a predefined threshold.
While the gap in the histogram appears to be a clear modular separation, these methods rarely
work optimally for community detection in real-world networks. For detailed analysis on real-
world networks please take a look at the thesis.
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Scaling in real-world networks

3.1 Further we travel the faster we go: a general rule for human mobility net-
works
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Figure 3.1: The apparent travel speed for all travel modes (estimated from averaging travel time
on the geodesic line) as a function of the travelling distance. Boxes show speed and distance
intervals on which the specified mode is used. Dashed line indicates a power-law trend. The
two inset figures present some averaged results broken down on the two most popular travelling
modes: car and air travel.

Firstly, for all human travel modes, extending from walking to cosmic transport, we determine
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3.1. Further we travel the faster we go: a general rule for human mobility networks
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Figure 3.2: Topology of travel networks. Scaling of the cruising distance (z) and geodesic distance
(w) on distinct travel networks. The lines indicate avalid 2 =1+ C'- w~? relationship. 3 values are
shown in the legend. We also show here the network topology of some human mobilities used in
this study.

approximately the distance and velocity magnitudes (boxes on 3.1). The first impressive outcome
we can observe is that the boxes follow a power-law trend with an exponent of roughly 0.5 as the
distance increases. We find from these outcomes that when we consider roadways with similar
ranks, with roughly the same speed limits (HU2, USA1, USA2), a power-law trend is attained with
not so different scaling exponents. Regarding air transit, only direct flight information between
airports have been used and the results show similar scaling with exponent of about 0.25.

The topology of the networks is the first obvious cause, on which the transportation is taking
place. Vertices are not necessarily connected by straight roads and there are typically no direct
routes between them [30]. To travel from one vertex to another, the commuters follow a path
on the graph with the shortest road-length, noted here as commuting distance and labelled with
z. As the w geodesic distance of the transit increases, the z commuting distance comes closer
in approximation to w. Evaluating the topology for certain transport networks in this study, we
notice a rather general scaling relation (see figure 3.2):

2140w (3.1)
w

The proper 3 exponents visibly separate the trends for road- and air transit networks. For road
travel 8 =~ 0.2 — 0.3 was fitted, and for the air travel 5 ~ 1.4 — 1.5 was found. Meaning that the z
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Figure 3.3: The travelling speed. The average apparent speed, u, depending on the cruising dis-
tance, z. Results are plotted for road travel and air transit together, both having a successful fit
using the formula in equation (3.2) with o = 0.5.

value for the case of road travel networks converges slower to w than for the case of air transit.

In the study of air commuting the increase of apparent speed as a function of the geodesic
distance was still present, despite the fact that only direct (presumably in straight line) flights
were taken into account between airports, for which supposedly: z = w. This is the same result
when we take into consideration just the direct links between vertices in the road network. In this
case the average driving or cruising speed on a direct connection is defined as « = z/t and also
increases with the commuting distance, z. Figure 3.3 shows the results in this context.

It can be argued that the source and the target vertices cause delays on each connection. Fur-
thermore, there are also delays outside the vertices for each linear segment. This is because the
traffic flow is different from the ideal, but the increase is not inherently linear. When we pre-
sume there is a limited travelling speed, wg, in a particular segment and the delays increase with a
power-law as function of the segment’s length, z: t4q, = K - 2%, we get:

u = & - L (3.2)

2z L . pa—l
<UO> +tdelay (w)) + K-z

We have an increasing trend when o < 1. On figure 3.3 we show that the equation (3.2) fits
quite successfully for every experimental data from road to air travel. For national road data (HU2)
the seed limit was vy, = 90 km/h, while for highway and interstate data (HU1, USA1, USA2) we
used uy = 130 km/h. For air travel we used 1y = 1200 km/h =~ 1 Mach. A fixed o = 0.5 exponent
gives a roughly suitable fit for all the data, hinting to a universal convergence with the vy speed
limit.
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3.2. Scaling on the Internet, experiment and model

Finally, the limiting speed value also increases with the length of the road- or flight-segment. As
the road-segment is longer, the speed limit is usually increased. Highways have longer segments
and increased speed limit compared to national roads. On larger air travel segments, usually faster
airplanes are cruising, and similar effect is true for rail-travel. All of these effects explain well the
non-trivial scaling observed in human mobility.

3.2 Scaling on the Internet, experiment and model

In the previous section we revealed an interesting scaling between travelling time and travel dis-
tance (measured on the geodesic lines), valid on 10 orders of magnitudes in space for all human
transportation modes [?]. Here we show that a similar scaling can be found for data transmission
on the Internet [31]. In order to understand it, we propose a model, which can return not only this
scaling but also the measured topological properties.

The experiments regarding the dynamics of data transfer on the Internet were based on echo
request packet sending and receiving with Internet Control Message Protocol (ICMP) [32]. We
used the very popular “ping” command [33] to test whether the source computer could reach a
designated target computer. This most common time measurement unit is ms. A total of 24700
target computers were chosen from diverse locations on the globe. Their global positions (GPS
coordinates) have been determined from an IP address table, using the web page of IP2LOCATION
[34]. We determined the geodesic distance d between the origin and destination routers by using
the GPS coordinates. The "traceroute” uses the same basic principle as "ping” does. The ICMP
echo request gets the RTT in this situation too, but also receiving the intermediate hops’ addresses,
revealing the router-level topology of the network. Both the large-scale "ping” experiment and the
freely accessible results of the CAIDA UCSD IPv4 Routed/24 Topology Dataset [35] attained with
"traceroute” are taken into account.

We examined the findings with a fit of RTT = « - d/2, and the R? determination coefficients
obtained were R? = 0.98 for the data on ping and R? = 0.88 in the case of the traceroute (see
figure 3.4).

3.2.1 The Internet model and results

We consider a network model with a basic wiring rule that defines the connection between nodes
in order to explain this non-trivial scaling law discovered in the previous part. In the model the
cities are represented by the nodes of the graph and the connections between them correspond
to the network cables or wiring channel. N nodes are spread evenly in the Euclidean space in the
most basic approximation. The territory in question is a square with unit size edge.

We chose the population of cities, ;, to determine its "connectivity radius”, w;, as w; = 8v/W;.
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Figure 3.4: Ping and Traceroute experimetns. Round-trip time of both experiments as function
of the distance, using the same logarithmic binning mentioned in [9]. The dashed line indicates a
power-law trend with exponent 1/2.
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Figure 3.5: Connection rules. Main aspects and the linking rule of the model.

W; are values allocated according to a Tsallis-Pareto type distribution of exponent o« = 1, proved
to be adequate for large settlements [36, 37].

In the wiring procedure, we calculate the following ratio for every node pair:

w; + wj
fii = - J (3.3)
ij
Where d;; is the Euclidean distance (or length of the geodesic line) between two cities. IF f;; > 1,
we link the two nodes, else they stay unconnected (see 3.5).

We were searching for the optimal 3 value, that was capable of reproducing the scaling laws
and the average degree (links/node) of 8.68 found in the experimental observations. For every pa-
rameter group we averaged the simulation results over 100 independent versions of the network
achieved with fixed parameters of N and 5 .
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3.2. Scaling on the Internet, experiment and model

For N = 2400 we reached to a conclusion that the observed properties by the experiments are
best replicated by the model for a proportionality factor of 8 ~ 0.4. Network constructions for
N = 8000 and 3 = 0.4 result in graphs with statistically similar giant components.

The average degree of the giant component given by the traceroute is (k) = 8.68. The degree-
distribution is fitted with a Paretto-Tsallis (or Lomax Il) distribution:

«

L —1l—«
0= = (1 = ) o4

The degree distribution for the experimental results is shown with black dots in figure 3.6, and
the Tsallis-Paretto fit (3.4) with o« = 1.23 is presented with red dashed line. We remind here that
similar degree distributions including a scale-free tail is usually received in the core of exponentially
diluted growth models with preferential attachment [37, 38]. The measured degree distribution
and the result of the model in comparison (figure 3.6)shows agreement also with the topological
properties found in [39].

A Mmodel, N=8000
m model, N=2400
o traceroute

TP fit

0.1

6L ! !
10 1 10 100 1000

k

Figure 3.6: Degree distribution. The resulted network’s degree distribution from the traceroute
experiment marked with black points and the same of the network produced by the model with
green squares for N = 2400 and blue triangles for N = 8000. The dashed red line indicates a
Tsallis-Pareto distribution fit (3.4) with « = 1.23 and (k) = 8.68. The determination coefficient
calculated for the experiment is R? = (.85, and for the results of the model R? > 0.9 always.

The biggest contribution to the round-trip time is connected to the waiting periods suffered
at the routers. Thus we could assume that the measured average time should increase with the
amount of routers (hops) H met until the target is reached. Indeed, the experiments suggests
a RTTx H” relation (see figure 3.7) with 4 ~ 3/4. By taking into consideration a v = 3/4, the
fit provides a coefficient determination of R? = 0.98. Consequently, we also point out that the
amount of visited hops is increasing with the distance with a scaling exponent of: (1/2)/(3/4) =
2/3. The results shown in figure 3.8 validate this scaling.

For determining the topological shortest paths between vertices we used the Breadth-first
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oute experiment. The dashed line shows a linear proportionality with a determination coefficient
of R? = 0.96, while the continuous red line indicates a power-law fit with an exponent of 3/4. The
coefficient of determination for the latter fit is R? = 0.98.

search method implemented in the Python Igraph package [40], this is justified by the ICMP pro-
tocol, also visiting the minimum amount of hops. It is apparent that the trend is a power-law, both
from experimental outcome and the one yielded by our model, consistent with the exponent 2/3
and noticeably distinctive from 1/2. This similarity between the experiments and model’s results
show that a simple model is capable of capturing the essence of such non-trivial scaling.
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Figure 3.8: Hop vs distance. Number of hops as a function of the distance. The black points
represent the data obtained from the traceroute experiments. Green squares (N = 2400) and blue
triangles (N = 8000) represent the model’s results. The dashed line suggests a power-law trend
having an exponent of 2/3. The determination coefficient of this fit (y = a - 2%/®) for the traceroute
data is R? = 0.98, while for the data points given by the model is over R? = 0.99. The geodesic
distances for the traceroute experiment’s network is rescaled in the (0,1) x (0, 1) square.
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Conclusions

In the present thesis we used the methods of statistical and computational physics for investi-
gating two modern topics in the field of complex networks. We have reached to the following
conclusions:

4.1 Community detection in complex networks

We proved that the graph version of Voronoi diagrams are suitable for detecting clusters on com-
plex networks. In order to proceed in this manner we identified two major requirements: (1)
definition of an appropriate distance metric between the nodes, (2) identifying the generator ver-
tices which indicate the community centres. For the distance measure we chose the inverse of
link (edge) clustering coefficient, 1/ECC. Nodes were selected as generators when their relative
local densities were the highest among the neighboring vertices within a radius . With both of
these measures, we have demonstrated that our technique can compete with all other methods.
Only one of five popular algorithms, which by the way is programmed for optimizing the quality
function used in our comparisons, managed to outperform our methods. We suggest that Voronoi
tessellation with increasing radius r values is the best strategy when using our method.

We discussed theoretical and practical aspects of how stochastic graph Voronoi tesselations
work. Contrary to other node-similarity definitions [3, 41] the Voronoi cohesion returns local
node information taking into account the network’s global structure. We have demonstrated that
this kind of information overlaps with community relationships. In the analytical section of the
thesis we demonstrated how a two-module graph can be partitioned and what characteristics
the bridge nodes introduce to the cohesion matrix. These analytical findings were backed up by
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4.2. Scaling laws

simulations. In the thesis we presented a procedure that translates the information found in the
cohesion matrix to community information for every node.

4.2 Scaling laws

We proved our initial hyphothesis according to which on every transport mode the travelling time
has a non-trivial scaling as function of distance. The average apparent speed (geodesic distance/-
travelling time) increases with a power-law trend as function of the distance. We have demon-
strated that both the structure of the road network’s topology and the factors which lead to devi-
ation from ideal conditions (the delaying effects of the nodes, the increasing speed limits of longer
travel-segments) contribute to this universal effect. For increasing the apparent speed, firstly, the
road networks (or air connections) have to be optimized in such way that the topological 3 expo-
nents are maximized. In this case the driving distance could reach rapidly the traveling distance,
decreasing to a transit path length as short as possible. Planning the geometry of the road net-
works between large cities seems a bit problematic task, due to their given spatial distribution
which determines the topology of the road network. However, in air travel collaborations among
different airlines can cope with this situation.

The experimental study of the Internet leads to similar conclusions. Comparing the model with
the experimental results brings to a conclusion that this simple one parameter wiring model em-
bedded in geometric space is able to qualitatively reproduce the discovered statistical features
of the Internet’s network on router level. In this sense the resulted nontrivial scaling of the aver-
age round trip time of an echo request as function of the geodesic distance is due to the specific
topology of the network. On the other hand, the difference between these scaling exponents,
namely the trend of the hop number versus the distance (~ 2/3), and the scaling exponent of the
round-trip time dependence on the distance (~ 1/2) indicates that on the routers a simple con-
stant average delay could not be totally accounted for the scaling. Along with network topology,
most likely certain factors have to be addressed in order to build a more realistic model. This is
somewhat similar to the characteristics learned in the investigations of human mobility networks.
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