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Chapter 1

Introduction

The process of creating and assessing music is fundamentally subjective and hard to
define. The judgment of the composer as to whether a new musical idea is good or bad will
be a subjective decision based on their knowledge and memory of previous pieces (see
Figure 1.1). This feedback of the creative self suggests that evolutionary computation
techniques may find utility in algorithmic music composition.

When designing an evolutionary system, we must first answer the question: “What is
this system supposed to evolve?”. Previous composition systems have generally attempted
to evolve musical pieces directly, but we propose evolving the composition process
instead. We cast the action of composing a piece of music as a process running on a
Turing-complete virtual computing machine. The virtual machine (VM) has a set of
instructions that will be executed in a given order depending on the initial state of its
memory (i.e. its program) and a way of writing notes onto a musical “score” whenever
an output instruction is encountered. The resulting system differs from previous work
in the literature by incorporating these linear genetic programming (LGP) (Brameier and
Banzhaf, 2007) elements.

The development of skill then becomes a genetic programming (Koza, 1992) problem;
the genotype is the program string presented to the virtual machine and the phenotype
its musical output. In such a system, the executing process on the virtual machine can
hold internal structuring rules and information that are not visible in the final musical
phenotype.

Given the personal perception of music, or any art form in general, an objective
definition of a “good” output is difficult to obtain (Waschka II, 2007). Our evaluation
process measures output quality as distributional similarity to existing works in a corpus of
real music. As automated fitness raters are seldom deployed in the literature, we propose
these two new feature extraction and assessment methods as a novelty, proposing a method
for comparing them to other automated metrics as well. As a further addition to the field
of evaluation, corpus pieces are not used to seed the initial population; instead they only
inform the fitness tests, allowing a broader search space.
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Composer

External musical 
influences

New piece of music

knowledge inspires

Experience of 
composition process

produces

informs

Figure 1.1: The creative process of a composer is informed by both experience of music
in general (external influence of others’ music) and experience gained through practice of
the composition process itself.

The current work also focuses on the importance of genetic operators (Cavicchio Jr.,
1972)—the set of procedures creating subsequent generations from existing ones. We
present a comparative study on dynamic adaptation of these operators. Although online
hyperparameter optimization has been researched extensively for genetic algorithms and
programs, it has seldom been attempted in an LGP setting.

The system described is suited for the creation of any output similar to a set of
inputs, so long as the choice of extracted features is not influenced by the nature of its
model. However, the question arises: “Is it helpful for the system to be informed to
some extent about the nature of its own output?” We propose a comparison between
setups that differ in their awareness of the end goal of creating music. A domain-specific
language (DSL) (Fowler, 2010) with music-related commands is presented, which reduces
the otherwise vast array of possible movements to ones typically found in composing. We
also propose a diatonic pitch representation, which allows musical notions to be clear to
the system (Selfridge-Field, 2004).

The thesis aims to present the following original contributions to the field:

• An overview of the general linear genetic programming approach to algorithmic
music composition, as first proposed in Sulyok et al. (2015), as well as exploring
the parameter space of such a system (see Section 3.2 and Sulyok et al. (2019b));

• A comparison of different virtual machine architectures and instruction sets in the
above setting (see Sections 2.1, 3.3 and Sulyok and Harte (2017));

• An objective and fully automated quality assessment method of artificial data
relying on statistical similarity to a corpus of real-world data, together with multiple
proposed corpora, two feature extraction methods (see Section 2.3 and Sulyok
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et al. (2019a)) and a proposal for a comparison study with other approaches in
the literature (see Section 3.6 and Sulyok (2019));

• A comparison of genetic operators and their adaptive capabilities in the above
setting (see Sections 1.1.3, 3.4 and Sulyok (2018));

• An exploration of the impact of domain-specific knowledge on the system in
the form of a musically inspired DSL and diatonic pitch representation (see
Sections 2.1, 3.5 and Sulyok et al. (2019a)).

The thesis is structured as follows.
Chapter 1 presents the foundation of our research, including a theoretical overview

of genetic programming, its subcategories and associated practices. Section 1.2
gives an overview of past literature in the field of evolutionary music and fitness
assessment methods. Non-evolutionary concepts deployed in the current research, such
as domain-specific languages and n-grams, are also detailed here.

Chapter 2 provides a methodological overview of the building blocks of our proposed
approach: we detail the machinations of the virtual machine together with its instruction
sets (Section 2.1), our representations of music (Section 2.2) and the proprietary
assessment methods of musical similarity (Section 2.3).

Chapter 3 presents multiple sets of experiments and results for the presented concepts:
Section 3.1 presents a proof of concept for the framework as defined thus far; it
details initial experiments with partially empirical parameters, to gain a starting point.
Afterwards, Section 3.2 delves into hyperparameter space exploration to compare and
contrast different settings for population size, number of voices (tracks) in the corpus and
output pieces, as well as the deployed survival/reproduction mechanism. An in-depth
comparison of different general-purpose virtual machine architectures and memory sizes
is presented in Section 3.3. An exploration of adaptive genetic operator settings is shown
in Section 3.4. Section 3.5 delves into the effects of embedding musical knowledge
into our VM, and presents a comparison to regular representations. Finally, Section 3.6
proposes an ongoing fitness measurement metric comparison study with other automated
rating approaches in the literature.

Appendix A details the supporting material attached to the current report, including
the open-source repository location, its structure and how to reproduce the presented
experiments. Appendix B shows a number of randomly selected musical pieces generated
during the most recent experiment run.
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Chapter 2

The proposed approach

Our system follows a conventional genetic programming structure (see Figure 2.1).
A fixed size population is maintained throughout a run, represented by genotypes,
phenotypes and fitness test scores of individuals.

The genotype is a fixed-size byte array fully representing a state of a virtual machine,
including all memory segments, registers and flags—we name such an array a genetic
string. Any values constitute a valid input for the VM, therefore the creation of a zeroth
generation is equivalent to generating random arrays of the given size. The genetic strings
provide the initial state of the VM, after which the programs are executed, then the output
bytes are collected and parsed into phenotype musical models. The structure of this model
is completely independent of the structure and mechanism of the VM. This two-stage
approach to rendering deviates from previous musical evolutionary systems in that the
genetic string is not directly used to build the phenotype, instead being interpreted by the
virtual machine.

2.1 Virtual machine

As previously mentioned, we interpret genetic strings using a VM— the output is used
to build the musical model. The byte values encountered in the memory are mapped to
instructions in a predefined set. The initial position of the instruction pointer is part of the
genetic string, just as the value of any other register or memory segment. The VM reads
bytes one by one from the RAM and executes the instruction mapped to the encountered
value. An instruction set may contain many kinds of commands that manipulate data
within the VM, such as data transfer, arithmetic, conditionals, etc. To produce data for
phenotype building, we define a special output instruction that outputs one or more bytes
from the memory or one of the registers.

Interpretation of a genetic string continues until one of two halting conditions is
met: either an expected number of output bytes is produced or a maximum number of
instruction cycles is reached. The latter is present as a fail-safe mechanism to exit the
program when an infinite loop containing no output instructions is encountered.

11
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Genetic operators

Genotype selector

Model parser

Feature extractorCorpus

Similarity test container

genetic strings

model features

musical models

grades

selected genetic strings

new genetic strings

Virtual machine

output bytes

corpus features

Random generator

generation zero

phenotype
rendering

phenotype 
evaluation

initialization

next
generation

Figure 2.1: Workflow of the proposed algorithm: A population of genetic strings is
interpreted by the virtual machine and the resulting bytes are parsed to build musical
models. Relevant features are extracted and compared to those of the corpus, yielding a
fitness. Based on these scores, genetic strings are bred and mutated to produce the next
generation.

The initial experiments Sulyok et al. (2015) propose a virtual machine architecture
loosely based on the Intel 8080 microprocessor, with the addition of outputs. It serves as
a starting out point for further exploration and comparison in later parts of the research.
The machine includes a 64kB random access memory (RAM) space which stores both
instructions and data, allowing self-rewriting during execution. Being an 8-bit machine,
256 different instructions are provided. The instruction pointer and an auxiliary data
pointer may address any byte in memory; moving the former represents a jump. Besides
the RAM, it contains a 256 byte circular stack addressable by an 8-bit stack pointer. Other
available registers include 8 general-purpose registers, one accumulator and a carry flag.
It includes typical data transfer, arithmetic, logic, branching, conditional and machine
control commands alongside the dedicated output commands.

The experiments presented in Sulyok et al. (2019a) compare virtual machine
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architectures differing in their embedded knowledge of the nature of their output. It
introduces a domain-specific language designed around knowledge of its output, therefore
notes in the memory of the virtual composer are cast as 8-bit registers. Data manipulation
instructions for the note registers reflect domain-specific impact: the duration of any note
may be doubled, halved or dotted, and pitches may be incremented/decremented within
the diatonic scale.

2.2 Representing music

Our phenotype is a model that represents a musical composition; the model parser
interprets the output byte array from the VM to produce such a model. For our
experiments, we define two music representations–one is a general and permissive model
based on MIDI (we refer to this as the complex model), while the other is a simplified view
informed by the statistics of a corpus (the reduced model). The former is represented as a
set of tracks, each consisting of a set of notes. Each note has the following properties:

1. Inter-onset interval (IOI) - The time period between the onset of the previous note
and the current note in a particular track. For the first note in a track, it is the time
interval between the beginning of the piece and the onset.

2. Duration - Time period between the onset and offset of the note.

3. Pitch - A 7-bit numeric value (between 0 and 127) representing pitch as defined
in the MIDI protocol. The value 69 is associated with the 440Hz concert A, with
an increase or decrease of one unit representing a one semitone rise or fall in pitch
respectively.

The reduced model is a simplified version of the complex representation, informed by
the statistics of the folk song corpus used in our experiments. The following observations
are made to the corpus at hand:

• The pieces are exclusively monophonic, removing the necessity of multiple tracks.

• The pieces contain vocal melodies with no rests or overlapping notes, therefore note
onset and offset times may be fully embedded in the duration, i.e. each note begins
when the previous ends.

• 99.5% of note durations fall into one of 8 common duration values, therefore 3 bits
are sufficient for its representation.

• Similarly, 99.7% of pitches may be mapped to 32 contiguous chromatic values,
representable on 5 bits.
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Figure 2.2: Discrete possible durations of the notes in a reduced model, together with the
corresponding MIDI values, assuming 4 ticks per quarter note and a tempo of 120BPM

Figure 2.3: Building reduced models from virtual machine output bytes. Each byte
becomes a note whose 3 most significant bits are parsed as the duration, while the other 5
become the pitch.

Therefore the reduced model becomes a piece of single-track music containing a series
of notes, each represented fully by duration and pitch.

The 8 common duration values are mapped to MIDI temporal units as seen in
Figure 2.2. The pitch value is represented by an integer in the range from 0 to 31 with a
flexible mapping to MIDI pitches. Given the relatively small number of different values
we allow for duration and pitch, we may represent a note uniquely with a single byte. To
make full use of the information produced by the VM, the phenotype renderer creates 1
note per output byte, using the 3 most significant bits as duration, and the remaining 5 as
the pitch (see Figure 2.3).

The role of any pitch in a piece of music is determined by its interval with respect to the
tonic of the given harmonic key. To incorporate the contextual impact of pitch, we define
different representations in the reduced phenotype, with the possibility of conversion
between each. They are as follows:

• standard chromatic – On the equivalent scale as MIDI but shifted down by 53 to fit
within the above mentioned range; outliers are shifted by octaves to fit within the
interval and retain consonance, and key is ignored.

• shifted chromatic – The mean key in the corpus members is found to be 64 (E4).
The shifted version of this center pitch (11) is designated as the tonic and all
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notes are transposed to center around this value. Transposition does not impact
the consonance or overall feel of the musical piece (Plomp and Levelt, 1965) and
this representation allows pitch values to always take on the same function, e.g. the
value 18 is always a perfect fifth.

• diatonic – Pitches are once again centered around 11, however they are diatonically
quantized so that an increase represents a step within the diatonic 7-note scale. This
representation prohibits the use of accidentals, i.e. chromatic “out-of-place” notes,
and therefore may help the system evolve harmonically correct pieces more easily.

2.3 Assessing musical quality through similarity

The fitness of any rendered phenotype is determined by a series of similarity tests. All
tests aim to evaluate how statistically analogous a model is to those in the corpus. To
this end, certain features are extracted from the corpus; the same features of incoming
models are compared to provide the fitness values. Corpus features are clustered using
the k-means++ algorithm (Arthur and Vassilvitskii, 2007) to control the broadening of the
search space.

Our experiments deploy two different corpora. Earlier iterations use Bach’s Inventions
and Sinfonias1, comprising 30 keyboard exercises. This catalogue of musical pieces was
chosen for their brevity, constant tempo, stylistic homogeneity, and also their usage in
other papers in the literature. Two versions of this corpus is deployed in our experiments:
single- and dual-track. Both contain the same pieces, each comprising the same set of
notes, but the dual-track versions are separated into two voices divided by pitch range
(effectively splitting the left and right hand keyboard parts).

Initial experiments presented in Sulyok et al. (2019b) reveal that the Bach keyboard
exercises may be an overly complex choice of corpus. The inherent pieces deploy many
key changes and complex rhythmic patterns, possibly making general rules hard to deduce
for a system starting out from complete randomness. This suggests that using a simpler
corpus may provide benefits. Therefore the experiments on the impact of domain-specific
knowledge (Sulyok et al., 2019a) deploy the “Cimbalom” Hungarian folk song collection2

as corpus. The files are all monophonic, comprising only vocal arrangements with no
accompanying instruments.

Analyzing the entropy of both corpora in terms of duration, pitch and the combination
of both reveal that the values follow normal distributions ( 45%). Entropy determines the
information content of the data: random notes would yield high values, while repeatedly
playing the same note results in minimal entropy; neither of these extremes sound pleasing

1Works BWV 772-801 downloaded from http://www.midiworld.com/bach.htm
2Népdalok collection downloaded from http://www.cimbalom.nl/nepdalok.html

http://www.midiworld.com/bach.htm
http://www.cimbalom.nl/nepdalok.html
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Figure 2.4: Demonstrating the construction of phenotype n-grams (uni- and bigrams) for
comparison with corpus members.

in a piece of music. Both feature extraction methods presented below are paired with
entropy testing.

We define a descriptor as the output of a series of transform methods applied to
an input model. The descriptor-based similarity tests look at sameness between the
descriptors of the input and that of the corpus. Four transforms (histograms, differential
of histograms, Fourier transform and differential of Fourier transform) are applied to
each of the three properties of a model, resulting in a total of twelve correlation tests.
We calculate the correlation between two descriptors line-by-line using the Pearson
correlation coefficient.

For the second analyzed similarity assessment metric, we borrow the cosine similarity
measure from information retrieval: two melodies will have a maximum similarity if the
angle enclosed by their bag-of-n-grams vectors is zero, i.e. their n-gram occurrences
follow the same distribution. The fitness function incorporates the two base properties
of the reduced models: duration and pitch. However, the n-gram-based fitness value
is derived from six components. These are n-grams of: (a) durations, (b) pitches,
(c) absolute pitch–duration pairs, (d) differences between consecutive durations, (e)
differences between consecutive pitches, and (f) duration difference–pitch difference
pairs. Figure 2.4 shows the construction of the uni- and bigram features for (a) and (b) of
an example piece.



Chapter 3

Experiments and results

The current chapter presents all sets of experiments performed during the research, along
with their results, also proposing an automated fitness rater comparison.

3.1 Baseline evaluation

This section outlines the initial tests employing the evolutionary music composition tool.
The configurations and results set forth here are relayed as presented in Sulyok et al.
(2015). We run a total of 40 experiments, each time allowing the algorithm to reach
20,000 generations; the parameters used here have been derived empirically from earlier
test runs. We use a population size of 256 with a survival rate of 3% and number of
clusters k = 5.

Figure 3.1 shows the mean and maximum grades per generation, averaged over the
40 runs. We can observe a steady rise in the maximum score, but stagnation in the mean
values. This can be explained by the fragility of a genetic string when faced with crossover
and mutation; even a small change can produce a completely different musical model.
Figure 3.2 shows the grade distribution of the highest-scoring individual in each run. It
demonstrates that the algorithm gives consistent results on different iterations. Although
repetition and variation appear in the generated pieces, other musical properties such as
harmony, melody or entropy, are somewhat lacking. This suggests the need for further
fitness tests inspired by music-theory.

3.2 Comparing system parameters

The follow-up experiments explore the space of possible system parameters to measure
their impact on the progress of the evolutionary process. The experiments relayed here
are in line with Sulyok et al. (2019b). For each set of parameters, we execute 20 separate
test runs, once again allowing the system to complete 20,000 generations each time.
Parameters kept constant for all runs include a survival probability of 15%, maximum
survival age of 3, maximum cut point ratio of 0.1%, and maximum mutation ratio of 2%.

17
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Figure 3.1: Progression of grades over
20,000 generations: the mean and
maximum grades for each generation.
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Figure 3.2: Distribution of highest
scoring individual grades. Every run
converges to at least 60%.

We use 5 corpus clusters and VM halting conditions of completing 60,000 fetch cycles or
producing 2,600 output bytes.

Varying parameters between trials include the population size (N ∈ {2x : 4 ≤ x ≤
10}), the number of tracks in the corpus (either 1 or 2) as discussed in Section 2.3, and
the survival mechanism: either probabilistic or deterministic. The following conclusions
may be drawn:

• Larger population sizes result in both better mean and maximum grades, and fitting
a curve to the available grades (see Figure 3.3) suggests that only marginal gains
would be had by further increasing it.

• Using the dual-track corpus results in slightly smaller mean values and larger
maxima, probably due to the inherent dimensionality rise.

• A probabilistic survival strategy prevents elitism and ensured better population
diversity: although smaller maximum grades are produced, significantly better
mean grades are achieved.

• Observing the changes in the rate of occurrence of different instruction types (see
Figure 3.4) shows that the algorithm favors more output instructions than occur in
random data. We can also observe a decline in the number of branching instructions
which may be due to the detrimental effect of infinite loops.

• Subjective music evaluation gives favor to dual-track pieces for their inherent
polyrhythmic nature, however harmony and overall musicality are still lacking.
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Figure 3.3: Estimated curve fit over
different population sizes, suggesting
that further increasing it would not give
significantly better results.
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bars show generation zero (random VM
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3.3 Virtual machine architectures

The current chapter compares different settings of the virtual machine, whose only
requirement is that it be able to output bytes based on a genetic string: a byte array fully
representing its state. The experiments and results presented here are relayed as discussed
in Sulyok and Harte (2017). Tested changing parameters include:

• virtual machine architecture - either von Neumann or Harvard;

• instruction set design - three different instruction sets are tested: the complex set
used in the previous experiments, a single-instruction OISC set using SBNZ and a
stack-based instruction set;

• memory size - either 256, 4096 or 65536 (addressable using 8, 12 and 16 bits,
respectively).

This results in a total of 18 different configurations. 20 experiments are run for each,
requesting 30 second long pieces and allowing the algorithm to reach 10,000 generations.
Other parameters are chosen as the most optimal based on previous configurations. The
following conclusions may be drawn:

• The results by VM architecture (see Figure 3.5) suggest the complex instruction as
the best, but also the most vulnerable to change.

• The single-instruction machine, although reaching the smallest grades, performed
better than expected given its complexity.

• The von Neumann architectures score slightly higher, proving the explorative
usefulness of the self-rewriting capability. Only the single-instruction set achieved
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the narrow bars show the average
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Figure 3.6: Mean and maximum
grade progression over the generations,
grouped by overall memory size. Virtual
machines using smaller memory sizes
achieved higher grades, their mean
increasing even in later generations.

better results using the Harvard architecture; this may be caused by its long
instructions being more fragile to self-rewriting in the von Neumann case.

• Using smaller memory sizes consistently produce higher grades (see Figure 3.6),
however their resulting music files are subjectively less appealing and overly
repetitive. We may conclude a deficiency in the fitness test design: they do not
properly reward complexity inherent in using more memory.

3.4 Comparing genetic operators

In this section we investigate different approaches to hyperparameter configuration of
genetic operators within our approach. We analyze the benefits of adaptively setting
operator distributions and rates using heuristic hill climbing (Russell and Norvig,
2016). The experiments in this section are presented in Sulyok (2018)–they use the
descriptor-based correlation tests, the corpus of Bach keyboard exercises and the complex
model representation.

The operator distributions take on standard values (8% reproduction, 90% crossover
and 2% mutation, as proposed by Koza (1992)) as well as adaptive values using the
standard one as a starting point. The tested rates include the number of cut points nc

and the number of mutated bytes nm, both represented proportionally to the size of the
genetic string. Changing values include:

1. constant values used in Sulyok et al. (2019b): nc = 0.1%, nm = 2%;
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2. global adaptive values starting with the same values used in the first case, adapted
once globally every generation;

3. individualized adaptive values starting with the same values used in the first case,
inherited and adapted per individual every generation.

For each of the resulting 6 configurations we run a total of 20 iterations, allowing
the algorithm to reach 10,000 generations. The results suggest that adaptive operator
settings provide only marginal benefits, and always tend to increase the number of mutated
entities at the cost of fewer units bred through crossover. A usual result shows large
maximum grades at the cost of lower means–a surprising result since the means inform the
hill climbing process. Individual rate adaptations provide no significant improvement over
the baseline; this could be due to the overwhelming number of dimensions hill climbing
is trying to explore.

3.5 Impact of domain-specific knowledge

The current section investigates the effect of embedding different levels of musical
knowledge into the virtual machine (VM) architectures and phenotype representations
of the system. The experiments are presented in Sulyok et al. (2019a)–they use the
n-gram-based similarity tests, the corpus of Hungarian folk songs and the reduced model
representation.

We examine two separate instruction sets that differ in their knowledge of musical
structure: one the Turing-complete register machine used in previous research, unaware
of the nature of its output; the other a domain-specific language tailored to operations
typically employed in the music composition process. The phenotype is rendered as a the
reduced musical model comprising a sequence of notes represented by duration and pitch.
We compare three different pitch schemes with differing embedded knowledge of tonal
concepts, such as key and mode.

With two different VM architectures and three pitch schemes, we present and compare
results from a total of six configurations. The following conclusions may be drawn (see
Figure 3.7):

• In all pitch representations, the DSL machine achieves better results than the
general-purpose machine.

• The diatonic pitch representation generally performs more poorly than the other
two, possibly due to its wider spectral range.

• The shifted chromatic representation outperforms the chromatic one only when
using the DSL. This is understandable, since the DSL contains pitch manipulation



22 CHAPTER 3. EXPERIMENTS AND RESULTS

0.0 0.2 0.4 0.6 0.8 1.0
Grades

GP Chromatic
GP Shifted Chromatic

GP Diatonic

DSL Chromatic
DSL Shifted Chromatic

DSL Diatonic

Figure 3.7: Last generation mean and maximum fitness values per configuration averaged
over the 20 test runs

instructions which retain correctness in the output. In other words, it helps to avoid
stray chromatic notes even if the representation would otherwise allow for them.
When using chromatic pitch, the corpus members are spread across different keys,
therefore consonant notes in one model may be dissonant in another, and the notions
of key and harmony would need to emerge themselves rather than being inherent in
the search space.

• The DSL machine outperforms the GP machine already in earlier generations,
proving the effectiveness of the DSL even for random VM contents.

• A subjective evaluation shows many harmonically pleasing results (see example in
Figure 3.8); however the entropy test is tricked in many cases by combining extreme
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Figure 3.8: Portion of an example output showing variation on a small pattern. This model
achieved 73% fitness.
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Figure 3.9: Portion of an example output showing a varied first part changing into a
one-note loop. This model achieved 79% fitness.
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value segments in the same piece of music (see example in Figure 3.9).

3.6 Fitness rater comparison proposal

The current section outlines a proposed set of experiments attempting to demonstrate the
viability of the 2 proprietary fitness raters. To this end we compare the mechanisms to
each other, as well as to other metrics proposed in the literature. The ongoing experiments
are relayed here as submitted in Sulyok (2019).

As a first step, we plan to reproduce some of the more accepted automated raters
present in the literature, and incorporate them into the current LGP system. The modular
design (as seen in Figure 2.1) allows a black box-style swap of the quality assessment
block for any other compatible one.

While any MIDI file may be assessed by any of the proposed metrics, a possible proof
of quality would be correlation with real-world feedback from human listeners. To gather
such numerical data, we propose using Amazon’s crowdsourcing marketplace Mechanical
Turk (MTurk)1. Given a set of chosen MIDI files, MTurk users would rate the pleasantness
of each, becoming the reference quality assessment pseudo-function.

We propose selecting the musical models presented to users based on the following
considerations: only generated music should be shown, evolved using all the different
compared fitness functions, with a high variance in grades. The collected models are
presented to MTurk users in a way that any single user would listen to all pieces and assign
a numerical grade to it. The mean of the feedback values would constitute the reference
grade for each model in the selection. Finally, correlation may be measured between the
human-assigned and automated grades, providing numerical proof of their efficiency.

We propose the above experiment with the following values: 5 fitness functions (of
which 2 are our previously presented ones) used to run a simulation with 500 individuals,
reaching 1,000 generations. Of the 5 different last generations, 20 models would be chosen
as presented above, resulting in 100 short pieces to present to MTurk users.

1Accessible at https://www.mturk.com/

https://www.mturk.com/
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Chapter 4

Conclusion and future work

Results from the literature show promise for algorithmic music composition, and many
real-world musical pieces have been composed with the assistance of evolutionary
algorithms. Indeed, Waschka II (2007) has always viewed these algorithms as auxiliary
tools for composer inspiration instead of standalone virtual composers.

In the proposed research, we have successfully modeled the thought process of a
virtual composer separately from the output of their work via virtual machines that
produce output bytes to be parsed into musical models. These pieces have been
compared to corpus members through a series of similarity tests involving statistical
transforms, n-grams and Shannon entropy. We have refrained from setting favourable
initial conditions to our system, such as using the corpus as the starting population.

The set of experiments show promise, demonstrating that the methodology succeeds
in creating pieces of music that converge towards the properties of the chosen corpus. The
output pieces exhibit certain musical qualities (repetition and variation) not specifically
targeted by our fitness tests, emerging solely based on the statistical similarities. Although
more complex musical properties such as harmony are lacking when viewing the system
as general, these properties are also aided by injecting domain-specific knowledge into the
system.

Finally, as the system has largely been tested on its own, with no in-depth comparison
to other methods in the literature, we have proposed a set of comparative experiments
around one of the most important aspects of the research: the automated quality
assessment metric. We therefore set as our most immediate goal the execution and result
analysis of these experiments.

The time representation may also be improved, since currently the data given to the
tests is a function of note index. This allows loops to emerge in tracks with identical
number of notes, but with a different duration, resulting in a polyrhythm.

Subjective evaluation of the results shows numerous interesting emerging patterns
not present in the corpus, but having similar statistical properties. However, many
results combine highly random segments with monotonous portions, suggesting that

25
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global entropy measurements are not always adequate for longer pieces. We therefore
propose further tests involving instantaneous entropy measured through time, as explored
by Manzara et al. (1992).

While the combination of n-grams and entropy produce interesting results, further
experimentation could be performed on the fitness evaluation metrics. For example,
different weighting schemes for the sub-tests or normalization mechanisms for the
n-grams may represent real-world quality more closely. We also propose experiments with
other clustering algorithms, such as kernelized k-means, hierarchical or spectral clustering
(Duda et al., 2000; Dhillon et al., 2004), studying their influence on the generated musical
pieces.
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