

Universitatea Babeş-Bolyai Facultatea de Fizică

Rezumatul tezei

Efectele codopării cu argint asupra sistemelor vitroase Bi₂O₃·PbO și TeO₂·PbO dopate cu ioni de Gd³⁺ și Nd³⁺

Tothăzan (Pâs) Niculina-Amalia

Conducător științific: Prof. Dr. Culea Eugen

Cluj-Napoca -2019-

CUPRINSUL TEZEI

CAP. I. INTRODUCERE	3
1.1. Considerații generale asupra materialelor vitroase	3
1.2. Materiale vitroase pe bază de bismut, plumb și telur	4
1.2.1. Oxidul de bismut	4
1.2.2. Oxidul de plumb	5
1.2.3. Sistemul vitros binar xBi₂O₃·yPbO	6
1.2.4. Oxidul de telur	7
1.2.5. Sistemul binar TeO ₂ ·PbO	10
1.3. Efectele doparii cu ioni de pământuri rare și anume Gd ³⁺ și Nd ³⁺ a sticlelor	11
1.4. Efectele codoparii cu ioni de Ag ⁺	13
BIBLIOGRAFIE	14
CAP. II. METODOLOGIA DE CERCETARE ȘI BAZA MATERIALĂ	17
2.1. Obținerea sticlelor oxidice	17
2.1.1. Metoda subrăcirii topiturilor	17
2.2. Metode de studiu a structurii sticlelor oxidice	18
2.2.1. Difracția de raze X	18
2.2.2. Spectroscopia de absorbție în infrarosu (IR)	23
2.2.3. Determinarea densității	25
2.2.4. Determinarea susceptibilitatii magnetice	26
2.2.5. Determinarea spectroscopiei UV-VIS	29
2.2.6. Determinarea luminescenței	32
BIBLIOGRAFIE	34
CAP.III. PREPARAREA PROBELOR. TEHNICI DE INVESTIGARE UTILIZATE	35
3.1. Prepararea și pregătirea probelor	35
3.1.1. Prepararea sistemului (100-x-y)[Bi ₂ O ₃ ·PbO]·xGd ₂ O ₃ ·yAg ₂ O	35
3.1.2. Prepararea sistemelor (100-x)[80TeO ₂ ·20PbO] 0.5Ag ₂ O·xGd ₂ O ₃ şi (100-x)[80TeO ₂ ·20PbO]	
0.3AgNPs·xGd2O3	36
3.1.3. Prepararea sistemelor 80TeO2·(19,7-x)PbO·0,3AgNPs·xNd2O3 și 80TeO2·(19,85-	
x)PbO·0,15Ag ₂ O·xNd ₂ O ₃	37
3.2.Tehnicile de investigare utilizate	38
3.2.1. Difracția de raze X	38
3.2.2. Obținerea spectrelor de absorbție în IR	39
3.2.3. Determinarea susceptibilității magnetice	41
3.2.4. Determinarea densității	45
3.2.5. Spectroscopia UV-VIS	46

3.2.6. Luminescența
BIBLIOGRAFIE53
CAP. IV STUDIUL SISTEMELOR [BI2O3·PBO] ȘI [80TEO2·20PBO]54
4.1. Studiul prin difracție de raze x54
4.1.1. Studiul sistemului (100-x-y)[Bi ₂ O ₃ ·PbO]·xGd ₂ O ₃ ·yAg ₂ O
4.1.2. Studiul sistemelelor (100-x)[80TeO₂·20PbO]·0,5Ag₂O·xGd₂O₃ și (100-
x)[80TeO ₂ ·20PbO]·0,3AgNPs·xGd ₂ O ₃
4.1.3. Studiul sistemelor 80TeO ₂ ·(19,7-x)PbO·0,3AgNPs·xNd ₂ O ₃ și 80TeO ₂ ·(19,85-x)PbO·0,15Ag ₂ O·xNd ₂ O
4.2. Studiul prin spectrometrie FTIR62
4.2.1. Sistemul (100-x-y)[Bi ₂ O ₃ ·PbO]·xGd ₂ O ₃ ·yAg ₂ O
4.2.2. Sistemul (100-x)[80TeO ₂ ·20PbO]·0,5Ag ₂ O·xGd ₂ O ₃ și (100-x)·[80TeO ₂ ·20PbO]·0,3AgNPs·xGd ₂ O ₃ 65
4.3. Măsurători de susceptibilitate magnetică69
4.3.1. Sistemul (100-x-y)[Bi ₂ O ₃ ·PbO]·xGd ₂ O ₃ ·yAg ₂ O69
4.3.2. Sistemele (100-x)[80TeO ₂ ·20PbO]·0,5Ag ₂ O·xGd ₂ O ₃ și (100-x) [80TeO ₂ ·20PbO] ·0,3AgNPs·xGd ₂ O ₃ 70
4.3.3. Sistemele 80TeO ₂ ·(19,7-x)PbO·xNd ₂ O ₃ ·0,3AgNPs și 80TeO ₂ ·(19,85-x)PbO·xNd ₂ O ₃ ·0,15Ag ₂ O74
4.4. Măsurători de densitate
4.4.1. Sistemul (100-x-y)[Bi ₂ O ₃ ·PbO]·xGd ₂ O ₃ ·yAg ₂ O77
4.4.2. Sistemele (100-x)[80TeO ₂ ·20PbO]·0,5Ag ₂ O·xGd ₂ O ₃ și (100-x)[80TeO ₂ ·20PbO] ·0,3AgNPs·xGd ₂ O ₃ 78
4.4.3. Sistemele 80TeO ₂ ·(19,7-x)PbO·0,3AgNPs·xNd ₂ O ₃ și 80TeO ₂ ·(19,85-x)PbO·0,15Ag ₂ O·xNd ₂ O ₃ 79
4.5. Studiul prin spectrometrie UV-Vis
4.5.1. Sistemele 80TeO ₂ ·(19,7-x)PbO·xNd ₂ O ₃ ·0,3AgNPs și 80TeO ₂ ·(19,85-x)PbO·xNd ₂ O ₃ ·0,15Ag ₂ O 81
4.6. Studiul prin spectrometrie de luminescență85
4.6.1. Studiul sistemelor 80TeO2·(19,7-x)PbO·xNd2O3·0,3AgNPs și 80TeO2·(19,85-x)PbO·xNd2O3·0,15Ag2C 85
BIBLIOGRAFIE
CAF. V. CUNCLU2II
MULŢUMIRI

CUVINTE CHEIE: oxizi de pământuri rare, codopare, difractie de raze X, densitate, spectrometrie FTIR, susceptibilitate magnetică, UV-Vis, luminescenta.

CAP. I. INTRODUCERE

1.1. Considerații generale asupra materialelor vitroase

Starea solidă necristalină ocupă un loc important în topul cercetărilor din domeniul fizicii materiei condensate. Acest fapt se datorează unei multitudinii de motive de ordin științific și aplicativ. Astfel, pe de o parte, informațiile obținute prin studierea materialelor vitroase au permis clarificarea unor aspecte importante sub aspect științific. Pe de alta, cunoștiințele dobandite au fost utile în realizări tehnologice, aplicative [1, 2].

În prezent se manifestă un interes deosebit pentru materialele vitroase și vitro-ceramice cu potențial de aplicabilitate în domeniul telecomunicațiilor (lasere, senzori, amplificatoare de semnal, fibre optice, etc.) și electronicii. Aceste materiale trebuie să prezinte anumite calități optice, stabilitate chimică și rezistentă mecanică. Din acest motiv este foarte important să știm dacă materialul este stabil în stare vitroasă sau tinde să cristalizeze, respectiv este importantă identificarea eventualelor fenomene de cristalizare ce pot avea loc în timpul procesului de preparare [3,4].

Sticlele pe bază de metale grele, cum ar fi cele bismutate și telurate, prezintă proprietăți importante precum indicele de refracție mare (>2,0), non-liniaritate optică și transmisia bună pe domenii largi (de la UV-Vis până la IR) care le fac extrem de interesante pentru aplicațiile din telecomunicații, respectiv cele legate de domeniul fotonicii și optoelectronicii [1, 2, 5].

Codoparea sticlelor și vitroceramicilor dopate cu ioni de pământuri rare (RE) cu o a doua specie de ioni RE sau cu nanoparticule de metale nobile poate produce efecte structurale și comportamentale extrem de interesante (ex., fenomenul de conversie a emisiei de radiație IR \leftrightarrow vizibil sau o importantă amplificare a emisiei de radiație), importante pentru diverse aplicații [6, 7]. În acest sens subliniem faptul că deși materialele telurate au fost recunoscute ca

importante pentru telecomunicații și fotonică, există relativ puține informații legate de modificările structurale și comportamentale ce le sunt provocate de înglobarea de nanoparticule de metale nobile [8]. Un aspect interesant dar controversat în același timp este legat de codoparea RE – metal nobil care, în unele situații, produce o amplificare a emisiei ionilor RE, efect atribuit rezonanței plasmonilor de suprafață sau unor transferuri de energie între agregate foarte mici (moleculare) de ioni de metal nobil și ionii RE [9].

1.4. Efectele codoparii cu ioni de Ag⁺

Sticlele ce conțin argint prezintă un mare interes datorită stabilității lor, a rezistenței lor la umiditate și a conductibilității electrice mari în intervalul 10^0 și $10^{-2}\Omega m^{-1}$, la temperatura camerei [59,60].

După cum se știe solubilitatea Ag₂O este limitată în sticle de către anumiți factori termodinamici, de presiunea parțială a oxigenului, de temperatură și de compoziția sticlei.

Sticlele cu matricea Bi_2O_3 -PbO-Ag₂O, având la bază oxizii a două metale grele ca formatori de rețea (Bi_2O_3 și PbO) și conținând o cantitate mare de Ag₂O (până la 30 % mol), au fost obținute folosindu-se metoda subracirii ultrarapide a topiturii cu ajutorul unui echipament de tip *twin-roller*. Aceste sticle prezintă o foarte bună conductibilitate ionică, importantă pentru aplicații ale dispozitivelor electrochimice de stare solidă [59].

Sticlele cu conținut de argint au atras atenția și din cauza activității lor antibacteriene. Astfel, este cunoscut faptul că ionul Ag previne creșterea populației bacteriene[61, 62].

Modificările structurale produse prin tratament termic asupra sistemelor bismuth-plumbargint dopate cu erbiu au fost observate prin studii de difracția de raze X și spectroscopie FTIR. Tratamentul termic aplicat probelor produce cristalizarea acestor sticle, prezența fazelor cristaline Bi₂O₃ și PbO_{1.44} fiind evidențiată prin analiza difracției de raze X.

Datele FTIR sugerează prezența atât a unităților structurale BiO_6 și BiO_3 , precum și a celor de tip PbO_4 și PbO_3 în sticlele bismut-plumb-argint studiate. Cantitatea unităților structurale BiO_3 și PbO_4 este mai mare în probele tratate termic [63].

CAP. II. METODOLOGIA DE CERCETARE ȘI BAZA MATERIALĂ

2.1. Obținerea sticlelor oxidice

2.1.1. Metoda subrăcirii topiturilor

Metoda subrăcirii topiturilor are la bază ideea "înghețării" topiturii astfel încât, în linii mari, să se păstreze în starea solidă a sticlei structura dezordonată existentă în topitură (în stare lichidă) [1]. Pentru aceasta se realizează o răcire rapidă a topiturilor sub temperatura de solidificare cu evitarea producerii procesului de nucleație, respectiv a procesului de cristalizare.

Pentru prepararea unei sticle prin metoda subrăcirii topiturilor se obține mai întâi un amestec de materii prime conform compoziției chimice dorite, se topește amestecul prin menținerea sa în cuptor pe o durată determinată, la o temperatură bine stabilită (superioară temperaturii de topire), după care se produce răcirea rapidă a topiturii prin turnarea acesteia pe o placă de oțel inoxidabil, aflată, în general, la temperatura camerei. Răcirea topiturii trebuie realizată suficient de rapid pentru a preîntâmpina nucleația și deci cristalizarea parțială a sticlei. În general, se urmărește ca prin răcire să se obțină sticlă solidă care să aibă structura topiturii din care se obține ea.

Mentionăm faptul că metoda de răcire utilizată trebuie sa asigure viteza de răcire necesară pentru obținerea stării vitroase.

2.2. Metode de studiu a structurii sticlelor oxidice

Studierea sticlelor oxidice cu ioni de pământuri rare are drept scop adunarea de informații privind structura și proprietățile acestora, în vederea găsirii de noi utilizări practice. Metodele de studiu folosite în această lucrare sunt: difracția de raze X, spectroscopia în infraroșu (FT–IR), măsurători de densitate, măsurători de susceptibilitate magnetică și luminescenta.

CAP.III. PREPARAREA PROBELOR. TEHNICI DE INVESTIGARE UTILIZATE

3.1. Prepararea și pregătirea probelor

În vederea efectuării unui studiu privind influența codopării cu ioni de argint sau nanoparticule de argint a unor sticle oxidice dopate cu ioni de pământuri rare au fost preparate cateva noi sisteme vitroase.

Menționăm faptul că aceste sisteme vitroase sunt noi, originale, au fost preparate și investigate pentru prima dată în cadrul prezentului studiu și nu au fost raportate anterior în literatura de specialitate.

În aceste sisteme este posibil ca ionii de pământuri rare să se dispună atât în pozițiile corespunzătoare modificatorului de rețea vitroasă cât și în cele ale formatorului de rețea vitroasă [1-3]. Această dispunere a ionilor de pământuri rare permite obținerea unor sticle omogene până la concentrații ridicate de ioni paramagnetici.

Probele au fost preparate prin metoda subrăcirii topiturii.

Compoziția probelor din sistemul studiat (100-x-y)[Bi₂O₃·PbO]·xGd₂O₃·yAg₂O este prezentata in tabelul de mai jos.

Proba	Bi ₂ O ₃	PbO	Gd ₂ O ₃	Ag ₂ O
nr.	[% molar]	[% molar]	[% molar]	[% molar]
1	50	50	-	-
2	49.75	49.75	-	0.5
3	49.25	49.25	1	0.5
4	47.25	47.25	5	0.5
5	49.50	49.50	1	-
6	47.50	47.50	5	-

Tabel 3.1 Compoziția probelor din sistemul (100-x-y)[Bi₂O₃·PbO]·xGd₂O₃·yAg₂O.

Tabelul de mai jos prezintă compoziția probelor preparate din sistemele (100-x)[80TeO₂·20PbO] $0.5Ag_2O\cdot xGd_2O_3$ notat Sx (x=1-5) și (100-x)[80TeO₂·20PbO] $0.3AgNPs\cdot xGd_2O_3$ notat Sx' (x=1-5).

Tabelul 3.2. Compoziția probelor preparate din sistemele $(100-x)[80TeO_2 \cdot 20PbO]$ 0.5Ag₂O·xGd₂O₃ notat Sx (x=1-5) și (100-x)[80TeO₂ \cdot 20PbO] 0.3AgNPs \cdot xGd₂O₃ notat Sx' (x=1-5).

Drobă nr	80TeO ₂ ·20PbO	Ag ₂ O	AgNP	Gd_2O_3
FIODA III.	[% molar]	[% molar]	[% molar]	[% molar]
S 0	100	-	-	-
S 1	99.50	0.50	-	-
S1'	99.70	-	0.30	-
S2	98.50	0.50	-	1
S2'	98.70	-	0.30	1
S 3	96.50	0.50	-	3
S3'	96.70	-	0.30	3
S4	94.50	0.50	-	5
S4'	94.70	-	0.30	5
S5	89.50	0.50	-	10
S5'	89.70	-	0.30	10

Au fost preparate două sisteme vitroceramice $80\text{TeO}_2 \cdot (19,7-x)\text{PbO} \cdot 0,3\text{AgNPs} \cdot x\text{Nd}_2\text{O}_3$ notat mai departe Sx (x=1-5) și $80\text{TeO}_2 \cdot (19,85-x)\text{PbO} \cdot 0,15\text{Ag}_2\text{O} \cdot x\text{Nd}_2\text{O}_3$ notat Sx' (x=1-5) cu compoziția chimică prezentată în tabelul 3.3.

Tabelul 3.3. Concentrațiile componenților sistemelor $80\text{TeO}_2 \cdot (19,7-x)\text{PbO} \cdot 0,3\text{AgNPs} \cdot x\text{Nd}_2\text{O}_3$ notat mai departe Sx (x=1-5) și $80\text{TeO}_2 \cdot (19,85-x)\text{PbO} \cdot 0,15\text{Ag}_2\text{O} \cdot x\text{Nd}_2\text{O}_3$ notat Sx' (x=1-5).

	Compoziție						
Nr. Proba	[% molar]						
	TeO ₂	PbO	Ag ₂ O	AgNPs	Nd ₂ O ₃		
S 0	80	20	0	-	0		
S 1	80	19.70	-	0.3	0		
S1'	80	19.85	0.15	-	0		
S2	80	18.70	-	0.3	1		
S2'	80	18.85	0.15		1		
S3	80	16.70	-	0.3	3		
S3'	80	16.85	0.15	-	3		
S4	80	14.70	-	0.3	5		
S4'	80	14.85	0.15	-	5		
S5	80	9.70	-	0.3	10		
S5'	80	9.85	0.15		10		

4.1. Studiul prin difracție de raze x

4.1.1. Studiul sistemului (100-x-y)[Bi2O3·PbO]·xGd2O3·yAg2O

Fig.4.1. Difractogramele de raze X pentru sistemul vitroceramic cu compozitia: (100-xy)[Bi₂O₃·PbO]·xGd₂O₃·yAg₂O

În figura 4.1.a se poate observa că pentru probele 1 - 3 difractogramele obținute sunt caracteristice structurilor vitroceramice. Aici, alături de faza amorfă, apar peak-uri de difracție

corespunzătoare unor faze cristaline. Aceste peak-uri scad în intensitate odată cu creșterea conținutului de Gd_2O_3 în probe astfel încat pentru proba 4 ele aproape dispar [2]. Spectrele obținute au fost analizate cu ajutorul unui program specializat care a pus în evidență prezența mai multor faze cristaline în probe și anume δ Bi₂O₃ cubic FC, PbO_{1.44} cubic simplu, cât și urme de Bi_{1.208}Gd_{0.792}O₃ cubic FC cu parametrii de rețea foarte apropiați [3].

Se observă că probele sunt sensibile la conținutul de Gd_2O_3 . Astfel creșterea conținutului de Gd_2O_3 reduce în intensitate procesul de cristalizare al probelor.

4.1.2. Studiul sistemelelor (100-x)[80TeO₂·20PbO]·0,5Ag₂O·xGd₂O₃ și (100x)[80TeO₂·20PbO]·0,3AgNPs·xGd₂O₃

Figura 4.2 prezintă difractogramele de raze X obținute pentru probele din sistemele (100x)[80TeO₂·20PbO]·0,5Ag₂O·xGd₂O₃ și (100-x)[80TeO₂·20PbO] 0,3AgNPs·xGd₂O₃. Se poate observa din figură că probele conțin atât fază cristalină cât și amorfă. Probele fără Gd₂O₃ sunt amorfe. După adăugarea de Gd₂O₃ în probe apar și faze cristaline, cantitatea acestora crescând proporțional cu creșterea concentrației de ioni de gadolinium în probe. Astfel, fazele cristaline apar în proba S1' și concentrația lor crește în probele S2, S2', S3, maximul apărând în proba S3'.

Fig.4.2. Difractograme de raze X pentru sistemele (100-x)[80TeO₂·20PbO]·0,5Ag₂O·xGd₂O₃ și (100-x)[80TeO₂·20PbO] 0,3AgNPs·xGd₂O₃.

Fazele cristaline evidențiate de difractogramele de raze X au fost identificate ca fiind $Gd_2Te_6O_{15}$ și $Pb_2Te_3O_7$. Cele două faze cristaline aparțin sistemului cubic cu fețe centrate, $Gd_2Te_6O_{15}$ având parametrul de rețea a=5,611 Å și $Pb_2Te_3O_7$ având a=5,647 Å. Creșterea fazei cristaline odată cu concentrația de Gd_2O_3 scoate în evidență rolul important pe care îl are gadoliniul in procesul de cristalizare.

În matricea gazdă amorfă, după adăugarea de Gd_2O_3 , se dezvoltă fazele cristaline $Pb_2Te_3O_7$ și $Gd_2Te_6O_{15}$. Utilizând formula Debye-Scherrer [4, 5] am evaluat dimensiunea cristalitelor. Pentru aceasta s-a ținut cont de lățimea la jumatatea maximului peak-ului de difracție. Pentru probele S0, S1 și S1' aceste dimensiuni au fost de aproximativ 20 Å, ceea ce înseamnă 3 x 3.3 unități structurale într-un cristalit.

În probele S4 și S4' apare o fază cristalină adițională și anume $Gd_2Te_4O_{11}$, care crește în concentrație pentru probele S5 și S5'. Această fază, ce cristalizează în sistem monoclinic, este izo-structurală cu $Sm_2Te_4O_{15}$ și $Tb_2Te_4O_{11}$. Probele S5 și S5' conțin o cantitate mică de diferiți polimorfi corespunzând fazelor cristaline de PbO și PbO₂.

Fig. 4.3. Fazele cristaline ale probei S5'

Dimensiunea medie a grăunților de fază cristalină cubică, D, a fost calculată folosindu-se formula Debye-Scherer [4, 5]. Gradul de cristalinitate, Xc, a fost estimat ca raport al suprafeței

peak-urilor de difracție și al suprafeței totale de difracție (care includ peak-uri de difracție și halouri amorfe) folosind programul Reflex, conținut în pachetul de software Material Studio [6].

Figura 4.4 prezintă evoluția compozițională a D din figura 4.4a, și Xc în figura 4.4b. Liniile sunt desenate cu rol de ghid vizual.

Fig. 4.4. Dependența compozițională a mărimii medii a cristalitului (a) și a gradului de cristalinitate (b) pentru probele studiate.

Mărimea cristalitului D crește odată cu creșterea conținutului de Gd_2O_3 până la x=5 %mol, și descrește ușor pentru probele S5 și S5' cu formarea fazei $Gd_2Te_4O_{11}$. Gradul de cristalinitate Xc crește odată cu conținutul de Gd_2O_3 pentru ambele serii de probe (codopate cu Ag₂O, respectiv AgNPs) pe tot domeniul de compoziție. De menționat faptul că valorile Xc pentru probele codopate cu AgNPs valorile sunt mai mari decât probele codopate cu ioni de argint. Acest comportament se datorează faptului că la codoparea cu AgNPs acestea se înglobează în matricea gazda pe când la codoparea cu Ag₂O ionii de Ag se inserează în matricea gazdă ca modificatori de rețea [7].

4.2. Studiul prin spectrometrie FTIR

4.2.1. Sistemul (100-x-y)[Bi₂O₃·PbO]·xGd₂O₃·yAg₂O

Fig.4.6. Spectrele de absorbție FTIR al sistemului (100-x-y)[Bi₂O₃·PbO]·xGd₂O₃·yAg₂O

Tabelul	4.2 .	Atribuirea	benzilor	de	absorbtie	din	spectrul	IR	al	sistemului	(100-x-
y)[Bi ₂ O ₃ ·	PbO]	·xGd ₂ O ₃ ·yAg	g_2O								

Numar de undă (cm-1)	Atribuirea benzilor IR
480	Vibrații de deformare a legăturii Bi-O din unitățile BiO6 și/sau BiO3 [3,12] Vibrații ale legăturilor Pb-O [3,12]
722	Vibrații ale legăturilor Pb-O din unitățile PbOn, unde n = 3 și/sau 4 [3,12]
874	Vibrații total simetrice de întindere a legăturilor Bi-O din poliedrele BiO6 [3,12]
970	Vibrații simetrice de întindere a legăturii Pb-O din diferite unități structurale [3,12]

4.2.2. Sistemul (100-x)[80TeO₂·20PbO]·0,5Ag₂O·xGd₂O₃ şi (100-x)·[80TeO₂·20PbO]·0,3AgNPs·xGd₂O₃

Spectrele FTIR ale vitroceramicelor plumb telurate dopate cu ioni de gadoliniu și codopate cu cantități fixe de oxid de argint (Ag₂O) sau nanoparticule de argint (AgNPs) au fost folosite pentru a investiga structura locală a probelor.

Figura 4.8 prezintă spectrele de absorbție IR a sticlelor și vitroceramicelor plumb telurate din sistemele $(100-x)[80TeO_2 \cdot 20PbO] \cdot 0,5Ag_2O \cdot xGd_2O_3$ și $(100-x) \cdot [80TeO_2 \cdot 20PbO] \cdot 0,3AgNPs \cdot xGd_2O_3$ studiate.

Deconvoluția benzilor FTIR experimentale a fost necesară, deoarece majoritatea acestora sunt largi, reprezentand o învelitoare a mai multor benzi de absorbție suprapuse.

Figura 4.9 arată ca exemple reprezentative cazurile deconvoluției în benzi Gaussiene a spectrului FTIR pentru probele S2 (fig. 4.9 a) și S5' (fig. 4.9 b).

Benzile IR astfel obținute au fost atribuite (tabelul 4.2.) apoi pe baza datele disponibile în literatura de specialitate pentru sisteme vitroase si vitroceramice plumb telurate [8,16].

Fig.4.8. Spectrele FTIR ale probelor din sistemele (100-x)[80TeO₂·20PbO] ·0,5Ag₂O·xGd₂O₃ și (100-x)·[80TeO₂·20PbO] ·0,3AgNPs·xGd₂O₃.

Fig.4.9. Deconvoluția spectrelor FTIR pentru probele S2 (a) și S5' (b)

Tabelul 4.3. Atribuirea benzilor IR a vitroceramicelor $(100-x)[80TeO_2 \cdot 20PbO]$ $\cdot 0.5Ag_2O \cdot xGd_2O_3$ și $(100-x) \cdot [80TeO_2 \cdot 20PbO] \cdot 0.3AgNPs \cdot xGd_2O_3$.

Nr de undă [cm ⁻¹]	Atribuire
267 100	Vibrații de deformare Te-O-Te sau O-Te-O [6, 8]
302-400	Vibrații de alungire Pb-O din unitățile PbO ₄ [6, 8]
527 561	Vibrații de deformare simetrice Pb-O [5, 8]
557-501	Vibrații ale legăturilor Ag-O [8]
583-617	Vibrații de alungire Te-O din unitățileTeO ₄ [4, 6, 17]
611 609	Vibrații ale legăturilor Te-O din unitățile TeO ₄ [4, 8, 16]
044-098	Vibrațiile Pb-O din unitățile piramidale PbO_n (n = 3 si/sau 4) [4, 8, 16]
742-759	Vibrații ale legăturilor Te-O din unitățile TeO ₃ [6]
773-786	Vibrații ale legăturilor Te-O ⁻ din unitățile TeO ₃ [6]

Asa cum rezulta din analiza datelor prezentate in acest tabel, spectrele FTIR ale probelor studiate certifică prezența unităților structurale PbO₃, PbO₄, TeO₃ și TeO₄ în probele studiate.

Pentru a analiza efectul produs de creșterea conținutului de ioni de gadoliniu și de influența codopantului (Ag₂O sau AgNPs), a fost calculat raportul dintre numărul unităților structurale TeO₃ și TeO₄, unde s-a considerat că acest raport este egal cu raportul sumei intensităților integrate ale benzilor de absorbție IR asociate unităților structurale TeO₃, A₃, respectiv asociate unităților structurale TeO₄, A4, adică $A_r = A_3 / A_4$.

Evoluția compozițională a parametrului A_r pentru ambele serii de probe studiate este prezentată în figura 4.10.

Fig.4.10. Dependenta raportului A_r de conținutul de Gd_2O_3 din probele (100-x)[80TeO_2·20PbO]·0,5Ag_2O·xGd_2O_3 și (100-x)·[80TeO_2·20PbO]·0,3AgNPs·xGd_2O_3.

Pentru ambele serii de probe, A_r descrește odată cu creșterea conținutului de gadoliniu pe tot domeniul de compoziție. Această evoluție poate fi explicată prin conversia progresivă a unităților structurale TeO₃ în TeO₄ o dată cu creșterea conținutului de Gd₂O₃. Această presupunere este susținută și de datele de difractie de raze X, fiind cunoscut faptul că ionii de telur sunt prezenți în componentele cristaline de obicei în starea de valență 4+. Pentru vitroceramicele codopate cu nanoparticule metalice de argint (AgNPs) valorile A_r sunt mai mari decât pentru probele codopate cu Ag₂O. Acest fapt are legătură cu modul specific în care se inserează în matricea gazdă argintul adăugat sub cele două forme. Astfel, dacă in cazul AgNPs este vorba de o simplă inserare în poziții interstițiale, în cazul codopării cu Ag₂O sunt furnizați ioni de argint care se inserează în lanțurile structurale ale matricilor gazdă modificând parametri vibraționali ai acestora.

Aceste observații ne permit să tragem concluzia că nu numai conținutul de ioni de gadoliniu din vitroceramicele studiate, dar și natura codopantului (Ag₂O sau AgNPs) joacă un rol important în definirea structurii locale a acestor probelor.

4.3. Măsurători de susceptibilitate magnetică

4.3.1. Sistemul (100-x-y)[Bi₂O₃·PbO]·xGd₂O₃·yAg₂O

Fig.4.11. Dependența inversului susceptibilitații magnetice de temperatură – proba 3 (•) (x = 1 % mol) si proba 4 (\blacktriangle) (x = 5 % mol).

Comportamentul magnetic al probelor se datorează prezenței ionilor Gd^{3+} deoarece pentru matricea gazdă Bi₂O₃ PbO a fost pus în evidență un comportament diamagnetic. A fost măsurată susceptibilitatea diamagnetică a matricei vitroase (probele fara Gd_2O_3), iar această contribuție diamagnetică a fost utilizată pentru a corecta datele experimentale obținute pentru probele studiate astfel încat să fie pus în evidență efectul dopării cu ioni de gadoliniu.

Valorile temperaturii Curie paramagnetice, θ_p , determinate pentru probele investigate sunt prezentate în tablelul 4.4.

Proba	Bi ₂ O ₃	PbO	Gd ₂ O ₃	Ag ₂ O	Θp
nr.	[%mol]	[%mol]	[%mol]	[%mol]	[K]
3	49.25	49.25	1	0.5	-2
4	47.25	47.25	5	0.5	-5
5	49.50	49.50	1	-	-3
6	47.50	47.50	5	-	-4

Tabelul 4.4. Probele studiate din sistemul (100-x-y)[Bi₂O₃·PbO]·xGd₂O₃·yAg₂O și temperatura Curie paramagnetică a acestora.

Temperatura paramagnetică Curie este un indicator primar al interacțiunilor magnetice care au loc între ionii magnetic Gd^{3+} . Valorile θ_p obținute și prezentate în tabel sunt mici și negative. Aceasta sugerează că în probele noastre ionii de Gd^{3+} apar în predominant ca specii izolate și în număr mic sub formă de specii cuplate prin slabe interacțiuni antiferomagnetice.

4.4. Măsurători de densitate

4.4.1. Sistemul (100-x-y)[Bi2O3·PbO]·xGd2O3·yAg2O

Pentru toate probele studiate în prezenta lucrare, densitatea a fost determinată folosind metoda picnometrului. În acest scop masa probelor a fost măsurată cu ajutorul unei balanțe analitice cu cinci zecimale utilizând ca lichid de imersie toluenul cu densitatea 0,8669 g/cm³ la 20 ⁰C. Determinarea densității se bazează pe legea lui Arhimede cu folosirea formulei

$$\rho = \frac{m_a \cdot \rho_t}{m_a \cdot m_t} \tag{6}$$

unde m_a este masa probei în aer, m_t este masa probei în toluen iar ρ_t este densitatea toluenului la temperatura de lucru.

Figura de mai jos prezintă dependența compozițională a densității pentru probele plumb bismutate studiate din sistemul (100-x-y)[Bi₂O₃·PbO]·xGd₂O₃·yAg₂O. Liniile care unesc punctele experimentale au rol de ghid vizual.

Fig. 4.15. Dependența compozițională a densității pentru probele din sistemul (100-xy)[Bi₂O₃·PbO]·xGd₂O₃·yAg₂O

Respectiva evoluție compozițională a densității poate fi explicată prin faptul că, așa cum arată datele de spectroscopie FTIR, adăugarea de ioni de Gd^{3+} produce conversia grupărilor structurale BiO₃ în BiO₆, ceea ce conduce la o structură mai afânată (mai puțin compactă) a probelor.

4.5. Studiul prin spectrometrie UV-Vis

4.5.1. Sistemele 80TeO₂·(19,7-x)PbO·xNd₂O₃·0,3AgNPs și 80TeO₂·(19,85x)PbO·xNd₂O₃·0,15Ag₂O

Măsurătorile de Uv-Vis au fost efectuate la temperatura camerei, în reflexie, pe domeniul lungimi de undă 350-1000 nm.

Pentru toate spectrele de absorbție UV-Vis au fost obtinute funcțiile de remisie Kubelka-Munk, F(R), unde funcția F(R) poate fi considerată proporțională cu radiația absorbită [28]. Probele ce nu conțin neodim nu prezintă peak-uri de absorbție și sunt în acord cu datele din literatura de specialitate [8, 10], acesta fiind motivul pentru care nu sunt prezentate în figura 4.18.

Fig. 4.18. Spectrele UV-Vis în reflexie pentru vitroceramicele studiate

Au fost identificate opt peak-uri corespunzătoare tranzițiilor de pe nivelul fundamental ${}^{4}I_{9/2}$ pe diverse nivele excitate ale ionilor Nd³⁺, menționate în figura 4.18. Astfel aceste spectre confirmă existența ionilor de neodim în probele studiate. Luând în considerare rezultatele anterioare [29, 30], aceste peak-uri au fost atribuite tranzițiilor ${}^{4}I_{9/2} \rightarrow {}^{4}G_{9/2}$, ${}^{4}G_{7/2}$, ${}^{4}G_{5/2}$, $2H_{11/2}$, ${}^{4}F_{9/2}$, ${}^{4}S_{3/2} + {}^{4}F_{7/2}$, ${}^{4}F_{5/2}$, ${}^{4}F_{3/2}$.

4.6. Studiul prin spectrometrie de luminescență

4.6.1. Studiul sistemelor 80TeO₂·(19,7-x)PbO·xNd₂O₃·0,3AgNPs și 80TeO₂·(19,85x)PbO·xNd₂O₃·0,15Ag₂O

Aceste spectre au fost obținute folosindu-se pentru excitare radiația cu lungimea de unda de 808 nm. Excitarea s-a realizat la temperatura camerei.

În figura 4.20a se pot observa spectrele spectrele de luminescență ale probelor fără neodim, iar în figurile 4.20b și 4.20c spectrele de luminescență ale probelor dopate cu neodim și codopate cu AgNPs și Ag₂O.

Se relevă un comportament diferit al probelor S0, S1 și S1'. Astfel, probele S0 (fără dopant sau codopant) și S1 (fără dopant, codopată cu AgNPs) nu prezintă benzi de emisie, în timp ce S1' (fără dopant, codopată cu Ag₂O) prezintă trei benzi de emisie situate la 562 nm, 598 nm și 647 nm. Benzile menționate sunt atribuite prezenței argintului metalic în probă. Aceasta se explică prin reducerea unei părți a ionilor de argint Ag⁺ (prezenți în probe datorită utilizării Ag₂O ca materie prima) în timpul procesului de preparare al probelor (topirii).

Fig. 4.20. Spectrele de luminescență ale probelor S2, S3, S4 si S5

Se mai poate observa că intensitatea benzilor de emisie din probele studiate scade la concentrații de Nd₂O₃ mai mari de 1 % molar Nd₂O₃. Acest comportament sugerează că pentru concentrații mai mari de 1 %molar Nd₂O₃ devin active mecanisme neradiative și apare o atenuare a luminescenței.

CAP. V. CONCLUZII

În lucrarea de față sunt prezentate date privind obținerea, structura și unele proprietăți ale unor sisteme oxidice pe bază de bismut-plumb sau telur-plumb, dopate cu ioni de gadoliniu sau neodim si codopate cu ioni de argint, Ag⁺, sau nanoparticule de argint, AgNPs.

Studiul realizat a urmărit elucidarea mecanismelor prin care codoparea cu ioni de argint sau AgNPs a unor sticle oxidice pe bază de bismut-plumb sau telur-plumb dopate cu ioni de pământuri rare (Gd sau Nd) produce modificarea structurii și proprietăților sistemelor gazdă.

Sistemele studiate au fost alese datorită proprietăților fizice interesante și potențialelor aplicații. Astfel, aceste materiale prezintă *i*. un larg domeniu al transmisiei în IR, *ii*. fiecărui

formator de rețea vitroasă îi corespund mai multe tipuri de unități structurale, fiind posibilă interconversia acestora în anumite condiții, *iii*. adăugarea de oxizi de pământuri rare modifică considerabil structura și proprietățile materialului gazdă, etc.

Cele mai importante rezultate obținute în urma cercetării desfășurate în cadrul tezei de doctorat pot fi sintetizate astfel:

1. Au fost preparate și investigate pentru prima oară sistemele:

 $(100-x-y)[Bi_{2}O_{3}\cdot PbO]\cdot xGd_{2}O_{3}\cdot yAg_{2}O, (100-x)[80TeO_{2}\cdot 20PbO]\cdot 0.005Ag_{2}O\cdot xGd_{2}O_{3}, (100-x)[80TeO_{2}\cdot 20PbO]\cdot 0.003NPsAg\cdot xGd_{2}O_{3}, 80TeO_{2}\cdot (19,7-x)PbO\cdot 0.3AgNPs \cdot xNd_{2}O_{3}$ $(100-x)[80TeO_{2}\cdot 20PbO]\cdot 0.003NPsAg\cdot xGd_{2}O_{3}, 80TeO_{2}\cdot (19,7-x)PbO\cdot 0.3AgNPs \cdot xNd_{2}O_{3}$ $(100-x)[80TeO_{2}\cdot 20PbO]\cdot 0.015Ag_{2}O\cdot xNd_{2}O_{3}$

Menționăm faptul că aceste sisteme vitroase sunt noi, originale, au fost preparate și investigate pentru prima dată în cadrul prezentului studiu și nu au fost raportate anterior în literatura de specialitate.

2. Substanțele folosite pentru prepararea probelor studiate au fost Bi₂O₃, PbO, Gd₂O₃, Nd₂O₃, Ag₂O și respectiv AgNPs, de puritate analitică 99,5%, sub formă de pulberi. Probele obținute au fost vitroase sau vitroceramice. Probele au fost preparate prin metoda subrăcirii topiturilor.

3. Investigarea prin difracție de raze X a probelor a pus in evidența următoarele:

a. Difractogramele de raze X ale sistemului $(100-x-y)[Bi_2O_3 \cdot PbO] \cdot xGd_2O_3 \cdot yAg_2O$ au arătat că probele sunt parțial cristalizate. Astfel, ele prezintă fazele cristaline δ Bi_2O_3 cubic FC, PbO_{1.44} cubic simplu, cât și urme de Bi_{1.208}Gd_{0.792}O₃ cubic FC. Creșterea conținutului de Gd₂O₃ reduce procesul de cristalizare al probelor. Nu a fost observat un efect important al codopării cu Ag₂O.

b. Difractogramele de raze X ale probelor $(100-x)[80TeO_2 \cdot 20PbO] \cdot 0.5Ag_2O \cdot xGd_2O_3$ și $(100-x)[80TeO_2 \cdot 20PbO] 0.3AgNPs \cdot xGd_2O_3$ arată că probele nedopate (fără Gd_2O_3) sunt amorfe. Fazele cristaline apar după adăugarea de Gd_2O_3 în probe și au fost identificate ca fiind Gd_2Te_6O_{15}, Pb_2Te_3O_7 și anume Gd_2Te_4O_{11}. Cantitatea fazelor cristaline crește proporțional cu creșterea concentrației de ioni de gadolinium. Mărimea cristalitelor crește cu creșterea conținutului de gadoliniu până la x=5% mol, apoi scade, în timp de gradul de cristalinitate al probelor crește o dată cu creșterea conținutului de gadoliniu pe tot domeniul de compoziție (mai repede până la x=5% mol, apoi mai lent).

c. Difractograme de raze X ale probelor $80\text{TeO}_2 \cdot (19,7-x)\text{PbO} \cdot 0,3\text{AgNPs} \cdot x\text{Nd}_2\text{O}_3$ şi $80\text{TeO}_2 \cdot (19,85-x)\text{PbO} \cdot 0,15\text{Ag}_2\text{O} \cdot x\text{Nd}_2\text{O}_3$ au arătat că probele nedopate (fără Nd₂O₃) şi cele cu conținut mic de neodim (până la x=1 % mol) sunt amorfe. Faza amorfă conține clusteri formați din unități reprezentând celula elementară (aproximativ 44 celule elementare/cluster). Pentru un conținut mai mare de neodim (x > 1 % mol), pe lângă faza amorfă apare și o fază cristalină identificată ca fiind un amestec de fazele cristaline Pb₂Te₃O₇ și Nd₂Te₆O₁₅ (pentru probele cu x \geq 10 % mol apare și fază cristalină Nd₂Te₄O₁₁). Creșterea concentrației de dopant (Nd₂O₃) în probe conduce la creșterea gradului de cristalizare al probelor și a mărimii cristalitelor, în timp ce dimensiunea clusterilor fazei amorfe rămâne constantă.

4. Investigarea prin spectrometrie IR a probelor a pus in evidența următoarele:

a. În probele din sistemul $(100-x-y)[Bi_2O_3 \cdot PbO] \cdot xGd_2O_3 \cdot yAg_2O$ sunt prezente unitățile structurale BiO₃ și BiO₆, respectiv PbO_n (cu n = 3 și 4). Raportului cantității unităților structurale BiO₆/BiO₃ scade odata cu creșterea concentrației oxidului de gadoliniu în sticlele studiate.

b. În probele din sistemele $(100-x)[80\text{TeO}_2 \cdot 20\text{PbO}] \cdot 0,5\text{Ag}_2\text{O} \cdot x\text{Gd}_2\text{O}_3$ și $(100-x) \cdot [80\text{TeO}_2 \cdot 20\text{PbO}] \cdot 0,3\text{AgNPs} \cdot x\text{Gd}_2\text{O}_3$ sunt prezente unitățile PbO_3, PbO_4, TeO_3 și TeO_4. Pe baza datelor IR a fost calculat raportul Ar = TeO_3/ TeO_4 dintre numărul unităților structurale TeO_3 și TeO_4. Pentru ambele serii de probe, A_r descrește cu creșterea conținutului de gadoliniu pe tot domeniul de compoziție. Aceasta sugerează conversia progresivă a unităților structurale TeO_3 în TeO_4 o dată cu creșterea conținutului de Gd_2O_3. Valorile A_r sunt mai mari pentru vitroceramicele codopate cu AgNPs decât pentru probele codopate cu Ag_2O. Acest fapt are legătură cu modul specific în care se inserează în matricea gazdă argintul adăugat sub cele două forme: în cazul AgNPs este vorba de o simplă inserare în poziții interstițiale, în timp ce cazul la codoparea cu Ag_2O sunt furnizați ioni de argint care se inserează în lanțurile structurale ale matricii gazdă. Aceste observații ne permit să tragem concluzia că nu numai conținutul de ioni de gadoliniu din vitroceramicele studiate, dar și natura codopantului (Ag_2O sau AgNPs) joacă un rol important în definirea structurii locale a acestor probelor.

5. Măsurătorile de susceptibilitate magnetică au scos în evidență următoarele trăsături comune tuturor celor 3 sisteme studiate - (100-x-y)[Bi₂O₃·PbO]·xGd₂O₃·yAg₂O, (100-x)[80TeO₂·20PbO]·0,5Ag₂O·xGd₂O₃ și (100-x) [80TeO₂·20PbO] ·0,3AgNPs· xGd₂O₃:

Comportamentul magnetic al probelor se datorează prezenței ionilor magnetici de pământ rar, respectiv Gd³⁺ și Nd³⁺ în matricea gazdă plumb bismutată sau plumb telurată. Valorile obținute pentru temperatura paramagnetica Curie, θ_p , sugerează un comportament de tip Curie pentru probele cu conținut mic de oxid de pământ rar (x < 3 % molar) și un comportament de tip Curie-Weiss pentru probele cu conținuturi mai mari de oxid de pământ rar. În primul caz ionii de pământ rar sunt distribuiți aleator in matricea vitroasă gazdă. În al doilea caz, valorile relativ mici și negative ale θ_p sugerează prezența de ionilor de pământ rar și sub forma unor perechi cuplate prin slabe interacțiuni antiferomagnetice.

6. Măsurătorile de densitate au scos în evidență următoarele trăsături ale sistemelor investigate:

a. La sistemul (100-x-y)[Bi₂O₃·PbO]·xGd₂O₃·yAg₂O, ținând cont de valoarea erorilor de măsurare, putem afirma că variația compoziținală a densității prezintă o scădere pe tot domeniul compozițional odată cu creșterea concentrației de ioni de Gd³⁺ în probe. Aceast fapt, aparent contradictoriu (ținând cont de masa mai mare a ionilor de gadoliniu decat a atomilor formatori de rețea, Bi și Pb), se poate explica prin faptul că, așa cum arată datele de spectroscopie FTIR, adăugarea de ioni de Gd³⁺ produce conversia grupărilor structurale BiO₃ în BiO₆, ceea ce conduce la o structură mai afânată (mai puțin compactă) a probelor.

b. La sistemele (100-x)[80TeO₂·20PbO]·0,5Ag₂O·xGd₂O₃ și (100-x)[80TeO₂·20PbO] 0,3AgNPs·xGd₂O₃ se constată că se produce o variație neliniară a densității la creșterea conținutului de gadoliniu al probelor. Astfel, pentru probele codopate cu Ag₂O se produce o creștere a densității odată cu creștere conținutului de Gd₂O₃ până la 3 % molar, iar apoi, pentru concentrații mai mari de Gd₂O₃, o urmează o descreștere a acesteia. În cazul probelor codopate cu AgNPs densitatea crește până la 5 % molar Gd₂O₃, apoi scade. Descreșterea densității este mai pronunțată pentru vitroceramicele codopate cu ioni de argint. Evoluția compozițională neliniară a densității sugerează un mecanism complex al modificărilor structurale care au loc în matricea vitroceramicelor studiate la modificarea continutului de gadoliniu și se produce datorită rolului de modificator de rețea pe care îl joacă ionii de Gd³⁺, rol ce se manifestă prin schimbarea raportul dintre diferitele tipuri de unități structurale prezente în rețeaua vitroceramică în funcție de conținutul de gadoliniu al probelor.

c. $80\text{TeO}_2 \cdot (19,7-x)\text{PbO} \cdot 0,3\text{AgNPs} \cdot x\text{Nd}_2\text{O}_3$ și $80\text{TeO}_2 \cdot (19,85-x)\text{PbO} \cdot 0,15$ Ag₂O · xNd₂O₃ se constată că se produce o variație neliniară a densității la creșterea conținutului de gadoliniu al probelor. Astfel, pentru sistemul co-dopat cu AgNPs densitatea crește până la 3 % mol Nd₂O₃ după care se menține constantă. Pentru sistemul co-dopat cu Ag₂O densitatea crește până la 3% procente molare de Nd₂O₃ după care se produce o descreștere pronunțată a acesteia. Ne-am

aștepta ca la creșterea cantității ionilor de neodim, aceștia fiind mai grei, densitatea să crească liniar. Variația neliniară a densității în funcție de conținutul ionilor de neodim pune în evidență un mecanism mai complex care implică procesul de conversie $TeO_3 \rightarrow TeO_4$ al unităților structurale determinat de creșterea conținutului de ioni de neodim. Astfel pentru concentrații mici de dopant ($\leq 3 \%$ molar Nd₂O₃), ionii grei de neodim sunt inserați în matricea gazdă fără a implica modificări structurale, conducând la o creștere a densității probelor. Pentru concentrații mari (> 3 % molar Nd₂O₃), ionii de neodim joacă rol de modificatori de rețea generând conversia unităților structurale TeO₃ în unități structurale TeO₄, ceea ce conduce la realizarea unei structuri mai afânate (mai puțin compacte), respectiv la o scădere a densității. Creșterea conținutului de Nd₂O₃ peste 3 % molar atrage după sine și o creștere a numărului atomilor de oxigen nepuntați (non-bridging), confirmată de datele de spectroscopie FTIR.

7. Studiul prin spectrometrie UV-Vis al probelor a scos în evidență următoarele trăsături ale sistemelor investigate:

a. La sistemele $80\text{TeO}_2 \cdot (19,7-x)\text{PbO} \cdot x\text{Nd}_2\text{O}_3 \cdot 0,3\text{AgNPs}$ și $80\text{TeO}_2 \cdot (19,85-x)\text{PbO} \cdot x\text{Nd}_2\text{O}_3 \cdot 0,15\text{Ag}_2\text{O}$ se constată că probele ce nu conțin neodim nu prezintă peak-uri de absorbție. Celelalte probe prezintă opt peak-uri corespunzătoare tranzițiilor de pe nivelul fundamental ⁴I_{9/2} pe diverse nivele excitate ale ionilor Nd³⁺ (⁴I_{9/2} \rightarrow ⁴G_{9/2}, ⁴G_{7/2}, ⁴G_{5/2}, 2H_{11/2}, ⁴F_{9/2}, ⁴S_{3/2} + ⁴F_{7/2}, ⁴F_{5/2}, ⁴F_{3/2}). Creșterea concentrației de dopant (neodim) în probe modifică doar intensitatea peak-urilor, crescând-o, nu și locația acestora (cu mici excepții). Valorile calculate pentru parametrul nephalauxetic (β) și pentru parametrul de legatură (δ) au arătat că în sistemele vitroceramice studiate, legăturile de Nd³⁺ - ligand sunt de tip ionic.

b. Energia de gap, Eg, a probelor din sistemele $80\text{TeO}_2 \cdot (19,7-x)\text{PbO} \cdot x\text{Nd}_2\text{O}_3 \cdot 0,3\text{AgNPs}$ și $80\text{TeO}_2 \cdot (19,85-x)\text{PbO} \cdot x\text{Nd}_2\text{O}_3 \cdot 0,15\text{Ag}_2\text{O}$ prezintă o variație neliniară cu conținutul de neodim al probelor. Cele mai mari valori ale Eg au fost determinate pentru probele S2 (dopată cu 1 % molar Nd_2O_3 și codopată cu AgNPs) și S4' (dopată cu 5 % molar Nd_2O_3 și codopată cu Ag_2O). Pentru concentrații mai mari de 5 % molar, Eg prezintă o scădere pronunțată, datorată probabil creșterii cantității de oxigen nelegat.

8. Studiul prin spectrometrie de luminescență al sistemelor $80\text{TeO}_2 \cdot (19,7-x)\text{PbO} \cdot x\text{Nd}_2\text{O}_3 \cdot 0,3\text{AgNPs}$ și $80\text{TeO}_2 \cdot (19,85-x)\text{PbO} \cdot x\text{Nd}_2\text{O}_3 \cdot 0,15\text{Ag}_2\text{O}$ a evidențiat următoarele trăsături ale acestor sisteme:

a. Probele fără dopant și codopant (S0) și fără dopant, codopată cu AgNPs (S1) nu produc peak-uri de emisie, în timp ce proba fără dopant, codopată cu Ag₂O (S1') prezintă trei peak-uri de emisie situați la 562 nm, 598 nm și 647 nm. Peak-urii menționați sunt atribuiți prezenței argintului metalic în probă. Aceasta se explică prin reducerea unei părți a ionilor de argint Ag⁺ (prezenți în probe datorită utilizării Ag₂O ca materie prima) la Ag⁰ (argint metalic) în timpul procesului de preparare al probelor (topirii), ca efect al temperaturii de topire relativ mari. Atomii de argint metalic pot forma clusteri sau chiar nanoparticule de argint.

b. Iradierea probelor cu o radiație de excitare cu lungimea de undă de 808 nm produce excitarea AgNPs prin mecanismul TPA (absorbție de doi fotoni) la același nivel de excitare ce sar obține prin excitarea directă cu o undă de 400 nm. Când o nanoparticulă metalică de argint astfel excitată este foarte aproape de un ion de Ag⁺ (sau de un centru de luminescență similar) se produce emisia de luminescență.

c. Spectrele de luminescență ale probelor dopate cu neodim prezintă 4 benzi de emisie situate la 521, 542, 560 și 608 nm și care au fost atribuite după cum urmează:

- banda de la 521 nm este atribuită tranzițiilor f-f ale ionilor de Nd³⁺ de la nivelul ${}^{2}P_{1/2}$ la ${}^{4}I_{13/2}$.

- banda de la 542 nm este datorat tranziției de la nivelul excitat ${}^{4}G_{7/2}$ la nivelul ${}^{4}I_{9/2}$ de bază.

- banda de la 560 nm se datorează prezenței AgNPs în apropierea unui alt centru luminescent din probă.

- banda de la 608 nm este atribuit tranziției de la nivelul excitat ${}^{4}G_{7/2}$ la nivelul ${}^{4}I_{11/2}$ și de la nivelul excitat ${}^{4}G_{5/2} + {}^{2}G_{7/2}$ la nivelul fundamental ${}^{4}I_{9/2}$ a ionilor Nd³⁺ [29, 30, 39].

d. Intensitatea benzilor de emisie scade la concentrații de Nd_2O_3 mai mari de 1 % molar Nd_2O_3 . Acest comportament sugerează că pentru concentrații mai mari de 1 %molar Nd_2O_3 devin active mecanisme neradiative și apare o atenuare a luminescenței.