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Introduction

This Ph.D. thesis is the result of my research conducted since 2016 under the supervision
of Prof. Dr. Gabriela Czibula. It consists mainly of developing Machine Learning (ML)
models and applying them on biological data along with the analysis of the results with the
bigger goal of discovering underlining patterns and motifs in Genomic and Proteomic data.

In this thesis we will employ various ML techniques for better insight into biological
processes. Protein data space in particular will be explored with the help of different algo-
rithms such as clustering, self organizing maps, long short-term memory networks, principal
component analysis and autoencoders. Uncovering patterns in protein conformations helps
to better understand how proteins change and evolve. It is already common knowledge that
protein shape dictates the biological function, so any anomaly during the folding process
can lead to a malformed, defective protein that, in time, can cause illness or even death for
the organism. That is why we need to investigate computational methods and develop solu-
tions that can help the researchers to gain a better understanding into the mysterious world
of protein folding. The author’s increased interest, passion and fascination for the biological
processes that create and ensure life has been one of the driving points for choosing this
theme. Both the importance and the complexity of the problem motivates us to explore the
utility of machine learning models and methods for the analyzing and detecting the confor-
mational changes in proteins. Our work contains various applications of machine learning
algorithms on biological data, along with the analysis of the results within the bigger goal of
discovering underlining patterns and motifs in Proteomic data. We are also aiming our stud-
ies on enzymes that have interesting properties when it comes to the biodegradation of waste
materials. On the Machine Learning side, there has also been unprecedented growth in inter-
est and popularity. During the protein folding process, the protein undergoes changes from
one conformation to another and it is influenced both internally by its initial structure and
composition, and externally by other factors such as temperatures and nearby elements that
interact with it. Understanding the dynamics of the protein leads to creating better targeted
medicine, slow down the aging process and improve life quality all together.

With the main target of understanding the importance of the protein folding problem
and uncovering hidden patterns in protein data, we have analyzed protein conformational
transitions with unsupervised learning tools, by applying different types of hard and fuzzy
clustering algorithms and comparing the results. The RSA values have been studied and their
relevancy has been put to test when it comes to proteins’ internal transitions prediction. On
these values, we have constructed multiple case studies in the realm of unsupervised learn-
ing. For better visualization, we have employed Principal component analysis and we were
able to see how proteins evolve through their RSA values from one conformation to another.
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Deep learning was used, specifically Long Short Term Memory networks for exploring pro-
tein conformational transitions while employing some other protein variable: the width of
the binding cleft that helps gaining more knowledge. We have proposed two open source
software solutions which allow domain experts to easily replicate our experiments leading
to a better collaboration. Our approaches have been published in journals and conferences:
[Alb17a, BPC+17, ATC18, TCAB18, ACT18, TCB+18, AC19, Alb17b].
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Chapter 1: Analysing protein data using
unsupervised learning

In this chapter we investigate the usefulness of machine learning models and methods
for analyzing and detecting the conformational changes in proteins. The presentation from
this chapter is based on our original papers [BPC+17], [ATC18] and [ACT18].

1.1 A theoretical model for analyzing protein conforma-
tional transitions

We tackle the problem of determining conformational transitions in proteins from a dif-
ferent angle and we derive a different formalization for it, starting from a data set of more
than 300 proteins and their associated conformations. Our focus is to test if the conforma-
tional transitions of the proteins provide useful information regarding their three-dimensional
structure and if an unsupervised learning model is able to capture this type of biological rela-
tionships between the proteins. Our chosen unsupervised learning model is a self-organizing
map (SOM) because it is a considered a strong tool from the data mining domain which aids
in visualizing high-dimensional data. Using a data mining experiment, we show that the in-
formation obtained through analyzing proteins conformational transitions is able to capture
the relationships between related proteins, relations which are confirmed from a biological
perspective.

1.2 Protein Data Analysis using Self Organizing Maps and
Principal Component Analysis

Proteins have essential roles in the biological processes of living organisms by contribut-
ing to maintaining cellular environments. Understanding the conformational transitions of
proteins may help identifying situations when incorrect folding or mutations can occur and
thus, it may contribute to inhibit possible uncontrolled and undesired behaviour. The struc-
tural similarity between proteins is unsupervisedly uncovered using crisp and fuzzy self-
organizing maps, based on proteins conformational transitions. We propose a method for
modelling a protein based on its conformational transitions and we also examine how fea-
ture selection impacts the performance of the proposed models.
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1.3 Analyzing the impact of protein representation on min-
ing structural patterns from protein data

We are performing a study on how different protein representations impact the process of
mining relevant patterns from protein related data. Two representations are used for the pro-
teins, one using the structural alphabet and the second using the relative solvent accessibility
values of the amino acids from the proteins’ primary structure. Using these representations,
two case studies are performed to emphasize the effectiveness of using the proposed protein
representations to unsupervisedly learn structural patterns from on a protein data set. The
RSA values seem to be very relevant in representing the conformations of proteins.
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Chapter 2 - Clustering approaches for pro-
tein data analysis and visualization

In this chapter we employ clustering as an unsupervised classification method in order
to study the relevance of the residues’ relative solvent accessibility RSA values to analyze
protein internal transitions. We provide two approaches involving hard and soft clustering
and we are comparing the results [TCAB18], [AC19].

2.1 Approach 1: A theoretical model enhancing proteins
structure insight

We design a study directed towards investigating how proteins conformational transitions
evolve in time, with the goal of broadening the knowledge into internal protein dynamics.
It employs clustering as an unsupervised learning technique for inspecting the importance
of RSA values in decoding protein internal transitions. For each of the proteins, we have
10000 conformations available, along with their associated RSA values. They were obtained
through molecular dynamics simulations, a process that is considered fairly expensive from
the required resources point of view. The 10000 conformations are consecutive and they can
be viewed as a time lapse in the formation stage of the protein. Our assumption is that the
changes a protein undergoes from a conformation to the next one are very small (if there are
such changes) as a deduction from the biological perspective, meaning that close consecutive
conformations are fairly similar. That is why we are performing Euclidian distance for com-
puting the dissimilitude between two successive conformational transitions. The data sets
remain unlabelled throughout the whole process, unsupervised learning being our strategy.
As the protein undergoes conformational changes, certain parts of its structure are subjected
to minor modifications, which are reflected in the positions of the amino acid residues and
consequently, in their RSA values. Thus, consecutive conformations are fairly similar from
the perspective of their considered representations (RSA values). This is also reflected in our
obtained clustering results. One also observes that the proteins are structurally similar and
because of that, it is anticipated to have a high degree of similarity on their represented shape
and dynamics. We are highlighting the potential of clustering models to accurately model
biological transitions, from conformations represented via RSA values. From a biological
viewpoint, in a transition between two successive conformations, the protein might remain
unchanged, or slight modifications can appear in certain parts of it.
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2.2 Approach 2: A model for analyzing protein conforma-
tional transitions using fuzzy and hard clustering tech-
niques

We are conducting several experiments on two protein data sets with the goal to em-
pirically show, using fuzzy c-means and Birch clustering methods, that RSA values slowly
change when a protein goes through conformational changes. The end goal is proving that
consecutive conformations are closer and the protein evolves linearly. The two proteins
used in our experiments are: 6EQE - a “High resolution crystal structure of a polyethylene
terephthalate degrading hydrolase from Ideonella sakaiensis” and 4CG1 - a “Thermostable
polyethylene terephthalate degrading hydrolase from Thermobi[U+FB01]da fusca” [WOT+14].
Both proteins are being investigated for their roles in PET degradation and the fact that they
have a lot in common leads us to expect similar results when applying unsupervised algo-
rithms. We note that the fuzzy operation does not improve as expected. This is possibly
due to the fact that the input data is not necessary suitable for data fuzzi[U+FB01]cation,
considering the chosen representation. Future work will be carried out in this direction, for
identifying other enhanced representations more for the fuzzy perspective because it does
not improve the e[U+FB00]ectiveness of the clustering process. More experiments will be
further carried out in this direction.
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Chapter 3 - Deep learning approaches for
protein data analysis

This Chapter is oriented around Neural Networks and how they can be employed for cap-
turing hidden patterns on protein data. We explore Deep Autoencoder Neural Networks and
their ability in capturing aspects related to a protein’s structure. The presentation represents
a sequel of our work presented in [TCB+18].

3.1 Using Autoencoder’s for uncovering protein dynamics
Because molecular dynamics approaches are so expensive, data dimensional represen-

tation reduction is our focus as well. Denoising sparse autoencoders are trained on each
protein data set with the main purpose of reducing the dimensionality of the datasets and aid
visualization. For validating our results, we are computing similarities in the original data
set and finally we will compute the similarities of the two-dimensional data outputted by the
autoencoder.

3.2 Predicting the width of the binding cleft by employing
Long short-term memory networks

Our intuition is that taking into account additional information about each protein con-
formation would help gain more insight into the internal working of a protein during the
folding process. Because we are using a 2D representation of a 3D object, we are losing
valuable information about proteins. Including other values that describe each conformation
is our attempt to regain some of it. That is why we exploit a property called the width of the
binding cleft (also known as active-site cleft), that characterizes both cutinases and PETase.
Studies were made to prove that by narrowing down this property for PETase to look more
like the Cutinase’s active site cleft would lead to better PET Degradation [AAD+18]. We are
employing a Long Short Term Memory network for learning important information about
a protein’s transition and mainly how each conformation can be evaluated when it comes
to open/closed states based on the width of the binding cleft. Using multiple train/test data
splits in our learning and testing, we attempt to enhance the model’s performance on unseen
data, due to the fact that more models are being trained. We are aware nonetheless that the
multi train-test split approach has a limitation: each of the training models remains fixed
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as it is evaluated in the test set. After training our LSTM Network, we are able to predict
new values for the above described d property, based on the Angles representation of the
protein conformations. We conclude that it is safe to assume that LSTMs are suitable for the
presented problem and the developed computational model is able to predict future values
for the investigated property. From a biological perspective, this is useful because, by mak-
ing small alterations to the PETase proteins, thus adjusting it’s binding cleft, it can perform
better when it comes to PET Degradation [AAD+18]. Similar models could be used by sci-
entists as they alter the composition of proteins, to emulate the Open/Closed state. Future
work includes a classification LSTM network that could easily determine if a new instance
(protein conformation in our case) has the state Open or Closed.
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Chapter 4 - Software development

We are introducing in this Chapter two software solutions which represent our original
work published in [Alb17a], [Alb17b] and [AC19]. We attempt through these applications
to contribute to the open-source community and to allow domain experts to easily replicate
our experiments leading to a better collaboration.

4.1 ProteinA: A software solution for visualizing clustered
protein conformational transitions

The software presented in this section has been created in order to allow any user to try
various combinations or parameters and independently analyze the results. It has been first
introduced in our original paper [AC19]. We are proposing the tool ProteinA for capturing
protein conformational transitions by clustering. It is a web application allowing users to
start custom analyses and download the results. A clustering analysis takes about 5 minutes,
however the idea behind the software is to allow more complex processing and delivering the
results when ready. The solution it is publicly running at [Alb19]1. The code is available on
Github at [Alb18b].2 Another option for easily running it on a local machine is by accessing
the public docker image at [Alb18a]. 3

4.2 Novel software for visualizing genetic mutations
The presented solution helps by aggregating all the precedent mutations correlated with

a series of external factors. The doctor is able to narrow it down to a reasonable number of
possibilities based on the cases that were already solved. This leads to making an informed
decision of which mutations to test for. After successfully determining the current case, the
specialist will introduce it to the global database, this way, helping future doctors. As a
proof of concept, it demonstrates the huge role that Big Data has in genetic mutations aggre-
gation and it can be considered a starting point for similar solutions that aim to continuously
innovate genetics.

1Protein clustering online http://proteinclusters.online/proteins.
2Protein clustering web application https://github.com/albusilvana/

proteinclusteringwebapp.
3Protein clustering docker image on Docker hub https://hub.docker.com/r/salbert/

proteinclustering.
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