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Contents

Introduction 2

1 Preliminaries 6

1.1 Basic notations and notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Comparison functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Basic metric fixed point theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Basic best proximity point theorems . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Basic coupled fixed point theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Single-valued generalized contractions on cyclic

representations 16

2.1 A study of the fixed point problem for Ćirić type
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Introduction

The theory of fixed points has been revealed as a powerful tool for solving various problems

arising in different fields of pure and applied mathematics. The cornerstone of the metric fixed

point theory, S. Banach contraction principle [1], has been generalized in several directions.

Most of these generalizations, see for example [54], [70], weaken the contractive nature of the

operator but, in compensation, have conditions that enrich the metric space structure and / or

have additional requirements on the operator.

In 1969, S.B. Nadler extended Banach contraction principle from single-valued to multi-

valued mapping (see [40]). Nadler’s Theorem has been generalized by many mathematicians, see

for example the fixed point results for multi-valued mappings of generalized contractive type of

H. Covitz, S.B. Nadler [13], L. Ćirić [9], N. Mizoguchi and W. Takahashi [38], S.B. Nadler [41],

A. Petruşel [56], C. Vetro and F. Vetro [80].

Banach contraction principle was extended for single-valued contraction on spaces endowed

with vector-valued metrics by A.I. Perov and A.V. Kibenko [45]. The case of multi-valued con-

tractions on spaces endowed with vector-valued metrics is treated in A. Petruşel [53], I.R. Petre,

A. Petruşel [46].

One of the consistent generalization of the Contraction Principle was given in 2003 by W.A.

Kirk, P.S. Srinivasan and P. Veeramani, using the concept of cyclic operator (see [29]). This

concept attracted the interest of many authors because of its potential in the study of differential

and integral equations (see for example [2], [23], [61], [75]).

The concept of coupled fixed point was introduced by V.I. Opoitsev [43], but the issue gets

a fast development due to the works of D. Guo and V. Lakshmikantham [20] and T.G. Bhaskar,

V. Lakshmikantham [5]. A new research direction for the theory of coupled fixed points has been

developed by many authors (see V. Lakshmikantham, L. Ćirić [31], A. Petruşel, G. Petruşel and

B. Samet [57], B. Samet and C. Vetro [74]) using contractive type conditions.

A. Eldred and P. Veeramani opened in 2006 another research direction, searching conditions

which ensure the existence of a best proximity point of cyclic operators in the framework of

metric spaces (see [16]).

In the present work we develop a study regarding the existence, uniqueness, qualitative

properties of fixed point, coupled fixed point, best proximity point for single-valued and multi-

valued operators satisfying cyclic conditions. We support this study by presenting also some

applications.

The study material is organized into three chapters connected to each other through various

threads, each chapter containing several sections.

Chapter 1: Preliminaries

This chapter is a brief overview of the basic notions and results which are further considered

in the next chapters of this work, allowing us to present the results of this thesis. We start by

presenting standard notations and terminology of nonlinear analysis. The concept and related
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properties of comparison function which will be used throughout thesis are presented as well.

Then basic metric fixed point theorems, starting with Banach contraction principle and some

classical contractive operators are presented. The basic notion used in the development of this

thesis, namely cyclic operator, is presented accompanied by some fixed point theorems given by

Kirk, Srinivasan and Veeramani in [29]. Basic best proximity point theorems and coupled fixed

point theorems useful for the development of the next chapters are presented in the last two

sections.

Chapter 2: Single-valued generalized contractions on cyclic representations

In this chapter, we give some fixed point results for single-valued operators defined on cyclic

representations in metric spaces and in spaces endowed with vector-valued metrics. This chapter

has three sections.

In the first section we investigate the properties of some Ćirić type generalized contractions

defined on cyclic representations in a metric space.

Ćirić type generalized contraction condition is one of the most general metrical condition

for which the set of fixed points is a singleton and the fixed points can be approximated by

means of Picard iteration. Our results generalize fundamental metrical fixed point theorems

in literature given for Banach, Kannan, Bianchini, Reich, Chatterjea, Zamfirescu, Ćirić type

operators (see [52], [66]), in the case of a cyclic condition (see [47]). Also, the main result of

this section (Theorem 2.1.5) is a generalization of the following results: Theorem 2.1.1 given by

Petric and Zlatanov in [50] and Theorem 2.1.3 given by Păcurar and Rus in [44].

Throughout this section we develop a theory of the stated fixed point theorem, theory con-

sisting of:

• existence and uniqueness results for fixed points of single-valued cyclic ϕ-contraction of

Ćirić type;

• a convergence result for Picard iteration to the fixed point;

• continuous data dependence of the fixed point;

• well posedness of the fixed point problem;

• sequences of operators and fixed points.

Also, we state a Maia type theorem related to Ćirić type generalized contractions defined on

cyclic representations.

The results presented in this section are included in the paper Magdaş [33].

In the second section we present a Perov type theorem for cyclic operators. Our approach is

based on Perov’s fixed point theorem (see Theorem 2.2.3), in spaces endowed with vector-valued

metrics. Our main result in this section is Theorem 2.2.5, an extension of Theorem 1.3.1 and

Theorem 1.3.12 in a space endowed with a vector-valued metric. We state two results regarding

the data dependence and the well posedness of the fixed point problem. As applications, we

study existence, uniqueness and data dependence of the solution of a system of Fredholm type

of integral equations; the solution of the system can be obtained by the successive appoximation.

Also we study existence and uniqueness of the solution of a system of Volterra type of integral

equations.

The results presented in this section are contained in the following paper: Magdaş [36].

In the third section we study the coupled fixed point problem for single-valued cyclic

contraction type operators. The approach is based on fixed point results for appropriate operators

generated by the initial problems.

Our main result in this section is Theorem 2.3.2 which is a generalization of several theorems

such as Theorem 1.5.9, Theorem 1.5.11, Theorem 1.5.13, Theorem 1.5.15. We also provide an

3



iterative method for approximating the strong coupled fixed point and we give some qualitative

properties of the coupled fixed point set, such as data dependence, generalized Ulam-Hyers sta-

bility and well posedness. As applications, we study the existence, the uniqueness and generalized

Ulam-Hyers stability of the solutions of systems of integral equations.

The results presented in this section are contained in the paper Magdaş [35].

Chapter 3: Multi-valued generalized contractions on cyclic representations

In this chapter, we give fixed point and best proximity point results for multi-valued operators

defined on cyclic representations of a metric space (X, d). This chapter has three sections.

In the first section we investigate the properties of multi-valued ϕ-contractions of Ćirić type

defined on cyclic representations in a metric space (X, d). We will study under which conditions

such an operator T possesses fixed points, i.e., x ∈ X satisfying the relation x ∈ T (x). We

construct a sequence of successive approximations of T that guarantees convergence from any

starting point (x, y) from the graph of the operator to a point x∗ ∈ FT , the set of all fixed

points of T . We also study data dependence and generalized Ulam-Hyers stability of the fixed

point inclusion x ∈ T (x). Our results extend metrical fixed point theorems in literature such as

Nadler’s Theorem (see [40]) or fixed point results of multi-valued Ćirić type operators (see [9]),

in the case of a cyclic condition. Also, the main result Theorem 3.1.4 is a generalization of the

Theorem 2.1 given by Neammanee and Kaewkhao in [42].

The results presented in this section are included in the paper Magdaş [34].

In the second section we study existence of the solutions and generalized Ulam-Hyers

stability of the best proximity problem for cyclic multi-valued operators: If (X, d) is a metric

space, A,B ∈ P (X), T : A∪B → P (X) is a multi-valued operator satisfying the cyclic condition

T (A) ⊆ B, T (B) ⊆ A, then we are interested to find x∗ ∈ A ∪ B such that D(x∗, T (x∗)) =

D(A,B), where D is the gap functional. x∗ is said to be a best proximity point of T .

Several authors studied the existence of best proximity points for cyclic operators on metric

spaces, see e.g. [17], [19], [24], [25], [26], [28], [49], [51]. The first main result of this section extends

Theorem 1.4.5 (Suzuki, Kikkawa, C. Vetro, [77]) and Theorem 1.4.6 (Neammanee, Kaewkhao

[42]) to the case of multi-valued Ćirić type cyclic operator which takes proximinal values, in the

framework of metric spaces with the property UC.

The results presented in this section are contained in the paper Magdaş [37].

In the third section we study the coupled fixed point problem and the coupled best proxim-

ity point problem for cyclic multi-valued operators. The approach is based on fixed point results

for appropriate operators generated by the initial problems. The first result Theorem 3.3.5 states

a coupled fixed point result for cyclic coupled ϕ-contraction of Ćirić type multi-valued operator.

The generalized Ulam-Hyers stability of the coupled fixed point problem is studied as well. The-

orem 3.3.10 studies the existence of the coupled best proximity point of a cyclic coupled Ćirić

type multi-valued operator which takes proximinal values, in the framework of metric spaces

with the property UC.

The results presented in this section are contained in the paper Magdaş [35].

The thesis is concluded by the references used in the text and a list of published papers.

Keywords: metric space, cyclic operator, fixed point, best proximity point, coupled fixed point,

applications to systems of integral equations.
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for his guidance, support, patience and providing me with a good atmosphere for accomplishing

this research project.

5



Chapter 1

Preliminaries

The aim of this chapter is to present the basic concepts and results which are further considered

in the next chapters.

1.1 Basic notations and notions

We present some standard notations and terminology of nonlinear analysis which will be used

throughout this work.

Let (X, d) be a metric space, Y be a nonempty subset of X. We denote:

P (X) := {A ⊆ X | A is nonempty}; Pb(X) := {A ∈ P (X) | A is bounded};

Pcl(X) := {A∈P (X) | A is closed}; Pcp(X) := {A∈P (X) | A is compact};

Pcv(X) := {A∈P (X) | A is convex}; Pcl,cv(X) := Pcl(X) ∩ Pcv(X).

Let us define the following (generalized) functionals used in this paper:

• the diameter functional

δ : P (X)× P (X)→ R+ ∪ {+∞}, δ(A,B) = sup{d(a, b) | a ∈ A, b ∈ B};

• the gap functional

D : P (X)× P (X)→ R+, D(A,B) = inf{d(a, b) | a ∈ A, b ∈ B};

• the generalized excess functional

ρ : P (X)× P (X)→ R+ ∪ {+∞}, ρ(A,B) = sup{D(a,B) | a ∈ A};

• the generalized Pompeiu-Hausdorff functional

H : P (X)× P (X)→ R+ ∪ {+∞}, H(A,B) = max{ρ(A,B), ρ(B,A)}.

We recall now the following notions and results.

Lemma 1.1.1. Let (X, d) be a metric space, A,B ∈ P (X). Then for any ε > 0 and for any

a ∈ A there exists b ∈ B such that

d(a, b) ≤ H(A,B) + ε.
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Definition 1.1.2. (Fletcher, Moors [18]) Let (X, d) be a metric space and let Y ∈ P (X). We

denote

PY (x) = {y ∈ Y | d(x, y) = D(x, Y )} for x ∈ X.

The set Y is called proximinal if for any x ∈ X, PY (x) is nonempty. If for any x ∈ X, PY (x) is

singleton, then Y is called Chebyshev set.

Obviously, any Chebysev set is proximinal.

We denote Pprox(X) = {Y ∈ P (X) | Y is proximinal}.

Remark 1.1.3. Let (X, d) be a metric space. Then

Pcp(X) ⊂ Pprox(X) ⊂ Pcl(X).

Remark 1.1.4. (Deutsch [15]) A Banach space X is reflexive if and only if every nonempty

closed convex subset of X is proximinal.

Remark 1.1.5. (Cobzaş [14]) If Y is a nonempty complete convex subset of a uniformly convex

normed space X, then Y is a Chebyshev set in X.

For details concerning the above notions see [40], [63], [70], [76].

1.2 Comparison functions

There are several conditions regarding the notion of comparison function that have been con-

sidered in literature. Throughout this paper we shall refer only to the following notion.

Definition 1.2.1. (Rus, Şerban [72]) A function ϕ : R+ → R+ is called a comparison function

if it satisfies:

(i)ϕ ϕ is increasing;

(ii)ϕ (ϕn(t))n∈N converges to 0 as n→∞, for all t ∈ R+.

If the condition (ii)ϕ is replaced by the condition:

(iii)ϕ

∞∑
k=0

ϕk(t) <∞, for any t > 0,

then ϕ is called a strong comparison function.

Lemma 1.2.2. (Rus, A. Petruşel, G. Petruşel [70]) If ϕ : R+ → R+ is a comparison function,

then the following hold:

(i) ϕ(t) < t, for any t > 0;

(ii) ϕ(0) = 0;

(iii) ϕ is continuous at 0.

Lemma 1.2.3. (Păcurar, Rus [44], Rus, Şerban [72]) If ϕ : R+ → R+ is a strong comparison

function, then the following hold:

(i) ϕ is a comparison function;

(ii) the function s : R+ → R+, defined by

s(t) =

∞∑
k=0

ϕk(t), t ∈ R+, (1.2.1)

is increasing and continuous at 0;
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(iii) there exist k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms
∞∑
k=1

vk such

that

ϕk+1(t) ≤ aϕk(t) + vk, for k ≥ k0 and any t ∈ R+.

Remark 1.2.4. Some authors use the notion of (c)-comparison function defined by the state-

ments (i) and (iii) from Lemma 1.2.3. Actually, the concept of (c)-comparison function coincides

with that of strong comparison function.

Example 1.2.5. The following functions ϕ : R+ → R+ are comparison functions:

(1) ϕ(t) = at, where a ∈ [0, 1).

(2) ϕ(t) =

{
at, for t ∈ [0, 1]

t+ a− 1, for t > 1
, where a ∈ [0, 1).

(3) ϕ(t) = at+
1

2
[t], where a ∈ (0,

1

2
).

(4) ϕ(t) =


t

a
, for t ∈ [0, a]

a, for t > a
, where a ∈ (1,∞).

(5) ϕ(t) =
t

t+ a
, where a ∈ [1,∞).

The first four examples are strong comparison functions. The fifth example is a strong com-

parison function iff a ∈ (1,∞). For more considerations on comparison functions see [69], [70]

and the references therein.

1.3 Basic metric fixed point theorems

If f : Y → X is a single-valued operator, then

Graph(f) := {(x, f(x)) | x ∈ Y } denotes the graph of f and

Ff := {x ∈ Y | f(x) = x} denotes the fixed point set of f .

If T : Y → P (X) is a multi-valued operator, then

Graph(T ) := {(x, y) | x ∈ Y, y ∈ T (x)} denotes the graph of T and

FT := {x ∈ Y | x ∈ T (x)} denotes the fixed point set of T .

A sequence (xn)n∈N satisfying the following conditions:

(i) x0 = x, x1 = y;

(ii) xn+1 ∈ T (xn), for each n ∈ N;

is called a sequence of successive approximations of T starting from (x, y) ∈ Graph(T ).

Banach contraction principle is one of the most useful results in nonlinear analysis. In a

metric space setting, the statement of the contraction principle was given in 1922.

Theorem 1.3.1. (Banach [1]) Let (X, d) be a complete metric space and let f : X → X be a

contraction operator, that is there exists a constant a ∈ [0, 1) such that for any x, y ∈ X,

d(f(x), f(y)) ≤ ad(x, y).

Then:

(1) f has a unique fixed point x∗ ∈ X;

(2) the Picard iteration (xn)n≥0 defined by

xn = f(xn−1), n ≥ 1 (1.3.1)
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converges to x∗ for any starting point x0 ∈ X;

(3) the following estimate holds:

d(xn+k−1, x
∗) ≤ ak

1− a
d(xn, xn−1), ∀n, k ∈ N∗;

(4) the rate of convergence of Picard iteration is given by:

d(xn, x
∗) ≤ ad(xn−1, x

∗), ∀n ≥ 1.

In 1969, Nadler [40] extended the Banach contraction principle from single-valued to multi-

valued operator. The existence of fixed points for various multi-valued contractive operators has

been studied by many authors under different conditions, see Ćirić [9], [10], Mizoguchi, Takahashi

[38], Rhoades [67].

We recall now Nadler’s fixed point theorem.

Theorem 1.3.2. (Nadler [40]) Let (X, d) be a complete metric space and let T : X → Pb,cl(X) be

a multi-valued a-contraction, that is there exists a constant a ∈ [0, 1) such that for any x, y ∈ X,

H(T (x), T (y)) ≤ a · d(x, y).

Then T has a fixed point.

In the last decades, authors gave many generalization of the Banach contraction principle, a

way of generalization being the weakening of the contraction condition.

We present some of such conditions existing in the literature. Let (X, d) be a complete metric

space and let f : X → X be an operator.

(i) (Kannan, [22]) there exists a constant a ∈ [0,
1

2
) such that

d(f(x), f(y)) ≤ a[d(x, f(x)) + d(y, f(y))],∀x, y ∈ X;

(ii) (Chatterjea, [7]) there exists a constant a ∈ [0,
1

2
) such that

d(f(x), f(y)) ≤ a[d(x, f(y)) + d(y, f(x))],∀x, y ∈ X;

(iii) (Zamfirescu, [81]) there exist the real numbers a ∈ [0, 1), b, c ∈ [0,
1

2
) such that for any

x, y ∈ X, at least one of the following holds:

(z1) d(f(x), f(y)) ≤ ad(x, y);

(z2) d(f(x), f(y)) ≤ b[d(x, f(x)) + d(y, f(y))];

(z3) d(f(x), f(y)) ≤ c[d(x, f(y)) + d(y, f(x))].

(iv) (Bianchini, [6]) there exists a constant a ∈ [0, 1) such that

d(f(x), f(y)) ≤ amax{d(x, f(x)), d(y, f(y))}, ∀x, y ∈ X;

(v) (Reich [64], Rus [69]) there exist the real numbers a, b, c ∈ R+ with a + b + c < 1 such

that for any x, y ∈ X,

d(f(x), f(y)) ≤ ad(x, y) + bd(x, f(x)) + cd(y, f(y)).

Ljubomir Ćirić weakened the above conditions introducing in 1971 the notion of generalized

contraction.
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Definition 1.3.3. (Ćirić [8]) Let (X, d) be a metric space. An operator f : X → X is said to be

a lambda-generalized contraction iff for every x, y ∈ X there are non-negative numbers q(x, y),

r(x, y), s(x, y) and t(x, y) with

sup{q(x, y) + r(x, y) + s(x, y) + 2t(x, y) | x, y ∈ X} = λ < 1

such that d(f(x), f(y)) ≤ q(x, y)d(x, y) + r(x, y)d(x, f(x))+

+s(x, y)d(y, f(y)) + t(x, y)(d(x, f(y)) + d(y, f(x))).

Remark 1.3.4. (Ćirić [9]) f is a generalized contraction if and only if there exists q ∈ [0, 1)

such that for any x, y ∈ X,

d(f(x), f(y)) ≤ qM(x, y),

where M(x, y) =

= max{d(x, y), d(x, f(x)), d(y), f(y)),
1

2
[d(x, f(y)) + d(y, f(x))]}. (1.3.2)

Example 1.3.5. (Ćirić [8]) Let X = [0, 2], and let f : X → X, f(x) =
x

9
, for 0 ≤ x ≤ 1; f(x) =

x

10
, for 1 < x ≤ 2. The operator f is not a contraction but is a generalized contraction.

Definition 1.3.6. [9] Let (X, d) be a metric space and let T : X → Pcl(X) be a multi-valued

operator. T is said to be a generalized multi-valued q-contraction if there exists q ∈ (0, 1) such

that

H(T (x), T (y)) ≤

≤ q ·max

{
d(x, y), D(x, T (x)), D(y, T (y)),

1

2
[D(x, T (y)) +D(y, T (x))]

}
,

holds for every x, y ∈ X.

Definition 1.3.7. [8] Let (X, d) be a metric space and let f : X → X be a single-valued

operator. X is said to be f -orbitally complete if every Cauchy sequence (fni(x))i∈N, x ∈ X, has

a limit point in X.

Definition 1.3.8. [9] Let (X, d) be a metric space and let T : X → P (X) be a multi-valued

operator. X is said to be T -orbitally complete if every Cauchy sequence (xni)i∈N with xni ∈
T (xni−1) converges in X.

Theorem 1.3.9. [8] Let f be a λ-generalized contraction of f -orbitally complete metric space

(X, d) into itself. Then

(1) f has a unique fixed point x∗ ∈ X;

(2) the Picard iteration (xn)n∈N defined by

xn = f(xn−1), n ≥ 1, (1.3.3)

converges to x∗ for any starting point x0 ∈ X;

(3) the following estimate holds:

d(xn, x
∗) ≤ λn

1− λ
· d(x0, x1), ∀n ≥ 0.
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Theorem 1.3.10. [9] Let T : X → Pcl(X) be a generalized multi-valued q-contraction and let

(X, d) be a T -orbitally complete metric space.

Then the following statements hold:

(1) FT 6= ∅;
(2) there exists a sequence (xn)n∈N of successive approximations of T starting from any point

(x, y) ∈ Graph(T ), that converges to a fixed point x∗(x, y) ∈ X;

(3) the following estimate holds:

d(xn, x
∗(x, y)) ≤ qan

1− qa
· d(x0, x1), ∀a ∈ (0, 1),∀n ≥ 0.

Another consistent way to generalize Banach contraction principle was presented in 2003 by

Kirk, Srinivasan and Veeramani, using the concept of cyclic operator.

Definition 1.3.11. (Kirk, Srinivasan, Veeramani [29]) Let A and B be two nonempty sets. An

operator f : A ∪B → A ∪B is called cyclic if f(A) ⊆ B and f(B) ⊆ A.

They prove the following results.

Theorem 1.3.12. [29] Let A and B be two nonempty subsets of a complete metric space (X, d)

and suppose f : X → X satisfies the following conditions:

(1) f(A) ⊆ B and f(B) ⊆ A;

(2) d(f(x), f(y)) ≤ kd(x, y), ∀x ∈ A, ∀y ∈ B, where k ∈ (0, 1).

Then f has a unique fixed point.

Theorem 1.3.13. [29] Let {Ai}mi=1 be nonempty subsets of a complete metric space and suppose

f :
m⋃
i=1

Ai →
m⋃
i=1

Ai satisfies the following conditions (where Am+1 = A1):

(1) f(Ai) ⊆ Ai+1 for 1 ≤ i ≤ m;

(2) d(f(x), f(y)) ≤ ψ(d(x, y)), ∀x ∈ Ai, ∀y ∈ Ai+1, for 1 ≤ i ≤ m, where ψ : R+ → R+ is

upper semi-continuous from the right and satisfies 0 ≤ ψ(t) < t for t > 0.

Then f has a unique fixed point.

This results suggested the introduction of the following definition.

Definition 1.3.14. Let X be a nonempty set, m a positive integer and T : X → P (X) a

multi-valued operator. By definition,
m⋃
i=1

Ai is a cyclic representation of X with respect to T if:

(i) X =

m⋃
i=1

Ai, with Ai ∈ P (X), for 1 ≤ i ≤ m;

(ii) T (Ai) ⊆ Ai+1, for 1 ≤ i ≤ m, where Am+1 = A1.

For the particular case of a single-valued operator see Rus [68].

1.4 Basic best proximity point theorems

The best proximity problem for a cyclic multi-valued operator is defined as follows:

If (X, d) is a metric space, A,B ∈ P (X), T : A ∪ B → P (X) is a multi-valued operator

satisfying the cyclic condition T (A) ⊆ B, T (B) ⊆ A, then we are interested to find

x∗ ∈ A ∪B such that D(x∗, T (x∗)) = D(A,B). (1.4.1)

11



x∗ is said to be a best proximity point of T .

In particular, if the operator is single-valued then we get the following best proximity problem

for a cyclic single-valued operator:

If (X, d) is a metric space, A,B ∈ P (X), f : A∪B → X is a single-valued operator satisfying

the cyclic condition f(A) ⊆ B, f(B) ⊆ A, then we are interested to find

x∗ ∈ A ∪B such that d(x∗, f(x∗)) = D(A,B). (1.4.2)

x∗ is said to be a best proximity point of f .

Eldred and Veeramani proved in 2006 the following theorem which ensures the existence of a

best proximity point of cyclic contractions in the framework of uniformly convex Banach spaces.

Theorem 1.4.1. (Eldred, Veeramani [16])

Let A and B be nonempty closed and convex subsets of a uniformly convex Banach space.

Suppose f : A∪B → A∪B is a cyclic contraction map, that is f satisfies to following conditions:

(1) f(A) ⊆ B and f(B) ⊆ A;

(2) ‖f(x)− f(y)‖ ≤ k ‖x− y‖+ (1− k)D(A,B), ∀x ∈ A, ∀y ∈ B,

where k ∈ (0, 1).

Then there exists a unique best proximity point in A. Further, if x0 ∈ A and xn+1 = f(xn),

then (x2n)n∈N converges to the best proximity point.

In 2009, Suzuki, Kikkawa and C. Vetro introduced the property UC and extended Theorem

1.4.1 to metric spaces with the property UC.

Definition 1.4.2. (Suzuki, Kikkawa, C. Vetro [77]) Let A andB be nonempty subsets of a metric

space (X, d). Then (A,B) is said to satisfy the property UC if for (xn)n∈N and (zn)n∈N sequences

in A and (yn)n∈N a sequence in B such that d(xn, yn) → D(A,B) and d(zn, yn) → D(A,B) as

n→∞, then d(xn, zn)→ 0 as n→∞.

The following are examples of pairs of nonempty subsets of a metric space satisfying the

property UC.

Proposition 1.4.3. Any pair of nonempty subsets (A,B) of a metric space (X, d) with

D(A,B) = 0 has the property UC.

Proposition 1.4.4. (Eldred, Veeramani [16]) Any pair of nonempty subsets (A,B) of a uni-

formly convex Banach space with A convex has the property UC.

Theorem 1.4.5. [77] Let (X, d) be a metric space and let A and B be nonempty subsets of X

such that (A,B) satisfies the property UC. Assume that A is complete. Let f : A ∪B → X be a

cyclic mapping, that is f(A) ⊆ B and f(B) ⊆ A.

Assume that there exists k ∈ (0, 1) such that for each x ∈ A and y ∈ B,

d(f(x), f(y)) ≤ kmax {d(x, y), d(x, f(x)), d(y, f(y))}+ (1− k)D(A,B).

Then the following hold:

(i) f has a unique best proximity point z ∈ A.

(ii) z is a unique fixed point of f2in A.

(iii)
(
f2n(x)

)
n∈N converges to z for every x ∈ A.

(iv) f has at least one best proximity point in B.

(v) If (B,A) satisfies the property UC, then f(z) is a unique best proximity point in B and(
f2n(y)

)
n∈N converges to f(z) for every y ∈ B.

12



Theorem 1.4.6. (Neammanee, Kaewkhao [42]) Let A and B be nonempty subsets of a metric

space (X, d) such that (A,B) satisfies the property UC and A is complete. Let T : A∪B → P (X)

with closed bounded valued, be a multi-valued cyclic contraction, that is:

(i) T (A) ⊆ B and T (B) ⊆ A;

(ii) there exists k ∈ (0, 1) such that for any x ∈ A, y ∈ B,

H(T (x), T (y)) ≤ kd(x, y) + (1− k)D(A,B).

Then T has a best proximity point in A.

1.5 Basic coupled fixed point theorems

A very useful concept in many applications, especially to the theory of integral and differential

equations and inclusions, is the coupled fixed point theory. Opoitsev in [43] considered, for the

first time, the coupled fixed point problem, but the issue gets a fast development by the seminal

works of D. Guo and V. Lakshmikantham [20] and T.G. Bhaskar, V. Lakshmikantham [5]. A

new research direction for the theory of coupled fixed points was developed by many authors

(see [4], [21], [31], [57], [58], [60], [73]) using contractive type conditions.

We give the notion of coupled fixed point in terms of single-valued, respectively multi-valued

operators.

Definition 1.5.1. Let X be a nonempty set. A pair (x, y) ∈ X×X is called coupled fixed point

of the single-valued operator F : X ×X → X if{
F (x, y) = x

F (y, x) = y.
(1.5.1)

If F (x, x) = x then x is called strong coupled fixed point of F (also called, in several papers,

fixed point of F ).

Definition 1.5.2. Let X be a nonempty set. A pair (x, y) ∈ X×X is called coupled fixed point

of the multi-valued operator F : X ×X → P (X) if{
x ∈ F (x, y)

y ∈ F (y, x).
(1.5.2)

If x ∈ F (x, x) then x is called strong coupled fixed point of F .

In order to state the main result in [5], we need the following notion.

Definition 1.5.3. Let (X,≤) be a partially ordered set. We say that F : X ×X → X has the

mixed monotone property if F (x, y) is monotone increasing in x and is monotone decreasing in

y, that is, for any x, y ∈ X,

x1, x2 ∈ X,x1 ≤ x2 ⇒ F (x1, y) ≤ F (x2, y),

respectively,

y1, y2 ∈ X, y1 ≤ y2 ⇒ F (x, y1) ≥ F (x, y2).
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Theorem 1.5.4. (Bhaskar, Lakshmikantham [5])

Let (X,≤) be a partially ordered set and suppose there is a metric d on X such that (X, d)

is a complete metric space. Let F : X × X → X be a continuous operator having the mixed

monotone property on X.

Assume that there exists a constant k ∈ [0, 1) with

d(F (x, y), F (u, v)) ≤ k

2
· [d(x, u)) + d(y, v)],∀x ≥ u,∀y ≤ v. (1.5.3)

If there exists x0, y0 ∈ X such that

x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0), (1.5.4)

then there exist x, y ∈ X such that

x = F (x, y) and y = F (y, x).

Also, Bhaskar and Lakshmikantham established in [5] uniqueness results of the coupled fixed

point under an additional assumption on the metric space, as well as existence results of the

strong coupled fixed point.

Remark 1.5.5. If (X, d) is a complete metric space without a partially order and (1.5.3) is

supposed to hold for any pairs (x, y), (u, v) ∈ X ×X, then we can get existence and uniqueness

of the strong coupled fixed point without the continuity and monotonicity conditions and without

the assumption (1.5.4).

A more general result was given by A. Petruşel et al. in [59] for symmetric multi-valued

contractions:

Theorem 1.5.6. (A. Petruşel, G. Petruşel, Samet, Yao [59]) Let (X,�, d) be an ordered b-metric

space with constant s ≥ 1 such that the b-metric d is complete. Let G : X ×X → Pcl(X) be a

multi-valued operator having the strict mixed monotone property with respect to ”�”. Assume:

(i) there exists k ∈ (0, 1s ) such that

Hd(G(x, y), G(u, v)) +Hd(G(y, x), G(v, u)) ≤ k[d(x, u) + d(y, v)],∀x � u, y � v;

(ii) there exist (x0, y0) ∈ X ×X and (x1, y1) ∈ G(x0, y0)×G(y0, x0) such that x0 � x1 and

y0 � y1.

Then, there exist x∗, y∗ ∈ X and there exist two sequences (xn)n∈N and (yn)n∈N in X, with

xn+1 ∈ G(xn, yn) and yn+1 ∈ G(yn, xn) for all n ∈ N, such that (xn)n∈N → x∗, (yn)n∈N → y∗ as

n→∞ and {
x∗ ∈ G(x∗, y∗)

y∗ ∈ G(y∗, x∗).

If, in addition, the b-metric d is continuous, then, for the above mentioned two sequences

(xn)n∈N and (yn)n∈N, the following estimation holds:

d(xn, x
∗) + d(yn, y

∗) ≤ skn

1− sk
[d(x0, x1) + d(y0, y1)], ∀n ∈ N∗.

We present now the concept of cyclic coupled single-valued operator.

Definition 1.5.7. (Choudhury, Maity [11]) Let A and B two nonempty subsets of a given set

X. An operator F : X×X → X having the property that for any x ∈ A and y ∈ B, F (x, y) ∈ B
and F (y, x) ∈ A, is called a cyclic operator with respect to A and B.
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Definition 1.5.8. [11] Let A and B two nonempty subsets of a metric space (X, d). An operator

F : X ×X → X is called a cyclic coupled Kannan type contraction if F is cyclic with respect

to A and B, satisfying for some k ∈ (0, 12) the inequality:

d(F (x, y), F (u, v)) ≤ k · [d(x, F (x, y)) + d(u, F (u, v))],

where x, v ∈ A, y, u ∈ B.

Theorem 1.5.9. [11] Let A and B two nonempty closed subsets of a completed metric space

(X, d). Let F : X ×X → X be a cyclic coupled Kannan type contraction with respect to A and

B and A ∩B 6= ∅. Then F has a strong coupled fixed point in A ∩B.

Definition 1.5.10. (Choudhury, Maity, Konar [12]) Let A and B two nonempty subsets of a

metric space (X, d). An operator F : X ×X → X is called a Banach type coupling if F is cyclic

with respect to A and B, and if it satisfies the following inequality:

d(F (x, y), F (u, v)) ≤ k

2
· [d(x, u) + d(y, v)],

where x, v ∈ A, y, u ∈ B, and k ∈ (0, 1) .

Theorem 1.5.11. [12] Let A and B two nonempty closed subsets of a completed metric space

(X, d). Let F : X ×X → X be a Banach type coupling with respect to A and B.Then A∩B 6= ∅
and F has a unique strong coupled fixed point in A ∩B.

Definition 1.5.12. [12] Let A and B two nonempty subsets of a metric space (X, d). An operator

F : X ×X → X is called a Chatterjea type coupling if F is cyclic with respect to A and B, and

if it satisfies the following inequality:

d(F (x, y), F (u, v)) ≤ k · [d(x, F (u, v)) + d(u, F (x, y))],

where x, v ∈ A, y, u ∈ B, and k ∈ (0, 12) .

Theorem 1.5.13. [12] Let A and B two nonempty closed subsets of a completed metric space

(X, d). Let F : X×X → X be a Chatterjea type coupling with respect to A and B.Then A∩B 6= ∅
and F has a unique strong coupled fixed point in A ∩B.

Definition 1.5.14. (Udo-utun [78]) Let A and B two nonempty subsets of a metric space (X, d).

An operator F : X × X → X is called a cyclic Ćirić operator with respect to A and B if F

is cyclic with respect to A and B and for some constant q ∈ (0, 1), F satisfies the following

condition:

d(F (x, y), F (u, v)) ≤ q ·M(x, v, y, u),

where x, v ∈ A, y, u ∈ B, and

M(x, v, y, u) = max
{
d(x, u),

1

2
d(u, F (x, y)),

1

2
d(x, F (u, v)),

1

2
[d(x, F (x, y)) + d(u, F (u, v))]

}
Theorem 1.5.15. [78] Let A and B be two nonempty closed subsets of a complete metric space

(X, d), F : X ×X → X a cyclic Ćirić type operator with respect to A and B, with A ∩ B 6= ∅.
Then F has a strong coupled fixed point in A ∩B.
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Chapter 2

Single-valued generalized

contractions on cyclic

representations

In this chapter, we present fixed point results for single-valued operators defined on cyclic

representations in metric spaces and in spaces endowed with vector-valued metrics. This chapter

has three sections.

In the first section we investigate properties of some Ćirić type generalized contractions

defined on cyclic representations in a metric space.

The Ćirić type generalized contraction condition is one of the most general metrical condition

for which the set of fixed points is a singleton and the fixed points can be approximated by means

of Picard iteration. Our results generalize fundamental metrical fixed point theorems in literature

given for Banach, Kannan, Bianchini, Reich, Chatterjea, Zamfirescu, Ćirić type operators (see

[52], [66]), in the case of a cyclic condition (see [47]). Also, the main result Theorem 2.1.5 is a

generalization of the following results: Theorem 2.1.1 given in [50] and Theorem 2.1.3 given in

[44].

In this section we will present an extended study of the fixed point equation x = f(x) with

a cyclic operator of Ćirić type. More precisely, existence and uniqueness results for fixed points

of single-valued cyclic ϕ-contraction of Ćirić type, as well as convergence results for Picard

iteration to these fixed points are proved. This study also deals with data dependence of the

fixed point, well posedness of the fixed point problem and sequences of operators and fixed

points. We will state a Maia type theorem regarding Ćirić type generalized contractions defined

on cyclic representations.

The original contributions in the first section are the following results:

• Theorem 2.1.5 extends fixed point results for contractive operators defined on cyclic rep-

resentation of the space;

• Theorem 2.1.7 is a result concerning the well posedness of the fixed point equation;

• Theorem 2.1.8 studies the data dependence of the fixed point equation;

• Theorem 2.1.9 is a convergence result of a sequence of fixed points of a sequence of operators

uniformly convergent to the given Ćirić type generalized contraction;

• Theorem 2.1.10 is a Maia type fixed point theorem for cyclic ϕ-contraction of Ćirić type.

The results presented in the first section are included in the following paper: Magdaş [33].

In the second section we present a Perov type theorem for cyclic operators. Our approach is

based on Perov’s fixed point theorem (see Theorem 2.2.3), in spaces endowed with vector-valued
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metrics.

The original contributions in the second section are the following results:

• Theorem 2.2.5 is the main result, an extension of Theorem 1.3.1 and Theorem 1.3.12 in a

space endowed with a vector-valued metric;

• Theorem 2.2.6 states a result regarding the data dependence of the fixed point equation;

• Theorem 2.2.7 studies the well posedness of the fixed point equation;

• Theorem 2.2.8 studies the existence and the uniqueness of the solution of a system of

Fredholm type of integral equations; the solution of the system can be obtained by the successive

appoximation;

• Theorem 2.2.9 is a result concerning the data dependence of the solution of the given

system of Fredholm type of integral equations;

• Theorem 2.2.11 studies the existence and the uniqueness of the solution of a system of

Volterra type of integral equations.

The results presented in this section are contained in the following paper: Magdaş [36].

In the third section we study the coupled fixed point problem for single-valued contraction

type operators defined on cyclic representations of the space.

The original contributions in the third section are the following results:

• Theorem 2.3.2 is the main result which generalize theorems 1.5.9, 1.5.11, 1.5.13, 1.5.15;

our result provides an iterative method for approximating the strong coupled fixed point and

estimations which allow us to study qualitative properties of the coupled fixed point set;

• Theorem 2.3.4 studies the well posedness property of the coupled fixed point problem;

• Theorem 2.3.5 studies the data dependence of the coupled fixed point problem;

• Theorem 2.3.6 is a convergence result of a sequence of strong coupled fixed points of a

sequence of operators uniformly convergent to the given cyclic coupled ϕ-contraction of Ćirić

type;

• Theorem 2.3.8 studies the generalized Ulam-Hyers stability for the coupled fixed point

problem;

• Theorem 2.3.9 studies the existence and the uniqueness of the solution of a system of

Fredholm type of integral equations;

• Theorem 2.3.11 studies the generalized Ulam-Hyers stability of the given system;

• Theorem 2.3.12 studies the existence and the uniqueness of the solution of a system of

Volterra type of integral equations.

The results presented in this section are contained in the following paper: Magdaş [35].

2.1 A study of the fixed point problem

for Ćirić type single-valued operators

satisfying a cyclic condition

The purpose of this section is to investigate the properties of some Ćirić type generalized con-

tractions defined on cyclic representations in a metric space.

Following the work of Kirk, Srinivasan and Veeramani in [29], many authors studied the

existence, uniqueness and qualitative properties of the fixed point of a cyclic operator.

Zamfirescu’s theorem (see [81]) is a generalization of Banach’s, Kannan’s and Chatterjea’s

fixed point theorems. Petric and Zlatanov asserted the following result for cyclic operators,

generalizing Zamfirescu’s fixed point theorem.

17



Theorem 2.1.1. (Petric, Zlatanov [50]) Let (X, d) be a metric space, m a positive integer,

A1, . . . , Am ∈ Pcl(X), and let f :

m⋃
i=1

Ai →
m⋃
i=1

Ai be a cyclical operator, that is f(Ai) ⊆ Ai+1,

for 1 ≤ i ≤ m, where Am+1 = A1. Suppose that there exist real numbers a ∈ [0, 1), b, c ∈ [0,
1

2
)

such that for each x ∈ Ai, y ∈ Ai+1 at least one of the following is true:

(z1) d(f(x), f(y)) ≤ ad(x, y);

(z2) d(f(x), f(y)) ≤ b[d(x, f(x)) + d(y, f(y))];

(z3) d(f(x), f(y)) ≤ c[d(x, f(y)) + d(y, f(x))].

Then:

(1) f has a unique fixed point x∗ ∈
m⋂
i=1

Ai and the Picard iteration (xn)n∈N given by (1.3.1)

converges to x∗ for any starting point x0 ∈
m⋃
i=1

Ai.

(2) the following estimates hold:

d(xn, x
∗) ≤ λn

1− λ
d(x0, x1), n ≥ 0;

d(xn+1, x
∗) ≤ λ

1− λ
d(xn, xn+1), n ≥ 0;

(3) the rate of convergence of Picard iteration is given by:

d(xn, x
∗) ≤ λd(xn−1, x

∗), n ≥ 1

where λ = max

{
a,

b

1− b
,

c

1− c

}
.

Păcurar and Rus presented in [44] a fixed point theorem for cyclic ϕ-contractions.

Definition 2.1.2. (Păcurar, Rus [44]) Let (X, d) be a metric space, m a positive integer,

A1, . . . , Am ∈ Pcl(X), Y ∈ P (X) and f : Y → Y an operator. If

(i)

m⋃
i=1

Ai is a cyclic representation of Y with respect to f ;

(ii) there exists a comparison function ϕ : R+ → R+ such that

d(f(x), f(y)) ≤ ϕ(d(x, y)),

for any x ∈ Ai, y ∈ Ai+1, 1 ≤ i ≤ m, where Am+1 = A1, then f is a cyclic ϕ-contraction.

Theorem 2.1.3. [44] Let (X, d) be a complete metric space, m a positive integer, A1, . . . , Am ∈
Pcl(X), Y ∈ P (X), ϕ : R+ → R+ be a (c)-comparison function, and f : Y → Y be an operator.

Assume that:

(i)

m⋃
i=1

Ai is a cyclic representation of Y with respect to f ;

(ii) f is a cyclic ϕ-contraction.

Then:

(1) f has a unique fixed point x∗ ∈
m⋂
i=1

Ai and the Picard iteration (xn)n∈N given by (1.3.1)

converges to x∗ for any starting point x0 ∈ Y .

(2) the following estimates hold:

d(xn, x
∗) ≤ s(ϕn(d(x0, x1))), n ≥ 1;
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d(xn, x
∗) ≤ s(d(xn, xn+1)), n ≥ 1;

(3) for any x ∈ Y :

d(x, x∗) ≤ s(d(x, f(x))),

where s is given by (1.2.1) in Lemma 1.2.3.

Further on we present the notion of cyclic ϕ-contraction of Ćirić type.

Definition 2.1.4. (Magdaş [33]) Let (X, d) be a metric space, Y ∈ P (X), f : Y → Y be an

operator, m ∈ N∗, A1, . . . , Am ∈ Pcl(X). If

(i)
m⋃
i=1

Ai is a cyclic representation of Y with respect to f ;

(ii) there exists a strong comparison function ϕ : R+ → R+ such that

d(f(x), f(y)) ≤ ϕ(M(x, y)),

for any x ∈ Ai, y ∈ Ai+1, 1 ≤ i ≤ m, where Am+1 = A1 and M(x, y) is given by (1.3.2), then f

is said to be a cyclic ϕ-contraction of Ćirić type.

The main result of this section is the following theorem which generalizes some similar results

for Ćirić type operators (see Petruşel [52], Rhoades [66]), in the case of a cyclic condition (see

Petric [47]). Also, the following theorem generalizes Theorem 2.1.1 and Theorem 2.1.3.

Hereinafter we present an extended study of this theorem, study in connection with data

dependence, well posedness of the fixed point problem, limit shadowing property and sequences

of operators and fixed points.

Theorem 2.1.5. (Magdaş [33]) Let (X, d) be a complete metric space, m be a positive integer,

A1, . . . , Am ∈ Pcl(X), Y ∈ P (X), ϕ : R+ → R+ be a strong comparison function, and f : Y → Y

be an operator such that

m⋃
i=1

Ai is a cyclic representation of Y with respect to f . Assume that f

is a cyclic ϕ-contraction of Ćirić type.

Then:

(1) f has a unique fixed point x∗ ∈
m⋂
i=1

Ai and the Picard iteration (xn)n≥0 given by (1.3.1)

converges to x∗ for any starting point x0 ∈ Y ;

(2) the following estimates hold:

d(xn, x
∗) ≤ s(ϕn(d(x0, x1))), n ≥ 0;

d(xn, x
∗) ≤ s(d(xn, xn+1)), n ≥ 0;

(3) for any x ∈ Y ,

d(x, x∗) ≤ s(d(x, f(x))),

where s is given by (1.2.1) in Lemma 1.2.3;

(4)
∞∑
n=0

d(xn, xn+1) <∞, i.e., f is a good Picard operator;

(5)

∞∑
n=0

d(xn, x
∗) <∞, i.e., f is a special Picard operator.

Remark 2.1.6. For a related result obtained by a different method, concerning the existence

and uniqueness of the fixed point, we mention the paper [27]. Our results extend the above

mentioned theorem for an extensive study of the fixed point problem.

19



The next result gives the well posedness property for the fixed point problem. For the concept

of well posedness for the fixed point problems see Reich, Zaslavski [65].

Theorem 2.1.7. (Magdaş [33]) Let f : Y → Y be as in Theorem 2.1.5. Then the fixed point

problem for f is well posed, that is, assuming there exist zn ∈ Y , n ∈ N such that

d(zn, f(zn))→ 0 as n→∞,

this implies that

zn → x∗ as n→∞,

where Ff = {x∗}.

Theorem 2.1.8. (Magdaş [33]) Let f : Y → Y be as in Theorem 2.1.5, and g : Y → Y be such

that:

(i) g has at least one fixed point x∗g ∈ Fg;
(ii) there exists η > 0 such that

d(f(x), g(x)) ≤ η, for any x ∈ Y.

Then d(x∗f , x
∗
g) ≤ s(η), where Ff = {x∗f} and s is defined in Lemma 1.2.3.

Theorem 2.1.9. (Magdaş [33]) Let f : Y → Y be as in Theorem 2.1.5 and fn : Y → Y , n ∈ N
be such that:

(i) for each n ∈ N there exists x∗n ∈ Ffn;

(ii) (fn)n∈N converges uniformly to f .

Then x∗n → x∗ as n→∞, where Ff = {x∗}.

The following theorem is a Maia type result regarding Ćirić type generalized contractions

defined on cyclic representations.

Theorem 2.1.10. (Magdaş [33]) Let X be a nonempty set, d and ρ be two metrics on X, m a

positive integer, A1, . . . , Am ∈ Pcl(X), Y ∈ P (X) and f : Y → Y be an operator. Assume that:

(i) there exists c > 0 such that d(x, y) ≤ c · ρ(x, y), for any x, y ∈ Y ;

(ii) (Y, d) is a complete metric space;

(iii) f : (Y, d)→ (Y, d) is continuous;

(iv) f : (Y, ρ)→ (Y, ρ) is a cyclic ϕ-contraction of Ćirić type.

Then f has a unique fixed point x∗ ∈
m⋂
i=1

Ai and the Picard iteration (xn)n∈N given by (1.3.1)

converges to x∗ for any starting point x0 ∈ Y .

Remark 2.1.11. It is an open problem to find conditions under which the operator f : Y → Y

defined as in Theorem 2.1.5 has the Ostrowski’s stability property that is, if Ff = {x∗} and for

any sequence (zn)n∈N ⊂ Y , with the property d(zn+1, f(zn))→ 0 as n→∞, we have

zn → x∗ as n→∞.
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2.2 Perov type theorems for cyclic

contractions

The aim of this section is to prove a fixed point theorem of Perov type for cyclic contractions on

complete generalized metric spaces. Then, as applications, we will study the existence, uniqueness

and approximation of the solution for a system of Fredholm type of integral equations, as well as

the continuous dependence phenomenon of the given system. Also, we will study the existence

and uniqueness of the solution for a system of Volterra type of integral equations.

The matrices convergent to zero were used by Perov and Kibenko [45] to generalize the

contraction principle in the case of metric spaces with a vector-valued distance.

Theorem 2.2.1. (Varga [79], Rus, A. Petruşel, G. Petruşel [70])

Let S ∈Mp(R+). The following statements are equivalent:

(i) S is a matrix convergent to zero, that is Sk → 0 as k → +∞;

(ii) Skx→ 0 as k → +∞, ∀ x ∈ Rp;
(iii) Ip − S is non-singular and

(Ip − S)−1 = Ip + S + S2 + . . . (2.2.1)

(iv) Ip − S is non-singular and (Ip − S)−1 has nonnegative elements;

(v) λ ∈ C, det(S − λIp) = 0 implies |λ| < 1.

Definition 2.2.2. (Rus, A. Petruşel, G. Petruşel [70]) Let (X, d) be a metric space with d :

X×X → Rp+ a vector-valued distance and f : X → X. The operator f is called an S-contraction

if there exists a matrix S ∈Mp(R+) such that:

(i) S is a matrix convergent to zero;

(ii) d(f(x), f(y)) ≤ Sd(x, y), ∀ x, y ∈ X.

Theorem 2.2.3. (Perov, Kibenko [45]) Let (X, d) be a complete metric space with d : X×X →
Rp+ a vector-valued distance and f : X → X be an S-contraction. Then:

(i) f has a unique fixed point x∗ ∈ X;

(ii) fk(x)
d−→ x∗ as k → +∞, for all x ∈ X;

(iii) d(fk(x), x∗) ≤ Sk(Ip − S)−1d(x, f(x)), for all x ∈ X and k ∈ N;

(iv) d(x, x∗) ≤ (Ip − S)−1d(x, f(x)) for all x ∈ X.

We recall the following notion, introduced in [36], suggested by the considerations in [29].

Definition 2.2.4. (Magdaş [36]) Let (X, d) be a metric space with d : X ×X → Rp+ a vector-

valued distance, A1, . . . , Am ∈ Pcl(X) and f : X → X be an operator. If:

(i)
m⋃
i=1

Ai is a cyclic representation of X with respect to f ;

(ii) there exists a matrix S ∈Mp(R+) convergent to zero such that

d(f(x), f(y)) ≤ S · d(x, y), for any x ∈ Ai, y ∈ Ai+1, where Am+1 = A1,

then, by definition, we say that f is a cyclic S-contraction.

The main result of this section is the following theorem which generalizes the Perov fixed

point Theorem 2.2.3, in spaces endowed with vector-valued metrics.
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Theorem 2.2.5. (Magdaş [36]) Let (X, d) be a complete metric space with d : X × X → Rp+
a vector-valued distance, A1, A2, . . . , Am ∈ Pcl(X). If f : X → X is a cyclic S-contraction then

the following statements hold:

(1) f has a unique fixed point x∗ ∈
m⋂
i=1

Ai and the Picard iteration (xn)n∈N given by

xn = f(xn−1), n ≥ 1,

converges to x∗ for any starting point x0 ∈ X;

(2) the following estimates hold:

d(xn, x
∗) ≤ Sn(Ip − S)−1d(x0, x1), n ≥ 1; (2.2.2)

d(xn, x
∗) ≤ (Ip − S)−1d(xn, xn+1), n ≥ 1; (2.2.3)

(3) for any x ∈ X,

d(x, x∗) ≤ (Ip − S)−1d(x, f(x)). (2.2.4)

The conclusions of Theorem 2.2.5 are useful to study the data dependence and the well

posedness of the fixed point of a cyclic S-contraction.

Theorem 2.2.6. (Magdaş [36]) Let f : X → X be as in Theorem 2.2.5 with Ff = {x∗f}. Let

g : X → X be an operator such that:

(i) g has at least one fixed point x∗g;

(ii) there exists η > 0 such that

d(f(x), g(x)) ≤ η, for any x ∈ X.

Then d(x∗f , x
∗
g) ≤ η(Ip − S)−1.

Theorem 2.2.7. (Magdaş [36]) Let f : X → X be as in Theorem 2.2.5. Then the fixed point

problem for f is well posed, that is, assuming there exist zn ∈ X, n ∈ N such that d(zn, f(zn))→
0, as n→∞, this implies that zn → x∗, as n→∞, where Ff = {x∗}.

Further on we apply the results given by Theorem 2.2.5 to study existence and uniqueness

of the solutions of the following system of Fredholm type integral equations:
x1(t) =

∫ b

a
G1(t, s)f1(s, x1(s), x2(s))ds

x2(t) =

∫ b

a
G2(t, s)f2(s, x1(s), x2(s))ds

, t ∈ [a, b] (2.2.5)

where a, b ∈ R, a < b,

G1, G2 ∈ C([a, b]× [a, b], [0,∞)),

f1, f2 ∈ C([a, b]× R× R).

Theorem 2.2.8. (Magdaş [36]) We suppose that:

(i) there exist αk, βk ∈ C[a, b], mk,Mk ∈ R,mk ≤ αk(t) ≤ βk(t) ≤ Mk, for any t ∈ [a, b],

such that for k ∈ {1, 2},
αk(t) ≤

∫ b

a
Gk(t, s)fk(s, β1(s), β2(s))ds

βk(t) ≥
∫ b

a
Gk(t, s)fk(s, α1(s), α2(s))ds

, for any t ∈ [a, b]. (2.2.6)
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(ii) there exist a1, b1, a2, b2 ∈ R+ such that

|f1(s, u1, u2)− f1(s, v1, v2)| ≤ a1|u1 − v1|+ a2|u2 − v2|,

|f2(s, u1, u2)− f2(s, v1, v2)| ≤ b1|u1 − v1|+ b2|u2 − v2|,
(2.2.7)

for any s ∈ [a, b] and uk, vk ∈ R, with{
uk ≤Mk

vk ≥ mk

or

{
uk ≥ mk

vk ≤Mk

for k ∈ {1, 2};

(iii) sup
t∈[a,b]

∫ b

a
Gk(t, s)ds ≤ 1 for k ∈ {1, 2};

(iv) fk is decreasing in each of the last two variables, that is,

u1, u2, v1, v2 ∈ R, u1 ≤ v1, u2 ≤ v2 ⇒ fk(s, u, v) ≥ fk(s, u2, v2),

for any s ∈ [a, b], and k ∈ {1, 2};

(v) the matrix S =

(
a1 a2
b1 b2

)
converges to zero.

Then the system (2.2.5) has a unique solution

x∗ = (x∗1, x
∗
2) ∈ C([a, b],R2), with αk ≤ x∗k ≤ βk, for k ∈ {1, 2}.

This solution can be obtained by the successive approximations method, starting at any ele-

ment x0 ∈ C([a, b],R2). Moreover, if xn is the nth successive approximation, then we have the

following estimation:

‖x∗ − xn‖ ≤ Sn(I2 − S)−1‖x0 − x1‖,

where

‖x‖ =

(
|x1|∞

|x2|∞

)
and |x|∞ = max

t∈[a,b]
|x(t)|.

Further on we study the continuous dependence phenomenon for the system (2.2.5). We

consider the perturbed system of integral equations
y1(t) =

∫ b

a
H1(t, s)g1(s, y1(s), y2(s))ds

y2(t) =

∫ b

a
H2(t, s)g2(s, y1(s), y2(s))ds

(2.2.8)

where

H1, H2 ∈ C([a, b]× [a, b], [0,∞)), g1, g2 ∈ C([a, b]× R× R).

Theorem 2.2.9. (Magdaş [36]) We suppose that the conditions of Theorem 2.2.5 are satisfied

and we denote by x∗ the unique solution of the system of integral equations (2.2.5).

If y∗ ∈ C([a, b],R2) is a solution of the perturbed system of integral equations (2.2.8), and

sup
t∈[a,b]

∫ b

a
Hk(t, s)ds ≤ 1,

then we have the following estimation:

‖x∗ − y∗‖R2 ≤ (I2 − S)−1(η + τ), (2.2.9)

where η = (η1, η2), τ = (τ1, τ2) and{
ηk = sup{|fk(s, u, v)| | s ∈ [a, b], u, v ∈ R},

τk = sup{|gk(s, u, v)| | s ∈ [a, b], u, v ∈ R},
for k ∈ {1, 2}.

23



Remark 2.2.10. A similar approach can be achieved for a system of Volterra type integral

equations using, instead of the supremum norm, the Bielecki type norm approach. For example,

we have the following result.

Theorem 2.2.11. Considering the following system of Volterra type integral equations:
x1(t) =

∫ t

a
G1(t, s)f1(s, x1(s), x2(s))ds

x2(t) =

∫ t

a
G2(t, s)f2(s, x1(s), x2(s))ds

, t ∈ [a, b], (2.2.10)

where a, b ∈ R, a < b,

G1, G2 ∈ C([a, b]× [a, b], [0,∞)),

f1, f2 ∈ C([a, b]× R× R),

we suppose that:

(i) there exist αk, βk ∈ C[a, b], mk,Mk ∈ R,mk ≤ αk(t) ≤ βk(t) ≤ Mk, for any t ∈ [a, b],

such that for k ∈ {1, 2},
αk(t) ≤

∫ t

a
Gk(t, s)fk(s, β1(s), β2(s))ds

βk(t) ≥
∫ t

a
Gk(t, s)fk(s, α1(s), α2(s))ds

, for any t ∈ [a, b]. (2.2.11)

(ii) there exist a1, b1, a2, b2 ∈ R+ such that

|f1(s, u1, u2)− f1(s, v1, v2)| ≤ a1|u1 − v1|+ a2|u2 − v2|,

|f2(s, u1, u2)− f2(s, v1, v2)| ≤ b1|u1 − v1|+ b2|u2 − v2|,
(2.2.12)

for any s ∈ [a, b] and uk, vk ∈ R, with{
uk ≤Mk

vk ≥ mk

or

{
uk ≥ mk

vk ≤Mk

for k ∈ {1, 2};

(iii) fk is decreasing in each of the last two variables, that is,

u1, u2, v1, v2 ∈ R, u1 ≤ v1, u2 ≤ v2 ⇒ fk(s, u, v) ≥ fk(s, u2, v2),

for any s ∈ [a, b], and k ∈ {1, 2}.
Then the system (2.2.10) has a unique solution

x∗ = (x∗1, x
∗
2) ∈ C([a, b],R2), with αk ≤ x∗k ≤ βk, for k ∈ {1, 2}.
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2.3 Coupled fixed point theorems for

single-valued cyclic contraction type

operators

The purpose of this section is to study the coupled fixed point problem for single-valued cyclic

contraction type operators:

If (X, d) is a metric space, A,B ∈ P (X), F : X × X → X is a single-valued operator

satisfying the cyclic condition F (A × B) ⊆ B,F (B × A) ⊆ A, then we are interested to find

(x∗, y∗) ∈ X ×X such that {
F (x∗, y∗) = x∗

F (y∗, x∗) = y∗.
(2.3.1)

The pair (x∗, y∗) is called coupled fixed point of the single-valued operator F : X ×X → X. If

x∗ = y∗ then x∗ is said to be strong coupled fixed point of F .

The approach is based on fixed point results for appropriate operators generated by the

initial problems.

The first aim of this section is to generalize Theorem 1.5.9, Theorem 1.5.11, Theorem 1.5.13

and Theorem 1.5.15, weakening the contractive condition. Also, we may observe that the as-

sumption A ∩ B 6= ∅ from Theorem 1.5.9 and Theorem 1.5.15 is not necessary. We also prove

the uniqueness of the strong coupled fixed point and we provide an iterative method for ap-

proximating the strong coupled fixed point. On the other hand, some qualitative properties of

the coupled fixed point set, such as data dependence, generalized Ulam-Hyers stability and well

posedness are studied. Our approach is based on the following idea inspired by the work of A.

Petruşel in [55]: we transform the coupled fixed point problem into a fixed point problem for an

appropriate operator defined on a cartesian product of the spaces. In this way, many coupled

fixed point results can be obtained using classical fixed point theorems.

We introduce now the following concept.

Definition 2.3.1. (Magdaş [35])

Let (X, d) be a metric space, A,B ∈ Pcl(X), Y = A ∪ B and ϕ : R+ → R+ a strong

comparison function. By definition, an operator F : Y × Y → Y is called a cyclic coupled

ϕ-contraction of Ćirić type if the following statements hold:

(i) F is cyclic with respect to A and B;

(ii)

d(F (x, y), F (u, v)) ≤ ϕ(M(x, v, y, u)), (2.3.2)

for any x, v ∈ A and y, u ∈ B, where

M(x, v, y, u) = max
{
d(x, u), d(v, y), d(x, F (x, y)), d(u, F (u, v)), d(v, F (v, u)),

d(y, F (y, x)),
1

2
[d(x, F (u, v)) + d(u, F (x, y))],

1

2
[d(y, F (v, u)) + d(v, F (y, x))]

}
.

The main result of this section is the following theorem which generalizes Theorem 1.5.9,

Theorem 1.5.11, Theorem 1.5.13 and Theorem 1.5.15.

Theorem 2.3.2. (Magdaş [35]) Let (X, d) be a complete metric space, A,B ∈ Pcl(X), Y = A∪B
and F : Y × Y → Y a cyclic coupled ϕ-contraction of Ćirić type. Then:
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(1) F has a unique strong coupled fixed point x∗ ∈ A ∩B;

(2) for any (x0, y0) ∈ A×B, there exists a sequence ((xn, yn))n∈N ⊂ X ×X defined by{
xn = F (yn−1, xn−1)

yn = F (xn−1, yn−1)
, for n ≥ 1,

that converges to (x∗, x∗);

(3) the following estimates hold for any n ∈ N:

max{d(xn, x
∗), d(yn, x

∗)} ≤ s(ϕn(max{d(x0, F (x0, y0)), d(y0, F (y0, x0))})),

max{d(xn, x
∗), d(yn, x

∗)} ≤ s(max{d(xn, xn+1), d(yn, yn+1)});

(4) for any x, y ∈ Y , d(x, x∗) ≤ s(max{d(x, F (x, y)), d(y, F (y, x))}), where s is given by

Lemma 1.2.3.

Example 2.3.3. (Magdaş [35]) Let X = R, d(x, y) = |x− y|, for any x, y ∈ R,

A = [0, 2], B = [0, 1], Y = A ∪B,F : Y × Y → Y, F (x, y) =
x+ 3y

9
.

It is easy to verify that F is cyclic with respect to A and B.

For any x, v ∈ A and y, u ∈ B,

d(F (x, y), F (u, v)) =
∣∣∣x+ 3y

9
− u+ 3v

9

∣∣∣
=
∣∣∣x− u

9
+
y − v

3

∣∣∣
≤
∣∣∣1
9

(x− u) +
10

27
(y − v)

∣∣∣
=

1

3

∣∣∣y − v + 3u

9
+
y + 3x

9
− v
∣∣∣

≤ 1

3

(∣∣∣y − F (v, u)
∣∣∣+
∣∣∣v − F (y, x)

∣∣∣)
≤ 2

3
· 1

2
[d(y, F (v, u)) + d(v, F (y, x))].

Then F is a cyclic coupled ϕ-contraction of Ćirić type, where ϕ(t) = 2
3 · t.

The hypotheses of Theorem 2.3.2 are satisfied, so by Theorem 2.3.2, F has a unique strong

coupled fixed point x∗ ∈ A ∩B. By calculation we get:

F (x∗, x∗) = x∗ ⇔ x∗ = 0.

Our next theorem gives the well posedness property for the coupled fixed point problem.

Theorem 2.3.4. (Magdaş [35]) Let F : Y × Y → Y be as in Theorem 2.3.2. Then the coupled

fixed point problem is well posed, that is, if there exists a sequence ((an, bn))n∈N ⊂ Y × Y such

that {
d(an, F (an, bn))→ 0

d(bn, F (bn, an))→ 0
as n→∞,

then an → x∗ and bn → x∗, as n→∞.

For the data dependence problem we have the following result.
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Theorem 2.3.5. (Magdaş [35]) Let F : Y ×Y → Y be as in Theorem 2.3.2. Let G : Y ×Y → Y

be such that:

(i) G has at least one strong coupled fixed point x∗G;

(ii) there exists η > 0 such that

d(F (x, x), G(x, x)) ≤ η, for any x ∈ Y.

Then d(x∗F , x
∗
G) ≤ s(η), where x∗F is the unique strong coupled fixed point of F and

s(t) =

∞∑
k=0

ϕk(t), t ∈ R+.

Theorem 2.3.6. (Magdaş [35]) Let F : Y ×Y → Y be as in Theorem 2.3.2 and Fn : Y ×Y → Y ,

n ∈ N, be such that:

(i) for each n ∈ N there exists a strong coupled fixed point x∗n of Fn;

(ii) (Fn)n∈N converges uniformly to F .

Then lim
n→∞

xn = x∗, where x∗ is the unique strong coupled fixed point of F .

We will discuss Ulam-Hyers stability for the coupled fixed point problem corresponding to a

cyclic operator.

Definition 2.3.7. (Magdaş [35]) Let (X, d) be a metric space, Y ∈ P (X) and let F : Y ×Y → Y

be an operator. The coupled fixed point problem{
F (x, y) = x

F (y, x) = y
, x, y ∈ Y (2.3.3)

is called generalized Ulam-Hyers stable if there exists ψ : R+ → R+ increasing, continuous at 0

and ψ(0) = 0 such that for any ε1 > 0, ε2 > 0 and for any solution (x, y) ∈ Y × Y of the system{
d(x, F (x, y)) ≤ ε1

d(y, F (y, x)) ≤ ε2
,

there exists a solution (x∗, y∗) of the coupled fixed point problem such that{
d(x, x∗) ≤ ψ(ε)

d(y, y∗) ≤ ψ(ε)
, where ε = max {ε1, ε2} .

In particular, if x∗ = y∗, then we have generalized Ulam-Hyers stability for the strong coupled

fixed point problem F (x, x) = x, x ∈ Y.

Theorem 2.3.8. (Magdaş [35]) Suppose that all the hypotheses of Theorem 2.3.2 hold.

Then the coupled fixed point problem (2.3.3) is generalized Ulam-Hyers stable.

We apply the results given by Theorem 2.3.2 to study existence and uniqueness of the

solutions of the following system of integral equations:
x(t) =

∫ b

a
G(t, s)f(s, x(s), y(s))ds

y(t) =

∫ b

a
G(t, s)f(s, y(s), x(s))ds

, t ∈ [a, b] (2.3.4)

where a, b ∈ R, a < b,

G ∈ C([a, b]× [a, b], [0,∞)),

f ∈ C([a, b]× R× R).
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Theorem 2.3.9. (Magdaş [35]) Suppose that:

(i) there exist α, β ∈ C[a, b], with α(t) ≤ β(t), for any t ∈ [a, b], such that
α(t) ≤

∫ b

a
G(t, s)f(s, β(s), α(s))ds

β(t) ≥
∫ b

a
G(t, s)f(s, α(s), β(s))ds

for any t ∈ [a, b]; (2.3.5)

(ii) there exists a strong comparison function ϕ : R+ → R+ such that

|f(s, u1, u2)− f(s, v1, v2)| ≤ ϕ(max{|u1 − v1|, |u2 − v2|}),

for any s ∈ [a, b] and u1, u2, v1, v2 ∈ R;

(iii) sup
t∈[a,b]

∫ b

a
G(t, s)ds ≤ 1;

(iv) f(s, ·, y) is monotone decreasing for any s ∈ [a, b] and any y ∈ R;

(v) f(s, x, · ) is monotone increasing for any s ∈ [a, b] and any x ∈ R.
Then the system (2.3.4) has a unique solution (x∗, x∗) ∈ C([a, b],R2), with α ≤ x∗ ≤ β.

Definition 2.3.10. (Magdaş [35]) The system (2.3.4) is said to be generalized Ulam-Hyers

stable if there exists ψ : R+ → R+ increasing, continuous at 0 and ψ(0) = 0 such that for any

ε1 > 0, ε2 > 0 and for any solution (x, y) ∈ C([a, b],R2), of the system
|x(t)−

∫ b

a
G(t, s)f(s, x(s), y(s))ds| ≤ ε1

|y(t)−
∫ b

a
G(t, s)f(s, y(s), x(s))ds| ≤ ε2

there exists a solution (x∗, y∗) ∈ C([a, b],R2) of the system (2.3.4) such that for any t ∈ [a, b],{
|x(t)− x∗(t)| ≤ ψ(ε)

|y(t)− y∗(t)| ≤ ψ(ε)
, where ε = max {ε1, ε2} .

Theorem 2.3.11. (Magdaş [35]) Suppose that the hypotheses of the Theorem 2.3.9 hold. Then

the system (2.3.4) is generalized Ulam-Hyers stable.

Similar with the approach in Theorem 2.2.11, if we consider the following system of Volterra

type of integral equations:
x(t) =

∫ t

a
f(s, x(s), y(s))ds

y(t) =

∫ t

a
f(s, y(s), x(s))ds

, t ∈ [a, b], (2.3.6)

where a, b ∈ R, a < b, f ∈ C([a, b] × R × R), then an existence and uniqueness result can be

obtained working with a Bielecki type norm.

More precisely, we consider C[a, b] endowed with the following Bielecki type norm

|x|B = max
t∈[a,b]

(|x(t)|e−τ(t−a)), τ > 0.

Then (C[a, b], | · |B) is a Banach space.
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Theorem 2.3.12. Consider the system (2.3.6). We suppose that:

(i) there exist α, β ∈ C[a, b], with α(t) ≤ β(t), for any t ∈ [a, b], such that
α(t) ≤

∫ t

a
f(s, β(s), α(s))ds

β(t) ≥
∫ t

a
f(s, α(s), β(s))ds

, for any t ∈ [a, b];

(ii) there exists a strong comparison function ϕ : R+ → R+ having the properties:

(i)ϕ there exists M > eb−a such that for any q ∈ (1,M) and t > 0,

ϕ(qt) ≤ q · ϕ(t);

(ii)ϕ for any s ∈ [a, b] and u1, u2, v1, v2 ∈ R,

|f(s, u1, u2)− f(s, v1, v2)| ≤ ϕ(max{|u1 − v1|, |u2 − v2|});

(iii) f(s, ·, y) is monotone decreasing for any s ∈ [a, b] and any y ∈ R;

(iv) f(s, x, · ) is monotone increasing for any s ∈ [a, b] and any x ∈ R.
Then the system (2.3.6) has a unique solution (x∗, x∗) ∈ C([a, b],R2), with α ≤ x∗ ≤ β.
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Chapter 3

Multi-valued generalized

contractions on cyclic

representations

In this chapter, we present fixed point and best proximity point results for multi-valued

operators defined on cyclic representations in metric spaces. This chapter has three sections.

The purpose of the first section is to investigate the properties of multi-valued cyclic ϕ-

contractions of Ćirić type. In this situation, such operators T possess fixed points, i.e., x ∈ X
satisfying the relation x ∈ T (x). Also, we will study data dependence and generalized Ulam-

Hyers stability of the fixed point inclusion x ∈ T (x).

The original contributions in the first section are the following results:

• Theorem 3.1.4 is the main result of this section, an extension of other fixed point results for

multi-valued contractive operators defined on cyclic representation of the space (see for example

Theorem 3.1.6);

• Theorem 3.1.8 is a result concerning data dependence of the fixed point inclusion;

• Theorem 3.1.9 studies the generalized Ulam-Hyers stability of the fixed point inclusion.

The results presented in the first section are included in the following paper: Magdaş [34].

The purpose of the second section is to study existence of the solutions and generalized

Ulam-Hyers stability of the best proximity problem for multi-valued Ćirić type cyclic operators.

The original contributions in the second section are the following results:

• Theorem 3.2.4, the first main result of this section, extends Theorem 1.4.5 (Suzuki,

Kikkawa, Vetro, [77]) and Theorem 1.4.6 (Neammanee, Kaewkhao [42]) to the case of multi-

valued Ćirić type cyclic operator which takes proximinal values, in the framework of metric

spaces with the property UC;

• Theorem 3.2.8, the second main result of this section, proves that if ϕ is a subadditive

strong comparison function, then the condition that the multi-valued operator takes proximinal

values can be removed;

• Theorem 3.2.10 studies the generalized Ulam-Hyers stability of the best proximity problem

for a cyclic multi-valued operator.

The results presented in this section are contained in the following paper: Magdaş [37].

In the third section we study the coupled fixed point problem and the coupled best prox-

imity point problem for multi-valued cyclic contraction type operators.

The original contributions in the third section are the following results:

• Theorem 3.3.5 states a coupled fixed point result for cyclic coupled ϕ-contraction of Ćirić
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type multi-valued operator;

• Theorem 3.3.7 is a result concerning the generalized Ulam-Hyers stability of the coupled

fixed point problem;

• Theorem 3.3.10 studies the existence of the coupled best proximity point of a cyclic coupled

Ćirić type multi-valued operator which takes proximinal values, in the framework of metric spaces

with the property UC.

The results presented in this section are contained in the following paper: Magdaş [35].

3.1 A study of the fixed point problem

for Ćirić type multi-valued operators

satisfying a cyclic condition

The aim of this section is to study the properties of multi-valued cyclic ϕ-contraction of Ćirić

type. In this situation, such operators T possess fixed points, i.e., x ∈ X satisfying the relation

x ∈ T (x). We construct a sequence of successive approximations of T that guarantees conver-

gence from any starting point (x, y) ∈ Graph(T ) to a point x∗ ∈ FT , the set of all fixed points

of T . We also study data dependence and generalized Ulam-Hyers stability of the fixed point

inclusion x ∈ T (x).

Definition 3.1.1. (Magdaş [34]) Let (X, d) be a metric space,m a positive integer, A1, . . . , Am ∈

Pcl(X), Y :=
m⋃
i=1

Ai and T : Y → P (Y ) a multi-valued operator. If:

(i)
m⋃
i=1

Ai is a cyclic representation of Y with respect to T ;

(ii) there exists a strong comparison function ϕ : R+ → R+ such that

H(T (x), T (y)) ≤

≤ϕ
(

max

{
d(x, y), D(x, T (x)), D(y, T (y)),

1

2
[D(x, T (y)) +D(y, T (x))]

})
,

for any x ∈ Ai, y ∈ Ai+1, where Am+1 = A1,

then T is called a multi-valued cyclic ϕ-contraction of Ćirić type.

For the following notions see [53], [69] and [71].

Definition 3.1.2. Let (X, d) be a metric space. Then T : X → P (X) is called multi-valued

weakly Picard operator (briefly MWP operator) if for each (x, y) ∈ Graph(T ) there exists a

sequence (xn)n∈N in X such that:

(i) x0 = x, x1 = y;

(ii) xn+1 ∈ T (xn), for each n ∈ N;

(iii) the sequence (xn)n∈N is convergent and its limit is a fixed point of T .

If T : X → P (X) is a MWP operator, then we define

T∞ : Graph(T )→ P (FT )

by the formula

T∞(x, y) := {z ∈ FT | there exists a sequence of successive

approximation of T starting from (x, y) that converges to z}.
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Definition 3.1.3. (Lazăr [32]) Let (X, d) be a metric space and T : X → P (X) a MWP

operator. Then T is called a ψ-multi-valued weakly Picard operator (ψ-MWP operator) if the

function ψ : R+ → R+ is increasing and continuous at 0 such that ψ(0) = 0, and there exists a

selection t∞ of T∞ such that

d(x, t∞(x, y)) ≤ ψ(d(x, y)), for all (x, y) ∈ Graph(T ).

In particular, if ψ(t) := ct, with c > 0, then T is called a c-MWP operator (see [69]).

The main result of this section is the following theorem.

Theorem 3.1.4. (Magdaş [34]) Let (X, d) be a complete metric space, m be a positive integer,

A1, A2, . . . , Am ∈ Pcl(X), Y :=

m⋃
i=1

Ai, ϕ : R+ → R+ be a strong comparison function and

T : Y → Pprox(Y ) be a multi-valued operator. Assume that:

(i)
m⋃
i=1

Ai is a cyclic representation of Y with respect to T ;

(ii) T is a multi-valued cyclic ϕ-contraction of Ćirić type.

Then the following statements hold:

(1) FT 6= ∅;
(2) for each (x, y) ∈ Graph(T ), there exists a sequence (xn)n∈N of successive approximations

of T starting from any point (x, y) ∈ Graph(T ), that converges to a fixed point x∗(x, y) ∈
m⋂
i=1

Ai,

thus T is a MWP operator;

(3) the following estimations hold:

d(xn, x
∗(x, y)) ≤ s(ϕn(d(x, y))), for any (x, y) ∈ Graph(T ), n ≥ 1,

d(xn, x
∗(x, y)) ≤ s(d(xn, xn+1)), for any (x, y) ∈ Graph(T ), n ≥ 1;

(4) for any (x, y) ∈ Graph(T ),

d(x, x∗(x, y)) ≤ s(d(x, y)), i.e. T is an s−MWP operator,

where s is given by Lemma 1.2.3;

(5)

∞∑
n=0

d(xn, xn+1) <∞, i.e. T is a good MWP operator.

Remark 3.1.5. If we choose ϕ(t) = kt, for k ∈ (0, 1), then we have a generalization of the

following theorem (Theorem 2.1 in [42]), where the multi-valued operator T takes closed and

bounded values.

Theorem 3.1.6. (Neammanee, Kaewkhao [42]) Let A and B be nonempty closed subsets of a

metric space (X, d). Suppose T : A ∪ B → P (X) is a multi-valued mapping with closed and

bounded valued, satisfying the conditions:

(i) T (A) ⊆ B, T (B) ⊆ A;

(ii) there exists k ∈ (0, 1) such that for any x ∈ A, y ∈ B,

H(T (x), T (y)) ≤ kd(x, y).

Then T has at least one fixed point in A ∩B.
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Remark 3.1.7. If the strong comparison function ϕ is subadditive, then the proximinality

condition can be less restrictive: the values of the multi-valued operator T should be closed. The

proof runs in the same manner.

A data dependence theorem for the stated problem is:

Theorem 3.1.8. (Magdaş [34]) Let T : Y → Pprox(Y ) be as in Theorem 3.1.4 and U : Y →
P (Y ) such that:

(i) FU 6= ∅;
(ii) there exists η > 0 such that

ρ(T (x), U(x)) ≤ η, for any x ∈ Y.

Then ρ(FU , FT ) ≤ s(η), where s is given by Lemma 1.2.3.

Theorem 3.1.9. (Magdaş [34]) (Generalized Ulam-Hyers stability of the inclusion x ∈ T (x))

Let T : Y → Pprox(Y ) be as in Theorem 3.1.4, ε > 0 and x ∈ Y be such that D(x, T (x)) ≤ ε.

Then there exists x∗ ∈ FT such that d(x, x∗) ≤ s(ε), where s is given by Lemma 1.2.3.

Remark 3.1.10. Many open problems related to the multi-valued cyclic ϕ-contraction of Ćirić

type operators can be discussed. We present here two such open questions:

1) Is the fixed point problem for a multi-valued operator T : Y → Pprox(Y ) satisfying the

conditions of Theorem 3.1.4 well-posed with respect to D ?, that is, assuming there exists a

sequence (zn)n∈N ⊂ Y such that

D(zn, T (zn))→ 0 as n→∞,

it follows that (zn)n∈N converges to a fixed point of T .

2) In which conditions the operator T : Y → Pprox(Y ) satisfying the assumptions in Theorem

3.1.4 has the limit shadowing property ?, that is, assuming that there exists a sequence (zn)n∈N ⊂
Y such that D(zn+1, T (zn)) → 0 as n → ∞, then there exists a sequence (xn)n∈N ⊂ Y of

successive approximations for T , such that d(xn, zn)→ 0 as n→∞.

3.2 Best proximity point theorems for

multi-valued operators

The purpose of this section is to study existence of the solutions and generalized Ulam-Hyers

stability of the following best proximity problem for a cyclic multi-valued operator:

If (X, d) is a metric space, A,B ∈ P (X), T : A ∪ B → P (X) is a multi-valued operator

satisfying the cyclic condition T (A) ⊆ B, T (B) ⊆ A, then we are interested to find

x∗ ∈ A ∪B such that D(x∗, T (x∗)) = D(A,B). (3.2.1)

x∗ is said to be a best proximity point of T .

The concept of multi-valued Ćirić type cyclic operator is as follows.

Definition 3.2.1. (Magdaş [37]) Let (X, d) be a metric space, A,B ∈ P (X), and T : A ∪B →
P (X) be a multi-valued operator. If:

(i) T (A) ⊆ B, T (B) ⊆ A;
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(ii) there exists a comparison function ϕ : R+ → R+ such that for any x ∈ A, y ∈ B,

H(T (x), T (y)) ≤ ϕ(M(x, y)−D(A,B)) +D(A,B),

where

M(x, y)=max

{
d(x, y), D(x, T (x)), D(y, T (y)),

1

2
[D(x, T (y)) +D(y, T (x))]

}
,

then T is called a multi-valued Ćirić type cyclic operator.

Example 3.2.2. The following operators are multi-valued Ćirić type cyclic operators:

(1) A multi-valued cyclic contraction (see [42]) i.e. a multi-valued cyclic operator T : A∪B →
P (X) satisfying the condition:

there exists k ∈ (0, 1) such that for any x ∈ A, y ∈ B,

H(T (x), T (y)) ≤ kd(x, y) + (1− k)D(A,B).

(2) A multi-valued cyclic operator T : A ∪ B → P (X) satisfying a Kannan type condition

(for the single-valued case see [48]):

there exists k ∈ (0, 12) such that for any x ∈ A, y ∈ B,

H(T (x), T (y)) ≤ k(D(x, T (x)) +D(y, T (y))) + (1− 2k)D(A,B).

(3) A multi-valued cyclic operator T : A ∪B → P (X) satisfying a Bianchini type condition

(for the single-valued case see [49]):

there exists k ∈ (0, 1) such that for any x ∈ A, y ∈ B,

H(T (x), T (y)) ≤ k ·max {D(x, T (x)), D(y, T (y))}+ (1− k)D(A,B).

The following lemma will be used to prove our results.

Lemma 3.2.3. [42] Let be (A,B) a pair of nonempty subsets of a metric space (X, d), satisfying

the property UC, and let be a sequence (xn)n∈N in A. If there exists a sequence (yn)n∈N in B

such that d(xn, yn)→ D(A,B) and d(xn+1, yn)→ D(A,B), then (xn)n∈N is a Cauchy sequence.

Our first main result extends Theorem 1.4.5 to multi-valued Ćirić type cyclic operator in the

framework of metric spaces with the property UC. More than that, it extends Theorem 1.4.6 to

the case of multi-valued Ćirić type cyclic operator in the setting of proximinal values.

Theorem 3.2.4. (Magdaş [37])

Let (X, d) be a complete metric space, A ∈ Pcl(X), B ∈ P (X), such that (A,B) satisfies the

property UC. If T : A ∪ B → Pprox(X) is a multi-valued Ćirić type cyclic operator, then the

following statements hold:

(i) T has a best proximity point x∗A ∈ A;

(ii) there exists a sequence (xn)n∈N with x0 ∈ A and xn+1 ∈ T (xn), such that (x2n)n∈N
converges to x∗A.

Remark 3.2.5. If in Theorem 3.2.4 D(A,B) = 0, then we obtain a fixed point result similar to

Theorem 3.1.4 for m = 2.
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Theorem 3.2.6. (Magdaş [37])

Let (X, d) be a complete metric space, A,B ∈ Pcl(X), such that the pairs (A,B) and (B,A)

satisfy the property UC. Let T : A∪B → Pprox(X) be a multi-valued operator. Then the following

statements hold:

(i) If T is a multi-valued Ćirić type cyclic operator, then T has at least one best proximity

point in A and at least one best proximity point in B;

(ii) If T satisfies the following stronger condition:

for any x ∈ A, y ∈ B,

δ(T (x), T (y)) ≤ ϕ(M(x, y)−D(A,B)) +D(A,B),

then there exist a best proximity x∗A ∈ A and a best proximity point x∗B ∈ B such that:

d(x∗A, x
∗
B) ≤ sup {t ≥ 0 | t− ϕ(t) ≤ 3D(A,B)} .

Corollary 3.2.7. (Magdaş [37]) Let X be a uniformly convex Banach space, A,B ∈ Pcl,cv(X)

and T : A ∪B → Pcl,cv(X) be a multi-valued operator. Then the following statements hold:

(i) If T is a multi-valued Ćirić type cyclic operator, then T has at least one best proximity

point in A and at least one best proximity point in B;

(ii) If T satisfies the following stronger condition:

for any x ∈ A, y ∈ B,

δ(T (x), T (y)) ≤ ϕ(M(x, y)−D(A,B)) +D(A,B),

then there exist a best proximity x∗A ∈ A and a best proximity point x∗B ∈ B such that:

‖x∗A − x∗B‖ ≤ sup{t ≥ 0 | t− ϕ(t) ≤ 3D(A,B)} .

If, in Theorem 3.2.6, ϕ is a subadditive strong comparison function, then the condition that

the multi-valued operator takes proximinal values can be removed. More precisely, we obtain

the second main result, as follows.

Theorem 3.2.8. (Magdaş [37]) Let (X, d) be a complete metric space, A,B ∈ Pcl(X), such

that (A,B) satisfies the property UC. If T : A ∪ B → P (X) is a multi-valued Ćirić type cyclic

operator, with a subadditive strong comparison function ϕ, then the following statements hold:

(i) T has a best proximity point x∗A ∈ A;

(ii) there exists a sequence (xn)n∈N with xn+1 ∈ T (xn) starting from an arbitrary (x0, x1) ∈
Graph(T ), such that (x2n)n∈N converges to x∗A.

Hereinafter we define and study the generalized Ulam-Hyers stability of the best proximity

problem (3.2.1) for a cyclic multi-valued operator.

Definition 3.2.9. (Magdaş [37]) Let (X, d) be a complete metric space and let A,B ∈ P (X).

Let T : A ∪ B → P (X) be a multi-valued operator satisfying the cyclic condition T (A) ⊂
B, T (B) ⊂ A. The best proximity problem (3.2.1) is called generalized Ulam-Hyers stable if

there exists ψ : R+ → R+ increasing, continuous at 0, with ψ(0) = 0 and there exists c > 0 such

that for any ε > 0 and x ∈ B with

D(x, T (x)) ≤ ε+D(A,B),

there exists a solution x∗A ∈ A of (3.2.1) such that

d(x, x∗A) ≤ ψ(ε) + c ·D(A,B).
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Our stability result is the following.

Theorem 3.2.10. (Magdaş [37]) Let (X, d) be a complete metric space, A ∈ Pcl(X), B ∈ P (X),

such that (A,B) satisfies the property UC and ϕ be a comparison function. Let T : A ∪ B →
Pprox(X) be a multi-valued operator. Assume that:

(i) T (A) ⊂ B, T (B) ⊂ A;

(ii) for any x ∈ A, y ∈ B,

δ(T (x), T (y)) ≤ ϕ(max{D(x, T (x)), D(y, T (y))} −D(A,B)) +D(A,B).

Then the best proximity problem (3.2.1) is generalized Ulam-Hyers stable.

3.3 Coupled fixed point and coupled best

proximity point theorems for multi-valued

cyclic contraction type operators

The purpose of this section is to study the coupled fixed point problem and the coupled best

proximity problem for multi-valued cyclic contraction type operators. The approach is based on

fixed point results and best proximity point results for appropriate operators generated by the

initial problems.

Definition 3.3.1. Let (X, d) be a metric space, A,B ∈ P (X), Y = A ∪ B and ϕ : R+ → R+

a strong comparison function. A multi-valued operator F : Y × Y → P (Y ) is called a cyclic

coupled ϕ-contraction of Ćirić type multi-valued operator if the following statements hold:

(i) F is cyclic with respect to A and B, that is

F (A×B) ⊆ B and F (B ×A) ⊆ A;

(ii) H(F (x, y), F (u, v)) ≤ ϕ(M̃(x, v, y, u)), for any x, v ∈ A, y, u ∈ B, where

M̃(x, v, y, u)=max
{
d(x, u), d(v, y), D(x, F (x, y)), D(u, F (u, v)), D(v, F (v, u)),

D(y, F (y, x)),
1

2
[D(x, F (u, v)) +D(u, F (x, y))],

1

2
[D(y, F (v, u)) +D(v, F (y, x))]

}
.

The following theorem which is a particular case of Theorem 3.1.4 will be used to prove the

first result in this section.

Theorem 3.3.2. Let (X, d) be a complete metric space, A,B ∈ Pcl(X) and T : A ∪ B →
Pprox(A ∪B) a multi-valued cyclic ϕ-contraction of Ćirić type, that is:

(i) T (A) ⊆ B and T (B) ⊆ A;

(ii) there exists a strong comparison function ϕ : R+ → R+ such that for any x ∈ A and

y ∈ B,

H(T (x), T (y)) ≤ ϕ
(

max
{
d(x, y), D(x, T (x)), D(y, T (y)),

1

2
[D(x, T (y))+D(y, T (x))]

})
.

Then the following statements hold:

(1) there exists x∗ ∈ A ∩B such that x∗ ∈ T (x∗);

(2) for any x ∈ A and y ∈ T (x), there exists a sequence (xn)n∈N with x0 = x, x1 = y and

xn ∈ T (xn−1), n ≥ 1, that converges to a fixed point x∗ ∈ A ∩B of T .
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The following lemma presents well-known results throughout literature (see for example

Mleşniţe, Petruşel [39]).

Lemma 3.3.3. Let (X, d) be a metric space, d∗ the metric defined on X ×X by

d∗(z, w) = max{d(x, u), d(y, v)},where z = (x, y), w = (u, v), (3.3.1)

and D∗ the gap functional, respectively H∗ the generalized Pompeiu-Hausdorff functional gen-

erated by d∗. Then for any a, b ∈ X and any A,B,C,D ∈ Pprox(X), the following statements

hold:

(1) D∗((a, b), C ×D) = max {D(a,C), D(b,D)} ;

(2) D∗(A×B,C ×D) = max {D(A,C), D(B,D)} ;

(3) H∗(A×B,C ×D) = max{H(A,C), H(B,D)};
(4) D∗(A×B,B ×A) = D(A,B).

Lemma 3.3.4. Let (X, d) be a metric space, d∗ the metric defined on X × X by (3.3.1). If a

multi-valued operator F : X × X → P (X) takes proximinal values with respect to d then the

multi-valued operator T : X × X → P (X × X), T (x, y) = (F (x, y), F (y, x)) takes proximinal

values with respect to d∗.

The first result in this section is the following theorem.

Theorem 3.3.5. (Magdaş [35]) Let (X, d) be a complete metric space, A,B ∈ Pcl(X), Y = A∪B
and F : Y ×Y → Pprox(Y ) be a cyclic coupled ϕ-contraction of Ćirić type multi-valued operator.

Then the following statements hold:

(1) there exist x∗, y∗ ∈ A ∩B such that

x∗ ∈ F (x∗, y∗), y∗ ∈ F (y∗, x∗),

(that is the pair (x∗, y∗) is a coupled fixed point of F );

(2) for each (a, b) ∈ A×B there exists a sequence (an, bn)n∈N∗ ∈ Y × Y with a0 = a, b0 = b

and

an ∈ F (bn−1, an−1), bn ∈ F (an−1, bn−1) for n ≥ 1

that converges to a coupled fixed point (x∗, y∗) of F .

Hereinafter we define and study the generalized Ulam-Hyers stability of the following coupled

fixed point problem.

Definition 3.3.6. (Magdaş [35]) Let (X, d) be a metric space, Y ∈ P (X), F : Y × Y → P (Y )

be a multi-valued operator. By definition, the coupled fixed point problem{
x ∈ F (x, y)

y ∈ F (y, x)
, x, y ∈ Y, (3.3.2)

is said to be generalized Ulam-Hyers stable if there exists an increasing function ψ : R+ → R+,

continuous at 0, with ψ(0) = 0 such that for each ε > 0 and for each solution (x, y) ∈ Y × Y of

the inequality

max{D(x, F (x, y)), D(y, F (y, x))} ≤ ε,

there exists a solution (x∗, y∗) ∈ Y × Y of the coupled fixed point problem such that

max{d(x, x∗), d(y, y∗)} ≤ ψ(ε).

37



Our stability result is a consequence of the Theorem 3.1.8.

Theorem 3.3.7. (Magdaş [35]) If all the hypotheses of Theorem 3.3.5 take place, then the

coupled fixed point problem (3.3.2) is generalized Ulam-Hyers stable.

In the last part of this section we will consider the following best proximity problem for a

cyclic coupled multi-valued operator:

If (X, d) is a metric space, A,B ∈ P (X), Y = A ∪ B, F : Y × Y → P (Y ) is a coupled

multi-valued operator satisfying the cyclic condition

F (A×B) ⊆ B,F (B ×A) ⊆ A,

then we are interested to find (x∗, y∗) ∈ A×B such that

D(x∗, F (x∗, y∗)) = D(y∗, F (y∗, x∗)) = D(A,B). (3.3.3)

(x∗, y∗) is said to be a coupled best proximity point of F .

Notice that, in particular, if A ∩B 6= ∅ then (x∗, y∗) is a coupled fixed point of F .

Definition 3.3.8. (Magdaş [35]) Let (X, d) be a metric space, A,B ∈ P (X), Y = A ∪ B. A

multi-valued operator F : Y × Y → P (Y ) is called a cyclic coupled Ćirić type multi-valued

operator if:

(i) F (A×B) ⊆ B and F (B ×A) ⊆ A;

(ii) there exists a comparison function ϕ : R+ → R+ such that

H(F (x, y), F (u, v)) ≤ ϕ(M̃(x, v, y, u)−D(A,B)) +D(A,B),

for any x, v ∈ A, y, u ∈ B.

Lemma 3.3.9. Let A and B nonempty subsets of a metric space (X, d), and d∗ the metric

defined on X×X by (3.3.1). If (A,B) and (B,A) satisfy the property UC with respect to d then

(A×B,B ×A) satisfy the property UC with respect to d∗.

The next result is a consequence of the Theorem 3.2.4.

Theorem 3.3.10. (Magdaş [35]) Let (X, d) be a complete metric space, A,B ∈ Pcl(X) such

that (A,B) and (B,A) satisfy the property UC, and Y = A ∪ B. If F : Y × Y → Pprox(Y ) is a

cyclic coupled Ćirić type multi-valued operator, then the following statements hold:

(i) F has a coupled best proximity point (x∗, y∗) ∈ A×B;

(ii) there exist two sequences (xn)n∈N, (yn)n∈N with

(x0, y0) ∈ A×B, xn+1 ∈ F (xn, yn), yn+1 ∈ F (yn, xn),

such that ((x2n, y2n))n∈N converges to (x∗, y∗).
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[27] E. Karaṕınar, S. Romaguera, K. Taş, Fixed points for cyclic orbital generalized contractions

on complete metric spaces, Cent. Eur. J. Math., 11(2013), no. 3, 552-560.

[28] S. Karpagam, S. Agrawal, Existence of best proximity points of p-cyclic contractions, Fixed

Point Theory, 13(2012), no. 1, 99-105.

[29] W.A. Kirk, P.S. Srinivasan, P. Veeramani, Fixed points for mappings satisfying cyclical

contractive conditions, Fixed Point Theory, 4(2003), no. 1, 79-89.

[30] H.E. Kunze, D. La Torre, E.R. Vrscay, Contractive multifunctions, fixed point inclusions

and iterated multifunction systems, J. Math. Anal. Appl., 330(2007), 159-173.
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[35] A. Magdaş, Coupled fixed points and coupled best proximity problems for cyclic Ćirić type
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condition, Stud. Univ. Babeş-Bolyai Math., 62(2017), no. 3, 395-405.

[38] N. Mizoguchi, W. Takahashi, Fixed point theorems for multivalued mappings on complete

metric spaces, J. Math. Anal. Appl., 141(1989), 177-188.
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[54] A. Petruşel, Operatorial Inclusions, House of the Book of Science, Cluj-Napoca, 2002.
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[60] A. Petruşel, G. Petruşel, Yi-Bin Xiao, J.-C. Yao, Fixed point theorems for generalized

contractions with applications to coupled fixed point theory, J. Nonlinear Convex Anal.,

19(2018), no. 1, 71-88.
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orems, Fixed Point Theory Appl., 50(2013), 12 pages.

[76] S.P. Singh, B. Watson, P. Srivastava, Fixed Point Theory and Best Approximation: the

KKM-map Principle, Kluwer Academic Publishers, Dordrecht, 1997.

[77] T. Suzuki, M. Kikkawa, C. Vetro, The existence of best proximity points in metric spaces

with the property UC, Nonlinear Anal., 71(2009), no. 7-8, 2918-2926.

[78] X. Udo-utun, Existence of strong coupled fixed points for cyclic coupled Ćirić-type mappings,
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