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Staধsধcal Physics Methods for understanding Complex
Networks

Abstract

Computerswent through a fast evoluধon in the last few decades and this also led to big advance-

ments in data based sciences. While databases grew quickly the scienধfic community learned to

handle easier large amount of data. This phenomenon also affected network sciences. Networks

grew with the amount of informaধon gathered and completely changed how the scienধfic com-

munity thinks about networks. Complex systems nowadays commonly have network descripধons,

while in almost all domains from biology to computer science, engineering, economics, poliধcs, etc.

rises at least one quesধon, where the answer is included in finding the community structure. Tra-

diধonal definiধon of these communiধes are based on their connecধvity, members of a community

havemore connecধons within the community than with the rest of the network. We implemented

the concept of Voronoi diagrams used mainly to divide geometric space onto network parধধon-

ing. We defined a metric system using the edge clustering coefficient as distances between nodes,

and introduced a local density measure based on these distances to idenধfy the Voronoi gener-

ator nodes. Then we updated this method with a generalizaধon of the seeds by selecধng them

randomly and perform the Voronoi parধধoning mulধple ধmes with different sets of seeds, giving

the ability of the algorithm to reach a fuzzy clustering property. We also studied human and in-

formaধon mobility through various experiments with some human travelling modes (road and air

transit) and data transferring measurements on the Internet. We examined the average speed as

funcধon of the geodesic distance and transmission ধmes of messages depending on the distance.

The results suggested a sub-linear trend in all cases. The cause of these trends is not only due to

the networks’ structure, delays also exist on individual nodes including the start and ending points.

For a beħer understanding of the Internet network’s features we introduced a model which was

capable of reproducing both the structure and the observed dynamic scaling characterisধcs. The

thesis contains three chapters: a moধvaধon and introducধon to the field; a theoreধcal and math-

emaধcal descripধon of network clustering, arguing the benefits of networks embedded in space;

and the last chapter contains experiments and modelling on mobility networks and the Internet.
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1
Introducধon

Social science, informaধon theory, technology, biology, neuro-science, etc., all study systems that
can be represented as networks, and graph analysis has become crucial in understanding the fea-
tures of these systems [1, 2].

In almost all systems with graph representaধons rises at least one problem, where finding the
community structure of the network might play a key role in understanding it. An immediate
problem is disধnguishing importance of publicaধons in a citaধon network with overlapping disci-
plines. Communiধes also exist in several networked systems from biology to computer science,
engineering, economics, poliধcs, etc.

Usually communiধes are defined as verধces connected more densely within their group than
compared to their average connecধvity in the graph. The challenge in idenধfying any community
structure could be in the nature of its descripধon, as it is qualitaধve, no widely accepted mathe-
maধcal definiধon has been developed yet [3]. While a large variety of community definiধons and
detecধon methods exist [3], combining meaningful mathemaধcal definiধons with computaধon-
ally efficient algorithms remains a problem. Similar clustering problems also occur in data mining,
paħern recogniধon, machine learning and staধsধcal data analysis [4, 5]. However, they are de-
fined in conধnuous metric spaces, leading to a simpler formulaধon. Voronoi diagrams [6] are used
commonly to divide metric space into subsecধons, called Voronoi cells.

Working with networks embedded in metric spaces are very important, not only for good clus-
tering, but they surround us in nature. Even human mobility and our communicaধon channels
(as an immediate example the Internet) are networks embedded in metric space. From our every-
day experience we have learned, that the travelling ধme does not scale linearly with the travel
distance[7–9]. The cause of this is more intricate and includes various effects. To travel greater
distances we use highways, but most of the ধme is taken up by geষng in and out of ciধes, hence
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closer ciধes might be connected also by increased travelling ধme. Similar situaধon is observable
on air traffic, large porধon of the ধme is spent on taking off, landing and parking. The Internet
on the router level is also a complex network embedded in geographical space. Beside it’s topo-
logical scaling properধes ( scale-free degree distribuধon ) [10, 11], it also exhibits a dynamical
scaling, similar to the human mobility. Here we invesধgate these effects more extensively and
search into their observable causes using a variety of online databases and GPS tracking, and a
few experiments based on Internet control message protocol: Ping and Traceroute.

To explain this novel scaling law and other measurable topological properধes of the Internet a
realisধc model has to be built. Such a model must be based on realisধc assumpধons regarding the
wiring process and has to reproduce themeasured topological properধes of the Internet, including
the observed scaling of the communicaধon speed with the distance.

The thesis contains two main chapters. The first contribuধon deals with mathemaধcal descrip-
ধon and applicaধon of our network clustering method. The second chapter contains experiments
and modeling regarding the scaling properধes of travel networks and the Internet.
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2
Community detecধon in complex

networks

2.1 Detecধon by graph Voronoi diagrams

To present the reasoning behind our clustering technique, we first demonstrate its essenধal as-
pects on a community detecধon problem defined in two-dimensional Euclidean space (see figure
2.1(a)).

Let us select G = (V,E) as a weighted, directed graph with V of N verধces and a set E of M
links. We denote by l(µ, ν) > 0 the weight of a link connecধng vertex µ and ν. The length of a
path is acquired by adding up the weights of links construcধng the path. We denote the distance
linking two verধces νi and νj as d(νi, νj), which is the length of shortest path connecধng them.
This definiধon of a link length ensures that the network can be embedded into a metric space.
Naturally, themore straighĤorward selecধon of l(µ, ν) is 0when µ and ν are not connected; 1when
they are directly joined. We select a group of S ≡ (γ1, γ2, . . . , γg) ⊂ V generator verধces. The
resulধng Voronoi parধধoning of the network G respecধng S will be the spliষng of V into vertex
groups V1, V2, . . . , Vg ⊂ V , where each group (Voronoi cell) belongs to a generator and saধsfy: i)
Network G contains all Voronoi cells without overlapping; ii) All verধces in a cell are closer to
its generator vertex than any other seed. Detailed mathemaধcal characterisধcs of Voronoi graph
diagrams are described in [6] along with disধnct idenধficaধon techniques and their corresponding
computaধonal complexity.

To make efficient gain of our geometric approach, we need appropriate definiধon for distance
measurement that transforms vertex membership into segregaধon in metric space. Here we have
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2.1. Detecধon by graph Voronoi diagrams

(a) (b)

Figure 2.1: Locaধng Voronoi cell centers. (a) In order to find the best parধধoning of the black
points in clusters we divide the plane in 12 × 25 squares and esধmate the local density (number
of points) in every square. The squares are colored according to their density from green (0 dots)
to red (largest 6 dots). The square with the highest density in its vicinity within a radius (gray
circles, r = 4 up and r = 7 down in square units) becomes a generator square (marked white star).
The Voronoi tessellaধon is symbolized with blue lines. (b) Illustraধng the mapping of algorithm
on networks: every node will have a local density, shown by the size of the verধces and the
mountains in the community labels. Lengths of connecধons are proporধonal with inverse edge-
clustering coefficient (marked by width of connecধons). Seed nodes are indicated by their local
density having the largest in their neighborhoods with radius r1 < r2 < r3. Clusters sequenধally
merge together as r radius increases.

chosen to adjust one of the easiest, generally accepted and computaধonally very efficientmeasure:
the Edge Clustering Coefficient (ECC) proposed by [12]. The ECC of a link connecধng vertex i and
vertex j is defined as

Ci,j =
zi,j

min[(ki − 1), (kj − 1)]
(2.1)

where ki, kj are the degrees of these two verধces, zi,j is the number of triangles to which the link
belongs andmin[(ki−1), (kj−1)] is the number of possible triangles to which it could belong, since
it is the lower value of the degrees of the two adjacent verধces, minus one (the link examined).
The lower the ECC, the more probable it is to connect nodes in disধnct clusters. Therefore, in our
graph Voronoi parধধoning method, we specify connecধon length (weight) as inverse of the ECC.

Addiধonal objecধve is to pick one seed vertex in each community. We have chosen a generator
node selecধon procedure using relaধve local density of the verধces [3], defined as:

ρi =
m

m+ k
(2.2)

where m is the internal degree (number of incoming links) of the neighbourhood a sub-network
containing first neighbours of vertex i, and k is the external degree (number of outgoing links) of
the neighbourhood. This density is higher for nodes inside the center, dense part of communiধes,
as illustrated in figure 2.1(b). Just like in 2D space, generator verধces on the network will be se-
lected as the nodes with largest local density within the region of radius r. Overall, the detecধon
complexity of generator verধces remains much below O(Mg) (for g Voronoi seeds), and parধধon-

4



2.1. Detecধon by graph Voronoi diagrams

ing has complexity of O(N logN) [6], for detailed computaধonal efficiency check the thesis.

As the publicaধon by Fortunato et al. reasoned in [3], it is necessary to test community detecধon
methods both on benchmark graphs (produced with predetermined communiধes, ground-truth)
and on real-world networks. For benchmark tesধng please take a look at the thesis.

Detecধng the community structure of real-world graphs however is not trivial. In addiধon, effi-
ciency of any method is more difficult to evaluate as the informaধon of ground-truth is not avail-
able. New algorithms are therefore tested in comparison with previously acknowledged methods
through a quality measure. To be more specific, we have selected the modularity. The modularity
is defined as follows: Q = 1

2m

∑
ij(Aij −Pij)δ(Vi, Vj), here summing up over all pairs of nodes. A is

the adjacency matrix,m the total number of links in the network, and Pij stands for the expected
number of links between nodes i and j in the null model. Here meaning, the random graph model.
The δ funcধon returns 1 if i and j nodes are in the same community that is Vi = Vj , returns 0 oth-
erwise [13]. We evaluated our algorithm on several real-world networks that are regularly used in
the literature, structurally and originally they are very disধnct:

1. The well known network of friends inside the group of 34 members in the Zachary karate
club connected with 78 links [14].

2. Network of neurons from the nematode Caenorhabdiধs elegans [15, 16] containing 297
verধces and 2359 connecধons.

3. Protein-protein interacধon network of yeast [17] comprising of 1845 nodes connected by
4405 links.

4. A revised version of the collaboraধon network between scienধsts on condensed maħer
archive at www.arxiv.org. This network consists of 39576 verধces and 175692 edges, con-
structed on preprints which were published in the archive during 1 January 1995 – 31
March 2005 period [18].

5. Web of connecধons between American poliধcal blogs [19] including 1223 verধces and
19087 links.

We compared our algorithm with five commonly used methods (for more informaধon see Ad-
dendum ): 1) the Louvain algorithm opধmizing modularity [20]; 2) the label propagaধon algo-
rithm (LPA) [21]; 3) GANXiS or SLPA (speaker-listener label propagaধon algorithm) [22, 23]; 4)
link-communধy detecধon [24] and 5) Infomap (IM) [25, 26]. Our approach performed as the sec-
ond best, the modularity it reaches is always above average. The only algorithm that has beħer
performance is Louvain, it was also expected, since it opধmizes the very same quality funcধon we
use to evaluate performance.
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2.2. Detecধon by stochasধc Voronoi diagrams

(a)

(b)

Figure 2.2: Real-world network tesধng. Modularity obtained on all five real-world networks with
disধnct methods (specified in the legend). (a) Q modulariধes in increasing order on every tested
network.(b) Shows the relaধve error (Q−⟨Q⟩)/⟨Q⟩, here ⟨Q⟩ represents the average of results for
all algorithms computed apart for every network.

2.2 Detecধon by stochasধc Voronoi diagrams

For a given undirected network with N verধces and M edges, we neglect the careful selecধon
of Voronoi seeds, instead we use a set of Voroni cells, where each set is obtained from arbitrarily
picked generators [27], with the followingmain steps: i)We randomly select a number of g verধces
from the network and use them as Voronoi seeds to perform a graph-Voronoi parধধoning. ii) We
calculate the Voronoi cohesion matrix or the co-locaধon probabiliধes from averaging over the
co-locaধon matrix by repeaধng the tessellaধon R ধmes (see figure 2.3).

For tesধng the method we took large non-directed random graphs with N → ∞ verধces or-
ganized in m non-overlapping but connected Erdős-Rényi (ER) type communiধes of size Ni ≡
αiN, 0 < αi < 1 and connecধvity featured by the link density matrix qij = Mij/(NiNj), i, j = 1,m,
meaning the probability of having a connecধon with endpoints in i and j modules. Mij represents
the number of links connecধng the twomodules, as a rule, anO(N2) dependence on network size.
We denote with qi the matrix’s diagonal elements, and we will refer to it as intra-module link densi-
ধes while off-diagonal elements will be called as inter-module (bridge) link densiধes. The number
of bridge nodes in module i forming a bridge with module j is Bij . Let us define the following
events: i) Xij - two verধces from communiধes i and j, respecধvely, i, j = 1,m, are assigned to
the same Vronoi-cell; ii) Gn1n2...nm ,

∑m
i=1 ni = g - the g seed verধces are shared between m com-

muniধes so that ni seeds will get in module i. {Gn1n2...nm} is a complete set of Cm−1
g+m−1 events. It

is equivalent to the amount of realizaধons for separaধng a linear chain of g equal balls by m − 1
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2.2. Detecধon by stochasধc Voronoi diagrams

arbitrarily posiধoned barriers. Ck
n indicates the binomial coefficient for the k-combinaধons of n

events. Accordingly:
Xij =

∑
n1n2...ng

Xij ·Gn1n2...ng . (2.3)

Then the probability of one vertex from community i and one from community j, belonging to the
same Voronoi-cell or shortly Voronoi-cohesion is:

cij ≡ P (Xij) =
∑

n1n2...ng

P (Xij|Gn1n2...ng)P (Gn1n2...ng) ,

which can be given in the form of:
c = V · g , (2.4)

where c,V and g are matrices of size N(N + 1)/2-by-1, N(N + 1)/2-by-Cm−1
g+m−1 and Cm−1

g+m−1-by-1,
respecধvely. For the case study of extreme modularity please take a look at the thesis.

Let us examine a case of two equivalent modules, both with sizeN ≫ 1 and connecধon density
q, and bridge density b. Next we have summarized some meaningful quanধধes of a vertex pair as
a funcধon of their locaধon (in module 1. or 2.). The first table collects the probability distribuধon
of their common distances. Presuming that they are both generator verধces the second table
contains the relaধve sizes of the matching Voronoi-cells in all of the modules:

Figure 2.3: The basic idea for stochasধc graph Voronoi diagrams. Figures show how the Voronoi
cohesionmap is calculated usingR number of tessellaধons. Every sub-figure shows a realizaধon of
the binary colocaধonmatrix generated with 2 seed nodes randomly chosen each ধme for example
(1, 5), (2, 7), ..., (5, 10). The values of the colocaধon matrix are 1 = white for nodes in same cell,
0 = black if nodes are in different cells. The average over all R matrices reveals the cohesion map
in other words the probabiliধes of nodes being in the same community.
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2.2. Detecধon by stochasধc Voronoi diagrams

loc.
in
mod.

d
=

1

d
=

2

1,1 q 1− q

1,2 b 1− b

2,2 q 1− q

module 1 module 2
loc. in mod.

gen.1 gen.2 gen.1 gen.2
1/2 1/2 1/2 1/2 1,1
s 1− s 1− s s 1,2
1/2 1/2 1/2 1/2 2,2

where s is the relaধve size of Voronoi-cell 1 in module 1 when the generator vertex 2 is located
in module 2. The value of s can be calculated by summing up the following contribuধons (figure
2.4(a)):

1. bq fracধon of module 1 has direct connecধons to both of the generator nodes and is evenly
shared among the two Voronoi-cells;

2. q(1 − b) fracধon has direct connecধons only to generator 1, as a result it contributes fully
to cell 1;

3. (1− q)b has direct connecধon only to seed 2 therefore is not contribuধng to cell 1;

4. (1−b)(1−q) is not connected directly to both generators. It will be divided between the two
generators proporধonally to the number of shortest paths. The “modus operandi” node to
generator 1 can be from module 1 with a probability of q2 and b2 from module 2. Similar
values for the distant generator 2 are both bq, therefore, a fracধon of (q2 + b2)/(q + b)2 of
this domain corresponds to cell 1.

Adding up the contribuধons results:

s(q, b) =
qb

2
+

1− b

(q + b)2
[
q2 + b2 + 2q2b

]
. (2.5)

Construcধng matrix c from equaধon (2.4):

V =

 1/2 1− 2s(1− s) 1/2

1/2 2s(1− s) 1/2

1/2 1− 2s(1− s) 1/2

 , g =

 1/4

1/2

1/4

 .

Therefore
c11 = c22 =

3

4
− s(1− s) , (2.6)

c12 =
1

4
+ s(1− s) . (2.7)

whence the connecধon density dependent contrast is

γ =
1

2
[1− 4s(1− s)] . (2.8)
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2.2. Detecধon by stochasধc Voronoi diagrams

Figure 2.4: Non-infinitesimal bimodular connecধon density. Illustraধon of how two Voronoi re-
gions share two equal in size ER-type modules, with non-infinitesimal inter-modular link density,
b. (b) Shows how the intramodular link densiধes, q1 = q2 = q, and intermodular link density, b in-
fluence the relaধve size of cell 1 in module 1 (described by equaধon (2.5)). (c) The corresponding
contrast calculated from equaধon (2.8). (d, e) Presents the intra- and intermodular Voronoi co-
hesions depending on the intermodular link density, b. Analyধcal results for several intramudular
connecধon densiধes from equaধons (2.6) and (2.7) are shown in comparison with simulaধons ob-
tained from large ensemble of 5000 tessellaধons, meaning 10 topologies and 500 generator node
sets on a network of N = 2× 800 verices.
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2.2. Detecধon by stochasধc Voronoi diagrams

If b = q, then the intra- and intermodular connecধon densiধes equate, γ = 0, this means the
network is no longer modular. The the maximum contrast is γ = 1/2, when the bridge size is
negligible. The striking feature of this technique is that the theory can be confirmed even by a
comparaধvely low network and ensemble size (figure 2.4).

Figure 2.5: Benchmarknetwork cohesionmatrix. (a) Cohesion histogram for every vertex pair from
the cohesion map of a benchmark network consisধng of N = 500 nodes,M = 5000 connecধons,
andm = 9modules [28, 29]. For the cohesion calculaধon g = 15 generators, andR = 3000 repeats
were implicated. Intra- and intermodular node pairs are colored based on the ground-truth. The
insets are cohesion and the inter-node distance matrices, ordered based on truth informaধon and
here the larger values are closer to themain diagonal line. (b) Cohesion histogram calculated for the
exact same network but with the contrast boosধng method(for more detail please check secধon
2.2.6 in the thesis).

Ađer aħaining effecধve convergence, the network’s community structure can be extracted from
the cohesionmatrix. The easiest method is to put a threshold in the cohesion histogram (see figure
2.5 (a)). In figure 2.5(a) we plot the distribuধon of the Voronoi cohesion matrix elements for all
node pairs. For further opধmizaধon, ađer every 200 repeats we relocate a small percentage of low
correlated nodes’ connecধons to highly correlated unconnected node pairs. This way we increase
the intra-inter gap while keeping the community structure unharmed 2.5(b).

Communiধes can then be found the following way: 1. iniধally every node gets a separate com-
munity label; 2. in a loop over all verধces the label of a node is changed to another node’s label,
which has an unchanged label and has a similar cohesion value within a predefined threshold.
While the gap in the histogram appears to be a clear modular separaধon, these methods rarely
work opধmally for community detecধon in real-world networks. For detailed analysis on real-
world networks please take a look at the thesis.
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3
Scaling in real-world networks

3.1 Further we travel the faster we go: a general rule for human mobility net-
works
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Figure 3.1: The apparent travel speed for all travel modes (esধmated from averaging travel ধme
on the geodesic line) as a funcধon of the travelling distance. Boxes show speed and distance
intervals on which the specified mode is used. Dashed line indicates a power-law trend. The
two inset figures present some averaged results broken down on the two most popular travelling
modes: car and air travel.

Firstly, for all human travel modes, extending from walking to cosmic transport, we determine
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Figure 3.2: Topology of travel networks. Scaling of the cruising distance (z) and geodesic distance
(w) on disধnct travel networks. The lines indicate a valid z

w
= 1+C ·w−β relaধonship. β values are

shown in the legend. We also show here the network topology of some human mobiliধes used in
this study.

approximately the distance and velocity magnitudes (boxes on 3.1). The first impressive outcome
we can observe is that the boxes follow a power-law trend with an exponent of roughly 0.5 as the
distance increases. We find from these outcomes that when we consider roadways with similar
ranks, with roughly the same speed limits (HU2, USA1, USA2), a power-law trend is aħained with
not so different scaling exponents. Regarding air transit, only direct flight informaধon between
airports have been used and the results show similar scaling with exponent of about 0.25.

The topology of the networks is the first obvious cause, on which the transportaধon is taking
place. Verধces are not necessarily connected by straight roads and there are typically no direct
routes between them [30]. To travel from one vertex to another, the commuters follow a path
on the graph with the shortest road-length, noted here as commuধng distance and labelled with
z. As the w geodesic distance of the transit increases, the z commuধng distance comes closer
in approximaধon to w. Evaluaধng the topology for certain transport networks in this study, we
noধce a rather general scaling relaধon (see figure 3.2):

z

w
= 1 + C · w−β (3.1)

The proper β exponents visibly separate the trends for road- and air transit networks. For road
travel β ≈ 0.2− 0.3 was fiħed, and for the air travel β ≈ 1.4− 1.5 was found. Meaning that the z
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Figure 3.3: The travelling speed. The average apparent speed, u, depending on the cruising dis-
tance, z. Results are ploħed for road travel and air transit together, both having a successful fit
using the formula in equaধon (3.2) with α = 0.5.

value for the case of road travel networks converges slower to w than for the case of air transit.

In the study of air commuধng the increase of apparent speed as a funcধon of the geodesic
distance was sধll present, despite the fact that only direct (presumably in straight line) flights
were taken into account between airports, for which supposedly: z = w. This is the same result
when we take into consideraধon just the direct links between verধces in the road network. In this
case the average driving or cruising speed on a direct connecধon is defined as u = z/t and also
increases with the commuধng distance, z. Figure 3.3 shows the results in this context.

It can be argued that the source and the target verধces cause delays on each connecধon. Fur-
thermore, there are also delays outside the verধces for each linear segment. This is because the
traffic flow is different from the ideal, but the increase is not inherently linear. When we pre-
sume there is a limited travelling speed, u0, in a parধcular segment and the delays increase with a
power-law as funcধon of the segment’s length, z: tdelay = K · zα, we get:

u =
z(

z
u0

)
+ tdelay

=
1(

1
u0

)
+K · zα−1

(3.2)

We have an increasing trend when α < 1. On figure 3.3 we show that the equaধon (3.2) fits
quite successfully for every experimental data from road to air travel. For naধonal road data (HU2)
the seed limit was u0 = 90 km/h, while for highway and interstate data (HU1, USA1, USA2) we
used u0 = 130 km/h. For air travel we used u0 = 1200 km/h ≈ 1Mach. A fixed α = 0.5 exponent
gives a roughly suitable fit for all the data, hinধng to a universal convergence with the u0 speed
limit.
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3.2. Scaling on the Internet, experiment and model

Finally, the limiধng speed value also increases with the length of the road- or flight-segment. As
the road-segment is longer, the speed limit is usually increased. Highways have longer segments
and increased speed limit compared to naধonal roads. On larger air travel segments, usually faster
airplanes are cruising, and similar effect is true for rail-travel. All of these effects explain well the
non-trivial scaling observed in human mobility.

3.2 Scaling on the Internet, experiment and model

In the previous secধon we revealed an interesধng scaling between travelling ধme and travel dis-
tance (measured on the geodesic lines), valid on 10 orders of magnitudes in space for all human
transportaধon modes [9]. Here we show that a similar scaling can be found for data transmission
on the Internet [31]. In order to understand it, we propose a model, which can return not only this
scaling but also the measured topological properধes.

The experiments regarding the dynamics of data transfer on the Internet were based on echo
request packet sending and receiving with Internet Control Message Protocol (ICMP) [32]. We
used the very popular “ping” command [33] to test whether the source computer could reach a
designated target computer. This most common ধme measurement unit is ms. A total of 24700
target computers were chosen from diverse locaধons on the globe. Their global posiধons (GPS
coordinates) have been determined from an IP address table, using theweb page of IP2LOCATION
[34]. We determined the geodesic distance d between the origin and desধnaধon routers by using
the GPS coordinates. The ”traceroute” uses the same basic principle as ”ping” does. The ICMP
echo request gets the RTT in this situaধon too, but also receiving the intermediate hops’ addresses,
revealing the router-level topology of the network. Both the large-scale ”ping” experiment and the
freely accessible results of the CAIDA UCSD IPv4 Routed/24 Topology Dataset [35] aħained with
”traceroute” are taken into account.

We examined the findings with a fit of RTT = a · d1/2, and the R2 determinaধon coefficients
obtained were R2 = 0.98 for the data on ping and R2 = 0.88 in the case of the traceroute (see
figure 3.4).

3.2.1 The Internet model and results

We consider a network model with a basic wiring rule that defines the connecধon between nodes
in order to explain this non-trivial scaling law discovered in the previous part. In the model the
ciধes are represented by the nodes of the graph and the connecধons between them correspond
to the network cables or wiring channel. N nodes are spread evenly in the Euclidean space in the
most basic approximaধon. The territory in quesধon is a square with unit size edge.

We chose the populaধon of ciধes,Wi, to determine its ”connecধvity radius”, ωi, as ωi = β
√
Wi.
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Figure 3.4: Ping and Traceroute experimetns. Round-trip ধme of both experiments as funcধon
of the distance, using the same logarithmic binning menধoned in [9]. The dashed line indicates a
power-law trend with exponent 1/2.
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Figure 3.5: Connecধon rules. Main aspects and the linking rule of the model.

Wi are values allocated according to a Tsallis-Pareto type distribuধon of exponent α = 1, proved
to be adequate for large seħlements [36, 37].

In the wiring procedure, we calculate the following raধo for every node pair:

fij =
ωi + ωj

dij
(3.3)

Where dij is the Euclidean distance (or length of the geodesic line) between two ciধes. IF fij > 1,
we link the two nodes, else they stay unconnected (see 3.5).

We were searching for the opধmal β value, that was capable of reproducing the scaling laws
and the average degree (links/node) of 8.68 found in the experimental observaধons. For every pa-
rameter group we averaged the simulaধon results over 100 independent versions of the network
achieved with fixed parameters of N and β .
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3.2. Scaling on the Internet, experiment and model

For N = 2400 we reached to a conclusion that the observed properধes by the experiments are
best replicated by the model for a proporধonality factor of β ≈ 0.4. Network construcধons for
N = 8000 and β = 0.4 result in graphs with staধsধcally similar giant components.

The average degree of the giant component given by the traceroute is ⟨k⟩ = 8.68. The degree-
distribuধon is fiħed with a Pareħo-Tsallis (or Lomax II) distribuধon:

p(k) =
α

(α− 1)⟨k⟩

(
1 +

k

(α− 1)⟨k⟩

)−1−α

(3.4)

The degree distribuধon for the experimental results is shown with black dots in figure 3.6, and
the Tsallis-Pareħo fit (3.4) with α = 1.23 is presented with red dashed line. We remind here that
similar degree distribuধons including a scale-free tail is usually received in the core of exponenধally
diluted growth models with preferenধal aħachment [37, 38]. The measured degree distribuধon
and the result of the model in comparison (figure 3.6)shows agreement also with the topological
properধes found in [39].
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TP fit
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Figure 3.6: Degree distribuধon. The resulted network’s degree distribuধon from the traceroute
experiment marked with black points and the same of the network produced by the model with
green squares for N = 2400 and blue triangles for N = 8000. The dashed red line indicates a
Tsallis-Pareto distribuধon fit (3.4) with α = 1.23 and ⟨k⟩ = 8.68. The determinaধon coefficient
calculated for the experiment is R2 = 0.85, and for the results of the model R2 > 0.9 always.

The biggest contribuধon to the round-trip ধme is connected to the waiধng periods suffered
at the routers. Thus we could assume that the measured average ধme should increase with the
amount of routers (hops) H met unধl the target is reached. Indeed, the experiments suggests
a RTT∝ Hγ relaধon (see figure 3.7) with γ ≈ 3/4. By taking into consideraধon a γ = 3/4, the
fit provides a coefficient determinaধon of R2 = 0.98. Consequently, we also point out that the
amount of visited hops is increasing with the distance with a scaling exponent of: (1/2)/(3/4) =
2/3. The results shown in figure 3.8 validate this scaling.

For determining the topological shortest paths between verধces we used the Breadth-first
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Figure 3.7: RTT vs Hops. Averaged RTT as a funcধon of the hops count established from tracer-
oute experiment. The dashed line shows a linear proporধonality with a determinaধon coefficient
of R2 = 0.96, while the conধnuous red line indicates a power-law fit with an exponent of 3/4. The
coefficient of determinaধon for the laħer fit is R2 = 0.98.

search method implemented in the Python Igraph package [40], this is jusধfied by the ICMP pro-
tocol, also visiধng the minimum amount of hops. It is apparent that the trend is a power-law, both
from experimental outcome and the one yielded by our model, consistent with the exponent 2/3
and noধceably disধncধve from 1/2. This similarity between the experiments and model’s results
show that a simple model is capable of capturing the essence of such non-trivial scaling.
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Figure 3.8: Hop vs distance. Number of hops as a funcধon of the distance. The black points
represent the data obtained from the traceroute experiments. Green squares (N = 2400) and blue
triangles (N = 8000) represent the model’s results. The dashed line suggests a power-law trend
having an exponent of 2/3. The determinaধon coefficient of this fit (y = a ·x2/3) for the traceroute
data is R2 = 0.98, while for the data points given by the model is over R2 = 0.99. The geodesic
distances for the traceroute experiment’s network is rescaled in the (0, 1)× (0, 1) square.
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4
Conclusions

In the present thesis we used the methods of staধsধcal and computaধonal physics for invesধ-
gaধng two modern topics in the field of complex networks. We have reached to the following
conclusions:

4.1 Community detecধon in complex networks

We proved that the graph version of Voronoi diagrams are suitable for detecধng clusters on com-
plex networks. In order to proceed in this manner we idenধfied two major requirements: (1)
definiধon of an appropriate distance metric between the nodes, (2) idenধfying the generator ver-
ধces which indicate the community centres. For the distance measure we chose the inverse of
link (edge) clustering coefficient, 1/ECC . Nodes were selected as generators when their relaধve
local densiধes were the highest among the neighboring verধces within a radius r. With both of
these measures, we have demonstrated that our technique can compete with all other methods.
Only one of five popular algorithms, which by the way is programmed for opধmizing the quality
funcধon used in our comparisons, managed to outperform our methods. We suggest that Voronoi
tessellaধon with increasing radius r values is the best strategy when using our method.

We discussed theoreধcal and pracধcal aspects of how stochasধc graph Voronoi tesselaধons
work. Contrary to other node-similarity definiধons [3, 41] the Voronoi cohesion returns local
node informaধon taking into account the network’s global structure. We have demonstrated that
this kind of informaধon overlaps with community relaধonships. In the analyধcal secধon of the
thesis we demonstrated how a two-module graph can be parধধoned and what characterisধcs
the bridge nodes introduce to the cohesion matrix. These analyধcal findings were backed up by
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4.2. Scaling laws

simulaধons. In the thesis we presented a procedure that translates the informaধon found in the
cohesion matrix to community informaধon for every node.

4.2 Scaling laws

We proved our iniধal hyphothesis according to which on every transport mode the travelling ধme
has a non-trivial scaling as funcধon of distance. The average apparent speed (geodesic distance/-
travelling ধme) increases with a power-law trend as funcধon of the distance. We have demon-
strated that both the structure of the road network’s topology and the factors which lead to devi-
aধon from ideal condiধons (the delaying effects of the nodes, the increasing speed limits of longer
travel-segments) contribute to this universal effect. For increasing the apparent speed, firstly, the
road networks (or air connecধons) have to be opধmized in such way that the topological β expo-
nents are maximized. In this case the driving distance could reach rapidly the traveling distance,
decreasing to a transit path length as short as possible. Planning the geometry of the road net-
works between large ciধes seems a bit problemaধc task, due to their given spaধal distribuধon
which determines the topology of the road network. However, in air travel collaboraধons among
different airlines can cope with this situaধon.

The experimental study of the Internet leads to similar conclusions. Comparing the model with
the experimental results brings to a conclusion that this simple one parameter wiring model em-
bedded in geometric space is able to qualitaধvely reproduce the discovered staধsধcal features
of the Internet’s network on router level. In this sense the resulted nontrivial scaling of the aver-
age round trip ধme of an echo request as funcধon of the geodesic distance is due to the specific
topology of the network. On the other hand, the difference between these scaling exponents,
namely the trend of the hop number versus the distance (≈ 2/3), and the scaling exponent of the
round-trip ধme dependence on the distance (≈ 1/2) indicates that on the routers a simple con-
stant average delay could not be totally accounted for the scaling. Along with network topology,
most likely certain factors have to be addressed in order to build a more realisধc model. This is
somewhat similar to the characterisধcs learned in the invesধgaধons of human mobility networks.
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