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Structure and objectives of the Phd thesis 

 

The present Phd thesis is structured in four chapters. The first chapter presents theoretical 

elements regarding the chemometric and analytical methods used in the thesis. Chapters II–IV 

present the original contributions to the thesis, the results obtained during the experiments and 

their interpretation. The last chapter is devoted to the conclusions arising from the conducted 

experiments. 

The  thesis focuses on three main objectives, regarding the application of chemometrics 

in different fields of analytical chemistry, in order to improve the processing and interpretation 

of the instrumental signal. 

The first objective was to demonstrate how chemometric methods represent important 

tools in the validation of newly developed methods. For this, a new method of analysis was 

proposed using digital thin-layer chromatography for the investigation of catecholamines’ 

metabolites from biological samples. 

Further, for the second objective the chemometric methods were used for modeling and 

predicting lipophilicity: on one hand for catecholamines and related compounds, using the 

algoritm proposed by the TopoCluj group, and on the other hand for antioxidant compounds with 

different structures, using various HPLC experimental conditions. 

And finally, the third objective was to point out the necesity of chemometric tools for 

obtaining holistic and comprehensive fingerprints, characterisation and authentication of various 

samples. For this, the fingerprinting analysis was applied for wild berries and derived dietary 

supplements, using various analytical techiques assisted by different chemometric aproaches.   

  



Chapter I – Theoretical considerations 
 

General introduction - Chemometrics 

Due to increasing analytical demands for higher specificity and sensitivity, a general 

trend in analytical chemistry is to produce more and more data per sample. This has been 

facilitated by developments in instrumentation and computer systems, making large amounts of 

data possible to produce and store with good economy.  

In order to extract the relevant information from the acquired data and to perform good 

experiments there is a need for methods that can help the analytical chemists make efficient use 

of the sophisticated analysis systems. The solution is given by methods that are collected under 

the discipline of chemometrics.  

The word “chemometrics” was invented by the Swedish organic chemist, Svante Wold 

in 1971, when he published a complex application of computational chemistry and thought that a 

new word will get his research founding. He also founded the International Chemometrics 

Society, together with an American chemist, Bruce Kowalsky.  

Several definitions are given in order to explain the term “chemometrics”. Miller 

considers that a definition of chemometrics could be: "the application of multivariate, empirical 

modelling methods on chemical data" [1]. Another definition of chemometrics proposed by 

Massart et al is: "Chemometrics is a chemical discipline that uses mathematics, statistics and 

formal logic a) to design or select optimal experimental procedures; b) to provide maximum 

relevant chemical information by analyzing chemical data; and c) to obtain knowledge about 

chemical systems" [2]. And on the other hand, the International Chemometrics Society (ICS) 

defines chemometrics as: "the science of relating measurements made on a chemical system or 

process to the state of the system via application of mathematical or statistical methods" [3]. 

Since the 1980s, various research groups have gradually adopted the term 

"chemometrics" for the statistical methods of data interpretation. The applications of these 

methods are very comprehensive, covering various fields of chemistry, from analytical chemistry 

up to organic synthesis. 



Chemometrics can now be described from several points of view. Many believe that this 

area includes applications of modern statistical methods: experimental design, calibration, 

pattern recognition and signal analysis tool for data in chemistry. Chemometrics can be generally 

described as an application of statistical methods in chemistry in order to improve the 

measurement process and to extract the most useful and complete information from raw data 

obtained from physico-chemical measurements (usually instrumental) [4]. 

 Chemometrics represent an approach of chemical determinations that rely on the notion 

of indirect measurements. Thus, the measurements associated to the content of certain 

compounds of a set of samples are related to a property of the tested material, so that this 

property can be identified in an unknown sample by conducting measurements less laborious 

than those made initially on the set of well-known samples [5]. 

The value of chemometric techniques is based on the fact that the experimental data 

obtained nowadays in chemistry are essentially multivariate. For example, spectra or 

chromatograms contain hundreds or thousands of pairs of points, each wavelength or retention 

time representing an independent variable. The classic approach of chemical analysis is to treat 

data as univariate and interpret only one or two scales simultaneously. The access to modern 

computer controlled equipment has enabled chemists to achieve massive amounts of data 

(spectra, chromatograms, electropherograms, densitograms, etc.) in a relatively short time, and 

the interpretation of these data must be done by suitable statistical techniques. 

The chemometric techniques have also found special applications in chemical 

experiment design. Thus, in case of screening tests, such techniques allow the elimination of 

factors (variables) which do not influence the investigated samples (or have an extremely low 

influence on them). The optimization of methods can be made faster through a multivariate 

analysis. These techniques also save time and money in the analysis of quantitative structure - 

property/activity relationships (QSAR/QSPR) for multicomponent systems. Last but not least, 

chemometric techniques allow quantitative modelling experiments in which many factors are 

involved. The chemometric methods have been already extensively applied in industries like 

petroleum, food and pharmaceutical, continuing to expand to new areas like authentication, 

classification and fingerprinting of different samples.  



Chapter III – Experimental setup, results and discussions 
 

1. Validation of a quantitative analysis method for catecholamines and their 

metabolites using high performance thin-layer chromatography 

 

Results and discussion  

Optimization of the TLC – image analysis procedure  

The chromatographic investigation of the group of selected compounds raises several 

difficulties related to the separation resolution (when different reversed-phase layers were 

applied for their chromatography in preliminary experiments) and quantification after the 

derivatisation with DPPH•. To obtain a satisfactory resolution and symmetric spot shapes of the 

compounds, different chromatographic conditions such as various stationary phases (RP-18, RP-

18W, CN and Diol), different compositions of the mobile phase (methanol : phosphate buffer 

(pH = 7.10) – 40:60 v/v and 20:80 v/v; acetonitrile : formic acid - 15:85 v/v; citrate buffer (pH = 

3.00) : methanol – 96:4 v/v and citrate buffer (pH = 3.00) : methanol : formic acid - 96:4:10 

v/v/v) and various DPPH•  spraying conditions, were investigated through several trials. As a 

result, a good chromatographic separation (retention factors: RF(NMN) = 0.63, RF(MN) = 0.46, RF(3-

MT) = 0.38, RF(DOMA) = 0.84; RF(E) = 0.65; RF(VMA) = 0.59; RF(DOPAC) = 0.47; RF(HVA) = 0.22) and a 

sensitive detection was obtained using LiChrospher® RP-18 WF254S HPTLC plates and a mobile 

phase consisted of citrate buffer (pH = 3.00) : methanol : formic acid (96:4:10 v/v/v).  

The investigated compounds appeared as yellowish-white spots, produced by bleaching 

the purple color of the DPPH• reagent. An increased concentration of the compounds resulted in 

more intensive area around the bleached spot on the TLC plate. While the separated spots on 

TLC plate were detected under visible light, the reaction with DPPH• is very time-instable (the 

background starting to fade after 10 minutes from staining) and slit-scanning densitometry of 

such plates is almost unavailable because it brings unpredictable results. For this reason, the 

obtained chromatograms were scanned by a specialized flatbed scanner and also photographed 

with a digital camera.  



Because the results of TLC - DPPH• method strongly depend on time that elapses 

between the background staining and data acquisition, in both cases the images were acquired 

every two minutes after spraying. Digital processing of captured images, optical density 

integrity, curves drawing, and peaks area calculation were made using the ImageDecipher-TLC 

image processing program in all cases. The best results were obtained using the images captured 

after four minutes. After this period a poor peak shape as well as decreased peak area and 

increased interference from the background was observed. In addition, the background strongly 

starting to fade after 10 minutes from staining.  

Some problems related to the noise removal (present in both videoscans and 

photographs) and baseline drift (accentuated in case of photographed images due to the 

inhomogeneous illumination) corrections were encountered. In addition, in case of TLC 

combined with DPPH• application, image processing of the chromatograms denotes the 

investigating compounds as negative peak area (Figure 3).  

While many complicated solutions have been reported in literature [6], the advantages 

of the ImageDecipher-TLC software solved the inconveniences related to the noise removal, 

baseline drift correction and negative peak area. This software allows some image processing 

operations as to invert images and also to select the colour (red, green, blue or grey) channel for 

analysis. 

 

Figure 3 Example of quantitative integration (negative values) of selected spots area using 

ImageDecipher-TLC software in the case of unprocessed chromatogram. 



 

 

(a) 

 

(b) 

 

(c) 

Figure 4 Image of the chromatographic plate after the spot detection with DPPH• radical and the 

corresponding chromatogram obtained for DOMA quantification (integrated peak area) with 

ImageDecipher-TLC software in (a) visible mode; (b) inverted mode; (c) green scale. 



To get more accurate integrated peak area, the saved colourful RGB image of the plate 

(consisted of yellowish-white spots on a purple background) was inverted and the pure colour 

and grey channel results were investigated. Symmetric peak shapes and accurate quantification 

of the chromatographic spots (accurate peak area versus applied concentration) with a positive 

value for the peak area were obtained by inverting the RGB images and conversion into pure 

green colour scale (Figure 4).  

 

Method validation 

The HPTLC method was validated in terms of linearity, precision, accuracy, limits of 

detection and quantification, for the mixture of HVA, VMA, DOMA, DOPAC and E and NMN, 

MN and 3-MT, respectively. 

For the calibration procedure increasing volumes of the stock solution were applied on 

the chromatographic plate and the calibration function was constructed for the investigated 

compounds, by plotting the measured peaks area versus applied amount of compound. 

The good linearity in the corresponding concentration range was evaluated by the linear 

regression equations and the values of the coefficient of determination (R2) presented in Table 1 

and Table 2 The limit of detection (LOD) and the limit of quantification (LOQ) were calculated 

based on the confidence bands of the calibration function in all cases.  

Table 1 Method evaluation parameters for HVA, VMA, DOMA, DOPAC and E 

Compound 

Linearity 

range 

(ng/spot) 

Regression 

equation 
R2 

LOD 

(ng/spot) 

LOQ 

(ng/spot) 

DOMA 30-150 y = 87.33x - 2598 0.9986 33 36 

E 30-150 y = 57.19x - 1817 0.9966 36 42 

VMA 90-450 y = 12.64x - 1133 0.9965 103 120 

DOPAC 30-150 y = 91.49x - 875 0.9985 13 17 

HVA 60-300 y = 23.92x - 893 0.9978 45 54 



 

Table 2 Method evaluation parameters for NMN, MN and 3-MT 

Compound 
Linearity range 

(μg/spot) 
Regression equation R2 

LOD 

(μg /spot) 

LOQ 

(μg /spot) 

NMN 0.10-1.30 y = 11077x + 504.91 0.9973 0.048 0.093 

MN 0.10-1.30 y = 9857.8x + 598.49 0.9975 0.046 0.090 

3-MT 0.10-1.30 y = 12911x + 3467.6 0.9977 0.045 0.087 

 

The precision of the method, characterized as intra-day and inter-day precision, was 

expressed as relative standard deviation (RSD %) and determined at three concentration levels. 

The intra-day precision was assessed by analyzing six replicate spots for each concentration and 

the inter-day precision was assessed by performing the analysis by the same analyst during a 

period of 5 days.  

The accuracy of the method, expressed as recovery, was investigated for standard 

solutions by analysing 3 replicate spots for each of the compounds, at three concentration levels. 

In this case the results (Tables 3 and 4) were included in range of 94.68% and 105.70% for 

HVA, VMA, DOMA, DOPAC and E and between 99.13%–106.59%, for NMN, MN and 3-MT, 

respectively.  

Table 3 Accuracy and precision of the method for HVA, VMA, DOMA, DOPAC and E 

Compound 
Added amount 

(ng/spot) 

Intra-day precision 

RSD (%) 

Inter-day precision 

RSD (%) 

Mean 

recovery (%) 

DOMA 

50 1.75 1.53 101.24 

75 1.31 1.20 99.27 

100 1.27 1.18 94.68 

E 

50 2.35 2.16 101.85 

75 1.19 0.99 99.79 

100 1.72 1.67 97.46 

VMA 

 

150 2.95 2.75 105.18 

200 1.35 1.31 103.00 

300 1.51 1.41 100.04 



DOPAC 

50 1.06 1.08 105.70 

75 1.25 1.20 99.49 

100 1.01 0.91 97.80 

HVA 

100 2.04 2.15 105.53 

150 1.86 1.60 103.93 

200 1.12 1.03 97.32 

 

Table 4 Accuracy and precision of the method for NMN, MN and 3-MT 

Compound 
Added amount 

(μg/spot) 

Intra-day precision 

RSD (%) 

Inter-day precision 

RSD (%) 
Mean recovery (%) 

NMN 

0.30 4.67 4.61 106.59 

0.70 2.57 2.34 103.34 

1.10 1.98 1.81 100.87 

MN 

0.30 4.59 2.69 105.43 

0.70 3.72 3.57 103.02 

1.10 1.99 1.98 99.13 

3-MT 

 

0.30 2.83 1.94 106.54 

0.70 1.52 1.36 104.31 

1.10 1.13 0.93 100.91 

 

Application of the method to human urine sample analysis 

The applicability of the proposed TLC – image processing method to determine the 

level of acidic metabolites of catecholamine in human urine sample was also investigated. The 

chromatographic separation, DPPH• derivatisation and image processing analysis for spiked 

urine samples were carried out under the same conditions described for the standard mixtures. 

The specificity of the method was determined in relation to the interferences from other 

compounds in the urine samples.  

• Determination of HVA, VMA, DOMA, DOPAC in biological sample 

All the acidic metabolites (HVA, VMA, DOMA, DOPAC) were confirmed by a good 

separation resolution on the basis of their retention by comparison with the spots of the standards 



samples. Some interfering compounds detected as unidentified spot in the urine chromatogram 

(RF(unidentified peak) = 0.64) were observed (Figure 5).  

Due to the retention value of the unidentified interfering compounds, we were unable to 

quantify epinephrine (RF(E) = 0.65) in spiked urine samples using the chromatographic system 

mentioned above. 

A matrix effect study and recovery test of the developed method on real samples was 

also performed. Spiked urine samples at three different concentration levels (60ng/spot, 

120ng/spot and 180 ng/spot for DOMA and DOPAC; 120 ng/spot, 240 ng/spot and 360 ng/spot 

for HVA; 180 ng/spot, 360 ng/spot and 540 ng/spot for VMA respectively) were prepared by 

adding appropriate standard mixtures to urine sample.  

The matrix effect was investigated by comparing spot area of the fortified urine sample 

with the spot area of standard solution at the same concentration using above mentioned three 

concentration levels for six replicate spots in all cases. 

 

Figure 5 Image of the chromatographic plate presenting the analysis of urine and spiked urine 

samples: (a) female urine sample (3μL and 5μL); (b) standard mixture (3μL and 5μL); (c) spiked 

urine sample (3μL and 5μL); (d) male urine sample (3μL and 5μL). 

 



The obtained results indicated the urine sample as a blank sample, the level of the 

endogenous metabolites in urine being under detection and quantification limit of the developed 

method. The results also reflect that matrix effects of urine are negligible after two times 

dilution.  

Using the spiked urine samples, the amount of each compound calculated by the linear 

regression equation was compared to the fortified amount and the recovery rate of the method in 

urine was obtained. The results (Table 5) show recovery rates between 98% and 108% for all of 

the investigated metabolites.  

 

Table 5 Results concerning the recovery of studied compounds from spiked urine samples 

Compound 
Fortified value 

(ng/spot) 

Found amount 

(ng/spot) 
Mean recovery (%) 

DOMA 

60 65 108 

120 122 102 

180 190 106 

VMA 

 

180 191 106 

360 354 98 

540 544 101 

DOPAC 

60 65 108 

120 122 102 

180 184 102 

HVA 

120 130 108 

240 242 101 

360 355 99 

 

 

• Determination of NMN, MN and 3-MT in biological sample 

The chromatographic plates were spotted with standard mixture of the investigated 

compounds, in order to obtain a calibration curve, and also with urine and spiked urine. As it can 

be observed in Figure 6 MN and 3-MT were confirmed by a good separation resolution on the 

basis of their retention by comparison with the spots of the standards samples, but at the same RF 



as of NMN (RF = 0.63) it can be observed that an interfering compound is present in the urine 

sample. 

Based on the fact that our method cannot detect normetanephrine in urine of healthy 

subjects, another chromatographic system was employed to demonstrate this theory. Thus, 

standard solutions of metanephrine, normetanephrine, urine and spiked urine samples were 

spotted on TLC-silica gel 60 chromatographic plates and then they were developed using a 

mobile phase consisting of phosphate buffer : methanol 80:20 (v/v).  

 

 

Figure 6 Image of the chromatographic plate presenting the analysis of urine and spiked urine 

samples of NMN, MN and 3-MT 

 

In Figure 7 is shown the plate described before, after spraying it with 0.02% DPPH 

ethanolic solution, and it can be observed that the investigated compounds are no longer 

separated, but the unidentified compound is now well separated from the rest, thus demonstrating 

that it isn’t normetanephrine. 

Based on the linear regression equation obtained for all the investigated compounds, we 

were able to quantify the amount of metanephrine and 3-methoxytyramine directly using the area 

of the respective compound separate from the spiked urine sample and in case of 



normetanephrine the quantification was made using the area obtained by the difference between 

the area of the spiked urine spot (Figure 6 – spots a) and the area of the unidentified compound 

(Figure 6 – spots b). The results (Table 6) show recovery rates between 97.96% and 103.48% for 

all of the investigated compounds. 

 

Figure 7 Image of the plate developed in modified chromatographic conditions 

Table 6 Recovery results of spiked urine sample 

Compound 
Fortified value 

(μg/spot) 

Found value 

(μg/spot) 
Mean recovery (%) 

NMN 
0.400 0.394 98.49 

0.800 0.784 97.96 

MN 
0.400 0.405 101.24 

0.800 0.797 99.59 

3-MT 
0.400 0.419 104.86 

0.800 0.828 103.48 

 

  



2. QSAR studies and lipophilicity determinations 

2.1 Prediction of catecolamines lipophilicity using the Cluj topological indices 

 

Data set and correlating algorithm 

In this study a set of 38 catecholamines and related compounds was submitted to a 

novel QSAR approach based on weighting and alignment of the molecules over a 

hypermolecule, and prediction of lipophilicity using the Cluj topological indices, defined by 

Diudea in [7, 8]. 

In order to develop the QSAR model and to test its applicability, the set catecholamines 

and related compounds was divided randomly in two groups, 28 molecules for the training set 

(molecules no.: 1, 2, 4-6, 8-11, 13, 14, 16-18, 20, 22-25, 27, 28, 30-32) and 10 molecules for the 

test set (molecules no.: 3, 7, 12, 15, 19, 21, 26, 29, 33). 

First the molecules were drawn in HyperChem and each of them was optimized at 

molecular mechanics (MM+) level of theory. The correlating algorithm followed a few steps: (1) 

generate the hypermolecule; (2) calculate the molecular descriptors; (3) find the best regression 

equations by correlating the topological indices with the chosen property (logP) and (4) test the 

predictive capability of the model.  

In order to achieve the model, the structure is encoded in a numerical form. The 

arrangement of substituent groups, on the catecholamine derivatives, can be accounted for by the 

hypermolecule concept viewed as the union of the molecules forming the correlating space. A 

binary vector was assigned to each molecule by aligning them over the hypermolecule (Figure 

8): 1-for a common feature in a given position of the hypermolecule and 0- for an empty 

position. Next, the binary vector was weighted by the mass of “hydride” fragments composing 

each molecule and the weighted vector was used in the data-reduction step and correlation 

weighting procedure, which are described in detail in recent papers from literature [9-12].  

Then the topological indices were calculated using TOPOCLUJ software and the 

following descriptors are procured into consideration for developing the model: sumative 



descriptor (SD), adjacency, connectivity, detour, distance, DS, IE max, IE min, IP max, IPmin 

and randic. 

 

Figure 8 The hypermolecule  

 

 

Results and discussion 

QSAR models – by multivariate regression 

The models were developed using the molecules from the training set and the best 

results are listed below (Table 11). At first, only one-dimensional models were selected. Then 

the most accurate model was picked up. After that, all two-dimensional models produced by 

adding a new attribute to the first model were experimented. Again the best model was chosen 

and supplemented by a new attribute. All the considered regression models must pass a test 

based on the value of Fisher statistics of all their regression coefficients (R2).  

If a term has the value of R2 for the regression equation less than a specified threshold, 

this term is removed from the model. Thus, the process of adding new terms stops either when 

all attributes are included in the model or when no new term can be added without violating this 

criterion.  The best equation is produced by the system based on square of correlation coefficient 

(R2) and the best fit regression is that in which the values for R2 are closer to 1.  



Table 11 Best models in describing log P for the training set of molecules 

No. Descriptors R2 Adjust. R2 
St. 

Error 
F 

1 SD 0.9118 0.9084 0.2477 268.74 

2 IP min 0.3611 0.3365 0.6666 14.696 

3 IP max 0.3145 0.2881 0.6905 11.926 

4 IE min 0.2696 0.2415 0.7128 9.5972 

5 SD, Adjacency 0.9121 0.9050 0.2522 129.64 

6 SD, Randic 0.9119 0.9048 0.2525 129.36 

7 SD, DS 0.9119 0.9048 0.2525 129.35 

8 SD, IE max 0.9119 0.9048 0.2525 129.35 

9 SD, Distance 0.9119 0.9048 0.2525 129.33 

10 SD, Connectivity 0.9118 0.9048 0.2525 129.30 

11 SD, Detour 0.9118 0.9048 0.2525 129.29 

12 SD, Adjacency, Randic 0.9198 0.9098 0.2458 91.799 

13 SD, Adjacency, Distance 0.9188 0.9087 0.2473 90.544 

14 SD, IE max, IP max 0.9178 0.9076 0.2488 89.356 

15 SD, Distance, IP max 0.9176 0.9073 0.2492 89.059 

16 SD, Detour, IP max 0.9163 0.9059 0.2511 87.595 

17 SD, IE min, IP max 0.9148 0.9041 0.2533 85.916 

18 SD, IP max, Randic 0.9129 0.9020 0.2562 83.872 

19 SD, IP min, Randic 0.9129 0.9020 0.2562 83.826 

20 SD, DS, IP max 0.9129 0.9020 0.2562 83.823 

21 SD, Connectivity 0.9125 0.9016 0.2568 83.421 

22 SD, Adjacency, Randic, DS 0.9250 0.9119 0.2429 70.894 

23 SD, Adjacency, Randic, Connectivity 0.9242 0.9110 0.2441 70.128 

24 SD, IP max, Distance, DS 0.9228 0.9094 0.2463 68.776 

25 SD, IP max, Distance, Randic 0.9205 0.9066 0.2501 66.545 

 



Model validation 

For the applicability of the model, a step of external validation was performed on the 

best model obtained. Thus, the test molecules were submitted to the model in order to calculate 

log P using equation no. 22 from Table 11.  The results are presented in Table 12 and Figure 9 

represents the correlation log P-pred vs. log P-exp. 

Table 12 Predicted log P for the test set of molecules using external validation 

 

 

 

 

 

 

 

 

Figure 9 Plot of the regression log P-pred vs. log P-exp 
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3 1.159 0.973 

7 0.774 0.916 

12 0.711 0.688 

15 -0.598 -0.411 

19 0.892 1.049 

21 0.193 0.268 

26 0.185 0.625 

29 -0.094 -0.110 

33 0.643 0.590 

38 0.826 0.640 



The equations thus obtained were used to predict the values of log P for each molecule 

from the test set and data are listed in Table 13. It can be observed in Figure 10, that the 

correlation coefficient of log P-pred vs. log P-exp is far better in this case than in the external 

validation.  

 

Table 13 Predicted log P for the test set using similarity cluster validation 

 

 

 

 

 

 

 

 

Figure 10 Plot of the regression logP-pred vs. logP-exp 

y = 1.0426x - 0.0843
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QSAR models – by genetic algorithms 

Genetic algorithms (GA) are an evolutionary method widely used for complex 

optimisation problems in several fields such as robotics, chemistry and QSAR [13-14]. Using the 

same topological indices (Table 10) QSAR models were generated for describing log P for the 

training set of molecules, using MobiDigs software, which allows searching for regression 

models by developing optimal model populations using genetic algorithms. The best obtained 

models are listed in Table 14. 

 

Table 14 Best models in describing log P for the training set of molecules 

No. Descriptors R2 Adjust. R2 St. Error F 

1 SD, Adjacency, Randic 0.9198 0.9098 0.246 91.77 

2 SD, Adjacency, DS, Randic 0.9250 0.9119 0.243 70.88 

3 SD, Adjacency, IE max, Randic 0.9198 0.9059 0.251 65.97 

4 SD, Adjacency, Distance, Randic 0.9199 0.9059 0.251 66.00 

5 SD, Adjacency, IE min, Randic 0.9200 0.9061 0.251 66.11 

6 SD, Adjacency, IP max, Randic 0.9199 0.9060 0.251 66.08 

7 SD, Adjacency, Detour, Randic 0.9198 0.9059 0.251 65.99 

8 SD, Adjacency, IP min, Randic 0.9199 0.9060 0.251 66.05 

9 SD 0.9118 0.9084 0.248 268.62 

10 SD, Adjacency, Conectivity, Randic 0.9242 0.9110 0.244 70.11 

 

Model validation 

The best obtained model was submitted to external validation in order to test its 

applicability. Thus, for the test molecules log P was predicted using equation no. 2 from Table 

14. The results are presented in Table 15 and Figure 11 represents the correlation log P-pred vs. 

log P-exp. 

 



Table 15 Predicted log P for the test set of molecules using external validation 

 

 

 

 

 

 

 

 

 

Figure 11 Plot of the regression log P-pred vs. log P-exp 
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3 1.194 0.973 

7 0.766 0.916 

12 0.716 0.688 

15 -0.491 -0.411 

19 1.039 1.049 

21 0.212 0.268 

26 0.305 0.625 

29 -0.100 -0.110 

33 0.660 0.590 

38 0.731 0.640 



2.2 Assessment of lipophilicity indices of antioxidant compounds in RP-HPLC 

 

Results and discussion 

 

The group of antioxidants investigated in this study includes compounds with very 

different structures, size and polarity, so it is expected that they have quite different 

chromatographic behavior. Therefore, the methanol fraction contained in the mobile phase was 

optimized so that all compounds have retention times between t0 (dead time) and a maximum of 

15 minutes; in order to shorten the analysis time and also to be able to compare the results for 

different temperatures (22 °C and 37 °C).  

Thus the fraction of methanol, for which a linear range was obtained for logk, ranged 

between 50 % - 60 % for the RP18 and CN columns, 60 % - 70 % for the C8 and C16-Amide 

columns, and 55 % - 65 % for the PFP column; and in all cases an increment of 2.5 % was used 

to obtain the specified 5 concentrations. The strong linear dependence of retention times on the 

methanol fraction was demonstrated by the values of coefficient of determination (R2) higher 

than 0.99 in all cases. 

Furthermore, by evaluating the profiles of k and logk values for all methanol fractions 

determined for both 22 °C  and 37 °C, the regular changes in retention with increasing methanol 

ratios were observed in the case of C8, C16-Amide, PFP (except compound 22) and CN column, 

except RP18. In the case of the four columns, the mk and mlogk parameters were overlapping 

the intermediate (median) value corresponding to the middle concentration of methanol. 

All the specific chromatographic lipophilicity parameters (arithmetic mean of k and 

logk- mk and mlogk, logkw, S, ϕ0, scores corresponding to the first principal component 

obtained by applying PCA to the retention data - PC1/k and PC1/logk) were calculated and 

considered for all investigated columns at 22 °C and 37 °C. By a summary evaluation it can be 

observed that at 22 °C pterostilbene (19) has the highest lipophilicity index for the C8, C16-

Amide and CN columns, pelargonidin (16) for the RP18 column and procyanidin C1 for the PFP 

column, while at 37 °C pterostilbene (19) has the highest lipophilicity index for the RP18, C8, 

and C16-Amide columns, pelargonidin (16) for the CN column and apigenin (16) for the PFP 

column. Also, the lowest lipophilicity index at 22 °C was found for epigallocatechin gallate (15) 



on RP18 column, procyanidin C1 (22) on C8 column, protocatechuic acid (5) on C16-Amide and 

PFP columns, and chlorogenic acid (11) on CN column, while at 37 °C the lowest lipophilicity 

index was found for catechin (9) on RP18 and C16-Amide columns, and procyanidin C1 (22) on 

C8, CN and PFP columns.  

In order to see how the temperature affects the lipophilicity we will refer only to the 

indices logkw and mlogk. First, matrices of correlation between the data obtained at 22 °C vs. 37 

°C for all columns including also the computational lipophilicity values were calculated. 

Accordingly, it can be observed, considering firstly experimental logkw values for the two 

temperatures, the higher correlations were obtained for C16 (r = 0.969), C8 (r = 0.983) and CN (r 

= 0.828). A low correlation was obtained for RP18 (r = 0.463), and surprisingly a very low 

negative value resulted for PFP (r = -0.042). The statistical results concerning the computational 

lipophilicity descriptors indicate that at 22 °C the highest correlation were obtained on PFP (r = 

0.918 with NCNHET,  r = 0.873 with XLogP, and r = 0.855 with ALOGP2) and CN (r = 0.800 

with CLogP and r = 0.620 with MLOGP). On the other hand, at 37 °C the best correlations were 

obtained on CN column (r = 0.533 with ALOGP98) and RP18 (r = 0.504 with CLogP).  

A high correlation resulted also for RP18 column vs. Average value (r = 0.906) 

calculated for all experimental and computational data corresponding to each investigated 

compound; this value is used also in the Heberger algorithm [15-18] as it will be discussed 

below. In addition, the results illustrate a significant correlation between the results obtained on 

all columns (with some exceptions in the case of PFP and RP18) and the following 

computational descriptors: CLogP, MLOGP and Average.  

The statistical evaluation of the correlation results considering the experimental data 

estimated as mlogk and also the computational indices showed that there is a high correlation 

between all experimental lipophilicity indices at the two temperatures, excepting the correlations 

between RP18 and CN (22 and 37 oC; r = 0.342 and r = 0.239), PFP at 37 oC (r = 0.358) and C16 

at 37 oC (r = 0.384). A significant correlation has been observed between the mlogk values and 

CLogP (0.525 < r < 0.723), MLOGP (0.423 < r < 0.679).  

A significant correlation can be observed (with some exceptions) in the case of 

Average, ALogP98 and XLogP2. In addition, the correlation between mlogk values at 22 oC and 

37 oC for PFP becomes highly significant (r = 0.938). The large difference between the 



correlation coefficients obtained for logkw and mlogk at the two temperatures in the case of PFP 

column can be clearly explained by the effect of extrapolation in the first case. 

Moreover, the effect of temperature on the considered chemically bonded columns and 

the chromatographic behavior of the investigated compounds is clearly illustrated by box and 

whisker plot depicted in Figure 16. The larger difference is observed in both cases on the RP18 

and PFP columns and the smaller effect on C16 and CN, two columns with higher polarity. 

Moreover considering the mlogk values a distinct difference is shown between the nonpolar C8 

and C18 columns (positive effect) and the CN, C16-Amide and PFP (negative effect in order CN 

< C16-Amide < PFP).  

 

Figure 16 Box and wiskers corresponding to logkw values, (the first five boxes, from left to 

right) and mlogk values, respectively (the last five boxes) 

 

The discrepancies observed in the case of logkw values can be explained once again by 

the effect of extrapolation and the different chromatographic behavior of some compounds (13, 

16, 18, 19, 22). The statements above are well supported by the results obtained applying 

classical hierarchical cluster analysis (HCA) and PCA on the standardized datasets. The 

dendrogram obtained in the case of dataset including experimental logkw and computationally 

indices illustrates three well separated clusters (Figure 17a).  
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(a)                                                              (b) 

Figure 17 Hierarchical cluster analysis dendrogram showing similarities among different 

chromatographic indices and computationally logP values: (a) logkw, (b) mlogk 

The logkw corresponding to CN and C16 columns at the two temperatures, including 

MLOGP, are in first group, the second combines the logkw obtained on C8 at the two 

temperatures, PFP and RP18 at 37 oC and some computational indices (ALOGP, ALogP98, 

ClogP and Average). The third cluster includes logkw corresponding to PFP and RP18 at 22 oC 

and XLogP2, NCNHET, MLOGP2 and ALOGP2. If the mlogk values are considered, a clear 

distinction between computationally estimated logPs and chromatographic indices is obtained. 

The high similarity of the mlogk is also clearly shown (Figure 17b).        

Applying PCA on the logkw values, the first principal component explains 52.33 % of 

the total variance and the second component 23.90 %: a two component model thus accounts for 

76.23 % of the total variance. The results from the PCA of mlogk values are slightly different. 

The first two PCs account for 75.58 % of the total variance (PC1 54.24 % and PC2 

21.34 %). The patterns obtained by two-dimensional representations of the loadings are more or 

less similar with the HCA-patterns discussed above. In the case of logkw (Figure 18a) two groups 

are clearly separated. The first includes the majority of the experimental logkw indices and two 

computational scales (ClogP and MLOGP), in the second group two logkw (RP18-37 oC and 

PFP-22 oC) appear in the vicinity of other computational scales. Two major groups are present 

also in the case of mlogk dataset. The first group includes all the mlogk indices and two 
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computational scales (CLogP and MLOGP) and in the second group we find only computational 

scales (Figure 18b). 

At the same time, the lipophilic character similarities existing between the investigated 

compounds may be illustrated by the lipophilicity charts (“holistic lipophilicity chart”) obtained 

by 2-D scatterplots of the scores corresponding to the first two principal components. The score 

plots (Figure 19a-b) reveal two groups (more compacted in the case of logkw) and identify two 

outliers: pterostilbene (19) and C1 type proanthocyanidin (22).  

 

(a)                                                                  (b) 

Figure 18 Scatterplot of loadings corresponding to the first two PCs (similar lipophilicity indices 

are positioned close to each other): (a) logkw, (b) mlogk 

 

Two-way joining cluster analysis applied on a dataset formed by the logkw and mlogk 

values obtained for all compounds on all investigated columns at the two temperatures including 

also the computationally calculated indices provides similar conclusions regarding the effect of 

temperature and the chromatographic behavior of the compounds investigated (Figure 20a). The 

most similar results, considering logkw values and the computational scales, for example, are 

easily observed in the case of CN, C8 and also C16 at the two temperatures (green color), and it 

is also clearly pointed out the outlier position of the C1 type proanthocyanidin (22) (yellow 

color). 
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(a)                                                                         (b) 

Figure 19 Scatterplot of scores corresponding to the first two PCs (similar compounds are 

positioned close to each other in two distinct groups: (a) logkw, (b) mlogk 

 

The pattern in the case of mlogk values including also the computational scales 

illustrates a high similarity among all experimentally indices and CLogP, ALOGP and Average 

appear to be closer to them (Figure 20b).  

 

 

(b) 

Figure 20 Two-way joining clustering of logkw (a) and mlogk (b) including computationally 

logP values for all investigated columns and both temperatures 
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In order to get more information and a better understanding of the experimental and 

computational estimation of lipophilicity we applied also a new non-parametric ranking method, 

sum of ranking differences-comparison of ranks by random numbers (SRD-CRRN) [15-18]. 

According to the SRD-CRRN, considering first the logkw values and computational scales, the 

best descriptors are obtained using PFP-22 oC, RP18-37 oC, CN-22 oC and C8–22 oC including 

ALOGP2 (the best), ALOGP and CLogP. Lower ranking values were obtained in the case of 

RP18–22 oC, PFP-22 oC, and MLOGP and MLOGP2 (Figure 21).  

In the case of the dataset comprising mlogk values and calculated LogP values the 

results presented also in Figure 21 indicate ALOGP2, CLogP, ALOGP as the best computational 

scales followed by two groups of lipophilicity measures:  (CN, C16 and RP18 at 22 oC and 

MLOGP) and (XLogP2, C16 and PFP at 37 oC, CN-37 oC and C8-22 oC). The farthest group 

includes C8 and RP18 at 37 oC, and MLOGP and NCNHET) and they be considered as the worst 

lipophilicity measures.          

   

 

(a)                                                                   (b) 

Figure 21 SRD-CRRN Ranking of chromatographically estimated lipophilicity indices logkw (a) 

and mlogk (b), and computationally calculated logP values 
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3. Fingerprinting and authenticity determination of wild fruits and derived dietary 

supplements 

 

3.1 Fingerprinting of Romanian wild fruits 

Results and discussion 

Classification of samples 

TLC Analyzer 1.1 software was used to obtain the digital chromatograms from the 

images of the TLC plates. A plot of the brightness values versus scan distance (in pixels) is 

obtained and this is what the variables represent. In case of the UV and UV-Vis spectra the 

Spectra Manager software was used to digitize them and the variables represent the absorbance 

versus wave length.  

The highly complex data obtained using HPTLC and UV-Vis spectrometry (digital 

chromatograms and digitized UV spectra, respectively) cannot be managed or handled by the 

simple visualization of the data matrix, therefore to be able to see trends and to compare samples, 

the chemometric analysis was required. 

2D plots of PC1 vs. PC2 (Figure 23a-c) were obtained applying principal component 

analysis (PCA) to data matrices of digital TLC chromatograms (15 samples x 1000 variables), 

UV spectra profiles (15 samples x 400 variables) and UV-Vis spectra of DPPH• reduction 

profiles (15 sample x 1000 variables). Also, cluster analysis (CA) was applied to the same data 

matrices and dendograms were obtained using the tree single-linkage clustering (Figure 24a-c). 

As it can be observed, the chemometric analysis, both principal component analysis and 

cluster analysis, managed to classify the samples in a comparable way regardless of the 

analytical technique used. The major clusters obtained using TLC were: C1 – blackthorn (P3, 

P4); C2 - sea-buckthorn (P1, P2); C3 - cornelian cherry (P13, P14) and rose hip (P8); C4 – 

bilberry (P5), rose hip (P6, P7), raspberry (P9, P10), cranberry (P11, P12) and blackberry (P15). 
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a)                                                                          b) 

 

c) 

Figure 23 2D plots of PC1/PC2 obtained from data matrices of a) digital TLC chromatograms; 

b) UV spectra profiles and c) UV-Vis spectra of DPPH• reduction profiles 

 

In case of UV spectrometry the clusters were: C1 – rose hip (P7, P8), blackberry (P15), 

cranberry (P12); C2 - raspberry (P9, P10); C3 - blackthorn (P3, P4); C4 – bilberry (P5), rose hip 

(P6) and cornelian cherry (P13, P14); C5 - sea-buckthorn (P1, P2) and cranberry (P11). 

And for the DPPH• reduction profiles the clusters were: C1 – rose hip (P6, P8); C2 - 

raspberry (P9, P10); C3 – blackthorn (P3) and bilberry (P5); C4 – cornelian cherry (P13, P14) 

and blackberry (P15); C5 - sea-buckthorn (P1, P2), blackthorn (P4), rose hip (P7), and cranberry 
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(P12). The extracts were generally grouped depending on the fruit from which they were 

prepared, this suggesting that there is no significant difference in the content of bioactive 

compounds in fruits purchased from cultivators or natural sources.  

Also, the chemometric methods were able to detect a small difference between the 

composition of sea-buckthorn (P1, P2), blackthorn (P3, P4), raspberry (P9, P10) and cornelian 

cherry (P13, P14), as they were grouped, in most cases, in small clusters of their own, apart from 

the larger group containing the remaining samples (which were classified more or less in the 

same group). 

 

a)                                                                     b) 

 

c) 

Figure 24 Cluster analysis dendograms obtained from data matrices of a) digital TLC 

chromatograms; b) UV spectra profiles and c) UV-Vis spectra of DPPH• reduction profiles; 
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Due to their numerous benefits for the human body less-known fruits like cornelian 

cherry and blackthorn should be introduced in a more balanced diet. That’s why through this 

study we tried familiarizing these fruits among the population because they have the advantage 

of accessibility, being found in the wild flora of Romania.  

Therefore, it can be observed from the chemometric analysis of the TLC digital 

chromatograms and UV spectra, that these fruits are clustered in well delimited groups with no 

apparent similarity to other fruits. But after the determination of the DPPH• scavenging activity 

profiles and chemometric analysis of these, we can notice that the profile of blackthorn is similar 

to that of rose hip, sea-buckthorn and cranberry, this suggesting that blackthorn contains similar 

quantities of anthocyanins and ascorbic acid as rose hip, sea-buckthorn and cranberry.  

On the other hand the cornelian cherry seems to be similar to blackberry, according to 

the chemometric analysis, which points out that the composition of these two fruits are similar, 

possibly with similar effects on the human body.  

 

RSA% - time profile method 

To monitor the scavenging profile of the samples, the absorbance at 517 nm was 

recorded for all concentrations (C0, C1, C2 and C3) at different time intervals (T1–T7: 1, 5, 10, 

15, 20, 25 and 30 minutes after the reaction was started) and the RSA% (% relative scavenging 

activity) was calculated for each obtained absorbance using the formula: RSA % = [(Acontrol - 

Atest)/Acontrol]×100, where Acontrol is the absorbance of the DPPH• solution without test sample 

and Atest is the absorbance of the DPPH• solution plus test sample. 

Simply displaying the values of RSA% in a table isn’t enough when the aim is to 

compare different plant extracts. Thus the representation of the data in a plot (Figure 25) is more 

suitable, managing to outline simultaneously the time-profiles for different concentrations of all 

samples.  

Figure 25 shows that the measured radical scavenging activity and reaction kinetics of 

different extracts depend on the applied sample concentration. Thus the DPPH• is gradually 
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consumed for lower concentrations (C0, C1 and C2) with an ascending RSA%-time profile, but 

in most cases, for higher concentration (C3) of extract the reaction reaches an equilibrium after 

the first minute. Also the results indicate that the samples which have a steeper slope of the time-

profile are samples with higher antioxidant activity, for example P3, P4, P6 and P7. 

 

 

Figure 25 DPPH• scavenging activity-time profiles, expressed as RSA% at four different 

concentrations; C0 = 3.33% extract, C1 = 8.33% extract, C2 = 16.66% extract and C3 = 25% 

extract respectively. 
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3.2 Authentication and fingerprinting of dietary supplements derived from berries 

 

Results and discussion 

Analytical information acquirement  

Considering the investigated samples, (herbal medicines based on cranberry, bilberry 

and sea-buckthorn extract/fruit) their therapeutic use is derived mainly from their high content of 

polyphenols. Consequently the analytical techniques used in this study were selected and 

optimized accordingly.  

The images of the chromatographic plates are presented in Figure 26. There can be 

observed how the chromatographic image is changing while the plate is sprayed with NTS 

reagent for highlighting the polyphenols (image (a) vs. image (b)).  

 

a) 

 

b) 
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c) 

Figure 26 The images of the TLC plates: a) UV observed compounds; b) polyphenols and c) 

antioxidants 

 

There can be seen that the samples presents significant amount of polyphenols, but their 

positive reaction with DPPH was lower than expected. However, some of the samples are very 

poor in chemical composition, so their biological activity is expected to be very low. By 

carefully examination of the TLC chromatograms obtained with TLC Analyzer and also the UV–

Vis spectra corresponding to the investigated berries there may be appreciated that they present 

some significant differences (Figure 27). 

The cranberry chromatograms and spectra present the lowest level of specific 

characters. On the other side, the bilberry and sea-buckthorn present specific peaks in similar 

region. The UV-Vis spectra are more specific, since there may be observed the peaks associated 

to berries fruit (around 450 nm for sea-buckthorn and 550 nm for bilberry). The cranberry 

supposed to present a specific peak around 650 nm, corresponding to red region. However, it 

cannot be identified on the spectrum and this is associated to lower extraction efficiency in case 

of cranberry.  

Anyway, the extraction conditions were very good for the rest of the investigated 

samples so they were maintained and used for dietary supplements samples.  
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a)                                                                        b) 

  

c)                                                                        d) 

 

e) 

Figure 27 The TLC chromatograms (UV observed compounds (a); polyphenols (b)) and UV-Vis 

spectra (zero order derived spectra (c); first order derived spectra (d); normalized spectra (e)) 

obtained for cranberry (red), bilberry (purple) and sea-buckthorn (yellow) 
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In case of HPLC analysis, to achieve efficient resolution and as many signals as 

possible, mixtures of solvent A – water or acidified water (0.1% formic acid) and solvent B – 

methanol or  methanol : acetonitrile (1:1), as mobile phase were tested. Finally, solvent A –

acidified water (0.1% formic acid) and solvent B –methanol : acetonitrile (1:1), were selected as 

the best elution system, as the acidified water gave better peak shapes and the mixture of 

methanol and acetonitrile had better elution power.  

Also, isocratic and several gradient conditions, selected from literature and adapted, 

were tested to optimize the HPLC separation. As the sample’s components were barely separated 

under isocratic conditions, gradient elution was used instead and the best results were obtained 

using an adapted version of our previous work. 

On the other hand, the MEKC method is generally applicable for the separation of 

neutral components and this technique also needed some optimisation. The bioactive compounds 

from the investigated samples have in their structure aromatic rings and differ in their pattern of 

hydroxylation, methylation and glycosylation. Accordingly they could be ionisable or neutral. 

The interaction between the polyphenols and the negatively charged micelles of the buffer 

depends on the charge value and the hydrophobicity of the compounds.  

The MEKC has a resolving effect on the neutral polyphenols, while the charged ones 

have small interactions with the micelles. Also, as the polyphenols strongly interact with the 

micelles due to the hydrophobic properties therefore the resolution may be varied by modifying 

the micellar phase. The addition of organic solvents to the background electrolyte containing 

surfactant (SDS) is commonly used modifier in order to improve the selectivity [19].  

At pH 9.3 in borate buffer polyphenols are negatively charged due to the dissociation of 

phenolic groups (pK≈9), thus they migrate according to their charge-to-size ratio. The 50 mM 

concentration of SDS resolves the neutral components. The borate has a complexation effect on 

the glycosides enhancing selectivity. The post-conditioning procedure was also optimized, based 

on our previous work [20-21], thus the capillary was flushed with 100 mM of SDS for 10 min, 

after daily use in order to remove adsorbed components from the capillary wall. 
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As for the detection of the bioactive compounds, DAD detection was considered to be a 

good choice, as the structure of these compounds allows them to have strong UV absorbance at 

different wavelengths. Therefore, in both MEKC and HPLC analysis, different UV wavelengths 

were tested: 200, 214, 250, 280, 365 nm and 360 and 280 respectively, and the best was chosen 

based on the highest density of detected peaks.  

Thus, the best results were obtained using 200 nm for the MEKC analysis and 280 nm 

for the HPLC analysis, examples of electropherogram and chromatogram are presented in 

Figures 28 and 29.  

 

Figure 28 MEKC polyphenolic profile of sample 12, regisrered at 200 nm, using 50 mM 

disodium tetraborate and 50 mM sodium dodecyl sulfate (pH = 9.3) as BGE 

 

 

 

Figure 29 RP-HPLC polyphenolic profile of sample 12 regisrered at 280 nm, using a mixture of 

A (H2O with 0.1% formic acid) and B (Metanol : Acetonitrile, 1:1 v/v) 
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Chemometric data analysis 

The herbal medicines are processed products that retain and concentrate a part of the 

bioactive compounds of the raw material that they are made of. However, if trying to classify 

them according to this aspect, a visual differentiation among different samples could be done, but 

the process would be subjective and also small differences between related samples might be 

missed.  

Thus, in order to obtain the authentication of herbal medicines, more advanced methods 

of discrimination are required, and several chemometric approaches were tested (Cluster 

Analysis (CA), Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA)), 

considering the sample’s polyphenolic profiles (HPTLC or HPLC chromatograms, UV spectra 

and electropherograms, respectively) as analytical information. 

The first multivariate exploratory technique used was CA. The dendrograms were 

obtained by applying CA on the digitized HPTLC chromatograms (19 samples × 1000 

variables), HPLC chromatograms (19 samples × 900 variables), UV-Vis spectra (19 samples × 

501 variables) and MEKC electropherograms (19 samples × 854 variables).  

Ward’s method of amalgamation for cluster building has been selected, because it uses 

an analysis of variance approach to evaluate the distance between clusters. Moreover, the 

distance between clusters was computed by squared Euclidean method, which is not affected by 

the addition of new objects to the analysis or by outliers. These selections should lead to the best 

classification offered by CA.  

The dendrograms obtained by applying the CA on the digitized electropherograms, 

HPTLC and HPLC chromatograms and zero order UV-Vis spectra offer some information about 

the similarities/dissimilarities observed between the analyzed samples which are being mostly 

associated according to the nature of barriers used for production. 

Generally good clustering was obtained for samples containing cranberry and sea-

buckthorn, regardless of the analytical technique that was used for the separation. 
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a)                                                                        b) 

 

c)                                                                        d) 

Figure 30 Dendograms obtained by applying Cluster Analysis on data matrices of digitized: a) 

electropherograms, b) HPLC chromatograms, c) HPTLC chromatograms and d) zero order UV-

Vis spectra 

 

But, as it can be observed in case of HPLC and MEKC analysis, sample 9 was the most 

differentiated from the others, forming a group of its own, and this can be attributed to the fact 

that this sample contains the least amount of extract/tablet, and these techniques are apparently 

more sensitive.  
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Furthermore, it is interesting to observe the classification of the herbal medicines 

obtained by combination of the selected berries. Sample 19 is a mixture of different species, 

amongst which may be mentioned the cranberry and bilberry. According to all classification, the 

sample was stronger associated to the cranberry based products.  

Samples 17 and 18 contain both bilberry and sea-buckthorn, but their classification was 

quite different. For example, sample 18 was weekly associated to a group, while 17 was 

classified differently by HPTLC and HPLC chromatograms vs. spectra and electropherograms. 

The dendrograms obtained on the HPTLC and HPLC chromatograms was placing sample 17 

more closely to the cranberry samples, while the dendrograms corresponding to the spectra and 

electropherograms was indicating that the sample is closer to sea-buckthorn.   

In order to confirm the CA observation, and for a better visualization of samples 

distribution the PCA was applied on the covariance matrices of the digitized spectra and 

chromatograms. PCA was used to reduce the dimensionality of the original dataset by explaining 

the correlation among a large number of variables on the basis of a smaller number of principal 

components (PCs) without much loss of information. The projected dots of the 

electropherograms, HPTLC and HPLC chromatograms and spectra were localized in a confined 

cluster in the 2D-projection plot of PCA (Figure 31).  

As it is presented, the first two PCs obtained from the HPLC chromatographic data 

account for more than 84% of the variance, more than 78% of the variance for the HPTLC 

chromatographic data, more than 89% of the variance for the UV-Vis spectrometric data, while 

the two PCs corresponding to electrophoretic data account for approximately 56% of the 

variance, respectively. The obtained PCA patterns, although more illustrative, are in good 

agreement with those obtained with CA. Also, is easy to observe that the samples are generally 

shuffled, this being a result of the large abundance of flavonoids in the herbal medicines, which 

is leading to a lower discrimination of the samples.  

Finally, it is interesting to see that sample 18 has the same tendency of being separated 

from the rest of the samples regardless of the analytical technique used for separation, this 

confirming once more that it is highly different, and it cannot be associated to any of the raw 

materials used for its preparation. 
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Furthermore, the low discrimination obtained in all cases, can be attributed to the fact 

that most of the samples are mixtures of different ingredients (extracts/fruits) which contain large 

amounts of flavonoids and polyphenolic compounds and they cannot be discriminated by any of 

the multivariate classical methods (CA and PCA). Regarding PCA it is well documented that in 

many cases, more than two or three significant PCs are necessary to adequately characterize the 

data. In these cases there are more possible graphs and, as a direct consequence, the information 

retained in a larger number of PCs is dissipated. 

 

a)                                                                    b) 

   

c)                                                                             d) 

Figure 31 2D projections of PC1 vs. PC2 obtained by applying PCA on data matrices of 

digitized: a) electropherograms, b) HPLC chromatograms, c) HPTLC chromatograms and d) 

zero order UV-Vis spectra 
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However, this situation can be proficiently resolved by using a combination of PCA 

with LDA which could lead to a more efficient discrimination of the investigated samples, 

according to our previous work and other relevant applications [22, 23]. In this way, the variance 

covariance matrix of the new variables becomes a diagonal matrix, because the scores are 

orthogonal and the number of PCs is less than or equal to the number of samples.   

 

a)                                                                      b) 

   

c)                                                                         d) 

Figure 32 Plot of Root1 vs. Root2 scores obtained by applying PCA-LDA methodology on data 

matrices of digitized: a) electropherograms, b) HPLC chromatograms, c) HPTLC chromatograms 

and d) zero order UV-Vis spectra 
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LDA is a supervised classification technique based on linear discriminant functions 

which maximize between class variance and minimize within-class variance. The Euclidean 

distance was used in the LDA algorithms to classify unknown samples and the stepwise 

algorithm was used to extract the most important variables.  

The results obtained by applying LDA to the scores corresponding to the first 15 

principal components for the HPLC and MEKC analyses and the first 12 principal components 

for the HPTLC and UV-Vis spectrometry analyses, respectively, indicate a total separation of 

samples (100%) within four groups, in good agreement with the nature of the raw material used 

for their preparation and independently of the separation technique.  

The Root1–Root2 score plots (Figure 32a-d) illustrate well differentiated groups of 

samples based on cranberries, bilberries, sea-buckthorn and mixtures, without any overlapping.  

Although the concentration of fruit/extract was very different in each sample, the 

proposed combination of PCA-LDA was able to successfully classify the samples according to 

the nature of their raw material. Also, the results indicate that regardless of the separation 

technique, the classification of samples was made along the Root1 axis for the mixtures (samples 

17, 18 and 19) and mostly along the Root2 axis for the other samples. Moreover, all the above 

presented analyses are indicating that the combination of PCA with LDA is leading to more 

powerful classification and discrimination of samples. 
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Chapter IV – Concluding remarks 
 

The present PhD thesis focuses on three main objectives, regarding the application of 

chemometrics in different fields of analytical chemistry, in order to improve the processing and 

interpretation of the instrumental signal. 

The first objective was to demonstrate how chemometric methods represent important 

tools in the validation of newly developed methods. For this, a new method of analysis was 

proposed using digital thin-layer chromatography for the investigation of catecholamines’ 

metabolites from biological samples. 

Therefore, a convenient, sensitive and rapid TLC - image processing method was 

developed and validated for quantitative evaluation of acidic catecholamine metabolites (HVA, 

VMA, DOMA, DOPAC) and also the metabolites that are associated with adrenal tumours when 

hyper-secreted in urine (NMN, MN and 3-MT). The advantages of the proposed method are the 

rapid measurement of metabolites using inexpensive equipment and, in addition, this method 

does not require laborious sample clean-up procedures or a complicated pre-derivatization step.  

The high sensitivity with DPPH• detection and the high quality of the validation 

parameters (accuracy and precision, LOD and LOQ) showed that this method should be useful 

for rapid preliminary biomedical investigations of the acidic metabolites of catecholamine in 

case of diseases associated with a hyper excretion of these compounds in urine. Furthermore, the 

simple sample preparation, inexpensive equipment and short analysis time are grounds that 

recommend this method for the rapid screening of pheochromacytomas and other adrenal 

tumours. 

Further, for the second objective the chemometric methods were used for modeling and 

predicting lipophilicity: on one hand for catecholamines and related compounds, using the 

algoritm proposed by the TopoCluj group, and on the other hand for antioxidant compounds with 

different structures, using various HPLC experimental conditions. 
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In the first study of this chapter, a set of thirty eight catecholamines and related 

compounds was submitted to a novel QSAR method based on the alignment of all structures over 

a hypermolecule, thus obtaining a powerful topological descriptor, the summative descriptor 

(SD), for the prediction of lipophilicity (log P). The set of molecules was divided in two groups, 

the first group (training set) was used to develop the QSAR models by multivariate regression 

and also by genetic algorithms, and the second group (test set) was used to validate the obtained 

models.  

The results indicate that the QSAR model obtained using multivariate regression has 

good predictive capacity in case of external validation but in case of validation by similarity 

clusters the results were significantly improved, from a coefficient of correlation of 0.8773 in the 

first case, to 0.9263 in the second case, respectively. Also the QSAR model obtained using 

genetic algorithms provided similar results, with a coefficient of correlation of 0.9226, thus 

supporting the idea that the new QSAR approach is of great use in predicting the lipophilicity of 

catecholamine related compounds. 

The second study of this chapter consisted of investigations concerning the lipophilicity 

of a group of antioxidant compounds using reversed-phase high-performance liquid 

chromatography. Different mixtures of methanol-water as mobile phase and several stationary 

phases, such as RP18, C8, C16-Amide, CN and PFP were tested, and the results indicated 

pterostilbene as the most lipophilic compound.  

Significant correlations were observed between different experimental indices of 

lipophilicity at the two temperatures and some computed logP scales (CLogP, MLOGP, 

ALogP98). The mlogk values were the most correlated with the computed indices. In addition, 

the results obtained in this study by applying multivariate exploratory techniques, like HCA, 

PCA or the two-way joining clustering and profile representation illustrated more or less the 

same (dis)similarities of the stationary phases and they were well supported by the ranking scales 

generated applying SRD-CRRN algorithm. Overall, the results (mainly mlogk indices) illustrate 

a similar and small effect of temperature on the chromatographic behavior of the investigated 

compounds in all cases. In consequence, we concluded that the mean (mlogk) is a better 

lipophilicity estimator, as it is not affected as much by experimental and model errors like in the 
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case of the extrapolation estimator (logkw), conclusion which was also pointed out in the 

literature and well supported by these results. 

And finally, the third objective was to point out the necesity of chemometric tools for 

obtaining holistic and comprehensive fingerprints and for characterisation and authentication of 

various samples. For this, the fingerprinting analysis was applied for wild berries and derived 

dietary supplements, using various analytical techiques assisted by different chemometric 

aproaches.   

Fingerprinting of Romanian known and less-known berries was carried out based on 

thin-layer chromatography profiles, spectrometry using the UV spectra and DPPH• scavenging 

profiles. The chemometric analysis, which involved cluster analysis (CA) and principal 

component analysis (PCA), was successfully coupled with analytical techniques in order to 

classify the berry samples. Also, the time profiles of the antioxidant activity, expressed as 

RSA%, were determined for the first time for these types of samples, at four different 

concentrations. In addition, the less-known berries, cornelian cherry and blackthorn, were found 

to have similar antioxidant profiles to blackberry and rose hip, sea-buckthorn and cranberry, 

respectively. 

Furthermore, it has been proved that the dietary supplements can be classified according 

to the raw material used for their production. The simple chemical methodologies may not offer 

information regarding the herbal medicines nature, but combined with adequate chemometric 

methodologies the samples may be discriminated and authenticated.  

In addition, there may be concluded that CA and PCA may offer some preliminary 

results, but the combination of PCA with LDA leads to more powerful classification and 

discrimination of samples, according to their raw material composition. Also, because the results 

did not show significant differences by using different separation techniques, it is suited to use 

either of them for similar experiments, with respect to their advantages/disadvantages.  

Moreover, the simple and efficient methodology developed in this chapter might be 

used for screening and authenticity control of different products (herbal medicines, drugs, food, 

etc.) and can be implemented in any quality control laboratory. 
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