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INTRODUCTION 

1.1. Hypothesis and Objectives 

In the present study, the main hypothesis is that perturbations in freshwater play a key role 

in the health status of the benthic diatom communities that, in turn, could be used as good 

indicators of, e.g. acid mine drainage pollution. 

To test this hypothesis, the main objective of this PhD thesis was to analyze the response 

of the diatom communities of a potentially polluted catchment area, the Abrud River basin, 

affected by the presence of an historical mine exploitation. 

The specific objectives were:  

• To analyze the typology of diatom deformities observed in the study area; 

• To describe a new kind of teratology affecting diatom girdle bands; 

• To determine the main water physicochemical parameters in the study sites, 

highlighting those with major effects on the composition, structure and dynamics of 

diatom communities; 

• To explore the relationship between the concentration of water pollutants and the 

occurrence of teratological forms in epilithic diatoms; 

• To observe the effects caused by high concentrations of heavy metals on benthic 

diatom communities collected throughout the study area; 

• To investigate the response of two dominant taxa, Achnanthidium minutissimum 

(Kützing) Czarnecki and Achnanthidium macrocephalum (Hustedt) Round & 

Bukhtiyarova to Acid Mine Drainage (AMD) effects in the study area; 
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• To find the set of environmental predictors that lead to the occurrence of  abnormal 

diatoms in the study area and to evaluate the relationship between the degree of 

deformation in the valve outline and AMD-derived pollution; 

• To discuss the consequences of overriding diatom teratology on diatom-based water 

quality assessment protocols; 

• To generate a transfer function relating the abundance of abnormal cells and metal 

levels in waters, to be used as a biomonitoring metric; 

• To evaluate and assess water quality in the study area, based on the structure of 

diatom assemblages. 

• To identify the main heavy metal that affects the algal communities in the observed 

stations. 

• To contribute to the diatom flora of Romania. 

 

1.2.Brief Overview on Studies Regarding Benthic 
Diatoms in the Abrud River Catchment Area 

 

Although there are many research works referring to diatom communities in the Arieș 

River basin (the river and its major tributaries), only a small number describe these 

communities within the Abrud River basin. For instance, two studies (Momeu et al., 2007; 

2009) on algal, invertebrates and fish communities in the Arieș River basin (sampling 

surveys carried out in 2005 and 2006, respectively), included a sampling point located on the 

Abrud River, where no diatom taxa where recorded. A paper exclusively covering diatom 

communities in the Arieș River basin (Szekely-Andorko et al., 2011, samples collected 

during 2008) included a sampling site located also on this river, with ca. 100 taxa listed 

therein. Finally, a limnological study regarding algal and invertebrate communities (Battes et 

al., 2012) considered samples collected from the Roșia Montană area, with 58 diatom species 

identified. 

1.3. Brief Overview of the Class Bacillariophyceae 

Diatoms (Bacillariophyceae) are a group of single-celled algae present in almost all 

types of surface waters, including humid terrestrial habitats, even under extreme conditions. 
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The singularity of this group resides both in the structural particularities of the cell, especially 

the silica frustule, and in their major role in aquatic ecosystems. Diatoms are some of the 

most well-known aquatic organisms, provided their widespread use for quality assessment 

and monitoring applications (Hustedt, 1957; Zelinka & Marvan, 1961). 

1.4. The Bioindicator Value of Diatoms 

Diatoms are enormously successful organisms regarding their environmental 

adaptability, distribution and evolutive history. This group of algae has numerous advantages 

as bioindicators in aquatic ecosystems monitoring studies (Cholnoky, 1968; Lowe, 1974); 

making them the most frequently used algal organisms in water quality surveillance 

programs, as in the case of Romania (Momeu & Péterfi, 2007, 2009; Szigyarto & Bakos, 

2015). 

Water quality assessment methods based on the use of diatoms are well developed, 

their performance having been established worldwide for various types of aquatic habitats, 

including freshwaters, brackish waters and estuaries, lentic and lotic environments, and 

wetlands (Kolkwitz & Marsson, 1908; Patrick, 1949). 

Monitoring procedures based on living organisms quantify the “health” status of a 

river, as opposed to a mere description of the chemical and physical components (Karr, 1991; 

Rocha, 1992). Even continuous chemical monitoring can override a high-impact event on the 

community key-organisms. Furthermore, it is difficult to interpret the synergic effects of 

chemical substances on aquatic biocenoses. 

Diatoms are currently used as eutrophication indicators in lakes. While diatoms are 

collectively tolerant to lake productivity, individual species have specific habitat preferences 

and growth optima. Diatoms also help in assessing environmental conditions in rivers and 

streams, provided their ecological importance in these ecosystems, their ability to respond 

rapidly to environmental impairment, and the ease of their use. Diatoms respond directly and 

sensitively to many physical, chemical and biological changes in river and stream ecosystems 

and, since they can be found in almost all aquatic habitats, they can be used to compare 

streams, lakes, swamps, oceans, estuaries, and even some ephemeral aquatic habitats 

(Stoermer & Smol, 1999; Smol & Stoermer, 2010). 

The characteristics of diatom communities have been used to assess the ecological 

integrity of rivers and streams (Patrick & Strawbridge, 1963), as well as to diagnose the 
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causes for degradation. Ecological integrity is more comprehensive than biotic integrity, as it 

includes the physical and chemical features of the habitat.  

Algal communities mirror physical, chemical and biological characteristics in aquatic 

ecosystems via the presence/absence of species and growth or decrease of populations, 

among other reactions to environmental changes. In practice, only a number of benthic algal 

groups are frequently used in assessing the quality of natural waters (McCormick & Cairns, 

1997; Potapova & Charles, 2002), particularly for measuring saprobity and salinity degrees 

(Kiss, 1998; Barinova, 2017; Brabcová et al., 2017; Nautiyal & Nautiyal, 2018). If water 

quality is altered as a result of certain human activities and such alteration exceeds the 

tolerance intervals of these species, their populations will drop or disappear. Identifying the 

factors causing this decline requires complex additional investigations, but the “response” of 

the algal community will indicate certain water quality impairment and a potential pollution 

source. 

 Benthic diatom communities are used on a large scale for monitoring water quality 

owing to certain aspects (Lowe & Pan, 1996; Bellinger & Sigee, 2015; Kale & Karthick, 

2015; Morin et al., 2016): 

§ In general, autotrophic benthic algae –as primary producers– have a crucial 

position between physical and chemical environmental factors and the other 

organisms of the food web, so that disruptions in the benthic algae level can 

severely influence the other levels in the aquatic ecosystems. Hence, some 

studies reveal that benthic diatom communities enable a more accurate 

assessment of the quality and biotic integrity of aquatic ecosystems than 

protozoa or invertebrates (Beyene et al., 2009). 

§ Diatoms are practically cosmopolitan, being found from the poles to the desert 

regions, both in freshwaters and in the seas, including brackish, thermal and 

hypersaline waters, under a wide range of environmental conditions. 

§ A great majority of species appear abundantly throughout the planet, and that 

is why many diatom-based indices have universal applicability, allowing 

comparative studies between different regions, which in other cases are not 

viable. 

§ The most common diatom indices are based on the identification of 400 

individuals per sample. This makes the error in estimating the composition of 

community lower than 10%, which implies a great precision of these methods 

from a statistical point of view (Blanco et al., 2011). 



 11 

§ Both attached and motile species have a high indicator potential due to their 

inability to avoid pollution by means of migration, which means that they can 

either adapt or simply disappear. 

§ Benthic diatoms have relatively short life cycles, which favor quick responses 

to environmental changes. Benthic algal communities are usually the first to 

react to environmental disruptions and the first to “bounce back” upon 

restoration of the optimal conditions. 

§ Benthic diatom communities generally have higher diversities than other 

groups of aquatic organisms. Hundreds of species can coexist on few cm2 of 

substratum, each of them with specific optima and tolerance intervals with 

respect to environmental factors, so that the community behaves as a whole 

complex biological monitoring system. 

§ Benthic communities have a compact structure in terms of the space they 

cover; therefore, no more than a few cm2 of substrata will suffice for the 

collection of a representative sample. 

§ The collected samples are easy to handle and require little fixation, which can 

be a major long-term advantage, as preserved samples and fixed microscopic 

preparations can be reexamined at any time for subsequent investigations. 

§ Another advantage is the possibility of identifying taxa based only on frustule 

features, which are relatively easy to study under the light microscope. 

Research in the field of aquatic ecology, along with the implementation of monitoring 

programs and the results of studies in other fields, should ultimately lead to an integrated 

multidisciplinary approach that includes not only diatoms, but also all the other groups of 

aquatic organisms (De Jonge et al., 2008).  

1.5. Diatom teratology – a Tool for Metal Monitoring /Acid Mine Drainage 
Contamination 

The morphological alterations of diatoms are non-adaptive phenotypic abnormalities 

caused by environmental stress that generally affect the contour of the frustule or the shape of 

the striae (Falasco et al., 2009a). According to the current literature, the presence of 

deformities in contaminated environments is considered an indication of stress; however, the 

mechanisms that induce deformities and quantify teratologies remain poorly understood 

(Lavoie et al., 2017). 
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Malformations are usually detected in natural diatom assemblages, but their frequency 

of incidence is generally low (< 0.5% according to Morin et al., 2008a; see also Arini et al., 

2012). However, the proportion of abnormal valves can increase with the presence of 

multiple stressors (Lavoie et al., 2017).  

Several studies showed a significant positive correlation between the abundance of 

deformed cells and environmental stress, such as drought conditions, low speed and water 

flow, the increase of the temperature and the intensity of light (Antoine & Benson-Evans, 

1986), contamination by pesticides (Debenest et al., 2010) or decrease in water quality 

(Gómez & Licursi, 2003). However, the most known causes that determine the appearance of 

teratological forms are artificial growth conditions (Falasco et al., 2009b) and heavy metal 

contamination (Cantonati et al., 2014). Malformations can also be induced by other 

independent factors, like malfunctions of proteins responsible for silica transport and 

deposition (Kröger et al., 1994, 1996, 1997; Kröger & Poulsen, 2007; Knight et al., 2016), or 

for the structural and mechanical integrity of the valve (Kröger & Poulsen, 2007; Santos et 

al., 2013). 

The deformities are categorized based on their type: aberrant valve outline/shape, 

irregular sternum/raphe, atypical striae/areolae, and mixed deformities (Falasco et al., 2009a).  

Many authors consider that morphological alterations of diatoms could be useful tools 

to monitor environmental changes in rivers (Cattaneo et al., 2004; Cantonati et al., 2014), 

including those caused by the drainage of water from mines (AMD), which in recent decades 

has been considered an important source of environmental contamination (Letterman & 

Mitsch, 1978). It has been reported that AMD induces also teratologies and some authors 

considered the ratio of abnormal individuals to detect acid mine drainage consequences 

(Cattaneo et al. 2004; Lavoie et al. 2012). 

The presence of deformed frustules in polluted ecosystems is often a reaction to 

noxious chemicals. For this reason, a great interest has emerged in using morphological 

abnormalities in biomonitoring studies. Teratologies open a tool box to assess aquatic 

ecosystem health and it can be expected that their occurrence and severity are related to the 

degree of stress (Lavoie et al., 2017). 

In this context, cellular morphology could respond to the relationship between metal 

contamination and adaptation of organisms (Morin & Coste, 2006; Ancion et al., 2010). It 

has been often reported that diatoms respond to chemical stress, through changes in species 

distribution, changing the cellular volume and inducing the generation of teratologies (Morin 

et al., 2008b; Falasco et al., 2009b). Many studies have pointed out that the deformed shape 
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of diatom valves in response to metal contamination are markers of this sort of pollution 

(Dickman, 1998; Torres et al., 2000; Gómez & Licursi, 2003). Numerous environmental 

pressures can be the root for the development of teratologic diatoms, and the occurrence of 

deformed cells can tell us about the effects of environmental variations (Falasco et al., 

2009b). Morphological deformities have been reported in communities under metal pressure 

(Falasco et al., 2009b), and the quantitative analysis of abnormal frustules could be a tool for 

the monitorization of metal pollution (Morin et al., 2012). 

Metal pollution of aquatic habitats due to acid mine drainage has remarkable effects 

on diatom teratology (Olenici et al., 2017). It is not easy to measure the degree of 

deformation but Olenici et al., (2017) have found a method based on geometric morphometry 

that allowed the discrimination between normal and abnormal individuals. Such teratologies 

are diverse, not yet very well studied and sometimes difficult to be appreciated using optical 

microscopy (Olenici et al., 2019). Actually, one of the problems of microscopic diatom 

observation is the nature of this material (transparent and colourless). In this regard, the work 

of Sánchez et al. (2018) evaluating oblique illumination techniques demonstrates that these 

methods allow distinguishing minute details with a similar performance that more expensive 

microscope Differential Interference Contrast (DIC) systems. In any case, accurate 

taxonomic resolution under light microscopy is critical in biomonitoring studies (Blanco et 

al., 2017), which points to the need of new technical and statistical tools for the correct 

identification at species level, mechanical approaches (such as pure morphometry-based 

diatom determination) having been discouraged (Blanco et al., 2017). Nevertheless, diatom 

automatic detection and identification has been a challenge for computer scientist (Pedraza et 

al., 2018) and a lot of work has been done in the application neural networks for this purpose 

with excellent perspectives (Pedraza et al., op. cit.). However, we must consider the natural- 

and environmental driven variations in diatom morphology (Olenici et al., submitted,) that 

constitutes a true benchmark to these technologies. Despite their ecological importance and 

their great diversification in world aquatic ecosystems, the diatoms of many regions of the 

world remain practically unknown (Blanco et al., in press a; Blanco et al., submitted). Thus, 

new diatom species are being continuously described in the most diverse ecosystems 

(Borrego-Ramos et al., 2018; Blanco et al., 2019a; Blanco et al., 2019b; Blanco et al., in 

press b) but it is crucial to consider also the community as a whole in environmental studies 

and analyze their composition as a consequence of biological interactions (Borrego-Ramos et 

al., 2019) or the presence of metals and other pollutants (Baciu et al., 2018). 
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2. MATERIAL AND METHODS 

2.1. Study Area 

 

Abrud River is a tributary of Arieș River (the most important right-side tributary of 

the Mures River, Forray & Hallbauer, 2000) and is situated in the Alba county, North-

Western Romania in the Apuseni Mountains. 

These mountains belong to the Alpine Carpathian Balkan system, which is in the 

interior of the Carpathian arc forming an isolated block (Ianovici et al., 1976; Balintoni 

1994). This arc is made up by a Tertiary calc-alkaline volcanic nucleus embodying various 

episodes of magmatic activity in the last 14.7 million of years (Roșu et al., 2004). North-

vergent Cretaceous thrust sheets of oceanic to terrestrial flysch-type sedimentary elements, 

placed in Palaeozoic and Precambrian basement (Leary et al., 2004).	
  

Roșia Montană mining area is located within the Southern Apuseni Mountains, in a 

Metaliferi Mountains area. Metamorphic rocks, Cretaceous magmatites, Mesozoic ophiolites 

(Upper Palaeogene), Neogene igneous rocks (Tămaş, 2007), Mesozoic and Miocene 

sedimentary rocks and Quaternary sediments constitute the geological structure (Duma, 

2008). Roșia Montană is the largest gold deposit in Europe, with a large reserve in Au (500-

1000 Mt) and Ag (6 Gt). A Miocene-age maar-diatreme complex is emplaced into Cretaceous 

flysch-type sedimentary rocks, with the preponderance of black shales intercalates with 

sandstone and conglomerates and intruded by dacite domes. The dacitic intrusions 

corresponds to a Cetate Dacite and a Carnic Dacite, together with intrusions of finely 

disseminated pyrite and dykes that are crossing the breccias, have been decisive in the 

mineralization activity. Hydrothermal alteration has modified the dacite, which is the core 

host of the Au–Ag mineralization (Lazăr et al., 2014). 

 

 

Hydrological Features 

Roșia Montană is situated within the Abrud River basin, draining waters to Corna, 

Săliște and Roșia rivulets that are tributaries of Abrud River. The Corna Valley flows 

upstream of Abrud and Săliște town; Roșia Valley watershed is oriented in the west direction 

and flows downstream of Abrud Town. The area corresponds to a moderate steep 

mountainous topography (700 to 1000 m a.s.l.) being the main groundwater recharge coming 
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from rainwater. The rivers increase the caudal due to the low permeability of the rocks and 

the convergence of the flow. The average flow rates in Roșia Valley was 0.16 m3/s; in Corna 

Valley was 0.07 m3/s and finally 0.16 m3/s for the Săliște  stream in the period 2001-2003 

(RMCG, 2006).  

AMD produced from waste dumps accumulated in ponds by mining actions 

contaminates all the streams from the Roșia Montană complex. Those rivers are flowing  into 

tributaries of the Danube (Forray, 2002; Florea et al., 2005; Bird et al., 2005; Manske et al. 

2006; Lăcătuşu et al., 2007; Baciu et al., 2012; Papp et al., 2018) and constitutes a challenge 

in the management of the problem (Gray, 1997).  

The climate of the region is continental temperate affected by the altitude, with 

average temperatures ranging between -4.7 and 16.9 °C. Rainfalls are between 700 and 800 

mm/year of rain (75%) and snow (24%) (Azzali et al., 2014). 
 

2.2. Sampling Points 

 

Only surface running waters were selected for this study. Sampling points were set in 

Cărpiniș, Roșia Montană, Abrud, Bucium Șasa, and Bucium-Sat, that is in Alba County. As 

such, the selected area comprises the Abrud River area and its main right-bank tributaries 

between Cărpiniș and Bucium-Sat. Sixteen sampling points were established in order to 

achieve an overview of the benthic diatom communities in the studied streams (fig. 2.2.1.). 
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Figure 2.2.1. The map with the sampling points in the study area 

(V.V.=Vârtop Valley, V.R.1= Roșia Valley 1, V.R.2= Roșia Valley 2, V.R.3= Roșia 

Valley 3, V.S.1= Săliște Valley 1, V.S.2= Săliște Valley 2, V.C.1= Corna Valley 1, V.C.2= 

Corna Valley 2, V.A.1= Abruzel Valley 1, V.A.2= Abruzel Valley 2, Ab.1=Abrud1, 

Ab.2=Abrud2, Ab.3=Abrud3, Ab.4=Abrud4, Ab.5=Abrud5, Ab.6=Abrud6) 

2.3. The Collection and Processing of Benthic Diatom Samples 

Benthic diatom samples were collected and processed following European Standards 

EN 13946/2003 and EN 14407/2004. The collection of samples was carried out during the 

vegetative period (between spring and autumn), in order to determine the composition and 

certain structural characteristics of the benthic diatom communities. Therefore, sample 

collection covered spring and summer 2013, and the following sample gathering was 

scheduled for autumn 2013. In order to obtain representative samples and to observe the 

seasonal and annual dynamics of the diatom communities, samples were also collected over 

the course of 2014, during the same seasons as in 2013, summing 96 samples. The samples 

were taken from the same type of substrata (natural) in all the sampling points, more 
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precisely stones. In the case of tributaries, sampling was carried out along the entire width of 

the riverbed; on the Abrud River, sample collection was performed on the shore side of the 

riverbed. The first processing phase for the treatment of the materials collected consisted on 

removing inorganic and organic contents (in order to better visualize frustule’s 

ornamentations during subsequent microscopic examination) followed by the elaboration of 

permanent microscopic slides in a second phase (fig. 2.3.1.). 

 

 

 
 

Figure 2.3.1. Diatom samples treatment in the laboratory 
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2.4. Measuring Physical and Chemical Parameters and Determining the Concentration 
of Certain Ions 

The main physical and chemical parameters of water (pH, temperature, salinity, 

conductivity, TDS, O2, turbidity) were measured in situ concurrently with the collection of 

benthic samples, using a portable multimeter (350i/SET WTW) and a portable turbidity meter 

(WTW Turb 430IR). Water samples were also collected in order to determine the 

concentration of certain anions and cations in the laboratory using a Dionex ICS – 1500 ion 

chromatography system and to determinate the level of the concentration of some heavy 

metals, using the atomic absorption spectrometer ZeEnit 700. 

 

 

3. Results and Discussion 

3.1. Teratologic Diatoms from Acid Mine Drainage Polluted Waters 

 

Along the study period, a wide representation of abnormal forms were recorded and 

have been summarized in table 3.1.1. In total, five teratological categories were detected and 

some representations of each type have been illustrated. A seasonal dynamic of the benthic 

diatom communities was observed, not only regarding the number of species or their relative 

abundance, but also regarding the type of identified teratology. The most repetitive abnormal 

type was the deformed valve outline, which agrees with previous works (Cattaneo et al., 

2004; Falasco et al., 2009a,b; Lavoie et al., 2012; Cantonati et al., 2014; Tornés et al., 2018). 

To a lesser extent it has been observed the raphe canal system modifications (displaced 

fibulae) during Summer and Autumn 2013 and during Spring and Autumn 2014, and the 

abnormal striation patterns in Autumn 2013 and in Spring and Autumn 2014. The mixed 

teratologies were observed only during Spring 2014 and only one time, in Summer 2013, the 

deformed girdles. 
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Table 3.1.1. Types of diatom deformities found in the study area (Scale bar: 10 µm). Arrows 

indicate frustule deformities 

Teratology description                                   Normal vs. abnormal individuals 

 

Type1: Abnormal 

valve outlines 

(different degrees of 

deformation) 

 

 

Achnanthidium minutissimum (Kützing) Czarnecki 

 

 

 

 

 

 

 

 

 

 

 

 

                 

                     Cocconeis euglypta Ehrenberg 

                                   

 

 

                     Diatoma mesodon (Ehrenberg) Kützing 
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                                 Diatoma moniliformis Kützing 

                                   

                 Encyonema minutum (Hilse) D.G. Mann 
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                      Fragilaria recapitellata Lange-Bertalot et Metzeltin 

 

    

                                       Fragilaria rumpens (Kützing) Carlson 
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         Navicula tripunctata (O.F. Müller) Bory 

 

                       

                 Nitzschia dissipata (Kützing) Grunow 
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                             Nitzschia linearis (Agardh) W.M. Smith 

                                    

                                 Nitzschia media Hantzsch                        
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                       Reimeria sinuata (Gregory) Kociolek et Stoermer    

 

                    

                                Rhoicosphenia abbreviata (Agardh) Lange-Bertalot               

 

                    

                   Ulnaria ulna (Nitzsch) Compère 
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Type2: 

Raphe canal 

system 

modifications 

(displaced 

fibulae) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                       

                               Nitzschia dissipata (Kützing) Grunow 

 

                  

                 Nitzschia linearis (Agardh) W.M. Smith 
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Type3: 

Abnormal 

striation 

pattern 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  

                    Diatoma vulgaris Bory 

                           

                          Fragilaria recapitellata Lange-Bertalot et Metzeltin 
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Type 4: 

Deformed 

girdle 

 

 

 

 

 

 

 

 

 

 

 

 

                         

                    Gomphonema subclavatum Grunow 

                

Achnanthidium minutissimum s.l. 

(Kützing) Czarnecki (Olenici et al., 2019) 
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Type 5: 

Mixed 

teratology         

 

 

 

 

                 

Achnanthidium minutissimum s.l. (Kützing) Czarnecki 
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The analysis of the taxonomical composition in the affected phytobenthic 

assemblages showed that 37 diatom species presented abnormalities that could be considered 

as teratologies. The counted species (30) belonged to 14 genera (fig. 3.1.1.); Diatoma sp., 

Fragilaria sp. and Nitzschia sp. were the most represented with 4 species each one, being 

followed by Gomphonema sp. represented by 3 species. 

 

 
Figure 3.1.1. Number of counted species with teratological individuals sorted by 

genera 

 

 

In order to determine the presence of heavy metals in the frustules of teratological 

diatoms, a energy-dispersive X-ray spectroscopy technique coupled to SEM equipment was 

performed. From each sample stub, 1 to 4 spectrum points were picked up choosing in 

different parts of the deformed frustules and in the adjacent material (figs. 3.1.2. and 3.1.3.). 
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Figure 3.1.2. SEM microphotography of Fragilaria rumpens processed with energy-

dispersive X-ray spectroscopy technique. 
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Figure 3.1.3. Chemical spectrum of the analized points in figure 3.1.2. 

 

 

 

3.2. A New Diatom Teratology in a Heavy Metal Polluted River of Roşia 

Montană (Romania) 

 
In the study area, where Achnanthidium macrocephalum s. str. Achnanthidium 

minutissimum s. str. were described as the dominant species, 20.53% of the cells presented a 

type of deformity that has not been reported previously, with a distribution of 70% and 30% 

respectively of the total of individuals with this type of deformation (Olenici et al., 2019). 

This affects the cingulum, particularly the valvocopula (the first of the girdle bands, attached 

to the valve), that becomes modified with a markedly undulate shape (figs. 3.2.1. and 3.2.2.). 
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Figure 3.2.1. Deformed valvocopula seen at SEM by comparing with normal one (A and B = 

normal frustules; C, D, E and F = abnormal frustules identified in processed sample) 

(Olenici et al., 2019) 

 

 

 

Figure 3.2.2. Deformed valvocopula seen at SEM (abnormal frustule identified in an 

unprocessed sample) (Olenici et al., 2019) 
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According to Olenici et al. (2019), two different hypotheses can be suggested to explain this 

kind of teratology: 

a) Whereas metal contamination increases the rate of valve size diminution (which is a 

characteristic of diatom asexual reproduction) valve surface does not decrease as quickly as 

the cell volume does (Falasco et al., 2009a). Santos (2010) outlines that frustule growth is 

only possible by parental valve separation at the same time that new girdle bands are 

produced, so that the new girdle bands formed may not fit in the resulting frustules, adopting 

an aberrant form.  

b) It has been reported that a Zn-dependent system (Jaccard et al., 2009) mediates the uptake 

of silicic acid by diatoms through cingulins. An excess of Zn affects the biochemical pathway 

of silicon metabolism (Martin-Jézéquel et al., 2003) and, in particular, the alteration of metal-

induced cingulins can affect the functioning of the girdle (Karp-Boss et al., 2014). 

 

3.3. Exploring diatom teratology using geometric morphometry 

In order to assess the degree of valve deformation, geometric morphometry was used 

in the analyzed Achnanthidium populations. A sum of 543 individuals (348 A. 

macrocephalum and 195 A. minutissimum, both normal and teratologic cells) were 

photographed by means of an optic microscope. Valve morphology was displayed as a 

geometric setup of pseudolandmarks or reliable recognizable points in the set of individuals 

measured. About 40 pseudolandmarks were set at consistently dispersed points along the 

valve outline (fig. 3.3.1.) and digitized utilizing CLIC (Dujardin et al., 2010). The Cartesian 

coordinates of the pseudolandmarks were adjusted (translated, rotated and scaled) by the 

Procrustes generalized orthogonal least-squared superimposition method (Rohlf & Slice, 

1990).  
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Figure 3.3.1. Position of the pseudolandmarks along the valve outline of a teratological A. 

minutissimum valve (Olenici et al., 2017) 

 

 

Resulting data were then analyzed by multivariate methods to test for significant 

dissimilarities between pre-established groups through the use of a nonmetric 

multidimensional scaling (NMDS) analysis in Past v. 2.17 software, as described in Hammer 

et al. (2001). To visualize the resulting scatterplots for each predefined group, confidence 

ellipses were included in the output plot (figs. 3.3.2.a. and 3.3.2.b.) (Olenici et al., 2017).  
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Figure 3.3.2a. Nonparametric multidimensional scaling plot of normalized coordinates for 

the morphological pseudolandmarks digitized on LM images of selected populations of 

Achnanthidium macrocephalum and  A. minutissimum (• = A. macrocephalum, • = A. 

macrocephalum teratologic, • = A. minutissimum, • = A. minutissimum teratologic), 

scale bar = 10µm (Olenici et al., 2017) 

 

 
Figure 3.3.2b. NMDS plot of environmental variables from analyzed sampling sites (Olenici 

et al., 2017) 
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The NMDS analysis indicates that the aquatic physico-chemical parameters, mainly 

the Zn level, are related with the valve shapes of the Achnanthidium species. With the 

objective of evaluate the main environmental stressors producing frustule teratologies, a two-

block partial least squares analysis (2BPLS) has been applied using as inputs the outline 

coordinates and the set of environmental data matrices (fig. 3.3.3.). 

 

 
Figure 3.3.3. Relative importance of limnological variables according to the two-

block partial least squares results (Olenici et al., 2017) 

 

According to Olenici et al. (2017) the results demonstrated the efficiency of the 

methodological approach followed, that is geometric morphometry linked to multivariate 

analysis, in the quantification of the degree of deformation in diatom valves. 

 

 

3.4. Variations in Diatom Morphology: Implications for Diatoms-Based 

Water Quality Indices 

 
The power of diatom indices are based both on the amount of taxa analyzed for their 

computation and on the autecological characteristics assigned to each taxa (Blanco et al., 

2007). SPI is the only metric based on the ecological profiles of virtually all known taxa at 

the most taxonomically fine level, including teratological forms as distinct taxa whose 

occurrence downweights the final score of this metric. However, it must be considered that 

(i) standard protocols (CEN, 2004) do not warn about the necessity of recording these 

abnormal valves in routine counts, and (ii) only ca. 1% of the taxa considered for SPI 
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computation are considered teratological forms (Lecointe et al., 1993). Therefore, it can be 

assumed that ignoring the presence of abnormal diatoms leads to inaccurate water quality 

diagnoses (Olenici et al., submitted). 

SPI values computed segregating abnormal valves were significantly lower, as shown 

in figure 3.4.1. (Wilcoxon test, W=210, p<0.001). In samples where teratological diatoms 

were particularly abundant (more than 30% of counted individuals), SPI overestimation can 

reach up to 8 units (fig. 3.4.2.), so that water impairment in these locations may remain 

hidden. It can be proven that normal and modified forms of the same specie have different 

ecological profiles with respect to key limnological variables. This is in accordance with 

Coste et al. (2009) and Fernandez et al. (2018) who reported that the teratological forms have 

different ecological profiles than normal ones. As expected, the CCA plot (fig. 3.4.3.) shows 

that teratological occurrences of both Achnanthidium taxa are related to acidity and Cd and 

Cu levels. This emphasis the need of assigning different autecological parameters to 

teratological forms in order to better reflect water conditions in polluted areas (Olenici et al., 

submitted). 

 

.  

Figure 3.4.1. Boxplot of SPI values computed segregating (left) or pooling (right) 

teratological individuals in the Abrud AMD-polluted river (Olenici et al., submitted). 
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Figure 3.4.2. SPI overestimation as a consequence of overriding teratology in routine diatom 

counts (Olenici et al., submitted) 

 

Figure 3.4.3. CCA triplot showing the autecological differences between normal 

(black) and teratological (red) specimens of three diatom species found in Abrud River, 

Romania. Black dots: control stations. Red dots: metal-contaminated stations (Olenici et al., 

submitted) 
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3.5. Monitorizing Zn Levels Using Diatoms 

 
The creation of a transfer function, a predictive formula, from a relative large dataset 

can be useful to derive past chemical conditions in sediment cores, allowing the 

reconstruction of past events (Bennion et al., 2004).  From this point of view, our results 

allows the generation of a transfer function that could be applied to paleolimnological records 

in order to obtain information about changes in the degree of exposition of these communities 

to heavy metals. Environmental conditions can be thus inferred for a particular habitat 

analyzing the inhabiting biological community, without the need of field measurements.  

In order to design a biotic index for the sampled region, three steps have been followed: 

1. The selection of the response variable (that is, the X axis of the response curve). In this 

case, the Zn concentration has been selected the as the environmental variable considering 

that has been the most relevant parameter in this case (Olenici et al., 2017). This heavy metal 

is a pollutant originated from mine activity and is tolerated in a variable manner by diatom 

species.  

2. A field survey has been made, collecting the community to be used as bioindicator, and 

simultaneously measuring the variable of interest. 

3. The optimum and the tolerance of each species has been calculated with respect to this 

variable (fig. 3.5.1.). 

Once the optimum and the tolerance have been computed for all the taxa present in 

the community, it is possible to back-calculate variable values that would correspond to each 

sampling site given the relative abundances of the species occurring in the test dataset. This 

can be done using the weighted averages formula, also known as the Zelinka-Marvan (1961) 

formula: 

 !" = !! . !!!
!!! .!! !! .!!!

!!! , where Aj, Sj and Vj are, respectively, the abundance, optimum 

and tolerance, of the jth taxon in the sample. 
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Figure 3.5.1. Species Packing (Gaussian model) for the 9 most abundant species. Each line is 

a “best-fit” normal curve defining the relationship between the abundance of each taxon and 

Zn concentrations 

3.6. Contribution to the Freshwater Diatom Flora of Romania 

A total of 274 diatom taxa have been identified in the catchment area of the Abrud 

River (Roşia Montană, Romania). These 274 taxa belong to 63 genera and represented 264 

different species, plus 8 varieties, 1 subspecies and 1 form 

The most represented genera have been Nitzschia and Gomphonema with 31 and 27 

species, respectively. There have been also 24 identified genera that have been represented 

only by one species. The figure 3.6.1. shows the species distribution in the dominant genera. 

 



 41 

 
Figure 3.6.1. The main diatom genera related to the number of species of each one. 

 

There were 17 taxa showing identification difficulties and are thus identified to the 

genus level. According the literature (Cărǎuş, 2012; Momeu et al., 2012; Butiuc-Keul et al., 

2012; Florescu et al., 2015; Szigyarto & Bakos, 2015; Buczko 2016; Szigyarto et al., 2017), a 

total of 35 taxa had been not recorded already in previous studies for Romania, seven more 

were new varieties and one more was a new form. Thus, the new species recorded represent 

almost 13% of the total identified species.  

As a consequence of the polluted environment in the study area, changes were 

observed in the seasonal, annual and spatial dynamics of the diatom communities in the 

Abrud River catchment area, both in terms of number of species and individual relative 

abundances. The richness of the species varies between an extremely low number in the 

sampling points affected by the presence of mine waters throughout the study period and a 

high number in the points with good quality water (figs. 3.6.2a., 3.6.2b. ). 
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Figure 3.6.2a. Seasonal average species abundance in the sampling points of the 

Abrud River catchment area. Each pie plot represents the percentages of the main diatom 

species (OMNIDIA software (Lecointe et al., 1993). In red or pink the Nº of taxa in each 

station with relative abundances > 0.25 % 

 

 
Figure 3.6.2b. Seasonal average species abundance in the sampling points of the 

Abrud River catchment area. Each pie plot represents the percentages of the main diatom 

species (OMNIDIA software (Lecointe et al., 1993). In red or pink the Nº of taxa in each 

station with relative abundances > 0.25 % 

 

Downstream the town of Abrud, some dominant ß-mesosaprobic taxa were observed 

as well, suggesting critical organic matter levels in the water originated from untreated urban 

sewage, that together with the high concentrations of NO3
-, draw attention on the low water 

quality. The effect was more obvious during summer 2013. The saprobic spectrum of taxa 
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(fig. 3.6.3.) was performed following Rott et al. (1997), revealing a higher presence of β -

mesosaprobic (68%) and ßα-mesosaprobic (19%) taxa, compared to oligosaprobic species 

(6%). The presence of polysaprobic species, which require a higher amount of organic 

compounds, was very low (6%). It can be observed that the level of the saprobity in the study 

area is a moderate one. Also, the results highlighted that the majority of the dominant species 

in the study area indicated a high level of trophicity in the water, being eutrophic species (van 

Dam et al., 1994). In the same time, there were observed some dominant taxa that suggested 

a trophicity level form oligotrophic to meso-eutrophic and one, Nitzschia palea (Kützing) 

Smith that indicated a critical level of trophicity, being hypereutrophic. There were observed 

also two dominant species, like Achnanthidium minutissimum and Gomphonema pumilum 

(Grunow) Reichardt, that tolerate a level of nutrients in the water form low to very high (van 

Dam et al., 1994). 

 

 
Figure 3.6.3. Synthetic saprobity classes (o = oligosaprobic, oβ = oβ-mesosaprobic, 

β = β-mesosaprobic, βα = βα-mesosaprobic, α = α-mesosaprobic; p =  p-polysaprobic) of 

the 18 top dominant species averaged in all the samples 

 

1. CONCLUSIONS 

 

 
Diatoms are good indicators of the features of the water due to its ubiquity and 

sensitivity to environmental variables. They are easy to collect and identify at species level 
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and the ecological profile for many species is known so that many diatom-based indexes are 

being used. However, diagnoses based only on a low number of indicator species do not 

necessarily reflect the actual status of aquatic ecosystems, so that monitoring the whole 

community included the teratological forms is very important. 

Acid Mine Drainage (AMD) affects lotic ecosystems all over the world, being a 

prevalent issue concerning water quality in the Roșia Montană mining area (Romania). 

Accordingly, the first concern of this PhD thesis was to assess the ecological responses of the 

diatom communities in the Abrud River catchment area. Secondarily, the objective was to 

find the environmental predictors that lead to the appearance of abnormal diatoms. 

Firstly, the results from the analysis of the teratologic diatoms growing on AMD-

polluted waters have shown that the presence of abnormal individuals can be attributed to the 

fact that the diatom communities were affected by this kind of pollution released from mining 

works and waste rock deposits. Intermediate perturbations are responsible of the appearance 

of large proportions of abnormal individuals, with a variable typology of malformations, 

reaching almost 58% in the case Fragilaria rumpens (Kützing) Carlson. Also, a new type of 

teratology regarding the species Achnanthidium minutissimum and Achnanthidium 

macrocephalum, affecting the shape of the frustule cingulum, has been reported.  

Automatic measures by means of geometric morphometry revealed morphological 

differences between normal and abnormal individuals of Achnanthidium  minutissimum and 

Achnanthidium macrocephalum. Multivariate analyses separated the populations of these 

species and showed the main physico-chemical variables that have contributed to valve 

deformation in this context, namely conductivity, Zn, and Cu. 

Secondly, the implications for diatom-based biomonitoring of variations in diatoms 

morphology have been tested. This work highlights an overestimation of water quality 

conditions caused by overriding deformed individuals in diatom-based biomonitoring studies. 

It can be shown that normal and teratological forms of the same species differ in ecological 

profiles.  

In order to assess the levels of one of the key elements in the pollution of Abrud 

River, that is the Zn, a transfer function, was developed using the diatom assemblage as 

proxy. The optimum and tolerance of each species has been calculated and the resulting 
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function can be used to derive past and present chemical conditions, allowing the 

reconstruction of Zn levels in freshwaters. 

Finally, the contribution to the Romanian flora of this work can be summarized by the 

identification of 274 diatom taxa in the Abrud River catchment area, 35 of them recorded for 

the first time in Romanian waters. The spatial and temporal pattern variations of species 

richness in the study area point out the effects of water pollution on diatom communities and 

the differences between the main stream of the Abrud River, with species richness ranging 

between 38 and 102 taxa, and the tributaries with some very species-poor points in which 

almost no taxa were identified. Only in the clean waters upstream of Roșia Valley, a very rich 

diatom community (85 taxa) was found. 
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