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Introduction

The purpose of the present thesis is to study boundary value problems of mixed type
(Dirichlet-Neumann, Dirichlet-Robin) for various elliptic systems in fluid mechanics and the
theory of porous media. In order to do so, other types of boundary value problems (BVPs) are
also examined, concerning Dirichlet, Neumann and Robin boundary conditions.

Let D ⊂ Rn, n ≥ 2 be a Lipschitz domain, wherein a viscous incompressible fluid is located
and let Γ denote the boundary, Γ := ∂D. For a given constant α > 0, the normalized Brinkman
system consists of the following equations

4u− αu−∇π = f , div u = 0, in D (0.0.1)

where u is the velocity field and π is the pressure field of the fluid flow under consideration.
Moreover, f is called the driving force, which acts upon the fluid flow. For α = 0 the system
(0.0.1) reduces to the normalized Stokes system consisting of the following equations

4u−∇π = f , div u = 0, in D. (0.0.2)

For problems in which the inertia of the fluid is not negligible, one has to consider the
Darcy-Forchheimer-Brinkman system, given by

4u− αu− κ|u|u− β(u · ∇)u−∇π = f , div u = 0, in D. (0.0.3)

Note that the physical properties of the fluid and the properties of the porous medium in which
it is located are described by the parameters α, κ, β > 0 (see Chapter 11. for a discussion of the
numerical results related to these systems and the description in [87, p. 17]).

When the nonlinear term does not appear in the expression of (0.0.3), i.e., the constant
β = 0, we say that we consider the semilinear Darcy-Forchheimer-Brinkman system. Similarly,
in the case κ = 0, we highlight the absence of the semilinear term by calling the system the
nonlinear Darcy-Forchheimer-Brinkman system. Another special case of system (0.0.3) is the
well-known Navier-Stokes system obtained when α = 0 and κ = 0, i.e.,

4u− β(u · ∇)u−∇π = f , div u = 0, in D. (0.0.4)

Moreover, the boundary conditions associated to the above systems can be of Dirichlet,
Neumann or Robin type over the whole boundary

γ+u = h, t+
α (u, π) = g, t+

α (u, π) + λγ+u = l on Γ, (0.0.5)

where the trace operator γ+, the conormal derivative operator t+
α and a matrix value function

λ are given in the sequel. Let us point out that the ”sense” in which these operators are con-
sidered, plays a fundamental role in the understanding of the various boundary value problems
throughout this thesis. On the other hand, in order to formulate mixed boundary value prob-
lems, the boundary Γ of the Lipschitz domain D needs to be decomposed into two parts ΓD and
ΓN . The precise formulations are given in Chapter 3 and Chapter 4, respectively, depending on
the regularity of the boundary data considered.
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INTRODUCTION 4

Before we begin with a brief historical overview of the scientific literature related to such
boundary value problems, let us mention the importance of these boundary problems regarding
special mixed type boundary conditions. Many engineering problems nowadays deal from the
mathematical point of view with such boundary value problems (see, e.g., [5, 6, 11, 77, 85, 86, 7]).
The flow of a fluid in a pipe is modeled often by the Navier-Stokes equations and Dirichlet type
conditions are imposed on the pipe walls, whereas the inlet of the fluid is given by Dirichlet
or Neumann boundary conditions depending on the known data, while the outlet is mostly
simulated by Neumann boundary conditions based on the pressure of the fluid. Depending on
the surface tension between the fluid and the pipe wall, an additional sliding parameter can
be imposed and leads to Robin boundary conditions. Other interesting practical applications,
which are directly related to the problems that are analyzed in this thesis, can be consulted in
[46], [76], [109], [31, 87].

Various different methods have been employed in order to study boundary value problems
in fluid mechanics, such as the variational approach [61], methods of potential theory and
boundary domain integral methods based on the parametrix (or the Levi function). We begin by
mentioning the work of Fabes, Kenig and Verchota [30], which reduces the study of the Dirichlet
and Neumann problems for the Stokes system to the analysis of some related boundary integral
equations (BIEs). They proved the well-posedness for the Regularity and Neumann problems
when the boundary data belong to Lp−based spaces, with p near 2. Interpolating the weak
maximum result obtained by Dahlberg and Kenig in [24] with the result in [30], Shen obtained
in [101] the well-posedness result of the Dirichlet problem for the Stokes system with data in Lp
whenever 2 < p <∞. Mitrea and Wright [86] obtained several well-posedness results for a large
spectrum of boundary problems for the Stokes system in Lipschitz domains, with boundary
data in various spaces.

Regarding the Laplace system, I. Mitrea and M. Mitrea provided sharp well-posedness results
in [83] for the Poisson problem with mixed Dirichlet-Neumann boundary conditions on bounded
Lipschitz domains in R3, where the boundaries satisfy a special geometric condition (related
to the notion of creased Lipschitz domain), and where the data belongs to Sobolev and Besov
spaces. Pipher and Verchota [90] and Dahlberg and Kenig [22] constructed the Green function
for the biharmonic system with Dirichlet-Neumann boundary conditions in Lipschitz domains in
three dimensional Euclidean settings. Taylor, Ott and Brown in [106] studied mixed Dirichlet-
Neumann problem in Lp-based Sobolev spaces for the Laplace equation in a bounded Lipschitz
domain in Rn with general decomposition of the boundary. Costabel and Stephan in [21]
analyzed mixed boundary value problems for the Laplacian in polygonal domains by using a
boundary integral approach. Precup [93] obtained existence and localization results of positive
nontrivial solutions for semilinear elliptic variational systems based on the Laplace equation.

Moreover, let us mention that similar well-posedness results were obtain for the Lamé system
by Dahlberg and Kenig in [24]. Using the well-posedness result for the mixed Dirichlet-Neumann
boundary value problem for the Lamé system obtained by Brown and Mitrea [12], Brown et al.
[13] provided well-posedness results for the mixed Dirichlet-Neumann problem for the Stokes
system on creased Lipschitz domains in R3, by reducing its study to that of a family of Fredholm
operators related to the the Lamé system and to some useful Rellich-type estimates.

The solvability of the mixed Dirichlet-Robin problem for the Brinkman system in a creased
domain with boundary data in L2-based spaces has been provided by Kohr, Lanza de Cristoforis
and Wendland in [51, Theorem 6.1]. Ott, Kim and Brown [88] constructed the Green function
for the linear Stokes system in a Lipschitz domain in R2, by imposing some conditions on
the decomposition of the boundary. Also, we mention that the Laplace system on a Lipschitz
domain with a general decomposition of the boundary has been treated in [106]. Boundary
integral equations for a mixed boundary value problem for the biharmonic equation has been
developed by Cakoni, Hsiao and Wendland in [15] (see also [23]).

Combined methods, such as boundary integral methods and fixed point theorems have been
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INTRODUCTION 5

successfully employed in the analysis of boundary value problems for linear elliptic systems
with nonlinear boundary conditions and for nonlinear elliptic systems. Recently, Kohr, Lanza
de Cristoforis and Wendland [50] applied boundary integral methods to get existence results
of nonlinear Neumann-transmission type problems for the Stokes and Brinkman systems on
Lipschitz domains and with boundary data in various Lp, Sobolev, or Besov spaces. Layer
potential techniques were employed to the Stokes and Brinkman systems in [53] in order to
analyze Poisson problems for semilinear Brinkman systems on Lipschitz domains in Rn with
Dirichlet or Robin boundary conditions in various Sobolev and Besov spaces. An integral
potential method for transmission problems with Lipschitz interface in R3 for the Stokes and
Darcy-Forchheimer-Brinkman systems and boundary data in weighted Sobolev spaces has been
proven in [49].

In [18, 19], Chkadua, Mikhailov and Natroshvili analysed direct segregated systems of
boundary-domain integral equations, which are equivalent to mixed Dirichlet-Neumann prob-
lem for a scalar second-order divergent elliptic partial differential equation (PDE) with variable
coefficients in interior and exterior domains in R3 (see also [17] for the mixed problems with
cracks and [80] for united boundary-domain integral equations). Moreover, Kohr, Mikhailov and
Wendland [56] obtained well-posedness of transmission problems in Lp-based weighted Sobolev
spaces for the Stokes and Navier-Stokes systems with anisotropic L∞ strongly elliptic coeffi-
cients, located in complementary Lipschitz domains of Rn, (n ≥ 3), by employing a variational
approach.

The thesis is structured into three parts. The goal of the first part is to study mixed
boundary value problems for the Brinkman and Darcy-Forchheimer-Brinkman systems on
a Lipschitz domain in the Euclidean setting. To this end, we require some well-posedness
results for some of the main boundary value problems, such as the Dirichlet, Neumann
or Robin boundary problems for the mentioned systems. In the second part, we extend
the previous results to the setting of compact Riemannian manifolds. We analyze the
well-posedness results for mixed Dirichlet-Neumann boundary value problems for the Stokes
system, the Oseen system and the Navier-Stokes system in Lipschitz domains on compact
Riemannian manifolds. Moreover, we obtain also existence and uniqueness results for the
transmission problem for the Oseen system and the Brinkman system. The last part is
concerned with numerical results related to the well-posedness results obtained in the previous
parts. We study the special case of the lid-driven cavity problem for a rectangular cavity
in two dimensions and analyze the dependence of the main physical parameters for the fluid flow.

Part I is divided into four chapters related to boundary value problems in Euclidean
settings.

• Chapter 1 is an introduction of the main definitions, notations, spaces and operators
that are needed throughout this thesis. We begin with the definitions of the Lipschitz
domain, the creased Lipschitz domain and the dissection of the boundary needed for mixed
boundary value problems. We continue with a brief presentation of the Lebesgue, Sobolev
and also Besov spaces defined on Rn, on Lipschitz domains, on Lipschitz boundaries and
on subsets of Lipschitz boundaries or admissible patches. Next, we introduce the trace
operators and the conormal derivative operators related to the Brinkman and Stokes
systems. Let us remark that the equivalence theorem between the non-tangential and
the Gagliardo trance operator, as well as the equivalence between the non-tangential,
canonical and classical conormal derivative operators are obtained in [41, Theorems 2.5
and 2.13].

• Chapter 2 begins with the introduction of the fundamental solution for the Brinkman
system, which enables one to define the main layer potential operators, such as the New-
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INTRODUCTION 6

tonian, the single- and the double-layer operators. We investigate the mapping properties
of these layer potential operators in various spaces, the jump relations over the boundary
of the Lipschitz domain and the Green representation formula for the solution for the
Brinkman system, as they were obtained in [41, Section 3].

• Chapter 3 is concerned with boundary value problems of mixed Dirichlet-Neumann type
for the linear Brinkman system and the semilinear Darcy-Forchheimer-Brinkman system
on creased Lipschitz domains in Rn, n ≥ 3, when the boundary data belong to Lp−based
Sobolev spaces with p in a neighborhood of 2, as they have been obtained by us in
[41, Section 5 and 6]. In order to derive the well-posedness results for the two systems
under consideration, we require the well-posedness result for the Dirichlet and Neumann
boundary problems for the Brinkman system with boundary data in Lp−based spaces
(for related results, we refer to [100, Theorem 5.5], [86, Corollary 9.1.5, Theorems 9.1.4,
9.2.2 and 9.2.5] and [85, Theorem 7.1]). Special attention is given to the ”meaning” of
the trace operator and the conormal derivative operator, i.e., we mention the cases when
the operators are considered in the non-tangential sense or in the Gagliadro and canonical
sense (we refer to Sections 1.5 and 1.6 of Chapter 1, or to [41, Sections 2.1 and 2.2]).

• In Chapter 4 we focus our attention on the weak solution of boundary value problems for
the Brinkman system on Lipschitz domains located in R2. Thus, we are able to consider a
variational formulation for the direct boundary integral equations derived from the mixt
boundary value problems. The main sources for this chapter are [37] and [40], but we
refer the reader also to [61], [76]. Moreover, the assumption that the boundary data
belong to some fractional Sobolev spaces enables us to study the mixed Dirichlet-Robin
boundary value problems for the nonlinear Darcy-Forchheimer-Brinkman system (cf., e.g.,
[37, Theorem 2.9], see also [40, Theorem 3.2] for the Robin problem).

Part II is structured into two chapters and present boundary value problems in fluid me-
chanics on compact Riemannian manifolds. We study mixed Dirichlet-Neumann boundary value
problems for the Stokes, Oseen and Navier-Stokes systems on an infinitely smooth, compact,
boundaryless Riemannian manifold M of dimension m ≥ 2. However, we are restricted to the
dimension m = 2 or 3, whenever the Navier-Stokes system is involved, due to some compactness
embedding results that are required in our analysis.

The main elliptic operator that appears in the structure of the Stokes system on a compact
Riemannian manifold is

L := Def∗Def = −∆ + dδ − 2Ric, (0.0.6)

where Def is the deformation operator, ∆ := −(dδ + δd) is the Hodge Laplacian, which is
defined in terms of the exterior derivative operator d and the exterior co-derivative operator δ
and where Ric is the Ricci tensor of M . Then the ”incompressible” Stokes system on a smooth,
compact Riemannian manifold is given by the following linear PDE system

Lu + dπ = 0, δu = 0 in D, (0.0.7)

where the unknowns u and π can be considered as the velocity and pressure fields of a fluid
flow in a Lipschitz domain D ⊂ M . Similarly, for α > 0, the Brinkman system is described by
the following equations

Lu + αu + dπ = 0, δu = 0, in D. (0.0.8)

For a fixed divergence-free vector field ω, the non-homogeneous Oseen system consists of the
following equations

Lu +∇ωu + dπ = f , δu = 0, in D, (0.0.9)

6



INTRODUCTION 7

where ∇ is the Levi-Civita connection on M (for further details of these operators we refer to
Chapter 5). For β > 0, the nonlinear system

Lu + β∇uu + dπ = f , δu = 0, in D, (0.0.10)

is called the Navier-Stokes system. Here ∇uu is the covariant derivative of u with respect to
u. As in the Euclidean setting, the physical properties of a fluid flow modeled by the system
(0.0.10) are described by the constants α and β.

The study of fluid flows on compact, smooth Riemannian manifolds plays an important role
in the analysis of the fundamental equations of meteorology and oceanography as pointed out
in [109, 71] (see also [108, 26]). Also, other types of flow equations, e.g., the Stokes system
or the Darcy-Forchheimer-Brinkman system, can be considered over compact surfaces (e.g., on
the sphere S2) and model flow of water or other viscous fluids, passing through porous rocks
or porous soil (cf, e.g., [55]). Mixed boundary conditions describe in a most intuitive way the
behavior of a shallow ocean, where the shore are represented by homogeneous Dirichlet condi-
tions, the inlet streams by Dirichlet or Neumann conditions and the output flow by Neumann
boundary conditions, since they are normally described by pressure outlets.

Boundary integral methods have also been used for the study of boundary value problems
for elliptic systems on compact Riemannian manifolds. Note that the Dirichlet problem for the
Stokes system on arbitary Lipschitz domains, with boundary data in L2 based spaces has been
studied by Mitrea and Taylor [85]. Moreover, Dindós and Mitrea [25] studied the well-posedness
of the Poisson problem for the Stokes and Navier-Stokes systems on C1 and Lipschitz domains
on compact Riemannian manifolds by using boundary integral methods.

Mitrea and Taylor [85] and Dindos and Mitrea [25] have used the theory of pseudodifferential
operators in order to show the existence of the fundamental solution for the Stokes system on
compact Riemannian manifolds. One of the main assumptions needed in order to construct the
fundamental solution for the Stokes system, is the assumption that the manifold lacks nontrivial
Killing fields (see Definition 5.1.3), which guarantees that the deformation operator Def given in
(5.1.14) is invertible. The assumption that the Riemannian manifold has no nontrivial Killing
fields imposes no restrictions, since the manifold can be altered in order to satisfy this condition.
A proof of this fact can be found at the beginning or Section 3 in [85].

An alternative technique to that of Mitrea and Taylor [85] has been developed by Kohr,
Pintea and Wendland [57, Section 3] (see also [58]) in order to obtain the fundamental solution
in the general case of Agmon-Douglis-Niremberg elliptic operators on compact Riemannian
manifolds.

In their recent work, Kohr and Wendland [63] have developed the potentials theory for
the Stokes system with non-smooth coefficients of class L∞ on compact Riemannian manifolds,
starting from a variational method. In the particular case of the smooth coefficients, the authors
found many of the results that have been previously obtained by Mitrea, Taylor [85]. Kohr
and Wendland [62, Theorem 7.9] have obtained well-posedness results on compact Riemannian
manifolds for the nonhomogeneous Poisson problem of mixed type for the Brinkman system
with nonsmooth coefficient, when the solution belongs to some Lp−based Sobolev spaces with p
in a neighborhood of 2. Kohr and Wendland [63] have recently obtained the equivalence between
some transmission problems for the Stokes system with nonsmooth coefficient in complementary
Lipschitz domains on compact Riemannian manifolds, by employing the remarkable Nec̆as-
Babus̆ka-Brezzi technique and by proving a well-posedness result of their mixed variational
counterparts.

Let us mention, that the study in this second part is based on a powerful approach based on
layer potential theory and indirect variational methods in order to obtain well-posedness results
for various boundary value problems.

This part of the thesis is structured into two chapters as follows:

7



INTRODUCTION 8

• Chapter 5 begins with the main geometrical definitions and concepts that are needed in
the study of boundary value problems on compact Riemannian manifolds. An important
part is the definitions of the Levi-Civita connection ∇, the deformation operator Def and
the second order elliptic differential operator L (see also (0.0.7)). Next, we introduce the
fundamental solution for the Stokes system and the associated layer potential operators.
The chapter ends with some original results regarding the invertibility of the single-layer
potential operator and the hypersingular potential operator obtained in [38, Theorem 4.2],
as well as some compactness properties of the double layer potential operators (cf. [38,
Theorem 4.3]) related to a part of the boundary decomposition.

• Chapter 6 is concerned with boundary value problems for the Stokes, Oseen and Navier-
Stokes systems on compact Riemannian manifolds. In this summary, we study boundary
value problems with mixed Dirichlet-Neumann boundary conditions for the Stokes (cf.
[38, Theorem 4.1] and for the Oseen system [39]. Based on the well-posedness result for
the Oseen system, we continue with the analysis of the nonlinear Navier-Stokes system
by employing a fixed point theorem and the well-posedness result for the Oseen system.
These results are included in our paper [39].

Part III contains the last chapter of this thesis. The purpose of this part is to give some nu-
merical examples and to describe the physical behavior of a fluid flow modeled by boundary value
problems for the nonlinear Darcy-Forchheimer-Brinkman system, for which a well-posedness re-
sult has been obtained in Chapter 4. Therefore, the analysis described in Chapter 4 represents
a mathematical background of the practical problem under consideration. The problem that
is analyzed in Chapter 7 consists of a square cavity filled with a fluid with three rigid walls
on which non-slip boundary conditions are imposed and a tangentially moving lid with unit
velocity. This problem is known in literature as the lid driven cavity flow problem, denoted by
short lid problem in this thesis.

First, we give a brief description of the two numerical methods used to analyze some bound-
ary value problems in this thesis: the central-difference method and the boundary element
method. Then we focus our attention on a special two-dimensional problem, which consists out
of a rectangular cavity filled with a porous domain in which the fluid is driven by the movement
of the upper wall.

The lid problem has been the subject of many physical, theoretical and numerical studies
since this problem has simple geometry and connects the relevant physical aspects to mathe-
matical models and computational methods. The work of U. Ghia, K. Ghia and Shin [31] uses a
strongly implicit coupled multigrid method and became a benchmark reference over the years.

Certainly, by far the most used numerical technique is the finite difference method, due to
the special geometry of the square cavity under consideration, which makes this method ideal
for this problem ([14], [36], [99], [98]). In their work Erturk, Corke and Gokcol [28] computed
steady solutions for the lid problem in the case of the Navier-Stokes system with a Reynolds
number up to Re = 20000. Though many numerical studies were made, very few experimental
studies related to the lid problems are available in literature and we mentions those of Koseff
and Street [67], [66].

Boundary element methods have been widely used to solve different engeneering problems,
related to fluid mechanics and other areas of interest. Let us mention relevant books by Brebbia
and Telles [9], Brebbia and Wroble [89] and Katsikadelis [48], related to boundary element
methods, as well as to the Dual Reciprocity Boundary Element Method (DRBEM).

The outline of the chapter is the following:

• Chapter 7 presents the above mentioned numerical methods used in order to study
some particular problems related to mixed boundary value problems in fluid mechanics.
We start with a brief description of the non-dimensional form of the Navier-Stokes and

8
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continuity equations (see, e.g., [44]) and the stream function-vorticity formulation (cf.,
e.g., [60]) for the nonlinear Darcy-Forchheimer-Brinkman system, which simplifies the
numerical treatment of the equations in two dimensions. Also, we discuss the relations
of the physical properties related to the fluid and the porous domain [87]. In order to
validate the results obtained by the two numerical methods employed, central difference
(CD) method and Dual Reciprocity Boundary Element Method (DRBEM), we consider
that the fluid motion is governed by the Navier-Stokes system. In addition, we compare
the results obtained with both methods with classical results in literature. Next, we
describe some numerical results for the lid problem for the Darcy-Forchheimer-Brinkman
system in two dimensions. Dirichlet and mixed Robin-Dirichlet boundary conditions are
considered, described by the physical meaning of a sliding parameter (see, e.g., [44], [43]).
The content of this chapter is based on our results obtained in [40, Section 4] and [37,
Section 3].

The original results in the thesis have been included in the following papers:

• R. Gutt, M. Kohr, S.E. Mikhailov, W.L. Wendland, On the mixed problem for the semi-
linear Darcy-Forchheimer-Brinkman PDE system in Besov spaces on creased Lipschitz
domains, Mathematical Methods in the Applied Sciences, 40 (18), 7780-7829, 2017, (ISI),
DOI: 10.1002/mma.4562.

• R. Gutt, M. Kohr, C. Pintea, W.L. Wendland, On the transmission problem for the
Oseen and Brinkman systems on Lipschitz domains in compact Riemannian manifolds,
Mathematische Nachrichten, 289 (4), 2015, (ISI), DOI: 10.1002/mana.201400365

• R. Gutt, T. Groşan, On the lid-driven problem in a porous cavity. A theoretical and
numerical approach, Applied Mathematics and Computation, 266:1070-1082, 2015, (ISI),
DOI: 10.1016/j.amc.2015.06.038.

• R. Gutt, Mixed boundary value problems for the Stokes system on compact Riemannian
manifolds, Mathematica Cluj, 60 (83):152-165 2018.

• R. Gutt, BIE and BEM approach for the mixed Dirichlet-Robin boundary value problem
for the nonlinear Darcy-Forchheimer-Brinkman system, submitted, arXiv:1810.09543.

• R. Gutt, Mixed boundary value problems for the Navier-Stokes system on compact Rie-
mannian manifolds, submitted.

Keywords: Fluid mechanics, porous media, elliptic boundary value problems, potential
theory, variational methods, fixed point theorems, the Stokes system, the Brinkman system,
the Oseen system, the Navier-Stokes system, the Darcy-Forchheimer-Brinkman system, Lip-
schitz domains, compact Riemannian manifolds, central difference method, Dual Reciprocity
Boundary Element Method.

MSC: Primary 35J25, 42B20, 46E35; Secondary 76D, 76M.
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Chapter 1

Geometric concepts and functional
settings

In this chapter we provide the main definitions, notations and fundamental properties that
are needed in order to define and treat boundary value problems for the Stokes, Brinkman and
Darcy-Forchheimer-Brinkman systems in the Euclidean setting that are studied in the first part
of this thesis.

We begin with the geometrical concepts and definitions of a bounded Lipschitz domain and
a bounded creased Lipschitz domain in Rn, where the boundary value problems are considered.
Note that the property of creased Lipschitz domain is needed when we consider boundary value
problems whose solution should have high regularity [11], whereas lower regularity problems
can be considered in bounded Lipschitz domains. Next, we recall the definitions of Sobolev,
Bessel-potential and Besov spaces by following the presentations of [110], [113], [8, Sections 2-3].
Special attention is given to embedding theorems and interpolation results which are essential
for the forthcoming study.

The next sections contain known results but also original results obtained in [41, Section
1.1], which refer to the two different types of trace operators, i.e., the nontangential and the
Gagliardo trace operators, as well as the connections between them. The equivalence between
these operators has been obtained in [41, Theorem 2.5]. Moreover, we introduce the Stokes
and Brinkman operators by following [50, Section 2.2], and then we define the corresponding
conormal derivative operators. The differences between the canonical, the generalized and the
nontangential conormal derivative operators are explained in the next subsection, with emphasis
on the cases in which they are equivalent (Theorem 1.3.3). A part of these results constitute
original work obtained by joint work with M. Kohr, S. E. Mikhailov and W. L. Wendland in
[41, Section 1.2].

1.1 Lipschitz domains in Rn

The purpose of this section is to introduce the concept of a bounded Lipschitz domain, where
we consider the main boundary value problems of this thesis. We also recall the definition of
a creased Lipschitz domain as in, e.g., [13, 83], which plays a fundamental role for boundary
value problems whose solution should have high regularity.

1.1.1 Bounded Lipschitz domains in Rn

First, we recall the definition of a bounded Lipschitz domain and describe its main charac-
teristics (cf., e.g., [83, Definition 2.1]). Any point x = (x1, x2, . . . , xn) ∈ Rn can be written in
the simplified form x = (x′, xn), where x′ := (x1, x

′′) ∈ Rn−1 and x′′ := (x2, . . . , xn−1) ∈ Rn−2.

11



1.1. Lipschitz domains in Rn 12

Definition 1.1.1. [25] Let D ⊂ Rn (n ≥ 2) be an open, connected and bounded set and let
Γ = ∂D. We say that D is a Lipschitz domain, if one can find M > 0 such that for each x ∈ Γ
there exists a coordinate system in Rn (isometric to the canonical one), (x′, xn) ∈ Rn−1 × R,
a radius r > 0, a cylinder Cr(x) := {(y′, yn) : |y′ − x′| < r, |yn − xn| < 2Mr}, and a Lipschitz
function φ : Rn−1 → R with ‖∇φ‖L∞(Rn−1) ≤M , such that

Cr(x) ∩D = {(y′, yn) : yn > φ(y′)} ∩ Cr(x),
Cr(x) ∩ Γ = {(y′, yn) : yn = φ(y′)} ∩ Cr(x).

(1.1.1)

In the sequel, let D ⊂ Rn (n ≥ 3) be a bounded Lipschitz domain with connected boundary
Γ = ∂D, and set D+ := D and D− := Rn \D.

Let κ = κ(Γ) > 1 be a fixed sufficiently large constant (see, e.g., [33]). Then the sets

C±(x) := {y ∈ D± : dist(x, y) < κdist(y,Γ), x ∈ Γ}, (1.1.2)

are non-tangential approach cones located in D+ and D−, respectively (see, e.g., [86]). Note
that these concepts will be needed also in the definition of the non-tangential trace operators.

1.1.2 Dissection of the boundary of a Lipschitz domain

One of the main problems of interest of this thesis is the mixed boundary value problem for
some elliptic systems. Next, we define the notion of a dissection of the boundary related to such
boundary value problems.

Since we are working with this notion only in R2, we state the definition of a boundary
dissection for a two-dimensional Lipschitz domain, since we analyze this particular case in
Chapter 4.

Definition 1.1.2. Consider a bounded Lipschitz domain D := D+ ⊂ R2 with connected bound-
ary Γ, which is partitioned into nonempty subsets ΓD, Λ and ΓN , such that Γ = ΓD ∪ Λ ∪ ΓN .
Moreover, we assume that ΓD and ΓN are disjoint, relatively open subset of Γ, having Λ as
their common boundary points. For each x ∈ Λ, we require that there exist a coordinate sys-
tem (x′, x′′), a coordinate cylinder Cr(x) centered in x, a Lipschitz function φ and a constant
M1 such that

Cr(x) ∩ ΓD = {(y′, y′′) : y′ > M1, y
′′ = φ(y′)} ∩ Cr(x),

Cr(x) ∩ ΓN = {(y′, y′′) : y′ < M1, y
′′ = φ(y′)} ∩ Cr(x),

(1.1.3)

(see also [88], [62] in the case of a two-dimensional Lipschitz domain with a special decomposition
of the boundary into two parts, one of them being an Ahlfors regular set). We say that ΓD and
ΓN determine a dissection of the boundary Γ.

1.1.3 Creased Lipschitz domains in Rn

We begin with the definition of special patches on the boundary Γ, in order to define the
notion of creased a Lipschitz domain (cf. [83, Section 2]). Note that the condition (1.1.5)
below for a creased Lipschitz domain plays an essential role when we deal with mixed boundary
value problems whose solutions should have high regularity and accordingly for Dirichlet data
in Sobolev spaces H1

p (S,Rn). R. M. Brown discusses this issue in [11] for the mixed problem
for the Laplace equation.

Let us now introduce the notion of a bounded creased Lipschitz domain (cf. [83, Definition
2.3], [41, Definition 6.2]).

Definition 1.1.3. Assume that D ⊂ Rn is a bounded Lipschitz domain with connected
boundary Γ, and that ΓD,ΓN ⊂ Γ are two non-empty, disjoint admissible patches such that
ΓD ∩ ΓN = ∂ΓD = ∂ΓN and ΓD ∪ ΓN = Γ. Then D is creased if

12



1.2. Sobolev and Besov spaces in Rn and in Lipschitz domains 13

(a) There exist m ∈ N, a > 0 and zi ∈ Γ, i = 1, . . . ,m, such that ∂D ⊂ ∪mi=1 Ba(zi), where
Ba(zi) is the ball of radius a and center at zi.

(b) For any point zi, i = 1, . . . ,m, there exist a coordinate system {x1, . . . , xn} with origin
at zi and a Lipschitz function φi from Rn−1 to R such that the set Di := {(x′, xn) ∈ Rn :
xn > φi(x′)}, whose boundary Γi admits the decomposition Γi = ΓDi ∪ ΓNi , is a creased
graph Lipschitz domain in the sense of Definition 6.2 in [41], and

D∩B2a(zi) = Di ∩B2a(zi), ΓD ∩B2a(zi) = ΓDi ∩B2a(zi), ΓN ∩B2a(zi) = ΓNi ∩B2a(zi).
(1.1.4)

The geometric meaning of the above definition is that the admissible patches ΓD and ΓN
are separated by a Lipschitz interface (ΓD ∩ΓN is a crease or collision manifold for D) and that
ΓD and ΓN meet at an angle which is strictly less than π (cf., e.g., [11, 83]).

A main property of a (bounded or graph) creased Lipschitz domain is the existence of a
function ϕ ∈ C∞(D) and of a constant δ > 0 such that

ϕ · ν > δ a.e. on ΓN , ϕ · ν < −δ a.e. on ΓD, (1.1.5)

i.e., the scalar product ϕ · ν, between ϕ and the unit normal ν, changes the sign when moving
from ΓD to ΓN (cf., e.g., [12, (1.122)]). For further details cencerning the geometric properties
of Lipschitz domains we refer to [76], [41], [25].

1.2 Sobolev and Besov spaces in Rn and in Lipschitz domains

In this section we give a brief review of some basic notation and definitions related to the
Sobolev, Bessel-potential, Sobolev-Slobodeckij and Besov spaces, with emphasis on the relations
between these spaces. The main sources used in the preparation of this chapters are [2], [4], [8],
[94], [76], [113].

1.2.1 Sobolev and Besov spaces in Rn

Let k ∈ N0 and p, p′ ∈ (1,∞) be such that 1
p + 1

p′ = 1. Then the Sobolev space W k
p (Rn) is

defined by (see , e.g., [94, Section 7.1]

W k
p (Rn) :=

f ∈ Lp(Rn) : ‖f‖Wk
p (Rn) :=

∑
ν≤k
‖∂νf‖Lp(Rn) <∞

 . (1.2.1)

The Sobolev space W−kp (Rn) is defined as the dual of W k
p′(Rn). It is well-known that C∞0 (Rn)

is dense in W k
p (Rn), and moreover W k

p (Rn) can be equivalently defined as the completion of the
space of smooth functions with compact support with respect to the norm ‖ · ‖W s

p (Rn) given in
(1.2.1).

For s ∈ R, the Lp-based Bessel potential spaces Hs
p(Rn) and Hs

p(Rn,Rn) are defined by

Hs
p(Rn) := {f ∈ S ′(Rn) : (I−4)

s
2 f ∈Lp(Rn)} = {f : Jsf ∈Lp(Rn)}, (1.2.2)

Hs
p(Rn,Rn) :=

{
f = (f1, f2, . . . , fn) : fi ∈ Hs

p(Rn), j = 1, . . . , n
}
, (1.2.3)

where Js : S ′(Rn) → S ′(Rn) is the Bessel potential operator of order s defined by (see, e.g.,
[76, Chapter 3])

Jsf := F−1(ρsFf), ρs = (1 + |ξ|2)
s
2 . (1.2.4)

Note that Hs
p(Rn) is a Banach space with respect to the norm (see, e.g., [4])

‖f‖Hs
p(Rn)= ‖Jsf‖Lp(Rn) = ‖F−1(ρsFf)‖Lp(Rn). (1.2.5)

13



1.2. Sobolev and Besov spaces in Rn and in Lipschitz domains 14

1.2.2 Sobolev and Besov spaces in Lipschitz domains

Next, we define the Sobolev and Bessel-potential spaces on Lipschitz domains. To this end,
let D ⊂ Rn (n ≥ 2) be a bounded Lipschitz domain, and set D+ := D and D− := Rn \D.

Let D(D±) := C∞0 (D±) be the space of infinitely differentiable functions with compact
support in D±, equipped with the inductive limit topology. The space D′(D±) is the space of
distributions defined as the topological dual of D(D±). Throughout this thesis the notation
(·)|X means the restriction operator to the set X ⊂ Rn. This operator is often denoted by rX .

The Bessel potential spaces Hs
p(D±) and H̃s

p(D±) are defined by

Hs
p(D±) := {f ∈ D′(D±) : ∃ F ∈ Hs

p(Rn) such that F |D± = f}, (1.2.6)

H̃s
p(D±) :=

{
f ∈ Hs

p(Rn) : supp f ⊆ D±
}
. (1.2.7)

The Bessel potential spaces Hs
p(D±,Rn) and H̃s

p(D±,Rn) are defined as the spaces of vector-
valued functions (distributions) whose components belong to the spaces Hs

p(D±) and H̃s
p(D±),

respectively (see, e.g., [76]).
For any s ∈ R, C∞(D±) is dense in Hs

p(D±) and the following duality relations hold (cf.,
e.g., [47, Proposition 2.9], [29, (1.9)], [84, (4.14)])(

Hs
p(D±)

)′
= H̃−sp′ (D±), H−sp′ (D±) =

(
H̃s
p(D±)

)′
. (1.2.8)

Here and further on, for p ∈ (1,∞) given, p′ denots the conjugate exponent given by

1
p

+ 1
p′

= 1. (1.2.9)

Similar to (1.2.6) and (1.2.7), for s ∈ R and p, q ∈ (1,∞) the Besov spaces Bs
p,q(D±) and

Bs
p,q(D±,Rn) are defined by

Bs
p,q(D±) := {f ∈ D′(D±) : ∃ F ∈ Bs

p,q(Rn) such that F |D± = f}, (1.2.10)
Bs
p,q(D±,Rn) :=

{
f = (f1, f2, . . . , fn) : fi ∈ Bs

p,q(D±), j = 1, . . . , n
}
, (1.2.11)

B̃s
p,q(D±,Rn) :=

{
f̃ ∈ Bs

p,q(Rn,Rn) : supp f̃ ⊆ D±
}
. (1.2.12)

1.2.3 Sobolev and Besov spaces on Lipschitz boundaries

The main sources in the preparation of this part are [46, Section 4.3], [113].
For s ∈ (0, 1), we can define the space Hs

p(Γ) as the completion of the space

C0
s =

{
f ∈ C0(Γ) : ‖f‖Hs

p(Γ) <∞
}

(1.2.13)

with respect to the norm

‖f‖Hs
p(Γ) :=

{
‖f‖pLp(Γ) +

∫
Γ

∫
Γ

|f(x)− f(y)|p

|x− y|N−1+ps dσxdσy

} 1
p

. (1.2.14)

For p ∈ (1,∞) and s ∈ (−1, 0), we have H−sp′ (Γ) =
(
Hs
p(Γ)

)′
. Also, note that H0

p (Γ) = Lp(Γ).
Let ν = (ν1, . . . , νn) be the outward unit normal to D, which is defined almost everywhere

with respect to the surface measure dσ on Γ.
Let p ∈ (1,∞), q ∈ (1,∞] and s ∈ (0, 1]. In the sequel, we need the following spaces.

Lpν(Γ,Rn) :=
{

v ∈ Lp(Γ,Rn) :
∫
∂Ω

v · νdσ = 0
}
,

14



1.3. The Trace operators 15

Hs
p;ν(Γ,Rn) :=

{
v ∈ Hs

p(Γ,Rn) :
∫

Γ
v · νdσ = 0

}
,

Bs
p,q;ν(Γ,Rn) :=

{
v ∈ Bs

p,q(Γ,Rn) :
∫

Γ
v · νdσ = 0

}
. (1.2.15)

Moreover, we also need the following subspaces.

Hs
p;div(D,Rn) :=

{
v ∈ Hs

p(D,Rn) : div v = 0
}
,

Bs
p,q;div(D,Rn) :=

{
v ∈ Bs

p,q(D,Rn) : div v = 0
}
. (1.2.16)

Finally, let us introduce some special subspaces of locally integrable functions. Let Ω
be an open set (in particular Ω ∈ {Rn,D,Γ}). The spaces of locally integrable functions
Lploc(Ω),Hs

p;loc(Ω) and Bs
p,q;loc(Ω) are defined as

Lploc(Ω,R
n) := {v ∈ Lp(Ω,Rn) : v|K ∈ Lp(K,Rn),∀K ⊂ Ω,K is compact} ,

Hs
p;loc(Ω,Rn) :=

{
v ∈ Hs

p(Ω,Rn) : v|K ∈ Hs
p(K,Rn),∀K ⊂ Ω,K is compact

}
,

Bs
p,q;loc(Ω,Rn) :=

{
v ∈ Bs

p,q(Ω,Rn) : v|K ∈ Bs
p,q(K,Rn), ∀K ⊂ Ω,K is compact

}
. (1.2.17)

1.3 The Trace operators

As in the previous section, let us consider D ⊂ Rn (n ≥ 3) be a bounded Lipschitz domain
with connected boundary Γ, and set D+ := D and D− := Rn \D. Let κ = κ(Γ) > 1 be a fixed
sufficiently large constant. Then the non-tangential maximal operator of an arbitrary function
u : D± → R is defined by (see, e.g., [41, Section 2.1], [50])

M(u)(x) := {sup |u(y)| : y ∈ C±(x), x ∈ Γ}, (1.3.1)

where C± are non-tangential approach cones given in (1.1.2) located in D+ and D−, respectively
(see, e.g., [86]). Moreover,

u±nt(x) := lim
C±3y→x

u(y) (1.3.2)

are the non-tangential limits of u with respect to D± at x ∈ Γ. Note that if M(u) ∈ Lp(Γ) for
one choice of κ, then this property holds for an arbitrary choice of κ (see, e.g., [78, p 63.]). We
will use the notation C± instead of Cκ;±.

A useful result for the problems we are going to investigate in this thesis is the Gagliardo
Trace Lemma that we mention below (see [20], [47, Proposition 3.3], [81, Theorem 2.3, Lemma
2.6], [79], [86, Theorem 2.5.2]).

Lemma 1.3.1. Let p ∈ (1,∞) and s ∈ (0, 1) be given. Then there exist linear and continuous

Gagliardo trace operators γ± : H
s+ 1

p
p (D±)→ Bs

p,p(Γ) such that γ±g = g|Γ for any g ∈ C∞(D±).
These operators are surjective and have non-unique, linear and continuous right inverse opera-
tors

(γ±)−1 : Bs
p,p(Γ)→ H

s+ 1
p

p (D±). (1.3.3)

It is immediate that Lemma 1.3.1 remains valid also for vector-valued and matrix valued
functions. The result below is a version of Lemma 1.3.1 for Besov spaces defined on Lipschitz
boundaries (see, e.g., [86, Theorem 2.5.2]).

Lemma 1.3.2. Let p, q ∈ (1,∞) and s ∈ (0, 1) be given. Then there exist linear and con-

tinuous Gagliardo trace operators γ± : B
s+ 1

p
p,q (D±) → Bs

p,q(Γ) such that γ±g = g|Γ for any
g ∈ C∞(D±). These operators are surjective and have non-unique, linear and continuous right

inverse operators (γ±)−1 : Bs
p,q(Γ)→ B

s+ 1
p

p,q (D±).
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1.4. The Stokes and the Brinkman operators 16

The following result answers the natural question when the nontangential trace operator
coincides with the Gagliardo trace operator [41, Theorem 2.5]

Theorem 1.3.3. Assume that D is a bounded Lipschitz domain in Rn, n ≥ 2. Let p, q ∈ (1,∞).

(i) If there exists a constant s > 0 with the property that u ∈ B
s+ 1

p
p,q (D,Rn) and the pointwise

nontangential trace u+
nt exists almost everywhere on Γ, then the trace of Gagliardo type

γ+u is defined on Γ and γ+u = u+
nt. If s ∈ (0, 1), then γ+u = u+

nt ∈ Bs
p,q(Γ,Rn).

(ii) Moreover, if u+
nt ∈ H

s+ 1
p

p (Γ,Rn) for s ∈ (0, 1], then γ+u ∈ Hs
p(Γ,Rn).

1.4 The Stokes and the Brinkman operators

Next, we define the Brinkman operator which plays a key role throughout this thesis. Recall
that S (Rn,Rn) is the space of Schwartz functions and S ′(Rn,Rn) stands for the space of
tempered distributions.

Let α > 0 be a given constant. Let Bα denote the Brinkman operator defined such as (see,
e.g., [50, Section 2.2])

Bα :=
(

(∆− αI) −∇
div 0

)
: S (Rn,Rn)×S (Rn)→ S (Rn,Rn)×S (Rn) (1.4.1)

and the associated operator Lα defined by

Lα(u, π) := (∆− αI)u−∇π : S (Rn,Rn)×S (Rn,Rn)→ S (Rn,Rn). (1.4.2)

For α = 0, one obtains the Stokes operator. The operators Bα and B0 defined in (1.4.1)
are Agmon-Douglis-Nirenberg elliptic operators (cf., e.g., [50, Lemma 2.1], [46, p. 330-331]),
Consequently, for α > 0, p, q ∈ (1,∞) and s ∈ (0, 1), these operators extend to linear and
bounded operators on Sobolev (Bessel potential) spaces, as follows

Bα : H
s+ 1

p
p (Rn,Rn)×H

s+ 1
p
−1

p (Rn)→ H
s+ 1

p
−2

p (Rn,Rn)×H
s+ 1

p
−1

p (Rn), (1.4.3)

Lα : H
s+ 1

p
p (Rn,Rn)×H

s+ 1
p
−1

p (Rn)→ H
s+ 1

p
−2

p (Rn,Rn), (1.4.4)

or with similar definitions on Besov spaces.
Another operator that plays a main role in the definition of various boundary value problems

of Neumann, mixed, or transmission type, is the conormal derivative operator. In order to define
this operator, we introduce the following spaces. For s ∈ R, p, q ∈ (1,∞) and t ≥ −1/p′, where
p′ is the conjugate exponent of p. Then we consider the following spaces (cf. [81, Definition
3.3])

H
s+ 1

p
,t

p,div (D,Lα) :=
{

(u, π) ∈ H
s+ 1

p
p (D,Rn)×H

s+ 1
p
−1

p (D) : Lα(u, π) = f̃ |D, f̃ ∈ H̃t
p(D,Rn)

and div u = 0 in D
}
.

Also let

B
s+ 1

p
,t

p,q,div(D,Lα) :=
{

(u, π) ∈ B
s+ 1

p
p,q (D,Rn)×B

s+ 1
p
−1

p,q (D) : Lα(u, π) = f̃ |D, f̃ ∈ B̃t
p,q(D,Rn)

and div u = 0 in D
}
,

where Lα(u, π) is defined in (1.4.2).
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Similar to Theorem 2.16 in [81], for p, q ∈ (1,∞) we introduce the operator E̊± of extension
of functions from Ht

p(D±) by zero on Rn \ D±. Also for 0 ≤ t < 1
p , let Ẽ± be the operator

defined on Ht
p(D±) as Ẽ± := E̊±,. If − 1

p′ < t < 0, then Ẽ± is defined as

〈Ẽ±h, v〉D± := 〈h, Ẽ±v〉D± = 〈h, E̊±v〉D± , h ∈ Ht
p(D±), v ∈ H−tp′ (D±), (1.4.5)

where h ∈ Ht
p(D±), v ∈ H−tp′ (D±) or h ∈ Bt

p,q(D±), v ∈ B−tp′,q′(D±), respectively.
Then, for −1/p′ < t < 1/p, the operators

Ẽ± : Ht
p(D±)→ H̃t

p(D±), Ẽ± : Bt
p,q(D±)→ B̃t

p,q(D±) (1.4.6)

are bounded linear extension operators. These properties extend also to the corresponding
spaces of vector valued functions or distributions.

As in the case of the corresponding Definition 3.6 in [81], we can introduce the canonical
extension operator L̃α as follows (cf. Definition 2.8 in [41]).

Definition 1.4.1. Let p, q ∈ (1,∞), s ∈ R and t ≥ −1/p′. The operator L̃α, which maps

(i) functions (u, π) ∈ H
s+ 1

p
,t

p,div (D,Lα) to the extension of the distribution Lα(u, π) ∈ Ht
p(D,Rn)

to H̃t
p(D,Rn)

(ii) functions (u, π) ∈ B
s+ 1

p
,t

p,q,div(D;Lα) to the extension of the distribution Lα(u, π) ∈
Bt
p,q(D,Rn) to B̃t

p,q(D,Rn),

is called the canonical extension operator.

1.5 The conormal derivative operators for the Brinkman system

In this section, we introduce the conormal derivative operators that are used all along this
thesis, i.e., the classical, the nontangential, the canonical and the generalized derivative operators
and describe the relations between them.

To this end, let D ⊂ Rn be a bounded Lipschitz domain with the boundary Γ.

1.5.1 The classical conormal derivative operator

If (u, π) ∈ C1(D±,Rn) × C0(D±), such that div u = 0 in D±, then the classical derivative
operator (or the traction field) for the Stokes (or Brinkman) operator is defined by the well-
known formula (i.e., the constitutive equation of viscous incompressible fluid)

tc±
α (u, π) := γ±σ(u, π)ν, (1.5.1)

where
σ(u, π) := (−πI + 2E(u)) (1.5.2)

is the stress tensor, and ν= ν+ is the outward unit normal to D+, defined almost everywhere
on Γ. For any function ϕ ∈ D(Rn,Rn), the following Green identity holds

±
〈
tc±
α (u, π),ϕ

〉
Γ =2〈E(u),E(ϕ)〉D± + α〈u,ϕ〉D± − 〈π,div ϕ〉D± + 〈Lα(u, π),ϕ〉D± . (1.5.3)

Formula (1.5.3) follows by an integration by parts argument.
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1.5. The conormal derivative operators for the Brinkman system 18

1.5.2 The nontangential conormal derivative operator

If in a given point of the boundary Γ there exist the non-tangential traces t±nt(u, π), and
if the outward unit normal ν can be defined in that point, then the non-tangential conormal
derivatives are defined at this point as

t±nt(u, π) := σ±nt ν. (1.5.4)

1.5.3 The generalized derivative operator

Formula (1.5.3) suggests the following definition of the generalized conormal derivative in
the setting of Besov spaces, (cf., Lemma 3.2 in [20], Lemma 2.2 in [53], Definition 3.8, Theorem
3.9 in [81], Definition 6.5, Theorem 6.6 in [82], Proposition 10.2.1 in [86]).

Definition 1.5.1. Let α ≥ 0, s ∈ (0, 1), p, q ∈ (1,∞). Then the generalized conormal derivative

operator t+
α is defined on any (u, π) ∈ H

s+ 1
p

p,div(D,Lα) or (u, π) ∈ B
s+ 1

p

p,q,div(D,Lα), in the weak sense
by the formula

±
〈
t+
α (u, p; f), ϕ

〉
= 2〈Ẽ+E(u),E((γ+)−1ϕ)〉D + α〈Ẽ+u, (γ+)−1ϕ〉D (1.5.5)

− 〈Ẽ+π,div (γ+)−1ϕ〉D +
〈
f̃ , (γ+)−1ϕ

〉
D
, ∀ϕ ∈ B1−s

p′,p′(Γ,R
n) or ϕ ∈ B1−s

p′,q′(Γ,R
n).

Lemma 1.5.2. Under the assumption of Definition 1.5.1, the generalized conormal derivative
operators

t+
α : H

s+ 1
p

p,div(D,Lα)→ Bs−1
p,p (Γ,Rn), t+

α : B
s+ 1

p

p,q,div(D,Lα)→ Bs−1
p,q (Γ,Rn),

are linear and bounded. Moreover, the following first Green identity holds

〈t+
α (u, π), γ+w〉Γ = 2

〈
Ẽ+E(u),E(w)

〉
D

+ α
〈
Ẽ+u,w

〉
D
−
〈
Ẽ+π,div w

〉
D

+
〈
f̃ ,w

〉
D

(1.5.6)

for all (u, π) ∈ H
s+ 1

p
,− 1

p′
p,div (D,Lα), w ∈ H

1+ 1
p′−s

p′ (D,Rn) and all (u, π) ∈ B
s+ 1

p
,− 1

p′
p,q,div (D,Lα),

w ∈ B
1+ 1

p′−s
p′,q′ (D,Rn).

Note that the canonical conormal derivative operators introduced in Definition 1.5.3 are
different from the generalized conormal derivative operator given in the next lemma, as described
below (cf. [53, Lemma 2.2], [81, Definition 3.1, Theorem 3.2], [82, Definition 5.2, Theorem 5.3].)

1.5.4 The canonical derivative operator

The generalized conormal derivative operator defined by formula (1.5.5) is related to an
extension of the Brinkman operator from the domain D to the domain boundary, where Lα has
not nessasary a high regulatity (cf. [81]). Since the extensions of the operator Lα from D to Rn
are non-unique, for some regularities of the corresponding spaces, it appears that the generalized
conormal derivative operator is non-unique and non-linear unless a linear relation between the
PDE solution and the extension of its right hand side is imposed. Thus, for boundary value
problems whose solution should have high regularity, we need to revise the problem setting in
order to make the conormal derivative operator insensitive to this non-uniqueness, i.e., we make
use of the uniqueness of the extension operator given in (1.4.6) for 1/p′ < t < 1/p, as we have
done in [41].

Having in view formula (1.5.3) in the classical case, we now introduce the canonical conormal
derivative in the setting of Besov spaces by following [41, Definition 2.10], [20, Lemma 3.2], [53,
Lemma 2.2], [81, Definition 3.8, Theorem 3.9], [82, Definition 6.5, Theorem 6.6], [86, Proposition
10.2.1]).

18



1.5. The conormal derivative operators for the Brinkman system 19

Definition 1.5.3. Let α ≥ 0, s ∈ (0, 1), p, q ∈ (1,∞). Then the canonical conormal derivative

t+
α (u, π) is defined for any (u, π) ∈ H

s+ 1
p
,− 1

p′
p,div (D,Lα), or for any (u, π) ∈ B

s+ 1
p
,− 1

p′
p,q,div (D,Lα), in

the weak sense, by the formula

〈t+
α (u, π),ϕ〉Γ := 2

〈
Ẽ+E(u),E((γ+)−1ϕ)

〉
D

+ α〈Ẽ+u, (γ+)−1ϕ〉D −
〈
Ẽ+π,div((γ+)−1ϕ)

〉
D

(1.5.7)
+〈L̃α(u, π), (γ+)−1ϕ〉D, ∀ ϕ ∈ B1−s

p′,p′(Γ,R
n), or ∀ ϕ ∈ B1−s

p′,q′(Γ,R
n), respectively.

(1.5.8)

Having in view Definition 1.5.3, we obtain the following Green identities based on our result
[41, Lemma 2.11].

Lemma 1.5.4. Under the assumption of Definition 1.5.3, the conormal derivative operators

t+
α : H

s+ 1
p
,− 1

p′
p,div (D,Lα)→ Bs−1

p,p (Γ,Rn), t+
α : B

s+ 1
p
,− 1

p′
p,q,div (D,Lα)→ Bs−1

p,q (Γ,Rn),

are linear and bounded. Moreover, the following first Green formula holds

〈t+
α (u, π), γ+w〉Γ =2

〈
Ẽ+E(u),E(w)

〉
D

+α
〈
Ẽ+u,w

〉
D
−
〈
Ẽ+π,div w

〉
D

+
〈
Ẽ+Lα,w

〉
D

(1.5.9)

for all (u, π) ∈ H
s+ 1

p
,− 1

p′
p,div (D,Lα), w ∈ H

1+ 1
p′−s

p′ (D,Rn) and all (u, π) ∈ B
s+ 1

p
,− 1

p′
p,q,div (D,Lα),

w ∈ B
1+ 1

p′−s
p′,q′ (D,Rn) and the second Green formula holds

±
(
〈t±α (u, π), γ+v〉Γ − 〈t±α (v, q), γ+u〉Γ

)
=
〈
L̃α(u, π),v

〉
D±
−
〈
L̃α(v, q),u

〉
D±

(1.5.10)

for all (u, π) ∈ H
s+ 1

p
,− 1

p′
p,div (D±,Lα), (v, q) ∈ H

1+ 1
p′−s,−

1
p

p′,div (D±,Rn), and for all (u, π) ∈

B
s+ 1

p
,− 1

p′
p,q,div (D±,Lα), (v, q) ∈ B

1+ 1
p′−s,−

1
p

p′,q′ (D±,Rn), respectively.

The next result shows the equivalence between canonical, non-tangential conormal deriva-
tives and classical conormal derivative. This result has been obtained in Theorem 2.13 of [41].

Theorem 1.5.5. Assume that D+ is a bounded domain with Lipschitz boundary Γ in Rn, n ≥ 2
and let D− = Rn\D+. Let α ≥ 0, and p, q ∈ (1,∞). Then the following assertions hold.

(i) If s > 1 and (u, π) ∈ B
s+ 1

p

p,q,div(D±,Rn) × B
s−1+ 1

p
p,q (D±), then tc+

α (u, π) and t+
α (u, π) are

well defined and are equal t+
α (u, π) = tc+

α (u, π) ∈ Lp(Γ,Rn).
Moreover, if the non-tangential trace of the stress tensor, σ+

nt(u, π), exists almost every-
where on Γ, then the non-tangential conormal derivative also exists a.e. on Γ and are
equal t+

nt,α(u, π) = t+
α (u, π) = tc+

α (u, π) ∈ Lp(Γ,Rn).

(ii) Let 0 < s ≤ 1 and (u, π) ∈ B
s+ 1

p
,t

p,q,div(D±,Lα), for some t > − 1
p′ . If the non-tangential

maximal function M(σ(u, π)) and the non-tangential trace of the stress tensor, σ+
nt(u, π),

exist almost everywhere on Γ and belong to Lp(Γ,Rn×n), then t+
α (u, π) = t+

nt,α(u, π) ∈
Lp(Γ,Rn).
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Chapter 2

Layer potential theory for Stokes
and Brinkman systems on Lipschitz
domains in Rn

Layer potential theory is a powerful tool in the study of elliptic boundary value problems
(see, e.g., [4], [20], [46], [60], [76], [86], [111]). In this section we recall the definition and
some properties of the potential operators for the Stokes and the Brinkman systems, i.e., the
Newtonian potential operator and the single- and double-layer potential operators.

The potential theory is based on the existence of a fundamental solution for the system under
consideration. Therefore, we begin by introducing the fundamental solution for the Brinkman
operator following the main ideas in [50], but also for the Stokes system. Many properties of
the potential operators are based on the expression of the fundamental velocity tensor and the
fundamental stress tensor, as is pointed out throughout this section. Next, we introduce the
Newtonian potential operator which defines a solution for the system under consideration driven
by an acting force. The mapping properties of the Newtonian layer potential that appear in
this thesis have been published in [41].

The following section is concerned with layer potential operators and their main proper-
ties. First, we introduce the Brinkman single-layer potential operator and discuss its mapping
properties. Special attention is devoted to the nontangential maximal operator. Second, the
double-layer potential operator is introduced, following an analogous structure as for the single-
layer operator. Afterward, we consider the jump relation across the boundary for the layer
potentials operators pointing out the difference between the nontangential and canonical ap-
proach. We end this section with some useful invertibility results.

Note that the results presented in this section represent a collection of known results, but also
many new results obtained by joint work with M. Kohr, S. E. Mikhailov and W. L. Wendland
in [41].

2.1 The fundamental solution of the Stokes and Brinkman sys-
tems in Rn

In this section we present the fundamental solutions for the two considered systems, i.e.,
the fundamental solutions for the Stokes system and the Brinkman system in the n-dimensional
Euclidean space Rn. These fundamental solutions play a key role in defining the layer operators,
that have an essential role in the development of the potential theory for these systems. The
main sources used in the preparation of this chapter are [50] and [51].
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2.2. Mapping properties of the Newtonian potential for the Brinkman system 21

The fundamental solution for the Brinkman system in Rn

Let Gα(x,y) ∈ S ′(Rn × Rn,Rn ⊗ Rn) and Πα(x,y) ∈ S ′(Rn × Rn,Rn) denote the fun-
damental velocity tensor and the fundamental pressure vector for the Brinkman system in Rn
(n ≥ 2). The pair (Gα(x,y),Πα(x,y)) is the fundamental solution of the Stokes system and
satisfies the equation

(4x − αI)Gα(x,y)−∇xΠ(x,y) = δy(x)I, divxGα(x,y) = 0, (2.1.1)

where δy is the Dirac distribution with mass in y ∈ Rn, while the subscript x added to an
differential operator refers to the action of that operator with respect to the variable x.

The components of the fundamental velocity tensor and the fundamental pressure vector
are given by (see, e.g., [75, (3.6)], [60, Section 3.2.1])

Gαjk(x,y) = 1
ωn

{
δjk

|y−x|n−2A1(α|y−x|) + xjxk
|y−x|nA2(α|y−x|)

}
, Πk(x) = 1

ωn

xk
|y−x|n (2.1.2)

where A1(z) and A2(z) are defined by

A1(z) :=
(
z
2
)n

2−1
Kn

2−1(z)
Γ
(
n
2
) + 2

(
z
2
)n

2Kn
2
(z)

Γ
(
n
2
)
z2 − 1

z2 , A2(z) := n

z2 − 4
(
z
2
)n

2 +1
Kn

2 +1(z)
Γ
(
n
2
)
z2 , (2.1.3)

Kκ is the Bessel function of the second kind and order κ ≥ 0, Γ is the Gamma function, and
ωn is the surface measure of the unit sphere Sn−1 in Rn. Equations (2.1.2) and (2.1.3) show
that the fundamental velocity tensor is symmetric, i.e., (Gα(x,y))> = Gα(y,x).

In the sequel, we use the repeated index summation convention in order to simplify the
notation. The fundamental stress tensor Sα(·, ·) has the components

Sαij`(x,y) = −Πj(x,y)δi` +
∂Gαij(x,y)

∂x`
+
∂Gα`j(x,y)

∂xi
, (2.1.4)

where δjk is the Kronecker symbol, Πj(x,y) are the components of Π, and Gαij(x,y) are the
components of Gα(x,y) (e.g., [50, Section 2.3]).

2.2 Mapping properties of the Newtonian potential for the
Brinkman system

By ∗ we denote the convolution product. Therefore the velocity and pressure Newtonian
potential operators associated to the Brinkman system are given by

(Nα;Rnϕ) (x) := − (Gα ∗ϕ) (x) = −
〈
Gα(x, ·),ϕ

〉
Rn
, (2.2.1)

(Qα;Rnϕ) (x) = (QRnϕ) (x) := − (Π ∗ϕ) (x) = −
〈
Π(x, ·),ϕ

〉
Rn
, (2.2.2)

where ϕ ∈ D(Rn,Rn) and the fundamental tensor Gα is presented through its components in
(2.1.2).

By using the expression (2.2.1), we have the following property (cf. [41, Lemma 3.1] and
also Theorem 3.10 in [75]).

Lemma 2.2.1. Let α > 0. Then for all p, q ∈ (1,∞) and s ∈ R the following operators

Nα;Rn : Hs
p(Rn,Rn)→ Hs+2

p (Rn,Rn), (2.2.3)
Nα;Rn : Bs

p,q(Rn,Rn)→ Bs+2
p,q (Rn,Rn), (2.2.4)

QRn : Hs
p(Rn,Rn)→ Hs+1

p,loc(R
n), (2.2.5)

QRn : Bs
p,q(Rn,Rn)→ Bs+1

p,q,loc(R
n), (2.2.6)

are linear and continuous.
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2.3. Mapping properties of the Brinkman layer potentials in Sobolev and Besov spaces 22

Consequently, we obtain the following result.

Corollary 2.2.2. Assume that D+ ⊂ Rn (n ≥ 2) is a Lipschitz domain and let D− = Rn\D+.
Let α > 0, p ∈ (1,∞), and p∗ = max{2, p}. Then the Newtonian velocity and pressure potentials
satisfy the Brinkman system and the following operators

(Nα;D+ ,QD+) : Lp(D+,Rn)→ H2,0
p,div(D+,Lα), (2.2.7)

(Nα;D− ,QD−) : Lp(D−,Rn)→ H2,0
p,div,loc(D−,Lα), (2.2.8)

(Nα;D+ ,QD+) : Lp(D+,Rn)→ B2,0
p,p∗,div(D+,Lα), (2.2.9)

(Nα;D− ,QD−) : Lp(D−,Rn)→ B2,0
p,p∗,div,loc(D−,Lα), (2.2.10)

are continuous.

2.3 Mapping properties of the Brinkman layer potentials in
Sobolev and Besov spaces

In this section we introduce the single- and double layer operators for the Brinkman system
and give the main properties which are needed in the study of the boundary problems in the
following sections. First, we are concerned with the mapping properties of the layer potentials
defined on Lp-based Sobolev and Besov spaces, with p in a neighbourhood of 2. These properties
play a key role in the analysis of boundary problems on creased, bounded Lipschitz domains,
treated in Chapter 3. Then, we will extend these properties to Sobolev and Besov spaces with
an index s ∈ (0, 1). Such an extension is very useful in the analysis of some boundary problems,
which is developed in Chapter 4. Special attention is given to the jump relations across the
boundary for the single- and double-layer potential operators, with emphasis on the difference
between the non-tangential and Gagliardo traces and the non-tangential and canonical conormal
derivative operators. Moreover, we give the representation formula of the velocity and pressure
field in terms of layer potentials, by employing both nontangential and canonical approaches.
We end this section with some useful inveribility results for layer potentials. The results of this
section are original contributions obtained in [41].

2.3.1 The Brinkman single-layer potential and related mapping properties

From now on, in this chapter we consider the following assumption, unless stated otherwise.

Assumption 2.3.1. Let D+ ⊂ Rn (n ≥ 2) be a bounded Lipschitz domain with connected
boundary Γ and let D− := Rn \D+.

Let α > 0, s ∈ [0, 1] and p ∈ (1,∞). For a given density g ∈ Hs−1
p (Γ,Rn), the Brinkman

velocity single-layer potential, Vαg, and the corresponding scalar pressure potential, Qsαg, are
given by

(Vαg)(x) := 〈Gα(x, ·)|Γ,g〉Γ, (Qsαg)(x) := 〈Π(x, ·)|Γ,g〉Γ, x ∈ Rn \ Γ. (2.3.1)

By (2.1.1), the pair (Vαg, Qsαg) satisfies the homogeneous Brinkman system in D±,

(4− αI)Vαg−∇Qsαg = 0, divVαg = 0 in Rn \ Γ. (2.3.2)

The single-layer potential can be similarly defined on Besov spaces whenever g ∈
Bs−1
p,q (Γ,Rn), where s ∈ (0, 1) and p, q ∈ (1,∞). In the case of the Stokes system, i.e., for

α = 0, we use the notations Vg and Qsg, i.e.,

V0g ≡ Vg, Qs0g ≡ Qsg. (2.3.3)
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2.3. Layer potentials for the Brinkman system 23

Next, we describe the action of the nontangential maximal operator on the single-layer
potential Vαg, when g ∈ Lp(Γ,Rn) and g ∈ H−1

p (Γ,Rn) respectively. Moreover, we show that
the nontangential limits exist almost everywhere for the single-layer potential in both cases. We
follow the arguments developed for Lemma 3.4 in our paper [41].
Lemma 2.3.2. Under Assumption 2.3.1 and for α ≥ 0 and p ∈ (1,∞), we have:

(i) There exist some constants Ci=Ci(Γ, p, α)>0, i = 1, . . . , 2, such that
‖M (∇Vαg) ‖Lp(Γ) + ‖M (Vαg) ‖Lp(Γ) + ‖M (Qsg) ‖Lp(Γ) ≤ C1‖g‖Lp(Γ,Rn), (2.3.4)

for all g ∈ Lp(Γ,Rn) and
‖M (Vαg) ‖Lp(Γ) ≤ C2‖g‖H−1

p (Γ,Rn), (2.3.5)

for all g ∈ H−1
p (Γ,Rn).

(ii) For any g ∈ Lp(Γ,Rn), there exist the nontangential limits of Vαg, ∇Vαg and Qsg almost
everywhere on Γ and
‖(Vαg)±nt‖Lp(Γ,Rn), ‖(∇Vαg)±nt‖Lp(Γ,Rn), ‖(Qsg)±nt‖Lp(Γ,Rn) ≤ C1‖g‖Lp(Γ,Rn). (2.3.6)

(iii) For any g ∈ H−1
p (Γ,Rn), there exist the nontangential limits of Vαg at almost all points

of Γ, and
‖(Vαg)±nt‖Lp(Γ) ≤ C2‖g‖H−1

p (Γ,Rn). (2.3.7)

The mapping properties of the Stokes single-layer potentials in Bessel-potential and Besov
spaces on bounded Lipschitz domains, are well known and we refer to, e.g., [30], [46], [86,
Theorem 10.5.3], [85, Theorem 3.1, Proposition 3.3].

The next theorem collects the main properties of the Brinkman single-layer velocity and
pressure potential operators. We have obtained them in [41, Theorem 3.5]. Let us mention that
some of these properties have been also obtained in [25, Proposition 3.4], [49, Lemma 3.4], [50,
Lemma 3.1], [85, Theorem 3.1], [100, Theorems 3.4 and 3.5]).
Theorem 2.3.3. Let Assumption 2.3.1 hold. Let p, q ∈ (1,∞), α > 0, and p∗ := max{2, p}.
Let t ≥ − 1

p′ be arbitrary, where 1
p + 1

p′ = 1. Then the following statements hold.
(i) Then the operators

Vα|D+ : Lp(Γ,Rn)→ B
1+ 1

p

p,p∗;div(D+,Rn), Qs|D+ : Lp(Γ,Rn)→ B
1
p

p,p∗(D+), (2.3.8)(
Vα|D+ ,Qs|D+

)
: Lp(Γ,Rn)→ B

1+ 1
p
,t

p,p∗;div(D+,Lα), (2.3.9)

Vα|D+ : H−1
p (Γ,Rn)→ B

1
p

p,p∗;div(D+,Rn), Qs|D+ : H−1
p (Γ,Rn)→ B

−1+ 1
p

p,p∗ (D+), (2.3.10)(
Vα|D+ ,Qs|D+

)
: H−1

p (Γ,Rn)→ B
1
p
,t

p,p∗;div(D+,Lα), (2.3.11)
are linear and continuous.

(ii) For any s ∈ (0, 1), the following operators

Vα : Bs−1
p,q (Γ,Rn)→ B

s+ 1
p

p,q;div(Rn,Rn), Qs : Bs−1
p,q (Γ,Rn)→ B

s+ 1
p
−1

p,q;loc (Rn), (2.3.12)

Vα|D+ : Bs−1
p,q (Γ,Rn)→ B

s+ 1
p

p,q;div(D+,Rn), (Qs) |D+ :Bs−1
p,q (Γ,Rn)→ B

s+ 1
p
−1

p,q (D+), (2.3.13)(
Vα|D+ , Q

s|D+

)
: Bs−1

p,q (Γ,Rn)→ B
s+ 1

p
,t

p,q,div(D+,Lα), (2.3.14)

Vα|D− : Bs−1
p,q (Γ,Rn)→ B

s+ 1
p

p,q;div(D−,Rn), Qs|D− : Bs−1
p,q (Γ,Rn)→ B

s+ 1
p
−1

p,q;loc (D−), (2.3.15)(
Vα|D− , Qs|D−

)
: Bs−1

p,q (Γ,Rn)→ B
s+ 1

p
,t

p,q;div;loc(D−,Lα), (2.3.16)
are linear and continuous.
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2.3.2 The Brinkman double-layer potential and related mapping properties

For a given density h ∈ Hs
p(Γ,Rn), the velocity and pressure double-layer potentials, Wαh

and Qdαh, are defined by the integral representations

(Wαh)j(x) :=
∫

Γ
Sαij`(x,y)ν`(y)hi(y)dσy, ∀ x ∈ Rn \ Γ, (2.3.17)

(Qdαh)(x) :=
∫

Γ
Λαj`(x,y)ν`(y)hj(y)dσy, ∀ x ∈ Rn \ Γ, (2.3.18)

where ν`, ` = 1, . . . , n, are the components of the outward unit normal ν to D, which is defined
almost everywhere on Γ.

Similar definitions for the double-layer velocity potential and the corresponding pressure
potential apply in the case of Besov spaces for h ∈ Bs

p,q(Γ,Rn), where s ∈ (0, 1) and p, q ∈ (1,∞).
For α = 0, we use the notations Wh and Qdh for the corresponding double-layer potentials,

i.e.,
W0h ≡Wh, Qd0h ≡ Qdh. (2.3.19)

In view of equations (2.3.17) and (2.3.18), the pair (Ws
αh, Qdαh) satisfies the Brinkman

system in each of the domains D+ and D−, respectively, i.e.,

(4− αI)Wαh−∇QsΓh = 0, divWα;Γh = 0 in Rn \ Γ. (2.3.20)

The direct value of the double-layer potential Wαh on the boundary is defined by the
Cauchy principal value as

(Kαh)k(x) := p.v.
∫
Γ

Sαjk`(y,x)ν`(y)hj(x)dσy (2.3.21)

= lim
ε→0

∫
Γ\Bε(x)

Sαjk`(y,x)ν`(y)hj(x)dσy a.e. x ∈ Γ. (2.3.22)

where Bε(x) denotes an open ball centered in x with radius ε (see, e.g., Hsiao-Wendland, [46],
or Mitrea-Wright, [86]).

Similar to the properties of the single layer potential given by Lemma , the following lemma
describes the action of the nontangential maximal operator on the double-layer potential op-
erator and states that the nontangential limits exist almost everywhere for the double-layer
potential with a density h in Lp(Γ,Rn) and H1

p (Γ,Rn) respectively (cf. [41, Lemma 3.4]).

Lemma 2.3.4. Let Assumption 2.3.1 be satisfied. Let α ≥ 0 and p ∈ (1,∞) be given constants.
Then we have

(i) There exist some constants Ci=Ci(Γ, p, α)>0, i = 1, 2, such that

‖M (∇Wαh) ‖Lp(Γ) + ‖M (Wαh) ‖Lp(Γ) + ‖M
(
Qdαh

)
‖Lp(Γ) ≤ C1‖h‖H1

p(Γ,Rn), (2.3.23)

for all h ∈ H1
p (Γ,Rn) and

‖M (Wαh) ‖Lp(Γ) ≤ C2‖h‖Lp(Γ,Rn). (2.3.24)

for all h ∈ Lp(Γ,Rn).

(ii) For any h ∈ Lp(Γ,Rn), there exists the nontangential limits of Wαh at almost everywhere
on Γ and

‖(Wαg)±nt‖Lp(Γ,Rn) ≤ C1‖h‖Lp(Γ,Rn). (2.3.25)
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(iii) Let h ∈ H1
p (Γ,Rn). Then there exist the nontangential limits of Wαh, ∇Wαh and Qdαh

at almost all points of Γ and

‖(Wαh)±nt‖Lp(Γ,Rn), ‖(∇Wαh)±nt‖Lp(Γ,Rn), ‖(Qdαh)±nt‖Lp(Γ,Rn) ≤ C2‖h‖H1
p(Γ,Rn). (2.3.26)

For the mapping properties of the double-layer potential operators for the Stokes system
(i.e., for α = 0) on bounded Lipschitz domains we refer, e.g., [30], [46], [86, Theorem 10.5.3],
[85, Theorem 3.1, Proposition 3.3].

The main properties of double-layer potential operators are summarized below. We have
proved them in [41, Theorem 3.5] (some of them are obtained in [25, Proposition 3.4], [49,
Lemma 3.4], [50, Lemma 3.1], [85, Theorem 3.1], [100, Theorem 3.4 and 3.5]).

Theorem 2.3.5. Let Assumption 2.3.1 hold. Let p, q ∈ (1,∞), α > 0, and p∗ := max{2, p}.
Let t ≥ − 1

p′ be arbitrary, where 1
p + 1

p′ = 1. Then the following statements hold.

(i) The following operators are linear and continuous,

Wα|D+ :H1
p (Γ,Rn)→ B

1+ 1
p

p,p∗;div(D+,Rn), Qdα
∣∣
D+

:H1
p (Γ,Rn)→ B

1
p

p,p∗(D+), (2.3.27)(
Wα|D+ , Q

d
α|D+

)
: H1

p (Γ,Rn)→ B
1+ 1

p
,t

p,p∗;div(D+,Lα). (2.3.28)

Wα|D+ :Lp(Γ,Rn)→ B
1
p

p,p∗;div(D+,Rn), Qdα
∣∣
D+

:Lp(Γ,Rn)→ B
1
p
−1

p,p∗ (D+), (2.3.29)(
Wα|D+ , Q

d
α|D+

)
: Lp(Γ,Rn)→ B

1
p
,t

p,p∗;div(D+,Lα). (2.3.30)

(ii) For any s ∈ (0, 1) the following operators

Wα|D+ : Bs
p,q(Γ,Rn)→ B

s+ 1
p

p,q;div(D+,Rn), Qdα|D+ :Bs
p,q(Γ,Rn)→ B

s+ 1
p
−1

p,q (D+), (2.3.31)(
Wα|D+ , Q

d
α|D+

)
: Bs

p,q(Γ,Rn)→ B
s+ 1

p
,t

p,q;div(D+,Lα), (2.3.32)

Wα|D− : Bs
p,q(Γ,Rn)→ B

s+ 1
p

p,q;div;loc(D−,R
n), Qd|D− : Bs

p,q(Γ,Rn)→ B
s+ 1

p
−1

p,q;loc (D−),
(2.3.33)(

Wα|D− , Qdα|D−
)

: Bs
p,q(Γ,Rn)→ B

s+ 1
p
,t

p,q,div;loc(D−,Lα). (2.3.34)

are linear and continuous.

2.4 Properties of Brinkman layer potential operators in Sobolev
and Besov spaces

In the next section, we obtain the jump relations satisfied by the layer potentials for the
Brinkman system in the case when the trace operator and the conormal derivative operator are
considered in the non-tangential sense, as well as in the Gagliardo or canonical sense. Moreover,
we give special attention to the situations in which these notions are equivalent.

2.4.1 Jump relations of the single- and double-layer potentials

We focus our attention on the jump relations across a Lipschitz boundary for the Brinkman
layer potentials in Sobolev spaces, but also in Besov spaces. For the case of the Stokes layer
potentials we refer the reader to, e.g., [30], [46], [86, Theorem 10.5.3], [85, Theorem 3.1, Propo-
sition 3.3]. We have obtained the result below in [41, Theorem 3.5].

First, we focus our attention to the the non-tangential case, cf. [41, Theorem 3.5] (moreover
we mention the following results [25, Proposition 3.4], [49, Lemma 3.4], [50, Lemma 3.1], [85,
Theorem 3.1], [100, Theorem 3.4 and 3.5]).
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2.4. Properties of Brinkman layer potential operators in Sobolev and Besov spaces 26

Theorem 2.4.1. Assume that D+ is a bounded Lipschitz domain in Rn (n ≥ 2) with connected
boundary Γ and D− = Rn\D+. Let p, q ∈ (1,∞), α > 0, and p∗ := max{2, p}. Let t ≥ − 1

p′ be
arbitrary, where 1

p + 1
p′ = 1. Let h ∈ H1

p (Γ,Rn) and g ∈ Lp(Γ,Rn). Then the following relations
hold almost everywhere on Γ,(

Vαg
)+
nt =

(
Vαg

)−
nt =: Vαg, ∀ g ∈ H−1

p (Γ,Rn); (2.4.1)
1
2h + (Wαh)+

nt = −1
2h + (Wαh)−nt =: Kαh, ∀ h ∈ Lp(Γ,Rn); (2.4.2)

−1
2g + t+

nt (Vαg, Qsg) = 1
2g + t−nt (Vαg, Qsg) =: K∗αg, ∀ g ∈ Lp(Γ,Rn); (2.4.3)

t+
nt
(
Wαh, Qdαh

)
= t−nt

(
Wαh, Qdαh

)
=: Dαh, ∀ h ∈ H1

p (Γ,Rn); (2.4.4)

where K∗α is the transpose of Kα;Γ. Moreover, the following integral operators

Vα : Lp(Γ,Rn)→ H1
p (Γ,Rn), Kα : H1

p (Γ,Rn)→ H1
p (Γ,Rn), (2.4.5)

Vα : H−1
p (Γ,Rn)→ Lp(Γ,Rn), Kα : Lp(Γ,Rn)→ Lp(Γ,Rn), (2.4.6)

K∗α : Lp(Γ,Rn)→ Lp(Γ,Rn), Dα : H1
p (Γ,Rn)→ Lp(Γ,Rn). (2.4.7)

are linear and continuous.

The next theorem is a version of Theorem 2.4.1 stated such that the jump realtions are
considered in the Gagliardo and canonical sense (cf. [41, Theorem 3.5]).

Theorem 2.4.2. Let Assumption 2.3.1 hold. Let p, q ∈ (1,∞), α > 0, and p∗ := max{2, p}.
Let t ≥ − 1

p′ be arbitrary, where 1
p + 1

p′ = 1. Then, for h ∈ Bs
p,q(Γ,Rn) and g ∈ Bs−1

p,q (Γ,Rn),
s ∈ (0, 1), the following relations hold almost everywhere on Γ,

γ+(Vαg
)

= γ−
(
Vαg

)
=: Vαg, (2.4.8)

1
2h + γ+(Wαh) = −1

2h + γ−(Wαh) =: Kαh, (2.4.9)

−1
2g + t+

α (Vαg, Qsg) = 1
2g + t−α (Vαg, Qsg) =: K∗αg, (2.4.10)

t+
α

(
Wαh, Qdαh

)
= t−α

(
Wαh, Qdαh

)
=: Dαh. (2.4.11)

In addition, the following operators

Vα : Bs−1
p,q (Γ,Rn)→ Bs

p,q(Γ,Rn), Kα : Bs
p,q(Γ,Rn)→ Bs

p,q(Γ,Rn), (2.4.12)
K∗α : Bs−1

p,q (Γ,Rn)→ Bs−1
p,q (Γ,Rn), Dα : Bs

p,q(Γ,Rn)→ Bs−1
p,q (Γ,Rn). (2.4.13)

are linear and continuous.

Now we give the answer to the natural question whether the Gagliardo trace and the non-
tangential trace operators applied to layer-potentials are the same. We have proved the next
result in [41, Lemma 3.6].

Lemma 2.4.3. Let Assumption 2.3.1 be satisfied. Then the following properties hold.

(i) If p ∈ (1,∞), α ∈ (0,∞), g ∈ Lp(Γ,Rn) and h ∈ H1
p (Γ,Rn), then the following equalities

hold

γ±(Vαg) = (Vαg)±nt ∈ H1
p;ν(Γ,Rn), (2.4.14)

γ±(Wαh) = (Wαh)±nt ∈ H1
p;ν(Γ,Rn), (2.4.15)

t±α (Vαg, Qsg) = t±nt (Vαg, Qsg) ∈ Lp(Γ,Rn), (2.4.16)
t±α
(
Wαh, Qdαh

)
= t±nt

(
Wαh, Qdαh

)
∈ Lp(Γ,Rn), (2.4.17)

with the corresponding norm estimates.
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(ii) If p, q ∈ (1,∞), s ∈ (0, 1), α ∈ (0,∞), g ∈ Bs−1
p,q (Γ,Rn) and h ∈ Bs

p,q(Γ,Rn), then the
following equalities hold

γ±(Vαg) = (Vαg)±nt ∈ Bs
p,q;ν(Γ,Rn), (2.4.18)

γ±(Wαh) = (Wαh)±nt ∈ Bs
p,q;ν(Γ,Rn), (2.4.19)

with the corresponding norm estimates.

We will further need the following integral representation formula for the solution of the
homogeneous Brinkman system, in terms of the Gagliardo trace operator and the canonical
conormal derivative operator (see, e.g., [41, Lemma 3.7]).

Lemma 2.4.4. Let Assumption 2.3.1 be satisfied. Let α ∈ (0,∞), p, q ∈ (1,∞) and s ∈ (0, 1).

If (u, π) ∈ H
s+ 1

p
p (D+,Rn) × H

s−1− 1
p

p (D+), or (u, π) ∈ B
s+ 1

p
p,q (D+,Rn) × B

s−1− 1
p

p,q (D+) and the
the pair (u, π) satisfies the Brinkman system

4u− αu−∇π = 0, div u = 0 in D+ , (2.4.20)

then

u(x) = Vα

(
t+
α (u, π)

)
(x)−Wα

(
γ+u

)
(x), ∀ x ∈ D+, (2.4.21)

π(x) = Qs
(
t+
α (u, π)

)
(x)−Qdα

(
γ+u

)
(x), ∀ x ∈ D+. (2.4.22)

Next, we obtain the analogous integral representation formula (the third Green identity)
(2.4.21) in terms of the non-tangential trace and conormal derivative (cf., [41, Lemma 3.8]).

Lemma 2.4.5. Let Assumption 2.3.1 hold. Let α > 0 and p ∈ (1,∞). If M(u),M(∇u),M(π) ∈
Lp(Γ), then there exist the non-tangential limits of u, ∇u and π almost everywhere on Γ, and
that the pair (u, π) satisfies the homogeneous Brinkman system

4u− αu−∇π = 0, div u = 0 in D+. (2.4.23)

Then u satisfies also the following formula

u(x) = Vα

(
t+

nt(u, π)
)

(x)−Wα

(
u+

nt

)
(x), ∀ x ∈ D+. (2.4.24)

2.4.2 Invertibility properties of the layer potential operators

Throughout this thesis, we need some invertibility results regarding the double-layer poten-
tial operators. Note that, most of the next results are based on general properties of Fredholm
operators and have been obtained in [41, Section 4.]. Recall that the L2-based Sobolev (Bessel-
potential) space Hs

2(D,Rn) is denoted for simplicity by Hs(D,Rn).
To simplify the notations for the next theorems and in the following section for the isomor-

phism properties for certain operators on Lp-based Sobolev spaces, we introduce the following
two intervals as in [41, Relations (166) and (167)],

R0(n, ε) =
(2(n− 1)

n+ 1 − ε, 2 + ε

)
∩ (1,+∞), R1(n, ε) =

(2− ε,+∞) if n = 3,(
2− ε, 2(n−1)

n−3 + ε
)

if n > 3
.

(2.4.25)

These sets are particular cases of the following set

Rθ(n, ε) =

(2− ε,+∞) if n = 3 and θ = 1,(
2(n−1)
n+1−2θ − ε,

2(n−1)
n−1−2θ + ε

)
∩ (1,+∞) if n > 3 and 0 ≤ θ ≤ 1

. (2.4.26)

Lemma 4.2 in [41] and [41, Lemmas A.1 and B.1(ii)] imply by interpolation the following
assertion (cf. [41, Collorary 4.3]).
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Corollary 2.4.6. Let Assumption 2.3.1 hold. Then for α ∈ (0,∞), there exists ε = ε(Γ) > 0
such that for any p ∈ Rs(n, ε) and p′ ∈ R1−s(n, ε) (cf. (2.4.26)), the operators

1
2I + Kα : Hs

p′(Γ,Rn)→ Hs
p′(Γ,Rn), s ∈ [0, 1], (2.4.27)

1
2I + K∗α : H−sp (Γ,Rn)→ H−sp (Γ,Rn), s ∈ [0, 1], (2.4.28)
1
2I + Kα : Bs

p′,q(Γ,Rn)→ Bs
p′,q(Γ,Rn), s ∈ (0, 1), q ∈ (1,∞), (2.4.29)

1
2I + K∗α : B−sp,q(Γ,Rn)→ B−sp,q(Γ,Rn), s ∈ (0, 1), q ∈ (1,∞). (2.4.30)

are isomorphisms. If D+ is of class C1, then the properties hold for all p, p′ ∈ (1,∞).

Lemma 4.4 in [41] and [41, Lemmas A.1 and B.1(ii)] imply by interpolation the following
assertion as in [40, Lemma 4.5].

Corollary 2.4.7. Let Assumption 2.3.1 hold. Then for α ∈ (0,∞), there exists ε = ε(Γ) > 0
such that for any p ∈ Rs(n, ε) and p′ ∈ R1−s(n, ε), cf. (2.4.26), the following operators are
isomorphisms,

− 1
2I + Kα : Hs

p′;ν(Γ,Rn)→ Hs
p′;ν(Γ,Rn), s ∈ [0, 1], (2.4.31)

− 1
2I + K∗α : H−sp (Γ,Rn)/Rν → H−sp (Γ,Rn)/Rν, s ∈ [0, 1], (2.4.32)

− 1
2I + Kα : Bs

p′,q;ν(Γ,Rn)→ Bs
p′,q;ν(Γ,Rn), s ∈ (0, 1), q ∈ (1,∞), (2.4.33)

− 1
2I + K∗α : B−sp,q(Γ,Rn)/Rν → B−sp,q(Γ,Rn)/Rν, s ∈ (0, 1), q ∈ (1,∞). (2.4.34)

If D+ is of class C1, then the properties is valid for any p, p′ ∈ (1,∞).

In the case α = 0, the statement of the lemma below has been obtained in [86, Theorem
9.1.4, Corollary 9.1.5] (see also [85, Theorem 6.1]).

Finally, by an interpolation argument based on [41, Lemmas A.1 and B.1] and Lemma 4.6
in [41], we obtain the following property (see, e.g., [41, Corollary 4.7]).

Corollary 2.4.8. Let Assumption 2.3.1 hold. Then for α ∈ (0,∞) and p ∈ Rs(n, ε), there
exists ε = ε(Γ) > 0 such that the following operators

Vα : H−sp (Γ,Rn)/Rν → H1−s
p;ν (Γ,Rn), s ∈ [0, 1], (2.4.35)

Vα : B−sp,q(Γ,Rn)/Rν → B1−s
p,q;ν(Γ,Rn), s ∈ (0, 1), q ∈ (1,∞). (2.4.36)

are isomorphisms. If, in addition, D+ is of class C1, then the property holds for any p ∈ (1,∞).
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Chapter 3

Mixed problems for the Brinkman
and Darcy-Forchheimer-Brinkman
systems in Besov spaces on bounded
creased Lipschitz domains in
Rn, n ≥ 3

This chapter is concerned with boundary problems of mixed Dirichlet-Neumann type for
the linear Brinkman system and the semilinear Darcy-Forchheimer-Brinkman system on creased
Lipschitz domains in Rn, where n ≥ 3, by assuming that the boundary data belong to Lp−based
Sobolev spaces with p in a neighborhood of 2, as they have been obtained by joint work with M.
Kohr, S. E. Mikhailov and W. L. Wendland in [41, Section 5 and 6]. In order to derive the well-
posedness results for the two systems under consideration, we require the well-posedness result
for the Dirichlet and Neumann boundary problems for the Brinkman system with boundary
data in Lp− based spaces (for related results, we refer the reader to [100, Theorem 5.5], [86,
Corollary 9.1.5, Theorem 9.1.4, 9.2.2 and 9.2.5] and [85, Theorem 7.1]). Special attention is
given to the special cases related to different type of trace and conormal derivative operators,
i.e., to the cases when the operators are considered in the non-tangential or in the Gagliardo
trace sense (we refer to Sections 1.5 and 1.6 of Chapter 1, as well as to [41, Sections 2.1 and 2.2]).
Moreover, we emphasize the requirement of the special creased Lipschitz domain for mixed type
boundary problems, since the boundary data under consideration have high regularity.

Brown et al. in [13, Theorem 1.1] have obtained the solvability result for the mixed Dirichlet-
Neumann problem for the Stokes system with boundary data in L2-based spaces on creased
Lipschitz domains in Rn (n ≥ 3), by reducing such a boundary problem to the analysis of
a boundary integral equations. Moreover, the authors in [51, Theorem 6.1] have proved the
well-posedness of the mixed Dirichlet-Robin problem for the Brinkman system in a creased
Lipschitz domain with boundary data in Lp-based spaces, with p in some neighbourhood of
2. Having in view the results in [13], we show in this section the well-posedness of the mixed
Dirichlet-Neumann boundary problem for the Brinkman system in L2-based Bessel potential
spaces defined on a bounded, creased Lipschitz domain D in Rn (n ≥ 3) and finally extending
them to Lp-based spaces for some p in the neighborhood of 2 by using the complex interpolation
theory and embedding results of Sobolev spaces.
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3.1 Boundary value problems for the Brinkman system on Lip-
schitz domains in Rn

In this section we analyze boundary problems of Dirichlet, Neumann and mixed Dirichlet-
Neumann type for the Brinkman system. Recall that by a creased Lipschitz domain we mean a
domain satisfying the conditions in Definition 1.1.3. The boundary problems of this section are
analyzed for both cases when the boundary condition is considered in the non-tangential and
Gagliadro sense.

3.1.1 Mixed Dirichlet-Neumann problem for the Brinkman system with data
in L2-based spaces

We begin by stating the analog version of Assumption 2.3.1 for mixed boundary problems.

Assumption 3.1.1. Let D ⊂ Rn (n ≥ 3) be a bounded, creased Lipschitz domain with con-
nected boundary Γ, which is decomposed in two disjoint admissible patches ΓD and ΓN (see
Definition 1.1.3).

This means that ΓD and ΓN do not meet tangentially and moreover that, ΓD and ΓN are
separated by a Lipschitz interface where the angle between them is less than π. Also, let
(·)|ΓD

, (·)|ΓN
denote the operator of restriction from Hs

p(Γ,Rn) to Hs
p(ΓD,Rn) and Hs

p(ΓN ,Rn),
respectively.

In this section we show the well-posedness of the mixed Dirichlet-Neumann boundary prob-
lem for the Brinkman system,

4u− αu−∇π = 0, div u = 0 in D,
u+

nt|ΓD
= h0,

t+
nt(u, π)|ΓN

= g0,
(3.1.1)

where the boundary conditions are considered in the nontangential case as well as the counter-
part problem 

4u− αu−∇π = 0, div u = 0 in D,
γ+u|ΓD

= h0,
t+
α (u, π)|ΓN

= g0,
(3.1.2)

where the trace is taken in the Gagliardo sense and the conormal derivative in the canonical
sense.

For the first problem (3.1.1), we prove that for h0 ∈ H1
p (ΓD,Rn) and g0 ∈ Lp(ΓN ,Rn) given

and for some range of p, there exists an unique Lp-solution of the mixed problem (3.1.3), i.e.,
an unique pair (u, π) such that u and π satisfy the Brinkman system in D+, there exist the
non-tangential limits of u, ∇u and π almost everywhere of Γ, M(u),M(∇u),M(π) ∈ Lp(Γ),
and the boundary conditions in (3.1.3) are satisfied in the sense of non-tangential limit almost

everywhere on ΓD and ΓN , respectively. In addition, we show that (u, π) ∈ B
1+ 1

p

p,p∗ (D,Rn) ×

B
1
p

p,p∗(D).
In the case of problem (3.1.2), where the boundary conditions are understood in the

Gagliardo and canonical sense, we will show that for h0 ∈ H1
p (ΓD,Rn) and g0 ∈ Lp(ΓN ,Rn)

given and for some range of p, there exists a unique Lp-solution (u, π) ∈ B
1+ 1

p

p,p∗ (D,Rn)×B
1
p

p,p∗(D)
of the mixed problem (3.1.2), which satisfy M(u),M(∇u),M(π) ∈ Lp(Γ).

Let us mention that, for a bounded, creased Lipschity domain, Brown [11] have proven that
the mixed problem for the Laplace equation has an unique solution, and moreover, that it’s
gradient belongs to L2(Γ) when the Dirichlet datum belongs to H1

2 (ΓD) = H1(ΓD) and the
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Neumann datum to L2(ΓN ). For the same class of domains, well-posedness results in a range
of Lp−based spaces have been obtained in [83].

In order to show the following result obtained in [41, Theorem 6.4], we use the main ideas
of the proof of [51, Theorem 6.1].

Theorem 3.1.2. Let α ∈ (0,∞). Then under Assumption 3.1.1, the mixed Dirichlet-Neumann
boundary problem for the Brinkman system with given data (h0,g0) in the space H1

2 (ΓD,Rn)×
L2(ΓN ,Rn) given by 

4u− αu−∇π = 0 in D,
div u = 0 in D,(
u+

nt

)
|ΓD

= h(
t+

nt(u, π)
)
|ΓN

= g,
M(∇u), M(u), M(π) ∈ L2(Γ),

(3.1.3)

has a unique solution (u, π), which satisfies the boundary conditions in the sense of non-
tangential limit almost everywhere on ΓD and ΓN , respectively. Moreover, (u, π) belongs to
the space H

3
2
2 (D,Rn) × H

1
2
2 (D) and there exist some constants CM and C depending only on

ΓD, ΓN , α and n such that

‖M(∇u)‖L2(Γ) + ‖M(u)‖L2(Γ) + ‖M(π)‖L2(Γ) ≤ CM
(
‖h0‖H1

2 (ΓD,Rn) + ‖g0‖L2(ΓN ,Rn)
)
,

(3.1.4)

‖u‖
H

3
2
2 (D,Rn)

+ ‖π‖
H

1
2
2 (D)

≤ C
(
‖h0‖H1

2 (ΓD,Rn) + ‖g0‖L2(ΓN ,Rn)
)
. (3.1.5)

In the next subsection, we extend the results established in Theorem 3.1.2, to Lp-based
spaces with p in some neighbourhood of 2, for the mixed boundary problem (3.1.3), with data
(h0,g0) ∈ H1

p (ΓD,Rn)× Lp(ΓN ,Rn).

Moreover, we show the the solution of the mixed problem (3.1.1) belongs to B
1+ 1

p

p,p∗ (D,Rn)×

B
1
p

p,p∗(D), where p∗ = max{2, p}.
In the sequel, we need the following space defined for a subset S0 ⊂ Γ

H̃0
p (S0,Rn) :=

{
Φ ∈ Lp(Γ,Rn) : supp Φ ⊆ S0

}
. (3.1.6)

3.1.2 The Neumann-to-Dirichlet operator for the Brinkman system

Inspired by the work [83], where the authors study the mixed Dirichlet-Neumann boundary
problem for the Laplace equation in a creased Lipschitz domain, we introduce the Neumann-
to-Dirichlet operator Υnt;α, which associates to the datum g ∈ Lp(Γ,Rn), the restriction of
the non-tangential trace u+

nt to the patch ΓD, where (u, π) is the unique Lp-solution of the
Neumann problem with the non-tangential conormal derivative g. Thus, (u, π) satisfies the
Neumann condition almost everywhere on Γ in the sense of nontangential limit, and the condi-
tions M(u),M(∇u),M(π) ∈ Lp(Γ), and

Υnt;αg = u+
nt|ΓD

. (3.1.7)

Similarly, we consider Υα, which associates to g ∈ Lp(Γ,Rn), the datum γ+u to the patch
ΓD, where (u, π) is the unique solution of the Neumann problem with f = 0 and the canonical
conormal derivative g, i.e.,

Υαg = γ+u|ΓD
. (3.1.8)

The key idea here, is the property that the invertibility of each of the Neumann-to-Dirichlet
operator Υnt;α and Υα on Lp-based Sobolev spaces leads to the extension of the well-posedness
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result in Theorem 3.1.2 on such spaces. An intermediary step to obtain this property is given
by the following result, obtained in [41, Lemma 6.5]. Recall that R0(n, ε) is the set defined in
(2.4.25).

Lemma 3.1.3. Let α ∈ (0,∞). Then under Assumption 3.1.1, there exists ε = ε(Γ) > 0 such
that for any p ∈ R0(n, ε) the following properties hold.

(i) The operators Υnt;α and Υα coincide, are continuous and have the expression

Υnt;α = Υα =
(
Vα ◦

(1
2I + K∗α

)−1
) ∣∣∣∣∣

ΓD

. (3.1.9)

(ii) The mixed Dirichlet-Neumann boundary problem (3.1.1) with data (h0,g0) ∈
H1
p (ΓD,Rn) × Lp(ΓN ,Rn) has a unique solution (u, π) such that there exist the non-

tangential limits of u, ∇u and π almost everywhere on Γ, M(u),M(∇u),M(π) ∈ Lp(Γ)
and u and π satisfy the Dirichlet and Neumann boundary conditions almost everywhere
as a non-tangential limit, if and only if the operator

Υnt;α : H̃0
p (ΓD,Rn)→ H1

p (ΓD,Rn) (3.1.10)

is an isomorphism.

(iii) Problem (3.1.2) with data (h0,g0) ∈ H1
p (ΓD,Rn) × Lp(ΓN ,Rn) has a unique solution

(u, π) ∈ B
1+ 1

p

p,p∗ (D,Rn)×B
1
p

p,p∗(D) if and only if the operator

Υα : H̃0
p (ΓD,Rn)→ H1

p (ΓD,Rn) (3.1.11)

is an isomorphism.

In addition, when the solution (u, π) exists, then it belongs to the space B
1+ 1

p

p,p∗ (D,Rn)×B
1
p

p,p∗(D)
and there exist some constants CM ≡ CM (α, p,ΓD,ΓN , n) > 0, C ≡ C(α, p,ΓD,ΓN , n) > 0 and
C ′ ≡ C ′(α, p,ΓD,ΓN , n) > 0 such that

‖M(∇u)‖Lp(Γ) + ‖M(u)‖Lp(Γ) + ‖M(π)‖Lp(Γ) ≤ CM
(
‖h0‖H1

p(ΓD,Rn) + ‖g0‖Lp(ΓN ,Rn)
)
,

(3.1.12)

‖u‖
B

1+ 1
p

p,p∗ (D,Rn)
+ ‖π‖

B
1
p
p,p∗ (D)

≤ C
(
‖h0‖H1

p(ΓD,Rn) + ‖g0‖Lp(ΓN ,Rn)
)
, p∗ = max{2, p},

(3.1.13)

‖γ+u‖H1
p(Γ,Rn) + ‖t+(u, π)‖Lp(Γ,Rn)) ≤ C ′

(
‖h0‖H1

p(ΓD,Rn) + ‖g0‖Lp(ΓN ,Rn)
)
. (3.1.14)

3.1.3 Mixed Dirichlet-Neumann problem for the Brinkman system with data
in Lp-based spaces

Now, we are able to formulate the main result of the section, which refers to the well-
posedness for the mixed Dirichlet-Neumann problem (3.1.3) with boundary data in Lp-based
Bessel potential spaces and with p in a neighborhood of 2, when the boundary conditions are
considered in the non-tangential sense. The proof of this result is a consequence of Theorem
3.1.2 and Lemma 3.1.3 and has been obtained in our paper [41, Theorem 6.6(i)].
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Theorem 3.1.4. Let α ∈ (0,∞) and let Assumption 3.1.1 be satisfied. Then there exists a
number ε > 0 such that for any p ∈ (2− ε, 2 + ε) and for all given data (h,g) ∈ H1

p (ΓD,Rn)×
Lp(ΓN ,Rn) the mixed type boundary problem for the Brinkman system

4u− αu−∇π = 0 in D,
div u = 0 in D,(
u+

nt

)
|ΓD

= h ∈ H1
p (ΓD,Rn)(

t+
nt(u, π)

)
|ΓN

= g ∈ Lp(ΓN ,Rn),
M(∇u), M(u), M(π) ∈ Lp(Γ),

(3.1.15)

where the Dirichlet and Neumann boundary conditions are satisfied in the sense of non-
tangential limit almost everywhere on ΓD and ΓN , respectively, has a unique solution
(u, π). Moreover, (u, π) ∈ B

1+ 1
p

p,p∗ (D,Rn) × B
1
p

p,p∗(D), and there exist some constants Cj ≡
Cj(α, p,ΓD,ΓN , n) > 0, j = 1, . . . , 3 such that

‖M(∇u)‖Lp(Γ) + ‖M(u)‖Lp(Γ) + ‖M(π)‖Lp(Γ) ≤ C1
(
‖h‖H1

p(ΓD,Rn) + ‖g‖Lp(ΓN ,Rn)
)
, (3.1.16)

‖u‖
B

1+ 1
p

p,p∗ (D,Rn)
+ ‖π‖

B
1
p
p,p∗ (D)

≤ C2
(
‖h‖H1

p(ΓD,Rn) + ‖g‖Lp(ΓN ,Rn)
)
, (3.1.17)

‖γ+u‖H1
p(Γ,Rn) + ‖t+

α (u, π)‖Lp(Γ,Rn)) ≤ C3
(
‖h‖H1

p(ΓD,Rn) + ‖g‖Lp(ΓN ,Rn)
)
. (3.1.18)

The next theorem is the counterpart of Theorem 3.1.4, when the trace operator is considered
in the Gagliardo sense and the conormal derivative in the canonical sense. This result refers to
the second part of Theorem 6.6 in our work [41].

Theorem 3.1.5. Let Assumption 3.1.1 hold. Then for any α ∈ (0,∞), there exists a number
ε > 0 such that for any p ∈ (2−ε, 2+ε) and for all given data (h,g) ∈ H1

p (ΓD,Rn)×Lp(ΓN ,Rn)
the mixed Dirichlet-Neumann boundary problem given by

4u− αu−∇π = 0 in D,
div u = 0 in D,(
γ+u

)
|ΓD

= h ∈ H1
p (ΓD,Rn)(

t+
α (u, π)

)
|ΓN

= g ∈ Lp(ΓN ,Rn),

(3.1.19)

has a unique solution (u, π) with boundary conditions taken in the Gagliadro sense. Moreover,

(u, π) ∈ B
1+ 1

p

p,p∗ (D,Rn)×B
1
p

p,p∗(D), and there exist some constants Cj ≡ Cj(α, p,ΓD,ΓN , n) > 0,
j = 1, 2, 3 such that

‖M(∇u)‖Lp(Γ) + ‖M(u)‖Lp(Γ) + ‖M(π)‖Lp(Γ) ≤ C1
(
‖h‖H1

p(ΓD,Rn) + ‖g‖Lp(ΓN ,Rn)
)
, (3.1.20)

‖u‖
B

1+ 1
p

p,p∗ (D,Rn)
+ ‖π‖

B
1
p
p,p∗ (D)

≤ C2
(
‖h‖H1

p(ΓD,Rn) + ‖g‖Lp(ΓN ,Rn)
)
, (3.1.21)

‖γ+u‖H1
p(Γ,Rn) + ‖t+

α (u, π)‖Lp(Γ,Rn)) ≤ C3
(
‖h‖H1

p(ΓD,Rn) + ‖g‖Lp(ΓN ,Rn)
)
. (3.1.22)

3.1.4 Poisson problem of mixed Dirichlet and Neumann type for the
Brinkman system with data in Lp-based spaces

Using Theorem 3.1.4, we prove the well-posedness of the following Poisson problem of mixed
Dirichlet-Neumann type for the Brinkman system in a creased Lipschitz domain D, with data
in some Lp-based spaces, 

4u− αu−∇π = f ∈ Lp(D,R3),
div u = 0 in D(
γ+u

)
|ΓD

= h0 ∈ H1
p (ΓD,R3)(

t+
α (u, π)

)
|ΓN

= g0 ∈ Lp(ΓN ,R3),

(3.1.23)
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where the trace and the conormal derivative are considered in Gagliardo and canonical sense.
First, we mention the following definition.

Definition 3.1.6. By a solution of the boundary problem (3.1.23) we mean a pair (u, π) ∈

B
1+ 1

p

p,p∗ (D+,Rn) × B
1
p

p,p∗(D+), where p∗ = max{2, p}, which satisfies the non-homogeneous
Brinkman system in D+, the Dirichlet condition on ΓD in the Gagliardo trace sense, and the
Neumann condition on ΓN in the canonical sense described in Definition 1.5.3.

Theorem 3.1.7. Let Assumption 3.1.1 hold. Then for any α ∈ (0,∞), there exists a number
ε > 0 such that for any p ∈ (2 − ε, 2 + ε) and for all given data (f ,h0,g0) ∈ Lp(D,Rn) ×
H1
p (ΓD,R3)× Lp(ΓN ,R3) the boundary problem (3.1.23) has a unique solution

(u, π) ∈ B
1+ 1

p

p,p∗ (D,R3)×B
1
p

p,p∗(D), (3.1.24)

where p∗ = max{2, p}. The solution satisfies the conditions

γ+u ∈ H1
p (Γ,R3), t+

α (u, π) ∈ Lp(Γ,R3), (3.1.25)

and there exists a linear, continuous operator

Ap : Lp(D,R3)×H1
p (ΓD,R3)× Lp(ΓN ,R3)→ B

1+ 1
p

p,p∗ (D,R3)×B
1
p

p,p∗(D)

delivering this solution, which means that Ap(f ,h0,g0) = (u, π).

3.2 Semilinear Problems for the Darcy-Forchheimer-Brinkman
System

In this section we provide a well-posedness result for the mixed Dirichlet-Neumann boundary
problem for the semilinear Darcy-Forchheimer-Brinkman system.

3.2.1 Mixed Dirichlet-Neumann problem for the semilinear Darcy-
Forchheimer-Brinkman system in Besov spaces

Next, we study the mixed Dirichlet-Neumann problem for the semilinear Darcy-Forchheimer-
Brinkman system {

4u− αu− β|u|u−∇π = 0 in D,
div u = 0 in D.

(3.2.1)

This semilinear system plays an major role in fluid mechanics, since it describes the flow in
porous media saturated with incompressible Newtonian fluids [87, p. 17]. The constants α, β > 0
are related to the physical properties of such a porous medium and describe the convection of
the fluid flow.

The analysis of this problem is restricted to the three-dimensional setting, due to the fact
our arguments are based on some embedding results.

In the sequel, we extend the solvability result obtained in [51, Theorem 7.1] for (3.2.1) with
the given data in L2-based Sobolev spaces, to the case of Lp-based Bessel potential spaces,
when the given boundary data (h0,g0) belong to the space H1

p (ΓD,R3) × Lp(ΓN ,R3), with
p ∈ (2− ε, 2 + ε) and a constant ε > 0 as in Theorem 3.1.7, and this data is sufficiently small.
The next theorem has been obtained in collaboration with M. Kohr, S. Mikhailov and W.
Wendland in [41, Theorem 7.1].
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Theorem 3.2.1. Let Assumption 3.1.1 hold. Then for all α, β ∈ (0,∞), there exists ε > 0
such that for any p ∈ (2− ε, 2 + ε) there exist two constants ζp ≡ ζp(D, α, β, p) > 0 and ηp ≡
ηp(D, α, β, p) > 0 with the property that for all given data (h0,g0) ∈ H1

p (ΓD,R3)× Lp(ΓN ,R3)
satisfying the condition

‖h0‖H1
p(ΓD,R3) + ‖g0‖Lp(ΓN ,R3) ≤ ζp, (3.2.2)

the mixed boundary problem for the semilinear Darcy-Forchheimer-Brinkman system
4u− αu− β|u|u−∇π = 0 in D,
div u = 0 in D,(
γ+u

)
|ΓD

= h0 on ΓD(
t+
α (u, π)

)
|ΓN

= g0 on ΓN

(3.2.3)

has a unique solution (u, π) ∈ B
1+ 1

p

p,p∗ (D,R3)×B
1
p

p,p∗(D), which satisfies

‖u‖
B

1+ 1
p

p,p∗ (D,R3)
≤ ηp, (3.2.4)

and the relations γ+u ∈ H1
p (Γ,R3), t+

α (u, π) ∈ Lp(Γ,R3). Moreover, the solution depends con-
tinuously on the given data, which means that there exists C ≡ C(D, α, β, p) > 0 such that

‖u‖
B

1+ 1
p

p,p∗ (D,R3)
+ ‖π‖

B
1
p
p,p∗ (D)

≤ C
(
‖h0‖H1

p(ΓD,R3) + ‖g0‖Lp(ΓN ,R3)
)
. (3.2.5)
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Chapter 4

Variational and potential approach
for mixed problems for the
Brinkman and the
Darcy-Forchheimer-Brinkman
systems in R2

In this chapter, we focus our attention to the weak solution of boundary problems for
the Brinkman system on Lipschitz domains of the two dimensional Euclidean space R2. We
consider a variational formulation for the related boundary integral equations derived from
the boundary value problems under consideration. As in the previous chapter, we consider
the Dirichlet, Neumann and also the Robin problem for the Brinkman system. The main
sources used in the preparation of this chapter are the papers [37] and [40], based on [61], [76].
In addition, we also analyze the mixed Dirichlet-Robin boundary problem for the nonlinear
Darcy-Forchheimer-Brinkman system (cf., e.g., [37, Theorem 2.9], see also [40, Theorem 3.2] for
the Robin problem).

We begin with a short presentation of some valuable results related to elliptic boundary
problems in two dimensional Euclidean setting. Many authors have considered boundary prob-
lems related to fluid flow problems in two-dimensions. Two-dimensional problems are of great
interest, since many oceanographic and meteorological problems can be reduced to the study of
such problems [26], [71]. Moreover, great efforts have been made in order to study exterior and
interior fluid flows around or inside a cylinder or another irregular domain in two dimensions
[64], [92]. In [45], Hsiao and Kress studied the two-dimensional exterior Dirichlet problem for
the Stokes system by reducing the problem to a system of Fredholm integral equations of the
second kind. Exterior two-dimensional Stokes flow problems in multiply connected domains
were studied by Power [91] by employing a completed double-layer boundary integral method.
An extention of the main results in [30], obtained in the flat, Euclidean setting to the case of
Lipschitz domains in Riemannian domains is obtained by Mitrea and Taylor in [85], where a
detailed treatment of the Stokes layer potential is presented.

A main reference throughout this chapter is the paper published by Kohr and Wendland
[61], in which they analyze direct boundary equations for the Dirichlet, the Neumann, and
the mixed boundary problem of the Stokes system in R3 on Lipschitz boundaries, by employing
variational formulations. Many coerciveness properties described in the sequel for the Brinkman
system are based on the coerciveness properties proved in [61]. Based on the well-posedness of
the Dirichlet problem we construct the existence and uniqueness results of the mixed Dirichlet-
Robin problem for the nonlinear Darcy-Forchheimer-Brinkman system. This result constitutes
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the theoretical foundation of the mixed boundary problems which are studied numerically in
Chapter 7.

4.1 Variational formulation for boundary value problems for the
Brinkman system

Everywhere in the section, we assume n = 2 and, in addition, we consider the following:

Assumption 4.1.1. Let D ⊂ R2 denote a bounded Lipschitz domain with connected boundary
Γ = ∂D.

Following the main outline of the previous section, we begin with the analysis of the mixt
Dirichlet-Neumann problem for the Brinkman system as in Section 3 by employing a variational
approach, based on that in [37].

4.1.1 Variational formulation of the mixed Dirichlet-Neumann problem for
the Brinkman system

Similarly to the previous subsections, we consider the following:

Assumption 4.1.2. Recall that D ⊂ R2 satisfies Assumption 4.1.1, i.e., D is a bounded
Lipschitz domain with connected boundary Γ = ∂D. In addition, let ΓD,ΓN be relatively open,
disjoint, non-empty subsets of Γ such that Γ = ΓD ∪ ΓN (see Definition 1.1.2).

Then, we consider the mixed Dirichlet-Neumann boundary problem for the Brinkman system
∆u− αu−∇π = 0 in D,
div u = 0 in D,

(γ+ u)|ΓD
= h ∈ H

1
2 (ΓD,R2),

(t+
α (u, π))ΓN

= g ∈ H−
1
2 (ΓN ,R2),

(4.1.1)

where (·)|ΓD
denotes the restriction operator from the Sobolev space H

1
2 (Γ,R2) to H

1
2 (ΓD,R2),

and (·)|ΓN
is the restriction operator from H−

1
2 (Γ,R2) to H−

1
2 (ΓN ,R2).

Before we state an equivalence theorem between the mixed problem (4.1.1) and a system of
boundary integral equations, let us make first some observations. We reformulate the boundary
problem (4.1.1) as a system of boundary integral equations, inspired by the main ideas in [61]
as we have done in [37] (see also [76, Theorem 7.9]). Starting with the Green representation of
a weak solution (see, e.g., [46] and [86] for α = 0)

u(x) = Vα(t+
α (u, π))−Wα(γ+u), π(x) = Qsα(tα(u, π))−Qdα(γ+ u), (4.1.2)

and taking the traces from inside of D, we obtain the following equation

Vα(t+
α (u, π))−

(1
2I + Kα

)
γ+u = 0. (4.1.3)

Now, by applying the conormal derivative operator in (4.1.2) and by using the corresponding
jump formulas (Theorem 2.4.2), we obtain the equation(

−1
2I + K∗α

)
(t+
α (u, π))−Dαγ

+u = 0. (4.1.4)

The definition of the spaces H
1
2 (ΓD,R2) and H−

1
2 (ΓN ,R2) imply that there exist h∗ ∈

H
1
2 (Γ,R2) and g∗ ∈ H−

1
2 (Γ,R2) such that h∗|ΓD

= h and g∗|ΓN
= g. Therefore, the trace and

conormal derivative γ+u and t+α (u, π) for the mixed problem (4.1.1) can be written as(
γ+u

)
|Γ = ϕN + h∗,

(
t+
α (u, π)

)
|Γ = ψD + g∗. (4.1.5)

37



4.1. Variational formulation for boundary problems for the Brinkman system 38

with some unknowns ϕN ∈ H̃
1
2 (ΓN ,R2) and ψD ∈ H̃−

1
2 (ΓD,R2).

According to the condition 〈γ+u,ν〉 = 0 that should be satisfied by the trace field γ+u on
Γ, we choose an extension h∗D of the Dirichlet datum h, such that the following orthogonality
condition holds 〈h∗D,ν〉 = 0, i.e.,

h∗D ∈ H
1
2
ν (Γ,R2). (4.1.6)

Therefore, the trace of u on Γ can be written as(
γ+u

)
|Γ = ϕN + h∗D, (4.1.7)

and by the continuity equation and the flux-divergence theorem, we deduce that the desired
density ϕN satisfies also the orthogonality condition

〈ϕN ,ν〉 = 0, i.e., ϕ ∈ H̃
1
2
ν (Γ,R2). (4.1.8)

Before we begin with the analysis of the boundary equations (4.1.3), (4.1.4) related to
the mixed Dirichlet-Neumann problem for the Brinkman system, we introduce for clarity the
following notations. Since we are working with restrictions of the boundary, let us denote by

VDα ψ := Vαψ|ΓD
, K∗Nα ψ := K∗αϕ|ΓN

, ψ ∈ H̃−
1
2 (ΓD,R2), (4.1.9)

KD
α ϕ := Kαϕ|ΓD

, DN
α ϕ := Dαϕ|ΓN

, ϕ ∈ H̃
1
2 (ΓN ,R2). (4.1.10)

By restricting equation (4.1.3) to ΓD and equation (4.1.4) to ΓN , we obtain the system of
boundary equations with the unknowns ψD ∈ H̃−

1
2 (ΓD,R2) and ϕN ∈ H̃

1
2 (ΓN ,R2) in the form{

VDα ψD −KD
α ϕN = f1, x ∈ ΓD

K∗Nα ψD −DN
α ϕN = f2, x ∈ ΓN

(4.1.11)

where (f1, f2) ∈ H
1
2 (ΓD,R2)×H−

1
2 (ΓN ,R2) are given by

f1 = 1
2h∗D + KD

α h∗D − VDα g∗, f2 = DN
α h∗D + 1

2g∗ −K∗Nα g∗. (4.1.12)

Having the above arguments, we state an equivalence theorem between the mixed Dirichlet-
Neumann boundary problem for the Brinkman system (4.1.1) and the system of boundary
integral equations (4.1.11). We also refer to Theorem 7.9 in [76].

Theorem 4.1.3. Let Assumption 4.1.2 hold and let α ∈ (0,∞). Let h ∈ H
1
2 (Γ,R2) and

g ∈ H−
1
2 (Γ,R2). Also, let g∗ and h∗D be given by (4.1.5) and (4.1.6), respectively. Then the

following statements hold.

(i) If (u, π) ∈ H1(D,R2)× L2(D) is a solution of (4.1.1), then (ψD, ϕN ) given by

ψD = t+
α (u, π)− g∗, ϕN = γ+u− h∗D, (4.1.13)

is a solution of (4.1.11). Moreover, the solution (u, π) can be represented

u = Vα(ψD + g∗)−Wα(ϕN + h∗D), π = Qsα(ψD + g∗)−Qdα(ϕN + h∗D), (4.1.14)

(ii) If, (ϕN , ψD) ∈ H̃
1
2 (ΓN ,R2)× H̃

1
2 (ΓD,R2) is a solution of the boundary integral equations

(4.1.11), then the formula (4.1.14) defines a solution of (4.1.1).
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For simplicity, we introduce the notation H for the product space

H := H̃
1
2
ν (ΓN ,R2)× H̃−

1
2 (ΓD,R2) ⊂ H

1
2 (Γ,R2)×H−

1
2 (Γ,R2). (4.1.15)

Let us define the bilinear form a : H×H → R as

a((ϕN , ψD); (ϕ,ψ)) := 〈VDα ψD, ψ〉 − 〈KD
α ϕN , ψ〉+ 〈K∗Nα ψD, ϕ〉+ 〈−DN

α ϕN , ϕ〉. (4.1.16)

Then we consider the following variational problem for the mixed Dirichlet-Neumann bound-
ary problem for the Brinkman system (4.1.1). Find (ϕN , ψD) ∈ H such that the following
equation is satisfied (see [61] for α = 0)

a((ϕN , ψD); (ϕ,ψ)) = l(ϕ,ψ), ∀(ϕ,ψ) ∈ H, (4.1.17)

where

l(ϕ,ψ) =
〈1

2h∗D + KD
α h∗D − VDα g∗, ψ

〉
+
〈

DN
α h∗D + 1

2g∗ −K∗Nα g∗, ϕ
〉
. (4.1.18)

Before we attend to study the system of integral equations (4.1.11), we analyze the coer-
civeness properties of the associated single and double-layer potential operators.

Theorem 4.1.4. Under Assumption 4.1.2 and for α ∈ (0,∞), the following assertions hold.

(i) The single-layer integral operator

VDα : H̃−
1
2 (ΓD,R2)→ H

1
2 (ΓD,R2), (4.1.19)

satisfies the coerciveness inequality

〈VDα ψ,ψ〉 ≥ cV ‖ψ‖H̃− 1
2 (ΓD,R2)

, ∀ ψ ∈ H̃−
1
2 (ΓD,R2). (4.1.20)

(ii) The hypersingular integral operator

DN
α : H̃

1
2
ν (ΓN ,R2)→ H−

1
2 (ΓN ,R2)/Rν, (4.1.21)

satisfies the coerciveness inequality

〈−DN
α ϕ,ϕ〉 ≥ cD‖ϕ‖

H̃
1
2

ν (ΓN ,R2)
, ∀ ϕ ∈ H̃

1
2
ν (ΓN ,R2). (4.1.22)

Next we show the following well-posedness result for the variational problem (4.1.17).

Theorem 4.1.5. Let Assumption 4.1.2 hold and let α ∈ (0,∞). Then the variational problem
(4.1.17) has a unique solution.

4.2 The Poisson problem with mixed boundary conditions for
the Brinkman system

The following subsection is devoted to the extension of the solvability result for the mixed
Dirichlet-Neumann problem for the homogeneous Brinkman system to the related Poisson prob-
lem using a constructive approach regarding the Newtonian layer potential ([37, Theorem 3]).
Afterward, we focus our attention to the Dirichlet-Robin boundary problem for the Brinkman
system, which plays a main role in the analysis of the nonlinear systems in the last part of
this section. The desired well-posednes result is based on the Fredholm property of the related
operator and has been obtained in our work [37, Theorem 4].
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4.2.1 The Poisson problem of mixed type for the Brinkman system with
mixed Dirichlet and Neumann boundary conditions

In this section we show the well-posedness result of the weak solution for the mixed boundary
problem of Dirichlet-Neumann type for the Brinkman system in L2-based Sobolev spaces defined
on a bounded Lipschtz domain D in R2 with connected boundary. The well-posedness result
for this problem is based on the well-posedness property obtained in the previous section, and
follows similar arguments as in [53], where the authors have studied the Poisson problem for
the Stokes and Brinkman system (see also [65, Section 4]).

For simplicity of notation, let us define the solution space X , the space of given boundary
data B and the space Y for the mixed boundary problem for the Brinkman system as

X := H1(D,R2)× L2(D), B := H
1
2 (ΓD,R2)×H−

1
2 (ΓN ,R2), Y := H̃−1(D,R2)× B. (4.2.1)

Theorem 4.2.1. Under Assumption 4.1.2 and for α ∈ (0,∞) and for all given data (h,g) ∈ B,
the mixed boundary problem of Dirichlet-Neumann type for the Brinkman system

4u− αu−∇π = f |D,
div u = 0 in D(
γ+u

)
|ΓD

= h ∈ H
1
2 (ΓD,R2)(

t+
α (u, π)

)
|ΓN

= g ∈ H−
1
2 (ΓN ,R2),

(4.2.2)

has a unique solution (u, p) ∈ X . Moreover, there exists a linear continuous operator Aα : Y →
X delivering the solution, and, hence, a constant C ≡ C(α,ΓD,ΓN ) > 0 such that

‖u‖H1(D,R2) + ‖π‖L2(D) ≤ C
(
‖f‖

H̃−1(D,R2) + ‖h‖
H

1
2 (ΓD,R2)

+ ‖g‖
H−

1
2 (ΓN ,R2)

)
.

4.2.2 The Poisson problem for the Brinkman system with mixed Dirichlet
and Robin boundary conditions

Next, we are concerned with the mixed Dirichlet-Robin boundary problem for the Brinkman
system. Let us consider now that the boundary Γ is partitioned in two non-overlapping parts
ΓD and ΓR such that ΓD ∪ ΓR = Γ in analogy with Definition 1.1.2, i.e., now we have
B = H

1
2 (ΓD,R2) × H−

1
2 (ΓR,R2). Then the mixed Dirichlet-Robin boundary problem for the

Brinkman system is 
∆u− αu−∇π = f |D,
div u = 0 in D

(γ+u)|ΓD
= h ∈ H

1
2 (ΓD,R2),

(t+
α (u, π)|ΓR

+ (λγ+u)|ΓR
= g ∈ H−

1
2 (ΓR,R2).

(4.2.3)

where (·)|ΓR
denotes the restriction operator from the space H−

1
2 (Γ,R2) defined on the entire

boundary to the corresponding one defined on ΓR, and λ ∈ L∞(ΓR,R2 ⊗ R2) is a symmetric
matrix valued function, such that (as in [52, Theorem 4.1])

〈λv,v〉ΓR
≥ 0, ∀v ∈ L2(ΓR,R2). (4.2.4)

Theorem 4.2.2. Let Assumption 4.1.2 be satisfied. Let α ∈ (0,∞) and let λ ∈ L∞(Γ,R2⊗R2)
be a symmetric matrix function with property (4.2.4). Then the problem (4.2.3) has a unique
solution, which satisfies an estimate

‖u‖H1(D,R2) + ‖π‖L2(D,R2) ≤ c
(
‖f‖

H̃−1(D,R2) + ‖h‖
H

1
2 (ΓD,R2)

+ ‖g‖
H−

1
2 (ΓR,R2)

)
. (4.2.5)
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4.3 Boundary value problems for the nonlinear Darcy-
Forchheimer-Brinkman system in R2

This section is devoted to the analysis of boundary value problems for the nonlinear Darcy-
Forchheimer-Brinkman system for a Lipschitz domain in R2. For the sake of completion, we
begin with the Dirichlet problem and state the well-posedness result as a particular case of
related boundary problems throughout literature. Then we provide a constructive proof for the
Neumann problem following the main ideas in [51, Theorem 4.1] and [34, Theorem 4.1]. An
existence and uniqueness results for the Robin problem is stated as in our work [34, Theorem
4.2].

Finally, we arrive at the main result of this section, which is the mixed Dirichlet-Robin
boundary problem for the nonlinear Darcy-Forchheimer-Brinkman system as an original result
published in [37]. This problem represents the theoretical foundation for the mixed boundary
problems which are studied numerically in the last part.

4.3.1 Boundary value problems of mixed Dirichlet-Robin type for the non-
linear Darcy-Forchheimer-Brinkman system

Going further, we obtain a similar existence and uniqueness result as in [51, Theorem 7.1]
for the weak solution of the mixed Dirichlet-Robin problem (4.3.2), with the given data (h,g) ∈
B. The Darcy-Forchheimer-Brinkman system with Robin boundary conditions in Lipschitz
domains in Euclidean settings has been investigated in [52] (see also [54] and [65] for transmission
problems).

Theorem 4.3.1. Let Assumption 4.1.2 be satisfied. Let α, β > 0 be given constants and λ ∈
L∞(Γ,R2 ⊗ R2) is a symmetric matrix valued function with property (4.2.4). Then there exist
two constants Cj ≡ Cj(D, α, β) > 0, j = 1, 2, with the property that for all data (f ,h,g) ∈ Y
satisfying the condition

‖f‖
H̃−1(D,R2) + ‖h‖

H
1
2 (ΓD,R2)

+ ‖g‖
H−

1
2 (ΓR,R2)

≤ C1, (4.3.1)

the mixed Dirichlet-Robin problem for the nonlinear Darcy-Forchheimer-Brinkman system
4u− αu− β(u · ∇)u−∇π = f ,
div u = 0 in D,(
γ+u

)
|ΓD

= h ∈ H
1
2 (ΓD,R2)(

t+
α (u, π)

)
|ΓR

+ λ
(
γ+u

)
|ΓR

= g ∈ H−
1
2 (ΓR,R2)

(4.3.2)

has a unique solution (u, π) ∈ X , with the property ‖u‖H1(D,R2) ≤ C2.
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Part II

Mixed boundary value problems for
the Stokes and Navier-Stokes system
on compact Riemannian manifolds
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Chapter 5

Preliminary results related to
boundary value problems on
compact Riemannian manifolds

This chapter is devoted to preliminary results related to the study of boundary value prob-
lems on compact Riemannian manifolds. Therefore, for the sake of completion, we include the
definition of the smooth, compact Riemannian manifold without boundary, the Riemannian
metric, the tangent and the cotangent spaces as well as the spaces of vector functions and one
forms, based on [110], [85] and [113, Chapter 8]. Afterwards, we introduce the notion of a Lips-
chitz domain, the main Sobolev spaces, the trace and the conormal derivative operator needed
in the sequel. Let us also mention at this point, that an important condition that ensures the
invertibility of the deformation operator is the condition that the only Killing vector field is the
trivial one (see Definition 5.1.17).

Next, following the main outline as for the first part of this thesis, we introduce in the second
part of this chapter the fundamental solution for the Stokes system and the associated layer
potential operators. In the final part of this chapter, we introduce some original results regarding
the invertibility of the single-layer potential operator and the hypersingular potential operator
related to mixed boundary problems [38, Theorem 4.2] and some compactness properties of
the double layer potential operators [38, Theorem 4.3] associated to a part of the boundary
decomposition.

5.1 Functional Settings and related results to compact Rieman-
nian manifolds

In this section, we begin with a brief introduction about manifolds and the related results
needed in the sequel. Therefore, we introduce the main geometrical definitions and concept
related to compact Riemannian manifolds, such as the definitions of a smooth, compact Rie-
mannian manifold without boundary, the Riemannian metric, the tangent and the cotangent
bundles as well as the spaces of vector functions and one forms. The presentation of these
concepts is based on the books [110], [85] and [113, Chapter 5].

In addition, we introduce the notion of a Lipschitz domain, the Sobolev spaces on compact
Riemannian manifolds, the trace and the conormal derivative operator needed in the sequel.
An important part is the definition of the Levi-Civita connection, deformation operator Def
and the second order elliptic differential operator L, which is the main elliptic operator in the
definition of the Stokes system on compact Riemannian manifolds. Note that an important
condition that ensures the invertibility of the deformation operator is the condition that the
manifold does not have any nontrivial Killing vector fields (see Definition 5.1.17).
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5.1.1 Geometric concepts related to compact Riemannian manifolds

First, we recall the definition of a compact, smooth Riemannian manifold of dimension m ≥ 2
without boundary (M, 〈·, ·〉) by following [113, Chapter 5], [69, Chapter 1], [70] and [112].

A Riemannian metric on a smooth manifold M is a tensor of (0, 2)−type g that is symmetric,
i.e., g(X,Y ) = g(Y,X) and positive definite, i.e., g(X,X) > 0 for all X 6= 0. Working in a
coordinate frame, the Riemannian metric has the form

g : X(U)× X(U)→ C∞(U), g =
∑
j,k

gjkdxj ⊗ dxk = gjkdxj ⊗ dxk1. (5.1.1)

Therefore, the Riemannian determines a scalar product on each tangent space TpM , such that
for each p ∈M , the cotangent space can be naturally identified with the tangent space and the
cotangent bundle T ∗M with the tangent bundle TM . Moreover, the space of differential one
forms Λ1TM is being identified with the space X(M) of smooth vector fields via the isometry
∂j → gjldxl (lowering index), or its inverse dxj → gjl∂l (raising index), where (gjl) denotes the
inverse of (gjl), i.e., gjlglk = δjk. Let g = det(gjk). Then the volume element in M , dvol is
given by the metric tensor of M . Therefore, in local coordinates we have dvol = √gdx1 . . . dxm.

Therefore, the gradient operator grad : C∞(M) → X(M) becomes the exterior derivative
operator

d : C∞(M)→ C∞(M,Λ1TM), given by d = ∂jdx
j , (5.1.2)

and the divergence operator −div : X(M)→ C∞(M) becomes the exterior co-derivative opera-
tor

δ : C∞(M,Λ1TM)→ C∞(M), δ = d∗. (5.1.3)

For further details about differential geometry on Riemannian manifolds, we refer to [113,
Chapter 5], [69, Chapter 1], [70] and [112].

Lipschitz domains on compact Riemannian manifolds

Let us recall for clarity the Definition 1.1.1 of the Lipschitz domain the Euclidean setting,
which constitutes the basis for the definition of a Lipschitz domain on compact smooth Rieman-
nian manifolds. Having the Definition 1.1.1, we give now the definition of a Lipschitz domain
on compact Riemannian manifolds based on the Definition 3.5 in [32].

Definition 5.1.1. Let M be a compact boundaryless topological manifold of dimension n
equipped with a smooth atlas A. A Lipschitz domain on M is an open set D ⊂M relative to A,
if for every x0 ∈ Γ, there exists a local chart (U,ϕ) ∈ A with x0 ∈ U such that ϕ(U ∩D) ⊂ Rn
is a Lipschitz domain in Rn.

The following definition gives the notion of a dissection of the boundary into two parts ΓD
and ΓN , which is used in order to formulate mixed boundary problems on compact Riemannian
manifolds.

Definition 5.1.2. Let D ⊂ M be a bounded Lipschitz domain with connected boundary
Γ = ∂D. A dissection of the boundary is a decomposition into two adjacent, nonoverlapping
parts ΓD,ΓN with the following properties

Γ = ΓD ∪ ΓN , ∂ΓD = ∂ΓN = ΓD ∩ ΓN , and meas ΓD > 0, meas ΓN > 0. (5.1.4)
1In the sequal we use Einstein summation convention.
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5.1.2 Sobolev spaces on compact Riemannian manifolds

Let s ∈ R. The Sobolev space Hs(M) is defined as the L2-based space on M , which can be
obtained by lifting the Sobolev (or Bessel potential) space

Hs(Rm) := {(I−4)−s/2f : f ∈ L2(Rm)} (5.1.5)

via a partition of unity on M and pullback on corresponding local charts. Note that the spaces
Hs(M) and H−s(M) are dual to each other.

Let D := D+ ⊂ M be a Lipschitz domain and assume that M \D := D− is connected and
non-empty.

For s > 0, the L2-based Sobolev spaces of functions on D are defined as

Hs(D) := {f |D : f ∈ Hs(M)}, H̃s(D) := {f ∈ Hs(M) : suppf ⊆ D}, (5.1.6)
H̃s(D)|D := {f |D : f ∈ H̃s(D)}. (5.1.7)

Moreover, H−s(D) is the dual of the space H̃s(D). Note that for any s ∈ R (see [47, Proposition
2.9], [84, (4.14)])

(Hs(D))′ = H̃−s(D), H−s(D) =
(
H̃s(D)

)′
. (5.1.8)

The L2-based Sobolev spaces of one forms on D are given by

Hs(D,Λ1TM) := Hs(D)⊗ Λ1TM |D, H̃s(D,Λ1TM) = H̃s(D)⊗ Λ1TM, (5.1.9)
H̃s(D,Λ1TM)|D = H̃s(D)|D ⊗ Λ1TM |D, (5.1.10)

where the symbol ⊗ denotes the tensor product (see [105, Chapter 4, Section 3]).
The L2-based boundary Sobolev spaces: For s ∈ [0, 1], Hs(Γ) and Hs(Γ,Λ1TM) denote the

boundary Sobolev spaces of functions and one forms, respectively. For s ∈ [−1, 0), the space
Hs(Γ) is the space of distributions defined on H−s(Γ), i.e., Hs(Γ) = H−s(Γ) . For more details
we refer to [110].

Let ν = (ν1, . . . , νn) be the outward unit normal to Γ, which is defined almost everywhere
with respect to the surface measure dσ on Γ. Throughout the following, we are working with the
closed subspace H

1
2
ν (Γ,Λ1TM) of H

1
2 (Γ,Λ1TM) and the quotient space H−

1
2 (Γ,Λ1TM)/Rν of

H−
1
2 (Γ,Λ1TM), defined by

H
1
2
ν (Γ,Λ1TM) :=

{
f ∈ H

1
2 (Γ,Λ1TM) : 〈ν, f〉Γ = 0

}
, (5.1.11)

H−
1
2 (Γ,Λ1TM)/Rν :=

{
[g] = g + Rν where g ∈ H−

1
2 (Γ,Λ1TM)

}
. (5.1.12)

Note that H−
1
2 (Γ,Λ1TM)/Rν = (H

1
2
ν (Γ,Λ1TM))∗, (cf., e.g., [86, 5.118]).

Finally, let the space

H1
δ (D±,Λ1TM) :=

{
u ∈ H1(D±,Λ1TM) : δu = 0 in D±

}
, (5.1.13)

denote the space of divergence free vector fields (on forms) on D±.

5.1.3 The deformation operator on Sobolev spaces

A Levi-Civita connection on M is an affine connection which is compatible with the Rieman-
nian metric g and is torsion-free. A key result in the setting of Riemannian geometry asserts
that for a given Riemannian manifold (M, g) there exists a unique Levi-Civita connection ∇,
defined by the torsion-free condition (cf., e.g.,[107, Proposition 11.1, Chapter 1 §11]).
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The symmetric part of ∇X, called the deformation of X, is denoted by Def X. Therefore,

(Def X)(Y,Z) = 1
2{〈∇YX,Z〉+ 〈∇ZX,Y 〉}, ∀ Y, Z ∈ X(M). (5.1.14)

The tensor field Def X can be globally represented in the equivalent form 1
2LXg, where LXg is

the Lie derivative of g in the direction of X (see, e.g., [107]). Denoting by S2T ∗M the set of
symmetric tensor fields of type (0, 2), we have

Def : X(M)→ C∞(M,S2T ∗M). (5.1.15)

The adjoint of Def is defined by Def∗w = −divw, w ∈ S2T ∗M (see, e.g., [107]). The operator
(5.1.15) admits a linear and bounded extension

Def : H1(M,Λ1TM)→ H−1(M,S2T ∗M). (5.1.16)

Definition 5.1.3. A vector field X ∈ X(M) which satisfies the equation

Def X = 0 on M, (5.1.17)

is called a Killing field.

Throughout this chapter we assume that the only Killing vector field is the trivial one.
Altering M away from D, this condition can be realized (see, e.g., [85], [25]).

5.1.4 The Stokes and Oseen operators on a compact Riemannian manifold

In the sequel, let M be a compact, smooth Riemannian manifold without boundary and
let D+ stand for a Lipschitz domain on M and D− = M\D. Let us consider the second-order
elliptic differential operator

L : X(M)→ X(M), L := 2Def∗Def = −4+ dδ − 2Ric, (5.1.18)

where 4 := −(dδ+δd) is the Hodge Laplacian and Ric is the Ricci tensor (see, e.g., [25, (2.6)]).
For any s ∈ (0, 1), the operator (5.1.18) extends to a bounded linear operator (see, e.g., [68, p.
177])

L = 2Def∗Def : Hs+ 1
2 (M,Λ1TM)→ Hs− 3

2 (M,Λ1TM). (5.1.19)

The Oseen operator is a perturbation of order one of the Stokes operator, which is defined by

Bω : H1(D,Λ1TM)× L2(D)→ H−1(D,Λ1TM)× L2(D),

Bω :=
(
L d
δ 0

)
+
(
∇ω 0
0 0

)
,

(5.1.20)

where ω ∈ H1(D,Λ1TM) is a divergence free vector field, i.e.,

δω = 0 in D. (5.1.21)

Let us remark that for ω = 0, we obtain the Stokes operator B0. Throughout this part of
the thesis, we assume that the manifold M is low dimensional, i.e., dim(M) ∈ {2, 3}, whenever
we deal with the Oseen operator. Hence, the following embeddings are continuous (see, e.g.,
[53])

H1(D,Λ1TM) · L2(D,Λ1TM ⊗ Λ1TM) ↪→ L
3
2 (D,Λ1TM) ↪→ H̃−1(D,Λ1TM). (5.1.22)
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Note that (5.1.22) and the inclusion H̃−1(D,Λ1TM) ↪→ H−1(D,Λ1TM) show that the Oseen
operator (5.1.20) is well defined.

Due to the technical details, our divergence free vector field ω has to satisfy the positivity
condition2

〈∇ωu,u〉
D
≥ 0, ∀ u ∈ H1(D,Λ1TM). (5.1.23)

Note that (5.1.22) shows that ∇ωu ∈ H̃−1(D,Λ1TM) =
(
H1(D,Λ1TM)

)′, and hence the dual
product in (5.1.23) is well defined, for any u ∈ H1(D,Λ1TM).

In the complete version, we show that the gradients of some harmonic functions can play
the role of ω, since they divergence free. Because constants are the only harmonic functions on
compact manifolds and our considerations require a non-zero vector field, we consider harmonic
functions on the noncompact punctured manifold M \ {x0}. Such a result has been obtained in
our paper [42, Proposition 5.4.1].

5.1.5 The trace operator and the conormal derivative operator

Similary to the first part of this thesis, we introduce the trace operators and the generalized
conormal derivative operator, which are needed in the sequel.

The trace operators on complementary Lipschitz domains. Let x ∈ Γ and let
C±(x) ⊆ D± be non-tangential approach regions, i.e., some conical regions with vertex at x (see
the definition given in (1.1.2) for the Euclidean setting). Then the non-tangential boundary
limits of a function u on Γ± are defined as (see (1.3.2) for the Euclidean setting)

(γ±u)(x) := lim
y∈C±(x)

u(y), x ∈ Γ, (5.1.24)

(see, e.g., [85, (3.23)]). These operators extend to Sobolev spaces similar to Lemma 1.3.1. The
following variant of the trace lemma holds as well in the compact Riemannian setting (see, e.g.,
[86, Theorem 2.5.2], [85, 20]).

Lemma 5.1.4. Let s ∈ (0, 1). Then there exist two continuous linear operators

γ± : Hs+ 1
2 (D±)→ Hs(Γ), (5.1.25)

such that γ±u = u|Γ, ∀ u ∈ C∞(D±), admitting (non-unique) linear, continuous right inverses

(γ±)−1 : Hs(Γ)→ Hs+ 1
2 (D±), γ±((γ±)−1φ) = φ, ∀ φ ∈ Hs(Γ). (5.1.26)

The result in Lemma 5.1.4 holds also for trace operators acting on spaces of one forms
γ± : Hs+ 1

2 (D±,Λ1TM)→ Hs(Γ,Λ1TM). Such operators are well defined, linear, bounded and
onto (see [25, 47, 84]).

Let α ≥ 0 be given. In the sequel, we consider the special Sobolev space

H1(D) :=
{
(u, π, f) ∈H1(D,Λ1TM)× L2(D)× H̃−1(D,Λ1TM)|D :

(L+ αI)u + dπ = f and δu = 0 in D
}
. (5.1.27)

We denote by dσ the surface measure on Γ and by ν the outward unit conormal, which is
defined almost everywhere on Γ, with respect to dσ.

The conormal derivative for the Stokes system on compact Riemannian manifolds is defined
next (see, e.g., [81] [86, Theorem 10.4.1], [59, Lem 2.2] ). Also, let us mention that a definition
of the conormal derivative operator in the general case of Agmon-Douglis-Niremberg elliptic
operators is given in Lemma 2.4 in [58].

2Recall that the notation 〈·, ·〉X stands for the pairing between two dual Sobolev spaces defined on X.
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Lemma 5.1.5. Let α ≥ 0 be a given constant. Let M be a compact Riemannian manifold and
D ⊂M be a Lipschitz domain. The conormal derivative operator

t+
α : H1(D)→ H−

1
2 (Γ,Λ1TM),

〈t+
α (u, π)f ,Φ〉Γ : = 2〈Defu,Def((γ+)−1Φ)〉D +

〈
π, δ((γ+)−1Φ)

〉
D

− 〈f , (γ+)−1Φ〉D + α〈u, (γ+)−1Φ〉D, ∀ Φ ∈ H
1
2 (Γ,Λ1TM) (5.1.28)

is well-defined, linear and bounded, and is independent on the choice of the right inverse
(γ+)−1 : H

1
2 (Γ,Λ1TM) → H1(D,Λ1TM) of the non-tangential boundary trace operator γ+ :

H1(D,Λ1TM) → H
1
2 (Γ,Λ1TM). Also, for all (u, π, f) ∈ H1(D) and any w ∈ H1(D,Λ1TM)

the following Green formula holds

〈t+
α (u, π)f , γ

+w〉Γ = 2〈Defu,Defw〉D + 〈π, δw〉D − 〈f ,w〉D + α〈u,w〉D. (5.1.29)

Lemma 5.1.5 is a particular case with g = 0 in [59, Lemma 2.2].

5.2 The fundamental solution and the layer potential theory for
the Stokes system

Mitrea and Taylor [85] and Dindos and Mitrea [25] have used the theory of pseudodiffer-
ential operators to show the existence of the fundamental solution for the Stokes system on
compact Riemannian manifolds. One of the main assumptions needed in order to construct the
fundamental solution for the Stokes system, is the assumption that the manifold lacks nontrivial
Killing fields (see Definition 5.1.3, which guarantees that the deformation operator Def given
in (5.1.14) is invertible.

The assumption that the Riemannian manifolds has no nontrivial Killing fields imposes no
restrictions, since the manifold can be altered in order to satisfy this condition. A demonstration
of this fact can be found at the beginning or Section 3 in [85].

An alternative technique to that of Mitrea and Taylor [85] has been developed by Kohr,
Pintea and Wendland [57, Section 3] (see also [58]) in order to obtain the fundamental solution
in the general case of Agmon-Douglis-Niremberg elliptic operators on compact Riemannian
manifolds. In [58], Kohr, Pintea and Wendland provided the proof of the invertibility of a matrix
of first- and second-order pseudodiferential operators, which special emphasis on a general
Brinkman operator. The fundamental solution of such pseudodifferential operators is provided
by the Schwartz kernels of two entries. Moreover, the authors derived layer potential theory for
a pseudodifferential Brinkman operator on Lipschitz domains in Riemannian manifolds.

In their recent work, Kohr and Wendland [63] have developed the potential theory for
the Stokes system with non-smooth coefficients of class L∞ on compact Riemannian manifolds,
starting from a variational method. In the particular case of the smooth coefficients, the authors
found what Mitrea, Taylor [85] have obtained before.

This section is structured as follows. We begin by introducing the fundamental solution
of the Stokes system, which enables us to define the corresponding single and double layer
potentials, based on [85], [57], [58], [62]. Afterward, we give some invertibility and compactness
properties for layer potential operators related to the mixed boundary problem for the Stokes
system, following the ideas in our work [38]. Let us also mention, that this work is inspired by
the papers [61], [76], [16].

5.2.1 The fundamental solution of the Stokes system on compact Rieman-
nian manifolds

Using the pseudodifferential theory and the Hodge decomposition, Mitrea and Taylor
in [85] have proved the existence of two operators Φ ∈ OPS−2

cl (Λ1TM,Λ1TM) and Ψ ∈
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OPS−1
cl (Λ1TM,R) whose Schwartz kernels of their inverses G(x,y) and Π(x,y) determine the

fundamental solution of the Stokes operator B0 on M . Thus

LxG(x,y) + dxΠ(x,y) = Diracy(x), δxG(x,y) = 0, (5.2.1)

where Diracy is the Dirac distribution centered at y. The differential operators with subscript
x added refers to the action of that operator on x. Let us mention that Dindos̆ and Mitrea [25]
have proved the existence of an operator Υ ∈ OPS0

cl(M,R) such that the following equivalence
holds

ΨL = Υδ ⇐⇒ LΨ> = dΥ>. (5.2.2)

Let us denote by Ξ the Schwartz kernel of of the classical pseudodifferential operator Υ>, which
is the transpose of Υ. By (5.2.2) it implies that

LxΠ>(y,x) = dxΞ(x,y) (5.2.3)

(see [25, (3.22)]). Let us mentions that the fundamental solution for a pseudodifferential
Brinkman operator has also been obtained in [57].

5.2.2 The Stokes Layer potential operators and related properties

Let s ∈ (0, 1). Then for f ∈ Hs−1(Γ,Λ1TM), Vf stands for the single-layer potential with
density f for the Stokes system, and Qsf denotes its corresponding pressure potential. Then,

(Vf)(x) = 〈G(x, ·), f〉Γ, (Qsf)(x) := 〈Π(x, ·), f〉Γ, x ∈M \ Γ. (5.2.4)

The non-tangential boundary traces of Vf exist almost everywhere on Γ and are given by
γ±(Vf) (cf, e.g., [85, Theorem 3.1]).

For h ∈ Hs
ν(Γ,Λ1TM), Wh denotes the double-layer potential with density h for the Stokes

system, and Qdh stands for be its corresponding pressure potential. Therefore,

(Wh)(x) :=
〈
−2Def G(x, ·)ν + Π>(·,x)ν,h

〉
Γ
, x ∈M \ Γ, (5.2.5)

(Qdh)(x) := 〈−2Def Π(x, ·)ν − Ξ(x, ·)ν,h〉Γ , x ∈M \ Γ, (5.2.6)

where Π>(·,x) is the transpose of Π(·,x), and Ξ(x, )̇ is the Schwartz kernel of the pseudodif-
ferential operator Υ (see (5.2.2) and (5.2.3)). The non-tangential boundary traces of Wh exist
almost everywhere on Γ and are denoted by γ+(Wh) and γ−(Wh), respectively. The principal
value of Wh is denoted by Kh and is defined at almost every point on x ∈ Γ by

(Kh)(x) := p.v.
∫

Γ

〈
− 2

[
(Defy G(x, ·))ν

]
(y) + Π>(y,x)ν(y),h(y)

〉
dσ(y) (5.2.7)

= lim
ε→0

∫
{y∈Γ: r(x,y)>ε}

〈
− 2

[
(Defy G(x, ·))ν

]
(y) + (Π)>(y,x)ν(y),h(y)

〉
dσ(y),

where r(x,y) is the geodesic distance between x and y ∈M (cf. [85, Lemma 3.2 and Proposition
3.3]).

In view of (5.2.1), we obtain that

L(Vf) + d(Qsf) = 0, δVf = 0

L(Wh) + d(Qdh) = 0, δWh = 0
in M \ Γ. (5.2.8)

Therefore, the pairs (Vg, Qsg) and (Wh, Qdh) satisfy the Stokes system in each of the domains
D+ and D−, respectively.
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The properties presented below, represent the Riemannian version of Theorem 2.4.2. For
more details, we refer to [86, Propositions 4.2.5, 4.2.9, Corollary 4.3.2, Theorem 5.3.6, 5.4.1,
5.4.3, 10.5.3] for the Stokes system in the Euclidean setting, [25, Theorem 2.1, (3.5), Proposi-
tion 3.5], [85, Theorem 3.1, 6.1] for the Stokes system in compact Riemannian manifolds, and
[58, Theorem 4.3, 4.9, 4.11, (131), (132), (137)] for a pseudodifferential Brinkman operator in
compact Riemannian manifolds.

Theorem 5.2.1. Let D ⊂ M be a Lipschitz domain and let Γ be its boundary. Let s ∈ (0, 1).
Assume that f ∈ Hs−1(Γ,Λ1TM) and h ∈ Hs

ν(Γ,Λ1TM). The following formulas hold almost
everywhere on Γ:

γ+(Vf) = γ−(Vf) := Vf , (5.2.9)

γ+(Wh) =
(1

2I + K
)
h, γ−(Wh) =

(
− 1

2I + K
)
h, (5.2.10)

D+h−D−h ∈ Rν, (5.2.11)

t+(Vf ,Qsf) =
(
− 1

2I + K∗
)
f , t−(Vf ,Qsf) =

(1
2I + K∗

)
h, (5.2.12)

where D±h := t±(Wh,Qdh), and K∗ is the formal transpose of K, i.e.,

(K∗f)(x) = p.v.
∫

Γ
〈−2[(Defx G(·,y))ν](x) + Π(x,y)ν(x), f(y)〉dσ(yy). (5.2.13)

In addition,

Vν = 0, Qsν = c± ∈ R in D±, (5.2.14)

Ker
(
V : Hs−1(Γ,Λ1TM)→ Hs(Γ,Λ1TM)

)
= Rν. (5.2.15)

5.2.3 Invertibility results of the layer potential operators associated to mixed
problems

Before we consider the mixed Dirichlet-Neumann boundary problem of the next section,
let us analyse some properties of the layer potential operators needed in the sequel. These
properties have been obtained in our work in Theorem 4.2 in [38]. They are the analogous
versions of the results in the Euclidean setting.

To this end, let us recall the the operators VD, KD, K∗N and DN have similar definitions
to that given in (4.1.9), in the case of Euclidean setting.

Theorem 5.2.2. Let D ⊂ M be a bounded Lipschitz domain with connected boundary Γ as in
Definition 5.1.2. Then the following operators are invertible:

(i) The single-layer integral operator

VD : H̃−
1
2 (ΓD,Λ1TM)→ H

1
2 (ΓD,Λ1TM), (5.2.16)

(ii) The hypersingular integral operator

DN : H̃
1
2
ν (ΓN ,Λ1TM)→ H−

1
2 (ΓN ,Λ1TM)/Rν. (5.2.17)

5.2.4 Compactness of operators related to mixed boundary value problems

This subsection is devoted to the compactness property of some special double-layer integral
operators, which play a major role in the analysis of the mixed Dirichlet-Neumann boundary
problem for the Stokes system on compact Riemannian manifolds studied in the next chapter.
There results are obtained in our work [38, Theorem 4.3].
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Theorem 5.2.3. Let D ⊂M be a Lipschitz domain with boundary decomposed as in Definition
5.1.2. Then the following operators are compact:

KD : H̃
1
2 (ΓN ,Λ1TM)→ H

1
2 (ΓD,Λ1TM), given by KDϕ = Kϕ|ΓD

, (5.2.18)

K∗N : H̃−
1
2 (ΓD,Λ1TM)→ H−

1
2 (ΓN ,Λ1TM), given by K∗Nψ = K∗ψ|ΓN

. (5.2.19)
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Chapter 6

Boundary value problems for the
Stokes, Oseen and Navier-Stokes
systems on compact Riemannian
manifolds

This chapter is devoted to various boundary problems, related to the Stokes, Oseen and
Navier-Stokes systems on compact Riemannian manifolds. The study of fluid flow on a com-
pact, smooth Riemannian manifolds plays an important role in the analysis to the fundamental
equations of meteorology and oceanography as pointed out in [109, 71], where a mathematical
justification used to derive the primitive equations of the atmosphere and the ocean are derived
as model of the Navier-Stokes equations in thin spherical shells (see also [108, 26]). Also, other
types of flow equations, e.g., Stokes equations or Darcy-Forchheimer-Brinkman equations can
be considered over compact surfaces (e.g., on the sphere S2) which model the flow of water or
other Newtonian fluids, passing through porous rocks or porous soil (see, e.g., [55]).

The complete version of the thesis starts with the study of a certain transmission problem
for the Stokes system on compact Riemannian manifolds. Transmission problems have been
intensively studied over the last decades, since they describe the flow within a stationary particle
embedded into a fluid [86], [60]. Moreover, Dirichlet and Neumann boundary problems can be
viewed as limiting cases to transmission problems as explained in [86, p. 1- 10], [58, Section 6].

The second part of this chapter is concerned with mixed boundary problems for the Stokes,
Oseen and Navier-Stokes systems. Mixed boundary problems of Dirichlet-Neumann type on
compact Riemannian manifolds could resemble a mathematical model for the fluid flow in a
shallow ocean.

Kohr and Wendland [62, Theorem 7.9] have obtained well-posedness results on compact
Riemannian manifolds for the mixed type boundary conditions and nonhomogeneous Poisson
problem for the nonsmooth coefficient Brinkman system when the solution belongs to some
Lp−based Sobolev spaces with p in a neighborhood of 2. Moreover, they proved in [63] the
equivalence between some transmission problems for the Stokes system with nonsmooth coeffi-
cients in complementary Lipschitz domains, by using the Nec̆as-Babus̆ka-Brezzi technique and
by proving a well-posedness result of their mixed variational counterparts.

The main results of this chapter are based on the paper [42], which is obtained by joint work
with M. Kohr, C. Pintea and W. L. Wendland and the paper [38]. The original results of this
chapter are obtained in [42, Theorem 4.1 and 5.1]. Moreover, Theorem 6.1.4 is a generalization
of the well-posedness results obtained in our work [38, Theorem 4.1].
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6.1 Boundary value problems of mixed type for Lipschitz do-
mains on compact Riemannian manifolds

This section analyses the mixed Dirichlet-Neumann boundary problems for the Stokes, Oseen
and Navier Stokes systems. Let us mention that recently, Kohr and Wendland [62, Theorem
7.9] have obtained a well-posedness result for the nonhomogeneous Poisson problem with mixed
boundary conditions for L∞ coefficient Brinkman system with the solution belongs to the space
H1,p
D (D,Λ1TM) × Lp(D), with p in some neighbourhood of 2, where H1,p

D (D,Λ1TM) is the
subspace of the space H1,p(D,Λ1TM) (denoted by us H1

p (D,Λ1TM)), whose elements have
zero boundary traces on some part of the boundary ΓD (see, also Theorem 7.4 in [63] and
Remark 7.10 in [62]). In addition, let us mention the work of I. Mitrea and M. Mitrea [83,
Theorem 8.2], which studies the mixed boundary problems for the Laplace operator on Besov
spaces in the Euclidean setting.

Well-posedness results higher-order strongly elliptic system in an (ε, δ) domain in Rn with
an Ahlfors-regular part of the boundary have been obtained in [10, Theorem 7.3]. Also, a
general well-posedness result a higher order strongly elliptic operator in Lipschitz domains in
Rn is developed by [76, Theorem 7.9] (see also [3] for the Euclidean setting). For the case mixed
boundary problems on polyhedral domains we refer to [73, Theorem 5.2] and [74].

In this section we develop a different approach by those used in [62] and [83], in order
to analyze mixed Dirichlet-Neumann problems for the Stokes system in Lipschitz domains on
compact Riemannian manifolds.

6.1.1 The mixed Dirichlet-Neumann problem for the Stokes system

We start again with the assumption of the geometrical framework we are working with.

Assumption 6.1.1. Let D ⊂ M be a bounded Lipschitz domain with connected boundary
Γ = ∂D, which is decomposed into two adjacent, nonoverlapping parts ΓD,ΓN as in Definition
5.1.2.

Note that, the positive measure of both partitions is essential to our case as will be explained
in the sequel. Then, we consider the mixed problem with Dirichlet and Neumann boundary
conditions for the Brinkman system

Lu + dπ = 0 in D,
δu = 0 in D,

γ+u|ΓD
= h ∈ H

1
2 (ΓD,Λ1TM),

t+(u, π)|ΓN
= g ∈ H−

1
2 (ΓN ,Λ1TM),

(6.1.1)

where (·)|ΓD
, (·)|ΓN

denote the restrictions of the spaces defined on the entire boundary Γ to
the corresponding ones defined on ΓD and ΓN , respectively.

In order to match the system composed of (4.1.3) and (4.1.4) to the mixed boundary problem
for the Stokes system (6.1.1), let us denote by h∗ ∈ H̃

1
2 (Γ,Λ1TM) and g∗ ∈ H̃−

1
2 (Γ,Λ1TM),

arbitrary extensions to the entire Γ of the corresponding boundary data h, g. Taking h∗ ∈
H̃

1
2
ν (Γ,Λ1TM) as described in (4.1.6), it follows that the boundary data is given by

γ+u = ϕN + h∗D, t+(u, π) = ψD + g∗. (6.1.2)

Obviously ϕN ∈ H̃
1
2
ν (ΓN ,Λ1TM) and ψD ∈ H̃−

1
2 (ΓD,Λ1TM), since ϕN = 0 on ΓD.

In order to prove the well-posedness of the boundary problem (6.1.1), we will reformulate
the problem as a system of boundary integral equations, inspired by the main ideas in [16] for
the Laplace equation and [61] for the Stokes system. Let us mention also Theorem 7.9 in [76],
which refers to a general strongly elliptic system.
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Theorem 6.1.2. Let D,ΓD and ΓN be as in Assumption 6.1.1 and let h ∈ H
1
2 (Γ,Λ1TM) and

g ∈ H−
1
2 (Γ,Λ1TM). Also, consider g∗ and h∗D given by (6.1.2). Then, the following assertions

hold true:

(i) If (u, π) ∈ H1(D,Λ1TM)× L2(D) is a solution of (6.1.1), then (ψD, ϕN ) given by

ψD = t+(u, π)− g∗, ϕN = γ+u− h∗D, (6.1.3)

is a solution of the integral equations{
−VDψD + KDϕN = f1, x ∈ ΓD
−K∗NψD + DNϕN = f2, x ∈ ΓN

(6.1.4)

where (f1, f2) are given by

f1 = 1
2h−KDh∗D + VDg∗, f2 = −DNh∗D + 1

2g + K∗Ng∗. (6.1.5)

Moreover, the solution (u, π) can be represented by

u = W(ϕN + h∗D)−V(ψD + g∗), π = Qd(ϕN + h∗D)−Qs(ψD + g∗), (6.1.6)

(ii) If, (ϕN , ψD) ∈ H̃
1
2 (ΓN ,Λ1TM) × H̃

1
2 (ΓD,Λ1TM) is a solution of the boundary integral

equations (6.1.4), then the layer representations (6.1.6) define a solution of the Dirichlet-
Neumann problem (6.1.1).

The system of equations (6.1.4) can be written in matrix form as

A
[
ψD
ϕN

]
=
[
−VD KD

−K∗N DN

] [
ψD
ϕN

]
= f , (6.1.7)

where f = [f1, f2]T . Let us decompose the matrix operator A as

A =
[
−VD KD

−K∗N DN

]
=
[
−VD 0

0 DN

]
+
[

0 KD

−KN∗ 0

]
= B + P. (6.1.8)

where B is some invertible matrix operator and P is some compact matrix operator as we have
already proved in [38], which will imply by the Fredholm Alternative that the operator A is a
Fredholm operator of index zero. Now, we are ready to show the main theorem of this section.

Theorem 6.1.3. Under Assumption 6.1.1, the system of integral equations (6.1.4) as a unique
solution in the space H̃−

1
2 (ΓD,Λ1TM)× H̃

1
2
ν (ΓN ,Λ1TM).

Theorem 6.1.4. Let D,ΓD and ΓN be as in Assumption 6.1.1. Then the mixed problem with
Dirichlet and Neumann conditions for the homogeneous Stokes system (6.1.1) has a unique
solution (u, π) ∈ H1(D,Λ1TM) × L2(D). In addition, there is some constant C = C(ΓD,ΓN )
such that

‖u‖H1(D,Λ1TM) + ‖π‖L2(D) ≤ C‖(h,g)‖
H

1
2 (ΓD,Λ1TM)×H−

1
2 (ΓN ,Λ1TM)

. (6.1.9)

Having this result, we can extend the mixed boundary problem given in Theorem 6.1.4 to
the Poisson problem for the system using Newtonian potentials. We state the result at this
point due to its relevance in the sequel, but we omit the details of the proof for the sake of
brevity. We refer to [55, Section 3.1 and 4.2], [42, Theorem 4.1] and [50, Section 8] for the
Brinkman operator. Also, let us introduce for simplicity the notation for the given data

B := H̃−1(D,Λ1TM)×H
1
2 (ΓD,Λ1TM)×H−

1
2 (ΓN ,Λ1TM). (6.1.10)
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Theorem 6.1.5. Let D,ΓD and ΓN be as in Assumption 6.1.1. Then the mixed Dirichlet-
Neumann type boundary problem for the nonhomogeneous Stokes system

Lu + dπ = f ∈ H̃−1(D,Λ1TM),
δu = 0 in D,

γ+u|ΓD
= h ∈ H

1
2 (ΓD,Λ1TM),

t+(u, π)|ΓN
= g ∈ H−

1
2 (ΓN ,Λ1TM),

(6.1.11)

has a unique solution (u, π) ∈ H1(D,Λ1TM) × L2(D). In addition, there is some constant
C = C(ΓD,ΓN ) such that

‖u‖H1(D,Λ1TM) + ‖π‖L2(D) ≤ C‖(f ,h,g)‖B. (6.1.12)

Remark 6.1.6. Although, the positive measure condition from (5.1.4) is essential for our
purpose, we can eliminate one of the partitions ΓN or ΓD, obtaining the Dirichlet respectively
the Neumann problem. For more details we refer to [25, Theorem 6.1] for the Dirichlet problem
for the Stokes system.

6.1.2 The mixed Dirichlet-Neumann problem for the Oseen system

Before we proceed with our analysis, let us mention that Russo and Simader have shown
in [96] the well-posedness of the Oseen system in Euclidean Lipschitz domains (see, e.g., [97]).
Furthermore, Tartaglione in [104] studied very weak solutions for boundary problems for the
Stokes and Oseen in bounded and exterior domains in Rn, (n = 2, 3) of class Ck−1,1 for k ≥ 2.

Theorem 6.1.7. Under Assumption 6.1.1 there exists a pair (u, π) ∈ H1(D,Λ1TM)× L2(D),
which satisfies the mixed Dirichlet-Neumann type boundary problem for the Oseen system

Lu +∇ωu + dπ = f in D,
δu = 0 in D,

γ+u|ΓD
= h ∈ H

1
2 (ΓD,Λ1TM),

t+(u, π)|ΓN
= g ∈ H−

1
2 (ΓN ,Λ1TM),

(6.1.13)

and the following estimate

‖u‖H1(D,Λ1TM) + ‖π‖L2(D) ≤ C‖(f ,h,g)‖B, (6.1.14)

with some positive constant C = C(ΓD,ΓN ).

6.2 Mixed type boundary value problems for nonlinear systems
on compact Riemannian manifolds

In this section, we show a solvability result for the mixed Dirichlet-Neumann boundary
problems for the Navier-Stokes system on compact Riemannian manifolds. We give an alter-
native proof of the mixed Dirichlet-Neumann boundary problems for the Navier-Stokes system
in Lipschitz domains on compact Riemannian manifolds, by using the well-posedness result for
the Oseen system obtained in the previous section in Theorem 6.1.7. This result emphasizes
the close relation between the Oseen and Navier-Stokes systems [39, Theorems 3.6 and 4.1].

6.2.1 The mixed Dirichlet-Neumann problem for the Navier-Stokes system

This section is concerned with the mixed Dirichlet-Neumann boundary problem for the
Navier-Stokes system. We obtain a well-posedness result for the nonlinear Navier-Stokes system
proving that the solution operator for the Oseen system has a fixed point [39, Theorem 4.1].
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Theorem 6.2.1. Under Assumption 6.1.1 and for β > 0, there exist two constants Cj ≡
Cj(ΓD,ΓN , β) > 0, j = 1, 2, with the property that for all data (f ,h,g) ∈ B satisfying

‖f‖
H̃−1(D,Λ1TM) + ‖h‖

H
1
2 (ΓD,Λ1TM)

+ ‖g‖
H−

1
2 (ΓN ,Λ1TM)

≤ C1, (6.2.1)

the mixed Dirichlet-Neumann type problem for the Navier-Stokes system
Lu + β∇uu + dπ = f , in D
δu = 0, in D,

γ+u|ΓD
= h ∈ H

1
2 (ΓD,Λ1TM),

t+(u, π)|ΓN
= g ∈ H−

1
2 (ΓN ,Λ1TM),

(6.2.2)

has a unique solution (u, π) ∈ H1(D,Λ1TM)× L2(D), such that

‖u‖H1(D,Λ1TM) ≤ C2.
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Part III

Numerical methods and applications
related to mixed boundary value

problems
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Chapter 7

Numerical methods results for the
lid-driven cavity flow problem filled
with a porous medium

The solvability result for the Dirichlet problem for the nonlinear Darcy-Forchheimer-
Brinkman system given in (4.3.2) has been provided in Theorem 4.3.1. Next we are concerning
with a computational study of such a problem in a special Lipschitz domain. Thus in this
chapter we describe some numerical methods concerning the well-known lid driven cavity flow
problem with Dirichlet and Robin boundary conditions, denoted by short in the sequel as lid
problem. The lid problem considers a square cavity consisting of three rigid walls on which
non-slip boundary conditions are imposed and a tangentially moving lid with unit velocity.
We consider that the motion of the fluid inside the square cavity is governed by the Darcy-
Forchheimer-Brinkman system. In fact, we consider only the nonlinear term βu · ∇u in our
simulations, which means that we consider κ = 0, α > 0 and β > 0 (see the desciption in the
introduction (0.0.3) but also, e.g., [87]).

The lid problem has been the subject to many physical, theoretical and numerical studies,
because it connects in its simple geometry all the relevant physical aspects to mathematical
models and numerical methods. Therefore, the lid problem has become a benchmark problem
for many authors who attempted to validate numerical methods (see, e.g., [1], [31]).

This chapter presents two important numerical methods used in order to study special lid
problems in fluid mechanics that are mathematically described by mixed boundary problems.
We start with a brief description of the non-dimensional equations related to such fluid flow
problems (see, e.g., [44]), as well as the stream function-vorticity formulation (see, e.g., [60]) for
the nonlinear Darcy-Forchheimer-Brinkman system. Such a formulation simplifies the numerical
treatment of the equations in the two dimensional case. The central difference (CD) method
and the Dual Reciprocity Boundary Element Method (DRBEM) considered in this chapter are
briefly analyzed in order to evaluate the stability in the particular case of the two dimensional
lid problem. In addition, we give a brief comparison of both methods for the related systems
based on ([40, Section 4], [37, Section 3]), with classical results found in literature associated to
the Navier-Stokes system.

Afterwards, we discuss some numerical results for the lid driven square cavity flow problem
for the Darcy-Forchheimer-Brinkman system in two dimensions. Dirichlet and mixed Robin-
Dirichlet boundary conditions are considered. The Robin condition is described by the physical
meaning of a sliding parameter (see, e.g., [44], [43]). We describe the relation between the
geometry of the stream lines and the following parameters: the Reynolds number, the Darcy
number and the sliding parameter [87]. The results of this chapter are based on the paper [40,
Section 4] written by joint work with T. Groşan and [37, Section 3].
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7.1 The lid driven cavity flow problem. Statement and remarks

We next refer to the flow of a incompressible Newtonian fluid in a saturated porous medium
located in a square cavity of length L (a special Lipschitz domain), where some specific Dirichlet
and Robin boundary conditions are imposed. Three of the domain walls are fixed and the last
one moves with a given velocity, which is tangential to the upper boundary. Let Γ1,Γ2,Γ3 be
the fixed walls and Γ4 be the moving wall (see Figure 7.1).

Fig. 7.1: The geometry of the fluid domain

Having become a benchmark problem to validate and test the numerical methods proposed
by many authors throughout literature, the laminar incompressible flow in a square cavity whose
top wall moves tangential with a uniform velocity has been known as the lid problem.

The zero-slip condition at the nonporous walls yields that the velocity field u as well as
it’s normal derivatives vanish on the entire boundary. As it is well known, no direct boundary
conditions are provided for the vorticity Ω at the walls (see, e.g., [87]). However, most often
the boundary conditions for the vorticity Ω are derived from the definition given in equation
(7.2.10) below.

7.2 Non-dimensional analysis for the Darcy-Forchheimer-
Brinkman system

For the purpose of solving numerically our physical problem, it is often convenient to derive
a system of non-dimensional equations such that the length, height and velocity of the moving
wall are scaled to unity. The next subsection gives the derivation of the abstract formulation
of the non-dimensional form of the Darcy-Forchheimer-Brinkman system based on [44, pp.
307-309].

7.2.1 Non-dimensional form for the nonlinear Darcy-Forchheimer-Brinkman
system

The nonlinear Darcy-Forchheimer-Brinkman system, i.e., the nonlinear PDE system (4.3.2)
describes the flow of a incompressible, viscous fluid located in a square cavity filled with a
saturated porous medium. Under the tangential motion of the upper wall, the fluid inside the
cavity rotates until it arrives at an equilibrium state that is described by the equations in (4.3.2).
Different boundary conditions are imposed on the moving wall, which correspond to either the
Dirichlet conditions or to the mixed Dirichlet-Robin (4.3.2) boundary conditions.

Let u(x, y) = (u(x, y), v(x, y)) be the velocity field of the flow and π = π(x, y) the cor-
responding pressure field. Then the nonlinear Darcy-Forchheimer-Brinkman system (4.3.2)
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consists of the following scalar partial differential equations
Ox :

(
∂2u

∂x2 + ∂2u

∂y2

)
− αu− ∂π

∂x
= β

(
u
∂u

∂x
+ v

∂u

∂y

)
,

Oy :
(
∂2v

∂x2 + ∂2v

∂y2

)
− αv − ∂π

∂y
= β

(
u
∂v

∂x
+ v

∂v

∂y

)
,

∂u

∂x
+ ∂v

∂y
= 0. (7.2.1)

Note that the constants α and β are related the physical properties of the Newtonian fluid and
the porous medium. We describe them in subsection 7.2.3.

A main purpose of our analysis is the discretization of the fluid domain. To do so, we
consider the following dimensionless variables, which represent a scaling of the length of the
square cavity and of the velocity of the moving wall to unity, as follows (see, e.g., [40, Section
4.1])

X = x

L
, Y = y

L
, P = πL

U0
, U = u

U0
, V = v

U0
. (7.2.2)

Then the first two equations (7.2.1) reduce to the non-dimensional equations

(
∂2U

∂X2 + ∂2U

∂Y 2

)
− αU − ∂P

∂X
= β

(
U
∂U

∂X
+ V

∂U

∂Y

)
,

(
∂2V

∂X2 + ∂2V

∂Y 2

)
− αV − ∂P

∂Y
= β

(
U
∂V

∂X
+ V

∂V

∂Y

)
.

(7.2.3)

To these equations we add the non-dimensional continuity equation

∂U

∂X
+ ∂V

∂Y
= 0. (7.2.4)

Note that the scaling parameters are included also in the constants α, β from equation
(7.2.3), but we use the same notations as in (7.2.1) for the sake of brevity.

Non-dimensional form of the boundary conditions

In view of the above definition of the non-dimensional variables (7.2.2), one obtains that the
associated Dirichlet (non-slip) boundary conditions are of the analyzed lid problem have the
form (see Figure 7.1)

γ+u = 0 on Γi, i = 1, 2, 3, (7.2.5)
γ+u = U0 on Γ4, (7.2.6)

where U0 is the velocity on the moving wall. Furthermore, we consider Robin boundary condition
for the moving wall Γ4, which are expressed in terms of a sliding parameter S. Therefore, the
Robin boundary condition considered in the sequel is

γu = U0 + S
du
dν

on Γ4, (7.2.7)

which lead to the corresponding non-dimensional mixed Dirichlet-Robin boundary conditions
in terms of the stream function, given by

∂Ψ
∂X

= 0 on Γ1,Γ3,
∂Ψ
∂Y

= 0 on Γ2,
∂Ψ
∂Y

= 1 + S
∂2Ψ
∂Y 2 on Γ4, (7.2.8)

where Ψ is the stream function of the flow (we refer the reader to equations (7.2.9) below).
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7.2.2 Stream function-vorticity formulation for the nonlinear Darcy-
Forchheimer-Brinkman system

Since we are dealing only with the two dimensional case in this chapter, we rewrite the
non-dimensional equations by using the stream function-vorticity formulation. Note that the
stream function-vorticity formulation gives a simple way to analyze boundary problems in fluid
mechanics, since the stream function represents the contours of fluid flow with the same ve-
locity (see, e.g., [44]). This approach is not limited to the two dimensional case, but since the
trajectories of of the fluid particles with the same velocity are not restricted to one plane, the
mathematical formulation becomes more complex (see, e.g., [60]).

Now, taking into account the continuity equation (7.2.4), we introduce the stream function
Ψ, defined by the following equations

∂Ψ
∂Y

= U,
∂Ψ
∂X

= −V. (7.2.9)

Let Ω be the vorticity field, given by

Ω := ∂V

∂X
− ∂U

∂Y
. (7.2.10)

The stream function Ψ and the vorticity Ω are related through the relation
∂2Ψ
∂X2 + ∂2Ψ

∂Y 2 = −Ω. (7.2.11)

By rearranging the equation (7.2.3) and by using the expressions (7.2.9), the vorticity Ω
given by (7.2.10), and the continuity equation (7.2.4), as well as equation (7.2.11), we obtain
the main equations of our numerical approach

∂2Ω
∂X2 + ∂2Ω

∂Y 2 + αΩ = β

(
∂Ψ
∂Y

∂Ω
∂X
− ∂Ψ
∂X

∂Ω
∂Y

)
,

∂2Ψ
∂X2 + ∂2Ψ

∂Y 2 = −Ω.

(7.2.12)

7.2.3 Physical properties related to the fluid flow

The physical properties of a viscous fluid and of a porous medium are described by the
following parameters (see, e.g., [87, Section 1.2, 1.5.2 and 1.5.3]):
• The Reynolds number Re, which is defined as the ratio of inertial forces to viscous forces

and, consequently, quantifies the relative importance of these two forces for the flow
conditions.

• The Darcy number Da, which represents the relative effect of the permeability of the
medium versus its cross-sectional area, and is defined as the ratio between the permeability
of the medium and the square of the diameter of the particles.

• The porosity ϕ, which is a fraction of the volume of voids over the total volume and
represents a measure of the empty spaces in the fluid.

• The viscosity coefficient µ is related to the porosity of the medium.
The constants α and β, which appear in the mathematical model (4.3.2) are related by these

physical parameters through the following formulas

α = ϕ

µDa
, (7.2.13)

β = Re

ϕµ
, (7.2.14)

where α is called the Darcy coefficient, and β is the convection coefficient.
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7.3 Central difference method (CD) and Dual Reciprocity
Boundary Element Method (DRBEM)

In the complete version of this thesis, two numerical methods are described, the central
difference (CD) method and the Dual Reciprocity Boundary Element Method (DRBEM).

A detailed description of the domain discretization and the stability of the central difference
method combined with Gauss-Seidel iteration for the partial differential equations is presented.

The second numerical method considered in this thesis is the DRBEM, which can be ap-
plied to the integral form of the Darcy-Forchheimer-Brinkman system. The DRBEM method
considers a series expansion of the Poisson term for the Laplacian with respect to the radial
basis function (see, e.g., [9], [89], [35]).

7.4 Comparison of the numerical results with classical results
in literature

Next we refer to the lid problem and present the numerical results obtained in [40] by using
the central difference method, and those in [37] provided by the DRBEM. In order to validate
these numerical results, we begin the analysis with the comparison of the maximal, absolute
value of the stream function with classical results from literature, in the case when the fluid
inside the square cavity is described by the Navier-Stokes equations.

The Navier-Stokes system is first assessed in order to verify the correctness of the numerical
solution since ample results are available in literature, especially in the case Re = 100. Table
7.1 presents the results of our numerical simulations for different Reynolds numbers, and the
results obtained in [31], [95], [72] and [27].

|ψmax| Re = 10 Re = 100 Re = 1000
(center)

Gutt [37] 0.1001 0.1036 0.1187
(0.5175, 0.7658) (0.6136, 0.7367) (0.5275, 0.5715)

Gutt and Groşan [40] 0.1000 0.1034 -
(0.51, 0.77) (0.615, 0.74) -

Ghia et al. [31] - 0.1034 0.1179
- (0.6172, 0.7344) (0.5313, 0.5625)

Rek and S̆kerget [95] - - 0.113
- - (0524,0565)

Marchi et al. [72] 0.1001 0.1035 0.1189
(0.516, 0.7646) (0.616, 0.737) (0.531, 0.565)

Erturk et al. [27] - 0.1035 0.1187
- (0.6152, 0.7363) (0.5313, 0.5645)

Table 7.1: Comparison of our numerical result with classical results for the Navier-Stokes system.

The second approach in the validation of the numerical methods employed here requires the
comparison of the velocity profiles u along the vertical line passing through the center of the
cavity and v along the horizontal line, respectively, with the profiles given in [31] and [95].

Let us mention that the work of U. Ghia, K. Ghia and Shin [31] studies the vorticity-stream
function formulation of the two-dimensional Navier-Stokes equations by using a coupled strongly
implicit multigrid method. Their work studies the lid problem for the very high values of the
Reynolds number up to 10.000 and has become the benchmark paper for this problem.

We also compare our numerical results with those of the paper of Rek and S̆kerget [95].
The authors have used BEM in their study. This comparison is important since in spite of the
singularities at two of the cavity corners which lead inevitably to errors in the computation on
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the boundary integrals, the results presented here are in good agreement with the ones obtained
by Rek and S̆kerget.

The profile of the component u of the velocity
field along vertical line

The profile of the component v of the velocity
field along horizontal line

Fig. 7.2: Comparison of the velocity profiles for u and v along the vertical line and horizontal line,
respectively, passing through the geometric center of the cavity Re = 1000 with the results obtained by
[31] and [95].

Re = 10

Vorticity profiles Ω for Re = 1000

Re = 100

Vorticity profiles Ω for Re = 1000

Fig. 7.3: Comparison of the profiles of the vorticity Ω along the moving boundary of the cavity Re = 100
and Re = 1000 with the results obtained by [31] and [95].

Figures 7.2 show the velocity profiles for u along vertical line and v along horizontal line
for Re = 1000 passing through the geometric center of the cavity. We can observe that as the
Reynolds number increases, the primary vortex moves up in the cavity, leading to the thinning
of the boundary flow layer. For these values of the Reynolds number, the thinning is very slow,
but increases more rapid for Re > 5000 (see, e.g., [31]).

Moreover, let us remark some phenomena that appear in the case of high Reynolds number,
for which the numerical methods employed in the thesis are not adequate. We mention here
this behavior, since it will occur for lower values of the Reynolds number in the case when a
porous medium is involved, and accordingly, when the Darcy-Forchheimer-Brinkman system is
considered.

As the velocity profiles in Figure 7.2 are beginning to suggest, at large Reynolds numbers,
the near-linearity of the velocities throughout the cavity indicates the uniform vorticity region
(see, e.g., [31]). Therefore, the component u of the velocity field bends rapidly near y = 1,
whereas the velocity component v bends rapidly near x = 1.

For both values of Re = 100 and Re = 1000, the results obtained by the central difference
method and those provided by BEM are in good agreement with the results reported by U.
Ghia, K. Ghia and Shin [31] and [95].
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a) BEM mesh

• interior nodes L,
• boundary nodes N

b) DRBEM

|ψmax| = 0.1132,
C = (0.5405, 0.5603)

c) Gauss-Seidel iteration

|ψmax| = 0.1139,
C = (0.5450, 0.5950)

Fig. 7.4: (a) Domain discretization, (b)-(c) Comparison of the fluid flow in a porous medium in the case
of the lid problem for the parameters Re = 100, Da = 0.25, φ = 0.2.

Thirdly, we compare the vorticity profiles along the moving boundary wall, with the results
given in [31] and [95]. The results obtained for Re = 100 and Re = 1000, are presented in
Figure 7.3. As mentioned, the singularities at the two corners appear clearly and the results are
in good agreement. Notice that for Re = 1000, the vorticity profile obtained by the BEM (for
both the simulations presented in this thesis and that obtained in [95]) is above the vorticity
profile obtained by central difference methods.

The last validation method we use requires a comparison between the numerical results
obtained by using central difference methods and the Gauss-Seidel iterative scheme for the
nonlinear Darcy-Forchheimer-Brinkman system (see [44] for more details), and the simulations
obtained by using the DRBEM approach shown in Figure 7.4. The fluid and the porous medium
parameters for the nonlinear Darcy-Forchheimer-Brinkman system are chosen as follows: Re =
100, Da = 0.25, φ = 0.2 and µ = 1.

The results obtained in Figures 7.4 (b)-(c) for the nonlinear Darcy-Forchheimer-Brinkman
system by the CD method and DRBEM are in good agreement. The difference of the maximal
absolute value of the stream function has an absolute error less than 10−3, whereas the offset
of the vortex center is explained by the fact that for the BEM we have used an interpolation
procedure over a mesh of 1000× 1000 point, whereas the discretization for the CD method has
only 201× 201 mesh points.

7.5 Numerical results and discussion related to the lid driven
cavity flow problem filled with a porous domain

Since we have established the validation of the two methods, we now describe some numerical
results regarding the nonlinear Darcy-Forchheimer-Brinkman system for the lid problem. The
analysis begins with the case of Dirichlet boundary conditions, i.e., in the absence of the sliding
parameter. For this case, we discuss the change of the streamlines with the variation of the
Reynolds number Re between the values of 10 and 1000, for two cases when the porosity
parameter is set to φ = 0.2, as in [40], and φ = 0.5 as in [37], respectively. Afterwards, we focus
on the influence of the Darcy number Da on the streamline geometry, having Re = 100.

Next, we impose a sliding parameter on the upper moving wall which leads to a mixed
Dirichlet-Robin boundary problem for the lid problem. The physical meaning of the sliding
parameter is that not all the fluid in the neighborhood of the upper wall is engaged in the
fluid motion. Therefore, as the sliding parameter increases, we expect that the strength of the
primary vortex diminishes, a behavior that is in good agreement with the numerical results.
However, this effect is only visible in the case when the DRBEM method is used, since the CD
method is not stable for large enough values if the sliding parameter.
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7.5.1 Variation of the physical parameters for the lid driven cavity flow prob-
lem in the absence of the sliding parameter

In this subsection, we analyze the structure of the streamlines for some representative fluid
parameters (Re and Da) in the absence of the sliding parameter, i.e., S = 0 corresponding to
Dirichlet boundary conditions since we have no sliding of the fluid in the neighborhood of the
boundary.

Physical description on the variation of the Reynolds number

First, we analyze the dependency of the streamlines for Re = 10, 100, 1000. The Darcy
parameter is assumed to be constant and equal to Da = 0.25, as well as the viscosity coefficient
µ = 1.

Re = 10

|ψmax| = 0.0984,
C = (0.5315, 0.7667)

Re = 100

|ψmax| = 0.1066,
C = (0.6036, 0.6736)

Re = 1000

|ψmax| = 0.1124,
C = (0.5055, 0.5675)

Fig. 7.5: Streamlines of the fluid flow in a porous medium with porosity φ = 0.5, in the case of the lid
problem for Re = 10, 100, 1000, obtained by using DRBEM.

As Re increases, the shortcoming of coarse meshes gradually becomes apparent, and the
first order central difference method employed is no longer convergent. Therefore, the central
difference method presented is only convergent for Reynolds numbers up to 200. However, since
the porosity parameter φ occurs in the calculation of the convention parameter β, the value
φ = 0.2 corresponds to the value of β = 1000, similarly to the case of the Navier-Stokes system
with Re = 1000. Therefore, the behavior of the streamlines change in the case of a porous
medium is similar to that for higher Reynolds numbers. The streamline contours computed for
the porosity parameter φ = 0.5 by using DRBEM for the lid problem with Re increasing from
10 to 1000 are shown in Figure 7.5. For large Reynolds numbers, the maximum value of the
streamfunction is larger than that in the case of the Navier-Stokes system, as the convection
term has a significant role.

Physical description on the variation of the Darcy number

Now, we choose Re = 100 and µ = 1, and analyze the dependency of the streamline geometry
on the variation of Da for the values of 0.25, 0.025, 0.0025, which are considered to be relevant
values as mentiond by Nield and Bejan [87].

Notice that for both cases φ = 0.2 in [40] and φ = 0.5 in [37], the vortex is moving to
the upper right corner of the cavity as the Darcy number decreases and that the strength of
the vortex is directly proportional to the Darcy number. This dependency of the fluid flow is
consistent with the physical behavior of the fluid [87].

For φ = 0.5, the effect of the Darcy number is more visible beginning with larger values.
From Figures 7.6, we observe that the primary vortex is located at a higher level in the cavity
when the porosity is φ = 0.5 then in the case φ = 0.2 in [40], and that the strength of the vortex
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is weaker for the same value of the Darcy number. Therefore, in the case φ = 0.5 we consider
values of the Darcy number only near the value 0.0025.

Da = 0.25

|ψmax| = 0.1066,
C = (0.6036, 0.6736)

Da = 0.025

|ψmax| = 0.0906,
C = (0.6426, 0.7207)

Da = 0.0025

|ψmax| = 0.0489,
C = (0.692, 0.8548)

Fig. 7.6: Streamlines of the fluid flow in a porous medium with porosity φ = 0.5 in the case of the lid
problem for Da = 0.25, 0.025, 0.0025, computed by DRBEM.

7.5.2 The lid driven cavity flow problem with a non-vanishing sliding pa-
rameter considered on the moving wall

This subsection is concerned with the mixed Dirichlet-Robin boundary problem associated
to the nonlinear Darcy-Forchheimer-Brinkman system. Thus, we consider an additional sliding
parameter imposed on the upper moving wall. A numerical study of the Navier slip condition
can be found in [43]. This condition implies that not the entire fluid located in the neighborhood
of the boundary is driven by the moving wall.

Let us mention that this kind of condition could be a particular case of a more general
interface condition that takes into account of friction, adhesion and contact with memory (see
[102] and [103]).

However, the DRBEM has provided a better convergence then in the case of central differ-
ences employed in [40], when the porosity is considered to be φ = 0.5, such that higher values of
the sliding parameter can be considered up to values of S = 0.1. For such values of the sliding
parameter, a change of the streamlines is well visible.

S = 0

|ψmax| = 0.1066,
C = (0.6036, 0.6736)

S = 0.01

|ψmax| = 0.1047,
C = (0.6066, 0.6766)

S = 0.1

|ψmax| = 0.0882,
C = (0.596, 0.695)

Fig. 7.7: Streamlines of the fluid flow in a porous medium with porosity φ = 0.5 computed by DRBEM
for the sliding parameter S = 0, 0.001, 0.01.

Figures 7.7 shows that the structure of the streamlines of the fluid flow changes slightly
with the increase of the sliding parameter and also the strength of the maximal absolute value
of the stream function decreases as the sliding parameter increases. This behavior is in good
agreement with the physical meaning of the parameter.
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Conclusions

This thesis studies boundary value problems of mixed type (Dirichlet-Neumann, Dirichlet-
Robin) for various elliptic systems in fluid mechanics and the theory of porous media, beginning
with the analysis in the Euclidean settings, continuing the study on Riemannian manifolds and
finally considering some numerical results regarding a special boundary problems with mixed
boundary conditions.

We start with some introductory remarks regarding the geometrical and functional settings
we are concerned in this thesis. As one of the first original results, we consider the connection
(Theorem 1.3.3) between the nontangential trace and the Gagliardo trace operators 1.3.1 and
Lemma 1.3.2). Afterward, we present the connection (Theorem 1.5.5) between the nontangential
derivative operator (Eq. 1.5.4), the generalized derivative operator (Definition 1.5.5) and the
canonical derivative operators (Definition 1.5.3).

In the next chapter we present the definitions of the potential operators associated to the
Brinkman system and obtain some mapping properties of the Newtonian potential operator
(Lemma 2.2.1), of the single-layer potential operator (Lemma 2.3.2 and Theorem 2.3.3), of
the double-layer potential operator (Lemma 2.3.4 and Theorem 2.3.5) and the jump relations
between them (Theorem 2.4.2).

Having the above mentioned results, the next chaper begins with the analysis of certain
boundary problems in the Euclidean setting Rn, with n ≥ 3. In order to extend the mixed
Dirichlet-Neumann boundary problem to Lp-based Sobolev spaces, we consider first that the
boundary data belongs to L2-based Sobolev spaces (Theorem 3.1.2) and introduce a Dirichlet-
to-Neumann operator (Lemma 3.1.3) which provides the desired extension in Theorem 3.1.4.
Finally, we are able to obtain the well-posedness result for the mixed boundary problem for the
semilinear Darcy-Forchheimer-Brinkman system (Theorem 3.2.1).

The following chapter considers a similar outline as the previous one, but studies boundary
problems in Euclidean settings of dimension n = 2, based mainly on a combination of a potential
approach with a variational approach. The coeciveness of the associated layer potentials lead
to the well-posedness of a variational problem related to the mixed Dirichlet-Neumann problem
for the Brinkman system. Going further to the nonlinear Darcy-Forchheimer-Brinkman system,
we give a proof for the mixed Dirichlet-Robin boundary conditions (Theorem 4.3.1).

In the second part of this thesis, we consider boundary problems for the Stokes, Oseen and
Navier-Stokes systems on compact Riemannian manifolds. We present some original invertibility
and compactness results regarding layer potential operators in Theorem 5.2.2 and Theorem
5.2.3. In order to obtain a well-posedness result for the Navier-Stokes system on compact
Riemannian manifolds (Theorem 6.2.1), we consider the mixed Dirichlet-Neumann problem for
the Stokes system (Theorem 6.1.4), moving on to the Oseen system (Theorem 6.1.7) and finally
applying a fixed point theorem we obtain the final result.

The last part of this thesis considers numerical methods and results, which correspond
to well-posedness results obtained throughout this work. The results provided by methods
employed here are compared with the existing results in the literature. Finally we discus some
numerical results for the lid driven cavity problem for the Darcy-Forchheimer-Brinkman system
in two dimensions with Dirichlet and mixed Robin-Dirichlet boundary conditions.
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[35] S. Gümgüm and M. Tezer-Sezgin. DRBEM solution of natural convection flow of nanofluids with a heat
source. Eng. Anal. Bound. Elem., 34:727–737, 2010. 62

[36] M. M. Gupta and J. C. Kalita. A new paradigm for solving Navier-Stokes equations: streamfunction-
velocity formulation. J. Comput. Phys., 207:52–68, 2005. 8

[37] R.. Gutt. BIE and BEM approach for the mixed Dirichlet-Robin boundary value problem for the nonlinear
Dacry-Forchheimer-Brinkman system. submitted, arXiv:1810.09543. 6, 9, 36, 37, 39, 41, 58, 62, 64, 65

[38] R. Gutt. Mixed boundary value problems for the Stokes system on compact Riemannian manifolds.
Mathematica (Cluj), 60 (83)(2):152–165, 2018. 8, 43, 48, 50, 52, 54

[39] R. Gutt. Mixed boundary value problems for the Navier-Stokes system on compact Riemannian manifolds.
submitted, 2019. 8, 55
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