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Introduction

In mathematical areas an important place is reserved for the optimization theory. The
main idea is to provide an overview and deliver new results referring to the duality in
the vector optimization. There are a lot of papers in this field, like [80], D.T. Luc [87],
R.I. Boţ, S.-M. Grad and G. Wanka [25], C. Zălinescu [151], T. Antczak [4], G.
Cristescu and L. Lupşa [43], R.I. Boţ [15], R.I. Boţ, S.-M. Grad and G. Wanka [22], R.I.
Boţ and G. Wanka [28,29], R. Cambini and L. Carosi [33], R.R. Egudo [49,50], R.R.
Egudo, T. Weir and B. Mond [51], M. Ehrgott [52], A. Göpfert [60], D. Inoan [75], D.
Inoan and J. Kolumbán [76], M.A. Islam [74], H. Kawasaki [82], K.M. Miettinen [91],
N. Popovici [112], Y. Sawaragi, H. Nakayama and T. Tanino [116], T. Tanino and H.
Kuk [126], T. Tanino and Y. Sawaragi [127], G. Wanka and R.I. Boţ [129–131], X.M.
Yang, K.L. Teo and X.Q. Yang [149] and M. Zeleny [152].

To a general vector optimization problem are attached different vector duals and
one can establish connections between these problems referring to their solutions.
Also, there exists other types of problems that can be attached to a general vector
optimization problem, like the approximated ones. When to a minimum vector op-
timization problem are attached maximum vector optimization problems (or duals)
and are formulated duality results we refer to vector duality. The duality results that
are usually provided refers to the weak duality, strong duality and converse duality.
For the strong duality and the converse duality, one needs to use some supplementary
conditions, called regularity conditions (see, for example R.I. Boţ [14], R.I. Boţ, S.-M.
Grad and G. Wanka [22, 23, 25], E.R. Csetnek [44], J. Jahn [77], D.T. Luc [87], B.S.
Mordukhovich [103, 104], H. Nakayamma [105], R.T. Rockafellar [114], C. Tammer,
A. Göpfert [122], T. Tanino [125], C. Zălinescu [150]). There are a lot of regularity
conditions that can be used, but here we work especially with the classical one that in-
volves continuity, the one that works for Frechét spaces, the one for finite dimensional
case and the closedness type one (cf. R.I. Boţ, S.-M. Grad and G. Wanka [25]).

The solutions used in the duality results can be the optimal solutions, efficient
solutions, weakly efficient solutions and properly efficient solutions (in our case, in
the sense of linear scalarization) (see, for example, R.I. Boţ, S.-M. Grad and G.
Wanka [25], A.M. Geoffrion [57], A. Guerraggio, E. Molho and A. Zaffaroni [69], I.
Kaliszewski [81]). The different types of solutions that can be considered to a vector
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ii

optimization problem give different vector duals to the primal. Moreover, for a primal
vector optimization problem one can attach different duals and study the optimality
conditions between these problems, too (see, for example R.I. Boţ, S.-M. Grad and
G. Wanka [25], A. Ben-Israel, A. Ben-Tal and S. Zlobec [8]).

We work especially in infinite dimensional settings, but in the end we present
also some results in the finite dimensional case, where we consider some constraint
qualifications in the formulations of the results.

In this thesis for vector duality we present different directions and interpretations.
To a primal vector optimization problem one can attach different vector duals by
using also different vector perturbation functions, like Lagrange, Fenchel or Fenchel-
Lagrange vector perturbation functions. We include the general duality concepts and
results presented by a lot of authors like, R.T. Rockafellar [113], C. Zălinescu [151],
R.I. Boţ, S.-M. Grad and G. Wanka [14, 25], J. Jahn [77–80], C.R. Chen and S.J. Li
[36], W. Breckner and I. Kolumbán [31,32]. A very important part of this thesis refers
to the Wolfe and the Mond-Weir vector duality, subject studied also by a lot of authors
(see, for example R.I. Boţ and S.-M. Grad [20,21]). For Wolfe vector duality concepts
and results we can refer to B.D. Craven [41], M. Schechter [119] and P. Wolfe [148] and
in the case of Mond-Weir vector duality to B. Monde [98], B. Mond and M.A. Hanson
[99], B. Mond and S. Zlobec [102], T. Weir [135–140], T. Weir and B. Mond [100,101,
141–144], T. Weir, B. Mond and B.D. Craven [145,146]. Some characterizations for the
optimization problems referring to their solutions (efficient, properly efficient in the
sense of linear scalarization, weakly efficient, quasi-efficient) and some duality results
are presented, too. We also give comparisons between the image sets of different vector
duals attached to the same vector optimization problem, delivering either inclusion
relations between them, or counterexamples that prove that in general neither of
them is a subset of the other. Also, we study the optimality conditions between the
primal vector optimization problem and the vector duals attached to it obtained by
using different scalarizations (linear scalarization, maximum(−linear) scalarization,
set scalarization, (semi)norm scalarization, oriented distance scalarization).

Here we include the author’s own results obtained in joint works and addressing
different problems in vector optimization. The theoretical statements are accompa-
nied by a proof and are followed by examples. The results are partially included in
the following papers: S.-M. Grad and E.-L. Pop [66–68], E.-L. Pop [107], E.-L. Pop
and D.I. Duca [108–111].

The thesis is split into five chapters, preceded by an introduction and succeeded
by some references.

The first chapter presents the most important notions and results from the
specialized literature (cf. [14, 25, 39, 46, 54, 77, 80, 103–105, 113, 114, 151]) used in the
following chapters and in the author’s own results. We work especially with the basic
notions and results from convex analysis (cf. J.M. Borwein and A.S. Lewis [13], J.-B.
Hiriart-Urruty and C. Lamaréchal [73], D.T. Luc [87], S.K. Mishra, S. Wang and K.K.
Lai [97], C. Tammer and A. Göpfert [122], R.T. Rockafellar [113], T. Tanino [125],
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P. Weidner [134], C. Zălinescu [151], for example). In the first section we introduce
some special subsets of the vector spaces, like the convex sets; we give definitions for
cones, interior notions and generalized interior notions for convex sets that are used
especially in the formulation of the regularity conditions, partial orderings, separation
theorems and useful properties. The next part contains the notions and results con-
cerning the extended real and vector functions. We remember the definitions for the
convex function, indicator function and support functional of a set, the domain and
the epigraph of a function, the conjugate function, the Young-Fenchel inequality and
the subdifferential. In the second part of this chapter we present the conjugate theory
for a scalar optimization problem and we give some connections between a vector op-
timization problem and some dual problems attached to it and obtained by using the
vector perturbation approach. We work with an unconstrained vector optimization
problem having a composition with a linear continuous mapping as objective function,
to which properly efficient solutions in the sense of linear scalarization and weakly
efficient solutions are considered. Due to R.I. Boţ, S.-M. Grad and G. Wanka [25] we
particularize the case of Fenchel duality for this unconstrained vector optimization
problem where the linear continuous mapping is considered also invertible and the
duals obtained are only equivalent formulations of the ones already known. Also,
some connections between properly efficient solutions for the primal vector optimiza-
tion problem and efficient solutions for Wolfe and Mond-Weir vector dual problems
attached, follows, as a particular case, too.

In the second chapter we attach to a general vector optimization problem two
new vector duals by means of perturbation theory. These vector duals are constructed
with the help of the recent Wolfe and Mond-Weir scalar duals for general optimiza-
tion problems proposed by R.I. Boţ and S.-M. Grad [21], by exploiting an idea due to
W. Breckner and I. Kolumbán [31, 32]. Then we give some duality results (see [66]).
We particularize the initial primal vector optimization problem to be a constrained
vector optimization problem (a vector optimization problem with geometric and cone
constraints) and then an unconstrained vector optimization problem (a vector opti-
mization problem having a composition with a linear continuous mapping as objective
function) and from the general case we obtain vector dual problems of Wolfe type and
Mond-Weir type for it by using different vector perturbation functions (Lagrange,
Fenchel, Fenchel-Lagrange). Then we formulate some comparisons between duals. In
the second part of this chapter we introduce the Wolfe type and Mond-Weir type
vector duals with respect to the weakly efficient solutions.

The author’s contributions are presented in the following theorems: 2.1.4, 2.1.6,
2.1.7, 2.1.8, 2.1.16, 2.1.17, 2.1.24, 2.1.25, 2.1.29, 2.1.30, 2.1.37 and 2.1.38; remarks:
2.1.3, 2.1.5, 2.1.9, 2.1.10, 2.1.11, 2.1.12, 2.1.14, 2.1.19, 2.1.20, 2.1.21, 2.1.27, 2.1.28,
2.1.31, 2.1.32 and 2.1.43; lemma’s: 2.1.2; propositions: 2.1.13, 2.1.22 and 2.1.33; and
examples: 2.1.15, 2.1.23, 2.1.39 and 2.1.40; and some of these can be found in [66].

Chapter three present some duality results with respect to the quasi-efficient so-
lutions. This subject was also studied by J.M. Borwein and A.S. Lewis [12], R.I. Boţ
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and E.R. Csetnek [16], R.I. Boţ, E.R. Csetnek and A. Moldovan [17], R.I. Boţ, E.R.
Csetnek and G. Wanka [18], E.R. Csetnek [44], B.D. Craven [42]. From the general
case by considering the primal vector optimization problem to be constrained and
unconstrained we obtain different vector dual problems by using the vector perturba-
tion functions and also some preliminary results, where some separation theorems are
required (see, for example J.M. Borwein, A.S. Lewis [12], R.I. Boţ, E.R. Csetnek and
A. Moldovan [17], R.I. Boţ, E.R. Csetnek and G. Wanka [18], C. Gerth and P. Wei-
dner [62]). The duality results that are delivered refers to weak, strong and converse
duality and also to some connections between the image sets of different vector duals
attached to the same vector optimization problem. In the second part of this chapter
we make some remarks in the case when the relative interior is considered instead of
quasi interior and consequently the corresponding solutions, due to J.M. Borwein, R.
Goebel [11].

The author’s contributions are presented in the following theorems: 3.1.11, 3.1.13,
3.1.17, 3.1.19, 3.1.21, 3.1.22, 3.1.24, 3.1.25, 3.1.26, 3.1.32 and 3.1.33; remarks: 3.1.4,
3.1.7, 3.1.9, 3.1.18, 3.1.20, 3.1.23, 3.1.29 and 3.1.31; lemma’s: 3.1.8 and 3.1.12; propo-
sitions: 3.1.10, 3.1.28 and 3.1.30; corollaries: 3.1.14 and 3.1.34; definitions: 3.1.3,
3.1.6, 3.1.15 and 3.1.16; and examples: 3.1.5; and some of these can be found in [68].

In the fourth chapter we turn our attention to the formulation of the optimal-
ity conditions between a general vector optimization problem with geometric and
cone constraints and some vector duals attached to it and obtained by using different
scalarizations (like linear scalarization, maximum(−linear) scalarization, set scalar-
ization, (semi)norm scalarization, oriented distance scalarization). Here are used the
scalarization functions and the set of the scalarization functions in the construction of
the duals (see, for example R.I. Boţ, S.-M. Grad and G. Wanka [22,25], E. Carrizosa
and J. Fliege [35], J. Fliege [55], S. Helbig [72], J, Jahn [78, 80], P.Q. Khanh [83],
D.T. Luc [87], E. Miglierina and E. Molho [93], C. Tammer and K. Winkler [123], P.
Weidner [134]).

The author’s contributions are presented in the following theorems: 4.1.11, 4.1.14,
4.1.17, 4.1.22, 4.1.32 and 4.1.36; and some of these can be found in [67].

Chapter five present some applications. First we study the connections between
the optimal solutions and saddle points for the Lagrangian of an approximated opti-
mization problem attach to 

min f(x)
s. t. x ∈ X

g(x) 5 0
h(x) = 0,

where X is a subset of Rn, f : X → R, g = (g1, ..., gm) : X → Rm and h = (h1, ..., hq) :
X → Rq are three functions, and the optimization problem. Here we present some
results referring to the optimal solutions and saddle points for the Lagrangian of the
primal optimization problem and the (0, 1) − η approximated optimization problem
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and also some connections between these optimal solutions and saddle points for the
Lagrangian (cf. [108–110]). We close here by extending our problems to the vector
case and we deliver some connections between the efficient solutions and the saddle
points for the Lagrangian of these problems (cf. [111]). Another application can be
given in set-valued. For example, by considering the notion of relative interior we
can formulate new set relations with the help of a convex cone introduced by D.
Kuroiwa [124]. Then by using the idea of A. Grad [64, 65] we can deliver duality
results and optimality conditions for a set-valued optimization problem (see [107]).

The author’s contributions are presented in the following theorems: 5.2.4, 5.2.8,
5.2.12 and 5.2.14; remarks: 5.1.5; and lemma’s: 5.2.10; and some of these can be
found in [109,111].

Key Words
vector optimization problem, dual vector optimization problem, perturbation func-
tion, conjugate function, (convex) subdifferential, regularity condition, vector duality,
weak/strong/converse duality, Wolfe duality, Mond-Weir duality, efficient solution,
properly efficient solution, weakly efficient solution, Lagrange vector perturbation
function, Fenchel-Lagrange vector perturbation function, Fenchel vector perturba-
tion function, quasi-interior, quasi-minimal element, quasi-efficient solution, relative
interior, general scalarization, linear scalarization, maximum(−linear) scalarization,
set scalarization, (semi)norm scalarization, oriented distance scalarization, optimality
condition, optimal solution, saddle point for the Lagrangian, optimization problem,
(0, 1)− η approximated optimization problem, dual.
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Chapter 1

Vector optimization
problems: an overview

1.1 Preliminaries

We commence by presenting the basic notions and results from the convex analysis
and the ones concerning the extended real and vector functions (cf. J.M. Borwein,
A.S. Lewis [12], R.I. Boţ [14], R.I. Boţ, S.-M. Grad and G. Wanka [25], P. Daniele,
S. Giuffré, G. Idone, A. Maugeri [46], R.I. Boţ, S.-M. Grad and G. Wanka [23], J.
Jahn [80], R.T. Rockafellar [113], C. Zălinescu [151]).

1.1.1 Sets and interiors of sets

Convex sets, affine sets and cones

Let X be a vector space. A set U ⊆ X is called convex if (1 − λ)x + λy ∈ U for all
x, y ∈ U and all λ ∈ [0, 1].

A cone K ⊆ X is a nonempty set which fulfills λK ⊆ K for all λ ≥ 0. A convex
cone is a cone which is a convex set. A cone K ⊆ X is called nontrivial if K 6= {0}
and K 6= X and pointed if K ∩ (−K) = {0}.

On X we consider the partial ordering “5K” induced by the convex cone K ⊆ X,
defined by x 5K y ⇔ y − x ∈ K when x, y ∈ X. The notation x ≤K y is used to
write more compactly that x 5K y and x 6= y, where x, y ∈ X. A convex cone which
induces a partial ordering on X is called ordering cone. If K 6= {0}, a greatest element
with respect to “5K” which does not belong to X denoted by ∞K is attached to X,
and let X• = X ∪ {∞K}.
For U ⊆ X a nonempty set we consider the

1



2 Chapter 1. Vector optimization problems: an overview

• linear hull of U linU = {
∑n
i=1 λixi : n ∈ N, xi ∈ U, λi ∈ R, i = 1, ..., n};

• convex hull of U coU = {
∑n
i=1 λixi : n ∈ N, xi ∈ U, λi ≥ 0, i = 1, ..., n,

∑n
i=1 λi =

1};

• conical hull of U coneU = {λx : λ ≥ 0, x ∈ U}.

Also, we denote by intU , clU and dimU the interior, the closure and the dimension
of the set U . For U ⊆ X × Y , where X and Y are nontrivial real vector spaces, the
projection function of U on X, PrX : X × Y → X is defined by PrX(U) = {x ∈
X : ∃y ∈ Y such that (x, y) ∈ U}. The identity function on X is a special linear
mapping, idX : X → X defined by idX(x) = x for all x ∈ X.

Let now X be a topological vector space and X∗ its topological dual spaces en-
dowed with the corresponding weak∗ topology and denote by 〈x∗, x〉 = x∗(x) the
value at x ∈ X of the linear continuous functional x∗ ∈ X∗.

The dual cone of K is K∗ = {x∗ ∈ X∗ : 〈x∗, x〉 ≥ 0 ∀x ∈ K}, the quasi interior
of the dual cone of K is given by K∗0 = {x∗ ∈ X∗ : 〈x∗, x〉 > 0 ∀x ∈ K \ {0}} and
the normal cone associated with a set U ⊆ X is defined by NU (x) = {x∗ ∈ X∗ :
〈x∗, y − x〉 ≤ 0 for all y ∈ U}.

By R = R ∪ {±∞} we denote the extended real space and it has the the same
operations as R and also some new ones.

Interiors of sets

In what follows we remember some generalized interiors of sets and connections be-
tween them that are useful especially in the formulation of the regularity conditions.

For X a nontrivial vector space and U ⊆ X a set we have the algebraic interior
of U coreU = {x ∈ X : for every y ∈ X ∃δ > 0 such that x+ λy ∈ U∀λ ∈ [0, δ]}.

Some topological notions of generalized interiors of U ⊆ X, where X is a Haus-
dorff locally convex space and X∗ its topological dual space endowed with the weak∗

topology, follow.

• The quasi interior of U is the set qiU = {x ∈ U : cl(cone(U − x)) = X};

• The quasi relative interior of U is the set qriU = {x ∈ U : cl(cone(U −
x)) is a linear subspace};

• The strong quasi relative interior of U is the set sqriU = {x ∈ U : cone(U −
x) is a closed linear subspace}.

In the case when X = Rn, n ∈ N and U ⊆ Rn a set, we have the relative interior
of U defined by riU = {x ∈ aff U : ∃ε > 0 such that B(x, ε) ∩ aff U ⊆ U}, where
B(x, ε) is the closed ball centered at x with radius ε and aff U is the affine hull of U .
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Separation theorems

We introduce a separation theorem for convex sets by mean of quasi-relative interior.

Theorem 1.1.17 ( [18, Theorem 2.7]) Let U be a nonempty convex set of a separated
locally convex space X and x ∈ U . If x 6∈ qriU , then there exists an x∗ ∈ X∗ \ {0}
such that 〈x∗, x〉 ≤ 〈x∗, x〉 for all x ∈ U .

1.1.2 Some functions and their properties

Extended real functions

Let X be a locally convex space, X∗ its topological dual space endowed with the
corresponding weak∗ topology and U ⊆ X a nonempty set.

The indicator function δU : X → R is defined by 0 if x ∈ U and +∞, otherwise
and the support function σU : X∗ → R by σU (x∗) = sup{〈x∗, x〉 : x ∈ U}. For U ⊆ X
a convex absorbing set the gauge (or Minkowski function) associated to it γU : X → R
is defined by γU (x) = inf{λ ≥ 0 : x ∈ λU}.

The function f : X → R is called convex if for all x, y ∈ X and for all λ ∈ [0, 1]
one has f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y). The function f : X → R is
called concave if (−f) is convex. We denote by dom f = {x ∈ X : f(x) < +∞} its
domain and by epi f = {(x, r) ∈ X × R : f(x) ≤ r} its epigraph. We recall that f is
lower semicontinuous if and only if epi f is a closed set. The function f is proper if
f(x) > −∞ for all x ∈ X and dom f 6= ∅.

Let now x ∈ X an arbitrary point such that f(x) ∈ R. The set ∂f(x) = {x∗ ∈
X∗ : f(y) − f(x) ≥ 〈x∗, y − x〉 ∀y ∈ X} is called the (convex) subdifferential of f at
x. Its elements are called subgradients of f at x. If ∂f(x) 6= ∅ then the function f is
called subdifferentiable at x. If f(x) 6∈ R then by convention we establish ∂f(x) = ∅.

The function f∗ : X∗ → R defined by f∗(x∗) = sup
x∈X
{〈x∗, x〉 − f(x)} is called

the (Fenchel) conjugate function of f and f∗U : X∗ → R defined by f∗U (x∗) = (f +
δU )∗(x∗) = supx∈U{〈x∗, x〉 − f(x)} is called the conjugate function of f with respect
to the nonempty set U ⊆ X. Between a function and its conjugate there is the
Young-Fenchel inequality f∗(x∗) + f(x) ≥ 〈x∗, x〉 for all x ∈ X and x∗ ∈ X∗. This
inequality is fulfilled as an equality if and only if x∗ ∈ ∂f(x).

Let now X and Y be two topological vector spaces. For a linear continuous
mapping A : X → Y we have its adjoint operator A∗ : Y ∗ → X∗ given by 〈A∗y∗, x〉 =
〈y∗, Ax〉 for any (x, y∗) ∈ X × Y ∗.
Definition 1.1.24 Let X be a vector space partially ordered by the convex cone K,
U ⊆ X and f : X → R a given function.

(a) If f(x) ≤ f(y) for all x, y ∈ U such that x 5K y, the function f is called
K−increasing on U .

(b) If f(x) < f(y) for all x, y ∈ U such that x ≤K y, the function f is called
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strongly K−increasing on U .

(c) If f is K−increasing on U , coreK 6= ∅ and for all x, y ∈ U fulfilling x <K y
follows f(x) < f(y), the function f is called strictly K−increasing on U .

(d) If X = U these classes of functions are called K−increasing, strongly K−increa
sing and strictly K−increasing.

Extended vector functions

Let X be a vector space and let V be locally convex space partially ordered by a
nonempty convex cone K and V • = V ∪ {±∞K}.

For the vector function F : X → V • we have domF = {x ∈ X : F (x) ∈ V }
its domain and epiK F = {(x, v) ∈ X × V : F (x) 5K v} its K−epigraph. The
function F is called proper if domF is nonempty; K−convex if F (λx+ (1− λ)y) 5K
λF (x) + (1 − λ)F (y) for all x, y ∈ X and all λ ∈ [0, 1]; K − epi−closed if K is
closed and its K−epigraph is closed and K−semicontinuous if for every x ∈ X, each
neighborhood W of zero in V and for any b ∈ V satisfying b 5K F (x), there exists a
neighborhood U of x in X such that F (U) ⊆ b+W +K ∪ {+∞K}.

For v∗ ∈ K∗ the function (v∗F ) : X → R is defined by (v∗F )(x) = 〈v∗, F (x)〉 for
all x ∈ X.

1.2 Optimization problems

In this section we present the conjugate theory for a scalar optimization problem and
we consider the vector optimization problem having the composition with a linear
continuous mapping in the objective function and give some duality results referring
to properly efficient solutions in the sense of linear scalarization and weakly efficient
solutions. Then, for the unconstrained vector optimization problem we introduce the
Wolfe and Mond-Weir type vector duals and obtain weak and strong duality results
(like in [21,139,140,143]). This part presents a particular case for the Fenchel vector
duality where the linear and continuous mapping is also invertible. The vector duals
introduced here are only equivalent formulations of the ones already known (see [25]).

1.2.1 Scalar optimization problems

In this part we present some duality results for duals by using the perturbation theory.

1.2.2 Vector optimization problems

In this section to an unconstrained vector optimization problem having the compo-
sition with a linear continuous and invertible mapping in the objective function we
attach vector dual problems (that are equivalent formulations of the ones introduced
in [25]) and we deliver duality results.



Chapter 2

Vector duality of Wolfe type
and Mond-Weir type

The Wolfe and the Mond-Weir duality approaches from this chapter were originally
considered for scalar constrained optimization problems (see, for example R.I. Boţ
and S.-M. Grad [21]) and were quickly generalized for vector optimization problems,
too. For a constrained vector minimization problem the approach was employed by
T.Q. Chien [37], where the involved functions were considered quasidifferentiable.

2.1 Wolfe type and Mond-Weir type vector duality

We introduce new Wolfe type and Mond-Weir type vector duals achieved via the ap-
proach from W. Breckner and I. Kolumbán [31,32] and J. Jahn [80] to a general vector
minimization problem. We compare these new vector duals with the vector duals from
R.I. Boţ and S.-M. Grad [20] and we deliver weak and strong duality statements for
them. Then we consider particular primal vector optimization problems and for dif-
ferent vector perturbation functions we obtain new Wolfe and Mond-Weir type vector
duals to these vector problems. We compare the image sets of the different vector
duals attached to the same vector optimization problem, delivering either inclusion
relations between them, or counterexamples that prove that in general neither of them
is a subset of the other.

Some of the results were obtained by the author in joint work with dr. S.-M.
Grad [66].

5
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2.1.1 General duality results

Let X,Y and V be separated locally convex vector spaces, with V partially ordered
by the nonempty pointed convex cone K ⊆ V . Let F : X → V • be a proper and
K−convex function and consider the general vector optimization problem

(PV G) Min
x∈X

F (x).

For this vector optimization problem we remember the solution concepts.

(i) An element x ∈ X is called efficient solution to the vector optimization problem
(PV G) if x ∈ domF and for all x ∈ domF from F (x) 5K F (x) follows F (x) = F (x).

(ii) An element x ∈ X is called properly efficient solution to the vector optimiza-
tion problem (PV G) if there exists v∗ ∈ K∗0 such that (v∗F )(x) ≤ (v∗F )(x) for all
x ∈ X.

Using the K−convex vector perturbation function Φ : X × Y → V • which fulfills
0 ∈ PrY (dom Φ) and Φ(x, 0) = F (x) for all x ∈ X, the primal vector optimization
problem introduced above can be reformulated as

(PV G) Min
x∈X

Φ(x, 0).

To (PV G) we attach two vector dual problems. To construct them, we used the
scalar Wolfe type and Mond-Weir type duals introduced by R.I. Boţ and S.-M. Grad
in [21], exploiting moreover the vector duality approach from J. Jahn [80] and W.
Breckner and I. Kolumbán [31,32].

The Wolfe type vector dual to (PV G) we consider is

(DVGW ) Max
(v∗,y∗,v,u,y)∈BW

G

hWG (v∗, y∗, v, u, y)

where

BWG = {(v∗, y∗, v, u, y) ∈ K∗0 × Y ∗ × V ×X × Y : (0, y∗) ∈ ∂(v∗Φ)(u, y),
〈v∗, v〉 ≤ −(v∗Φ)∗(0, y∗)}

and

hWG (v∗, y∗, v, u, y) = v,

while the Mond-Weir type vector dual one is

(DVGM ) Max
(v∗,y∗,v,u)∈BM

G

hMG (v∗, y∗, v, u)

where

BMG = {(v∗, y∗, v, u) ∈ K∗0 × Y ∗ × V ×X : (0, y∗) ∈ ∂(v∗Φ)(u, 0),
〈v∗, v〉 ≤ 〈v∗,Φ(u, 0)〉}
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and

hMG (v∗, y∗, v, u) = v.

Lemma 2.1.2 (S.-M. Grad and E.-L. Pop [66]) One has hMG (BMG ) ⊆ hWG (BWG ).

Remark 2.1.3 (S.-M. Grad and E.-L. Pop [66]) The sets hMG (BMG ) and hWG (BWG ) do
not coincide in general. A situation like this will be given later in Example 2.1.15.

Now we investigate the connections between the duals to (PV G) considered here
and other Wolfe and Mond-Weir type vector duals introduced by R.I. Boţ and S.-M.
Grad in [20] to it, which are

(DVGW ) Max
(v∗,y∗,u,y,r)∈BG

W

hGW (v∗, y∗, u, y, r)

where

BGW = {(v∗, y∗, u, y, r) ∈ K∗0 × Y ∗ ×X × Y × (K \ {0}) : (0, y∗) ∈ ∂(v∗Φ)(u, y)}

and

hGW (v∗, y∗, u, y, r) = Φ(u, y)− 〈y
∗, y〉
〈v∗, r〉

r

and, respectively,

(DVGM ) Max
(v∗,y∗,u)∈BG

M

hGM (v∗, y∗, u)

where

BGM = {(v∗, y∗, u) ∈ K∗0 × Y ∗ ×X : (0, y∗) ∈ ∂(v∗Φ)(u, 0)}

and

hGM (v∗, y∗, u) = Φ(u, 0).

Unlike these vector duals, the ones we introduced above do not have the objective
function of (PV G) as objective functions. The newly introduced vector duals inherit
all the constraints of the vector duals from R.I. Boţ and S.-M. Grad [20], having an
additional one which involves the vector that acts as an objective function and the
corresponding dual problem of the scalarized primal. Moreover, the image sets of the
vector duals introduced here are larger than the ones of their counterparts of R.I. Boţ
and S.-M. Grad [20], as one can see below.

Theorem 2.1.4 (S.-M. Grad and E.-L. Pop [66]) One has hGW (BGW ) ⊆ hWG (BWG ) and
hGM (BGM ) ⊆ hMG (BMG ).

Remark 2.1.5 (S.-M. Grad and E.-L. Pop [66]) The inclusions proven in Theorem
2.1.4 are in general strict, as the situation depicted in Example 2.1.15 shows.

For the newly introduced dual problems there is weak duality.
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Theorem 2.1.6 (S.-M. Grad and E.-L. Pop [66]) There are no x ∈ X and (v∗, y∗, v, u, y)
∈ BWG such that F (x) ≤K hWG (v∗, y∗, v, u, y).

Theorem 2.1.7 (S.-M. Grad and E.-L. Pop [66]) There are no x ∈ X and (v∗, y∗, v, u) ∈
BMG such that F (x) ≤K hMG (v∗, y∗, v, u).

In order to give strong duality statements concerning the vector optimization
problem (PV G) and its two newly introduced vector dual problems, we consider
the following regularity conditions (cf. R.I. Boţ [14], R.I. Boţ and S.-M. Grad [20],
R.I. Boţ, S.-M. Grad and G. Wanka [25]). We begin with a classical one involving
continuity

(RCV 1) ∃x′ ∈ X such that (x′, 0) ∈ dom Φ and Φ(x′, ·) is continuous at 0;

followed by one that works for X and Y Frechét spaces

(RCV 2) X and Y are Fréchet spaces, Φ is K−lower semicontinuous and
0 ∈ sqri(PrY (dom Φ));

then in finite dimensional case

(RCV 3) dim(lin(PrY (dom Φ))) < +∞ and 0 ∈ ri(PrY (dom Φ));

and the closedness type regularity condition

(RCV 4) Φ is K−lower semicontinuous and PrX∗×R(epi(v∗Φ)∗) is closed in
the topology w(X∗, X)× R, for all v∗ ∈ K∗0.

Theorem 2.1.8 (S.-M. Grad and E.-L. Pop [66]) Assume that one of the regularity
conditions (RCV i), i ∈ {1, 2, 3, 4}, is fulfilled. If x ∈ X is a properly efficient solution
to (PV G), then there are the efficient solutions (v∗, y∗, v∗, u, y) to (DVGW ) and
(v∗, y∗, v, u) to (DVGM ) such that F (x) = hWG (v∗, y∗, v, u, y) = hMG (v∗, y∗, v, u).

Remark 2.1.9 (S.-M. Grad and E.-L. Pop [66]) For the strong duality statement we
can also use the regularity condition mentioned by R.I. Boţ, S.-M. Grad and G. Wanka
in [25, Remark 4.3.2]: for all v∗ ∈ K∗0 the problem infx∈X〈v∗, F (x)〉 is normal.

Remark 2.1.10 (S.-M. Grad and E.-L. Pop [66]) In case V = R and K = R+,
identifying V • with R∪{+∞} and ∞R+

with +∞, for the proper and convex function
F : X → R ∪ {+∞}, we rediscover the Wolfe and Mond-Weir type scalar duality
scheme from R.I. Boţ, S.-M. Grad and G. Wanka [25], as the problem (PV G) becomes
the general scalar optimization problem (PG) and the vector duals (DVGW ) and
(DVGM ) turn out to coincide with the scalar Wolfe and Mond-Weir type duals to
(PG) introduced in that paper, i.e. (DGW ) and (DGM ), respectively.

2.1.2 Duality results for particular classes of problems

To some special instances of the vector optimization problem (PV G), constrained
and unconstrained vector optimization problems, we attach vector duals which are
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special cases of the vector duals (DVGW ) and (DVGM ), obtained by using different
perturbation vector functions.

Constrained vector optimization problems

We use the same framework as in Section 2.1, with Y partially ordered by the
nonempty convex cone C ⊆ Y , and we consider the nonempty convex set S ⊆ X,
the proper K−convex function f : X → V • and the proper C−convex function
g : X → Y • fulfilling dom f ∩ S ∩ g−1(C) 6= ∅. The primal vector optimization prob-
lem with geometric and cone constraints we work with is

(PVC) Min
x∈A

f(x),

where
A =

{
x ∈ S : g(x) ∈ −C

}
.

To it we attach different pairs of vector duals obtained by making use of some vec-
tor perturbation functions. Consider the Lagrange vector type perturbation function
ΦVCL

: X × Y → V • given by

ΦVCL
(x, y) =

{
f(x), x ∈ S, g(x) ∈ y − C,
∞K , otherwise.

Thus we obtain the Lagrange vector dual of Wolfe type

(DVWCL
) Max

(v∗,y∗,v,u)∈BW
CL

hWCL
(v∗, y∗, v, u)

where

BWCL
= {(v∗, y∗, v, u) ∈ K∗0 × C∗ × V × S : 〈v∗, v − f(u)〉 ≤ −(y∗g)(u),

0 ∈ ∂((v∗f) + (y∗g) + δS)(u)}

and
hWCL

(v∗, y∗, v, u) = v

and the Lagrange vector dual of Mond-Weir type

(DVMCL
) Max

(v∗,y∗,v,u)∈BM
CL

hMCL
(v∗, y∗, v, u)

where

BMCL
= {(v∗, y∗, v, u) ∈ K∗0 × C∗ × V × S : (y∗g)(u) ≥ 0, g(u) ∈ −C,

〈v∗, v〉 ≤ (v∗f)(u), 0 ∈ ∂((v∗f) + (y∗g) + δS)(u)}

and
hMCL

(v∗, y∗, v, u) = v.
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Note that in the constraints of this dual one can replace (y∗g)(u) ≥ 0 by (y∗g)(u) =
0 without altering anything since g(u) ∈ −C and y∗ ∈ C∗. Like in R.I. Boţ and S.-M.
Grad [20,21], R.I. Boţ, S.-M. Grad and G. Wanka [25], from the Lagrange vector dual
of Mond-Weir type we remove the constraint g(u) ∈ −C, obtaining a new vector dual
to (PVC)

(DVMW
CL

) Max
(v∗,y∗,v,u)∈BMW

CL

hMW
CL

(v∗, y∗, v, u)

where

BMW
CL

= {(v∗, y∗, v, u) ∈ K∗0 × C∗ × V × S : (y∗g)(u) ≥ 0, 〈v∗, v〉 ≤ (v∗f)(u),
0 ∈ ∂((v∗f) + (y∗g) + δS)(u)}

and
hMW
CL

(v∗, y∗, v, u) = v.

Remark 2.1.11 (S.-M. Grad and E.-L. Pop [66]) Assume that f is a K−convex
vector function and g is a C−convex vector function. Using that S is a convex set
one can verify that the vector perturbation function ΦCL

V is K−convex. We denote
∆X3 = {(x, x, x) : x ∈ X}. If one of the following conditions (see R.I. Boţ, S.-M.
Grad and G. Wanka [25])

(i) f and g are continuous at a point in dom f ∩ dom g ∩ S;

(ii) dom f∩int(S)∩dom g 6= ∅ and f or g is continuous at a point in dom f∩dom g;

(iii) X is a Fréchet space, S is closed, f is K−lower semicontinuous, g is C−lower
semicontinuous and 0 ∈ sqri(dom f × S × dom g −∆X3);

(iv) dim(lin(dom f×S×dom g−∆X3)) < +∞ and ri(dom f)∩ri(S)∩ri(dom g) 6= ∅;
is satisfied, then, for all v∗ ∈ K∗0 and all y∗ ∈ C∗, it holds

∂((v∗f) + (y∗g) + δS)(x) = ∂(v∗f)(x) + ∂(y∗g)(x) +NS(x) ∀x ∈ X.

Consequently, when one of these situations occurs the constraint involving the subdif-
ferential in (DVWCL

), (DVMCL
) and (DVMW

CL
) can be modified correspondingly.

Remark 2.1.12 (S.-M. Grad and E.-L. Pop [66]) A vector dual similar to (DVWCL
),

but with respect to weakly efficient solutions, was introduced in T.Q. Chien [37], under
quasidifferentiability hypotheses for the functions involved. Later, it was mentioned
also in T. Weir, B. Mond and B.D. Craven [145], where the functions were taken
differentiable.

Let us investigate now the image sets of these vector duals.

Proposition 2.1.13 (S.-M. Grad and E.-L. Pop [66]) One has hMCL
(BMCL

) ⊆ hMW
CL

(BMW
CL

) and hMCL
(BMCL

) ⊆ hWCL
(BWCL

).

Remark 2.1.14 (S.-M. Grad and E.-L. Pop [66]) The inclusions in Proposition
2.1.13 are in general strict, as the following example shows.
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Example 2.1.15 (S.-M. Grad and E.-L. Pop [66]) Let X = R, Y = R, V = R2,
C = R+, K = R2

+, S = R+, f : R→ R2, f(x) = (x, x)T and g : X → R ∪ {+∞},

g(x) =

 x, if x > 0
1, if x = 0
+∞, if x < 0.

Then g(x) 6= 0 for all x ∈ R and to obtain (y∗g)(u) = 0 for some feasible u ≥ 0
it is binding to have y∗ = 0. Since when u > 0 and v∗ = (v∗1 , v

∗
2)T the subdifferential

of the function (v∗f + 0g + δS)(·) = (v∗1 + v∗2)(·) + δR+
(·) is the set {v∗1 + v∗2}, the

only eligible element for BMCL
would be u = 0, as g(u) = +∞ when u < 0. But

g(0) = 1 6∈ −C, thus BMCL
= ∅. Moreover, considering the Lagrange type vector dual

to (PVC) obtained from (DV GW ) (cf. R.I. Boţ and S.-M. Grad [20]), we see that its
objective function takes as values only vectors with equal entries.

On the other hand, for v∗ = (1/2, 1/2)T we have 0 ∈ ∂((v∗f) + (y∗g) + δS)(0) =
(−∞, 1], (y∗g)(u) = 0 and for v = (0,−1) we obtain that 〈v∗, v〉− (v∗f)(u) = −1/2 <
0. Thus ((1/2, 1/2)T , 0, (0,−1), 0) ∈ BMW

CL
and ((1/2, 1/2)T , 0, (0,−1), 0) ∈ BWCL

.

Therefore (0,−1) ∈ hMW
CL

(BMW
CL

) ∩ hWCL
(BWCL

).

Consequently, hWCL
(BWCL

) 6= hMCL
(BMCL

) and hMW
CL

(BMW
CL

) 6= hMCL
(BMCL

) and, in gen-

eral, hMG (BMG ) 6= hWG (BWG ) and hWG (BWG ) 6= hGW (BGW ).

Concerning possible inclusion relations that could exist between the Lagrange
vector dual of Wolfe type and the Lagrange vector dual of “M-W” type, we know
only that the image of the first one is not a subset of the one of the second dual.

In order to achieve strong duality for the vector duals of Lagrange type we at-
tached to (PVC), we need the fulfillment of some sufficient conditions. Particularizing
(RCV i), i ∈ {1, 2, 3, 4} one get (RCV iCL

), i ∈ {1, 2, 3, 4}, where for example (RCV 1
CL

)
is

(RCV 1
CL

) ∃x′ ∈ dom f ∩ S such that g(x′) ∈ − int(C).

Particularizing the results from the general case, we obtain the following duality
statements.

Theorem 2.1.16 (S.-M. Grad and E.-L. Pop [66]) (weak and strong duality for (PVC)
and (DVWCL

))

(a) There are no x ∈ A and (v∗, y∗, v, u) ∈ BWCL
such that f(x) ≤K hWCL

(v∗, y∗, v, u).

(b) If x ∈ A is a properly efficient solution to (PVC) and one of the regularity
conditions (RCV iCL

), i ∈ {1, 2, 3, 4} is fulfilled, then there exists (v∗, y∗, v, u) ∈ BWCL

efficient solution to (DVWCL
) such that f(x) = hWCL

(v∗, y∗, v, u).

Theorem 2.1.17 (S.-M. Grad and E.-L. Pop [66]) (weak and strong duality for (PVC)
and (DVMCL

))

(a) There are no x ∈ A and (v∗, y∗, v, u) ∈ BMCL
such that f(x) ≤K hMCL

(v∗, y∗, v, u).
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(b) If x ∈ A is a properly efficient solution to (PVC) and one of the regularity
conditions (RCV iCL

), i ∈ {1, 2, 3, 4}, is fulfilled, then there exists (v∗, y∗, v, u) ∈ BMCL

efficient solution to (DVMCL
) such that f(x) = hMCL

(v∗, y∗, v, u).

Analogously one can prove similar duality assertions for (PVC) and (DVMW
CL

),
too.

Remark 2.1.19 (S.-M. Grad and E.-L. Pop [66]) The regularity condition in Theo-
rems 2.1.16 (b) and 2.1.17 (b) can be replaced by any condition which guarantees the
stability of the optimization problem infx∈A(v∗f)(x) with respect to its Lagrange dual.

Remark 2.1.20 (S.-M. Grad and E.-L. Pop [66]) If V = R and K = R+, then the
duals (DVWCL

), (DVMCL
) and (DVMW

CL
) are nothing else than the scalar Lagrange dual

problems of Wolfe and Mond-Weir type corresponding to (PVC), considered by R.I.
Boţ and S.-M. Grad in [21].

Another vector perturbation function we consider is the Fenchel-Lagrange type
vector perturbation function ΦVFL : X ×X × Y → V • given by

ΦVCFL
(x, t, y) =

{
f(x+ t), x ∈ S, g(x) ∈ y − C
∞K , otherwise.

The Fenchel-Lagrange vector dual of Wolfe type to (PVC) is

(DVWCFL
) Max

(v∗,t∗,y∗,v,u,t)∈BW
CFL

hWCFL
(v∗, t∗, y∗, v, u, t)

where

BWCFL
= {(v∗, t∗, y∗, v, u, t) ∈ K∗0 ×X∗ × C∗ × V × S ×X : 〈v∗, v〉 ≤ 〈t∗, u〉

−(v∗f)∗(t∗)− (y∗g)(u), 0 ∈ ∂((v∗f)(u+ t) ∩ (−∂((y∗g) + δS)(u))}

and
hWCFL

(v∗, t∗, y∗, v, u, t) = v

and the Fenchel-Lagrange vector dual of Mond-Weir type is

(DVMCFL
) Max

(v∗,y∗,v,u)∈BM
CFL

hMCFL
(v∗, y∗, v, u)

where

BMCFL
= {(v∗, y∗, v, u) ∈ K∗0 × C∗ × V × S : (y∗g)(u) ≥ 0, g(u) ∈ −C,

〈v∗, v〉 ≤ (v∗f)(u), 0 ∈ ∂(v∗f)(u) + ∂((y∗g) + δS)(u)}

and
hMCFL

(v∗, y∗, v, u) = v.

Note that in its constraints one can replace (y∗g)(u) ≥ 0 by (y∗g)(u) = 0 without
altering anything since g(u) ∈ −C and y∗ ∈ C∗. Like in the other case, removing the
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constraint g(u) ∈ −C, one obtains another vector dual to (PVC)

(DVMW
CFL

) Max
(v∗,y∗,v,u)∈BMW

CFL

hMW
CFL

(v∗, y∗, v, u)

where

BMW
CFL

= {(v∗, y∗, v, u) ∈ K∗0 × C∗ × V × S : (y∗g)(u) ≥ 0,
〈v∗, v〉 ≤ (v∗f)(u), 0 ∈ ∂(v∗f)(u) + ∂((y∗g) + δS)(u)}

and

hMW
CFL

(v∗, y∗, v, u) = v.

Remark 2.1.21 Like in Remark 2.1.11 we can formulate some conditions for sep-
arating the functions that appear together in the subdifferentials from the constraint
sets of the Fenchel-Lagrange vector duals to (PVC) (see R.I. Boţ, S.-M. Grad and G.
Wanka [25, Section 3.5]).

Using the way (DVMCFL
) is constructed and applying Lemma 2.1.2, one gets the

following inclusions.

Proposition 2.1.22 (S.-M. Grad and E.-L. Pop [66]) One has hMCFL
(BMCFL

) ⊆ hMW
CFL

(BMW
CFL

) and hMCFL
(BMCFL

) ⊆ hWCFL
(BWCFL

).

The question if similar inclusions are valid also for the Lagrange vector dual of
Wolfe type to (PVC) has a negative answer, as the following examples show.

Example 2.1.23 (S.-M. Grad and E.-L. Pop [66]) Let X = R, Y = R2, V = R2,
C = R2

+, K = R2
+, S = R+, f : R→ (R2)•,

f(x) =

{
(1, 1)Tx, if x ≤ 0,
∞R2

+
, otherwise,

and g : R→ R2, g(x) = (x, 1− x)T .

Like in R.I. Boţ and S.-M. Grad [21, Example 2] one can show that BMW
CFL

= ∅
and on the other hand that ((1/2, 1/2)T , 0, (0, 0), (0, 0)T , 0, 0) ∈ BWCFL

and (0, 0)T ∈
hWCFL

(BWCFL
). Consequently, hWCFL

(BWCFL
) * hMW

CFL
(BMW
CFL

).

In order to guarantee strong duality, one can particularize the regularity conditions
(RCV i), i ∈ {1, 2, 3, 4}. They become (RCV iCFL

), i ∈ {1, 2, 3, 4}, where for instance
(RCV 1

CFL
) is

(RCV 1
CFL

) ∃x′ ∈ dom f ∩ S such that f is continuous at x′ and g(x′) ∈ − int(C)

and the others can be analogously obtained (see R.I. Boţ and S.-M. Grad [21]).

From the general case we obtain the following weak and strong duality statements.
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Theorem 2.1.24 (S.-M. Grad and E.-L. Pop [66]) (weak and strong duality for (PVC)
and (DVWCFL

))

(a) There are no x ∈ A and (v∗, t∗, y∗, v, u, t) ∈ BWCFL
such that f(x) ≤K hWCFL

(v∗, t∗,
y∗, v, u, t).

(b) If x ∈ A is a properly efficient solution to (PVC) and one of the regularity
conditions (RCV iCFL

), i ∈ {1, 2, 3, 4}, is fulfilled, then there exists (v∗, t
∗
, y∗, v, u, t) ∈

BWCFL
efficient solution to (DVWCFL

) such that f(x) = hWCFL
(v∗, t

∗
, y∗, v, u, t).

Theorem 2.1.25 (S.-M. Grad and E.-L. Pop [66]) (weak and strong duality for (PVC)
and (DVMCFL

))

(a) There are no x ∈ A and (v∗, y∗, v, u) ∈ BMCFL
such that f(x) ≤K hMCFL

(v∗, y∗, v, u).

(b) If x ∈ A is a properly efficient solution to (PVC) and one of the regularity
conditions (RCV iCFL

), i ∈ {1, 2, 3, 4}, is fulfilled, then there exists (v∗, y∗, v, u) ∈ BMCFL

efficient solution to (DVMCFL
) such that f(x) = hMCFL

(v∗, y∗, v, u).

Analogously one can prove the following duality statements for (PVC) and (DVMW
CFL

).

Remark 2.1.27 (S.-M. Grad and E.-L. Pop [66]) The regularity condition in The-
orems 2.1.24 (b) and 2.1.25 (b) can be replaced by any condition which guarantees
the stability of the optimization problem infx∈A(v∗f)(x) with respect to its Fenchel-
Lagrange dual.

Remark 2.1.28 (S.-M. Grad and E.-L. Pop [66]) If V = R and K = R+, then
the duals (DVWCFL

), (DVMCFL
) and (DVMW

CFL
) are nothing else than the scalar Fenchel-

Lagrange dual problems of Wolfe and Mond-Weir type corresponding to (PVC) con-
sidered by R.I. Boţ and S.-M. Grad in [21], respectively.

Unconstrained vector optimization problems

Using the same framework as in Section 2.1, we consider the proper K−convex vector
functions f : X → V • and h : Y → V • and A : X → Y a linear continuous mapping
such that dom f ∩ A−1(domh) 6= ∅. The primal unconstrained vector optimization
problem

(PVA) Min
x∈X

[f(x) + h(Ax)]

is a special case of (PV G) where F = f+h◦A and we consider the vector perturbation
function ΦVA : X × Y → V • defined by

ΦVA(x, y) = f(x) + h(Ax+ y).

The vector duals to (PVA) are

(DVWA ) Max
(v∗,y∗,v,u,y)∈BW

A

hWA (v∗, y∗, v, u, y)
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where

BWA = {(v∗, y∗, v, u, y) ∈ K∗0 × Y ∗ × V ×X × Y : y∗ ∈ (A∗)−1(−∂(v∗f)(u))
∩∂(v∗h)∗(Au+ y) and 〈v∗, v〉 ≤ −(v∗f)∗(−A∗y∗) + (v∗h)∗(y∗)}

and
hWA (v∗, y∗, v, u, y) = v

and, respectively,

(DVMA ) Max
(v∗,v,u)∈BM

A

hMA (v∗, v, u)

where

BMA = {(v∗, v, u) ∈ K∗0 × V ×X : 0 ∈ (A∗)−1(−∂(v∗f)(u))− ∂(v∗h)(Au)
and 〈v∗, v〉 ≤ 〈v∗, f(u) + h(Au)〉}

and
hMA (v∗, v, u) = v.

For the primal vector problem (PVA) and Wolfe type and Mond-Weir type vec-
tor duals to (PVA), (DVWA ) and (DVMA ), respectively, the weak and strong duality
statements follow from the general case.

Theorem 2.1.29 (S.-M. Grad and E.-L. Pop [66]) (weak duality for (PVA) and
(DVWA ), (PVA) and (DVMA ))

(a) There are no x ∈ X and (v∗, y∗, v, u, y) ∈ BWA such that f(x) + h(Ax) ≤K
hWA (v∗, y∗, v, u, y).

(b) There are no x ∈ X and (v∗, v, u) ∈ BMA such that f(x)+h(Ax) ≤K hMA (v∗, v, u).

In formulation of strong duality are need it convexity assumptions which guarantee
the K−convexity of the vector perturbation function and the regularity conditions
obtained by particularizing the classical ones from R.I. Boţ, S.-M. Grad and G. Wanka
[25], namely (RCAi ), i ∈ {1, 2, 3, 4}, where for example (RCA1 ) is

(RCA1 ) ∃x′ ∈ dom f ∩A−1(domh) such that h is continuous at Ax′.

Theorem 2.1.30 (S.-M. Grad and E.-L. Pop [66]) (strong duality for (PVA) and
(DVWA ), respectively (PVA) and (DVMA ))

Assume that f and h are K−convex vector functions and one of the regularity
conditions (RCAi ), i ∈ {1, 2, 3, 4}, is fulfilled. If u is a proper efficient solution to
(PVA), then there exist v∗ ∈ K∗0, y∗ ∈ Y ∗ and v ∈ V such that (v∗, y∗, v, u, 0)
is an efficient solution to (DVWA ), (v∗, v, u) is an efficient solution to (DVMA ) and
f(u) + h(Au) = hWA (v∗, y∗, v, u, 0) = hMA (v∗, v, u).

Remark 2.1.31 (S.-M. Grad and E.-L. Pop [66]) In case V = R and K = R+,
taking the functions f : X → R and h : Y → R proper we rediscover the Wolfe and
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Mond-Weir duality schemes for unconstrained scalar optimization problems from R.I.
Boţ and S.-M. Grad [21].

Back to (PVC), seeing it as an unconstrained vector optimization problem, we
can attach to it two vector dual problems generated by (DVGW ) and (DVGM ) by
considering the Fenchel type vector perturbation function ΦVCF

: X × Y → V • given
by

ΦVCF
(x, y) =

{
f(x+ y), x ∈ A,
∞K , otherwise.

The first dual obtained is the Fenchel vector dual of Wolfe type

(DVWCF
) Max

(v∗,y∗,v,u,y)∈BW
CF

hWCF
(v∗, y∗, v, u, y)

where

BWCF
= {(v∗, y∗, v, u, y) ∈ K∗0 × Y ∗ × V ×X ×X : 〈v∗, v〉 ≤ 〈y∗, u〉−

(v∗f)∗(y∗), y∗ ∈ ∂(v∗f)(u+ y) ∩ (−NA(u))}

and
hWCF

(v∗, y∗, v, u, y) = v;

and the second dual obtained is the Fenchel vector dual of Mond-Weir type given by

(DVMCF
) Max

(v∗,v,u)∈BM
CF

hMCF
(v∗, v, u)

where

BMCF
= {(v∗, v, u) ∈ K∗0 × V ×X : 〈v∗, v〉 ≤ (v∗f)(u), 0 ∈ ∂(v∗f)(u) +NA(u)}

and
hMCF

(v∗, v, u) = v.

Remark 2.1.32 (S.-M. Grad and E.-L. Pop [66]) In the definition of Fenchel vector
dual of Mond-Weir type (DVMCF

), the condition g(u) ∈ −C does not appear explicitly.
Thus we will not consider another vector dual of “M-W” type vector dual problem to
(PVC) in this case.

From Lemma 2.1.2 one can derive the following statement.

Proposition 2.1.33 (S.-M. Grad and E.-L. Pop [66]) One has hMCF
(BMCF

) ⊆ hWCF
(BWCF

).

The regularity conditions (RCV i), i = 1, ..., 4 can be formulated in this case,
too, and from the general case one can quickly obtain the weak and strong duality
theorems.
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2.1.3 Comparisons between duals

In what follows we compare the image sets of some of the Wolfe type and Mond-
Weir type vector duals to (PVC) with respect to the Lagrange, Fenchel and Fenchel-
Lagrange type vector perturbation functions.

Theorem 2.1.37 (S.-M. Grad and E.-L. Pop [66]) One has hMCFL
(BMCFL

) ⊆ hMCL
(BMCL

)

and hMCFL
(BMCFL

) ⊆ hMCF
(BMCF

).

Concerning the “M-W” vector duals, one can easily prove the following statement.

Theorem 2.1.38 (S.-M. Grad and E.-L. Pop [66]) One has hMW
CFL

(BMW
CFL

) ⊆ hMW
CL

(BMW
CL

).

However, the question if similar inclusions are valid also for the Wolfe type vector
duals to (PVC) has, like in the scalar case (see R.I. Boţ and S.-M. Grad [21]), a
negative answer, as the following examples show.

Example 2.1.39 (S.-M. Grad and E.-L. Pop [66]) Let X = R, Y = R, V = R2,
C = R+, K = R2

+, S = R, f : R→ (R2)• and g : R→ R defined by

f(x) =

{
(1, 1)Tx, if x > 0,
∞R2

+
, otherwise,

and g(x) =

{
−x, if x ≤ 0,
0, otherwise.

Note that for all v∗ = (v∗1 , v
∗
2)T ∈ int(R2

+) and y∗ ≥ 0 one has

∂((v∗f) + (y∗g) + δS)(u) = ∂(v∗f)(u) =

{
{v∗1 + v∗2}, if u > 0,
∅, otherwise.

Consequently, BWCL
= ∅. On the other hand it can be shown that ((1/2, 1/2)T , 1, 1, (0, 0)T , 0, 1) ∈

BWCFL
, thus (0, 0)T ∈ hWCFL

(BWCFL
). Consequently, hWCFL

(BWCFL
) * hWCL

(BWCL
).

Example 2.1.40 (S.-M. Grad and E.-L. Pop [66]) Let X = R2, Y = R, V = R2,
C = R+, K = R2

+,

S =

{
(x1, x2)T ∈ R2 : 0 ≤ x1 ≤ 2,

3 ≤ x2 ≤ 4, if x1 = 0
1 ≤ x2 ≤ 4, if x1 ∈ (0, 2]

}
,

f : R2 → (R2)•, f(x1, x2) =

{
(1, 1)Tx2, if x1 ≤ 0,
∞R2

+
, otherwise,

and g : R2 → R, g(x1, x2) = 0.

We have that ((1/2, 1/2)T , y∗, (3, 3)T , (0, 3)) ∈ BWCL
and (3, 3)T ∈ hWCL

(BWCL
), but

(3, 3)T 6∈ hWCFL
(BWCFL

). Consequently, hWCL
(BWCL

) * hWCFL
(BWCFL

).

Remark 2.1.43 (S.-M. Grad and E.-L. Pop [66]) From the examples given above we
can construct situations which demonstrate that in general no inclusion holds between
the image sets of (DVWCL

) and (DVWCF
).
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2.2 Wolfe type and Mond-Weir type vector duality
with respect to weakly efficient solutions

2.2.1 General duality results

Here we introduce new Wolfe type and Mond-Weir type vector duals and establish du-
ality results between the general vector optimization problem with respect to weakly
efficient solutions and these new duals.

2.2.2 Duality results for particular classes of problems

We particularize the original vector optimization problem with respect to weakly
efficient solutions to be constrained and then unconstrained and we construct new
Wolfe type and Mond-Weir type vector duals and formulate duality results.



Chapter 3

Vector duality with respect to
quasi-minimality

3.1 Convex vector optimization problems with re-
spect to quasi-minimality

We define and characterize the quasi-minimal elements of a set with respect to a
convex cone. Then we attach to a general vector optimization problem a dual vector
optimization problem with respect to quasi-efficient solutions and establish new dual-
ity results. By considering particular cases of the primal vector optimization problem
we derive vector dual problems attached to it with respect to quasi-efficient solutions
and we obtain weak, strong and converse duality statements.

Some of the results were obtained by the author in joint work with dr. S.-M.
Grad [68].

Some preliminaries and notions related with the quasi interior of a cone follows
(see, for example [12,16–18,25]). Let X be a separated locally convex space.

Remark 3.1.2 Let K ⊆ X be a convex cone.

(a) If K is also pointed, then 0 6∈ qiK.

(b) One has qiK +K = qiK.

(c) The set qiK ∪ {0} is a cone, too.

(d) If K is also closed, then qiK∗ = {x∗ ∈ K∗ : 〈x∗, x〉 > 0 ∀x ∈ K \ {0}}, a set
usually denoted by K∗0 and known as the quasi interior of the dual cone of K.

Let K ⊆ X be convex cone. When qiK 6= ∅ we denote x <K y if y − x ∈ qiK,
extending the notation usually considered in the literature for the case intK 6= ∅.
Definition 3.1.3 Let the space X be partially ordered by the convex cone K, a
nonempty set U ⊆ X and f : X → R a given function. If f is K−increasing on U ,

19



20 Chapter 3. Vector duality with respect to quasi-minimality

qiK 6= ∅ and for all x, y ∈ U fulfilling x <K y follows f(x) < f(y) the function f is
called strictly K−increasing on U .

Remark 3.1.4 In Definition 3.1.3 we extend the notion of strictly K−increasing on
U functions given so far in the literature for the case intK 6= ∅ (or coreK 6= ∅).

Let us illustrate this definition with the following example (see [25]).

Example 3.1.5 Let x∗ ∈ X∗. If x∗ ∈ K∗, then for all x1, x2 ∈ X such that x1 5K x2
we have that 〈x∗, x2 − x1〉 ≥ 0. Therefore 〈x∗, x1〉 ≤ 〈x∗, x2〉 and this means that the
elements of K∗ are actually K−increasing functions on X.

If x∗ ∈ K∗0, then for all x1, x2 ∈ X such that x1 ≤K x2 it holds 〈x∗, x2−x1〉 > 0.
This means by definition that the elements of K∗0 are strongly K−increasing functions
on X.

If K ⊆ X is a convex closed cone, qiK 6= ∅, then via Remark 3.1.2 (d) qiK =
{x ∈ X : 〈x∗, x〉 > 0 ∀x∗ ∈ K∗ \ {0}} and thus every x∗ ∈ K∗ \ {0} is strictly
K−increasing on X.

3.1.1 Quasi-minimal elements

We introduce and characterize the quasi-minimal elements of a set.

Let V be a separated locally convex vector space partially ordered by the pointed
convex cone K ⊆ V with a nonempty quasi interior, and U ⊆ V a nonempty convex
set.

Definition 3.1.6 An element x ∈ U is said to be a quasi-minimal element of U
(regarding the partial ordering induced by K) if (x− qiK) ∩ U = ∅.
Remark 3.1.7 Quasi-minimal elements were also considered in works like [65, 71,
128], being usually called quasi-weakly minimal elements. We opted for the simpler
name presented in Definition 3.1.6, even if it is used in the literature also for other
types of minimal elements (see, for instance, [86]). However, if the conjecture pre-
sented below, namely that U + qiK = qi(U +K) always holds, turns out to be valid,
we believe that the quasi-minimal elements should be actually called weakly minimal.
Note also that in [5, 6, 71] one can find quasi-relative minimal elements.

We denote by QMin(U,K) the set of all quasi-minimal elements of the set U
(regarding the partial ordering induced by K).

Recall that an element x ∈ U is said to be a minimal element of U (regarding the
partial ordering induced by K) if there is no x ∈ U satisfying x ≤K x.

The relation (x − qiK) ∩ U = ∅ in Definition 3.1.6 can be equivalently rewritten
as (U − x) ∩ (− qiK) = ∅. Whenever the cone K is nontrivial we notice that if

we consider as ordering cone K̂ = qiK ∪ {0}, then x ∈ QMin(U,K) if and only if

(x− K̂) ∩ U = {x}.
If K 6= V , any minimal element of U is also quasi-minimal since (x−K)∩U = {x}

implies via Remark 3.1.2 (a) that (x−qiK)∩U = ∅. If K = V then QMin(U,K) = ∅.
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Note that in case coreK 6= ∅ (or intK 6= ∅) the following investigations rediscover
results from [25, Section 2.4.2, Section 2.4.4 and Section 4.3.4], thus they can be seen
as generalizations of the latter.

Lemma 3.1.8 (S.-M. Grad and E.-L. Pop [68]) It holds QMin(U,K) ⊆ QMin(U +
K,K).

Remark 3.1.9 (S.-M. Grad and E.-L. Pop [68]) In Definition 3.1.6 and Lemma 3.1.8
is not necessary to assume that U is convex.

Proposition 3.1.10 (S.-M. Grad and E.-L. Pop [68]) One has that qi(U + qiK) =
U + qiK ⊆ qi(U +K).

In what follows we suppose that it holds U + qiK = qi(U +K) and we maintain
this additional hypothesis for their counterparts in the rest of the section.

Next we formulate some necessary and sufficient characterizations via linear scalar-
izations of the quasi-minimal elements of the set U with respect to K.

Theorem 3.1.11 (S.-M. Grad and E.-L. Pop [68]) If x ∈ QMin(U,K) then there
exists x∗ ∈ K∗ \ {0} such that 〈x∗, x〉 ≤ 〈x∗, x〉, for all x ∈ U .

Lemma 3.1.12 (S.-M. Grad and E.-L. Pop [68]) Let a function f : V → R which is
strictly K−increasing on U . If there is an element x ∈ U fulfilling f(x) ≤ f(x) for
all x ∈ U , then x ∈ QMin(U,K).

Further let K be also closed. The following theorem is a straightforward conclusion
of Lemma 3.1.12 and Example 3.1.5.

Theorem 3.1.13 (S.-M. Grad and E.-L. Pop [68]) If there exist x∗ ∈ K∗ \ {0} and
x ∈ U such that for all x ∈ U it holds 〈x∗, x〉 ≤ 〈x∗, x〉, then x ∈ QMin(U,K).

From Theorem 3.1.11 and Theorem 3.1.13 we obtain an equivalent characterization
via linear scalarization for the quasi-minimal elements of U with respect to K.

Corollary 3.1.14 (S.-M. Grad and E.-L. Pop [68]) Let x ∈ U . Then x ∈ QMin(U,K)
if and only if there exists x∗ ∈ K∗ \ {0} satisfying 〈x∗, x〉 ≤ 〈x∗, x〉 for all x ∈ U .

3.1.2 General duality results

Here we introduce a vector dual problem with respect to quasi-efficient solutions to a
general vector optimization problem and establishing the corresponding weak, strong
and converse duality results.

We consider the vector optimization problem

(PV Gq) QMin
x∈X

F (x),

where F : X → V • is a proper and K-convex function with domF = {x ∈ X :
F (x) 6= ∅} and we detect the quasi-minimal elements of F (domF ) with respect to
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K. We also assume that F (domF )+qiK = qi(F (domF )+K) and that K is a closed
convex cone.

Definition 3.1.15 An element x ∈ X is called quasi-efficient solution to the vector
optimization problem (PV Gq) if x ∈ domF and F (x) ∈ QMin(F (domF ),K).

We mention that the problems where the quasi-efficient solutions of the vector
optimization problems can play an important role because the ordering cones of the
image spaces have empty interiors, but nonempty quasi interiors, can be found for
instance in finance mathematics (see [1, 63]).

Using the vector perturbation function Φ : X × Y → V • which fulfills 0 ∈
PrY (dom Φ) and Φ(x, 0) = F (x) for all x ∈ X, the primal vector optimization prob-
lem introduced above can be reformulated as

(PV Gq) QMin
x∈X

Φ(x, 0).

To (PV Gq) we attach the following vector dual problem with respect to quasi-
efficient solutions

(DVGq) QMax
(v∗,y∗,v)∈BG

q

hGq (v∗, y∗, v)

where

BGq = {(v∗, y∗, v) ∈ (K∗ \ {0})× Y ∗ × V : 〈v∗, v〉 ≤ −(v∗Φ)∗(0,−y∗)}

and
hGq (v∗, y∗, v) = v.

Definition 3.1.16 An element (v∗, y∗, v) ∈ BGq is called quasi-efficient solution to the

vector dual optimization problem (DVGq) if (v∗, y∗, v) ∈ domhGq and hGq (v∗, y∗, v) =

v ∈ QMax(hGq (dom hGq ),K).

Next we formulate the weak and strong duality theorems.

Theorem 3.1.17 (S.-M. Grad and E.-L. Pop [68]) There are no x ∈ X and (v∗, y∗, v)
∈ BGq such that F (x) <K hGq (v∗, y∗, v).

Remark 3.1.18 (S.-M. Grad and E.-L. Pop [68]) F needs not be K-convex and K
closed in order to formulate the vector dual problem and for proving the weak duality
statement.

For the strong duality we consider the following regularity conditions (cf. [25]).
First, a classical condition

(RCV 1) ∃x′ ∈ X such that (x′, 0) ∈ dom Φ and Φ(x′, ·) is continuous at 0;

then the most general one that works when X and Y are Fréchet spaces
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(RCV 2) X and Y are Fréchet spaces, Φ is K−lower semicontinuous and
0 ∈ sqri(PrY (dom Φ));

followed by the one good in finite dimensional cases

(RCV 3) dim(lin(PrY (dom Φ))) < +∞ and 0 ∈ ri(PrY (dom Φ));

and the closedness type regularity condition

(RCV 4) Φ is K−lower semicontinuous and PrX∗×R(epi(v∗Φ)∗) is closed in
the topology w(X∗, X)× R for all v∗ ∈ K∗ \ {0}.

Theorem 3.1.19 (S.-M. Grad and E.-L. Pop [68]) Assume that one of the regularity
conditions (RCV i), i ∈ {1, . . . , 4}, is fulfilled. If x ∈ X is a quasi-efficient solution to
(PV Gq), then there exists (v∗, y∗, v) a quasi-efficient solution to (DVGq) such that
F (x) = hGq (v∗, y∗, v) = v.

Remark 3.1.20 (S.-M. Grad and E.-L. Pop [68]) Instead of the mentioned regularity
conditions, for achieving strong duality it is enough to assume that for all v∗ ∈ K∗\{0}
the scalar optimization problem infx∈X(v∗Φ)(x, 0) is stable.

Next, we give a preliminary result for the converse duality statement, followed by
the mentioned assertion itself.

Theorem 3.1.21 (S.-M. Grad and E.-L. Pop [68]) Assume that one of the regular-
ity conditions (RCV i), i ∈ {1, . . . , 4}, is fulfilled. Then V \ cl(F (domF ) + K) ⊆
core(hGq (BGq )).

Theorem 3.1.22 (S.-M. Grad and E.-L. Pop [68]) Assume that one of the regularity
conditions (RCV i), i ∈ {1, . . . , 4}, is fulfilled and that the set F (domF ) + K is
closed. Then for every quasi-efficient solution (v∗, y∗, v) to (DVGq) one has that v
is a quasi-minimal element of the set F (domF ) +K.

Remark 3.1.23 (S.-M. Grad and E.-L. Pop [68]) In Theorem 3.1.21 and Theorem
3.1.22, the regularity conditions (RCV i), i ∈ {1, . . . , 4}, can be replaced with the
weaker assumption that for all v∗ ∈ K∗ \ {0} the problem infx∈X〈v∗, F (x)〉 is normal
(see [25, Theorem 4.3.3]).

3.1.3 Duality results for particular classes of problems

In what follows we consider constrained and unconstrained vector optimization prob-
lems as special cases of the general vector optimization problem and derive for them
vector dual problems with respect to quasi-efficient solutions, followed by weak, strong
and converse duality statements.

Constrained vector optimization problems

Let us consider the same framework as in the previous section. Let also Y be partially
ordered by the nonempty convex cone C ⊆ Y . Moreover, we consider the nonempty
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convex set S ⊆ X, the proper K-convex function f : X → V • and the proper
C−convex function g : X → Y • fulfilling dom f ∩S ∩ g−1(C) 6= ∅. Assume again that
f(dom f∩A)+qiK = qi(f(dom f∩A)+K) and K is a closed convex cone. The primal
vector optimization problem with geometric and cone constraints that we work with is

(PV Cq ) QMin
x∈A

f(x),

where

A =
{
x ∈ S : g(x) ∈ −C

}
,

which is a special case of (PV Gq). We construct different vector dual problems
to (PV Cq ) with respect to quasi-efficient solutions, by considering different vector
perturbation functions. Then we formulate weak, strong and converse duality.

First we consider the Lagrange vector type perturbation function ΦVCL
given in

Chapter 2 and from (DVGq) we obtain the Lagrange type vector dual problem to
(PV Cq ) with respect to quasi-efficient solutions

(DV CL
q ) QMax

(v∗,y∗,v)∈BCL
q

hCL
q (v∗, y∗, v),

where

BCL
q =

{
(v∗, y∗, v) ∈ (K∗ \ {0})× C∗ × V : 〈v∗, v〉 ≤ inf

u∈S
{(v∗f)(u) + (y∗g)(u)}

}
and

hCL
q (v∗, y∗, v) = v.

For the strong duality we need some regularity conditions obtained by particu-
larizing (RCV i), i ∈ {1, 2, 3, 4}. These becomes (RCV iCL

), i ∈ {1, 2, 3, 4}, and for
example (RCV 1

CL
) is

(RCV 1
CL

) ∃x′ ∈ dom f ∩ S such that g(x′) ∈ − intC.

Then the weak, strong and converse duality results follow.

Theorem 3.1.24 (S.-M. Grad and E.-L. Pop [68])

(a) There are no x ∈ X and (v∗, y∗, v) ∈ BCL
q such that f(x) <K hCL

q (v∗, y∗, v).

(b) Assume that one of the regularity conditions (RCV iCL
), i ∈ {1, 2, 3, 4}, is ful-

filled. If x ∈ X is a quasi-efficient solution to (PV Cq ), then there exists (v∗, y∗, v) a

quasi-efficient solution to (DV CL
q ) such that f(x) = hCL

q (v∗, y∗, v) = v.

(c) Assume that one of the regularity conditions (RCV iCL
), i ∈ {1, 2, 3, 4}, is ful-

filled, and the set f(dom f ∩ A) + K is closed. Then for every quasi-efficient so-
lution (v∗, y∗, v) to (DVGCL

q ) one has that v is a quasi-minimal element of the set
f(dom f ∩ A) +K.
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Another vector perturbation function we consider is the Fenchel-Lagrange type
vector perturbation function ΦVFL given also in Chapter 2 and from (DVGq) we ob-
tain the Fenchel-Lagrange type vector dual problem to (PV Cq ) with respect to quasi-
efficient solutions

(DV CFL
q ) QMax

(v∗,t∗,y∗,v)∈BCFL
q

hCFL
q (v∗, t∗, y∗, v),

where

BCFL
q = {(v∗, t∗, y∗, v) ∈ (K∗ \ {0})×X∗ × C∗ × V : 〈v∗, v〉 ≤ −(v∗f)∗(t∗)−

(y∗g)∗S(−t∗)}

and
hCFL
q (v∗, t∗, y∗, v) = v.

Particularizing (RCV i), i ∈ {1, 2, 3, 4} in this case, one get (RCV iCFL
), i ∈

{1, 2, 3, 4}, where for example (RCV 1
CFL

) is

(RCV 1
CFL

) ∃x′ ∈ dom f ∩ S such that f is continuous at x′ and g(x′) ∈ − intC.

Then the weak, strong and converse duality results follow from the general case.

Theorem 3.1.25 (S.-M. Grad and E.-L. Pop [68])

(a) There are no x ∈ X and (v∗, t∗, y∗, v) ∈ BCFL
q such that f(x) <K hCFL

q (v∗, t∗,
y∗, v).

(b) Assume that one of the regularity conditions (RCV iCFL
), i ∈ {1, . . . , 4}, is

fulfilled. If x ∈ X is a quasi-efficient solution to (PV Cq ), then there exists (v∗, t
∗
, y∗, v)

a quasi-efficient solution to (DV CFL
q ) such that f(x) = hCFL

q (v∗, t
∗
, y∗, v) = v.

(c) Assume that one of the regularity conditions (RCV iCFL
), i ∈ {1, . . . , 4}, is

fulfilled and the set f(dom f∩A)+K is closed. Then for every quasi-efficient solution
(v∗, t

∗
, y∗, v) to (DVGCFL

q ) one has that v is a quasi-minimal element of the set
f(dom f ∩ A) +K.

Unconstrained vector optimization problems

In the same framework, we consider the proper K-convex vector functions f : X →
V • and h : Y → V • and A : X → Y a linear continuous mapping such that
dom f∩A−1(domh) 6= ∅. Assume again that dom f∩A−1(domh)+qiK = qi(dom f∩
A−1(domh) + K) and K is a closed convex cone. The primal unconstrained vector
optimization problem

(PV Aq ) QMin
x∈X

[f(x) + h(Ax)]
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is a special case of (PV Gq) where F = f + h ◦A.

We consider the vector perturbation function ΦAq : X × Y → V • defined by

ΦAq (x, y) = f(x) + h(Ax+ y). Using this perturbation function we obtain the vector

dual to (PV Aq ) given by

(DV Aq ) QMax
(v∗,y∗,v)∈BA

q

hAq (v∗, y∗, v)

where

BAq = {(v∗, y∗, v) ∈ (K∗ \ {0})× Y ∗ × V : 〈v∗, v〉 ≤ −(v∗f)∗(−A∗y∗) + (v∗h)∗(y∗)}

and
hAq (v∗, y∗, v) = v.

For the primal vector optimization problem (PV Aq ) and the vector dual (DV Aq ) we
have the weak, strong and converse duality statements, that follow from the general
case. To guarantee strong duality we use the regularity conditions obtained from
(RCV i), i ∈ {1, 2, 3, 4}. For instance (RCV 1

A) is

(RCV 1
A) ∃x′ ∈ dom f ∩A−1(domh) such that h is continuous at Ax′.

Theorem 3.1.26 (S.-M. Grad and E.-L. Pop [68])

(a) There are no x ∈ X and (v∗, y∗, v) ∈ BAq such that f(x) + h(Ax) <K
hAq (v∗, y∗, v).

(b) Assume that one of the regularity conditions (RCV iA), i ∈ {1, . . . , 4}, is fulfilled.
If x ∈ X is a quasi-efficient solution to (PV Aq ), then there exists (v∗, y∗, v) a quasi-

efficient solution to (DV Aq ) such that f(x) + h(Ax) = hAq (v∗, y∗, v) = v.

(c) Assume that one of the regularity conditions (RCV iA), i ∈ {1, . . . , 4}, is fulfilled
and the set dom f ∩A−1(domh)+K is closed. Then for every quasi-efficient solution
(v∗, y∗, v) to (DVGAq ) one has that v is a quasi-minimal element of the set dom f ∩
A−1(domh) +K.

Back to (PV Cq ), seeing it as an unconstrained vector optimization problem, we can
attach to it a vector dual problem generated by (DVGq) by considering the Fenchel
type vector perturbation function ΦVCF

given in Chapter 2. We assume again that
f(dom f ∩ A) + qiK = qi(f(dom f ∩ A) +K) and K is a closed convex cone.

Thus from (DVGq) we obtain the Fenchel type vector dual problem to (PV Cq ) with
respect to quasi-efficient solutions

(DV CF
q ) QMax

(v∗,t∗,v)∈BCF
q

hCF
q (v∗, t∗, v),

where

BCF
q = {(v∗, t∗, v) ∈ (K∗ \ {0})×X∗ × V : 〈v∗, v〉 ≤ −(v∗f)∗(t∗)− σA(−t∗)}
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and

hCF
q (v∗, t∗, v) = v.

Like in Theorem 3.1.26 one can quickly obtain the weak, strong and converse
duality statements for (PV Cq ) and (DV CF

q ), too.

3.1.4 Comparisons between duals

In this section we compare the image sets of some of the vector duals attached to
(PV Cq ) via the Lagrange, Fenchel and Fenchel-Lagrange type vector perturbation
functions, respectively.

Proposition 3.1.28 (S.-M. Grad and E.-L. Pop [68]) One has that hCFL
q (BCFL

q ) ⊆
hCL
q (BCL

q ).

Remark 3.1.29 (S.-M. Grad and E.-L. Pop [68]) A situation when the inclusion in
Proposition 3.1.28 is not fulfilled as equality can be found in [28, Example 2.2].

Proposition 3.1.30 (S.-M. Grad and E.-L. Pop [68]) One has that hCFL
q (BCFL

q ) ⊆
hCF
q (BCF

q ).

Remark 3.1.31 (S.-M. Grad and E.-L. Pop [68]) A situation when the inclusion in
Proposition 3.1.30 is not fulfilled as equality can be found in [28, Example 2.1].

Under certain hypotheses, the image sets of the vector duals attached to (PV Cq )
in the previous section coincide.

Theorem 3.1.32 (S.-M. Grad and E.-L. Pop [68]) If one of the following conditions

(a) there exists x′ ∈ dom f ∩ S ∩ dom g such that f is continuous at x′;

(b) for X and Z Fréchet spaces, S closed and g C−epi closed one has 0 ∈
sqri((dom g ∩ S)− dom f);

(c) if lin((dom g ∩ S)− dom f) < +∞ one has 0 ∈ ri((dom g ∩ S)− dom f);

is fulfilled, then hCFL
q (BCFL

q ) = hCL
q (BCL

q ).

Theorem 3.1.33 (S.-M. Grad and E.-L. Pop [68]) If one of the following conditions

(a) there exists x′ ∈ dom f ∩ S ∩ dom g such that g(x′) ∈ − intC;

(b) for X and Z Fréchet spaces, S closed and g C−epi closed one has 0 ∈
sqri(g(dom g ∩ S) + C);

(c) if lin(g(dom g ∩ S) + C) < +∞ one has 0 ∈ ri(g(dom g ∩ S) + C);

is fulfilled, then hCFL
q (BCFL

q ) = hCF
q (BCF

q ).

To guarantee the coincidence of the image sets of the vector duals with respect to
quasi-efficient solutions we attached to (PV Cq ) one can combine the last two theorems,
or, taking advantage of Proposition 3.1.28, Proposition 3.1.30 and Theorem 3.1.25,
can formulate the following conclusion.

Corollary 3.1.34 (S.-M. Grad and E.-L. Pop [68]) If one of the regularity conditions
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(RCV iCFL
), i ∈ {1, . . . , 4}, is fulfilled, then

hCFL
q (BCFL

q ) = hCF
q (BCF

q ) = hCL
q (BCL

q ).

If additionally, f(dom(f ∩ A)) +K is closed, then one has

QMin(f(dom f ∩ A),K) ⊆ QMax(hCFL
q (BCFL

q ),K) = QMax(hCL
q (BCL

q ),K)

= QMax(hCF
q (BCF

q ),K) ⊆ QMin(f(dom f ∩ A) +K,K).

3.2 Some remarks for vector optimization problems
with respect to relative interior

Unfortunately, an analogous theory like in the previous section cannot be developed
with respect to the quasi-relative interior of the cone K. Even in Rn, where qriK =
riK, we have only some of the similar results, but nothing to assure the existence of
the duality results.



Chapter 4

Optimality conditions for
general vector optimization
problems

4.1 Optimality conditions for a constrained vector
optimization problem via different scalarizations

In literature are presented different scalarization methods that use linear functions,
norms and other constructions (see, for example [28,35,55,58,72,78,83,87,88,95,115,
118, 121–123, 130, 132, 134]). To a vector optimization problem are attached vector
duals by using different scalarizations (cf. [22,25,70,83]). We work with strongly K−
or strictly K−increasing functions. The functions considered are called scalaration
functions and correspondingly one has the set of the scalarization functions.

In this chapter we formulate the optimality conditions for the primal vector op-
timization problem with geometric and cone constraints to which properly efficient
solutions are defined and for the vector dual problems constructed by using the linear
scalarization, maximum(−linear) scalarization, set scalarization, (semi)norm scalar-
ization and oriented distance scalarization to which are attached efficient or weakly
efficient solutions (cf. [40,94]) to which are attach efficient solutions or weakly efficient
solutions.

Most of the results presented here were obtained by the author in joint work with
dr. S.-M. Grad [67].

Let X,Y and V be Hausdorff locally convex vector spaces and assume that Y
is partially ordered by the convex cone C ⊆ Y , while V is partially ordered by the
nontrivial pointed convex cone K ⊆ V . Further, let S ⊆ X be a nonempty convex

29
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set, f : X → V • = V ∪ {+∞K} a proper and K−convex function and g : X → Y • =
Y ∪{+∞C} a proper and C−convex function such that dom f ∩S ∩ g−1(C) 6= ∅. The
primal vector optimization problem with geometric and cone constraints is

(PVC) Min
x∈A

f(x),

where

A =
{
x ∈ S : g(x) ∈ −C

}
.

Definition 4.1.1 Let X be a vector space partially ordered by a convex cone K and
U ⊆ X a nonempty set with respect to the partial ordering “5K” induced by K. An
element x ∈ U is called

(a) minimal element of U (regarding the partial ordering induced by K) if there is
no x ∈ U satisfying x ≤K x.

(b) weakly minimal element of U (regarding the partial ordering induced by K) if
(x− intK) ∩ U = ∅.

Remark 4.1.2 In Definition 4.1.1 (b) the weakly minimal elements can be considered
also with respect to the algebraic interior (core) or quasi-interior (qi) instead of the
interior (int), by making only the corresponding replacement. The hypotheses of each
subsection will establish the type of weakly minimal element used (for example when
intK 6= ∅ we work with exactly with Definition 4.1.1 (b)).

4.1.1 General scalarization

The general scalarization is using cone-monotone functions (cf. [22,25]). Let S be an
arbitrary set of proper and convex functions s : V ∪{+∞K} → R fulfilling s(+∞K) =
+∞, f(dom f ∩A) +K ⊆ dom s and moreover s is strongly K−increasing on the set
f(dom f ∩ A) +K. The elements of the set S are called scalarization functions.

Definition 4.1.3 An element x ∈ A is called S−properly efficient solution to (PVC)
if x ∈ dom f and there exists an s ∈ S such that s(f(x)) ≤ s(f(x)) for all x ∈ A.

In [25, Section 4.4] were given results for the primal vector optimization prob-
lem with geometric and constraints (PVC) and the dual vector optimization problem
attach to it. More exactly we refer to weak and strong duality and the optimality
conditions. For strong duality, it is used the regularity condition

(RCVCFL
) ∃x′ ∈ dom f ∩ S such that f is continuous at x′ and g(x′) ∈ − int(C).

Let qiK 6= ∅, T be an arbitrary set of proper and convex functions s : V • → R
fulfilling s(+∞K) = +∞, f(dom f ∩ A) +K ⊆ dom s and s is strictly K−increasing
on the set f(dom f ∩ A) +K.
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Definition 4.1.7 An element x ∈ A is called T −properly efficient solution to (PVC)
if x ∈ dom f and there exists an s ∈ T such that s(f(x)) ≤ s(f(x)) for all x ∈ A.

A vector dual problem to (PVC) with respect to the set of the scalarization func-
tions T was introduced by replacing S with T in the definition of the dual vector
optimization problem given with respect to the set of the scalarization function S
and were obtained the duality results and the optimality conditions.

From the general scalarization some particular cases follows: linear, maximum(-
linear), set, (semi)norm, quadratic, oriented distance scalarizations (see, for example,
[19, 22,25,78,80,83,92,93]).

4.1.2 Linear scalarization

We consider the following set of scalarization functions

Sl = {sv∗ : V • → R : v∗ ∈ K∗0, sv∗(v) = 〈v∗, v〉 ∀v ∈ V •}.

For sv∗ ∈ Sl it holds sv∗(+∞K) = +∞, because 〈v∗,∞K〉 = +∞ ∀v∗ ∈ K∗. Ob-
viously, for all v∗ ∈ K∗0, f(dom f ∩ A) + K ⊆ V = dom sv∗ and sv∗ is strongly
K−increasing, linear and continuous. Next, we notice that for all k∗ ∈ K∗ one has
sv∗(k

∗) = δ{v∗}(k
∗).

An element x ∈ A is called Sl−properly efficient solution to (PVC) if x ∈ dom f
and there exists an sv∗ ∈ Sl such that sv∗(f(x)) ≤ sv∗(f(x)) for all x ∈ A.

The dual vector optimization problem to (PVC) we investigate is

(DV CSl ) Max
(v∗,y∗,z∗,v)∈BCSl

hCSl (v∗, y∗, z∗, v)

where

BCSl = {(v∗, y∗, z∗, v) ∈ K∗0 ×X∗ × C∗ × V : 〈v∗, v〉 ≤ −(v∗f)∗(y∗)−
(z∗g)∗S(−y∗)}

and
hCSl (v∗, y∗, z∗, v) = v.

This vector dual problem is the Fenchel-Lagrange type dual problem (DV CFL) in [25,
Section 4.3]. The weak and strong duality statements follows from the general case.

Proposition 4.1.11 (Weak and strong duality for (PVC) and (DV CSl ))

(a) There are no x ∈ A and (v∗, y∗, z∗, v) ∈ BCSl such that f(x) ≤K hCSl (v∗, y∗, z∗, v).

(b) Assume that the regularity condition (RCVCFL
) is fulfilled. If x ∈ A is an

Sl−properly efficient solution to (PVC), then there exists (v∗, y∗, z∗, v) ∈ BCSl an
efficient solution to (DV CSl ), such that f(x) = hCSl (v∗, y∗, z∗, v) = v.

Theorem 4.1.12 (S.-M. Grad and E.-L. Pop [67]) (Optimality conditions for (PVC)
and (DV CSl ))
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(a) Let x ∈ A be an Sl−properly efficient solution to (PVC) and the regularity
condition (RCVCFL

) be fulfilled. Then there exists (v∗, y∗, z∗, v) ∈ BCSl an efficient
solution to (DV CSl ) such that

(i) f(x) = v;

(ii) v∗ = k
∗
;

(iii) (v∗f)∗(y∗) + (v∗f)(x) = 〈y∗, x〉;

(iv) (z∗g)∗S(−y∗) = −〈y∗, x〉;

(v) (z∗g)(x) = 0.

(b) Assume that x ∈ A and (v∗, y∗, z∗, v) ∈ BCSl fulfill the relations (i) − (v).
Then x is an Sl−properly efficient solution to (PVC) and (v∗, y∗, z∗, v) is an efficient
solution to the dual problem (DV CSl ).

If qiK 6= ∅ let us now consider as set of scalarization functions

Tl = {sv∗ : V • → R : v∗ ∈ K∗ \ {0}, sv∗(v) = 〈v∗, v〉 ∀v ∈ V •}

and it yields that every scalarization function sv∗ ∈ T is strictly K−increasing, linear
and continuous, while the domain is f(dom f ∩A) +K. Moreover we assume further
that V + qiK = qi(V +K) with V = f(dom f ∩ A).

An element x ∈ A is called Tl−properly efficient solution to (PVC) if x ∈ dom f
and there exists sv∗ ∈ Tl such that sv∗(f(x)) ≤ sv∗(f(x)) for all x ∈ A.

The dual introduced with respect to the set of scalarization functions Tl is

(DV CTl ) WMax
(v∗,y∗,z∗,v)∈BCTl

hCTl (v∗, y∗, z∗, v)

where

BCTl = {(v∗, y∗, z∗, v) ∈ (K∗ \ {0})×X∗ × C∗ × V : 〈v∗, v〉 ≤ −(v∗f)∗(y∗)−
(z∗g)∗S(−y∗)}

and
hCTl (v∗, y∗, z∗, v) = v.

For this vector dual problem the weak and strong duality and the optimality conditions
follows similarly like in the case of vector dual problem with respect to the set of
scalarization functions Sl.
Proposition 4.1.14 (Weak and strong duality for (PVC) and (DV CTl ))

(a) There are no x ∈ A and (v∗, y∗, z∗, v) ∈ BCTl such that f(x) ≤K hCTl (v∗, y∗, z∗, v).

(b) Assume that the regularity condition (RCVCFL
) is fulfilled. If x ∈ A is a

Tl−properly efficient solution to (PVC), then there exists (v∗, y∗, z∗, v) ∈ BCTl a
weakly efficient solution to (DV CTl ), such that f(x) = hCSl (v∗, y∗, z∗, v) = v.
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Theorem 4.1.15 (S.-M. Grad and E.-L. Pop [67]) (Optimality conditions for (PVC)
and (DV CTl ))

(a) Let x ∈ A be a Tl−properly efficient solution to (PVC) and the regularity
condition (RCVCFL

) be fulfilled. Then there exists (v∗, y∗, z∗, v) ∈ BCSl a weakly
efficient solution to (DV CTl ) such that the conditions (i)− (v) from Theorem 4.1.11
are fulfilled.

(b) Assume that x ∈ A and (v∗, y∗, z∗, v) ∈ BCTl fulfill the relations (i)−(v). Then
x is a Tl−properly efficient solution to (PVC) and (v∗, y∗, z∗, v) is a weakly efficient
solution to the dual problem (DV CTl ).

Remark 4.1.16 Note that (i) − (iii) in Theorem 4.1.15 do not coincide with their
counterparts in Theorem 4.1.12, as here v∗ ∈ K∗ \ {0}, while there v∗ ∈ K∗0.

4.1.3 Maximum(-linear) scalarization

One of the scalarizations met especially in the applications of vector optimization
for V finite dimensional is the so-called Tchebyshev (maximum) scalarization. We
work here with a general scalarization function defined by combining a weighted
maximum scalarization function (cf. [80, 126]) with a linear function. Maximum(-
linear) scalarization was investigated by K. Mitani and H. Nakayama in [95] (see,
also [19,22,25]).

Let V = Rk, V • = Rk ∪ {+∞Rk
+
} = (Rk)•, K = Rk+ and fi : Rn → R, i = 1, ..., k,

be proper and convex functions such that
⋂k
i=i dom fi ∩ S ∩ g−1(−C) 6= ∅. We define

f : X → (Rk)• as being

f(x) =

 (f1(x), ..., fk(x))T , if x ∈
k⋂
i=1

dom fi,

+∞Rk
+
, otherwise.

Let η ≥ 0, w = (w1, ..., wk)T ∈ int(Rk+) and a = (a1, ..., ak)T ∈ Rk. We consider the
scalarization function

sw,a(y) = max
j=1,...,k

{wj(yj − aj)}+ η

k∑
j=1

wjyj , y = (y1, ..., yk)T ∈ Rk,

with sw,a(+∞Rk
+

) = +∞. For all w ∈ int(Rk+) and a ∈ Rk, the function just intro-

duced is convex and strictly Rk+−increasing and fulfills f(∩ki=1 dom fi∩A)+Rk+ ⊆ Rk.
Then we introduce the set of scalarization functions

Tml = {sw,a : (Rk)• → R : (w, a) ∈ int(Rk+)× Rk}.

An element x ∈ A is called Tml−properly efficient solution to (PVC) if there exist

w ∈ int(Rk+) and a ∈ Rk such that maxj=1,...,k{wj(fj(x) − aj)} + η
∑k
j=1 wjfj(x) ≤

maxj=1,...,k{wj(fj(x)− aj)}+ η
∑k
j=1 wjfj(x) for all x ∈ A.
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For w = (w1, ..., wk)T ∈ int(Rk+), a = (a1, ..., ak)T ∈ Rk fixed and k∗ = (k∗1 , ..., k
∗
k)T

∈ Rk, the conjugate function of sw,a ∈ Tml is

s∗w,a(k∗) =

 (k∗ − ηw)Ta, if ηw 5 k∗ and
k∑
j=1

k∗j
wj

= kη + 1,

+∞, otherwise.

The corresponding vector dual problem to (PVC) with respect to the set of scalar-
ization functions Tml is

(DV CTml ) WMax
(w,a,y∗,k∗,z∗,v)∈BCTml

hCTml (w, a, y∗, k∗, z∗, v)

where

BCTml =

{
(w, a, y∗, k∗, z∗, v) ∈ int(Rk+)× Rk ×X∗ × Rk+ × C∗ × Rk :

ηw 5 k∗,
k∑
j=1

k∗j
wj

= kη + 1, max
j=1,...,k

{wj(vj − aj)}+ η
k∑
j=1

wjvj

≤ −(k∗ − ηw)Ta−

(
k∑
j=1

k∗j fj

)∗
(y∗)− (z∗g)∗S(−y∗)

}
and

hCTml (w, a, y∗, k∗, z∗, v) = v.

The weak and strong duality statements follow from the general case.

Proposition 4.1.17 ( [25, Theorem 4.4.8, Theorem 4.4.9]) (Weak and strong duality
for (PVC) and (DV CTml ))

(a) There are no x ∈ A and (w, a, y∗, k∗, z∗, v) ∈ BCTml such that fi(x) <

h
CTml
i (w, a, y∗, k∗, z∗, v).

(b) Assume that the regularity condition (RCVCFL
) is fulfilled. If x ∈ A is a

Tml−properly efficient solution to (PVC), then there exists (w, a, y∗, k
∗
, z∗, v) a weakly

efficient solution to (DV CTml ), such that fi(x) = h
CTml
i (w∗, a, y∗, k

∗
, z∗, v) = vi,

i = 1, ..., k.

Theorem 4.1.18 (S.-M. Grad and E.-L. Pop [67]) (Optimality conditions for (PVC)
and (DV CTml ))

(a) Let x ∈ A be a Tml−properly efficient solution to (PVC) and the regularity con-

dition (RCVCFL
) be fulfilled. Then there exists (w, a, y∗, k

∗
, z∗, v) ∈ BCTml a weakly

efficient solution to (DV CTml ) with w = (w1, ..., wk)T and k
∗

= (k
∗
1, ..., k

∗
k)T such that

(i) f(x) = v;

(ii) max
j=1,...,k

{wj(fj(x) − aj)} + η
k∑
j=1

wjfj(x) + (k
∗ − ηw)Ta + δ−Rk

+
(ηw − k

∗
) =(

k
∗T
f
)

(x);



Optimality conditions via different scalarizations 35

(ii′)
k∑
j=1

k
∗
j

wj
= kη + 1;

(iii)
(
k
∗T
f
)∗

(y∗) +
(
k
∗T
f
)

(x) = 〈y∗, x〉;

(iv) (z∗g)∗S(−y∗) = −〈y∗, x〉;

(v) (z∗g)(x) = 0.

(b) Assume that x ∈ A and (w, a∗, y∗, k
∗
, z∗, v) ∈ BCTml fulfill the relations (i) −

(v). Then x is a Tml−properly efficient solution to (PVC) and (w∗, a∗, y∗, k
∗
, z∗, v) is

a weakly efficient solution to the dual problem (DV CTml ).

In case η = 0, wj = 1 and aj = 0 for all j = 1, ..., k, the set of the scalarization
functions Tm is given by

Tm =

{
s : (Rk)• → R : s(y) = max

j=1,...,k
yj ∀y ∈ Rk, s(∞Rk

+
) = +∞

}
.

An element x ∈ A is called Tm−properly efficient solution to (PVC) if maxj=1,...,k

{fj(x)} ≤ maxj=1,...,k{fj(x)} for all x ∈ A.

Correspondingly, we obtained the vector dual problem to (PVC) with respect to
the set of scalarization functions Tm and the weak and strong duality theorems on
one hand and the optimality conditions on the other hand.

4.1.4 Set scalarization

Here we include those scalarization approaches for which the scalarization functions
are defined by means of some given sets. We consider a quite general scalarization
function in connection to the one due to C. Gerth and P. Weidner (cf. [62]). This
scalarization function was investigated also in [22,25,122,123,134].

Let coreK 6= ∅ and consider the nonempty convex set E ⊆ V which satisfies
cl(E) + int(K) ⊆ core(E). For all µ ∈ core(K) define sµ : V • → R by

sµ(v) = inf{t ∈ R : v ∈ tµ− cl(E)}

the scalarization function. Then sµ(+∞K) = +∞. For µ ∈ core(K) the function sµ
is convex, strictly K−increasing and takes only real values on V and thus f(dom f ∩
A) +K ⊆ V = dom sµ. If coreK 6= ∅ we consider the set of scalarization functions

Ts = {sµ : V • → R, µ ∈ core(K)}.

An element x ∈ A is called Ts−properly efficient solution to (PVC) if there exists
µ ∈ coreK such that sµ(f(x) ≤ sµ(f(x)) for all x ∈ A.
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When µ ∈ core(K) is fixed, the conjugate function of the scalarization function
s∗µ : V ∗ → R is defined by

s∗µ(k∗) =

{
σ− cl(E)(k

∗), if 〈k∗, µ〉 = 1,
+∞, otherwise.

The vector dual problem attached to (PVC) via the set of scalarization functions is
given by

(DV CTs ) WMax
(µ,y∗,k∗,z∗,v)∈BCTs

hCTs (µ, y∗, k∗, z∗, v)

where

BCTs =

{
(µ, y∗, k∗, z∗, v) ∈ core(K)×X∗ ×K∗ × C∗ × V : 〈k∗, µ〉 = 1, inf{t ∈ R :

v ∈ tµ− cl(E)} ≤ −σ− cl(E)(k
∗)− (k∗f)∗(y∗)− (z∗g)∗S(−y∗)

}
and

hCTs (µ, y∗, k∗, z∗, v) = v.

The weak and strong duality statements follow from the general case and then the
optimality conditions.

Proposition 4.1.22 ( [25, Theorem 4.4.10, Theorem 4.4.11]) (Weak and strong du-
ality for (PVC) and (DV CTs ))

(a) There are no x ∈ A and (µ, y∗, k∗, z∗, v) ∈ BCTs such that f(x) <K hCTs (µ, y∗, k∗,
z∗, v).

(b) Assume that the regularity condition (RCVCFL
) is fulfilled. If x ∈ A is a

Ts−properly efficient solution to (PVC), then there exists (µ, y∗, k
∗
, z∗, v) a weakly

efficient solution to (DV CTs ), such that f(x) = hCTs (µ∗, y∗, k
∗
, z∗, v) = v.

Theorem 4.1.23 (S.-M. Grad and E.-L. Pop [67]) (Optimality conditions for (PVC)
and (DV CTs ))

(a) Let x ∈ A be a Ts−properly efficient solution to (PVC) and the regularity

condition (RCVCFL
) be fulfilled. Then there exists (µ, y∗, k

∗
, z∗, v) ∈ BCTs a weakly

efficient solution to (DV CTs ) such that

(i) f(x) = v;

(ii) inf{t ∈ R : f(x) ∈ tµ− cl(E)}+ σ− cl(E)(k
∗
) = (k

∗
f)(x);

(ii′) 〈k∗, µ〉 = 1;

(iii) (k
∗
f)∗(y∗) + (k

∗
f)(x) = 〈y∗, x〉;

(iv) (z∗g)∗S(−y∗) = −〈y∗, x〉;
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(v) (z∗g)(x) = 0.

(b) Assume that x ∈ A and (µ, y∗, k
∗
, z∗, v) ∈ BCTs fulfill the relations (i) − (v).

Then x is a Ts−properly efficient solution to (PVC) and (µ∗, y∗, k
∗
, z∗, v) is a weakly

efficient solution to the dual problem (DV CTs ).

Also, can be consider the set scalarization with a conical set and the one with sets
generated by norms (cf. [22]) and the optimality conditions follow.

4.1.5 (Semi)Norm Scalarization

In this part we have as starting point the fact that in some circumstances (semi)norms
on V turn out to be stronglyK−increasing functions (see, for example [80,118,147]).
This type of scalarization functions has been used for location problems in [133]
and for goal programming in [35]. In what follows we investigate the scalarization
functions based on strongly K−increasing gauges (cf. [22, 25]).

Let us consider b ∈ V such that f(dom f ∩ A) ⊆ b + K, E ⊆ V a convex set
with 0 ∈ int(E) and its Minkovski gauge γE is strongly K−increasing on K. Since
0 ∈ int(E) we have γE(v) ∈ R for all v ∈ V . For a ∈ b−K define sa : V • → R by

sa(v) =

{
γE(v − a), if v ∈ b+K,
+∞, otherwise,

with sa(+∞K) = +∞. For a ∈ b−K fixed, the function sa is convex with f(dom f ∩
A) ⊆ b + K = dom sa and moreover sa is strongly K−increasing on f(dom f ∩ A).
We consider the following family of scalarization functions

Sg = {sa : V • → R : a ∈ b−K}.

An element x ∈ A is called Sg−properly efficient solution to (PVC) if there exists
a ∈ b−K such that sa(f(x)) ≤ sa(f(x)) for all x ∈ A.

For a ∈ b−K fixed and k∗ ∈ V ∗, the conjugate function s∗a : V ∗ → R is

s∗a(k∗) = 〈k∗, a〉+ min
w∗∈−K∗

σE(k∗−w∗)≤1

〈w∗, b− a〉,

where σE defines the dual gauge to γE and if γE is a norm it turns out to be the dual
norm.

The vector dual problem attached to (PVC) via the (semi)norm scalarization is
given by

(DV CSg ) Max
(a,y∗,k∗,z∗,w∗,v)∈BCSg

hCSg (a, y∗, k∗, z∗, w∗, v)
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where

BCSg =

{
(a, y∗, k∗, z∗, w∗, v) ∈ (b−K)×X∗ ×K∗ × C∗ × (−K∗)× (b+K) :

σE(k∗ − w∗) ≤ 1, γE(v − a) ≤ 〈w∗, a− b〉 − 〈k∗, a〉−

(k∗f)∗(y∗)− (z∗g)∗S(−y∗)
}

and
hCSg (a, y∗, k∗, z∗, w∗, v) = v.

The weak and strong duality statements follow from the general case and then the
optimality conditions.

Proposition 4.1.32 ( [25, Theorem 4.4.12, Theorem 4.4.13]) (Weak and strong du-
ality for (PVC) and (DV CSg ))

(a) There are no x ∈ A and (a, y∗, k∗, z∗, w∗, v) ∈ BCSg such that f(x) <K
hCSg (a, y∗, k∗, z∗, w∗, v).

(b) Assume that the regularity condition (RCVCFL
) is fulfilled. If x ∈ A is an

Sg−properly efficient solution to (PVC), then there exists (a, y∗, k
∗
, z∗, w∗, v) an effi-

cient solution to (DV CSg ), such that f(x) = hCSg (a∗, y∗, k
∗
, z∗, w∗, v) = v.

Theorem 4.1.33 (S.-M. Grad and E.-L. Pop [67]) (Optimality conditions for (PVC)
and (DV CSg ))

(a) Let x ∈ A be an Sg−properly efficient solution to (PVC) and the regularity

condition (RCVCFL
) be fulfilled. Then there exists (a, y∗, k

∗
, z∗, w∗, v) ∈ BCSg an

efficient solution to (DV CSg ) such that

(i) f(x) = v;

(ii) γE(f(x)− a) + 〈w∗, b− a〉+ 〈k∗, a〉 = (k
∗
f)(x);

(ii′) σE(k
∗ − w∗) ≤ 1;

(ii′′) 〈w∗, b− a〉 = min
w∗∈−K∗

σE(k∗−w∗)≤1

〈w∗, b− a〉;

(iii) (k
∗
f)∗(y∗) + (k

∗
f)(x) = 〈y∗, x〉;

(iv) (z∗g)∗S(−y∗) = −〈y∗, x〉;

(v) (z∗g)(x) = 0.

(b) Assume that x ∈ A and (a, y∗, k
∗
, z∗, w∗, v) ∈ BCSg fulfill the relations (i)−(v).

Then x is a Sg−properly efficient solution to (PVC) and (a∗, y∗, k
∗
, z∗, w∗, v) is an

efficient solution to the dual problem (DV CSg ).
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Remark 4.1.35 The duality approach described in this part can be considered in the
particular case when γE is a norm with the unit ball E, too. Conditions which ensure
that a norm is strongly K−increasing on a given set were investigated in [78,80,147]

4.1.6 Oriented distance scalarization

This scalarization has not been consider for conjugate vector duality, because of the
difficulty to compute the conjugate of the scalarization function. In [40] it was finally
computed in case V = Rk, therefore we can consider this scalarization within our
framework, too.

For the set U ⊆ Rn let ∆U : Rn → Rn given by ∆U (x) = sup
x∗∈Rn

[〈x∗, x〉 − σU (x∗) :

||x∗|| = 1] and the set B = {x∗ ∈ Rn : ||x∗|| = 1}. So, ∆U can be equivalently written
as ∆U (x) = supx∗∈B[〈x∗, x〉−σU (x∗)]. This function is finite and convex on the whole
space Rn and coincides with the distance function dU (x) = sup[〈x∗, x〉 − σU (x∗) :
||x∗|| ≤ 1] outside K (cf. [94]). Moreover, ∆−K is strictly K−increasing on Rn+.

We consider the scalarization function sd : (Rk)• → (R)• given by

sd(y) =

{
∆−K(y), if y ∈ Rk
+∞, else.

This function is proper, convex and strictly K−increasing. The set of the scalarization
functions is given in this case by

Td = {∆−K : Rn → Rn}.

An element x ∈ A is a Td−properly efficient solution to (PVC) if ∆−K(f(x)) ≤
∆−K(f(x)) for all x ∈ A.

The conjugate function of sd ∈ Td is (cf. [40])

s∗d(k
∗) = ∆∗−K(k∗) = inf


l∑

j=1

δK∗(x
∗
j ) : 1 ≤ l ≤ n+ 2, k∗ =

l∑
j=1

x∗j ,

l∑
j=1

||x∗j || = 1


and for writing the dual we use the following formula

sup
x∗∈U

[〈x∗, v〉 − σ−K(x∗)] ≤ −(k∗f)∗(y∗)− (z∗g)∗S(−y∗),

when 1 ≤ l ≤ n+ 2, k∗ =
∑l
j=1 x

∗
j ,
∑l
j=1 ||x∗j || = 1 and x∗j ∈ K∗.

The dual vector problem to (PVC) with respect to the set of scalarization func-
tions Td is
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(DV Td) WMax
(y∗,k∗,x∗,z∗,v)∈BTd

hTd(y∗, k∗, x∗, z∗, v)

where

BTd =

{
(y∗, k∗, x∗, z∗, v) ∈ X∗ ×K∗ × (K∗)l × C∗ × Rn : ∆−K(v) ≤ −(k∗f)∗(y∗)

−(z∗g)∗S(−y∗), for 1 ≤ l ≤ n+ 2, k∗ =
l∑

j=1

x∗j ,
l∑

j=1

||x∗j || = 1

and x∗ = (x∗1, ...x
∗
l )}

and
hTd(y∗, k∗, x∗, z∗, v) = v.

For this dual we have weak and strong duality and also optimality conditions.

Proposition 4.1.36 (Weak and strong duality for (PVC) and (DV Td))

(a) There are no x ∈ A and (y∗, k∗, x∗, z∗, v) ∈ BTd such that f(x) < hTd(y∗, k∗, x∗,
z∗, v).

(b) Assume that the regularity condition (RCVCFL
) is fulfilled. If x ∈ A is a

Td−properly efficient solution to (PVC), then there exists (y∗, k
∗
, x∗, z∗, v) a weakly

efficient solution to (DV Td), such that f(x) = hTd(y∗, k∗, x∗, z∗, v) = v.

Theorem 4.1.37 (S.-M. Grad and E.-L. Pop [67]) (Optimality conditions for (PVC)
and (DV Td))

(a) Let x ∈ A be a Td−properly efficient solution to (PVC) and the regularity
condition (RCVCFL

) be fulfilled. Then there exists (y∗, k∗, x∗, z∗, v) ∈ BTd a weakly
efficient solution to (DV Td) such that

(i) f(x) = v;

(ii) ∆−K(f(x)) = (k
∗
f)(x);

(ii′) k
∗

=
l∑

j=1

x∗j and
l∑

j=1

||x∗j || = 1;

(iii) (k
∗
f)∗(y∗) + (k

∗
f)(x) = 〈y∗, x〉;

(iv) (z∗g)∗S(−y∗) = −〈y∗, x〉;

(v) (z∗g)(x) = 0.

(b) Assume that x ∈ A and (y∗, k∗, x∗, z∗, v) ∈ BTd fulfill the relations (i) − (v).
Then x is a Td−properly efficient solution to (PVC) and (y∗, k∗, x∗, z∗, v) is a weakly
efficient solution to the dual problem (DV Td).
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Some applications

In this chapter, to an optimization problem we attach the (0, 1) − η approximated
optimization problem and deliver connections between the optimal solutions and the
saddle points for the Lagrangian of these two problems (see E.-L. Pop and D.I. Duca
[108–110]). Starting from [47], similar discusions were given by H. Boncea and D.I.
Duca in [10] and L. Cioban and D.I. Duca in [38].

In the second part of this chapter the problems considered were extended to the
vector case and some connections were obtained for the efficient solutions and saddle
points for the Lagrangian of these problems (see E.-L. Pop and D.I. Duca [111]).

5.1 Connections between the optimization problems
and their first order approximated optimization
problems

In this part to an optimization problem (Pv) we attach other optimization problems,
problems whose solution give us information about optimal solutions of the initial
problem. The problems attached are the first order approximated optimization prob-
lem (APv) and the dual one. The connections studied refers to the saddle points for
the Lagrangian and optimal solutions of these two problems. There are also some
examples presented.

5.1.1 Optimization problems and first order approximated op-
timization problems

Here we attach to the optimization problem its first order approximated optimization
problem and establish the connections between these two problems, referring to the

41
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optimal solutions and saddle points for the Lagrangian of each one (see [109]).

5.1.2 Connections between the optimal solutions and saddle
points for the Lagrangian of Problem (Pv) and of Prob-
lem (APv)

Here we present some connections between the feasible solutions of Problem (Pv) and
of Problem (APv). Moreover, we investigate the connections between the optimal
solutions of both Problem (Pv) and Problem (APv) and also the connections between
their saddle points for the Lagrangian (see [109]).

5.1.3 Connections between optimization problems and their
duals

For solving the optimization problem (Pv), we can attach to it the dual one and we
obtain information about optimal solutions and saddle points for the Lagrangian of
the initial problem (see [110]).

5.2 Connections between the vector optimization
problems, their efficient solutions and saddle
points for the Lagrangian

Considering the vector case for the optimization problem (Pv) and the (0, 1) − η
approximated optimization problem, we study the connections between the efficient
solutions and saddle point for the Lagrangian of these two problems (due to D.I.
Duca [47]).

We consider the vector optimization problem

(Pv) min f(x)

s. t. x ∈ X
g(x) 5 0
h(x) = 0,

where X is a subset of Rn, f : X → Rp, g : X → Rm and h : X → Rq are three
functions. Let F(Pv) := {x ∈ X : g(x) 5 0, h(x) = 0} denote the set of all feasible
solutions for Problem (Pv).

Definition 5.2.1 We say that x ∈ F(Pv) is an efficient solution for Problem (Pv) if
there is no x ∈ F(Pv) such that f(x) ≤ f(x).
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Theorem 5.2.2 Let X be subset of Rn, x be an interior point of X and f : X → Rp,
g : X → Rm and h : X → Rq three differentiable functions at x and let x be an
efficient solution for problem (Pv).

(a) (Fritz-John Theorem) Then there exists (u, v, w) ∈ Rp+ ×Rm+ ×Rq \ {(0, 0, 0)}
such that

(5.1) [∇f(x)]T (u) + [∇g(x)]
T

(v) + [∇h(x)]
T

(w) = 0,

(5.2) 〈v, g(x)〉 = 0

are fulfilled.

(b) (Karush-Kuhn-Tucker Theorem) If a suitable constraint qualification for Prob-
lem (Pv) is fulfilled at x, then there exists (u, v, w) ∈ Rp+ × Rm+ × Rq with u 6= ∅ such
that (5.1) and (5.2) are fulfilled.

If x is an efficient solution for Problem (Pv) and f , g and h are differentiable at
x, then there exist (u, v, w) ∈ Rp+ × Rm+ × Rq \ {(0, 0, 0)} for which we have (5.1)
and (5.2) fulfilled (cf. Fritz-John Theorem). It follows that the efficient solutions for
Problem (Pv), x, can be found among the components x of the solutions (x, u, v, w)
of the system (5.1) − (5.2). If this system has only solutions with u = 0, then
(x, 0, v, w) remains the solution of the system (5.1) − (5.2) for every function f ; in
this case the Fritz-John Theorem is not useful. The hypotheses which are added and
assure the existence of one of the solutions (x, u, v, w) with u 6= 0 are called constraint
qualifications. In the literature there exist many types of constraint qualifications (see
[89, 96]): Slater, Karlin, Kuhn-Tucker, Arrow-Hurwicz-Uzawa, strict, reverse convex
and others. In what follows, by a suitable constraint qualification, we mean one of the
above constraint qualifications.

Let LPv
: X × Rm+ × Rq → Rp defined by

LPv (x, v, w) = f(x) +

m∑
i=1

gi(x)vie+

q∑
k=1

hk(x)wke,

for all (x, v, w) ∈ X × Rm+ × Rq, where e = (1, 1, .., 1) ∈ Rp, denote the vector
Lagrangian of Problem (Pv).

Let now u ∈ Rp+ \ {0}. Then the function LuPv
: X × Rm+ × Rq → R defined by

LuPv
(x, v, w) =

p∑
j=1

ujfj(x) +

m∑
i=1

vigi(x) +

q∑
k=1

wkhk(x),

for all (x, v, w) ∈ X × Rm+ × Rq, denote the scalar Lagrangian of Problem (Pv).

Definition 5.2.3 (i) A point (x, v, w) ∈ X × Rm+ × Rq is called saddle point for the
vector Lagrangian LPv

of Problem (Pv) if
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(a) there is no (v, w) ∈ Rm+ × Rq such that LPv (x, v, w) ≤ LPv (x, v, w);

(b) there is no x ∈ X such that LPv
(x, v, w) ≥ LPv

(x, v, w).

(ii) Let u ∈ Rp+ \ {0}. A point (x, v, w) ∈ X × Rm+ × Rq is called saddle point for
the scalar Lagrangian LuPv

of Problem (Pv) if

LuPv
(x, v, w) 5 LuPv

(x, v, w) 5 LuPv
(x, v, w),

for all (x, v, w) ∈ X × Rm+ × Rq.

For the (0, 1)− η approximated vector optimization problem

(APv) min f(x)

s. t. x ∈ X
g(x) + [∇g(x)] (η(x, x)) 5 0
h(x) + [∇h(x)] (η(x, x)) = 0,

we denote by F(APv) := {x ∈ X : g(x)+[∇g(x)] (η(x, x)) 5 0, h(x)+[∇h(x)] (η(x, x)) =
0} the set of all feasible solutions for Problem (APv).

The vector Lagrangian of Problem (APv) and the scalar Lagrangian of Problem
(APv) can be defined analogously with the ones for Problem (Pv).

Next, we give some useful notions that we use in what follows.

Definition 5.1.4 (cf. [96]) Let X be a nonempty subset of Rn, x be an interior point
of X, f : X → R be a differentiable function at x and η : X ×X → Rn be a function.
We say that the function f is

(i) invex at x with respect to (w.r.t.) η if

f(x)− f(x) = 〈∇f(x), η(x, x)〉 , for all x ∈ X.

(ii) incave at x with respect to (w.r.t.) η if (−f) is invex at x w.r.t. η.

(iii) avex at x with respect to (w.r.t.) η if f is both invex and incave at x w.r.t.
η, or equivalently

f(x)− f(x) = [∇f(x)] (η(x, x)) , for all x ∈ X.

(iv) avex on X with respect to (w.r.t.) η if X is open, f is differentiable on X and
avex at every x ∈ X w.r.t. η.

For f = (f1, ..., fp) : X → Rp a vector function, we say that f is invex (respectively
incave, avex) if each component function is invex (respectively incave, avex).

Remark 5.1.5 (E.-L. Pop and D.I. Duca [109]) In general, there exists no unique
function η such that the function f is invex at the point x ∈ X w.r.t. η.
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Next, we present for the vector optimization problem (Pv) a result referring to the
connections between the efficient solutions and the saddle points for the Lagrangian
(due to [89]).

Theorem 5.2.4 (E.-L. Pop and D.I. Duca [111]) Let X be a subset of Rn and f :
X → Rp, g : X → Rm and h : X → Rq functions. If (x, v, w) ∈ X × Rm+ × Rq is
a saddle point for the vector Lagrangian LPv

of Problem (Pv), then x is an efficient
solution for Problem (Pv).

Theorem 5.2.8 (E.-L. Pop and D.I. Duca [111]) Let X be a subset of Rn, x be an
interior point of X, η : X × X → X be a function, f : X → Rp, g : X → Rm and
h : X → Rq other functions. Assume that:

(i) the functions f , g and h are differentiable at x;

(ii) the functions f and g are invex at x w.r.t. η;

(iii) the function h is avex at x w.r.t. η;

(iv) a suitable constraint qualification for Problem (Pv) is fulfilled at x.

If x is an efficient solution for Problem (Pv), then there exists a point (u, v, w) ∈
(Rp+ \ {0}) × Rm+ × Rq such that (x, v, w) is a saddle point for the scalar Lagrangian
LuPv

of Problem (Pv).

Now we refer to the connections between the feasible solutions of Problem (Pv)
and of Problem (APv) (cf. [111]).

Lemma 5.2.10 (E.-L. Pop and D.I. Duca [111]) Let X be a subset of Rn, x be an
interior point of X,η : X × X → X be a function, f : X → Rp, g : X → Rm and
h : X → Rq. If:

(i) the function g is differentiable at x and incave at x w.r.t. η;

(ii) the function h is differentiable at x and avex at x w.r.t. η,

then F(APv) ⊆ F(Pv).

Theorem 5.2.12 (E.-L. Pop and D.I. Duca [111]) Let X be a subset of Rn, x be an
interior point of X, η : X × X → X, f : X → Rp, g : X → Rm and h : X → Rq
functions. Assume that:

(i) the functions g and h are differentiable at x;

(ii) the function g is invex at x w.r.t. η;

(iii) the function h is avex at x w.r.t. η;

(iv) η(x, x) = 0.

(a) If (x, v, w) is a saddle point for the vector Lagrangian LAPv of Problem (APv),
then (x, v, w) is a saddle point for the vector Lagrangian LPv

of Problem (Pv).

(b) If (x, v, w) is a saddle point for the scalar Lagrangian LuAPv
of Problem (APv),

then x is an efficient solution for Problem (Pv).

Theorem 5.2.14 (E.-L. Pop and D.I. Duca [111]) Let X be a subset of Rn, x be an
interior point of X, η : X × X → X be a function, and f : X → Rp, g : X → Rm
and h : X → Rq other functions. Assume that:

(i) the function f is differentiable at x;
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(ii) the function g is differentiable at x and incave at x w.r.t. η;

(iii) the function h is differentiable at x and avex at x w.r.t. η;

(iv) x ∈ F(APv).

If x is an efficient solution for Problem (Pv), then x is an efficient solution for Problem
(APv).

Other new connections between the efficient solutions and the saddle points for
the Lagrangian of the vector optimization problems (Pv) and (0, 1)− η approximated
vector optimization problem (APv) can be formulated, also.
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[24] R.I. Boţ, S.-M. Grad, G. Wanka, New regularity conditions for strong and to-
tal Fenchel-Lagrange duality in infinite dimensional spaces, Nonlinear Analysis:
Theory, Methods & Applications 69(1), 323-336, 2008.
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